ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC vs.
Revision 1.313 by root, Wed Aug 19 23:44:51 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
136#include <fcntl.h> 158#include <fcntl.h>
154#ifndef _WIN32 176#ifndef _WIN32
155# include <sys/time.h> 177# include <sys/time.h>
156# include <sys/wait.h> 178# include <sys/wait.h>
157# include <unistd.h> 179# include <unistd.h>
158#else 180#else
181# include <io.h>
159# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 183# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
163# endif 186# endif
164#endif 187#endif
165 188
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
167 190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
225
168#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
169# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
170#endif 232#endif
171 233
172#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 236#endif
175 237
176#ifndef EV_USE_NANOSLEEP 238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
177# define EV_USE_NANOSLEEP 0 242# define EV_USE_NANOSLEEP 0
243# endif
178#endif 244#endif
179 245
180#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
182#endif 248#endif
235# else 301# else
236# define EV_USE_EVENTFD 0 302# define EV_USE_EVENTFD 0
237# endif 303# endif
238#endif 304#endif
239 305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 347
242#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 365# include <sys/select.h>
260# endif 366# endif
261#endif 367#endif
262 368
263#if EV_USE_INOTIFY 369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
264# include <sys/inotify.h> 372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
265#endif 378#endif
266 379
267#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 381# include <winsock.h>
269#endif 382#endif
270 383
271#if EV_USE_EVENTFD 384#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
274# ifdef __cplusplus 397# ifdef __cplusplus
275extern "C" { 398extern "C" {
276# endif 399# endif
277int eventfd (unsigned int initval, int flags); 400int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus 401# ifdef __cplusplus
279} 402}
280# endif 403# endif
281#endif 404#endif
282 405
406#if EV_USE_SIGNALFD
407# include <sys/signalfd.h>
408#endif
409
283/**/ 410/**/
411
412#if EV_VERIFY >= 3
413# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
414#else
415# define EV_FREQUENT_CHECK do { } while (0)
416#endif
284 417
285/* 418/*
286 * This is used to avoid floating point rounding problems. 419 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 420 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 421 * to ensure progress, time-wise, even when rounding
315# define inline_speed static noinline 448# define inline_speed static noinline
316#else 449#else
317# define inline_speed static inline 450# define inline_speed static inline
318#endif 451#endif
319 452
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 453#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
454
455#if EV_MINPRI == EV_MAXPRI
456# define ABSPRI(w) (((W)w), 0)
457#else
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 458# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
459#endif
322 460
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 461#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 462#define EMPTY2(a,b) /* used to suppress some warnings */
325 463
326typedef ev_watcher *W; 464typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 466typedef ev_watcher_time *WT;
329 467
330#define ev_active(w) ((W)(w))->active 468#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 469#define ev_at(w) ((WT)(w))->at
332 470
333#if EV_USE_MONOTONIC 471#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 472/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 473/* giving it a reasonably high chance of working on typical architetcures */
474static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
475#endif
476
477#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 478static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
479#endif
480
481#ifndef EV_FD_TO_WIN32_HANDLE
482# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
483#endif
484#ifndef EV_WIN32_HANDLE_TO_FD
485# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
486#endif
487#ifndef EV_WIN32_CLOSE_FD
488# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 489#endif
338 490
339#ifdef _WIN32 491#ifdef _WIN32
340# include "ev_win32.c" 492# include "ev_win32.c"
341#endif 493#endif
349{ 501{
350 syserr_cb = cb; 502 syserr_cb = cb;
351} 503}
352 504
353static void noinline 505static void noinline
354syserr (const char *msg) 506ev_syserr (const char *msg)
355{ 507{
356 if (!msg) 508 if (!msg)
357 msg = "(libev) system error"; 509 msg = "(libev) system error";
358 510
359 if (syserr_cb) 511 if (syserr_cb)
405#define ev_malloc(size) ev_realloc (0, (size)) 557#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 558#define ev_free(ptr) ev_realloc ((ptr), 0)
407 559
408/*****************************************************************************/ 560/*****************************************************************************/
409 561
562/* set in reify when reification needed */
563#define EV_ANFD_REIFY 1
564
565/* file descriptor info structure */
410typedef struct 566typedef struct
411{ 567{
412 WL head; 568 WL head;
413 unsigned char events; 569 unsigned char events; /* the events watched for */
570 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
571 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 572 unsigned char unused;
573#if EV_USE_EPOLL
574 unsigned int egen; /* generation counter to counter epoll bugs */
575#endif
415#if EV_SELECT_IS_WINSOCKET 576#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 577 SOCKET handle;
417#endif 578#endif
418} ANFD; 579} ANFD;
419 580
581/* stores the pending event set for a given watcher */
420typedef struct 582typedef struct
421{ 583{
422 W w; 584 W w;
423 int events; 585 int events; /* the pending event set for the given watcher */
424} ANPENDING; 586} ANPENDING;
425 587
426#if EV_USE_INOTIFY 588#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */ 589/* hash table entry per inotify-id */
428typedef struct 590typedef struct
430 WL head; 592 WL head;
431} ANFS; 593} ANFS;
432#endif 594#endif
433 595
434/* Heap Entry */ 596/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT 597#if EV_HEAP_CACHE_AT
598 /* a heap element */
437 typedef struct { 599 typedef struct {
600 ev_tstamp at;
438 WT w; 601 WT w;
439 ev_tstamp at;
440 } ANHE; 602 } ANHE;
441 603
442 #define ANHE_w(he) (he).w /* access watcher, read-write */ 604 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */ 605 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 606 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
445#else 607#else
608 /* a heap element */
446 typedef WT ANHE; 609 typedef WT ANHE;
447 610
448 #define ANHE_w(he) (he) 611 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at 612 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he) 613 #define ANHE_at_cache(he)
451#endif 614#endif
452 615
453#if EV_MULTIPLICITY 616#if EV_MULTIPLICITY
454 617
455 struct ev_loop 618 struct ev_loop
474 637
475 static int ev_default_loop_ptr; 638 static int ev_default_loop_ptr;
476 639
477#endif 640#endif
478 641
642#if EV_MINIMAL < 2
643# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
644# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
645# define EV_INVOKE_PENDING invoke_cb (EV_A)
646#else
647# define EV_RELEASE_CB (void)0
648# define EV_ACQUIRE_CB (void)0
649# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
650#endif
651
652#define EVUNLOOP_RECURSE 0x80
653
479/*****************************************************************************/ 654/*****************************************************************************/
480 655
656#ifndef EV_HAVE_EV_TIME
481ev_tstamp 657ev_tstamp
482ev_time (void) 658ev_time (void)
483{ 659{
484#if EV_USE_REALTIME 660#if EV_USE_REALTIME
661 if (expect_true (have_realtime))
662 {
485 struct timespec ts; 663 struct timespec ts;
486 clock_gettime (CLOCK_REALTIME, &ts); 664 clock_gettime (CLOCK_REALTIME, &ts);
487 return ts.tv_sec + ts.tv_nsec * 1e-9; 665 return ts.tv_sec + ts.tv_nsec * 1e-9;
488#else 666 }
667#endif
668
489 struct timeval tv; 669 struct timeval tv;
490 gettimeofday (&tv, 0); 670 gettimeofday (&tv, 0);
491 return tv.tv_sec + tv.tv_usec * 1e-6; 671 return tv.tv_sec + tv.tv_usec * 1e-6;
492#endif
493} 672}
673#endif
494 674
495ev_tstamp inline_size 675inline_size ev_tstamp
496get_clock (void) 676get_clock (void)
497{ 677{
498#if EV_USE_MONOTONIC 678#if EV_USE_MONOTONIC
499 if (expect_true (have_monotonic)) 679 if (expect_true (have_monotonic))
500 { 680 {
533 struct timeval tv; 713 struct timeval tv;
534 714
535 tv.tv_sec = (time_t)delay; 715 tv.tv_sec = (time_t)delay;
536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 716 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
537 717
718 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
719 /* something not guaranteed by newer posix versions, but guaranteed */
720 /* by older ones */
538 select (0, 0, 0, 0, &tv); 721 select (0, 0, 0, 0, &tv);
539#endif 722#endif
540 } 723 }
541} 724}
542 725
543/*****************************************************************************/ 726/*****************************************************************************/
544 727
545#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 728#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
546 729
547int inline_size 730/* find a suitable new size for the given array, */
731/* hopefully by rounding to a ncie-to-malloc size */
732inline_size int
548array_nextsize (int elem, int cur, int cnt) 733array_nextsize (int elem, int cur, int cnt)
549{ 734{
550 int ncur = cur + 1; 735 int ncur = cur + 1;
551 736
552 do 737 do
569array_realloc (int elem, void *base, int *cur, int cnt) 754array_realloc (int elem, void *base, int *cur, int cnt)
570{ 755{
571 *cur = array_nextsize (elem, *cur, cnt); 756 *cur = array_nextsize (elem, *cur, cnt);
572 return ev_realloc (base, elem * *cur); 757 return ev_realloc (base, elem * *cur);
573} 758}
759
760#define array_init_zero(base,count) \
761 memset ((void *)(base), 0, sizeof (*(base)) * (count))
574 762
575#define array_needsize(type,base,cur,cnt,init) \ 763#define array_needsize(type,base,cur,cnt,init) \
576 if (expect_false ((cnt) > (cur))) \ 764 if (expect_false ((cnt) > (cur))) \
577 { \ 765 { \
578 int ocur_ = (cur); \ 766 int ocur_ = (cur); \
590 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 778 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
591 } 779 }
592#endif 780#endif
593 781
594#define array_free(stem, idx) \ 782#define array_free(stem, idx) \
595 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 783 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
596 784
597/*****************************************************************************/ 785/*****************************************************************************/
786
787/* dummy callback for pending events */
788static void noinline
789pendingcb (EV_P_ ev_prepare *w, int revents)
790{
791}
598 792
599void noinline 793void noinline
600ev_feed_event (EV_P_ void *w, int revents) 794ev_feed_event (EV_P_ void *w, int revents)
601{ 795{
602 W w_ = (W)w; 796 W w_ = (W)w;
611 pendings [pri][w_->pending - 1].w = w_; 805 pendings [pri][w_->pending - 1].w = w_;
612 pendings [pri][w_->pending - 1].events = revents; 806 pendings [pri][w_->pending - 1].events = revents;
613 } 807 }
614} 808}
615 809
616void inline_speed 810inline_speed void
811feed_reverse (EV_P_ W w)
812{
813 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
814 rfeeds [rfeedcnt++] = w;
815}
816
817inline_size void
818feed_reverse_done (EV_P_ int revents)
819{
820 do
821 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
822 while (rfeedcnt);
823}
824
825inline_speed void
617queue_events (EV_P_ W *events, int eventcnt, int type) 826queue_events (EV_P_ W *events, int eventcnt, int type)
618{ 827{
619 int i; 828 int i;
620 829
621 for (i = 0; i < eventcnt; ++i) 830 for (i = 0; i < eventcnt; ++i)
622 ev_feed_event (EV_A_ events [i], type); 831 ev_feed_event (EV_A_ events [i], type);
623} 832}
624 833
625/*****************************************************************************/ 834/*****************************************************************************/
626 835
627void inline_size 836inline_speed void
628anfds_init (ANFD *base, int count)
629{
630 while (count--)
631 {
632 base->head = 0;
633 base->events = EV_NONE;
634 base->reify = 0;
635
636 ++base;
637 }
638}
639
640void inline_speed
641fd_event (EV_P_ int fd, int revents) 837fd_event_nc (EV_P_ int fd, int revents)
642{ 838{
643 ANFD *anfd = anfds + fd; 839 ANFD *anfd = anfds + fd;
644 ev_io *w; 840 ev_io *w;
645 841
646 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 842 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
650 if (ev) 846 if (ev)
651 ev_feed_event (EV_A_ (W)w, ev); 847 ev_feed_event (EV_A_ (W)w, ev);
652 } 848 }
653} 849}
654 850
851/* do not submit kernel events for fds that have reify set */
852/* because that means they changed while we were polling for new events */
853inline_speed void
854fd_event (EV_P_ int fd, int revents)
855{
856 ANFD *anfd = anfds + fd;
857
858 if (expect_true (!anfd->reify))
859 fd_event_nc (EV_A_ fd, revents);
860}
861
655void 862void
656ev_feed_fd_event (EV_P_ int fd, int revents) 863ev_feed_fd_event (EV_P_ int fd, int revents)
657{ 864{
658 if (fd >= 0 && fd < anfdmax) 865 if (fd >= 0 && fd < anfdmax)
659 fd_event (EV_A_ fd, revents); 866 fd_event_nc (EV_A_ fd, revents);
660} 867}
661 868
662void inline_size 869/* make sure the external fd watch events are in-sync */
870/* with the kernel/libev internal state */
871inline_size void
663fd_reify (EV_P) 872fd_reify (EV_P)
664{ 873{
665 int i; 874 int i;
666 875
667 for (i = 0; i < fdchangecnt; ++i) 876 for (i = 0; i < fdchangecnt; ++i)
676 events |= (unsigned char)w->events; 885 events |= (unsigned char)w->events;
677 886
678#if EV_SELECT_IS_WINSOCKET 887#if EV_SELECT_IS_WINSOCKET
679 if (events) 888 if (events)
680 { 889 {
681 unsigned long argp; 890 unsigned long arg;
682 #ifdef EV_FD_TO_WIN32_HANDLE
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 891 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
684 #else
685 anfd->handle = _get_osfhandle (fd);
686 #endif
687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 892 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
688 } 893 }
689#endif 894#endif
690 895
691 { 896 {
692 unsigned char o_events = anfd->events; 897 unsigned char o_events = anfd->events;
693 unsigned char o_reify = anfd->reify; 898 unsigned char o_reify = anfd->reify;
694 899
695 anfd->reify = 0; 900 anfd->reify = 0;
696 anfd->events = events; 901 anfd->events = events;
697 902
698 if (o_events != events || o_reify & EV_IOFDSET) 903 if (o_events != events || o_reify & EV__IOFDSET)
699 backend_modify (EV_A_ fd, o_events, events); 904 backend_modify (EV_A_ fd, o_events, events);
700 } 905 }
701 } 906 }
702 907
703 fdchangecnt = 0; 908 fdchangecnt = 0;
704} 909}
705 910
706void inline_size 911/* something about the given fd changed */
912inline_size void
707fd_change (EV_P_ int fd, int flags) 913fd_change (EV_P_ int fd, int flags)
708{ 914{
709 unsigned char reify = anfds [fd].reify; 915 unsigned char reify = anfds [fd].reify;
710 anfds [fd].reify |= flags; 916 anfds [fd].reify |= flags;
711 917
715 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 921 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
716 fdchanges [fdchangecnt - 1] = fd; 922 fdchanges [fdchangecnt - 1] = fd;
717 } 923 }
718} 924}
719 925
720void inline_speed 926/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
927inline_speed void
721fd_kill (EV_P_ int fd) 928fd_kill (EV_P_ int fd)
722{ 929{
723 ev_io *w; 930 ev_io *w;
724 931
725 while ((w = (ev_io *)anfds [fd].head)) 932 while ((w = (ev_io *)anfds [fd].head))
727 ev_io_stop (EV_A_ w); 934 ev_io_stop (EV_A_ w);
728 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 935 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
729 } 936 }
730} 937}
731 938
732int inline_size 939/* check whether the given fd is atcually valid, for error recovery */
940inline_size int
733fd_valid (int fd) 941fd_valid (int fd)
734{ 942{
735#ifdef _WIN32 943#ifdef _WIN32
736 return _get_osfhandle (fd) != -1; 944 return _get_osfhandle (fd) != -1;
737#else 945#else
745{ 953{
746 int fd; 954 int fd;
747 955
748 for (fd = 0; fd < anfdmax; ++fd) 956 for (fd = 0; fd < anfdmax; ++fd)
749 if (anfds [fd].events) 957 if (anfds [fd].events)
750 if (!fd_valid (fd) == -1 && errno == EBADF) 958 if (!fd_valid (fd) && errno == EBADF)
751 fd_kill (EV_A_ fd); 959 fd_kill (EV_A_ fd);
752} 960}
753 961
754/* called on ENOMEM in select/poll to kill some fds and retry */ 962/* called on ENOMEM in select/poll to kill some fds and retry */
755static void noinline 963static void noinline
759 967
760 for (fd = anfdmax; fd--; ) 968 for (fd = anfdmax; fd--; )
761 if (anfds [fd].events) 969 if (anfds [fd].events)
762 { 970 {
763 fd_kill (EV_A_ fd); 971 fd_kill (EV_A_ fd);
764 return; 972 break;
765 } 973 }
766} 974}
767 975
768/* usually called after fork if backend needs to re-arm all fds from scratch */ 976/* usually called after fork if backend needs to re-arm all fds from scratch */
769static void noinline 977static void noinline
773 981
774 for (fd = 0; fd < anfdmax; ++fd) 982 for (fd = 0; fd < anfdmax; ++fd)
775 if (anfds [fd].events) 983 if (anfds [fd].events)
776 { 984 {
777 anfds [fd].events = 0; 985 anfds [fd].events = 0;
986 anfds [fd].emask = 0;
778 fd_change (EV_A_ fd, EV_IOFDSET | 1); 987 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
779 } 988 }
780} 989}
781 990
782/*****************************************************************************/ 991/*****************************************************************************/
783 992
791 * at the moment we allow libev the luxury of two heaps, 1000 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 1001 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient. 1002 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers. 1003 * the difference is about 5% with 50000+ watchers.
795 */ 1004 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP 1005#if EV_USE_4HEAP
798 1006
799#define DHEAP 4 1007#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1008#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801 1009#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
802/* towards the root */ 1010#define UPHEAP_DONE(p,k) ((p) == (k))
803void inline_speed
804upheap (ANHE *heap, int k)
805{
806 ANHE he = heap [k];
807
808 for (;;)
809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
815 heap [k] = heap [p];
816 ev_active (ANHE_w (heap [k])) = k;
817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823 1011
824/* away from the root */ 1012/* away from the root */
825void inline_speed 1013inline_speed void
826downheap (ANHE *heap, int N, int k) 1014downheap (ANHE *heap, int N, int k)
827{ 1015{
828 ANHE he = heap [k]; 1016 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0; 1017 ANHE *E = heap + N + HEAP0;
830 1018
831 for (;;) 1019 for (;;)
832 { 1020 {
833 ev_tstamp minat; 1021 ev_tstamp minat;
834 ANHE *minpos; 1022 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1023 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
836 1024
837 // find minimum child 1025 /* find minimum child */
838 if (expect_true (pos + DHEAP - 1 < E)) 1026 if (expect_true (pos + DHEAP - 1 < E))
839 { 1027 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1028 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1029 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1030 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 1031 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 } 1032 }
845 else if (pos < E) 1033 else if (pos < E)
846 { 1034 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1035 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1036 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
853 break; 1041 break;
854 1042
855 if (ANHE_at (he) <= minat) 1043 if (ANHE_at (he) <= minat)
856 break; 1044 break;
857 1045
1046 heap [k] = *minpos;
858 ev_active (ANHE_w (*minpos)) = k; 1047 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860 1048
861 k = minpos - heap; 1049 k = minpos - heap;
862 } 1050 }
863 1051
1052 heap [k] = he;
864 ev_active (ANHE_w (he)) = k; 1053 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866} 1054}
867 1055
868#else // 4HEAP 1056#else /* 4HEAP */
869 1057
870#define HEAP0 1 1058#define HEAP0 1
1059#define HPARENT(k) ((k) >> 1)
1060#define UPHEAP_DONE(p,k) (!(p))
871 1061
872/* towards the root */ 1062/* away from the root */
873void inline_speed 1063inline_speed void
874upheap (ANHE *heap, int k) 1064downheap (ANHE *heap, int N, int k)
875{ 1065{
876 ANHE he = heap [k]; 1066 ANHE he = heap [k];
877 1067
878 for (;;) 1068 for (;;)
879 { 1069 {
880 int p = k >> 1; 1070 int c = k << 1;
881 1071
882 /* maybe we could use a dummy element at heap [0]? */ 1072 if (c >= N + HEAP0)
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break; 1073 break;
885 1074
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
889 }
890
891 heap [k] = w;
892 ev_active (ANHE_w (heap [k])) = k;
893}
894
895/* away from the root */
896void inline_speed
897downheap (ANHE *heap, int N, int k)
898{
899 ANHE he = heap [k];
900
901 for (;;)
902 {
903 int c = k << 1;
904
905 if (c > N)
906 break;
907
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1075 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0; 1076 ? 1 : 0;
910 1077
911 if (w->at <= ANHE_at (heap [c])) 1078 if (ANHE_at (he) <= ANHE_at (heap [c]))
912 break; 1079 break;
913 1080
914 heap [k] = heap [c]; 1081 heap [k] = heap [c];
915 ev_active (ANHE_w (heap [k])) = k; 1082 ev_active (ANHE_w (heap [k])) = k;
916 1083
920 heap [k] = he; 1087 heap [k] = he;
921 ev_active (ANHE_w (he)) = k; 1088 ev_active (ANHE_w (he)) = k;
922} 1089}
923#endif 1090#endif
924 1091
925void inline_size 1092/* towards the root */
1093inline_speed void
1094upheap (ANHE *heap, int k)
1095{
1096 ANHE he = heap [k];
1097
1098 for (;;)
1099 {
1100 int p = HPARENT (k);
1101
1102 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1103 break;
1104
1105 heap [k] = heap [p];
1106 ev_active (ANHE_w (heap [k])) = k;
1107 k = p;
1108 }
1109
1110 heap [k] = he;
1111 ev_active (ANHE_w (he)) = k;
1112}
1113
1114/* move an element suitably so it is in a correct place */
1115inline_size void
926adjustheap (ANHE *heap, int N, int k) 1116adjustheap (ANHE *heap, int N, int k)
927{ 1117{
1118 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
928 upheap (heap, k); 1119 upheap (heap, k);
1120 else
929 downheap (heap, N, k); 1121 downheap (heap, N, k);
1122}
1123
1124/* rebuild the heap: this function is used only once and executed rarely */
1125inline_size void
1126reheap (ANHE *heap, int N)
1127{
1128 int i;
1129
1130 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1131 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1132 for (i = 0; i < N; ++i)
1133 upheap (heap, i + HEAP0);
930} 1134}
931 1135
932/*****************************************************************************/ 1136/*****************************************************************************/
933 1137
1138/* associate signal watchers to a signal signal */
934typedef struct 1139typedef struct
935{ 1140{
1141 EV_ATOMIC_T pending;
1142#if EV_MULTIPLICITY
1143 EV_P;
1144#endif
936 WL head; 1145 WL head;
937 EV_ATOMIC_T gotsig;
938} ANSIG; 1146} ANSIG;
939 1147
940static ANSIG *signals; 1148static ANSIG signals [EV_NSIG - 1];
941static int signalmax;
942
943static EV_ATOMIC_T gotsig;
944
945void inline_size
946signals_init (ANSIG *base, int count)
947{
948 while (count--)
949 {
950 base->head = 0;
951 base->gotsig = 0;
952
953 ++base;
954 }
955}
956 1149
957/*****************************************************************************/ 1150/*****************************************************************************/
958 1151
959void inline_speed 1152/* used to prepare libev internal fd's */
1153/* this is not fork-safe */
1154inline_speed void
960fd_intern (int fd) 1155fd_intern (int fd)
961{ 1156{
962#ifdef _WIN32 1157#ifdef _WIN32
963 int arg = 1; 1158 unsigned long arg = 1;
964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1159 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
965#else 1160#else
966 fcntl (fd, F_SETFD, FD_CLOEXEC); 1161 fcntl (fd, F_SETFD, FD_CLOEXEC);
967 fcntl (fd, F_SETFL, O_NONBLOCK); 1162 fcntl (fd, F_SETFL, O_NONBLOCK);
968#endif 1163#endif
969} 1164}
970 1165
971static void noinline 1166static void noinline
972evpipe_init (EV_P) 1167evpipe_init (EV_P)
973{ 1168{
974 if (!ev_is_active (&pipeev)) 1169 if (!ev_is_active (&pipe_w))
975 { 1170 {
976#if EV_USE_EVENTFD 1171#if EV_USE_EVENTFD
1172 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1173 if (evfd < 0 && errno == EINVAL)
977 if ((evfd = eventfd (0, 0)) >= 0) 1174 evfd = eventfd (0, 0);
1175
1176 if (evfd >= 0)
978 { 1177 {
979 evpipe [0] = -1; 1178 evpipe [0] = -1;
980 fd_intern (evfd); 1179 fd_intern (evfd); /* doing it twice doesn't hurt */
981 ev_io_set (&pipeev, evfd, EV_READ); 1180 ev_io_set (&pipe_w, evfd, EV_READ);
982 } 1181 }
983 else 1182 else
984#endif 1183#endif
985 { 1184 {
986 while (pipe (evpipe)) 1185 while (pipe (evpipe))
987 syserr ("(libev) error creating signal/async pipe"); 1186 ev_syserr ("(libev) error creating signal/async pipe");
988 1187
989 fd_intern (evpipe [0]); 1188 fd_intern (evpipe [0]);
990 fd_intern (evpipe [1]); 1189 fd_intern (evpipe [1]);
991 ev_io_set (&pipeev, evpipe [0], EV_READ); 1190 ev_io_set (&pipe_w, evpipe [0], EV_READ);
992 } 1191 }
993 1192
994 ev_io_start (EV_A_ &pipeev); 1193 ev_io_start (EV_A_ &pipe_w);
995 ev_unref (EV_A); /* watcher should not keep loop alive */ 1194 ev_unref (EV_A); /* watcher should not keep loop alive */
996 } 1195 }
997} 1196}
998 1197
999void inline_size 1198inline_size void
1000evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1199evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1001{ 1200{
1002 if (!*flag) 1201 if (!*flag)
1003 { 1202 {
1004 int old_errno = errno; /* save errno because write might clobber it */ 1203 int old_errno = errno; /* save errno because write might clobber it */
1017 1216
1018 errno = old_errno; 1217 errno = old_errno;
1019 } 1218 }
1020} 1219}
1021 1220
1221/* called whenever the libev signal pipe */
1222/* got some events (signal, async) */
1022static void 1223static void
1023pipecb (EV_P_ ev_io *iow, int revents) 1224pipecb (EV_P_ ev_io *iow, int revents)
1024{ 1225{
1226 int i;
1227
1025#if EV_USE_EVENTFD 1228#if EV_USE_EVENTFD
1026 if (evfd >= 0) 1229 if (evfd >= 0)
1027 { 1230 {
1028 uint64_t counter; 1231 uint64_t counter;
1029 read (evfd, &counter, sizeof (uint64_t)); 1232 read (evfd, &counter, sizeof (uint64_t));
1033 { 1236 {
1034 char dummy; 1237 char dummy;
1035 read (evpipe [0], &dummy, 1); 1238 read (evpipe [0], &dummy, 1);
1036 } 1239 }
1037 1240
1038 if (gotsig && ev_is_default_loop (EV_A)) 1241 if (sig_pending)
1039 { 1242 {
1040 int signum; 1243 sig_pending = 0;
1041 gotsig = 0;
1042 1244
1043 for (signum = signalmax; signum--; ) 1245 for (i = EV_NSIG - 1; i--; )
1044 if (signals [signum].gotsig) 1246 if (expect_false (signals [i].pending))
1045 ev_feed_signal_event (EV_A_ signum + 1); 1247 ev_feed_signal_event (EV_A_ i + 1);
1046 } 1248 }
1047 1249
1048#if EV_ASYNC_ENABLE 1250#if EV_ASYNC_ENABLE
1049 if (gotasync) 1251 if (async_pending)
1050 { 1252 {
1051 int i; 1253 async_pending = 0;
1052 gotasync = 0;
1053 1254
1054 for (i = asynccnt; i--; ) 1255 for (i = asynccnt; i--; )
1055 if (asyncs [i]->sent) 1256 if (asyncs [i]->sent)
1056 { 1257 {
1057 asyncs [i]->sent = 0; 1258 asyncs [i]->sent = 0;
1065 1266
1066static void 1267static void
1067ev_sighandler (int signum) 1268ev_sighandler (int signum)
1068{ 1269{
1069#if EV_MULTIPLICITY 1270#if EV_MULTIPLICITY
1070 struct ev_loop *loop = &default_loop_struct; 1271 EV_P = signals [signum - 1].loop;
1071#endif 1272#endif
1072 1273
1073#if _WIN32 1274#if _WIN32
1074 signal (signum, ev_sighandler); 1275 signal (signum, ev_sighandler);
1075#endif 1276#endif
1076 1277
1077 signals [signum - 1].gotsig = 1; 1278 signals [signum - 1].pending = 1;
1078 evpipe_write (EV_A_ &gotsig); 1279 evpipe_write (EV_A_ &sig_pending);
1079} 1280}
1080 1281
1081void noinline 1282void noinline
1082ev_feed_signal_event (EV_P_ int signum) 1283ev_feed_signal_event (EV_P_ int signum)
1083{ 1284{
1084 WL w; 1285 WL w;
1085 1286
1287 if (expect_false (signum <= 0 || signum > EV_NSIG))
1288 return;
1289
1290 --signum;
1291
1086#if EV_MULTIPLICITY 1292#if EV_MULTIPLICITY
1087 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1293 /* it is permissible to try to feed a signal to the wrong loop */
1088#endif 1294 /* or, likely more useful, feeding a signal nobody is waiting for */
1089 1295
1090 --signum; 1296 if (expect_false (signals [signum].loop != EV_A))
1091
1092 if (signum < 0 || signum >= signalmax)
1093 return; 1297 return;
1298#endif
1094 1299
1095 signals [signum].gotsig = 0; 1300 signals [signum].pending = 0;
1096 1301
1097 for (w = signals [signum].head; w; w = w->next) 1302 for (w = signals [signum].head; w; w = w->next)
1098 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1303 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1099} 1304}
1100 1305
1306#if EV_USE_SIGNALFD
1307static void
1308sigfdcb (EV_P_ ev_io *iow, int revents)
1309{
1310 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1311
1312 for (;;)
1313 {
1314 ssize_t res = read (sigfd, si, sizeof (si));
1315
1316 /* not ISO-C, as res might be -1, but works with SuS */
1317 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1318 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1319
1320 if (res < (ssize_t)sizeof (si))
1321 break;
1322 }
1323}
1324#endif
1325
1101/*****************************************************************************/ 1326/*****************************************************************************/
1102 1327
1103static WL childs [EV_PID_HASHSIZE]; 1328static WL childs [EV_PID_HASHSIZE];
1104 1329
1105#ifndef _WIN32 1330#ifndef _WIN32
1108 1333
1109#ifndef WIFCONTINUED 1334#ifndef WIFCONTINUED
1110# define WIFCONTINUED(status) 0 1335# define WIFCONTINUED(status) 0
1111#endif 1336#endif
1112 1337
1113void inline_speed 1338/* handle a single child status event */
1339inline_speed void
1114child_reap (EV_P_ int chain, int pid, int status) 1340child_reap (EV_P_ int chain, int pid, int status)
1115{ 1341{
1116 ev_child *w; 1342 ev_child *w;
1117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1343 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1118 1344
1131 1357
1132#ifndef WCONTINUED 1358#ifndef WCONTINUED
1133# define WCONTINUED 0 1359# define WCONTINUED 0
1134#endif 1360#endif
1135 1361
1362/* called on sigchld etc., calls waitpid */
1136static void 1363static void
1137childcb (EV_P_ ev_signal *sw, int revents) 1364childcb (EV_P_ ev_signal *sw, int revents)
1138{ 1365{
1139 int pid, status; 1366 int pid, status;
1140 1367
1221 /* kqueue is borked on everything but netbsd apparently */ 1448 /* kqueue is borked on everything but netbsd apparently */
1222 /* it usually doesn't work correctly on anything but sockets and pipes */ 1449 /* it usually doesn't work correctly on anything but sockets and pipes */
1223 flags &= ~EVBACKEND_KQUEUE; 1450 flags &= ~EVBACKEND_KQUEUE;
1224#endif 1451#endif
1225#ifdef __APPLE__ 1452#ifdef __APPLE__
1226 // flags &= ~EVBACKEND_KQUEUE; for documentation 1453 /* only select works correctly on that "unix-certified" platform */
1227 flags &= ~EVBACKEND_POLL; 1454 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1455 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1228#endif 1456#endif
1229 1457
1230 return flags; 1458 return flags;
1231} 1459}
1232 1460
1246ev_backend (EV_P) 1474ev_backend (EV_P)
1247{ 1475{
1248 return backend; 1476 return backend;
1249} 1477}
1250 1478
1479#if EV_MINIMAL < 2
1251unsigned int 1480unsigned int
1252ev_loop_count (EV_P) 1481ev_loop_count (EV_P)
1253{ 1482{
1254 return loop_count; 1483 return loop_count;
1255} 1484}
1256 1485
1486unsigned int
1487ev_loop_depth (EV_P)
1488{
1489 return loop_depth;
1490}
1491
1257void 1492void
1258ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1493ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1259{ 1494{
1260 io_blocktime = interval; 1495 io_blocktime = interval;
1261} 1496}
1264ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1499ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1265{ 1500{
1266 timeout_blocktime = interval; 1501 timeout_blocktime = interval;
1267} 1502}
1268 1503
1504void
1505ev_set_userdata (EV_P_ void *data)
1506{
1507 userdata = data;
1508}
1509
1510void *
1511ev_userdata (EV_P)
1512{
1513 return userdata;
1514}
1515
1516void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1517{
1518 invoke_cb = invoke_pending_cb;
1519}
1520
1521void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1522{
1523 release_cb = release;
1524 acquire_cb = acquire;
1525}
1526#endif
1527
1528/* initialise a loop structure, must be zero-initialised */
1269static void noinline 1529static void noinline
1270loop_init (EV_P_ unsigned int flags) 1530loop_init (EV_P_ unsigned int flags)
1271{ 1531{
1272 if (!backend) 1532 if (!backend)
1273 { 1533 {
1534#if EV_USE_REALTIME
1535 if (!have_realtime)
1536 {
1537 struct timespec ts;
1538
1539 if (!clock_gettime (CLOCK_REALTIME, &ts))
1540 have_realtime = 1;
1541 }
1542#endif
1543
1274#if EV_USE_MONOTONIC 1544#if EV_USE_MONOTONIC
1545 if (!have_monotonic)
1275 { 1546 {
1276 struct timespec ts; 1547 struct timespec ts;
1548
1277 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1549 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1278 have_monotonic = 1; 1550 have_monotonic = 1;
1279 } 1551 }
1280#endif 1552#endif
1553
1554 /* pid check not overridable via env */
1555#ifndef _WIN32
1556 if (flags & EVFLAG_FORKCHECK)
1557 curpid = getpid ();
1558#endif
1559
1560 if (!(flags & EVFLAG_NOENV)
1561 && !enable_secure ()
1562 && getenv ("LIBEV_FLAGS"))
1563 flags = atoi (getenv ("LIBEV_FLAGS"));
1281 1564
1282 ev_rt_now = ev_time (); 1565 ev_rt_now = ev_time ();
1283 mn_now = get_clock (); 1566 mn_now = get_clock ();
1284 now_floor = mn_now; 1567 now_floor = mn_now;
1285 rtmn_diff = ev_rt_now - mn_now; 1568 rtmn_diff = ev_rt_now - mn_now;
1569#if EV_MINIMAL < 2
1570 invoke_cb = ev_invoke_pending;
1571#endif
1286 1572
1287 io_blocktime = 0.; 1573 io_blocktime = 0.;
1288 timeout_blocktime = 0.; 1574 timeout_blocktime = 0.;
1289 backend = 0; 1575 backend = 0;
1290 backend_fd = -1; 1576 backend_fd = -1;
1291 gotasync = 0; 1577 sig_pending = 0;
1578#if EV_ASYNC_ENABLE
1579 async_pending = 0;
1580#endif
1292#if EV_USE_INOTIFY 1581#if EV_USE_INOTIFY
1293 fs_fd = -2; 1582 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1294#endif 1583#endif
1295 1584#if EV_USE_SIGNALFD
1296 /* pid check not overridable via env */ 1585 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1297#ifndef _WIN32
1298 if (flags & EVFLAG_FORKCHECK)
1299 curpid = getpid ();
1300#endif 1586#endif
1301
1302 if (!(flags & EVFLAG_NOENV)
1303 && !enable_secure ()
1304 && getenv ("LIBEV_FLAGS"))
1305 flags = atoi (getenv ("LIBEV_FLAGS"));
1306 1587
1307 if (!(flags & 0x0000ffffU)) 1588 if (!(flags & 0x0000ffffU))
1308 flags |= ev_recommended_backends (); 1589 flags |= ev_recommended_backends ();
1309 1590
1310#if EV_USE_PORT 1591#if EV_USE_PORT
1321#endif 1602#endif
1322#if EV_USE_SELECT 1603#if EV_USE_SELECT
1323 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1604 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1324#endif 1605#endif
1325 1606
1607 ev_prepare_init (&pending_w, pendingcb);
1608
1326 ev_init (&pipeev, pipecb); 1609 ev_init (&pipe_w, pipecb);
1327 ev_set_priority (&pipeev, EV_MAXPRI); 1610 ev_set_priority (&pipe_w, EV_MAXPRI);
1328 } 1611 }
1329} 1612}
1330 1613
1614/* free up a loop structure */
1331static void noinline 1615static void noinline
1332loop_destroy (EV_P) 1616loop_destroy (EV_P)
1333{ 1617{
1334 int i; 1618 int i;
1335 1619
1336 if (ev_is_active (&pipeev)) 1620 if (ev_is_active (&pipe_w))
1337 { 1621 {
1338 ev_ref (EV_A); /* signal watcher */ 1622 /*ev_ref (EV_A);*/
1339 ev_io_stop (EV_A_ &pipeev); 1623 /*ev_io_stop (EV_A_ &pipe_w);*/
1340 1624
1341#if EV_USE_EVENTFD 1625#if EV_USE_EVENTFD
1342 if (evfd >= 0) 1626 if (evfd >= 0)
1343 close (evfd); 1627 close (evfd);
1344#endif 1628#endif
1345 1629
1346 if (evpipe [0] >= 0) 1630 if (evpipe [0] >= 0)
1347 { 1631 {
1348 close (evpipe [0]); 1632 EV_WIN32_CLOSE_FD (evpipe [0]);
1349 close (evpipe [1]); 1633 EV_WIN32_CLOSE_FD (evpipe [1]);
1350 } 1634 }
1351 } 1635 }
1636
1637#if EV_USE_SIGNALFD
1638 if (ev_is_active (&sigfd_w))
1639 {
1640 /*ev_ref (EV_A);*/
1641 /*ev_io_stop (EV_A_ &sigfd_w);*/
1642
1643 close (sigfd);
1644 }
1645#endif
1352 1646
1353#if EV_USE_INOTIFY 1647#if EV_USE_INOTIFY
1354 if (fs_fd >= 0) 1648 if (fs_fd >= 0)
1355 close (fs_fd); 1649 close (fs_fd);
1356#endif 1650#endif
1380#if EV_IDLE_ENABLE 1674#if EV_IDLE_ENABLE
1381 array_free (idle, [i]); 1675 array_free (idle, [i]);
1382#endif 1676#endif
1383 } 1677 }
1384 1678
1385 ev_free (anfds); anfdmax = 0; 1679 ev_free (anfds); anfds = 0; anfdmax = 0;
1386 1680
1387 /* have to use the microsoft-never-gets-it-right macro */ 1681 /* have to use the microsoft-never-gets-it-right macro */
1682 array_free (rfeed, EMPTY);
1388 array_free (fdchange, EMPTY); 1683 array_free (fdchange, EMPTY);
1389 array_free (timer, EMPTY); 1684 array_free (timer, EMPTY);
1390#if EV_PERIODIC_ENABLE 1685#if EV_PERIODIC_ENABLE
1391 array_free (periodic, EMPTY); 1686 array_free (periodic, EMPTY);
1392#endif 1687#endif
1401 1696
1402 backend = 0; 1697 backend = 0;
1403} 1698}
1404 1699
1405#if EV_USE_INOTIFY 1700#if EV_USE_INOTIFY
1406void inline_size infy_fork (EV_P); 1701inline_size void infy_fork (EV_P);
1407#endif 1702#endif
1408 1703
1409void inline_size 1704inline_size void
1410loop_fork (EV_P) 1705loop_fork (EV_P)
1411{ 1706{
1412#if EV_USE_PORT 1707#if EV_USE_PORT
1413 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1708 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1414#endif 1709#endif
1420#endif 1715#endif
1421#if EV_USE_INOTIFY 1716#if EV_USE_INOTIFY
1422 infy_fork (EV_A); 1717 infy_fork (EV_A);
1423#endif 1718#endif
1424 1719
1425 if (ev_is_active (&pipeev)) 1720 if (ev_is_active (&pipe_w))
1426 { 1721 {
1427 /* this "locks" the handlers against writing to the pipe */ 1722 /* this "locks" the handlers against writing to the pipe */
1428 /* while we modify the fd vars */ 1723 /* while we modify the fd vars */
1429 gotsig = 1; 1724 sig_pending = 1;
1430#if EV_ASYNC_ENABLE 1725#if EV_ASYNC_ENABLE
1431 gotasync = 1; 1726 async_pending = 1;
1432#endif 1727#endif
1433 1728
1434 ev_ref (EV_A); 1729 ev_ref (EV_A);
1435 ev_io_stop (EV_A_ &pipeev); 1730 ev_io_stop (EV_A_ &pipe_w);
1436 1731
1437#if EV_USE_EVENTFD 1732#if EV_USE_EVENTFD
1438 if (evfd >= 0) 1733 if (evfd >= 0)
1439 close (evfd); 1734 close (evfd);
1440#endif 1735#endif
1441 1736
1442 if (evpipe [0] >= 0) 1737 if (evpipe [0] >= 0)
1443 { 1738 {
1444 close (evpipe [0]); 1739 EV_WIN32_CLOSE_FD (evpipe [0]);
1445 close (evpipe [1]); 1740 EV_WIN32_CLOSE_FD (evpipe [1]);
1446 } 1741 }
1447 1742
1448 evpipe_init (EV_A); 1743 evpipe_init (EV_A);
1449 /* now iterate over everything, in case we missed something */ 1744 /* now iterate over everything, in case we missed something */
1450 pipecb (EV_A_ &pipeev, EV_READ); 1745 pipecb (EV_A_ &pipe_w, EV_READ);
1451 } 1746 }
1452 1747
1453 postfork = 0; 1748 postfork = 0;
1454} 1749}
1455 1750
1456#if EV_MULTIPLICITY 1751#if EV_MULTIPLICITY
1752
1457struct ev_loop * 1753struct ev_loop *
1458ev_loop_new (unsigned int flags) 1754ev_loop_new (unsigned int flags)
1459{ 1755{
1460 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1756 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1461 1757
1462 memset (loop, 0, sizeof (struct ev_loop)); 1758 memset (EV_A, 0, sizeof (struct ev_loop));
1463
1464 loop_init (EV_A_ flags); 1759 loop_init (EV_A_ flags);
1465 1760
1466 if (ev_backend (EV_A)) 1761 if (ev_backend (EV_A))
1467 return loop; 1762 return EV_A;
1468 1763
1469 return 0; 1764 return 0;
1470} 1765}
1471 1766
1472void 1767void
1478 1773
1479void 1774void
1480ev_loop_fork (EV_P) 1775ev_loop_fork (EV_P)
1481{ 1776{
1482 postfork = 1; /* must be in line with ev_default_fork */ 1777 postfork = 1; /* must be in line with ev_default_fork */
1778}
1779#endif /* multiplicity */
1780
1781#if EV_VERIFY
1782static void noinline
1783verify_watcher (EV_P_ W w)
1784{
1785 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1786
1787 if (w->pending)
1788 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1789}
1790
1791static void noinline
1792verify_heap (EV_P_ ANHE *heap, int N)
1793{
1794 int i;
1795
1796 for (i = HEAP0; i < N + HEAP0; ++i)
1797 {
1798 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1799 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1800 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1801
1802 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1803 }
1804}
1805
1806static void noinline
1807array_verify (EV_P_ W *ws, int cnt)
1808{
1809 while (cnt--)
1810 {
1811 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1812 verify_watcher (EV_A_ ws [cnt]);
1813 }
1814}
1815#endif
1816
1817#if EV_MINIMAL < 2
1818void
1819ev_loop_verify (EV_P)
1820{
1821#if EV_VERIFY
1822 int i;
1823 WL w;
1824
1825 assert (activecnt >= -1);
1826
1827 assert (fdchangemax >= fdchangecnt);
1828 for (i = 0; i < fdchangecnt; ++i)
1829 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1830
1831 assert (anfdmax >= 0);
1832 for (i = 0; i < anfdmax; ++i)
1833 for (w = anfds [i].head; w; w = w->next)
1834 {
1835 verify_watcher (EV_A_ (W)w);
1836 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1837 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1838 }
1839
1840 assert (timermax >= timercnt);
1841 verify_heap (EV_A_ timers, timercnt);
1842
1843#if EV_PERIODIC_ENABLE
1844 assert (periodicmax >= periodiccnt);
1845 verify_heap (EV_A_ periodics, periodiccnt);
1846#endif
1847
1848 for (i = NUMPRI; i--; )
1849 {
1850 assert (pendingmax [i] >= pendingcnt [i]);
1851#if EV_IDLE_ENABLE
1852 assert (idleall >= 0);
1853 assert (idlemax [i] >= idlecnt [i]);
1854 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1855#endif
1856 }
1857
1858#if EV_FORK_ENABLE
1859 assert (forkmax >= forkcnt);
1860 array_verify (EV_A_ (W *)forks, forkcnt);
1861#endif
1862
1863#if EV_ASYNC_ENABLE
1864 assert (asyncmax >= asynccnt);
1865 array_verify (EV_A_ (W *)asyncs, asynccnt);
1866#endif
1867
1868 assert (preparemax >= preparecnt);
1869 array_verify (EV_A_ (W *)prepares, preparecnt);
1870
1871 assert (checkmax >= checkcnt);
1872 array_verify (EV_A_ (W *)checks, checkcnt);
1873
1874# if 0
1875 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1876 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1877# endif
1878#endif
1483} 1879}
1484#endif 1880#endif
1485 1881
1486#if EV_MULTIPLICITY 1882#if EV_MULTIPLICITY
1487struct ev_loop * 1883struct ev_loop *
1492#endif 1888#endif
1493{ 1889{
1494 if (!ev_default_loop_ptr) 1890 if (!ev_default_loop_ptr)
1495 { 1891 {
1496#if EV_MULTIPLICITY 1892#if EV_MULTIPLICITY
1497 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1893 EV_P = ev_default_loop_ptr = &default_loop_struct;
1498#else 1894#else
1499 ev_default_loop_ptr = 1; 1895 ev_default_loop_ptr = 1;
1500#endif 1896#endif
1501 1897
1502 loop_init (EV_A_ flags); 1898 loop_init (EV_A_ flags);
1519 1915
1520void 1916void
1521ev_default_destroy (void) 1917ev_default_destroy (void)
1522{ 1918{
1523#if EV_MULTIPLICITY 1919#if EV_MULTIPLICITY
1524 struct ev_loop *loop = ev_default_loop_ptr; 1920 EV_P = ev_default_loop_ptr;
1525#endif 1921#endif
1922
1923 ev_default_loop_ptr = 0;
1526 1924
1527#ifndef _WIN32 1925#ifndef _WIN32
1528 ev_ref (EV_A); /* child watcher */ 1926 ev_ref (EV_A); /* child watcher */
1529 ev_signal_stop (EV_A_ &childev); 1927 ev_signal_stop (EV_A_ &childev);
1530#endif 1928#endif
1534 1932
1535void 1933void
1536ev_default_fork (void) 1934ev_default_fork (void)
1537{ 1935{
1538#if EV_MULTIPLICITY 1936#if EV_MULTIPLICITY
1539 struct ev_loop *loop = ev_default_loop_ptr; 1937 EV_P = ev_default_loop_ptr;
1540#endif 1938#endif
1541 1939
1542 if (backend)
1543 postfork = 1; /* must be in line with ev_loop_fork */ 1940 postfork = 1; /* must be in line with ev_loop_fork */
1544} 1941}
1545 1942
1546/*****************************************************************************/ 1943/*****************************************************************************/
1547 1944
1548void 1945void
1549ev_invoke (EV_P_ void *w, int revents) 1946ev_invoke (EV_P_ void *w, int revents)
1550{ 1947{
1551 EV_CB_INVOKE ((W)w, revents); 1948 EV_CB_INVOKE ((W)w, revents);
1552} 1949}
1553 1950
1554void inline_speed 1951unsigned int
1555call_pending (EV_P) 1952ev_pending_count (EV_P)
1953{
1954 int pri;
1955 unsigned int count = 0;
1956
1957 for (pri = NUMPRI; pri--; )
1958 count += pendingcnt [pri];
1959
1960 return count;
1961}
1962
1963void noinline
1964ev_invoke_pending (EV_P)
1556{ 1965{
1557 int pri; 1966 int pri;
1558 1967
1559 for (pri = NUMPRI; pri--; ) 1968 for (pri = NUMPRI; pri--; )
1560 while (pendingcnt [pri]) 1969 while (pendingcnt [pri])
1561 { 1970 {
1562 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1971 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1563 1972
1564 if (expect_true (p->w))
1565 {
1566 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1973 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1974 /* ^ this is no longer true, as pending_w could be here */
1567 1975
1568 p->w->pending = 0; 1976 p->w->pending = 0;
1569 EV_CB_INVOKE (p->w, p->events); 1977 EV_CB_INVOKE (p->w, p->events);
1570 } 1978 EV_FREQUENT_CHECK;
1571 } 1979 }
1572} 1980}
1573 1981
1574#if EV_IDLE_ENABLE 1982#if EV_IDLE_ENABLE
1575void inline_size 1983/* make idle watchers pending. this handles the "call-idle */
1984/* only when higher priorities are idle" logic */
1985inline_size void
1576idle_reify (EV_P) 1986idle_reify (EV_P)
1577{ 1987{
1578 if (expect_false (idleall)) 1988 if (expect_false (idleall))
1579 { 1989 {
1580 int pri; 1990 int pri;
1592 } 2002 }
1593 } 2003 }
1594} 2004}
1595#endif 2005#endif
1596 2006
1597void inline_size 2007/* make timers pending */
2008inline_size void
1598timers_reify (EV_P) 2009timers_reify (EV_P)
1599{ 2010{
2011 EV_FREQUENT_CHECK;
2012
1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now) 2013 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1601 { 2014 {
1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2015 do
1603
1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1605
1606 /* first reschedule or stop timer */
1607 if (w->repeat)
1608 { 2016 {
2017 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2018
2019 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2020
2021 /* first reschedule or stop timer */
2022 if (w->repeat)
2023 {
2024 ev_at (w) += w->repeat;
2025 if (ev_at (w) < mn_now)
2026 ev_at (w) = mn_now;
2027
1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2028 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1610 2029
1611 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now;
1614
1615 ANHE_at_set (timers [HEAP0]); 2030 ANHE_at_cache (timers [HEAP0]);
1616 downheap (timers, timercnt, HEAP0); 2031 downheap (timers, timercnt, HEAP0);
2032 }
2033 else
2034 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2035
2036 EV_FREQUENT_CHECK;
2037 feed_reverse (EV_A_ (W)w);
1617 } 2038 }
1618 else 2039 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1620 2040
1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2041 feed_reverse_done (EV_A_ EV_TIMEOUT);
1622 } 2042 }
1623} 2043}
1624 2044
1625#if EV_PERIODIC_ENABLE 2045#if EV_PERIODIC_ENABLE
1626void inline_size 2046/* make periodics pending */
2047inline_size void
1627periodics_reify (EV_P) 2048periodics_reify (EV_P)
1628{ 2049{
2050 EV_FREQUENT_CHECK;
2051
1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now) 2052 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1630 { 2053 {
1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2054 int feed_count = 0;
1632 2055
1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2056 do
1634
1635 /* first reschedule or stop timer */
1636 if (w->reschedule_cb)
1637 { 2057 {
2058 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2059
2060 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2061
2062 /* first reschedule or stop timer */
2063 if (w->reschedule_cb)
2064 {
1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 2065 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2066
1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 2067 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2068
1640 ANHE_at_set (periodics [HEAP0]); 2069 ANHE_at_cache (periodics [HEAP0]);
1641 downheap (periodics, periodiccnt, HEAP0); 2070 downheap (periodics, periodiccnt, HEAP0);
2071 }
2072 else if (w->interval)
2073 {
2074 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2075 /* if next trigger time is not sufficiently in the future, put it there */
2076 /* this might happen because of floating point inexactness */
2077 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2078 {
2079 ev_at (w) += w->interval;
2080
2081 /* if interval is unreasonably low we might still have a time in the past */
2082 /* so correct this. this will make the periodic very inexact, but the user */
2083 /* has effectively asked to get triggered more often than possible */
2084 if (ev_at (w) < ev_rt_now)
2085 ev_at (w) = ev_rt_now;
2086 }
2087
2088 ANHE_at_cache (periodics [HEAP0]);
2089 downheap (periodics, periodiccnt, HEAP0);
2090 }
2091 else
2092 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2093
2094 EV_FREQUENT_CHECK;
2095 feed_reverse (EV_A_ (W)w);
1642 } 2096 }
1643 else if (w->interval) 2097 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1644 {
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else
1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1653 2098
1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2099 feed_reverse_done (EV_A_ EV_PERIODIC);
1655 } 2100 }
1656} 2101}
1657 2102
2103/* simply recalculate all periodics */
2104/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1658static void noinline 2105static void noinline
1659periodics_reschedule (EV_P) 2106periodics_reschedule (EV_P)
1660{ 2107{
1661 int i; 2108 int i;
1662 2109
1668 if (w->reschedule_cb) 2115 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2116 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1670 else if (w->interval) 2117 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2118 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1672 2119
1673 ANHE_at_set (periodics [i]); 2120 ANHE_at_cache (periodics [i]);
2121 }
2122
2123 reheap (periodics, periodiccnt);
2124}
2125#endif
2126
2127/* adjust all timers by a given offset */
2128static void noinline
2129timers_reschedule (EV_P_ ev_tstamp adjust)
2130{
2131 int i;
2132
2133 for (i = 0; i < timercnt; ++i)
1674 } 2134 {
1675 2135 ANHE *he = timers + i + HEAP0;
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */ 2136 ANHE_w (*he)->at += adjust;
1677 for (i = periodiccnt >> 1; --i; ) 2137 ANHE_at_cache (*he);
1678 downheap (periodics, periodiccnt, i + HEAP0); 2138 }
1679} 2139}
1680#endif
1681 2140
1682void inline_speed 2141/* fetch new monotonic and realtime times from the kernel */
2142/* also detetc if there was a timejump, and act accordingly */
2143inline_speed void
1683time_update (EV_P_ ev_tstamp max_block) 2144time_update (EV_P_ ev_tstamp max_block)
1684{ 2145{
1685 int i;
1686
1687#if EV_USE_MONOTONIC 2146#if EV_USE_MONOTONIC
1688 if (expect_true (have_monotonic)) 2147 if (expect_true (have_monotonic))
1689 { 2148 {
2149 int i;
1690 ev_tstamp odiff = rtmn_diff; 2150 ev_tstamp odiff = rtmn_diff;
1691 2151
1692 mn_now = get_clock (); 2152 mn_now = get_clock ();
1693 2153
1694 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2154 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1720 ev_rt_now = ev_time (); 2180 ev_rt_now = ev_time ();
1721 mn_now = get_clock (); 2181 mn_now = get_clock ();
1722 now_floor = mn_now; 2182 now_floor = mn_now;
1723 } 2183 }
1724 2184
2185 /* no timer adjustment, as the monotonic clock doesn't jump */
2186 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1725# if EV_PERIODIC_ENABLE 2187# if EV_PERIODIC_ENABLE
1726 periodics_reschedule (EV_A); 2188 periodics_reschedule (EV_A);
1727# endif 2189# endif
1728 /* no timer adjustment, as the monotonic clock doesn't jump */
1729 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1730 } 2190 }
1731 else 2191 else
1732#endif 2192#endif
1733 { 2193 {
1734 ev_rt_now = ev_time (); 2194 ev_rt_now = ev_time ();
1735 2195
1736 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2196 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1737 { 2197 {
2198 /* adjust timers. this is easy, as the offset is the same for all of them */
2199 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1738#if EV_PERIODIC_ENABLE 2200#if EV_PERIODIC_ENABLE
1739 periodics_reschedule (EV_A); 2201 periodics_reschedule (EV_A);
1740#endif 2202#endif
1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1742 for (i = 0; i < timercnt; ++i)
1743 {
1744 ANHE *he = timers + i + HEAP0;
1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he);
1747 }
1748 } 2203 }
1749 2204
1750 mn_now = ev_rt_now; 2205 mn_now = ev_rt_now;
1751 } 2206 }
1752} 2207}
1753 2208
1754void 2209void
1755ev_ref (EV_P)
1756{
1757 ++activecnt;
1758}
1759
1760void
1761ev_unref (EV_P)
1762{
1763 --activecnt;
1764}
1765
1766static int loop_done;
1767
1768void
1769ev_loop (EV_P_ int flags) 2210ev_loop (EV_P_ int flags)
1770{ 2211{
2212#if EV_MINIMAL < 2
2213 ++loop_depth;
2214#endif
2215
2216 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2217
1771 loop_done = EVUNLOOP_CANCEL; 2218 loop_done = EVUNLOOP_CANCEL;
1772 2219
1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2220 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1774 2221
1775 do 2222 do
1776 { 2223 {
2224#if EV_VERIFY >= 2
2225 ev_loop_verify (EV_A);
2226#endif
2227
1777#ifndef _WIN32 2228#ifndef _WIN32
1778 if (expect_false (curpid)) /* penalise the forking check even more */ 2229 if (expect_false (curpid)) /* penalise the forking check even more */
1779 if (expect_false (getpid () != curpid)) 2230 if (expect_false (getpid () != curpid))
1780 { 2231 {
1781 curpid = getpid (); 2232 curpid = getpid ();
1787 /* we might have forked, so queue fork handlers */ 2238 /* we might have forked, so queue fork handlers */
1788 if (expect_false (postfork)) 2239 if (expect_false (postfork))
1789 if (forkcnt) 2240 if (forkcnt)
1790 { 2241 {
1791 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2242 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1792 call_pending (EV_A); 2243 EV_INVOKE_PENDING;
1793 } 2244 }
1794#endif 2245#endif
1795 2246
1796 /* queue prepare watchers (and execute them) */ 2247 /* queue prepare watchers (and execute them) */
1797 if (expect_false (preparecnt)) 2248 if (expect_false (preparecnt))
1798 { 2249 {
1799 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2250 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1800 call_pending (EV_A); 2251 EV_INVOKE_PENDING;
1801 } 2252 }
1802 2253
1803 if (expect_false (!activecnt)) 2254 if (expect_false (loop_done))
1804 break; 2255 break;
1805 2256
1806 /* we might have forked, so reify kernel state if necessary */ 2257 /* we might have forked, so reify kernel state if necessary */
1807 if (expect_false (postfork)) 2258 if (expect_false (postfork))
1808 loop_fork (EV_A); 2259 loop_fork (EV_A);
1815 ev_tstamp waittime = 0.; 2266 ev_tstamp waittime = 0.;
1816 ev_tstamp sleeptime = 0.; 2267 ev_tstamp sleeptime = 0.;
1817 2268
1818 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2269 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1819 { 2270 {
2271 /* remember old timestamp for io_blocktime calculation */
2272 ev_tstamp prev_mn_now = mn_now;
2273
1820 /* update time to cancel out callback processing overhead */ 2274 /* update time to cancel out callback processing overhead */
1821 time_update (EV_A_ 1e100); 2275 time_update (EV_A_ 1e100);
1822 2276
1823 waittime = MAX_BLOCKTIME; 2277 waittime = MAX_BLOCKTIME;
1824 2278
1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2288 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1835 if (waittime > to) waittime = to; 2289 if (waittime > to) waittime = to;
1836 } 2290 }
1837#endif 2291#endif
1838 2292
2293 /* don't let timeouts decrease the waittime below timeout_blocktime */
1839 if (expect_false (waittime < timeout_blocktime)) 2294 if (expect_false (waittime < timeout_blocktime))
1840 waittime = timeout_blocktime; 2295 waittime = timeout_blocktime;
1841 2296
1842 sleeptime = waittime - backend_fudge; 2297 /* extra check because io_blocktime is commonly 0 */
1843
1844 if (expect_true (sleeptime > io_blocktime)) 2298 if (expect_false (io_blocktime))
1845 sleeptime = io_blocktime;
1846
1847 if (sleeptime)
1848 { 2299 {
2300 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2301
2302 if (sleeptime > waittime - backend_fudge)
2303 sleeptime = waittime - backend_fudge;
2304
2305 if (expect_true (sleeptime > 0.))
2306 {
1849 ev_sleep (sleeptime); 2307 ev_sleep (sleeptime);
1850 waittime -= sleeptime; 2308 waittime -= sleeptime;
2309 }
1851 } 2310 }
1852 } 2311 }
1853 2312
2313#if EV_MINIMAL < 2
1854 ++loop_count; 2314 ++loop_count;
2315#endif
2316 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1855 backend_poll (EV_A_ waittime); 2317 backend_poll (EV_A_ waittime);
2318 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1856 2319
1857 /* update ev_rt_now, do magic */ 2320 /* update ev_rt_now, do magic */
1858 time_update (EV_A_ waittime + sleeptime); 2321 time_update (EV_A_ waittime + sleeptime);
1859 } 2322 }
1860 2323
1871 2334
1872 /* queue check watchers, to be executed first */ 2335 /* queue check watchers, to be executed first */
1873 if (expect_false (checkcnt)) 2336 if (expect_false (checkcnt))
1874 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2337 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1875 2338
1876 call_pending (EV_A); 2339 EV_INVOKE_PENDING;
1877 } 2340 }
1878 while (expect_true ( 2341 while (expect_true (
1879 activecnt 2342 activecnt
1880 && !loop_done 2343 && !loop_done
1881 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2344 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1882 )); 2345 ));
1883 2346
1884 if (loop_done == EVUNLOOP_ONE) 2347 if (loop_done == EVUNLOOP_ONE)
1885 loop_done = EVUNLOOP_CANCEL; 2348 loop_done = EVUNLOOP_CANCEL;
2349
2350#if EV_MINIMAL < 2
2351 --loop_depth;
2352#endif
1886} 2353}
1887 2354
1888void 2355void
1889ev_unloop (EV_P_ int how) 2356ev_unloop (EV_P_ int how)
1890{ 2357{
1891 loop_done = how; 2358 loop_done = how;
1892} 2359}
1893 2360
2361void
2362ev_ref (EV_P)
2363{
2364 ++activecnt;
2365}
2366
2367void
2368ev_unref (EV_P)
2369{
2370 --activecnt;
2371}
2372
2373void
2374ev_now_update (EV_P)
2375{
2376 time_update (EV_A_ 1e100);
2377}
2378
2379void
2380ev_suspend (EV_P)
2381{
2382 ev_now_update (EV_A);
2383}
2384
2385void
2386ev_resume (EV_P)
2387{
2388 ev_tstamp mn_prev = mn_now;
2389
2390 ev_now_update (EV_A);
2391 timers_reschedule (EV_A_ mn_now - mn_prev);
2392#if EV_PERIODIC_ENABLE
2393 /* TODO: really do this? */
2394 periodics_reschedule (EV_A);
2395#endif
2396}
2397
1894/*****************************************************************************/ 2398/*****************************************************************************/
2399/* singly-linked list management, used when the expected list length is short */
1895 2400
1896void inline_size 2401inline_size void
1897wlist_add (WL *head, WL elem) 2402wlist_add (WL *head, WL elem)
1898{ 2403{
1899 elem->next = *head; 2404 elem->next = *head;
1900 *head = elem; 2405 *head = elem;
1901} 2406}
1902 2407
1903void inline_size 2408inline_size void
1904wlist_del (WL *head, WL elem) 2409wlist_del (WL *head, WL elem)
1905{ 2410{
1906 while (*head) 2411 while (*head)
1907 { 2412 {
1908 if (*head == elem) 2413 if (expect_true (*head == elem))
1909 { 2414 {
1910 *head = elem->next; 2415 *head = elem->next;
1911 return; 2416 break;
1912 } 2417 }
1913 2418
1914 head = &(*head)->next; 2419 head = &(*head)->next;
1915 } 2420 }
1916} 2421}
1917 2422
1918void inline_speed 2423/* internal, faster, version of ev_clear_pending */
2424inline_speed void
1919clear_pending (EV_P_ W w) 2425clear_pending (EV_P_ W w)
1920{ 2426{
1921 if (w->pending) 2427 if (w->pending)
1922 { 2428 {
1923 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2429 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1924 w->pending = 0; 2430 w->pending = 0;
1925 } 2431 }
1926} 2432}
1927 2433
1928int 2434int
1932 int pending = w_->pending; 2438 int pending = w_->pending;
1933 2439
1934 if (expect_true (pending)) 2440 if (expect_true (pending))
1935 { 2441 {
1936 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2442 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2443 p->w = (W)&pending_w;
1937 w_->pending = 0; 2444 w_->pending = 0;
1938 p->w = 0;
1939 return p->events; 2445 return p->events;
1940 } 2446 }
1941 else 2447 else
1942 return 0; 2448 return 0;
1943} 2449}
1944 2450
1945void inline_size 2451inline_size void
1946pri_adjust (EV_P_ W w) 2452pri_adjust (EV_P_ W w)
1947{ 2453{
1948 int pri = w->priority; 2454 int pri = ev_priority (w);
1949 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2455 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1950 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2456 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1951 w->priority = pri; 2457 ev_set_priority (w, pri);
1952} 2458}
1953 2459
1954void inline_speed 2460inline_speed void
1955ev_start (EV_P_ W w, int active) 2461ev_start (EV_P_ W w, int active)
1956{ 2462{
1957 pri_adjust (EV_A_ w); 2463 pri_adjust (EV_A_ w);
1958 w->active = active; 2464 w->active = active;
1959 ev_ref (EV_A); 2465 ev_ref (EV_A);
1960} 2466}
1961 2467
1962void inline_size 2468inline_size void
1963ev_stop (EV_P_ W w) 2469ev_stop (EV_P_ W w)
1964{ 2470{
1965 ev_unref (EV_A); 2471 ev_unref (EV_A);
1966 w->active = 0; 2472 w->active = 0;
1967} 2473}
1974 int fd = w->fd; 2480 int fd = w->fd;
1975 2481
1976 if (expect_false (ev_is_active (w))) 2482 if (expect_false (ev_is_active (w)))
1977 return; 2483 return;
1978 2484
1979 assert (("ev_io_start called with negative fd", fd >= 0)); 2485 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2486 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2487
2488 EV_FREQUENT_CHECK;
1980 2489
1981 ev_start (EV_A_ (W)w, 1); 2490 ev_start (EV_A_ (W)w, 1);
1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2491 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1983 wlist_add (&anfds[fd].head, (WL)w); 2492 wlist_add (&anfds[fd].head, (WL)w);
1984 2493
1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2494 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1986 w->events &= ~EV_IOFDSET; 2495 w->events &= ~EV__IOFDSET;
2496
2497 EV_FREQUENT_CHECK;
1987} 2498}
1988 2499
1989void noinline 2500void noinline
1990ev_io_stop (EV_P_ ev_io *w) 2501ev_io_stop (EV_P_ ev_io *w)
1991{ 2502{
1992 clear_pending (EV_A_ (W)w); 2503 clear_pending (EV_A_ (W)w);
1993 if (expect_false (!ev_is_active (w))) 2504 if (expect_false (!ev_is_active (w)))
1994 return; 2505 return;
1995 2506
1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2507 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2508
2509 EV_FREQUENT_CHECK;
1997 2510
1998 wlist_del (&anfds[w->fd].head, (WL)w); 2511 wlist_del (&anfds[w->fd].head, (WL)w);
1999 ev_stop (EV_A_ (W)w); 2512 ev_stop (EV_A_ (W)w);
2000 2513
2001 fd_change (EV_A_ w->fd, 1); 2514 fd_change (EV_A_ w->fd, 1);
2515
2516 EV_FREQUENT_CHECK;
2002} 2517}
2003 2518
2004void noinline 2519void noinline
2005ev_timer_start (EV_P_ ev_timer *w) 2520ev_timer_start (EV_P_ ev_timer *w)
2006{ 2521{
2007 if (expect_false (ev_is_active (w))) 2522 if (expect_false (ev_is_active (w)))
2008 return; 2523 return;
2009 2524
2010 ev_at (w) += mn_now; 2525 ev_at (w) += mn_now;
2011 2526
2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2527 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2013 2528
2529 EV_FREQUENT_CHECK;
2530
2531 ++timercnt;
2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2532 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2533 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2016 ANHE_w (timers [ev_active (w)]) = (WT)w; 2534 ANHE_w (timers [ev_active (w)]) = (WT)w;
2017 ANHE_at_set (timers [ev_active (w)]); 2535 ANHE_at_cache (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w)); 2536 upheap (timers, ev_active (w));
2019 2537
2538 EV_FREQUENT_CHECK;
2539
2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2540 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2021} 2541}
2022 2542
2023void noinline 2543void noinline
2024ev_timer_stop (EV_P_ ev_timer *w) 2544ev_timer_stop (EV_P_ ev_timer *w)
2025{ 2545{
2026 clear_pending (EV_A_ (W)w); 2546 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 2547 if (expect_false (!ev_is_active (w)))
2028 return; 2548 return;
2029 2549
2550 EV_FREQUENT_CHECK;
2551
2030 { 2552 {
2031 int active = ev_active (w); 2553 int active = ev_active (w);
2032 2554
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2555 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034 2556
2557 --timercnt;
2558
2035 if (expect_true (active < timercnt + HEAP0 - 1)) 2559 if (expect_true (active < timercnt + HEAP0))
2036 { 2560 {
2037 timers [active] = timers [timercnt + HEAP0 - 1]; 2561 timers [active] = timers [timercnt + HEAP0];
2038 adjustheap (timers, timercnt, active); 2562 adjustheap (timers, timercnt, active);
2039 } 2563 }
2040
2041 --timercnt;
2042 } 2564 }
2565
2566 EV_FREQUENT_CHECK;
2043 2567
2044 ev_at (w) -= mn_now; 2568 ev_at (w) -= mn_now;
2045 2569
2046 ev_stop (EV_A_ (W)w); 2570 ev_stop (EV_A_ (W)w);
2047} 2571}
2048 2572
2049void noinline 2573void noinline
2050ev_timer_again (EV_P_ ev_timer *w) 2574ev_timer_again (EV_P_ ev_timer *w)
2051{ 2575{
2576 EV_FREQUENT_CHECK;
2577
2052 if (ev_is_active (w)) 2578 if (ev_is_active (w))
2053 { 2579 {
2054 if (w->repeat) 2580 if (w->repeat)
2055 { 2581 {
2056 ev_at (w) = mn_now + w->repeat; 2582 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]); 2583 ANHE_at_cache (timers [ev_active (w)]);
2058 adjustheap (timers, timercnt, ev_active (w)); 2584 adjustheap (timers, timercnt, ev_active (w));
2059 } 2585 }
2060 else 2586 else
2061 ev_timer_stop (EV_A_ w); 2587 ev_timer_stop (EV_A_ w);
2062 } 2588 }
2063 else if (w->repeat) 2589 else if (w->repeat)
2064 { 2590 {
2065 ev_at (w) = w->repeat; 2591 ev_at (w) = w->repeat;
2066 ev_timer_start (EV_A_ w); 2592 ev_timer_start (EV_A_ w);
2067 } 2593 }
2594
2595 EV_FREQUENT_CHECK;
2596}
2597
2598ev_tstamp
2599ev_timer_remaining (EV_P_ ev_timer *w)
2600{
2601 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2068} 2602}
2069 2603
2070#if EV_PERIODIC_ENABLE 2604#if EV_PERIODIC_ENABLE
2071void noinline 2605void noinline
2072ev_periodic_start (EV_P_ ev_periodic *w) 2606ev_periodic_start (EV_P_ ev_periodic *w)
2076 2610
2077 if (w->reschedule_cb) 2611 if (w->reschedule_cb)
2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2612 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2079 else if (w->interval) 2613 else if (w->interval)
2080 { 2614 {
2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2615 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2082 /* this formula differs from the one in periodic_reify because we do not always round up */ 2616 /* this formula differs from the one in periodic_reify because we do not always round up */
2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2084 } 2618 }
2085 else 2619 else
2086 ev_at (w) = w->offset; 2620 ev_at (w) = w->offset;
2087 2621
2622 EV_FREQUENT_CHECK;
2623
2624 ++periodiccnt;
2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2625 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2626 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2090 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2627 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2628 ANHE_at_cache (periodics [ev_active (w)]);
2091 upheap (periodics, ev_active (w)); 2629 upheap (periodics, ev_active (w));
2092 2630
2631 EV_FREQUENT_CHECK;
2632
2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2633 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2094} 2634}
2095 2635
2096void noinline 2636void noinline
2097ev_periodic_stop (EV_P_ ev_periodic *w) 2637ev_periodic_stop (EV_P_ ev_periodic *w)
2098{ 2638{
2099 clear_pending (EV_A_ (W)w); 2639 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w))) 2640 if (expect_false (!ev_is_active (w)))
2101 return; 2641 return;
2102 2642
2643 EV_FREQUENT_CHECK;
2644
2103 { 2645 {
2104 int active = ev_active (w); 2646 int active = ev_active (w);
2105 2647
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2648 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107 2649
2650 --periodiccnt;
2651
2108 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2652 if (expect_true (active < periodiccnt + HEAP0))
2109 { 2653 {
2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2654 periodics [active] = periodics [periodiccnt + HEAP0];
2111 adjustheap (periodics, periodiccnt, active); 2655 adjustheap (periodics, periodiccnt, active);
2112 } 2656 }
2113
2114 --periodiccnt;
2115 } 2657 }
2658
2659 EV_FREQUENT_CHECK;
2116 2660
2117 ev_stop (EV_A_ (W)w); 2661 ev_stop (EV_A_ (W)w);
2118} 2662}
2119 2663
2120void noinline 2664void noinline
2131#endif 2675#endif
2132 2676
2133void noinline 2677void noinline
2134ev_signal_start (EV_P_ ev_signal *w) 2678ev_signal_start (EV_P_ ev_signal *w)
2135{ 2679{
2136#if EV_MULTIPLICITY
2137 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2138#endif
2139 if (expect_false (ev_is_active (w))) 2680 if (expect_false (ev_is_active (w)))
2140 return; 2681 return;
2141 2682
2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2683 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2143 2684
2144 evpipe_init (EV_A); 2685#if EV_MULTIPLICITY
2686 assert (("libev: a signal must not be attached to two different loops",
2687 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2145 2688
2689 signals [w->signum - 1].loop = EV_A;
2690#endif
2691
2692 EV_FREQUENT_CHECK;
2693
2694#if EV_USE_SIGNALFD
2695 if (sigfd == -2)
2146 { 2696 {
2147#ifndef _WIN32 2697 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2148 sigset_t full, prev; 2698 if (sigfd < 0 && errno == EINVAL)
2149 sigfillset (&full); 2699 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2150 sigprocmask (SIG_SETMASK, &full, &prev);
2151#endif
2152 2700
2153 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2701 if (sigfd >= 0)
2702 {
2703 fd_intern (sigfd); /* doing it twice will not hurt */
2154 2704
2155#ifndef _WIN32 2705 sigemptyset (&sigfd_set);
2156 sigprocmask (SIG_SETMASK, &prev, 0); 2706
2157#endif 2707 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2708 ev_set_priority (&sigfd_w, EV_MAXPRI);
2709 ev_io_start (EV_A_ &sigfd_w);
2710 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2711 }
2158 } 2712 }
2713
2714 if (sigfd >= 0)
2715 {
2716 /* TODO: check .head */
2717 sigaddset (&sigfd_set, w->signum);
2718 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2719
2720 signalfd (sigfd, &sigfd_set, 0);
2721 }
2722#endif
2159 2723
2160 ev_start (EV_A_ (W)w, 1); 2724 ev_start (EV_A_ (W)w, 1);
2161 wlist_add (&signals [w->signum - 1].head, (WL)w); 2725 wlist_add (&signals [w->signum - 1].head, (WL)w);
2162 2726
2163 if (!((WL)w)->next) 2727 if (!((WL)w)->next)
2728# if EV_USE_SIGNALFD
2729 if (sigfd < 0) /*TODO*/
2730# endif
2164 { 2731 {
2165#if _WIN32 2732# if _WIN32
2166 signal (w->signum, ev_sighandler); 2733 signal (w->signum, ev_sighandler);
2167#else 2734# else
2168 struct sigaction sa; 2735 struct sigaction sa;
2736
2737 evpipe_init (EV_A);
2738
2169 sa.sa_handler = ev_sighandler; 2739 sa.sa_handler = ev_sighandler;
2170 sigfillset (&sa.sa_mask); 2740 sigfillset (&sa.sa_mask);
2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2741 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2172 sigaction (w->signum, &sa, 0); 2742 sigaction (w->signum, &sa, 0);
2743
2744 sigemptyset (&sa.sa_mask);
2745 sigaddset (&sa.sa_mask, w->signum);
2746 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2173#endif 2747#endif
2174 } 2748 }
2749
2750 EV_FREQUENT_CHECK;
2175} 2751}
2176 2752
2177void noinline 2753void noinline
2178ev_signal_stop (EV_P_ ev_signal *w) 2754ev_signal_stop (EV_P_ ev_signal *w)
2179{ 2755{
2180 clear_pending (EV_A_ (W)w); 2756 clear_pending (EV_A_ (W)w);
2181 if (expect_false (!ev_is_active (w))) 2757 if (expect_false (!ev_is_active (w)))
2182 return; 2758 return;
2183 2759
2760 EV_FREQUENT_CHECK;
2761
2184 wlist_del (&signals [w->signum - 1].head, (WL)w); 2762 wlist_del (&signals [w->signum - 1].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 2763 ev_stop (EV_A_ (W)w);
2186 2764
2187 if (!signals [w->signum - 1].head) 2765 if (!signals [w->signum - 1].head)
2766 {
2767#if EV_MULTIPLICITY
2768 signals [w->signum - 1].loop = 0; /* unattach from signal */
2769#endif
2770#if EV_USE_SIGNALFD
2771 if (sigfd >= 0)
2772 {
2773 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2774 sigdelset (&sigfd_set, w->signum);
2775 signalfd (sigfd, &sigfd_set, 0);
2776 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2777 /*TODO: maybe unblock signal? */
2778 }
2779 else
2780#endif
2188 signal (w->signum, SIG_DFL); 2781 signal (w->signum, SIG_DFL);
2782 }
2783
2784 EV_FREQUENT_CHECK;
2189} 2785}
2190 2786
2191void 2787void
2192ev_child_start (EV_P_ ev_child *w) 2788ev_child_start (EV_P_ ev_child *w)
2193{ 2789{
2194#if EV_MULTIPLICITY 2790#if EV_MULTIPLICITY
2195 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2791 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2196#endif 2792#endif
2197 if (expect_false (ev_is_active (w))) 2793 if (expect_false (ev_is_active (w)))
2198 return; 2794 return;
2199 2795
2796 EV_FREQUENT_CHECK;
2797
2200 ev_start (EV_A_ (W)w, 1); 2798 ev_start (EV_A_ (W)w, 1);
2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2799 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2800
2801 EV_FREQUENT_CHECK;
2202} 2802}
2203 2803
2204void 2804void
2205ev_child_stop (EV_P_ ev_child *w) 2805ev_child_stop (EV_P_ ev_child *w)
2206{ 2806{
2207 clear_pending (EV_A_ (W)w); 2807 clear_pending (EV_A_ (W)w);
2208 if (expect_false (!ev_is_active (w))) 2808 if (expect_false (!ev_is_active (w)))
2209 return; 2809 return;
2210 2810
2811 EV_FREQUENT_CHECK;
2812
2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2813 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2212 ev_stop (EV_A_ (W)w); 2814 ev_stop (EV_A_ (W)w);
2815
2816 EV_FREQUENT_CHECK;
2213} 2817}
2214 2818
2215#if EV_STAT_ENABLE 2819#if EV_STAT_ENABLE
2216 2820
2217# ifdef _WIN32 2821# ifdef _WIN32
2218# undef lstat 2822# undef lstat
2219# define lstat(a,b) _stati64 (a,b) 2823# define lstat(a,b) _stati64 (a,b)
2220# endif 2824# endif
2221 2825
2222#define DEF_STAT_INTERVAL 5.0074891 2826#define DEF_STAT_INTERVAL 5.0074891
2827#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2223#define MIN_STAT_INTERVAL 0.1074891 2828#define MIN_STAT_INTERVAL 0.1074891
2224 2829
2225static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2830static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2226 2831
2227#if EV_USE_INOTIFY 2832#if EV_USE_INOTIFY
2228# define EV_INOTIFY_BUFSIZE 8192 2833# define EV_INOTIFY_BUFSIZE 8192
2232{ 2837{
2233 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2838 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2234 2839
2235 if (w->wd < 0) 2840 if (w->wd < 0)
2236 { 2841 {
2842 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2843 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2238 2844
2239 /* monitor some parent directory for speedup hints */ 2845 /* monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2846 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2241 /* but an efficiency issue only */ 2847 /* but an efficiency issue only */
2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2848 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2243 { 2849 {
2244 char path [4096]; 2850 char path [4096];
2245 strcpy (path, w->path); 2851 strcpy (path, w->path);
2249 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2855 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2250 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2856 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2251 2857
2252 char *pend = strrchr (path, '/'); 2858 char *pend = strrchr (path, '/');
2253 2859
2254 if (!pend) 2860 if (!pend || pend == path)
2255 break; /* whoops, no '/', complain to your admin */ 2861 break;
2256 2862
2257 *pend = 0; 2863 *pend = 0;
2258 w->wd = inotify_add_watch (fs_fd, path, mask); 2864 w->wd = inotify_add_watch (fs_fd, path, mask);
2259 } 2865 }
2260 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2866 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2261 } 2867 }
2262 } 2868 }
2263 else
2264 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2265 2869
2266 if (w->wd >= 0) 2870 if (w->wd >= 0)
2871 {
2872 struct statfs sfs;
2873
2267 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2874 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2875
2876 /* now local changes will be tracked by inotify, but remote changes won't */
2877 /* unless the filesystem it known to be local, we therefore still poll */
2878 /* also do poll on <2.6.25, but with normal frequency */
2879
2880 if (fs_2625 && !statfs (w->path, &sfs))
2881 if (sfs.f_type == 0x1373 /* devfs */
2882 || sfs.f_type == 0xEF53 /* ext2/3 */
2883 || sfs.f_type == 0x3153464a /* jfs */
2884 || sfs.f_type == 0x52654973 /* reiser3 */
2885 || sfs.f_type == 0x01021994 /* tempfs */
2886 || sfs.f_type == 0x58465342 /* xfs */)
2887 return;
2888
2889 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2890 ev_timer_again (EV_A_ &w->timer);
2891 }
2268} 2892}
2269 2893
2270static void noinline 2894static void noinline
2271infy_del (EV_P_ ev_stat *w) 2895infy_del (EV_P_ ev_stat *w)
2272{ 2896{
2286 2910
2287static void noinline 2911static void noinline
2288infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2912infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2289{ 2913{
2290 if (slot < 0) 2914 if (slot < 0)
2291 /* overflow, need to check for all hahs slots */ 2915 /* overflow, need to check for all hash slots */
2292 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2916 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2293 infy_wd (EV_A_ slot, wd, ev); 2917 infy_wd (EV_A_ slot, wd, ev);
2294 else 2918 else
2295 { 2919 {
2296 WL w_; 2920 WL w_;
2302 2926
2303 if (w->wd == wd || wd == -1) 2927 if (w->wd == wd || wd == -1)
2304 { 2928 {
2305 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2929 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2306 { 2930 {
2931 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2307 w->wd = -1; 2932 w->wd = -1;
2308 infy_add (EV_A_ w); /* re-add, no matter what */ 2933 infy_add (EV_A_ w); /* re-add, no matter what */
2309 } 2934 }
2310 2935
2311 stat_timer_cb (EV_A_ &w->timer, 0); 2936 stat_timer_cb (EV_A_ &w->timer, 0);
2324 2949
2325 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2950 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2326 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2951 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2327} 2952}
2328 2953
2329void inline_size 2954inline_size void
2955check_2625 (EV_P)
2956{
2957 /* kernels < 2.6.25 are borked
2958 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2959 */
2960 struct utsname buf;
2961 int major, minor, micro;
2962
2963 if (uname (&buf))
2964 return;
2965
2966 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2967 return;
2968
2969 if (major < 2
2970 || (major == 2 && minor < 6)
2971 || (major == 2 && minor == 6 && micro < 25))
2972 return;
2973
2974 fs_2625 = 1;
2975}
2976
2977inline_size void
2330infy_init (EV_P) 2978infy_init (EV_P)
2331{ 2979{
2332 if (fs_fd != -2) 2980 if (fs_fd != -2)
2333 return; 2981 return;
2982
2983 fs_fd = -1;
2984
2985 check_2625 (EV_A);
2334 2986
2335 fs_fd = inotify_init (); 2987 fs_fd = inotify_init ();
2336 2988
2337 if (fs_fd >= 0) 2989 if (fs_fd >= 0)
2338 { 2990 {
2340 ev_set_priority (&fs_w, EV_MAXPRI); 2992 ev_set_priority (&fs_w, EV_MAXPRI);
2341 ev_io_start (EV_A_ &fs_w); 2993 ev_io_start (EV_A_ &fs_w);
2342 } 2994 }
2343} 2995}
2344 2996
2345void inline_size 2997inline_size void
2346infy_fork (EV_P) 2998infy_fork (EV_P)
2347{ 2999{
2348 int slot; 3000 int slot;
2349 3001
2350 if (fs_fd < 0) 3002 if (fs_fd < 0)
2366 w->wd = -1; 3018 w->wd = -1;
2367 3019
2368 if (fs_fd >= 0) 3020 if (fs_fd >= 0)
2369 infy_add (EV_A_ w); /* re-add, no matter what */ 3021 infy_add (EV_A_ w); /* re-add, no matter what */
2370 else 3022 else
2371 ev_timer_start (EV_A_ &w->timer); 3023 ev_timer_again (EV_A_ &w->timer);
2372 } 3024 }
2373
2374 } 3025 }
2375} 3026}
2376 3027
3028#endif
3029
3030#ifdef _WIN32
3031# define EV_LSTAT(p,b) _stati64 (p, b)
3032#else
3033# define EV_LSTAT(p,b) lstat (p, b)
2377#endif 3034#endif
2378 3035
2379void 3036void
2380ev_stat_stat (EV_P_ ev_stat *w) 3037ev_stat_stat (EV_P_ ev_stat *w)
2381{ 3038{
2408 || w->prev.st_atime != w->attr.st_atime 3065 || w->prev.st_atime != w->attr.st_atime
2409 || w->prev.st_mtime != w->attr.st_mtime 3066 || w->prev.st_mtime != w->attr.st_mtime
2410 || w->prev.st_ctime != w->attr.st_ctime 3067 || w->prev.st_ctime != w->attr.st_ctime
2411 ) { 3068 ) {
2412 #if EV_USE_INOTIFY 3069 #if EV_USE_INOTIFY
3070 if (fs_fd >= 0)
3071 {
2413 infy_del (EV_A_ w); 3072 infy_del (EV_A_ w);
2414 infy_add (EV_A_ w); 3073 infy_add (EV_A_ w);
2415 ev_stat_stat (EV_A_ w); /* avoid race... */ 3074 ev_stat_stat (EV_A_ w); /* avoid race... */
3075 }
2416 #endif 3076 #endif
2417 3077
2418 ev_feed_event (EV_A_ w, EV_STAT); 3078 ev_feed_event (EV_A_ w, EV_STAT);
2419 } 3079 }
2420} 3080}
2423ev_stat_start (EV_P_ ev_stat *w) 3083ev_stat_start (EV_P_ ev_stat *w)
2424{ 3084{
2425 if (expect_false (ev_is_active (w))) 3085 if (expect_false (ev_is_active (w)))
2426 return; 3086 return;
2427 3087
2428 /* since we use memcmp, we need to clear any padding data etc. */
2429 memset (&w->prev, 0, sizeof (ev_statdata));
2430 memset (&w->attr, 0, sizeof (ev_statdata));
2431
2432 ev_stat_stat (EV_A_ w); 3088 ev_stat_stat (EV_A_ w);
2433 3089
3090 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2434 if (w->interval < MIN_STAT_INTERVAL) 3091 w->interval = MIN_STAT_INTERVAL;
2435 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2436 3092
2437 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3093 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2438 ev_set_priority (&w->timer, ev_priority (w)); 3094 ev_set_priority (&w->timer, ev_priority (w));
2439 3095
2440#if EV_USE_INOTIFY 3096#if EV_USE_INOTIFY
2441 infy_init (EV_A); 3097 infy_init (EV_A);
2442 3098
2443 if (fs_fd >= 0) 3099 if (fs_fd >= 0)
2444 infy_add (EV_A_ w); 3100 infy_add (EV_A_ w);
2445 else 3101 else
2446#endif 3102#endif
2447 ev_timer_start (EV_A_ &w->timer); 3103 ev_timer_again (EV_A_ &w->timer);
2448 3104
2449 ev_start (EV_A_ (W)w, 1); 3105 ev_start (EV_A_ (W)w, 1);
3106
3107 EV_FREQUENT_CHECK;
2450} 3108}
2451 3109
2452void 3110void
2453ev_stat_stop (EV_P_ ev_stat *w) 3111ev_stat_stop (EV_P_ ev_stat *w)
2454{ 3112{
2455 clear_pending (EV_A_ (W)w); 3113 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 3114 if (expect_false (!ev_is_active (w)))
2457 return; 3115 return;
2458 3116
3117 EV_FREQUENT_CHECK;
3118
2459#if EV_USE_INOTIFY 3119#if EV_USE_INOTIFY
2460 infy_del (EV_A_ w); 3120 infy_del (EV_A_ w);
2461#endif 3121#endif
2462 ev_timer_stop (EV_A_ &w->timer); 3122 ev_timer_stop (EV_A_ &w->timer);
2463 3123
2464 ev_stop (EV_A_ (W)w); 3124 ev_stop (EV_A_ (W)w);
3125
3126 EV_FREQUENT_CHECK;
2465} 3127}
2466#endif 3128#endif
2467 3129
2468#if EV_IDLE_ENABLE 3130#if EV_IDLE_ENABLE
2469void 3131void
2471{ 3133{
2472 if (expect_false (ev_is_active (w))) 3134 if (expect_false (ev_is_active (w)))
2473 return; 3135 return;
2474 3136
2475 pri_adjust (EV_A_ (W)w); 3137 pri_adjust (EV_A_ (W)w);
3138
3139 EV_FREQUENT_CHECK;
2476 3140
2477 { 3141 {
2478 int active = ++idlecnt [ABSPRI (w)]; 3142 int active = ++idlecnt [ABSPRI (w)];
2479 3143
2480 ++idleall; 3144 ++idleall;
2481 ev_start (EV_A_ (W)w, active); 3145 ev_start (EV_A_ (W)w, active);
2482 3146
2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3147 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2484 idles [ABSPRI (w)][active - 1] = w; 3148 idles [ABSPRI (w)][active - 1] = w;
2485 } 3149 }
3150
3151 EV_FREQUENT_CHECK;
2486} 3152}
2487 3153
2488void 3154void
2489ev_idle_stop (EV_P_ ev_idle *w) 3155ev_idle_stop (EV_P_ ev_idle *w)
2490{ 3156{
2491 clear_pending (EV_A_ (W)w); 3157 clear_pending (EV_A_ (W)w);
2492 if (expect_false (!ev_is_active (w))) 3158 if (expect_false (!ev_is_active (w)))
2493 return; 3159 return;
2494 3160
3161 EV_FREQUENT_CHECK;
3162
2495 { 3163 {
2496 int active = ev_active (w); 3164 int active = ev_active (w);
2497 3165
2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3166 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3167 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500 3168
2501 ev_stop (EV_A_ (W)w); 3169 ev_stop (EV_A_ (W)w);
2502 --idleall; 3170 --idleall;
2503 } 3171 }
3172
3173 EV_FREQUENT_CHECK;
2504} 3174}
2505#endif 3175#endif
2506 3176
2507void 3177void
2508ev_prepare_start (EV_P_ ev_prepare *w) 3178ev_prepare_start (EV_P_ ev_prepare *w)
2509{ 3179{
2510 if (expect_false (ev_is_active (w))) 3180 if (expect_false (ev_is_active (w)))
2511 return; 3181 return;
3182
3183 EV_FREQUENT_CHECK;
2512 3184
2513 ev_start (EV_A_ (W)w, ++preparecnt); 3185 ev_start (EV_A_ (W)w, ++preparecnt);
2514 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3186 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2515 prepares [preparecnt - 1] = w; 3187 prepares [preparecnt - 1] = w;
3188
3189 EV_FREQUENT_CHECK;
2516} 3190}
2517 3191
2518void 3192void
2519ev_prepare_stop (EV_P_ ev_prepare *w) 3193ev_prepare_stop (EV_P_ ev_prepare *w)
2520{ 3194{
2521 clear_pending (EV_A_ (W)w); 3195 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 3196 if (expect_false (!ev_is_active (w)))
2523 return; 3197 return;
2524 3198
3199 EV_FREQUENT_CHECK;
3200
2525 { 3201 {
2526 int active = ev_active (w); 3202 int active = ev_active (w);
2527 3203
2528 prepares [active - 1] = prepares [--preparecnt]; 3204 prepares [active - 1] = prepares [--preparecnt];
2529 ev_active (prepares [active - 1]) = active; 3205 ev_active (prepares [active - 1]) = active;
2530 } 3206 }
2531 3207
2532 ev_stop (EV_A_ (W)w); 3208 ev_stop (EV_A_ (W)w);
3209
3210 EV_FREQUENT_CHECK;
2533} 3211}
2534 3212
2535void 3213void
2536ev_check_start (EV_P_ ev_check *w) 3214ev_check_start (EV_P_ ev_check *w)
2537{ 3215{
2538 if (expect_false (ev_is_active (w))) 3216 if (expect_false (ev_is_active (w)))
2539 return; 3217 return;
3218
3219 EV_FREQUENT_CHECK;
2540 3220
2541 ev_start (EV_A_ (W)w, ++checkcnt); 3221 ev_start (EV_A_ (W)w, ++checkcnt);
2542 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3222 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2543 checks [checkcnt - 1] = w; 3223 checks [checkcnt - 1] = w;
3224
3225 EV_FREQUENT_CHECK;
2544} 3226}
2545 3227
2546void 3228void
2547ev_check_stop (EV_P_ ev_check *w) 3229ev_check_stop (EV_P_ ev_check *w)
2548{ 3230{
2549 clear_pending (EV_A_ (W)w); 3231 clear_pending (EV_A_ (W)w);
2550 if (expect_false (!ev_is_active (w))) 3232 if (expect_false (!ev_is_active (w)))
2551 return; 3233 return;
2552 3234
3235 EV_FREQUENT_CHECK;
3236
2553 { 3237 {
2554 int active = ev_active (w); 3238 int active = ev_active (w);
2555 3239
2556 checks [active - 1] = checks [--checkcnt]; 3240 checks [active - 1] = checks [--checkcnt];
2557 ev_active (checks [active - 1]) = active; 3241 ev_active (checks [active - 1]) = active;
2558 } 3242 }
2559 3243
2560 ev_stop (EV_A_ (W)w); 3244 ev_stop (EV_A_ (W)w);
3245
3246 EV_FREQUENT_CHECK;
2561} 3247}
2562 3248
2563#if EV_EMBED_ENABLE 3249#if EV_EMBED_ENABLE
2564void noinline 3250void noinline
2565ev_embed_sweep (EV_P_ ev_embed *w) 3251ev_embed_sweep (EV_P_ ev_embed *w)
2582embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3268embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2583{ 3269{
2584 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3270 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2585 3271
2586 { 3272 {
2587 struct ev_loop *loop = w->other; 3273 EV_P = w->other;
2588 3274
2589 while (fdchangecnt) 3275 while (fdchangecnt)
2590 { 3276 {
2591 fd_reify (EV_A); 3277 fd_reify (EV_A);
2592 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3278 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2593 } 3279 }
2594 } 3280 }
2595} 3281}
2596 3282
3283static void
3284embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3285{
3286 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3287
3288 ev_embed_stop (EV_A_ w);
3289
3290 {
3291 EV_P = w->other;
3292
3293 ev_loop_fork (EV_A);
3294 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3295 }
3296
3297 ev_embed_start (EV_A_ w);
3298}
3299
2597#if 0 3300#if 0
2598static void 3301static void
2599embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3302embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2600{ 3303{
2601 ev_idle_stop (EV_A_ idle); 3304 ev_idle_stop (EV_A_ idle);
2607{ 3310{
2608 if (expect_false (ev_is_active (w))) 3311 if (expect_false (ev_is_active (w)))
2609 return; 3312 return;
2610 3313
2611 { 3314 {
2612 struct ev_loop *loop = w->other; 3315 EV_P = w->other;
2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3316 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3317 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2615 } 3318 }
3319
3320 EV_FREQUENT_CHECK;
2616 3321
2617 ev_set_priority (&w->io, ev_priority (w)); 3322 ev_set_priority (&w->io, ev_priority (w));
2618 ev_io_start (EV_A_ &w->io); 3323 ev_io_start (EV_A_ &w->io);
2619 3324
2620 ev_prepare_init (&w->prepare, embed_prepare_cb); 3325 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI); 3326 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare); 3327 ev_prepare_start (EV_A_ &w->prepare);
2623 3328
3329 ev_fork_init (&w->fork, embed_fork_cb);
3330 ev_fork_start (EV_A_ &w->fork);
3331
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3332 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625 3333
2626 ev_start (EV_A_ (W)w, 1); 3334 ev_start (EV_A_ (W)w, 1);
3335
3336 EV_FREQUENT_CHECK;
2627} 3337}
2628 3338
2629void 3339void
2630ev_embed_stop (EV_P_ ev_embed *w) 3340ev_embed_stop (EV_P_ ev_embed *w)
2631{ 3341{
2632 clear_pending (EV_A_ (W)w); 3342 clear_pending (EV_A_ (W)w);
2633 if (expect_false (!ev_is_active (w))) 3343 if (expect_false (!ev_is_active (w)))
2634 return; 3344 return;
2635 3345
3346 EV_FREQUENT_CHECK;
3347
2636 ev_io_stop (EV_A_ &w->io); 3348 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare); 3349 ev_prepare_stop (EV_A_ &w->prepare);
3350 ev_fork_stop (EV_A_ &w->fork);
2638 3351
2639 ev_stop (EV_A_ (W)w); 3352 EV_FREQUENT_CHECK;
2640} 3353}
2641#endif 3354#endif
2642 3355
2643#if EV_FORK_ENABLE 3356#if EV_FORK_ENABLE
2644void 3357void
2645ev_fork_start (EV_P_ ev_fork *w) 3358ev_fork_start (EV_P_ ev_fork *w)
2646{ 3359{
2647 if (expect_false (ev_is_active (w))) 3360 if (expect_false (ev_is_active (w)))
2648 return; 3361 return;
3362
3363 EV_FREQUENT_CHECK;
2649 3364
2650 ev_start (EV_A_ (W)w, ++forkcnt); 3365 ev_start (EV_A_ (W)w, ++forkcnt);
2651 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3366 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2652 forks [forkcnt - 1] = w; 3367 forks [forkcnt - 1] = w;
3368
3369 EV_FREQUENT_CHECK;
2653} 3370}
2654 3371
2655void 3372void
2656ev_fork_stop (EV_P_ ev_fork *w) 3373ev_fork_stop (EV_P_ ev_fork *w)
2657{ 3374{
2658 clear_pending (EV_A_ (W)w); 3375 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w))) 3376 if (expect_false (!ev_is_active (w)))
2660 return; 3377 return;
2661 3378
3379 EV_FREQUENT_CHECK;
3380
2662 { 3381 {
2663 int active = ev_active (w); 3382 int active = ev_active (w);
2664 3383
2665 forks [active - 1] = forks [--forkcnt]; 3384 forks [active - 1] = forks [--forkcnt];
2666 ev_active (forks [active - 1]) = active; 3385 ev_active (forks [active - 1]) = active;
2667 } 3386 }
2668 3387
2669 ev_stop (EV_A_ (W)w); 3388 ev_stop (EV_A_ (W)w);
3389
3390 EV_FREQUENT_CHECK;
2670} 3391}
2671#endif 3392#endif
2672 3393
2673#if EV_ASYNC_ENABLE 3394#if EV_ASYNC_ENABLE
2674void 3395void
2676{ 3397{
2677 if (expect_false (ev_is_active (w))) 3398 if (expect_false (ev_is_active (w)))
2678 return; 3399 return;
2679 3400
2680 evpipe_init (EV_A); 3401 evpipe_init (EV_A);
3402
3403 EV_FREQUENT_CHECK;
2681 3404
2682 ev_start (EV_A_ (W)w, ++asynccnt); 3405 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3406 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w; 3407 asyncs [asynccnt - 1] = w;
3408
3409 EV_FREQUENT_CHECK;
2685} 3410}
2686 3411
2687void 3412void
2688ev_async_stop (EV_P_ ev_async *w) 3413ev_async_stop (EV_P_ ev_async *w)
2689{ 3414{
2690 clear_pending (EV_A_ (W)w); 3415 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w))) 3416 if (expect_false (!ev_is_active (w)))
2692 return; 3417 return;
2693 3418
3419 EV_FREQUENT_CHECK;
3420
2694 { 3421 {
2695 int active = ev_active (w); 3422 int active = ev_active (w);
2696 3423
2697 asyncs [active - 1] = asyncs [--asynccnt]; 3424 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active; 3425 ev_active (asyncs [active - 1]) = active;
2699 } 3426 }
2700 3427
2701 ev_stop (EV_A_ (W)w); 3428 ev_stop (EV_A_ (W)w);
3429
3430 EV_FREQUENT_CHECK;
2702} 3431}
2703 3432
2704void 3433void
2705ev_async_send (EV_P_ ev_async *w) 3434ev_async_send (EV_P_ ev_async *w)
2706{ 3435{
2707 w->sent = 1; 3436 w->sent = 1;
2708 evpipe_write (EV_A_ &gotasync); 3437 evpipe_write (EV_A_ &async_pending);
2709} 3438}
2710#endif 3439#endif
2711 3440
2712/*****************************************************************************/ 3441/*****************************************************************************/
2713 3442
2723once_cb (EV_P_ struct ev_once *once, int revents) 3452once_cb (EV_P_ struct ev_once *once, int revents)
2724{ 3453{
2725 void (*cb)(int revents, void *arg) = once->cb; 3454 void (*cb)(int revents, void *arg) = once->cb;
2726 void *arg = once->arg; 3455 void *arg = once->arg;
2727 3456
2728 ev_io_stop (EV_A_ &once->io); 3457 ev_io_stop (EV_A_ &once->io);
2729 ev_timer_stop (EV_A_ &once->to); 3458 ev_timer_stop (EV_A_ &once->to);
2730 ev_free (once); 3459 ev_free (once);
2731 3460
2732 cb (revents, arg); 3461 cb (revents, arg);
2733} 3462}
2734 3463
2735static void 3464static void
2736once_cb_io (EV_P_ ev_io *w, int revents) 3465once_cb_io (EV_P_ ev_io *w, int revents)
2737{ 3466{
2738 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3467 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3468
3469 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2739} 3470}
2740 3471
2741static void 3472static void
2742once_cb_to (EV_P_ ev_timer *w, int revents) 3473once_cb_to (EV_P_ ev_timer *w, int revents)
2743{ 3474{
2744 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3475 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3476
3477 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2745} 3478}
2746 3479
2747void 3480void
2748ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3481ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2749{ 3482{
2771 ev_timer_set (&once->to, timeout, 0.); 3504 ev_timer_set (&once->to, timeout, 0.);
2772 ev_timer_start (EV_A_ &once->to); 3505 ev_timer_start (EV_A_ &once->to);
2773 } 3506 }
2774} 3507}
2775 3508
3509/*****************************************************************************/
3510
3511#if EV_WALK_ENABLE
3512void
3513ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3514{
3515 int i, j;
3516 ev_watcher_list *wl, *wn;
3517
3518 if (types & (EV_IO | EV_EMBED))
3519 for (i = 0; i < anfdmax; ++i)
3520 for (wl = anfds [i].head; wl; )
3521 {
3522 wn = wl->next;
3523
3524#if EV_EMBED_ENABLE
3525 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3526 {
3527 if (types & EV_EMBED)
3528 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3529 }
3530 else
3531#endif
3532#if EV_USE_INOTIFY
3533 if (ev_cb ((ev_io *)wl) == infy_cb)
3534 ;
3535 else
3536#endif
3537 if ((ev_io *)wl != &pipe_w)
3538 if (types & EV_IO)
3539 cb (EV_A_ EV_IO, wl);
3540
3541 wl = wn;
3542 }
3543
3544 if (types & (EV_TIMER | EV_STAT))
3545 for (i = timercnt + HEAP0; i-- > HEAP0; )
3546#if EV_STAT_ENABLE
3547 /*TODO: timer is not always active*/
3548 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3549 {
3550 if (types & EV_STAT)
3551 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3552 }
3553 else
3554#endif
3555 if (types & EV_TIMER)
3556 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3557
3558#if EV_PERIODIC_ENABLE
3559 if (types & EV_PERIODIC)
3560 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3561 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3562#endif
3563
3564#if EV_IDLE_ENABLE
3565 if (types & EV_IDLE)
3566 for (j = NUMPRI; i--; )
3567 for (i = idlecnt [j]; i--; )
3568 cb (EV_A_ EV_IDLE, idles [j][i]);
3569#endif
3570
3571#if EV_FORK_ENABLE
3572 if (types & EV_FORK)
3573 for (i = forkcnt; i--; )
3574 if (ev_cb (forks [i]) != embed_fork_cb)
3575 cb (EV_A_ EV_FORK, forks [i]);
3576#endif
3577
3578#if EV_ASYNC_ENABLE
3579 if (types & EV_ASYNC)
3580 for (i = asynccnt; i--; )
3581 cb (EV_A_ EV_ASYNC, asyncs [i]);
3582#endif
3583
3584 if (types & EV_PREPARE)
3585 for (i = preparecnt; i--; )
3586#if EV_EMBED_ENABLE
3587 if (ev_cb (prepares [i]) != embed_prepare_cb)
3588#endif
3589 cb (EV_A_ EV_PREPARE, prepares [i]);
3590
3591 if (types & EV_CHECK)
3592 for (i = checkcnt; i--; )
3593 cb (EV_A_ EV_CHECK, checks [i]);
3594
3595 if (types & EV_SIGNAL)
3596 for (i = 0; i < EV_NSIG - 1; ++i)
3597 for (wl = signals [i].head; wl; )
3598 {
3599 wn = wl->next;
3600 cb (EV_A_ EV_SIGNAL, wl);
3601 wl = wn;
3602 }
3603
3604 if (types & EV_CHILD)
3605 for (i = EV_PID_HASHSIZE; i--; )
3606 for (wl = childs [i]; wl; )
3607 {
3608 wn = wl->next;
3609 cb (EV_A_ EV_CHILD, wl);
3610 wl = wn;
3611 }
3612/* EV_STAT 0x00001000 /* stat data changed */
3613/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3614}
3615#endif
3616
2776#if EV_MULTIPLICITY 3617#if EV_MULTIPLICITY
2777 #include "ev_wrap.h" 3618 #include "ev_wrap.h"
2778#endif 3619#endif
2779 3620
2780#ifdef __cplusplus 3621#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines