ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.220 by root, Sun Apr 6 09:53:17 2008 UTC vs.
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC

268# include <winsock.h> 268# include <winsock.h>
269#endif 269#endif
270 270
271#if EV_USE_EVENTFD 271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
273int eventfd (unsigned int initval, int flags); 277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
274#endif 281#endif
275 282
276/**/ 283/**/
277 284
278/* 285/*
293# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
294# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
295#else 302#else
296# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
297# define noinline 304# define noinline
298# if __STDC_VERSION__ < 199901L 305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
299# define inline 306# define inline
300# endif 307# endif
301#endif 308#endif
302 309
303#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
318 325
319typedef ev_watcher *W; 326typedef ev_watcher *W;
320typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
321typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
322 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
323#if EV_USE_MONOTONIC 333#if EV_USE_MONOTONIC
324/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
325/* giving it a reasonably high chance of working on typical architetcures */ 335/* giving it a reasonably high chance of working on typical architetcures */
326static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
327#endif 337#endif
353 perror (msg); 363 perror (msg);
354 abort (); 364 abort ();
355 } 365 }
356} 366}
357 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
358static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
359 384
360void 385void
361ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
362{ 387{
363 alloc = cb; 388 alloc = cb;
364} 389}
365 390
366inline_speed void * 391inline_speed void *
367ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
368{ 393{
369 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
370 395
371 if (!ptr && size) 396 if (!ptr && size)
372 { 397 {
373 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
374 abort (); 399 abort ();
397 W w; 422 W w;
398 int events; 423 int events;
399} ANPENDING; 424} ANPENDING;
400 425
401#if EV_USE_INOTIFY 426#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */
402typedef struct 428typedef struct
403{ 429{
404 WL head; 430 WL head;
405} ANFS; 431} ANFS;
432#endif
433
434/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT
437 typedef struct {
438 WT w;
439 ev_tstamp at;
440 } ANHE;
441
442 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
445#else
446 typedef WT ANHE;
447
448 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he)
406#endif 451#endif
407 452
408#if EV_MULTIPLICITY 453#if EV_MULTIPLICITY
409 454
410 struct ev_loop 455 struct ev_loop
495 } 540 }
496} 541}
497 542
498/*****************************************************************************/ 543/*****************************************************************************/
499 544
545#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
546
500int inline_size 547int inline_size
501array_nextsize (int elem, int cur, int cnt) 548array_nextsize (int elem, int cur, int cnt)
502{ 549{
503 int ncur = cur + 1; 550 int ncur = cur + 1;
504 551
505 do 552 do
506 ncur <<= 1; 553 ncur <<= 1;
507 while (cnt > ncur); 554 while (cnt > ncur);
508 555
509 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 556 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
510 if (elem * ncur > 4096) 557 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
511 { 558 {
512 ncur *= elem; 559 ncur *= elem;
513 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 560 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
514 ncur = ncur - sizeof (void *) * 4; 561 ncur = ncur - sizeof (void *) * 4;
515 ncur /= elem; 562 ncur /= elem;
516 } 563 }
517 564
518 return ncur; 565 return ncur;
732 } 779 }
733} 780}
734 781
735/*****************************************************************************/ 782/*****************************************************************************/
736 783
784/*
785 * the heap functions want a real array index. array index 0 uis guaranteed to not
786 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
787 * the branching factor of the d-tree.
788 */
789
790/*
791 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers.
795 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP
798
799#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801
802/* towards the root */
737void inline_speed 803void inline_speed
738upheap (WT *heap, int k) 804upheap (ANHE *heap, int k)
739{ 805{
740 WT w = heap [k]; 806 ANHE he = heap [k];
741 807
742 while (k) 808 for (;;)
743 { 809 {
744 int p = (k - 1) >> 1; 810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
745 811
746 if (heap [p]->at <= w->at) 812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
747 break; 813 break;
748 814
749 heap [k] = heap [p]; 815 heap [k] = heap [p];
750 ((W)heap [k])->active = k + 1; 816 ev_active (ANHE_w (heap [k])) = k;
751 k = p; 817 k = p;
752 } 818 }
753 819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823
824/* away from the root */
825void inline_speed
826downheap (ANHE *heap, int N, int k)
827{
828 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0;
830
831 for (;;)
832 {
833 ev_tstamp minat;
834 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
836
837 // find minimum child
838 if (expect_true (pos + DHEAP - 1 < E))
839 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 }
845 else if (pos < E)
846 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else
853 break;
854
855 if (ANHE_at (he) <= minat)
856 break;
857
858 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860
861 k = minpos - heap;
862 }
863
864 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866}
867
868#else // 4HEAP
869
870#define HEAP0 1
871
872/* towards the root */
873void inline_speed
874upheap (ANHE *heap, int k)
875{
876 ANHE he = heap [k];
877
878 for (;;)
879 {
880 int p = k >> 1;
881
882 /* maybe we could use a dummy element at heap [0]? */
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break;
885
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
889 }
890
754 heap [k] = w; 891 heap [k] = w;
755 ((W)heap [k])->active = k + 1; 892 ev_active (ANHE_w (heap [k])) = k;
756} 893}
757 894
895/* away from the root */
758void inline_speed 896void inline_speed
759downheap (WT *heap, int N, int k) 897downheap (ANHE *heap, int N, int k)
760{ 898{
761 WT w = heap [k]; 899 ANHE he = heap [k];
762 900
763 for (;;) 901 for (;;)
764 { 902 {
765 int c = (k << 1) + 1; 903 int c = k << 1;
766 904
767 if (c >= N) 905 if (c > N)
768 break; 906 break;
769 907
770 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
771 ? 1 : 0; 909 ? 1 : 0;
772 910
773 if (w->at <= heap [c]->at) 911 if (w->at <= ANHE_at (heap [c]))
774 break; 912 break;
775 913
776 heap [k] = heap [c]; 914 heap [k] = heap [c];
777 ((W)heap [k])->active = k + 1; 915 ev_active (ANHE_w (heap [k])) = k;
778 916
779 k = c; 917 k = c;
780 } 918 }
781 919
782 heap [k] = w; 920 heap [k] = he;
783 ((W)heap [k])->active = k + 1; 921 ev_active (ANHE_w (he)) = k;
784} 922}
923#endif
785 924
786void inline_size 925void inline_size
787adjustheap (WT *heap, int N, int k) 926adjustheap (ANHE *heap, int N, int k)
788{ 927{
789 upheap (heap, k); 928 upheap (heap, k);
790 downheap (heap, N, k); 929 downheap (heap, N, k);
791} 930}
792 931
884pipecb (EV_P_ ev_io *iow, int revents) 1023pipecb (EV_P_ ev_io *iow, int revents)
885{ 1024{
886#if EV_USE_EVENTFD 1025#if EV_USE_EVENTFD
887 if (evfd >= 0) 1026 if (evfd >= 0)
888 { 1027 {
889 uint64_t counter = 1; 1028 uint64_t counter;
890 read (evfd, &counter, sizeof (uint64_t)); 1029 read (evfd, &counter, sizeof (uint64_t));
891 } 1030 }
892 else 1031 else
893#endif 1032#endif
894 { 1033 {
1163 if (!(flags & EVFLAG_NOENV) 1302 if (!(flags & EVFLAG_NOENV)
1164 && !enable_secure () 1303 && !enable_secure ()
1165 && getenv ("LIBEV_FLAGS")) 1304 && getenv ("LIBEV_FLAGS"))
1166 flags = atoi (getenv ("LIBEV_FLAGS")); 1305 flags = atoi (getenv ("LIBEV_FLAGS"));
1167 1306
1168 if (!(flags & 0x0000ffffUL)) 1307 if (!(flags & 0x0000ffffU))
1169 flags |= ev_recommended_backends (); 1308 flags |= ev_recommended_backends ();
1170 1309
1171#if EV_USE_PORT 1310#if EV_USE_PORT
1172 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1311 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1173#endif 1312#endif
1261#endif 1400#endif
1262 1401
1263 backend = 0; 1402 backend = 0;
1264} 1403}
1265 1404
1405#if EV_USE_INOTIFY
1266void inline_size infy_fork (EV_P); 1406void inline_size infy_fork (EV_P);
1407#endif
1267 1408
1268void inline_size 1409void inline_size
1269loop_fork (EV_P) 1410loop_fork (EV_P)
1270{ 1411{
1271#if EV_USE_PORT 1412#if EV_USE_PORT
1338void 1479void
1339ev_loop_fork (EV_P) 1480ev_loop_fork (EV_P)
1340{ 1481{
1341 postfork = 1; /* must be in line with ev_default_fork */ 1482 postfork = 1; /* must be in line with ev_default_fork */
1342} 1483}
1343
1344#endif 1484#endif
1345 1485
1346#if EV_MULTIPLICITY 1486#if EV_MULTIPLICITY
1347struct ev_loop * 1487struct ev_loop *
1348ev_default_loop_init (unsigned int flags) 1488ev_default_loop_init (unsigned int flags)
1429 EV_CB_INVOKE (p->w, p->events); 1569 EV_CB_INVOKE (p->w, p->events);
1430 } 1570 }
1431 } 1571 }
1432} 1572}
1433 1573
1434void inline_size
1435timers_reify (EV_P)
1436{
1437 while (timercnt && ((WT)timers [0])->at <= mn_now)
1438 {
1439 ev_timer *w = (ev_timer *)timers [0];
1440
1441 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1442
1443 /* first reschedule or stop timer */
1444 if (w->repeat)
1445 {
1446 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1447
1448 ((WT)w)->at += w->repeat;
1449 if (((WT)w)->at < mn_now)
1450 ((WT)w)->at = mn_now;
1451
1452 downheap (timers, timercnt, 0);
1453 }
1454 else
1455 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1456
1457 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1458 }
1459}
1460
1461#if EV_PERIODIC_ENABLE
1462void inline_size
1463periodics_reify (EV_P)
1464{
1465 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1466 {
1467 ev_periodic *w = (ev_periodic *)periodics [0];
1468
1469 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1470
1471 /* first reschedule or stop timer */
1472 if (w->reschedule_cb)
1473 {
1474 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1475 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1476 downheap (periodics, periodiccnt, 0);
1477 }
1478 else if (w->interval)
1479 {
1480 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1481 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1482 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1483 downheap (periodics, periodiccnt, 0);
1484 }
1485 else
1486 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1487
1488 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1489 }
1490}
1491
1492static void noinline
1493periodics_reschedule (EV_P)
1494{
1495 int i;
1496
1497 /* adjust periodics after time jump */
1498 for (i = 0; i < periodiccnt; ++i)
1499 {
1500 ev_periodic *w = (ev_periodic *)periodics [i];
1501
1502 if (w->reschedule_cb)
1503 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1504 else if (w->interval)
1505 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1506 }
1507
1508 /* now rebuild the heap */
1509 for (i = periodiccnt >> 1; i--; )
1510 downheap (periodics, periodiccnt, i);
1511}
1512#endif
1513
1514#if EV_IDLE_ENABLE 1574#if EV_IDLE_ENABLE
1515void inline_size 1575void inline_size
1516idle_reify (EV_P) 1576idle_reify (EV_P)
1517{ 1577{
1518 if (expect_false (idleall)) 1578 if (expect_false (idleall))
1529 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1589 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1530 break; 1590 break;
1531 } 1591 }
1532 } 1592 }
1533 } 1593 }
1594}
1595#endif
1596
1597void inline_size
1598timers_reify (EV_P)
1599{
1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now)
1601 {
1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1603
1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1605
1606 /* first reschedule or stop timer */
1607 if (w->repeat)
1608 {
1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1610
1611 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now;
1614
1615 ANHE_at_set (timers [HEAP0]);
1616 downheap (timers, timercnt, HEAP0);
1617 }
1618 else
1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1620
1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1622 }
1623}
1624
1625#if EV_PERIODIC_ENABLE
1626void inline_size
1627periodics_reify (EV_P)
1628{
1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now)
1630 {
1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1632
1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1634
1635 /* first reschedule or stop timer */
1636 if (w->reschedule_cb)
1637 {
1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1640 ANHE_at_set (periodics [HEAP0]);
1641 downheap (periodics, periodiccnt, HEAP0);
1642 }
1643 else if (w->interval)
1644 {
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else
1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1653
1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1655 }
1656}
1657
1658static void noinline
1659periodics_reschedule (EV_P)
1660{
1661 int i;
1662
1663 /* adjust periodics after time jump */
1664 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1665 {
1666 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1667
1668 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1670 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1672
1673 ANHE_at_set (periodics [i]);
1674 }
1675
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */
1677 for (i = periodiccnt >> 1; --i; )
1678 downheap (periodics, periodiccnt, i + HEAP0);
1534} 1679}
1535#endif 1680#endif
1536 1681
1537void inline_speed 1682void inline_speed
1538time_update (EV_P_ ev_tstamp max_block) 1683time_update (EV_P_ ev_tstamp max_block)
1567 */ 1712 */
1568 for (i = 4; --i; ) 1713 for (i = 4; --i; )
1569 { 1714 {
1570 rtmn_diff = ev_rt_now - mn_now; 1715 rtmn_diff = ev_rt_now - mn_now;
1571 1716
1572 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1717 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1573 return; /* all is well */ 1718 return; /* all is well */
1574 1719
1575 ev_rt_now = ev_time (); 1720 ev_rt_now = ev_time ();
1576 mn_now = get_clock (); 1721 mn_now = get_clock ();
1577 now_floor = mn_now; 1722 now_floor = mn_now;
1593#if EV_PERIODIC_ENABLE 1738#if EV_PERIODIC_ENABLE
1594 periodics_reschedule (EV_A); 1739 periodics_reschedule (EV_A);
1595#endif 1740#endif
1596 /* adjust timers. this is easy, as the offset is the same for all of them */ 1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1597 for (i = 0; i < timercnt; ++i) 1742 for (i = 0; i < timercnt; ++i)
1743 {
1744 ANHE *he = timers + i + HEAP0;
1598 ((WT)timers [i])->at += ev_rt_now - mn_now; 1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he);
1747 }
1599 } 1748 }
1600 1749
1601 mn_now = ev_rt_now; 1750 mn_now = ev_rt_now;
1602 } 1751 }
1603} 1752}
1673 1822
1674 waittime = MAX_BLOCKTIME; 1823 waittime = MAX_BLOCKTIME;
1675 1824
1676 if (timercnt) 1825 if (timercnt)
1677 { 1826 {
1678 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1827 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1679 if (waittime > to) waittime = to; 1828 if (waittime > to) waittime = to;
1680 } 1829 }
1681 1830
1682#if EV_PERIODIC_ENABLE 1831#if EV_PERIODIC_ENABLE
1683 if (periodiccnt) 1832 if (periodiccnt)
1684 { 1833 {
1685 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1686 if (waittime > to) waittime = to; 1835 if (waittime > to) waittime = to;
1687 } 1836 }
1688#endif 1837#endif
1689 1838
1690 if (expect_false (waittime < timeout_blocktime)) 1839 if (expect_false (waittime < timeout_blocktime))
1842{ 1991{
1843 clear_pending (EV_A_ (W)w); 1992 clear_pending (EV_A_ (W)w);
1844 if (expect_false (!ev_is_active (w))) 1993 if (expect_false (!ev_is_active (w)))
1845 return; 1994 return;
1846 1995
1847 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1848 1997
1849 wlist_del (&anfds[w->fd].head, (WL)w); 1998 wlist_del (&anfds[w->fd].head, (WL)w);
1850 ev_stop (EV_A_ (W)w); 1999 ev_stop (EV_A_ (W)w);
1851 2000
1852 fd_change (EV_A_ w->fd, 1); 2001 fd_change (EV_A_ w->fd, 1);
1856ev_timer_start (EV_P_ ev_timer *w) 2005ev_timer_start (EV_P_ ev_timer *w)
1857{ 2006{
1858 if (expect_false (ev_is_active (w))) 2007 if (expect_false (ev_is_active (w)))
1859 return; 2008 return;
1860 2009
1861 ((WT)w)->at += mn_now; 2010 ev_at (w) += mn_now;
1862 2011
1863 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1864 2013
1865 ev_start (EV_A_ (W)w, ++timercnt); 2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1866 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1867 timers [timercnt - 1] = (WT)w; 2016 ANHE_w (timers [ev_active (w)]) = (WT)w;
1868 upheap (timers, timercnt - 1); 2017 ANHE_at_set (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w));
1869 2019
1870 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1871} 2021}
1872 2022
1873void noinline 2023void noinline
1874ev_timer_stop (EV_P_ ev_timer *w) 2024ev_timer_stop (EV_P_ ev_timer *w)
1875{ 2025{
1876 clear_pending (EV_A_ (W)w); 2026 clear_pending (EV_A_ (W)w);
1877 if (expect_false (!ev_is_active (w))) 2027 if (expect_false (!ev_is_active (w)))
1878 return; 2028 return;
1879 2029
1880 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1881
1882 { 2030 {
1883 int active = ((W)w)->active; 2031 int active = ev_active (w);
1884 2032
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034
1885 if (expect_true (--active < --timercnt)) 2035 if (expect_true (active < timercnt + HEAP0 - 1))
1886 { 2036 {
1887 timers [active] = timers [timercnt]; 2037 timers [active] = timers [timercnt + HEAP0 - 1];
1888 adjustheap (timers, timercnt, active); 2038 adjustheap (timers, timercnt, active);
1889 } 2039 }
2040
2041 --timercnt;
1890 } 2042 }
1891 2043
1892 ((WT)w)->at -= mn_now; 2044 ev_at (w) -= mn_now;
1893 2045
1894 ev_stop (EV_A_ (W)w); 2046 ev_stop (EV_A_ (W)w);
1895} 2047}
1896 2048
1897void noinline 2049void noinline
1899{ 2051{
1900 if (ev_is_active (w)) 2052 if (ev_is_active (w))
1901 { 2053 {
1902 if (w->repeat) 2054 if (w->repeat)
1903 { 2055 {
1904 ((WT)w)->at = mn_now + w->repeat; 2056 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]);
1905 adjustheap (timers, timercnt, ((W)w)->active - 1); 2058 adjustheap (timers, timercnt, ev_active (w));
1906 } 2059 }
1907 else 2060 else
1908 ev_timer_stop (EV_A_ w); 2061 ev_timer_stop (EV_A_ w);
1909 } 2062 }
1910 else if (w->repeat) 2063 else if (w->repeat)
1911 { 2064 {
1912 w->at = w->repeat; 2065 ev_at (w) = w->repeat;
1913 ev_timer_start (EV_A_ w); 2066 ev_timer_start (EV_A_ w);
1914 } 2067 }
1915} 2068}
1916 2069
1917#if EV_PERIODIC_ENABLE 2070#if EV_PERIODIC_ENABLE
1920{ 2073{
1921 if (expect_false (ev_is_active (w))) 2074 if (expect_false (ev_is_active (w)))
1922 return; 2075 return;
1923 2076
1924 if (w->reschedule_cb) 2077 if (w->reschedule_cb)
1925 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1926 else if (w->interval) 2079 else if (w->interval)
1927 { 2080 {
1928 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1929 /* this formula differs from the one in periodic_reify because we do not always round up */ 2082 /* this formula differs from the one in periodic_reify because we do not always round up */
1930 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1931 } 2084 }
1932 else 2085 else
1933 ((WT)w)->at = w->offset; 2086 ev_at (w) = w->offset;
1934 2087
1935 ev_start (EV_A_ (W)w, ++periodiccnt); 2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1936 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1937 periodics [periodiccnt - 1] = (WT)w; 2090 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1938 upheap (periodics, periodiccnt - 1); 2091 upheap (periodics, ev_active (w));
1939 2092
1940 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1941} 2094}
1942 2095
1943void noinline 2096void noinline
1944ev_periodic_stop (EV_P_ ev_periodic *w) 2097ev_periodic_stop (EV_P_ ev_periodic *w)
1945{ 2098{
1946 clear_pending (EV_A_ (W)w); 2099 clear_pending (EV_A_ (W)w);
1947 if (expect_false (!ev_is_active (w))) 2100 if (expect_false (!ev_is_active (w)))
1948 return; 2101 return;
1949 2102
1950 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1951
1952 { 2103 {
1953 int active = ((W)w)->active; 2104 int active = ev_active (w);
1954 2105
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107
1955 if (expect_true (--active < --periodiccnt)) 2108 if (expect_true (active < periodiccnt + HEAP0 - 1))
1956 { 2109 {
1957 periodics [active] = periodics [periodiccnt]; 2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1958 adjustheap (periodics, periodiccnt, active); 2111 adjustheap (periodics, periodiccnt, active);
1959 } 2112 }
2113
2114 --periodiccnt;
1960 } 2115 }
1961 2116
1962 ev_stop (EV_A_ (W)w); 2117 ev_stop (EV_A_ (W)w);
1963} 2118}
1964 2119
2080 if (w->wd < 0) 2235 if (w->wd < 0)
2081 { 2236 {
2082 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2083 2238
2084 /* monitor some parent directory for speedup hints */ 2239 /* monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */
2241 /* but an efficiency issue only */
2085 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2086 { 2243 {
2087 char path [4096]; 2244 char path [4096];
2088 strcpy (path, w->path); 2245 strcpy (path, w->path);
2089 2246
2334 clear_pending (EV_A_ (W)w); 2491 clear_pending (EV_A_ (W)w);
2335 if (expect_false (!ev_is_active (w))) 2492 if (expect_false (!ev_is_active (w)))
2336 return; 2493 return;
2337 2494
2338 { 2495 {
2339 int active = ((W)w)->active; 2496 int active = ev_active (w);
2340 2497
2341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2342 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2499 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2343 2500
2344 ev_stop (EV_A_ (W)w); 2501 ev_stop (EV_A_ (W)w);
2345 --idleall; 2502 --idleall;
2346 } 2503 }
2347} 2504}
2364 clear_pending (EV_A_ (W)w); 2521 clear_pending (EV_A_ (W)w);
2365 if (expect_false (!ev_is_active (w))) 2522 if (expect_false (!ev_is_active (w)))
2366 return; 2523 return;
2367 2524
2368 { 2525 {
2369 int active = ((W)w)->active; 2526 int active = ev_active (w);
2527
2370 prepares [active - 1] = prepares [--preparecnt]; 2528 prepares [active - 1] = prepares [--preparecnt];
2371 ((W)prepares [active - 1])->active = active; 2529 ev_active (prepares [active - 1]) = active;
2372 } 2530 }
2373 2531
2374 ev_stop (EV_A_ (W)w); 2532 ev_stop (EV_A_ (W)w);
2375} 2533}
2376 2534
2391 clear_pending (EV_A_ (W)w); 2549 clear_pending (EV_A_ (W)w);
2392 if (expect_false (!ev_is_active (w))) 2550 if (expect_false (!ev_is_active (w)))
2393 return; 2551 return;
2394 2552
2395 { 2553 {
2396 int active = ((W)w)->active; 2554 int active = ev_active (w);
2555
2397 checks [active - 1] = checks [--checkcnt]; 2556 checks [active - 1] = checks [--checkcnt];
2398 ((W)checks [active - 1])->active = active; 2557 ev_active (checks [active - 1]) = active;
2399 } 2558 }
2400 2559
2401 ev_stop (EV_A_ (W)w); 2560 ev_stop (EV_A_ (W)w);
2402} 2561}
2403 2562
2499 clear_pending (EV_A_ (W)w); 2658 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w))) 2659 if (expect_false (!ev_is_active (w)))
2501 return; 2660 return;
2502 2661
2503 { 2662 {
2504 int active = ((W)w)->active; 2663 int active = ev_active (w);
2664
2505 forks [active - 1] = forks [--forkcnt]; 2665 forks [active - 1] = forks [--forkcnt];
2506 ((W)forks [active - 1])->active = active; 2666 ev_active (forks [active - 1]) = active;
2507 } 2667 }
2508 2668
2509 ev_stop (EV_A_ (W)w); 2669 ev_stop (EV_A_ (W)w);
2510} 2670}
2511#endif 2671#endif
2530 clear_pending (EV_A_ (W)w); 2690 clear_pending (EV_A_ (W)w);
2531 if (expect_false (!ev_is_active (w))) 2691 if (expect_false (!ev_is_active (w)))
2532 return; 2692 return;
2533 2693
2534 { 2694 {
2535 int active = ((W)w)->active; 2695 int active = ev_active (w);
2696
2536 asyncs [active - 1] = asyncs [--asynccnt]; 2697 asyncs [active - 1] = asyncs [--asynccnt];
2537 ((W)asyncs [active - 1])->active = active; 2698 ev_active (asyncs [active - 1]) = active;
2538 } 2699 }
2539 2700
2540 ev_stop (EV_A_ (W)w); 2701 ev_stop (EV_A_ (W)w);
2541} 2702}
2542 2703

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines