ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC vs.
Revision 1.258 by root, Sun Sep 7 18:15:12 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
154#ifndef _WIN32 154#ifndef _WIN32
155# include <sys/time.h> 155# include <sys/time.h>
156# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h> 157# include <unistd.h>
158#else 158#else
159# include <io.h>
159# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 161# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
163# endif 164# endif
164#endif 165#endif
165 166
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
167 168
168#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
169# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
170#endif 175#endif
171 176
172#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
174#endif 179#endif
175 180
176#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
177# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
178#endif 187#endif
179 188
180#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
182#endif 191#endif
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 243# define EV_USE_EVENTFD 1
235# else 244# else
236# define EV_USE_EVENTFD 0 245# define EV_USE_EVENTFD 0
237# endif 246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
238#endif 265#endif
239 266
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 268
242#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
279} 306}
280# endif 307# endif
281#endif 308#endif
282 309
283/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
284 317
285/* 318/*
286 * This is used to avoid floating point rounding problems. 319 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 320 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 321 * to ensure progress, time-wise, even when rounding
430 WL head; 463 WL head;
431} ANFS; 464} ANFS;
432#endif 465#endif
433 466
434/* Heap Entry */ 467/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT 468#if EV_HEAP_CACHE_AT
437 typedef struct { 469 typedef struct {
470 ev_tstamp at;
438 WT w; 471 WT w;
439 ev_tstamp at;
440 } ANHE; 472 } ANHE;
441 473
442 #define ANHE_w(he) (he).w /* access watcher, read-write */ 474 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */ 475 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
445#else 477#else
446 typedef WT ANHE; 478 typedef WT ANHE;
447 479
448 #define ANHE_w(he) (he) 480 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at 481 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he) 482 #define ANHE_at_cache(he)
451#endif 483#endif
452 484
453#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
454 486
455 struct ev_loop 487 struct ev_loop
533 struct timeval tv; 565 struct timeval tv;
534 566
535 tv.tv_sec = (time_t)delay; 567 tv.tv_sec = (time_t)delay;
536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
537 569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */
538 select (0, 0, 0, 0, &tv); 573 select (0, 0, 0, 0, &tv);
539#endif 574#endif
540 } 575 }
541} 576}
542 577
676 events |= (unsigned char)w->events; 711 events |= (unsigned char)w->events;
677 712
678#if EV_SELECT_IS_WINSOCKET 713#if EV_SELECT_IS_WINSOCKET
679 if (events) 714 if (events)
680 { 715 {
681 unsigned long argp; 716 unsigned long arg;
682 #ifdef EV_FD_TO_WIN32_HANDLE 717 #ifdef EV_FD_TO_WIN32_HANDLE
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
684 #else 719 #else
685 anfd->handle = _get_osfhandle (fd); 720 anfd->handle = _get_osfhandle (fd);
686 #endif 721 #endif
687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
688 } 723 }
689#endif 724#endif
690 725
691 { 726 {
692 unsigned char o_events = anfd->events; 727 unsigned char o_events = anfd->events;
745{ 780{
746 int fd; 781 int fd;
747 782
748 for (fd = 0; fd < anfdmax; ++fd) 783 for (fd = 0; fd < anfdmax; ++fd)
749 if (anfds [fd].events) 784 if (anfds [fd].events)
750 if (!fd_valid (fd) == -1 && errno == EBADF) 785 if (!fd_valid (fd) && errno == EBADF)
751 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
752} 787}
753 788
754/* called on ENOMEM in select/poll to kill some fds and retry */ 789/* called on ENOMEM in select/poll to kill some fds and retry */
755static void noinline 790static void noinline
791 * at the moment we allow libev the luxury of two heaps, 826 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 827 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient. 828 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers. 829 * the difference is about 5% with 50000+ watchers.
795 */ 830 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP 831#if EV_USE_4HEAP
798 832
799#define DHEAP 4 833#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 834#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801 835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
802/* towards the root */ 836#define UPHEAP_DONE(p,k) ((p) == (k))
803void inline_speed
804upheap (ANHE *heap, int k)
805{
806 ANHE he = heap [k];
807
808 for (;;)
809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
815 heap [k] = heap [p];
816 ev_active (ANHE_w (heap [k])) = k;
817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823 837
824/* away from the root */ 838/* away from the root */
825void inline_speed 839void inline_speed
826downheap (ANHE *heap, int N, int k) 840downheap (ANHE *heap, int N, int k)
827{ 841{
830 844
831 for (;;) 845 for (;;)
832 { 846 {
833 ev_tstamp minat; 847 ev_tstamp minat;
834 ANHE *minpos; 848 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 849 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
836 850
837 // find minimum child 851 /* find minimum child */
838 if (expect_true (pos + DHEAP - 1 < E)) 852 if (expect_true (pos + DHEAP - 1 < E))
839 { 853 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 854 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 855 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 856 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 857 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 } 858 }
845 else if (pos < E) 859 else if (pos < E)
846 { 860 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 861 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 862 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
853 break; 867 break;
854 868
855 if (ANHE_at (he) <= minat) 869 if (ANHE_at (he) <= minat)
856 break; 870 break;
857 871
872 heap [k] = *minpos;
858 ev_active (ANHE_w (*minpos)) = k; 873 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860 874
861 k = minpos - heap; 875 k = minpos - heap;
862 } 876 }
863 877
878 heap [k] = he;
864 ev_active (ANHE_w (he)) = k; 879 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866} 880}
867 881
868#else // 4HEAP 882#else /* 4HEAP */
869 883
870#define HEAP0 1 884#define HEAP0 1
871 885#define HPARENT(k) ((k) >> 1)
872/* towards the root */ 886#define UPHEAP_DONE(p,k) (!(p))
873void inline_speed
874upheap (ANHE *heap, int k)
875{
876 ANHE he = heap [k];
877
878 for (;;)
879 {
880 int p = k >> 1;
881
882 /* maybe we could use a dummy element at heap [0]? */
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break;
885
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
889 }
890
891 heap [k] = w;
892 ev_active (ANHE_w (heap [k])) = k;
893}
894 887
895/* away from the root */ 888/* away from the root */
896void inline_speed 889void inline_speed
897downheap (ANHE *heap, int N, int k) 890downheap (ANHE *heap, int N, int k)
898{ 891{
900 893
901 for (;;) 894 for (;;)
902 { 895 {
903 int c = k << 1; 896 int c = k << 1;
904 897
905 if (c > N) 898 if (c > N + HEAP0 - 1)
906 break; 899 break;
907 900
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0; 902 ? 1 : 0;
910 903
911 if (w->at <= ANHE_at (heap [c])) 904 if (ANHE_at (he) <= ANHE_at (heap [c]))
912 break; 905 break;
913 906
914 heap [k] = heap [c]; 907 heap [k] = heap [c];
915 ev_active (ANHE_w (heap [k])) = k; 908 ev_active (ANHE_w (heap [k])) = k;
916 909
920 heap [k] = he; 913 heap [k] = he;
921 ev_active (ANHE_w (he)) = k; 914 ev_active (ANHE_w (he)) = k;
922} 915}
923#endif 916#endif
924 917
918/* towards the root */
919void inline_speed
920upheap (ANHE *heap, int k)
921{
922 ANHE he = heap [k];
923
924 for (;;)
925 {
926 int p = HPARENT (k);
927
928 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
929 break;
930
931 heap [k] = heap [p];
932 ev_active (ANHE_w (heap [k])) = k;
933 k = p;
934 }
935
936 heap [k] = he;
937 ev_active (ANHE_w (he)) = k;
938}
939
925void inline_size 940void inline_size
926adjustheap (ANHE *heap, int N, int k) 941adjustheap (ANHE *heap, int N, int k)
927{ 942{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
928 upheap (heap, k); 944 upheap (heap, k);
945 else
929 downheap (heap, N, k); 946 downheap (heap, N, k);
947}
948
949/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size
951reheap (ANHE *heap, int N)
952{
953 int i;
954
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
957 for (i = 0; i < N; ++i)
958 upheap (heap, i + HEAP0);
930} 959}
931 960
932/*****************************************************************************/ 961/*****************************************************************************/
933 962
934typedef struct 963typedef struct
958 987
959void inline_speed 988void inline_speed
960fd_intern (int fd) 989fd_intern (int fd)
961{ 990{
962#ifdef _WIN32 991#ifdef _WIN32
963 int arg = 1; 992 unsigned long arg = 1;
964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
965#else 994#else
966 fcntl (fd, F_SETFD, FD_CLOEXEC); 995 fcntl (fd, F_SETFD, FD_CLOEXEC);
967 fcntl (fd, F_SETFL, O_NONBLOCK); 996 fcntl (fd, F_SETFL, O_NONBLOCK);
968#endif 997#endif
1452 1481
1453 postfork = 0; 1482 postfork = 0;
1454} 1483}
1455 1484
1456#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
1486
1457struct ev_loop * 1487struct ev_loop *
1458ev_loop_new (unsigned int flags) 1488ev_loop_new (unsigned int flags)
1459{ 1489{
1460 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1461 1491
1479void 1509void
1480ev_loop_fork (EV_P) 1510ev_loop_fork (EV_P)
1481{ 1511{
1482 postfork = 1; /* must be in line with ev_default_fork */ 1512 postfork = 1; /* must be in line with ev_default_fork */
1483} 1513}
1514
1515#if EV_VERIFY
1516static void noinline
1517verify_watcher (EV_P_ W w)
1518{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520
1521 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523}
1524
1525static void noinline
1526verify_heap (EV_P_ ANHE *heap, int N)
1527{
1528 int i;
1529
1530 for (i = HEAP0; i < N + HEAP0; ++i)
1531 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 }
1538}
1539
1540static void noinline
1541array_verify (EV_P_ W *ws, int cnt)
1542{
1543 while (cnt--)
1544 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]);
1547 }
1548}
1549#endif
1550
1551void
1552ev_loop_verify (EV_P)
1553{
1554#if EV_VERIFY
1555 int i;
1556 WL w;
1557
1558 assert (activecnt >= -1);
1559
1560 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1563
1564 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next)
1567 {
1568 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 }
1572
1573 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt);
1575
1576#if EV_PERIODIC_ENABLE
1577 assert (periodicmax >= periodiccnt);
1578 verify_heap (EV_A_ periodics, periodiccnt);
1579#endif
1580
1581 for (i = NUMPRI; i--; )
1582 {
1583 assert (pendingmax [i] >= pendingcnt [i]);
1584#if EV_IDLE_ENABLE
1585 assert (idleall >= 0);
1586 assert (idlemax [i] >= idlecnt [i]);
1587 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1588#endif
1589 }
1590
1591#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif
1595
1596#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif
1600
1601 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt);
1603
1604 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt);
1606
1607# if 0
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1484#endif 1610# endif
1611#endif
1612}
1613
1614#endif /* multiplicity */
1485 1615
1486#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
1487struct ev_loop * 1617struct ev_loop *
1488ev_default_loop_init (unsigned int flags) 1618ev_default_loop_init (unsigned int flags)
1489#else 1619#else
1565 { 1695 {
1566 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1567 1697
1568 p->w->pending = 0; 1698 p->w->pending = 0;
1569 EV_CB_INVOKE (p->w, p->events); 1699 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK;
1570 } 1701 }
1571 } 1702 }
1572} 1703}
1573 1704
1574#if EV_IDLE_ENABLE 1705#if EV_IDLE_ENABLE
1595#endif 1726#endif
1596 1727
1597void inline_size 1728void inline_size
1598timers_reify (EV_P) 1729timers_reify (EV_P)
1599{ 1730{
1731 EV_FREQUENT_CHECK;
1732
1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now) 1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1601 { 1734 {
1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1603 1736
1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1605 1738
1606 /* first reschedule or stop timer */ 1739 /* first reschedule or stop timer */
1607 if (w->repeat) 1740 if (w->repeat)
1608 { 1741 {
1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1610
1611 ev_at (w) += w->repeat; 1742 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now) 1743 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now; 1744 ev_at (w) = mn_now;
1614 1745
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747
1615 ANHE_at_set (timers [HEAP0]); 1748 ANHE_at_cache (timers [HEAP0]);
1616 downheap (timers, timercnt, HEAP0); 1749 downheap (timers, timercnt, HEAP0);
1617 } 1750 }
1618 else 1751 else
1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1620 1753
1754 EV_FREQUENT_CHECK;
1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1622 } 1756 }
1623} 1757}
1624 1758
1625#if EV_PERIODIC_ENABLE 1759#if EV_PERIODIC_ENABLE
1626void inline_size 1760void inline_size
1627periodics_reify (EV_P) 1761periodics_reify (EV_P)
1628{ 1762{
1763 EV_FREQUENT_CHECK;
1764
1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now) 1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1630 { 1766 {
1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1632 1768
1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1634 1770
1635 /* first reschedule or stop timer */ 1771 /* first reschedule or stop timer */
1636 if (w->reschedule_cb) 1772 if (w->reschedule_cb)
1637 { 1773 {
1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775
1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777
1640 ANHE_at_set (periodics [HEAP0]); 1778 ANHE_at_cache (periodics [HEAP0]);
1641 downheap (periodics, periodiccnt, HEAP0); 1779 downheap (periodics, periodiccnt, HEAP0);
1642 } 1780 }
1643 else if (w->interval) 1781 else if (w->interval)
1644 { 1782 {
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1787 {
1788 ev_at (w) += w->interval;
1789
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1648 ANHE_at_set (periodics [HEAP0]); 1797 ANHE_at_cache (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0); 1798 downheap (periodics, periodiccnt, HEAP0);
1650 } 1799 }
1651 else 1800 else
1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1653 1802
1803 EV_FREQUENT_CHECK;
1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1655 } 1805 }
1656} 1806}
1657 1807
1658static void noinline 1808static void noinline
1668 if (w->reschedule_cb) 1818 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1670 else if (w->interval) 1820 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1672 1822
1673 ANHE_at_set (periodics [i]); 1823 ANHE_at_cache (periodics [i]);
1674 } 1824 }
1675 1825
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */
1677 for (i = periodiccnt >> 1; --i; )
1678 downheap (periodics, periodiccnt, i + HEAP0); 1826 reheap (periodics, periodiccnt);
1679} 1827}
1680#endif 1828#endif
1681 1829
1682void inline_speed 1830void inline_speed
1683time_update (EV_P_ ev_tstamp max_block) 1831time_update (EV_P_ ev_tstamp max_block)
1741 /* adjust timers. this is easy, as the offset is the same for all of them */ 1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1742 for (i = 0; i < timercnt; ++i) 1890 for (i = 0; i < timercnt; ++i)
1743 { 1891 {
1744 ANHE *he = timers + i + HEAP0; 1892 ANHE *he = timers + i + HEAP0;
1745 ANHE_w (*he)->at += ev_rt_now - mn_now; 1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he); 1894 ANHE_at_cache (*he);
1747 } 1895 }
1748 } 1896 }
1749 1897
1750 mn_now = ev_rt_now; 1898 mn_now = ev_rt_now;
1751 } 1899 }
1772 1920
1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1921 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1774 1922
1775 do 1923 do
1776 { 1924 {
1925#if EV_VERIFY >= 2
1926 ev_loop_verify (EV_A);
1927#endif
1928
1777#ifndef _WIN32 1929#ifndef _WIN32
1778 if (expect_false (curpid)) /* penalise the forking check even more */ 1930 if (expect_false (curpid)) /* penalise the forking check even more */
1779 if (expect_false (getpid () != curpid)) 1931 if (expect_false (getpid () != curpid))
1780 { 1932 {
1781 curpid = getpid (); 1933 curpid = getpid ();
1976 if (expect_false (ev_is_active (w))) 2128 if (expect_false (ev_is_active (w)))
1977 return; 2129 return;
1978 2130
1979 assert (("ev_io_start called with negative fd", fd >= 0)); 2131 assert (("ev_io_start called with negative fd", fd >= 0));
1980 2132
2133 EV_FREQUENT_CHECK;
2134
1981 ev_start (EV_A_ (W)w, 1); 2135 ev_start (EV_A_ (W)w, 1);
1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2136 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1983 wlist_add (&anfds[fd].head, (WL)w); 2137 wlist_add (&anfds[fd].head, (WL)w);
1984 2138
1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2139 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1986 w->events &= ~EV_IOFDSET; 2140 w->events &= ~EV_IOFDSET;
2141
2142 EV_FREQUENT_CHECK;
1987} 2143}
1988 2144
1989void noinline 2145void noinline
1990ev_io_stop (EV_P_ ev_io *w) 2146ev_io_stop (EV_P_ ev_io *w)
1991{ 2147{
1993 if (expect_false (!ev_is_active (w))) 2149 if (expect_false (!ev_is_active (w)))
1994 return; 2150 return;
1995 2151
1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2152 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1997 2153
2154 EV_FREQUENT_CHECK;
2155
1998 wlist_del (&anfds[w->fd].head, (WL)w); 2156 wlist_del (&anfds[w->fd].head, (WL)w);
1999 ev_stop (EV_A_ (W)w); 2157 ev_stop (EV_A_ (W)w);
2000 2158
2001 fd_change (EV_A_ w->fd, 1); 2159 fd_change (EV_A_ w->fd, 1);
2160
2161 EV_FREQUENT_CHECK;
2002} 2162}
2003 2163
2004void noinline 2164void noinline
2005ev_timer_start (EV_P_ ev_timer *w) 2165ev_timer_start (EV_P_ ev_timer *w)
2006{ 2166{
2009 2169
2010 ev_at (w) += mn_now; 2170 ev_at (w) += mn_now;
2011 2171
2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2172 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2013 2173
2174 EV_FREQUENT_CHECK;
2175
2176 ++timercnt;
2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2177 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2178 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2016 ANHE_w (timers [ev_active (w)]) = (WT)w; 2179 ANHE_w (timers [ev_active (w)]) = (WT)w;
2017 ANHE_at_set (timers [ev_active (w)]); 2180 ANHE_at_cache (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w)); 2181 upheap (timers, ev_active (w));
2182
2183 EV_FREQUENT_CHECK;
2019 2184
2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2185 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2021} 2186}
2022 2187
2023void noinline 2188void noinline
2025{ 2190{
2026 clear_pending (EV_A_ (W)w); 2191 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 2192 if (expect_false (!ev_is_active (w)))
2028 return; 2193 return;
2029 2194
2195 EV_FREQUENT_CHECK;
2196
2030 { 2197 {
2031 int active = ev_active (w); 2198 int active = ev_active (w);
2032 2199
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2200 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034 2201
2202 --timercnt;
2203
2035 if (expect_true (active < timercnt + HEAP0 - 1)) 2204 if (expect_true (active < timercnt + HEAP0))
2036 { 2205 {
2037 timers [active] = timers [timercnt + HEAP0 - 1]; 2206 timers [active] = timers [timercnt + HEAP0];
2038 adjustheap (timers, timercnt, active); 2207 adjustheap (timers, timercnt, active);
2039 } 2208 }
2040
2041 --timercnt;
2042 } 2209 }
2210
2211 EV_FREQUENT_CHECK;
2043 2212
2044 ev_at (w) -= mn_now; 2213 ev_at (w) -= mn_now;
2045 2214
2046 ev_stop (EV_A_ (W)w); 2215 ev_stop (EV_A_ (W)w);
2047} 2216}
2048 2217
2049void noinline 2218void noinline
2050ev_timer_again (EV_P_ ev_timer *w) 2219ev_timer_again (EV_P_ ev_timer *w)
2051{ 2220{
2221 EV_FREQUENT_CHECK;
2222
2052 if (ev_is_active (w)) 2223 if (ev_is_active (w))
2053 { 2224 {
2054 if (w->repeat) 2225 if (w->repeat)
2055 { 2226 {
2056 ev_at (w) = mn_now + w->repeat; 2227 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]); 2228 ANHE_at_cache (timers [ev_active (w)]);
2058 adjustheap (timers, timercnt, ev_active (w)); 2229 adjustheap (timers, timercnt, ev_active (w));
2059 } 2230 }
2060 else 2231 else
2061 ev_timer_stop (EV_A_ w); 2232 ev_timer_stop (EV_A_ w);
2062 } 2233 }
2063 else if (w->repeat) 2234 else if (w->repeat)
2064 { 2235 {
2065 ev_at (w) = w->repeat; 2236 ev_at (w) = w->repeat;
2066 ev_timer_start (EV_A_ w); 2237 ev_timer_start (EV_A_ w);
2067 } 2238 }
2239
2240 EV_FREQUENT_CHECK;
2068} 2241}
2069 2242
2070#if EV_PERIODIC_ENABLE 2243#if EV_PERIODIC_ENABLE
2071void noinline 2244void noinline
2072ev_periodic_start (EV_P_ ev_periodic *w) 2245ev_periodic_start (EV_P_ ev_periodic *w)
2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2256 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2084 } 2257 }
2085 else 2258 else
2086 ev_at (w) = w->offset; 2259 ev_at (w) = w->offset;
2087 2260
2261 EV_FREQUENT_CHECK;
2262
2263 ++periodiccnt;
2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2264 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2265 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2090 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2266 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2267 ANHE_at_cache (periodics [ev_active (w)]);
2091 upheap (periodics, ev_active (w)); 2268 upheap (periodics, ev_active (w));
2269
2270 EV_FREQUENT_CHECK;
2092 2271
2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2272 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2094} 2273}
2095 2274
2096void noinline 2275void noinline
2098{ 2277{
2099 clear_pending (EV_A_ (W)w); 2278 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w))) 2279 if (expect_false (!ev_is_active (w)))
2101 return; 2280 return;
2102 2281
2282 EV_FREQUENT_CHECK;
2283
2103 { 2284 {
2104 int active = ev_active (w); 2285 int active = ev_active (w);
2105 2286
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2287 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107 2288
2289 --periodiccnt;
2290
2108 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2291 if (expect_true (active < periodiccnt + HEAP0))
2109 { 2292 {
2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2293 periodics [active] = periodics [periodiccnt + HEAP0];
2111 adjustheap (periodics, periodiccnt, active); 2294 adjustheap (periodics, periodiccnt, active);
2112 } 2295 }
2113
2114 --periodiccnt;
2115 } 2296 }
2297
2298 EV_FREQUENT_CHECK;
2116 2299
2117 ev_stop (EV_A_ (W)w); 2300 ev_stop (EV_A_ (W)w);
2118} 2301}
2119 2302
2120void noinline 2303void noinline
2140 return; 2323 return;
2141 2324
2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2325 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2143 2326
2144 evpipe_init (EV_A); 2327 evpipe_init (EV_A);
2328
2329 EV_FREQUENT_CHECK;
2145 2330
2146 { 2331 {
2147#ifndef _WIN32 2332#ifndef _WIN32
2148 sigset_t full, prev; 2333 sigset_t full, prev;
2149 sigfillset (&full); 2334 sigfillset (&full);
2170 sigfillset (&sa.sa_mask); 2355 sigfillset (&sa.sa_mask);
2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2356 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2172 sigaction (w->signum, &sa, 0); 2357 sigaction (w->signum, &sa, 0);
2173#endif 2358#endif
2174 } 2359 }
2360
2361 EV_FREQUENT_CHECK;
2175} 2362}
2176 2363
2177void noinline 2364void noinline
2178ev_signal_stop (EV_P_ ev_signal *w) 2365ev_signal_stop (EV_P_ ev_signal *w)
2179{ 2366{
2180 clear_pending (EV_A_ (W)w); 2367 clear_pending (EV_A_ (W)w);
2181 if (expect_false (!ev_is_active (w))) 2368 if (expect_false (!ev_is_active (w)))
2182 return; 2369 return;
2183 2370
2371 EV_FREQUENT_CHECK;
2372
2184 wlist_del (&signals [w->signum - 1].head, (WL)w); 2373 wlist_del (&signals [w->signum - 1].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 2374 ev_stop (EV_A_ (W)w);
2186 2375
2187 if (!signals [w->signum - 1].head) 2376 if (!signals [w->signum - 1].head)
2188 signal (w->signum, SIG_DFL); 2377 signal (w->signum, SIG_DFL);
2378
2379 EV_FREQUENT_CHECK;
2189} 2380}
2190 2381
2191void 2382void
2192ev_child_start (EV_P_ ev_child *w) 2383ev_child_start (EV_P_ ev_child *w)
2193{ 2384{
2195 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2386 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2196#endif 2387#endif
2197 if (expect_false (ev_is_active (w))) 2388 if (expect_false (ev_is_active (w)))
2198 return; 2389 return;
2199 2390
2391 EV_FREQUENT_CHECK;
2392
2200 ev_start (EV_A_ (W)w, 1); 2393 ev_start (EV_A_ (W)w, 1);
2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2394 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2395
2396 EV_FREQUENT_CHECK;
2202} 2397}
2203 2398
2204void 2399void
2205ev_child_stop (EV_P_ ev_child *w) 2400ev_child_stop (EV_P_ ev_child *w)
2206{ 2401{
2207 clear_pending (EV_A_ (W)w); 2402 clear_pending (EV_A_ (W)w);
2208 if (expect_false (!ev_is_active (w))) 2403 if (expect_false (!ev_is_active (w)))
2209 return; 2404 return;
2210 2405
2406 EV_FREQUENT_CHECK;
2407
2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2408 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2212 ev_stop (EV_A_ (W)w); 2409 ev_stop (EV_A_ (W)w);
2410
2411 EV_FREQUENT_CHECK;
2213} 2412}
2214 2413
2215#if EV_STAT_ENABLE 2414#if EV_STAT_ENABLE
2216 2415
2217# ifdef _WIN32 2416# ifdef _WIN32
2372 } 2571 }
2373 2572
2374 } 2573 }
2375} 2574}
2376 2575
2576#endif
2577
2578#ifdef _WIN32
2579# define EV_LSTAT(p,b) _stati64 (p, b)
2580#else
2581# define EV_LSTAT(p,b) lstat (p, b)
2377#endif 2582#endif
2378 2583
2379void 2584void
2380ev_stat_stat (EV_P_ ev_stat *w) 2585ev_stat_stat (EV_P_ ev_stat *w)
2381{ 2586{
2445 else 2650 else
2446#endif 2651#endif
2447 ev_timer_start (EV_A_ &w->timer); 2652 ev_timer_start (EV_A_ &w->timer);
2448 2653
2449 ev_start (EV_A_ (W)w, 1); 2654 ev_start (EV_A_ (W)w, 1);
2655
2656 EV_FREQUENT_CHECK;
2450} 2657}
2451 2658
2452void 2659void
2453ev_stat_stop (EV_P_ ev_stat *w) 2660ev_stat_stop (EV_P_ ev_stat *w)
2454{ 2661{
2455 clear_pending (EV_A_ (W)w); 2662 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 2663 if (expect_false (!ev_is_active (w)))
2457 return; 2664 return;
2458 2665
2666 EV_FREQUENT_CHECK;
2667
2459#if EV_USE_INOTIFY 2668#if EV_USE_INOTIFY
2460 infy_del (EV_A_ w); 2669 infy_del (EV_A_ w);
2461#endif 2670#endif
2462 ev_timer_stop (EV_A_ &w->timer); 2671 ev_timer_stop (EV_A_ &w->timer);
2463 2672
2464 ev_stop (EV_A_ (W)w); 2673 ev_stop (EV_A_ (W)w);
2674
2675 EV_FREQUENT_CHECK;
2465} 2676}
2466#endif 2677#endif
2467 2678
2468#if EV_IDLE_ENABLE 2679#if EV_IDLE_ENABLE
2469void 2680void
2471{ 2682{
2472 if (expect_false (ev_is_active (w))) 2683 if (expect_false (ev_is_active (w)))
2473 return; 2684 return;
2474 2685
2475 pri_adjust (EV_A_ (W)w); 2686 pri_adjust (EV_A_ (W)w);
2687
2688 EV_FREQUENT_CHECK;
2476 2689
2477 { 2690 {
2478 int active = ++idlecnt [ABSPRI (w)]; 2691 int active = ++idlecnt [ABSPRI (w)];
2479 2692
2480 ++idleall; 2693 ++idleall;
2481 ev_start (EV_A_ (W)w, active); 2694 ev_start (EV_A_ (W)w, active);
2482 2695
2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2696 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2484 idles [ABSPRI (w)][active - 1] = w; 2697 idles [ABSPRI (w)][active - 1] = w;
2485 } 2698 }
2699
2700 EV_FREQUENT_CHECK;
2486} 2701}
2487 2702
2488void 2703void
2489ev_idle_stop (EV_P_ ev_idle *w) 2704ev_idle_stop (EV_P_ ev_idle *w)
2490{ 2705{
2491 clear_pending (EV_A_ (W)w); 2706 clear_pending (EV_A_ (W)w);
2492 if (expect_false (!ev_is_active (w))) 2707 if (expect_false (!ev_is_active (w)))
2493 return; 2708 return;
2494 2709
2710 EV_FREQUENT_CHECK;
2711
2495 { 2712 {
2496 int active = ev_active (w); 2713 int active = ev_active (w);
2497 2714
2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2715 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2716 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500 2717
2501 ev_stop (EV_A_ (W)w); 2718 ev_stop (EV_A_ (W)w);
2502 --idleall; 2719 --idleall;
2503 } 2720 }
2721
2722 EV_FREQUENT_CHECK;
2504} 2723}
2505#endif 2724#endif
2506 2725
2507void 2726void
2508ev_prepare_start (EV_P_ ev_prepare *w) 2727ev_prepare_start (EV_P_ ev_prepare *w)
2509{ 2728{
2510 if (expect_false (ev_is_active (w))) 2729 if (expect_false (ev_is_active (w)))
2511 return; 2730 return;
2731
2732 EV_FREQUENT_CHECK;
2512 2733
2513 ev_start (EV_A_ (W)w, ++preparecnt); 2734 ev_start (EV_A_ (W)w, ++preparecnt);
2514 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2735 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2515 prepares [preparecnt - 1] = w; 2736 prepares [preparecnt - 1] = w;
2737
2738 EV_FREQUENT_CHECK;
2516} 2739}
2517 2740
2518void 2741void
2519ev_prepare_stop (EV_P_ ev_prepare *w) 2742ev_prepare_stop (EV_P_ ev_prepare *w)
2520{ 2743{
2521 clear_pending (EV_A_ (W)w); 2744 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 2745 if (expect_false (!ev_is_active (w)))
2523 return; 2746 return;
2524 2747
2748 EV_FREQUENT_CHECK;
2749
2525 { 2750 {
2526 int active = ev_active (w); 2751 int active = ev_active (w);
2527 2752
2528 prepares [active - 1] = prepares [--preparecnt]; 2753 prepares [active - 1] = prepares [--preparecnt];
2529 ev_active (prepares [active - 1]) = active; 2754 ev_active (prepares [active - 1]) = active;
2530 } 2755 }
2531 2756
2532 ev_stop (EV_A_ (W)w); 2757 ev_stop (EV_A_ (W)w);
2758
2759 EV_FREQUENT_CHECK;
2533} 2760}
2534 2761
2535void 2762void
2536ev_check_start (EV_P_ ev_check *w) 2763ev_check_start (EV_P_ ev_check *w)
2537{ 2764{
2538 if (expect_false (ev_is_active (w))) 2765 if (expect_false (ev_is_active (w)))
2539 return; 2766 return;
2767
2768 EV_FREQUENT_CHECK;
2540 2769
2541 ev_start (EV_A_ (W)w, ++checkcnt); 2770 ev_start (EV_A_ (W)w, ++checkcnt);
2542 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2771 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2543 checks [checkcnt - 1] = w; 2772 checks [checkcnt - 1] = w;
2773
2774 EV_FREQUENT_CHECK;
2544} 2775}
2545 2776
2546void 2777void
2547ev_check_stop (EV_P_ ev_check *w) 2778ev_check_stop (EV_P_ ev_check *w)
2548{ 2779{
2549 clear_pending (EV_A_ (W)w); 2780 clear_pending (EV_A_ (W)w);
2550 if (expect_false (!ev_is_active (w))) 2781 if (expect_false (!ev_is_active (w)))
2551 return; 2782 return;
2552 2783
2784 EV_FREQUENT_CHECK;
2785
2553 { 2786 {
2554 int active = ev_active (w); 2787 int active = ev_active (w);
2555 2788
2556 checks [active - 1] = checks [--checkcnt]; 2789 checks [active - 1] = checks [--checkcnt];
2557 ev_active (checks [active - 1]) = active; 2790 ev_active (checks [active - 1]) = active;
2558 } 2791 }
2559 2792
2560 ev_stop (EV_A_ (W)w); 2793 ev_stop (EV_A_ (W)w);
2794
2795 EV_FREQUENT_CHECK;
2561} 2796}
2562 2797
2563#if EV_EMBED_ENABLE 2798#if EV_EMBED_ENABLE
2564void noinline 2799void noinline
2565ev_embed_sweep (EV_P_ ev_embed *w) 2800ev_embed_sweep (EV_P_ ev_embed *w)
2612 struct ev_loop *loop = w->other; 2847 struct ev_loop *loop = w->other;
2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2848 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2849 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2615 } 2850 }
2616 2851
2852 EV_FREQUENT_CHECK;
2853
2617 ev_set_priority (&w->io, ev_priority (w)); 2854 ev_set_priority (&w->io, ev_priority (w));
2618 ev_io_start (EV_A_ &w->io); 2855 ev_io_start (EV_A_ &w->io);
2619 2856
2620 ev_prepare_init (&w->prepare, embed_prepare_cb); 2857 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI); 2858 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare); 2859 ev_prepare_start (EV_A_ &w->prepare);
2623 2860
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2861 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625 2862
2626 ev_start (EV_A_ (W)w, 1); 2863 ev_start (EV_A_ (W)w, 1);
2864
2865 EV_FREQUENT_CHECK;
2627} 2866}
2628 2867
2629void 2868void
2630ev_embed_stop (EV_P_ ev_embed *w) 2869ev_embed_stop (EV_P_ ev_embed *w)
2631{ 2870{
2632 clear_pending (EV_A_ (W)w); 2871 clear_pending (EV_A_ (W)w);
2633 if (expect_false (!ev_is_active (w))) 2872 if (expect_false (!ev_is_active (w)))
2634 return; 2873 return;
2635 2874
2875 EV_FREQUENT_CHECK;
2876
2636 ev_io_stop (EV_A_ &w->io); 2877 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare); 2878 ev_prepare_stop (EV_A_ &w->prepare);
2638 2879
2639 ev_stop (EV_A_ (W)w); 2880 ev_stop (EV_A_ (W)w);
2881
2882 EV_FREQUENT_CHECK;
2640} 2883}
2641#endif 2884#endif
2642 2885
2643#if EV_FORK_ENABLE 2886#if EV_FORK_ENABLE
2644void 2887void
2645ev_fork_start (EV_P_ ev_fork *w) 2888ev_fork_start (EV_P_ ev_fork *w)
2646{ 2889{
2647 if (expect_false (ev_is_active (w))) 2890 if (expect_false (ev_is_active (w)))
2648 return; 2891 return;
2892
2893 EV_FREQUENT_CHECK;
2649 2894
2650 ev_start (EV_A_ (W)w, ++forkcnt); 2895 ev_start (EV_A_ (W)w, ++forkcnt);
2651 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2896 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2652 forks [forkcnt - 1] = w; 2897 forks [forkcnt - 1] = w;
2898
2899 EV_FREQUENT_CHECK;
2653} 2900}
2654 2901
2655void 2902void
2656ev_fork_stop (EV_P_ ev_fork *w) 2903ev_fork_stop (EV_P_ ev_fork *w)
2657{ 2904{
2658 clear_pending (EV_A_ (W)w); 2905 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w))) 2906 if (expect_false (!ev_is_active (w)))
2660 return; 2907 return;
2661 2908
2909 EV_FREQUENT_CHECK;
2910
2662 { 2911 {
2663 int active = ev_active (w); 2912 int active = ev_active (w);
2664 2913
2665 forks [active - 1] = forks [--forkcnt]; 2914 forks [active - 1] = forks [--forkcnt];
2666 ev_active (forks [active - 1]) = active; 2915 ev_active (forks [active - 1]) = active;
2667 } 2916 }
2668 2917
2669 ev_stop (EV_A_ (W)w); 2918 ev_stop (EV_A_ (W)w);
2919
2920 EV_FREQUENT_CHECK;
2670} 2921}
2671#endif 2922#endif
2672 2923
2673#if EV_ASYNC_ENABLE 2924#if EV_ASYNC_ENABLE
2674void 2925void
2676{ 2927{
2677 if (expect_false (ev_is_active (w))) 2928 if (expect_false (ev_is_active (w)))
2678 return; 2929 return;
2679 2930
2680 evpipe_init (EV_A); 2931 evpipe_init (EV_A);
2932
2933 EV_FREQUENT_CHECK;
2681 2934
2682 ev_start (EV_A_ (W)w, ++asynccnt); 2935 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2936 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w; 2937 asyncs [asynccnt - 1] = w;
2938
2939 EV_FREQUENT_CHECK;
2685} 2940}
2686 2941
2687void 2942void
2688ev_async_stop (EV_P_ ev_async *w) 2943ev_async_stop (EV_P_ ev_async *w)
2689{ 2944{
2690 clear_pending (EV_A_ (W)w); 2945 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w))) 2946 if (expect_false (!ev_is_active (w)))
2692 return; 2947 return;
2693 2948
2949 EV_FREQUENT_CHECK;
2950
2694 { 2951 {
2695 int active = ev_active (w); 2952 int active = ev_active (w);
2696 2953
2697 asyncs [active - 1] = asyncs [--asynccnt]; 2954 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active; 2955 ev_active (asyncs [active - 1]) = active;
2699 } 2956 }
2700 2957
2701 ev_stop (EV_A_ (W)w); 2958 ev_stop (EV_A_ (W)w);
2959
2960 EV_FREQUENT_CHECK;
2702} 2961}
2703 2962
2704void 2963void
2705ev_async_send (EV_P_ ev_async *w) 2964ev_async_send (EV_P_ ev_async *w)
2706{ 2965{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines