ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.194 by root, Sat Dec 22 07:03:31 2007 UTC vs.
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
110# else 119# else
111# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
112# endif 121# endif
113# endif 122# endif
114 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
115#endif 132#endif
116 133
117#include <math.h> 134#include <math.h>
118#include <stdlib.h> 135#include <stdlib.h>
119#include <fcntl.h> 136#include <fcntl.h>
144# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
146# endif 163# endif
147#endif 164#endif
148 165
149/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
150 167
151#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
152# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
153#endif 170#endif
154 171
171# define EV_USE_POLL 1 188# define EV_USE_POLL 1
172# endif 189# endif
173#endif 190#endif
174 191
175#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
176# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
177#endif 198#endif
178 199
179#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
181#endif 202#endif
183#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 205# define EV_USE_PORT 0
185#endif 206#endif
186 207
187#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
188# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
189#endif 214#endif
190 215
191#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 217# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
202# else 227# else
203# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
204# endif 229# endif
205#endif 230#endif
206 231
207/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 241
209#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
212#endif 245#endif
231# include <sys/inotify.h> 264# include <sys/inotify.h>
232#endif 265#endif
233 266
234#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
236#endif 281#endif
237 282
238/**/ 283/**/
239 284
240/* 285/*
255# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
257#else 302#else
258# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
259# define noinline 304# define noinline
260# if __STDC_VERSION__ < 199901L 305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 306# define inline
262# endif 307# endif
263#endif 308#endif
264 309
265#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
280 325
281typedef ev_watcher *W; 326typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
284 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */ 335/* giving it a reasonably high chance of working on typical architetcures */
287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
288 338
289#ifdef _WIN32 339#ifdef _WIN32
290# include "ev_win32.c" 340# include "ev_win32.c"
291#endif 341#endif
292 342
313 perror (msg); 363 perror (msg);
314 abort (); 364 abort ();
315 } 365 }
316} 366}
317 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
318static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
319 384
320void 385void
321ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
322{ 387{
323 alloc = cb; 388 alloc = cb;
324} 389}
325 390
326inline_speed void * 391inline_speed void *
327ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
328{ 393{
329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
330 395
331 if (!ptr && size) 396 if (!ptr && size)
332 { 397 {
333 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
334 abort (); 399 abort ();
357 W w; 422 W w;
358 int events; 423 int events;
359} ANPENDING; 424} ANPENDING;
360 425
361#if EV_USE_INOTIFY 426#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */
362typedef struct 428typedef struct
363{ 429{
364 WL head; 430 WL head;
365} ANFS; 431} ANFS;
432#endif
433
434/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT
437 typedef struct {
438 WT w;
439 ev_tstamp at;
440 } ANHE;
441
442 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
445#else
446 typedef WT ANHE;
447
448 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he)
366#endif 451#endif
367 452
368#if EV_MULTIPLICITY 453#if EV_MULTIPLICITY
369 454
370 struct ev_loop 455 struct ev_loop
441 ts.tv_sec = (time_t)delay; 526 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 527 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443 528
444 nanosleep (&ts, 0); 529 nanosleep (&ts, 0);
445#elif defined(_WIN32) 530#elif defined(_WIN32)
446 Sleep (delay * 1e3); 531 Sleep ((unsigned long)(delay * 1e3));
447#else 532#else
448 struct timeval tv; 533 struct timeval tv;
449 534
450 tv.tv_sec = (time_t)delay; 535 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
454#endif 539#endif
455 } 540 }
456} 541}
457 542
458/*****************************************************************************/ 543/*****************************************************************************/
544
545#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
459 546
460int inline_size 547int inline_size
461array_nextsize (int elem, int cur, int cnt) 548array_nextsize (int elem, int cur, int cnt)
462{ 549{
463 int ncur = cur + 1; 550 int ncur = cur + 1;
464 551
465 do 552 do
466 ncur <<= 1; 553 ncur <<= 1;
467 while (cnt > ncur); 554 while (cnt > ncur);
468 555
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 556 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096) 557 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
471 { 558 {
472 ncur *= elem; 559 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 560 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
474 ncur = ncur - sizeof (void *) * 4; 561 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem; 562 ncur /= elem;
476 } 563 }
477 564
478 return ncur; 565 return ncur;
590 677
591#if EV_SELECT_IS_WINSOCKET 678#if EV_SELECT_IS_WINSOCKET
592 if (events) 679 if (events)
593 { 680 {
594 unsigned long argp; 681 unsigned long argp;
682 #ifdef EV_FD_TO_WIN32_HANDLE
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
684 #else
595 anfd->handle = _get_osfhandle (fd); 685 anfd->handle = _get_osfhandle (fd);
686 #endif
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
597 } 688 }
598#endif 689#endif
599 690
600 { 691 {
688 } 779 }
689} 780}
690 781
691/*****************************************************************************/ 782/*****************************************************************************/
692 783
784/*
785 * the heap functions want a real array index. array index 0 uis guaranteed to not
786 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
787 * the branching factor of the d-tree.
788 */
789
790/*
791 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers.
795 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP
798
799#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801
802/* towards the root */
693void inline_speed 803void inline_speed
694upheap (WT *heap, int k) 804upheap (ANHE *heap, int k)
695{ 805{
696 WT w = heap [k]; 806 ANHE he = heap [k];
697 807
698 while (k) 808 for (;;)
699 { 809 {
700 int p = (k - 1) >> 1; 810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
701 811
702 if (heap [p]->at <= w->at) 812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
703 break; 813 break;
704 814
705 heap [k] = heap [p]; 815 heap [k] = heap [p];
706 ((W)heap [k])->active = k + 1; 816 ev_active (ANHE_w (heap [k])) = k;
707 k = p; 817 k = p;
708 } 818 }
709 819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823
824/* away from the root */
825void inline_speed
826downheap (ANHE *heap, int N, int k)
827{
828 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0;
830
831 for (;;)
832 {
833 ev_tstamp minat;
834 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
836
837 // find minimum child
838 if (expect_true (pos + DHEAP - 1 < E))
839 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 }
845 else if (pos < E)
846 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else
853 break;
854
855 if (ANHE_at (he) <= minat)
856 break;
857
858 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860
861 k = minpos - heap;
862 }
863
864 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866}
867
868#else // 4HEAP
869
870#define HEAP0 1
871
872/* towards the root */
873void inline_speed
874upheap (ANHE *heap, int k)
875{
876 ANHE he = heap [k];
877
878 for (;;)
879 {
880 int p = k >> 1;
881
882 /* maybe we could use a dummy element at heap [0]? */
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break;
885
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
889 }
890
710 heap [k] = w; 891 heap [k] = w;
711 ((W)heap [k])->active = k + 1; 892 ev_active (ANHE_w (heap [k])) = k;
712} 893}
713 894
895/* away from the root */
714void inline_speed 896void inline_speed
715downheap (WT *heap, int N, int k) 897downheap (ANHE *heap, int N, int k)
716{ 898{
717 WT w = heap [k]; 899 ANHE he = heap [k];
718 900
719 for (;;) 901 for (;;)
720 { 902 {
721 int c = (k << 1) + 1; 903 int c = k << 1;
722 904
723 if (c >= N) 905 if (c > N)
724 break; 906 break;
725 907
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
727 ? 1 : 0; 909 ? 1 : 0;
728 910
729 if (w->at <= heap [c]->at) 911 if (w->at <= ANHE_at (heap [c]))
730 break; 912 break;
731 913
732 heap [k] = heap [c]; 914 heap [k] = heap [c];
733 ((W)heap [k])->active = k + 1; 915 ev_active (ANHE_w (heap [k])) = k;
734 916
735 k = c; 917 k = c;
736 } 918 }
737 919
738 heap [k] = w; 920 heap [k] = he;
739 ((W)heap [k])->active = k + 1; 921 ev_active (ANHE_w (he)) = k;
740} 922}
923#endif
741 924
742void inline_size 925void inline_size
743adjustheap (WT *heap, int N, int k) 926adjustheap (ANHE *heap, int N, int k)
744{ 927{
745 upheap (heap, k); 928 upheap (heap, k);
746 downheap (heap, N, k); 929 downheap (heap, N, k);
747} 930}
748 931
749/*****************************************************************************/ 932/*****************************************************************************/
750 933
751typedef struct 934typedef struct
752{ 935{
753 WL head; 936 WL head;
754 sig_atomic_t volatile gotsig; 937 EV_ATOMIC_T gotsig;
755} ANSIG; 938} ANSIG;
756 939
757static ANSIG *signals; 940static ANSIG *signals;
758static int signalmax; 941static int signalmax;
759 942
760static int sigpipe [2]; 943static EV_ATOMIC_T gotsig;
761static sig_atomic_t volatile gotsig;
762static ev_io sigev;
763 944
764void inline_size 945void inline_size
765signals_init (ANSIG *base, int count) 946signals_init (ANSIG *base, int count)
766{ 947{
767 while (count--) 948 while (count--)
771 952
772 ++base; 953 ++base;
773 } 954 }
774} 955}
775 956
776static void 957/*****************************************************************************/
777sighandler (int signum)
778{
779#if _WIN32
780 signal (signum, sighandler);
781#endif
782
783 signals [signum - 1].gotsig = 1;
784
785 if (!gotsig)
786 {
787 int old_errno = errno;
788 gotsig = 1;
789 write (sigpipe [1], &signum, 1);
790 errno = old_errno;
791 }
792}
793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
814static void
815sigcb (EV_P_ ev_io *iow, int revents)
816{
817 int signum;
818
819 read (sigpipe [0], &revents, 1);
820 gotsig = 0;
821
822 for (signum = signalmax; signum--; )
823 if (signals [signum].gotsig)
824 ev_feed_signal_event (EV_A_ signum + 1);
825}
826 958
827void inline_speed 959void inline_speed
828fd_intern (int fd) 960fd_intern (int fd)
829{ 961{
830#ifdef _WIN32 962#ifdef _WIN32
835 fcntl (fd, F_SETFL, O_NONBLOCK); 967 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 968#endif
837} 969}
838 970
839static void noinline 971static void noinline
840siginit (EV_P) 972evpipe_init (EV_P)
841{ 973{
974 if (!ev_is_active (&pipeev))
975 {
976#if EV_USE_EVENTFD
977 if ((evfd = eventfd (0, 0)) >= 0)
978 {
979 evpipe [0] = -1;
980 fd_intern (evfd);
981 ev_io_set (&pipeev, evfd, EV_READ);
982 }
983 else
984#endif
985 {
986 while (pipe (evpipe))
987 syserr ("(libev) error creating signal/async pipe");
988
842 fd_intern (sigpipe [0]); 989 fd_intern (evpipe [0]);
843 fd_intern (sigpipe [1]); 990 fd_intern (evpipe [1]);
991 ev_io_set (&pipeev, evpipe [0], EV_READ);
992 }
844 993
845 ev_io_set (&sigev, sigpipe [0], EV_READ);
846 ev_io_start (EV_A_ &sigev); 994 ev_io_start (EV_A_ &pipeev);
847 ev_unref (EV_A); /* child watcher should not keep loop alive */ 995 ev_unref (EV_A); /* watcher should not keep loop alive */
996 }
997}
998
999void inline_size
1000evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1001{
1002 if (!*flag)
1003 {
1004 int old_errno = errno; /* save errno because write might clobber it */
1005
1006 *flag = 1;
1007
1008#if EV_USE_EVENTFD
1009 if (evfd >= 0)
1010 {
1011 uint64_t counter = 1;
1012 write (evfd, &counter, sizeof (uint64_t));
1013 }
1014 else
1015#endif
1016 write (evpipe [1], &old_errno, 1);
1017
1018 errno = old_errno;
1019 }
1020}
1021
1022static void
1023pipecb (EV_P_ ev_io *iow, int revents)
1024{
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter;
1029 read (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 {
1034 char dummy;
1035 read (evpipe [0], &dummy, 1);
1036 }
1037
1038 if (gotsig && ev_is_default_loop (EV_A))
1039 {
1040 int signum;
1041 gotsig = 0;
1042
1043 for (signum = signalmax; signum--; )
1044 if (signals [signum].gotsig)
1045 ev_feed_signal_event (EV_A_ signum + 1);
1046 }
1047
1048#if EV_ASYNC_ENABLE
1049 if (gotasync)
1050 {
1051 int i;
1052 gotasync = 0;
1053
1054 for (i = asynccnt; i--; )
1055 if (asyncs [i]->sent)
1056 {
1057 asyncs [i]->sent = 0;
1058 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1059 }
1060 }
1061#endif
848} 1062}
849 1063
850/*****************************************************************************/ 1064/*****************************************************************************/
851 1065
1066static void
1067ev_sighandler (int signum)
1068{
1069#if EV_MULTIPLICITY
1070 struct ev_loop *loop = &default_loop_struct;
1071#endif
1072
1073#if _WIN32
1074 signal (signum, ev_sighandler);
1075#endif
1076
1077 signals [signum - 1].gotsig = 1;
1078 evpipe_write (EV_A_ &gotsig);
1079}
1080
1081void noinline
1082ev_feed_signal_event (EV_P_ int signum)
1083{
1084 WL w;
1085
1086#if EV_MULTIPLICITY
1087 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1088#endif
1089
1090 --signum;
1091
1092 if (signum < 0 || signum >= signalmax)
1093 return;
1094
1095 signals [signum].gotsig = 0;
1096
1097 for (w = signals [signum].head; w; w = w->next)
1098 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1099}
1100
1101/*****************************************************************************/
1102
852static WL childs [EV_PID_HASHSIZE]; 1103static WL childs [EV_PID_HASHSIZE];
853 1104
854#ifndef _WIN32 1105#ifndef _WIN32
855 1106
856static ev_signal childev; 1107static ev_signal childev;
857 1108
1109#ifndef WIFCONTINUED
1110# define WIFCONTINUED(status) 0
1111#endif
1112
858void inline_speed 1113void inline_speed
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1114child_reap (EV_P_ int chain, int pid, int status)
860{ 1115{
861 ev_child *w; 1116 ev_child *w;
1117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
862 1118
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1119 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1120 {
864 if (w->pid == pid || !w->pid) 1121 if ((w->pid == pid || !w->pid)
1122 && (!traced || (w->flags & 1)))
865 { 1123 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1124 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
867 w->rpid = pid; 1125 w->rpid = pid;
868 w->rstatus = status; 1126 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1127 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 } 1128 }
1129 }
871} 1130}
872 1131
873#ifndef WCONTINUED 1132#ifndef WCONTINUED
874# define WCONTINUED 0 1133# define WCONTINUED 0
875#endif 1134#endif
884 if (!WCONTINUED 1143 if (!WCONTINUED
885 || errno != EINVAL 1144 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1145 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return; 1146 return;
888 1147
889 /* make sure we are called again until all childs have been reaped */ 1148 /* make sure we are called again until all children have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */ 1149 /* we need to do it this way so that the callback gets called before we continue */
891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1150 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
892 1151
893 child_reap (EV_A_ sw, pid, pid, status); 1152 child_reap (EV_A_ pid, pid, status);
894 if (EV_PID_HASHSIZE > 1) 1153 if (EV_PID_HASHSIZE > 1)
895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1154 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
896} 1155}
897 1156
898#endif 1157#endif
899 1158
900/*****************************************************************************/ 1159/*****************************************************************************/
972} 1231}
973 1232
974unsigned int 1233unsigned int
975ev_embeddable_backends (void) 1234ev_embeddable_backends (void)
976{ 1235{
1236 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1237
977 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1238 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
978 return EVBACKEND_KQUEUE 1239 /* please fix it and tell me how to detect the fix */
979 | EVBACKEND_PORT; 1240 flags &= ~EVBACKEND_EPOLL;
1241
1242 return flags;
980} 1243}
981 1244
982unsigned int 1245unsigned int
983ev_backend (EV_P) 1246ev_backend (EV_P)
984{ 1247{
1014 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1277 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1015 have_monotonic = 1; 1278 have_monotonic = 1;
1016 } 1279 }
1017#endif 1280#endif
1018 1281
1019 ev_rt_now = ev_time (); 1282 ev_rt_now = ev_time ();
1020 mn_now = get_clock (); 1283 mn_now = get_clock ();
1021 now_floor = mn_now; 1284 now_floor = mn_now;
1022 rtmn_diff = ev_rt_now - mn_now; 1285 rtmn_diff = ev_rt_now - mn_now;
1023 1286
1024 io_blocktime = 0.; 1287 io_blocktime = 0.;
1025 timeout_blocktime = 0.; 1288 timeout_blocktime = 0.;
1289 backend = 0;
1290 backend_fd = -1;
1291 gotasync = 0;
1292#if EV_USE_INOTIFY
1293 fs_fd = -2;
1294#endif
1026 1295
1027 /* pid check not overridable via env */ 1296 /* pid check not overridable via env */
1028#ifndef _WIN32 1297#ifndef _WIN32
1029 if (flags & EVFLAG_FORKCHECK) 1298 if (flags & EVFLAG_FORKCHECK)
1030 curpid = getpid (); 1299 curpid = getpid ();
1033 if (!(flags & EVFLAG_NOENV) 1302 if (!(flags & EVFLAG_NOENV)
1034 && !enable_secure () 1303 && !enable_secure ()
1035 && getenv ("LIBEV_FLAGS")) 1304 && getenv ("LIBEV_FLAGS"))
1036 flags = atoi (getenv ("LIBEV_FLAGS")); 1305 flags = atoi (getenv ("LIBEV_FLAGS"));
1037 1306
1038 if (!(flags & 0x0000ffffUL)) 1307 if (!(flags & 0x0000ffffU))
1039 flags |= ev_recommended_backends (); 1308 flags |= ev_recommended_backends ();
1040
1041 backend = 0;
1042 backend_fd = -1;
1043#if EV_USE_INOTIFY
1044 fs_fd = -2;
1045#endif
1046 1309
1047#if EV_USE_PORT 1310#if EV_USE_PORT
1048 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1311 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1049#endif 1312#endif
1050#if EV_USE_KQUEUE 1313#if EV_USE_KQUEUE
1058#endif 1321#endif
1059#if EV_USE_SELECT 1322#if EV_USE_SELECT
1060 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1323 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1061#endif 1324#endif
1062 1325
1063 ev_init (&sigev, sigcb); 1326 ev_init (&pipeev, pipecb);
1064 ev_set_priority (&sigev, EV_MAXPRI); 1327 ev_set_priority (&pipeev, EV_MAXPRI);
1065 } 1328 }
1066} 1329}
1067 1330
1068static void noinline 1331static void noinline
1069loop_destroy (EV_P) 1332loop_destroy (EV_P)
1070{ 1333{
1071 int i; 1334 int i;
1335
1336 if (ev_is_active (&pipeev))
1337 {
1338 ev_ref (EV_A); /* signal watcher */
1339 ev_io_stop (EV_A_ &pipeev);
1340
1341#if EV_USE_EVENTFD
1342 if (evfd >= 0)
1343 close (evfd);
1344#endif
1345
1346 if (evpipe [0] >= 0)
1347 {
1348 close (evpipe [0]);
1349 close (evpipe [1]);
1350 }
1351 }
1072 1352
1073#if EV_USE_INOTIFY 1353#if EV_USE_INOTIFY
1074 if (fs_fd >= 0) 1354 if (fs_fd >= 0)
1075 close (fs_fd); 1355 close (fs_fd);
1076#endif 1356#endif
1113#if EV_FORK_ENABLE 1393#if EV_FORK_ENABLE
1114 array_free (fork, EMPTY); 1394 array_free (fork, EMPTY);
1115#endif 1395#endif
1116 array_free (prepare, EMPTY); 1396 array_free (prepare, EMPTY);
1117 array_free (check, EMPTY); 1397 array_free (check, EMPTY);
1398#if EV_ASYNC_ENABLE
1399 array_free (async, EMPTY);
1400#endif
1118 1401
1119 backend = 0; 1402 backend = 0;
1120} 1403}
1121 1404
1405#if EV_USE_INOTIFY
1122void inline_size infy_fork (EV_P); 1406void inline_size infy_fork (EV_P);
1407#endif
1123 1408
1124void inline_size 1409void inline_size
1125loop_fork (EV_P) 1410loop_fork (EV_P)
1126{ 1411{
1127#if EV_USE_PORT 1412#if EV_USE_PORT
1135#endif 1420#endif
1136#if EV_USE_INOTIFY 1421#if EV_USE_INOTIFY
1137 infy_fork (EV_A); 1422 infy_fork (EV_A);
1138#endif 1423#endif
1139 1424
1140 if (ev_is_active (&sigev)) 1425 if (ev_is_active (&pipeev))
1141 { 1426 {
1142 /* default loop */ 1427 /* this "locks" the handlers against writing to the pipe */
1428 /* while we modify the fd vars */
1429 gotsig = 1;
1430#if EV_ASYNC_ENABLE
1431 gotasync = 1;
1432#endif
1143 1433
1144 ev_ref (EV_A); 1434 ev_ref (EV_A);
1145 ev_io_stop (EV_A_ &sigev); 1435 ev_io_stop (EV_A_ &pipeev);
1436
1437#if EV_USE_EVENTFD
1438 if (evfd >= 0)
1439 close (evfd);
1440#endif
1441
1442 if (evpipe [0] >= 0)
1443 {
1146 close (sigpipe [0]); 1444 close (evpipe [0]);
1147 close (sigpipe [1]); 1445 close (evpipe [1]);
1446 }
1148 1447
1149 while (pipe (sigpipe))
1150 syserr ("(libev) error creating pipe");
1151
1152 siginit (EV_A); 1448 evpipe_init (EV_A);
1449 /* now iterate over everything, in case we missed something */
1450 pipecb (EV_A_ &pipeev, EV_READ);
1153 } 1451 }
1154 1452
1155 postfork = 0; 1453 postfork = 0;
1156} 1454}
1157 1455
1179} 1477}
1180 1478
1181void 1479void
1182ev_loop_fork (EV_P) 1480ev_loop_fork (EV_P)
1183{ 1481{
1184 postfork = 1; 1482 postfork = 1; /* must be in line with ev_default_fork */
1185} 1483}
1186
1187#endif 1484#endif
1188 1485
1189#if EV_MULTIPLICITY 1486#if EV_MULTIPLICITY
1190struct ev_loop * 1487struct ev_loop *
1191ev_default_loop_init (unsigned int flags) 1488ev_default_loop_init (unsigned int flags)
1192#else 1489#else
1193int 1490int
1194ev_default_loop (unsigned int flags) 1491ev_default_loop (unsigned int flags)
1195#endif 1492#endif
1196{ 1493{
1197 if (sigpipe [0] == sigpipe [1])
1198 if (pipe (sigpipe))
1199 return 0;
1200
1201 if (!ev_default_loop_ptr) 1494 if (!ev_default_loop_ptr)
1202 { 1495 {
1203#if EV_MULTIPLICITY 1496#if EV_MULTIPLICITY
1204 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1497 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1205#else 1498#else
1208 1501
1209 loop_init (EV_A_ flags); 1502 loop_init (EV_A_ flags);
1210 1503
1211 if (ev_backend (EV_A)) 1504 if (ev_backend (EV_A))
1212 { 1505 {
1213 siginit (EV_A);
1214
1215#ifndef _WIN32 1506#ifndef _WIN32
1216 ev_signal_init (&childev, childcb, SIGCHLD); 1507 ev_signal_init (&childev, childcb, SIGCHLD);
1217 ev_set_priority (&childev, EV_MAXPRI); 1508 ev_set_priority (&childev, EV_MAXPRI);
1218 ev_signal_start (EV_A_ &childev); 1509 ev_signal_start (EV_A_ &childev);
1219 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1510 ev_unref (EV_A); /* child watcher should not keep loop alive */
1236#ifndef _WIN32 1527#ifndef _WIN32
1237 ev_ref (EV_A); /* child watcher */ 1528 ev_ref (EV_A); /* child watcher */
1238 ev_signal_stop (EV_A_ &childev); 1529 ev_signal_stop (EV_A_ &childev);
1239#endif 1530#endif
1240 1531
1241 ev_ref (EV_A); /* signal watcher */
1242 ev_io_stop (EV_A_ &sigev);
1243
1244 close (sigpipe [0]); sigpipe [0] = 0;
1245 close (sigpipe [1]); sigpipe [1] = 0;
1246
1247 loop_destroy (EV_A); 1532 loop_destroy (EV_A);
1248} 1533}
1249 1534
1250void 1535void
1251ev_default_fork (void) 1536ev_default_fork (void)
1253#if EV_MULTIPLICITY 1538#if EV_MULTIPLICITY
1254 struct ev_loop *loop = ev_default_loop_ptr; 1539 struct ev_loop *loop = ev_default_loop_ptr;
1255#endif 1540#endif
1256 1541
1257 if (backend) 1542 if (backend)
1258 postfork = 1; 1543 postfork = 1; /* must be in line with ev_loop_fork */
1259} 1544}
1260 1545
1261/*****************************************************************************/ 1546/*****************************************************************************/
1262 1547
1263void 1548void
1283 p->w->pending = 0; 1568 p->w->pending = 0;
1284 EV_CB_INVOKE (p->w, p->events); 1569 EV_CB_INVOKE (p->w, p->events);
1285 } 1570 }
1286 } 1571 }
1287} 1572}
1288
1289void inline_size
1290timers_reify (EV_P)
1291{
1292 while (timercnt && ((WT)timers [0])->at <= mn_now)
1293 {
1294 ev_timer *w = (ev_timer *)timers [0];
1295
1296 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1297
1298 /* first reschedule or stop timer */
1299 if (w->repeat)
1300 {
1301 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1302
1303 ((WT)w)->at += w->repeat;
1304 if (((WT)w)->at < mn_now)
1305 ((WT)w)->at = mn_now;
1306
1307 downheap (timers, timercnt, 0);
1308 }
1309 else
1310 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1311
1312 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1313 }
1314}
1315
1316#if EV_PERIODIC_ENABLE
1317void inline_size
1318periodics_reify (EV_P)
1319{
1320 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1321 {
1322 ev_periodic *w = (ev_periodic *)periodics [0];
1323
1324 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1325
1326 /* first reschedule or stop timer */
1327 if (w->reschedule_cb)
1328 {
1329 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1330 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1331 downheap (periodics, periodiccnt, 0);
1332 }
1333 else if (w->interval)
1334 {
1335 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1336 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1337 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1338 downheap (periodics, periodiccnt, 0);
1339 }
1340 else
1341 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1342
1343 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1344 }
1345}
1346
1347static void noinline
1348periodics_reschedule (EV_P)
1349{
1350 int i;
1351
1352 /* adjust periodics after time jump */
1353 for (i = 0; i < periodiccnt; ++i)
1354 {
1355 ev_periodic *w = (ev_periodic *)periodics [i];
1356
1357 if (w->reschedule_cb)
1358 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1359 else if (w->interval)
1360 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1361 }
1362
1363 /* now rebuild the heap */
1364 for (i = periodiccnt >> 1; i--; )
1365 downheap (periodics, periodiccnt, i);
1366}
1367#endif
1368 1573
1369#if EV_IDLE_ENABLE 1574#if EV_IDLE_ENABLE
1370void inline_size 1575void inline_size
1371idle_reify (EV_P) 1576idle_reify (EV_P)
1372{ 1577{
1384 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1589 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1385 break; 1590 break;
1386 } 1591 }
1387 } 1592 }
1388 } 1593 }
1594}
1595#endif
1596
1597void inline_size
1598timers_reify (EV_P)
1599{
1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now)
1601 {
1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1603
1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1605
1606 /* first reschedule or stop timer */
1607 if (w->repeat)
1608 {
1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1610
1611 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now;
1614
1615 ANHE_at_set (timers [HEAP0]);
1616 downheap (timers, timercnt, HEAP0);
1617 }
1618 else
1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1620
1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1622 }
1623}
1624
1625#if EV_PERIODIC_ENABLE
1626void inline_size
1627periodics_reify (EV_P)
1628{
1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now)
1630 {
1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1632
1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1634
1635 /* first reschedule or stop timer */
1636 if (w->reschedule_cb)
1637 {
1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1640 ANHE_at_set (periodics [HEAP0]);
1641 downheap (periodics, periodiccnt, HEAP0);
1642 }
1643 else if (w->interval)
1644 {
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else
1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1653
1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1655 }
1656}
1657
1658static void noinline
1659periodics_reschedule (EV_P)
1660{
1661 int i;
1662
1663 /* adjust periodics after time jump */
1664 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1665 {
1666 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1667
1668 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1670 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1672
1673 ANHE_at_set (periodics [i]);
1674 }
1675
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */
1677 for (i = periodiccnt >> 1; --i; )
1678 downheap (periodics, periodiccnt, i + HEAP0);
1389} 1679}
1390#endif 1680#endif
1391 1681
1392void inline_speed 1682void inline_speed
1393time_update (EV_P_ ev_tstamp max_block) 1683time_update (EV_P_ ev_tstamp max_block)
1422 */ 1712 */
1423 for (i = 4; --i; ) 1713 for (i = 4; --i; )
1424 { 1714 {
1425 rtmn_diff = ev_rt_now - mn_now; 1715 rtmn_diff = ev_rt_now - mn_now;
1426 1716
1427 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1717 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1428 return; /* all is well */ 1718 return; /* all is well */
1429 1719
1430 ev_rt_now = ev_time (); 1720 ev_rt_now = ev_time ();
1431 mn_now = get_clock (); 1721 mn_now = get_clock ();
1432 now_floor = mn_now; 1722 now_floor = mn_now;
1448#if EV_PERIODIC_ENABLE 1738#if EV_PERIODIC_ENABLE
1449 periodics_reschedule (EV_A); 1739 periodics_reschedule (EV_A);
1450#endif 1740#endif
1451 /* adjust timers. this is easy, as the offset is the same for all of them */ 1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1452 for (i = 0; i < timercnt; ++i) 1742 for (i = 0; i < timercnt; ++i)
1743 {
1744 ANHE *he = timers + i + HEAP0;
1453 ((WT)timers [i])->at += ev_rt_now - mn_now; 1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he);
1747 }
1454 } 1748 }
1455 1749
1456 mn_now = ev_rt_now; 1750 mn_now = ev_rt_now;
1457 } 1751 }
1458} 1752}
1472static int loop_done; 1766static int loop_done;
1473 1767
1474void 1768void
1475ev_loop (EV_P_ int flags) 1769ev_loop (EV_P_ int flags)
1476{ 1770{
1477 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1771 loop_done = EVUNLOOP_CANCEL;
1478 ? EVUNLOOP_ONE
1479 : EVUNLOOP_CANCEL;
1480 1772
1481 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1482 1774
1483 do 1775 do
1484 { 1776 {
1530 1822
1531 waittime = MAX_BLOCKTIME; 1823 waittime = MAX_BLOCKTIME;
1532 1824
1533 if (timercnt) 1825 if (timercnt)
1534 { 1826 {
1535 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1827 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1536 if (waittime > to) waittime = to; 1828 if (waittime > to) waittime = to;
1537 } 1829 }
1538 1830
1539#if EV_PERIODIC_ENABLE 1831#if EV_PERIODIC_ENABLE
1540 if (periodiccnt) 1832 if (periodiccnt)
1541 { 1833 {
1542 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1543 if (waittime > to) waittime = to; 1835 if (waittime > to) waittime = to;
1544 } 1836 }
1545#endif 1837#endif
1546 1838
1547 if (expect_false (waittime < timeout_blocktime)) 1839 if (expect_false (waittime < timeout_blocktime))
1580 /* queue check watchers, to be executed first */ 1872 /* queue check watchers, to be executed first */
1581 if (expect_false (checkcnt)) 1873 if (expect_false (checkcnt))
1582 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1874 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1583 1875
1584 call_pending (EV_A); 1876 call_pending (EV_A);
1585
1586 } 1877 }
1587 while (expect_true (activecnt && !loop_done)); 1878 while (expect_true (
1879 activecnt
1880 && !loop_done
1881 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1882 ));
1588 1883
1589 if (loop_done == EVUNLOOP_ONE) 1884 if (loop_done == EVUNLOOP_ONE)
1590 loop_done = EVUNLOOP_CANCEL; 1885 loop_done = EVUNLOOP_CANCEL;
1591} 1886}
1592 1887
1696{ 1991{
1697 clear_pending (EV_A_ (W)w); 1992 clear_pending (EV_A_ (W)w);
1698 if (expect_false (!ev_is_active (w))) 1993 if (expect_false (!ev_is_active (w)))
1699 return; 1994 return;
1700 1995
1701 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1702 1997
1703 wlist_del (&anfds[w->fd].head, (WL)w); 1998 wlist_del (&anfds[w->fd].head, (WL)w);
1704 ev_stop (EV_A_ (W)w); 1999 ev_stop (EV_A_ (W)w);
1705 2000
1706 fd_change (EV_A_ w->fd, 1); 2001 fd_change (EV_A_ w->fd, 1);
1710ev_timer_start (EV_P_ ev_timer *w) 2005ev_timer_start (EV_P_ ev_timer *w)
1711{ 2006{
1712 if (expect_false (ev_is_active (w))) 2007 if (expect_false (ev_is_active (w)))
1713 return; 2008 return;
1714 2009
1715 ((WT)w)->at += mn_now; 2010 ev_at (w) += mn_now;
1716 2011
1717 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1718 2013
1719 ev_start (EV_A_ (W)w, ++timercnt); 2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1720 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1721 timers [timercnt - 1] = (WT)w; 2016 ANHE_w (timers [ev_active (w)]) = (WT)w;
1722 upheap (timers, timercnt - 1); 2017 ANHE_at_set (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w));
1723 2019
1724 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1725} 2021}
1726 2022
1727void noinline 2023void noinline
1728ev_timer_stop (EV_P_ ev_timer *w) 2024ev_timer_stop (EV_P_ ev_timer *w)
1729{ 2025{
1730 clear_pending (EV_A_ (W)w); 2026 clear_pending (EV_A_ (W)w);
1731 if (expect_false (!ev_is_active (w))) 2027 if (expect_false (!ev_is_active (w)))
1732 return; 2028 return;
1733 2029
1734 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1735
1736 { 2030 {
1737 int active = ((W)w)->active; 2031 int active = ev_active (w);
1738 2032
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034
1739 if (expect_true (--active < --timercnt)) 2035 if (expect_true (active < timercnt + HEAP0 - 1))
1740 { 2036 {
1741 timers [active] = timers [timercnt]; 2037 timers [active] = timers [timercnt + HEAP0 - 1];
1742 adjustheap (timers, timercnt, active); 2038 adjustheap (timers, timercnt, active);
1743 } 2039 }
2040
2041 --timercnt;
1744 } 2042 }
1745 2043
1746 ((WT)w)->at -= mn_now; 2044 ev_at (w) -= mn_now;
1747 2045
1748 ev_stop (EV_A_ (W)w); 2046 ev_stop (EV_A_ (W)w);
1749} 2047}
1750 2048
1751void noinline 2049void noinline
1753{ 2051{
1754 if (ev_is_active (w)) 2052 if (ev_is_active (w))
1755 { 2053 {
1756 if (w->repeat) 2054 if (w->repeat)
1757 { 2055 {
1758 ((WT)w)->at = mn_now + w->repeat; 2056 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]);
1759 adjustheap (timers, timercnt, ((W)w)->active - 1); 2058 adjustheap (timers, timercnt, ev_active (w));
1760 } 2059 }
1761 else 2060 else
1762 ev_timer_stop (EV_A_ w); 2061 ev_timer_stop (EV_A_ w);
1763 } 2062 }
1764 else if (w->repeat) 2063 else if (w->repeat)
1765 { 2064 {
1766 w->at = w->repeat; 2065 ev_at (w) = w->repeat;
1767 ev_timer_start (EV_A_ w); 2066 ev_timer_start (EV_A_ w);
1768 } 2067 }
1769} 2068}
1770 2069
1771#if EV_PERIODIC_ENABLE 2070#if EV_PERIODIC_ENABLE
1774{ 2073{
1775 if (expect_false (ev_is_active (w))) 2074 if (expect_false (ev_is_active (w)))
1776 return; 2075 return;
1777 2076
1778 if (w->reschedule_cb) 2077 if (w->reschedule_cb)
1779 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1780 else if (w->interval) 2079 else if (w->interval)
1781 { 2080 {
1782 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1783 /* this formula differs from the one in periodic_reify because we do not always round up */ 2082 /* this formula differs from the one in periodic_reify because we do not always round up */
1784 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1785 } 2084 }
1786 else 2085 else
1787 ((WT)w)->at = w->offset; 2086 ev_at (w) = w->offset;
1788 2087
1789 ev_start (EV_A_ (W)w, ++periodiccnt); 2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1790 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1791 periodics [periodiccnt - 1] = (WT)w; 2090 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1792 upheap (periodics, periodiccnt - 1); 2091 upheap (periodics, ev_active (w));
1793 2092
1794 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1795} 2094}
1796 2095
1797void noinline 2096void noinline
1798ev_periodic_stop (EV_P_ ev_periodic *w) 2097ev_periodic_stop (EV_P_ ev_periodic *w)
1799{ 2098{
1800 clear_pending (EV_A_ (W)w); 2099 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 2100 if (expect_false (!ev_is_active (w)))
1802 return; 2101 return;
1803 2102
1804 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1805
1806 { 2103 {
1807 int active = ((W)w)->active; 2104 int active = ev_active (w);
1808 2105
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107
1809 if (expect_true (--active < --periodiccnt)) 2108 if (expect_true (active < periodiccnt + HEAP0 - 1))
1810 { 2109 {
1811 periodics [active] = periodics [periodiccnt]; 2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1812 adjustheap (periodics, periodiccnt, active); 2111 adjustheap (periodics, periodiccnt, active);
1813 } 2112 }
2113
2114 --periodiccnt;
1814 } 2115 }
1815 2116
1816 ev_stop (EV_A_ (W)w); 2117 ev_stop (EV_A_ (W)w);
1817} 2118}
1818 2119
1837#endif 2138#endif
1838 if (expect_false (ev_is_active (w))) 2139 if (expect_false (ev_is_active (w)))
1839 return; 2140 return;
1840 2141
1841 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2143
2144 evpipe_init (EV_A);
1842 2145
1843 { 2146 {
1844#ifndef _WIN32 2147#ifndef _WIN32
1845 sigset_t full, prev; 2148 sigset_t full, prev;
1846 sigfillset (&full); 2149 sigfillset (&full);
1858 wlist_add (&signals [w->signum - 1].head, (WL)w); 2161 wlist_add (&signals [w->signum - 1].head, (WL)w);
1859 2162
1860 if (!((WL)w)->next) 2163 if (!((WL)w)->next)
1861 { 2164 {
1862#if _WIN32 2165#if _WIN32
1863 signal (w->signum, sighandler); 2166 signal (w->signum, ev_sighandler);
1864#else 2167#else
1865 struct sigaction sa; 2168 struct sigaction sa;
1866 sa.sa_handler = sighandler; 2169 sa.sa_handler = ev_sighandler;
1867 sigfillset (&sa.sa_mask); 2170 sigfillset (&sa.sa_mask);
1868 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1869 sigaction (w->signum, &sa, 0); 2172 sigaction (w->signum, &sa, 0);
1870#endif 2173#endif
1871 } 2174 }
1932 if (w->wd < 0) 2235 if (w->wd < 0)
1933 { 2236 {
1934 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1935 2238
1936 /* monitor some parent directory for speedup hints */ 2239 /* monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */
2241 /* but an efficiency issue only */
1937 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1938 { 2243 {
1939 char path [4096]; 2244 char path [4096];
1940 strcpy (path, w->path); 2245 strcpy (path, w->path);
1941 2246
2186 clear_pending (EV_A_ (W)w); 2491 clear_pending (EV_A_ (W)w);
2187 if (expect_false (!ev_is_active (w))) 2492 if (expect_false (!ev_is_active (w)))
2188 return; 2493 return;
2189 2494
2190 { 2495 {
2191 int active = ((W)w)->active; 2496 int active = ev_active (w);
2192 2497
2193 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2194 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2499 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2195 2500
2196 ev_stop (EV_A_ (W)w); 2501 ev_stop (EV_A_ (W)w);
2197 --idleall; 2502 --idleall;
2198 } 2503 }
2199} 2504}
2216 clear_pending (EV_A_ (W)w); 2521 clear_pending (EV_A_ (W)w);
2217 if (expect_false (!ev_is_active (w))) 2522 if (expect_false (!ev_is_active (w)))
2218 return; 2523 return;
2219 2524
2220 { 2525 {
2221 int active = ((W)w)->active; 2526 int active = ev_active (w);
2527
2222 prepares [active - 1] = prepares [--preparecnt]; 2528 prepares [active - 1] = prepares [--preparecnt];
2223 ((W)prepares [active - 1])->active = active; 2529 ev_active (prepares [active - 1]) = active;
2224 } 2530 }
2225 2531
2226 ev_stop (EV_A_ (W)w); 2532 ev_stop (EV_A_ (W)w);
2227} 2533}
2228 2534
2243 clear_pending (EV_A_ (W)w); 2549 clear_pending (EV_A_ (W)w);
2244 if (expect_false (!ev_is_active (w))) 2550 if (expect_false (!ev_is_active (w)))
2245 return; 2551 return;
2246 2552
2247 { 2553 {
2248 int active = ((W)w)->active; 2554 int active = ev_active (w);
2555
2249 checks [active - 1] = checks [--checkcnt]; 2556 checks [active - 1] = checks [--checkcnt];
2250 ((W)checks [active - 1])->active = active; 2557 ev_active (checks [active - 1]) = active;
2251 } 2558 }
2252 2559
2253 ev_stop (EV_A_ (W)w); 2560 ev_stop (EV_A_ (W)w);
2254} 2561}
2255 2562
2266 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2573 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2267 2574
2268 if (ev_cb (w)) 2575 if (ev_cb (w))
2269 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2576 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2270 else 2577 else
2271 ev_embed_sweep (loop, w); 2578 ev_loop (w->other, EVLOOP_NONBLOCK);
2272} 2579}
2273 2580
2274static void 2581static void
2275embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 2582embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2276{ 2583{
2277 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 2584 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2278 2585
2279 fd_reify (w->other); 2586 {
2587 struct ev_loop *loop = w->other;
2588
2589 while (fdchangecnt)
2590 {
2591 fd_reify (EV_A);
2592 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2593 }
2594 }
2280} 2595}
2596
2597#if 0
2598static void
2599embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2600{
2601 ev_idle_stop (EV_A_ idle);
2602}
2603#endif
2281 2604
2282void 2605void
2283ev_embed_start (EV_P_ ev_embed *w) 2606ev_embed_start (EV_P_ ev_embed *w)
2284{ 2607{
2285 if (expect_false (ev_is_active (w))) 2608 if (expect_false (ev_is_active (w)))
2296 2619
2297 ev_prepare_init (&w->prepare, embed_prepare_cb); 2620 ev_prepare_init (&w->prepare, embed_prepare_cb);
2298 ev_set_priority (&w->prepare, EV_MINPRI); 2621 ev_set_priority (&w->prepare, EV_MINPRI);
2299 ev_prepare_start (EV_A_ &w->prepare); 2622 ev_prepare_start (EV_A_ &w->prepare);
2300 2623
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625
2301 ev_start (EV_A_ (W)w, 1); 2626 ev_start (EV_A_ (W)w, 1);
2302} 2627}
2303 2628
2304void 2629void
2305ev_embed_stop (EV_P_ ev_embed *w) 2630ev_embed_stop (EV_P_ ev_embed *w)
2333 clear_pending (EV_A_ (W)w); 2658 clear_pending (EV_A_ (W)w);
2334 if (expect_false (!ev_is_active (w))) 2659 if (expect_false (!ev_is_active (w)))
2335 return; 2660 return;
2336 2661
2337 { 2662 {
2338 int active = ((W)w)->active; 2663 int active = ev_active (w);
2664
2339 forks [active - 1] = forks [--forkcnt]; 2665 forks [active - 1] = forks [--forkcnt];
2340 ((W)forks [active - 1])->active = active; 2666 ev_active (forks [active - 1]) = active;
2341 } 2667 }
2342 2668
2343 ev_stop (EV_A_ (W)w); 2669 ev_stop (EV_A_ (W)w);
2670}
2671#endif
2672
2673#if EV_ASYNC_ENABLE
2674void
2675ev_async_start (EV_P_ ev_async *w)
2676{
2677 if (expect_false (ev_is_active (w)))
2678 return;
2679
2680 evpipe_init (EV_A);
2681
2682 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w;
2685}
2686
2687void
2688ev_async_stop (EV_P_ ev_async *w)
2689{
2690 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w)))
2692 return;
2693
2694 {
2695 int active = ev_active (w);
2696
2697 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active;
2699 }
2700
2701 ev_stop (EV_A_ (W)w);
2702}
2703
2704void
2705ev_async_send (EV_P_ ev_async *w)
2706{
2707 w->sent = 1;
2708 evpipe_write (EV_A_ &gotasync);
2344} 2709}
2345#endif 2710#endif
2346 2711
2347/*****************************************************************************/ 2712/*****************************************************************************/
2348 2713

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines