ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC vs.
Revision 1.316 by root, Fri Sep 18 21:02:12 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
136#include <fcntl.h> 158#include <fcntl.h>
154#ifndef _WIN32 176#ifndef _WIN32
155# include <sys/time.h> 177# include <sys/time.h>
156# include <sys/wait.h> 178# include <sys/wait.h>
157# include <unistd.h> 179# include <unistd.h>
158#else 180#else
181# include <io.h>
159# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 183# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
163# endif 186# endif
164#endif 187#endif
165 188
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
167 190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
225
168#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
169# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
170#endif 232#endif
171 233
172#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 236#endif
175 237
176#ifndef EV_USE_NANOSLEEP 238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
177# define EV_USE_NANOSLEEP 0 242# define EV_USE_NANOSLEEP 0
243# endif
178#endif 244#endif
179 245
180#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
182#endif 248#endif
235# else 301# else
236# define EV_USE_EVENTFD 0 302# define EV_USE_EVENTFD 0
237# endif 303# endif
238#endif 304#endif
239 305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 347
242#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 365# include <sys/select.h>
260# endif 366# endif
261#endif 367#endif
262 368
263#if EV_USE_INOTIFY 369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
264# include <sys/inotify.h> 372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
265#endif 378#endif
266 379
267#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 381# include <winsock.h>
269#endif 382#endif
270 383
271#if EV_USE_EVENTFD 384#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
274# ifdef __cplusplus 397# ifdef __cplusplus
275extern "C" { 398extern "C" {
276# endif 399# endif
277int eventfd (unsigned int initval, int flags); 400int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus 401# ifdef __cplusplus
279} 402}
280# endif 403# endif
281#endif 404#endif
282 405
406#if EV_USE_SIGNALFD
407/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
408# include <stdint.h>
409# ifndef SFD_NONBLOCK
410# define SFD_NONBLOCK O_NONBLOCK
411# endif
412# ifndef SFD_CLOEXEC
413# ifdef O_CLOEXEC
414# define SFD_CLOEXEC O_CLOEXEC
415# else
416# define SFD_CLOEXEC 02000000
417# endif
418# endif
419# ifdef __cplusplus
420extern "C" {
421# endif
422int signalfd (int fd, const sigset_t *mask, int flags);
423
424struct signalfd_siginfo
425{
426 uint32_t ssi_signo;
427 char pad[128 - sizeof (uint32_t)];
428};
429# ifdef __cplusplus
430}
431# endif
432#endif
433
434
283/**/ 435/**/
436
437#if EV_VERIFY >= 3
438# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
439#else
440# define EV_FREQUENT_CHECK do { } while (0)
441#endif
284 442
285/* 443/*
286 * This is used to avoid floating point rounding problems. 444 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 445 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 446 * to ensure progress, time-wise, even when rounding
292 */ 450 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 451#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294 452
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 453#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 454#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 455
299#if __GNUC__ >= 4 456#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value)) 457# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 458# define noinline __attribute__ ((noinline))
302#else 459#else
315# define inline_speed static noinline 472# define inline_speed static noinline
316#else 473#else
317# define inline_speed static inline 474# define inline_speed static inline
318#endif 475#endif
319 476
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 477#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
478
479#if EV_MINPRI == EV_MAXPRI
480# define ABSPRI(w) (((W)w), 0)
481#else
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 482# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
483#endif
322 484
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 485#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 486#define EMPTY2(a,b) /* used to suppress some warnings */
325 487
326typedef ev_watcher *W; 488typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 490typedef ev_watcher_time *WT;
329 491
330#define ev_active(w) ((W)(w))->active 492#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 493#define ev_at(w) ((WT)(w))->at
332 494
333#if EV_USE_MONOTONIC 495#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 496/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 497/* giving it a reasonably high chance of working on typical architetcures */
498static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
499#endif
500
501#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 502static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
503#endif
504
505#ifndef EV_FD_TO_WIN32_HANDLE
506# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
507#endif
508#ifndef EV_WIN32_HANDLE_TO_FD
509# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
510#endif
511#ifndef EV_WIN32_CLOSE_FD
512# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 513#endif
338 514
339#ifdef _WIN32 515#ifdef _WIN32
340# include "ev_win32.c" 516# include "ev_win32.c"
341#endif 517#endif
349{ 525{
350 syserr_cb = cb; 526 syserr_cb = cb;
351} 527}
352 528
353static void noinline 529static void noinline
354syserr (const char *msg) 530ev_syserr (const char *msg)
355{ 531{
356 if (!msg) 532 if (!msg)
357 msg = "(libev) system error"; 533 msg = "(libev) system error";
358 534
359 if (syserr_cb) 535 if (syserr_cb)
405#define ev_malloc(size) ev_realloc (0, (size)) 581#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 582#define ev_free(ptr) ev_realloc ((ptr), 0)
407 583
408/*****************************************************************************/ 584/*****************************************************************************/
409 585
586/* set in reify when reification needed */
587#define EV_ANFD_REIFY 1
588
589/* file descriptor info structure */
410typedef struct 590typedef struct
411{ 591{
412 WL head; 592 WL head;
413 unsigned char events; 593 unsigned char events; /* the events watched for */
594 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
595 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 596 unsigned char unused;
597#if EV_USE_EPOLL
598 unsigned int egen; /* generation counter to counter epoll bugs */
599#endif
415#if EV_SELECT_IS_WINSOCKET 600#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 601 SOCKET handle;
417#endif 602#endif
418} ANFD; 603} ANFD;
419 604
605/* stores the pending event set for a given watcher */
420typedef struct 606typedef struct
421{ 607{
422 W w; 608 W w;
423 int events; 609 int events; /* the pending event set for the given watcher */
424} ANPENDING; 610} ANPENDING;
425 611
426#if EV_USE_INOTIFY 612#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */ 613/* hash table entry per inotify-id */
428typedef struct 614typedef struct
430 WL head; 616 WL head;
431} ANFS; 617} ANFS;
432#endif 618#endif
433 619
434/* Heap Entry */ 620/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT 621#if EV_HEAP_CACHE_AT
622 /* a heap element */
437 typedef struct { 623 typedef struct {
624 ev_tstamp at;
438 WT w; 625 WT w;
439 ev_tstamp at;
440 } ANHE; 626 } ANHE;
441 627
442 #define ANHE_w(he) (he).w /* access watcher, read-write */ 628 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */ 629 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 630 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
445#else 631#else
632 /* a heap element */
446 typedef WT ANHE; 633 typedef WT ANHE;
447 634
448 #define ANHE_w(he) (he) 635 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at 636 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he) 637 #define ANHE_at_cache(he)
451#endif 638#endif
452 639
453#if EV_MULTIPLICITY 640#if EV_MULTIPLICITY
454 641
455 struct ev_loop 642 struct ev_loop
474 661
475 static int ev_default_loop_ptr; 662 static int ev_default_loop_ptr;
476 663
477#endif 664#endif
478 665
666#if EV_MINIMAL < 2
667# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
668# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
669# define EV_INVOKE_PENDING invoke_cb (EV_A)
670#else
671# define EV_RELEASE_CB (void)0
672# define EV_ACQUIRE_CB (void)0
673# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
674#endif
675
676#define EVUNLOOP_RECURSE 0x80
677
479/*****************************************************************************/ 678/*****************************************************************************/
480 679
680#ifndef EV_HAVE_EV_TIME
481ev_tstamp 681ev_tstamp
482ev_time (void) 682ev_time (void)
483{ 683{
484#if EV_USE_REALTIME 684#if EV_USE_REALTIME
685 if (expect_true (have_realtime))
686 {
485 struct timespec ts; 687 struct timespec ts;
486 clock_gettime (CLOCK_REALTIME, &ts); 688 clock_gettime (CLOCK_REALTIME, &ts);
487 return ts.tv_sec + ts.tv_nsec * 1e-9; 689 return ts.tv_sec + ts.tv_nsec * 1e-9;
488#else 690 }
691#endif
692
489 struct timeval tv; 693 struct timeval tv;
490 gettimeofday (&tv, 0); 694 gettimeofday (&tv, 0);
491 return tv.tv_sec + tv.tv_usec * 1e-6; 695 return tv.tv_sec + tv.tv_usec * 1e-6;
492#endif
493} 696}
697#endif
494 698
495ev_tstamp inline_size 699inline_size ev_tstamp
496get_clock (void) 700get_clock (void)
497{ 701{
498#if EV_USE_MONOTONIC 702#if EV_USE_MONOTONIC
499 if (expect_true (have_monotonic)) 703 if (expect_true (have_monotonic))
500 { 704 {
533 struct timeval tv; 737 struct timeval tv;
534 738
535 tv.tv_sec = (time_t)delay; 739 tv.tv_sec = (time_t)delay;
536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 740 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
537 741
742 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
743 /* something not guaranteed by newer posix versions, but guaranteed */
744 /* by older ones */
538 select (0, 0, 0, 0, &tv); 745 select (0, 0, 0, 0, &tv);
539#endif 746#endif
540 } 747 }
541} 748}
542 749
543/*****************************************************************************/ 750/*****************************************************************************/
544 751
545#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 752#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
546 753
547int inline_size 754/* find a suitable new size for the given array, */
755/* hopefully by rounding to a ncie-to-malloc size */
756inline_size int
548array_nextsize (int elem, int cur, int cnt) 757array_nextsize (int elem, int cur, int cnt)
549{ 758{
550 int ncur = cur + 1; 759 int ncur = cur + 1;
551 760
552 do 761 do
569array_realloc (int elem, void *base, int *cur, int cnt) 778array_realloc (int elem, void *base, int *cur, int cnt)
570{ 779{
571 *cur = array_nextsize (elem, *cur, cnt); 780 *cur = array_nextsize (elem, *cur, cnt);
572 return ev_realloc (base, elem * *cur); 781 return ev_realloc (base, elem * *cur);
573} 782}
783
784#define array_init_zero(base,count) \
785 memset ((void *)(base), 0, sizeof (*(base)) * (count))
574 786
575#define array_needsize(type,base,cur,cnt,init) \ 787#define array_needsize(type,base,cur,cnt,init) \
576 if (expect_false ((cnt) > (cur))) \ 788 if (expect_false ((cnt) > (cur))) \
577 { \ 789 { \
578 int ocur_ = (cur); \ 790 int ocur_ = (cur); \
590 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 802 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
591 } 803 }
592#endif 804#endif
593 805
594#define array_free(stem, idx) \ 806#define array_free(stem, idx) \
595 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 807 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
596 808
597/*****************************************************************************/ 809/*****************************************************************************/
810
811/* dummy callback for pending events */
812static void noinline
813pendingcb (EV_P_ ev_prepare *w, int revents)
814{
815}
598 816
599void noinline 817void noinline
600ev_feed_event (EV_P_ void *w, int revents) 818ev_feed_event (EV_P_ void *w, int revents)
601{ 819{
602 W w_ = (W)w; 820 W w_ = (W)w;
611 pendings [pri][w_->pending - 1].w = w_; 829 pendings [pri][w_->pending - 1].w = w_;
612 pendings [pri][w_->pending - 1].events = revents; 830 pendings [pri][w_->pending - 1].events = revents;
613 } 831 }
614} 832}
615 833
616void inline_speed 834inline_speed void
835feed_reverse (EV_P_ W w)
836{
837 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
838 rfeeds [rfeedcnt++] = w;
839}
840
841inline_size void
842feed_reverse_done (EV_P_ int revents)
843{
844 do
845 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
846 while (rfeedcnt);
847}
848
849inline_speed void
617queue_events (EV_P_ W *events, int eventcnt, int type) 850queue_events (EV_P_ W *events, int eventcnt, int type)
618{ 851{
619 int i; 852 int i;
620 853
621 for (i = 0; i < eventcnt; ++i) 854 for (i = 0; i < eventcnt; ++i)
622 ev_feed_event (EV_A_ events [i], type); 855 ev_feed_event (EV_A_ events [i], type);
623} 856}
624 857
625/*****************************************************************************/ 858/*****************************************************************************/
626 859
627void inline_size 860inline_speed void
628anfds_init (ANFD *base, int count)
629{
630 while (count--)
631 {
632 base->head = 0;
633 base->events = EV_NONE;
634 base->reify = 0;
635
636 ++base;
637 }
638}
639
640void inline_speed
641fd_event (EV_P_ int fd, int revents) 861fd_event_nc (EV_P_ int fd, int revents)
642{ 862{
643 ANFD *anfd = anfds + fd; 863 ANFD *anfd = anfds + fd;
644 ev_io *w; 864 ev_io *w;
645 865
646 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 866 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
650 if (ev) 870 if (ev)
651 ev_feed_event (EV_A_ (W)w, ev); 871 ev_feed_event (EV_A_ (W)w, ev);
652 } 872 }
653} 873}
654 874
875/* do not submit kernel events for fds that have reify set */
876/* because that means they changed while we were polling for new events */
877inline_speed void
878fd_event (EV_P_ int fd, int revents)
879{
880 ANFD *anfd = anfds + fd;
881
882 if (expect_true (!anfd->reify))
883 fd_event_nc (EV_A_ fd, revents);
884}
885
655void 886void
656ev_feed_fd_event (EV_P_ int fd, int revents) 887ev_feed_fd_event (EV_P_ int fd, int revents)
657{ 888{
658 if (fd >= 0 && fd < anfdmax) 889 if (fd >= 0 && fd < anfdmax)
659 fd_event (EV_A_ fd, revents); 890 fd_event_nc (EV_A_ fd, revents);
660} 891}
661 892
662void inline_size 893/* make sure the external fd watch events are in-sync */
894/* with the kernel/libev internal state */
895inline_size void
663fd_reify (EV_P) 896fd_reify (EV_P)
664{ 897{
665 int i; 898 int i;
666 899
667 for (i = 0; i < fdchangecnt; ++i) 900 for (i = 0; i < fdchangecnt; ++i)
676 events |= (unsigned char)w->events; 909 events |= (unsigned char)w->events;
677 910
678#if EV_SELECT_IS_WINSOCKET 911#if EV_SELECT_IS_WINSOCKET
679 if (events) 912 if (events)
680 { 913 {
681 unsigned long argp; 914 unsigned long arg;
682 #ifdef EV_FD_TO_WIN32_HANDLE
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 915 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
684 #else
685 anfd->handle = _get_osfhandle (fd);
686 #endif
687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 916 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
688 } 917 }
689#endif 918#endif
690 919
691 { 920 {
692 unsigned char o_events = anfd->events; 921 unsigned char o_events = anfd->events;
693 unsigned char o_reify = anfd->reify; 922 unsigned char o_reify = anfd->reify;
694 923
695 anfd->reify = 0; 924 anfd->reify = 0;
696 anfd->events = events; 925 anfd->events = events;
697 926
698 if (o_events != events || o_reify & EV_IOFDSET) 927 if (o_events != events || o_reify & EV__IOFDSET)
699 backend_modify (EV_A_ fd, o_events, events); 928 backend_modify (EV_A_ fd, o_events, events);
700 } 929 }
701 } 930 }
702 931
703 fdchangecnt = 0; 932 fdchangecnt = 0;
704} 933}
705 934
706void inline_size 935/* something about the given fd changed */
936inline_size void
707fd_change (EV_P_ int fd, int flags) 937fd_change (EV_P_ int fd, int flags)
708{ 938{
709 unsigned char reify = anfds [fd].reify; 939 unsigned char reify = anfds [fd].reify;
710 anfds [fd].reify |= flags; 940 anfds [fd].reify |= flags;
711 941
715 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 945 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
716 fdchanges [fdchangecnt - 1] = fd; 946 fdchanges [fdchangecnt - 1] = fd;
717 } 947 }
718} 948}
719 949
720void inline_speed 950/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
951inline_speed void
721fd_kill (EV_P_ int fd) 952fd_kill (EV_P_ int fd)
722{ 953{
723 ev_io *w; 954 ev_io *w;
724 955
725 while ((w = (ev_io *)anfds [fd].head)) 956 while ((w = (ev_io *)anfds [fd].head))
727 ev_io_stop (EV_A_ w); 958 ev_io_stop (EV_A_ w);
728 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 959 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
729 } 960 }
730} 961}
731 962
732int inline_size 963/* check whether the given fd is atcually valid, for error recovery */
964inline_size int
733fd_valid (int fd) 965fd_valid (int fd)
734{ 966{
735#ifdef _WIN32 967#ifdef _WIN32
736 return _get_osfhandle (fd) != -1; 968 return _get_osfhandle (fd) != -1;
737#else 969#else
745{ 977{
746 int fd; 978 int fd;
747 979
748 for (fd = 0; fd < anfdmax; ++fd) 980 for (fd = 0; fd < anfdmax; ++fd)
749 if (anfds [fd].events) 981 if (anfds [fd].events)
750 if (!fd_valid (fd) == -1 && errno == EBADF) 982 if (!fd_valid (fd) && errno == EBADF)
751 fd_kill (EV_A_ fd); 983 fd_kill (EV_A_ fd);
752} 984}
753 985
754/* called on ENOMEM in select/poll to kill some fds and retry */ 986/* called on ENOMEM in select/poll to kill some fds and retry */
755static void noinline 987static void noinline
759 991
760 for (fd = anfdmax; fd--; ) 992 for (fd = anfdmax; fd--; )
761 if (anfds [fd].events) 993 if (anfds [fd].events)
762 { 994 {
763 fd_kill (EV_A_ fd); 995 fd_kill (EV_A_ fd);
764 return; 996 break;
765 } 997 }
766} 998}
767 999
768/* usually called after fork if backend needs to re-arm all fds from scratch */ 1000/* usually called after fork if backend needs to re-arm all fds from scratch */
769static void noinline 1001static void noinline
773 1005
774 for (fd = 0; fd < anfdmax; ++fd) 1006 for (fd = 0; fd < anfdmax; ++fd)
775 if (anfds [fd].events) 1007 if (anfds [fd].events)
776 { 1008 {
777 anfds [fd].events = 0; 1009 anfds [fd].events = 0;
1010 anfds [fd].emask = 0;
778 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1011 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
779 } 1012 }
780} 1013}
781 1014
782/*****************************************************************************/ 1015/*****************************************************************************/
783 1016
791 * at the moment we allow libev the luxury of two heaps, 1024 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 1025 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient. 1026 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers. 1027 * the difference is about 5% with 50000+ watchers.
795 */ 1028 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP 1029#if EV_USE_4HEAP
798 1030
799#define DHEAP 4 1031#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1032#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801 1033#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
802/* towards the root */ 1034#define UPHEAP_DONE(p,k) ((p) == (k))
803void inline_speed
804upheap (ANHE *heap, int k)
805{
806 ANHE he = heap [k];
807
808 for (;;)
809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
815 heap [k] = heap [p];
816 ev_active (ANHE_w (heap [k])) = k;
817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823 1035
824/* away from the root */ 1036/* away from the root */
825void inline_speed 1037inline_speed void
826downheap (ANHE *heap, int N, int k) 1038downheap (ANHE *heap, int N, int k)
827{ 1039{
828 ANHE he = heap [k]; 1040 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0; 1041 ANHE *E = heap + N + HEAP0;
830 1042
831 for (;;) 1043 for (;;)
832 { 1044 {
833 ev_tstamp minat; 1045 ev_tstamp minat;
834 ANHE *minpos; 1046 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1047 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
836 1048
837 // find minimum child 1049 /* find minimum child */
838 if (expect_true (pos + DHEAP - 1 < E)) 1050 if (expect_true (pos + DHEAP - 1 < E))
839 { 1051 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1052 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1053 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1054 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 1055 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 } 1056 }
845 else if (pos < E) 1057 else if (pos < E)
846 { 1058 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1059 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1060 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
853 break; 1065 break;
854 1066
855 if (ANHE_at (he) <= minat) 1067 if (ANHE_at (he) <= minat)
856 break; 1068 break;
857 1069
1070 heap [k] = *minpos;
858 ev_active (ANHE_w (*minpos)) = k; 1071 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860 1072
861 k = minpos - heap; 1073 k = minpos - heap;
862 } 1074 }
863 1075
1076 heap [k] = he;
864 ev_active (ANHE_w (he)) = k; 1077 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866} 1078}
867 1079
868#else // 4HEAP 1080#else /* 4HEAP */
869 1081
870#define HEAP0 1 1082#define HEAP0 1
1083#define HPARENT(k) ((k) >> 1)
1084#define UPHEAP_DONE(p,k) (!(p))
871 1085
872/* towards the root */ 1086/* away from the root */
873void inline_speed 1087inline_speed void
874upheap (ANHE *heap, int k) 1088downheap (ANHE *heap, int N, int k)
875{ 1089{
876 ANHE he = heap [k]; 1090 ANHE he = heap [k];
877 1091
878 for (;;) 1092 for (;;)
879 { 1093 {
880 int p = k >> 1; 1094 int c = k << 1;
881 1095
882 /* maybe we could use a dummy element at heap [0]? */ 1096 if (c >= N + HEAP0)
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break; 1097 break;
885 1098
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
889 }
890
891 heap [k] = w;
892 ev_active (ANHE_w (heap [k])) = k;
893}
894
895/* away from the root */
896void inline_speed
897downheap (ANHE *heap, int N, int k)
898{
899 ANHE he = heap [k];
900
901 for (;;)
902 {
903 int c = k << 1;
904
905 if (c > N)
906 break;
907
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1099 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0; 1100 ? 1 : 0;
910 1101
911 if (w->at <= ANHE_at (heap [c])) 1102 if (ANHE_at (he) <= ANHE_at (heap [c]))
912 break; 1103 break;
913 1104
914 heap [k] = heap [c]; 1105 heap [k] = heap [c];
915 ev_active (ANHE_w (heap [k])) = k; 1106 ev_active (ANHE_w (heap [k])) = k;
916 1107
920 heap [k] = he; 1111 heap [k] = he;
921 ev_active (ANHE_w (he)) = k; 1112 ev_active (ANHE_w (he)) = k;
922} 1113}
923#endif 1114#endif
924 1115
925void inline_size 1116/* towards the root */
1117inline_speed void
1118upheap (ANHE *heap, int k)
1119{
1120 ANHE he = heap [k];
1121
1122 for (;;)
1123 {
1124 int p = HPARENT (k);
1125
1126 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1127 break;
1128
1129 heap [k] = heap [p];
1130 ev_active (ANHE_w (heap [k])) = k;
1131 k = p;
1132 }
1133
1134 heap [k] = he;
1135 ev_active (ANHE_w (he)) = k;
1136}
1137
1138/* move an element suitably so it is in a correct place */
1139inline_size void
926adjustheap (ANHE *heap, int N, int k) 1140adjustheap (ANHE *heap, int N, int k)
927{ 1141{
1142 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
928 upheap (heap, k); 1143 upheap (heap, k);
1144 else
929 downheap (heap, N, k); 1145 downheap (heap, N, k);
1146}
1147
1148/* rebuild the heap: this function is used only once and executed rarely */
1149inline_size void
1150reheap (ANHE *heap, int N)
1151{
1152 int i;
1153
1154 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1155 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1156 for (i = 0; i < N; ++i)
1157 upheap (heap, i + HEAP0);
930} 1158}
931 1159
932/*****************************************************************************/ 1160/*****************************************************************************/
933 1161
1162/* associate signal watchers to a signal signal */
934typedef struct 1163typedef struct
935{ 1164{
1165 EV_ATOMIC_T pending;
1166#if EV_MULTIPLICITY
1167 EV_P;
1168#endif
936 WL head; 1169 WL head;
937 EV_ATOMIC_T gotsig;
938} ANSIG; 1170} ANSIG;
939 1171
940static ANSIG *signals; 1172static ANSIG signals [EV_NSIG - 1];
941static int signalmax;
942
943static EV_ATOMIC_T gotsig;
944
945void inline_size
946signals_init (ANSIG *base, int count)
947{
948 while (count--)
949 {
950 base->head = 0;
951 base->gotsig = 0;
952
953 ++base;
954 }
955}
956 1173
957/*****************************************************************************/ 1174/*****************************************************************************/
958 1175
959void inline_speed 1176/* used to prepare libev internal fd's */
1177/* this is not fork-safe */
1178inline_speed void
960fd_intern (int fd) 1179fd_intern (int fd)
961{ 1180{
962#ifdef _WIN32 1181#ifdef _WIN32
963 int arg = 1; 1182 unsigned long arg = 1;
964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1183 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
965#else 1184#else
966 fcntl (fd, F_SETFD, FD_CLOEXEC); 1185 fcntl (fd, F_SETFD, FD_CLOEXEC);
967 fcntl (fd, F_SETFL, O_NONBLOCK); 1186 fcntl (fd, F_SETFL, O_NONBLOCK);
968#endif 1187#endif
969} 1188}
970 1189
971static void noinline 1190static void noinline
972evpipe_init (EV_P) 1191evpipe_init (EV_P)
973{ 1192{
974 if (!ev_is_active (&pipeev)) 1193 if (!ev_is_active (&pipe_w))
975 { 1194 {
976#if EV_USE_EVENTFD 1195#if EV_USE_EVENTFD
1196 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1197 if (evfd < 0 && errno == EINVAL)
977 if ((evfd = eventfd (0, 0)) >= 0) 1198 evfd = eventfd (0, 0);
1199
1200 if (evfd >= 0)
978 { 1201 {
979 evpipe [0] = -1; 1202 evpipe [0] = -1;
980 fd_intern (evfd); 1203 fd_intern (evfd); /* doing it twice doesn't hurt */
981 ev_io_set (&pipeev, evfd, EV_READ); 1204 ev_io_set (&pipe_w, evfd, EV_READ);
982 } 1205 }
983 else 1206 else
984#endif 1207#endif
985 { 1208 {
986 while (pipe (evpipe)) 1209 while (pipe (evpipe))
987 syserr ("(libev) error creating signal/async pipe"); 1210 ev_syserr ("(libev) error creating signal/async pipe");
988 1211
989 fd_intern (evpipe [0]); 1212 fd_intern (evpipe [0]);
990 fd_intern (evpipe [1]); 1213 fd_intern (evpipe [1]);
991 ev_io_set (&pipeev, evpipe [0], EV_READ); 1214 ev_io_set (&pipe_w, evpipe [0], EV_READ);
992 } 1215 }
993 1216
994 ev_io_start (EV_A_ &pipeev); 1217 ev_io_start (EV_A_ &pipe_w);
995 ev_unref (EV_A); /* watcher should not keep loop alive */ 1218 ev_unref (EV_A); /* watcher should not keep loop alive */
996 } 1219 }
997} 1220}
998 1221
999void inline_size 1222inline_size void
1000evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1223evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1001{ 1224{
1002 if (!*flag) 1225 if (!*flag)
1003 { 1226 {
1004 int old_errno = errno; /* save errno because write might clobber it */ 1227 int old_errno = errno; /* save errno because write might clobber it */
1017 1240
1018 errno = old_errno; 1241 errno = old_errno;
1019 } 1242 }
1020} 1243}
1021 1244
1245/* called whenever the libev signal pipe */
1246/* got some events (signal, async) */
1022static void 1247static void
1023pipecb (EV_P_ ev_io *iow, int revents) 1248pipecb (EV_P_ ev_io *iow, int revents)
1024{ 1249{
1250 int i;
1251
1025#if EV_USE_EVENTFD 1252#if EV_USE_EVENTFD
1026 if (evfd >= 0) 1253 if (evfd >= 0)
1027 { 1254 {
1028 uint64_t counter; 1255 uint64_t counter;
1029 read (evfd, &counter, sizeof (uint64_t)); 1256 read (evfd, &counter, sizeof (uint64_t));
1033 { 1260 {
1034 char dummy; 1261 char dummy;
1035 read (evpipe [0], &dummy, 1); 1262 read (evpipe [0], &dummy, 1);
1036 } 1263 }
1037 1264
1038 if (gotsig && ev_is_default_loop (EV_A)) 1265 if (sig_pending)
1039 { 1266 {
1040 int signum; 1267 sig_pending = 0;
1041 gotsig = 0;
1042 1268
1043 for (signum = signalmax; signum--; ) 1269 for (i = EV_NSIG - 1; i--; )
1044 if (signals [signum].gotsig) 1270 if (expect_false (signals [i].pending))
1045 ev_feed_signal_event (EV_A_ signum + 1); 1271 ev_feed_signal_event (EV_A_ i + 1);
1046 } 1272 }
1047 1273
1048#if EV_ASYNC_ENABLE 1274#if EV_ASYNC_ENABLE
1049 if (gotasync) 1275 if (async_pending)
1050 { 1276 {
1051 int i; 1277 async_pending = 0;
1052 gotasync = 0;
1053 1278
1054 for (i = asynccnt; i--; ) 1279 for (i = asynccnt; i--; )
1055 if (asyncs [i]->sent) 1280 if (asyncs [i]->sent)
1056 { 1281 {
1057 asyncs [i]->sent = 0; 1282 asyncs [i]->sent = 0;
1065 1290
1066static void 1291static void
1067ev_sighandler (int signum) 1292ev_sighandler (int signum)
1068{ 1293{
1069#if EV_MULTIPLICITY 1294#if EV_MULTIPLICITY
1070 struct ev_loop *loop = &default_loop_struct; 1295 EV_P = signals [signum - 1].loop;
1071#endif 1296#endif
1072 1297
1073#if _WIN32 1298#if _WIN32
1074 signal (signum, ev_sighandler); 1299 signal (signum, ev_sighandler);
1075#endif 1300#endif
1076 1301
1077 signals [signum - 1].gotsig = 1; 1302 signals [signum - 1].pending = 1;
1078 evpipe_write (EV_A_ &gotsig); 1303 evpipe_write (EV_A_ &sig_pending);
1079} 1304}
1080 1305
1081void noinline 1306void noinline
1082ev_feed_signal_event (EV_P_ int signum) 1307ev_feed_signal_event (EV_P_ int signum)
1083{ 1308{
1084 WL w; 1309 WL w;
1085 1310
1311 if (expect_false (signum <= 0 || signum > EV_NSIG))
1312 return;
1313
1314 --signum;
1315
1086#if EV_MULTIPLICITY 1316#if EV_MULTIPLICITY
1087 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1317 /* it is permissible to try to feed a signal to the wrong loop */
1088#endif 1318 /* or, likely more useful, feeding a signal nobody is waiting for */
1089 1319
1090 --signum; 1320 if (expect_false (signals [signum].loop != EV_A))
1091
1092 if (signum < 0 || signum >= signalmax)
1093 return; 1321 return;
1322#endif
1094 1323
1095 signals [signum].gotsig = 0; 1324 signals [signum].pending = 0;
1096 1325
1097 for (w = signals [signum].head; w; w = w->next) 1326 for (w = signals [signum].head; w; w = w->next)
1098 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1327 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1099} 1328}
1100 1329
1330#if EV_USE_SIGNALFD
1331static void
1332sigfdcb (EV_P_ ev_io *iow, int revents)
1333{
1334 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1335
1336 for (;;)
1337 {
1338 ssize_t res = read (sigfd, si, sizeof (si));
1339
1340 /* not ISO-C, as res might be -1, but works with SuS */
1341 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1342 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1343
1344 if (res < (ssize_t)sizeof (si))
1345 break;
1346 }
1347}
1348#endif
1349
1101/*****************************************************************************/ 1350/*****************************************************************************/
1102 1351
1103static WL childs [EV_PID_HASHSIZE]; 1352static WL childs [EV_PID_HASHSIZE];
1104 1353
1105#ifndef _WIN32 1354#ifndef _WIN32
1108 1357
1109#ifndef WIFCONTINUED 1358#ifndef WIFCONTINUED
1110# define WIFCONTINUED(status) 0 1359# define WIFCONTINUED(status) 0
1111#endif 1360#endif
1112 1361
1113void inline_speed 1362/* handle a single child status event */
1363inline_speed void
1114child_reap (EV_P_ int chain, int pid, int status) 1364child_reap (EV_P_ int chain, int pid, int status)
1115{ 1365{
1116 ev_child *w; 1366 ev_child *w;
1117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1367 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1118 1368
1131 1381
1132#ifndef WCONTINUED 1382#ifndef WCONTINUED
1133# define WCONTINUED 0 1383# define WCONTINUED 0
1134#endif 1384#endif
1135 1385
1386/* called on sigchld etc., calls waitpid */
1136static void 1387static void
1137childcb (EV_P_ ev_signal *sw, int revents) 1388childcb (EV_P_ ev_signal *sw, int revents)
1138{ 1389{
1139 int pid, status; 1390 int pid, status;
1140 1391
1221 /* kqueue is borked on everything but netbsd apparently */ 1472 /* kqueue is borked on everything but netbsd apparently */
1222 /* it usually doesn't work correctly on anything but sockets and pipes */ 1473 /* it usually doesn't work correctly on anything but sockets and pipes */
1223 flags &= ~EVBACKEND_KQUEUE; 1474 flags &= ~EVBACKEND_KQUEUE;
1224#endif 1475#endif
1225#ifdef __APPLE__ 1476#ifdef __APPLE__
1226 // flags &= ~EVBACKEND_KQUEUE; for documentation 1477 /* only select works correctly on that "unix-certified" platform */
1227 flags &= ~EVBACKEND_POLL; 1478 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1479 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1228#endif 1480#endif
1229 1481
1230 return flags; 1482 return flags;
1231} 1483}
1232 1484
1246ev_backend (EV_P) 1498ev_backend (EV_P)
1247{ 1499{
1248 return backend; 1500 return backend;
1249} 1501}
1250 1502
1503#if EV_MINIMAL < 2
1251unsigned int 1504unsigned int
1252ev_loop_count (EV_P) 1505ev_loop_count (EV_P)
1253{ 1506{
1254 return loop_count; 1507 return loop_count;
1255} 1508}
1256 1509
1510unsigned int
1511ev_loop_depth (EV_P)
1512{
1513 return loop_depth;
1514}
1515
1257void 1516void
1258ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1517ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1259{ 1518{
1260 io_blocktime = interval; 1519 io_blocktime = interval;
1261} 1520}
1264ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1523ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1265{ 1524{
1266 timeout_blocktime = interval; 1525 timeout_blocktime = interval;
1267} 1526}
1268 1527
1528void
1529ev_set_userdata (EV_P_ void *data)
1530{
1531 userdata = data;
1532}
1533
1534void *
1535ev_userdata (EV_P)
1536{
1537 return userdata;
1538}
1539
1540void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1541{
1542 invoke_cb = invoke_pending_cb;
1543}
1544
1545void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1546{
1547 release_cb = release;
1548 acquire_cb = acquire;
1549}
1550#endif
1551
1552/* initialise a loop structure, must be zero-initialised */
1269static void noinline 1553static void noinline
1270loop_init (EV_P_ unsigned int flags) 1554loop_init (EV_P_ unsigned int flags)
1271{ 1555{
1272 if (!backend) 1556 if (!backend)
1273 { 1557 {
1558#if EV_USE_REALTIME
1559 if (!have_realtime)
1560 {
1561 struct timespec ts;
1562
1563 if (!clock_gettime (CLOCK_REALTIME, &ts))
1564 have_realtime = 1;
1565 }
1566#endif
1567
1274#if EV_USE_MONOTONIC 1568#if EV_USE_MONOTONIC
1569 if (!have_monotonic)
1275 { 1570 {
1276 struct timespec ts; 1571 struct timespec ts;
1572
1277 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1573 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1278 have_monotonic = 1; 1574 have_monotonic = 1;
1279 } 1575 }
1280#endif 1576#endif
1577
1578 /* pid check not overridable via env */
1579#ifndef _WIN32
1580 if (flags & EVFLAG_FORKCHECK)
1581 curpid = getpid ();
1582#endif
1583
1584 if (!(flags & EVFLAG_NOENV)
1585 && !enable_secure ()
1586 && getenv ("LIBEV_FLAGS"))
1587 flags = atoi (getenv ("LIBEV_FLAGS"));
1281 1588
1282 ev_rt_now = ev_time (); 1589 ev_rt_now = ev_time ();
1283 mn_now = get_clock (); 1590 mn_now = get_clock ();
1284 now_floor = mn_now; 1591 now_floor = mn_now;
1285 rtmn_diff = ev_rt_now - mn_now; 1592 rtmn_diff = ev_rt_now - mn_now;
1593#if EV_MINIMAL < 2
1594 invoke_cb = ev_invoke_pending;
1595#endif
1286 1596
1287 io_blocktime = 0.; 1597 io_blocktime = 0.;
1288 timeout_blocktime = 0.; 1598 timeout_blocktime = 0.;
1289 backend = 0; 1599 backend = 0;
1290 backend_fd = -1; 1600 backend_fd = -1;
1291 gotasync = 0; 1601 sig_pending = 0;
1602#if EV_ASYNC_ENABLE
1603 async_pending = 0;
1604#endif
1292#if EV_USE_INOTIFY 1605#if EV_USE_INOTIFY
1293 fs_fd = -2; 1606 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1294#endif 1607#endif
1295 1608#if EV_USE_SIGNALFD
1296 /* pid check not overridable via env */ 1609 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1297#ifndef _WIN32
1298 if (flags & EVFLAG_FORKCHECK)
1299 curpid = getpid ();
1300#endif 1610#endif
1301
1302 if (!(flags & EVFLAG_NOENV)
1303 && !enable_secure ()
1304 && getenv ("LIBEV_FLAGS"))
1305 flags = atoi (getenv ("LIBEV_FLAGS"));
1306 1611
1307 if (!(flags & 0x0000ffffU)) 1612 if (!(flags & 0x0000ffffU))
1308 flags |= ev_recommended_backends (); 1613 flags |= ev_recommended_backends ();
1309 1614
1310#if EV_USE_PORT 1615#if EV_USE_PORT
1321#endif 1626#endif
1322#if EV_USE_SELECT 1627#if EV_USE_SELECT
1323 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1628 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1324#endif 1629#endif
1325 1630
1631 ev_prepare_init (&pending_w, pendingcb);
1632
1326 ev_init (&pipeev, pipecb); 1633 ev_init (&pipe_w, pipecb);
1327 ev_set_priority (&pipeev, EV_MAXPRI); 1634 ev_set_priority (&pipe_w, EV_MAXPRI);
1328 } 1635 }
1329} 1636}
1330 1637
1638/* free up a loop structure */
1331static void noinline 1639static void noinline
1332loop_destroy (EV_P) 1640loop_destroy (EV_P)
1333{ 1641{
1334 int i; 1642 int i;
1335 1643
1336 if (ev_is_active (&pipeev)) 1644 if (ev_is_active (&pipe_w))
1337 { 1645 {
1338 ev_ref (EV_A); /* signal watcher */ 1646 /*ev_ref (EV_A);*/
1339 ev_io_stop (EV_A_ &pipeev); 1647 /*ev_io_stop (EV_A_ &pipe_w);*/
1340 1648
1341#if EV_USE_EVENTFD 1649#if EV_USE_EVENTFD
1342 if (evfd >= 0) 1650 if (evfd >= 0)
1343 close (evfd); 1651 close (evfd);
1344#endif 1652#endif
1345 1653
1346 if (evpipe [0] >= 0) 1654 if (evpipe [0] >= 0)
1347 { 1655 {
1348 close (evpipe [0]); 1656 EV_WIN32_CLOSE_FD (evpipe [0]);
1349 close (evpipe [1]); 1657 EV_WIN32_CLOSE_FD (evpipe [1]);
1350 } 1658 }
1351 } 1659 }
1660
1661#if EV_USE_SIGNALFD
1662 if (ev_is_active (&sigfd_w))
1663 {
1664 /*ev_ref (EV_A);*/
1665 /*ev_io_stop (EV_A_ &sigfd_w);*/
1666
1667 close (sigfd);
1668 }
1669#endif
1352 1670
1353#if EV_USE_INOTIFY 1671#if EV_USE_INOTIFY
1354 if (fs_fd >= 0) 1672 if (fs_fd >= 0)
1355 close (fs_fd); 1673 close (fs_fd);
1356#endif 1674#endif
1380#if EV_IDLE_ENABLE 1698#if EV_IDLE_ENABLE
1381 array_free (idle, [i]); 1699 array_free (idle, [i]);
1382#endif 1700#endif
1383 } 1701 }
1384 1702
1385 ev_free (anfds); anfdmax = 0; 1703 ev_free (anfds); anfds = 0; anfdmax = 0;
1386 1704
1387 /* have to use the microsoft-never-gets-it-right macro */ 1705 /* have to use the microsoft-never-gets-it-right macro */
1706 array_free (rfeed, EMPTY);
1388 array_free (fdchange, EMPTY); 1707 array_free (fdchange, EMPTY);
1389 array_free (timer, EMPTY); 1708 array_free (timer, EMPTY);
1390#if EV_PERIODIC_ENABLE 1709#if EV_PERIODIC_ENABLE
1391 array_free (periodic, EMPTY); 1710 array_free (periodic, EMPTY);
1392#endif 1711#endif
1401 1720
1402 backend = 0; 1721 backend = 0;
1403} 1722}
1404 1723
1405#if EV_USE_INOTIFY 1724#if EV_USE_INOTIFY
1406void inline_size infy_fork (EV_P); 1725inline_size void infy_fork (EV_P);
1407#endif 1726#endif
1408 1727
1409void inline_size 1728inline_size void
1410loop_fork (EV_P) 1729loop_fork (EV_P)
1411{ 1730{
1412#if EV_USE_PORT 1731#if EV_USE_PORT
1413 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1732 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1414#endif 1733#endif
1420#endif 1739#endif
1421#if EV_USE_INOTIFY 1740#if EV_USE_INOTIFY
1422 infy_fork (EV_A); 1741 infy_fork (EV_A);
1423#endif 1742#endif
1424 1743
1425 if (ev_is_active (&pipeev)) 1744 if (ev_is_active (&pipe_w))
1426 { 1745 {
1427 /* this "locks" the handlers against writing to the pipe */ 1746 /* this "locks" the handlers against writing to the pipe */
1428 /* while we modify the fd vars */ 1747 /* while we modify the fd vars */
1429 gotsig = 1; 1748 sig_pending = 1;
1430#if EV_ASYNC_ENABLE 1749#if EV_ASYNC_ENABLE
1431 gotasync = 1; 1750 async_pending = 1;
1432#endif 1751#endif
1433 1752
1434 ev_ref (EV_A); 1753 ev_ref (EV_A);
1435 ev_io_stop (EV_A_ &pipeev); 1754 ev_io_stop (EV_A_ &pipe_w);
1436 1755
1437#if EV_USE_EVENTFD 1756#if EV_USE_EVENTFD
1438 if (evfd >= 0) 1757 if (evfd >= 0)
1439 close (evfd); 1758 close (evfd);
1440#endif 1759#endif
1441 1760
1442 if (evpipe [0] >= 0) 1761 if (evpipe [0] >= 0)
1443 { 1762 {
1444 close (evpipe [0]); 1763 EV_WIN32_CLOSE_FD (evpipe [0]);
1445 close (evpipe [1]); 1764 EV_WIN32_CLOSE_FD (evpipe [1]);
1446 } 1765 }
1447 1766
1448 evpipe_init (EV_A); 1767 evpipe_init (EV_A);
1449 /* now iterate over everything, in case we missed something */ 1768 /* now iterate over everything, in case we missed something */
1450 pipecb (EV_A_ &pipeev, EV_READ); 1769 pipecb (EV_A_ &pipe_w, EV_READ);
1451 } 1770 }
1452 1771
1453 postfork = 0; 1772 postfork = 0;
1454} 1773}
1455 1774
1456#if EV_MULTIPLICITY 1775#if EV_MULTIPLICITY
1776
1457struct ev_loop * 1777struct ev_loop *
1458ev_loop_new (unsigned int flags) 1778ev_loop_new (unsigned int flags)
1459{ 1779{
1460 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1780 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1461 1781
1462 memset (loop, 0, sizeof (struct ev_loop)); 1782 memset (EV_A, 0, sizeof (struct ev_loop));
1463
1464 loop_init (EV_A_ flags); 1783 loop_init (EV_A_ flags);
1465 1784
1466 if (ev_backend (EV_A)) 1785 if (ev_backend (EV_A))
1467 return loop; 1786 return EV_A;
1468 1787
1469 return 0; 1788 return 0;
1470} 1789}
1471 1790
1472void 1791void
1478 1797
1479void 1798void
1480ev_loop_fork (EV_P) 1799ev_loop_fork (EV_P)
1481{ 1800{
1482 postfork = 1; /* must be in line with ev_default_fork */ 1801 postfork = 1; /* must be in line with ev_default_fork */
1802}
1803#endif /* multiplicity */
1804
1805#if EV_VERIFY
1806static void noinline
1807verify_watcher (EV_P_ W w)
1808{
1809 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1810
1811 if (w->pending)
1812 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1813}
1814
1815static void noinline
1816verify_heap (EV_P_ ANHE *heap, int N)
1817{
1818 int i;
1819
1820 for (i = HEAP0; i < N + HEAP0; ++i)
1821 {
1822 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1823 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1824 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1825
1826 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1827 }
1828}
1829
1830static void noinline
1831array_verify (EV_P_ W *ws, int cnt)
1832{
1833 while (cnt--)
1834 {
1835 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1836 verify_watcher (EV_A_ ws [cnt]);
1837 }
1838}
1839#endif
1840
1841#if EV_MINIMAL < 2
1842void
1843ev_loop_verify (EV_P)
1844{
1845#if EV_VERIFY
1846 int i;
1847 WL w;
1848
1849 assert (activecnt >= -1);
1850
1851 assert (fdchangemax >= fdchangecnt);
1852 for (i = 0; i < fdchangecnt; ++i)
1853 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1854
1855 assert (anfdmax >= 0);
1856 for (i = 0; i < anfdmax; ++i)
1857 for (w = anfds [i].head; w; w = w->next)
1858 {
1859 verify_watcher (EV_A_ (W)w);
1860 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1861 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1862 }
1863
1864 assert (timermax >= timercnt);
1865 verify_heap (EV_A_ timers, timercnt);
1866
1867#if EV_PERIODIC_ENABLE
1868 assert (periodicmax >= periodiccnt);
1869 verify_heap (EV_A_ periodics, periodiccnt);
1870#endif
1871
1872 for (i = NUMPRI; i--; )
1873 {
1874 assert (pendingmax [i] >= pendingcnt [i]);
1875#if EV_IDLE_ENABLE
1876 assert (idleall >= 0);
1877 assert (idlemax [i] >= idlecnt [i]);
1878 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1879#endif
1880 }
1881
1882#if EV_FORK_ENABLE
1883 assert (forkmax >= forkcnt);
1884 array_verify (EV_A_ (W *)forks, forkcnt);
1885#endif
1886
1887#if EV_ASYNC_ENABLE
1888 assert (asyncmax >= asynccnt);
1889 array_verify (EV_A_ (W *)asyncs, asynccnt);
1890#endif
1891
1892 assert (preparemax >= preparecnt);
1893 array_verify (EV_A_ (W *)prepares, preparecnt);
1894
1895 assert (checkmax >= checkcnt);
1896 array_verify (EV_A_ (W *)checks, checkcnt);
1897
1898# if 0
1899 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1900 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1901# endif
1902#endif
1483} 1903}
1484#endif 1904#endif
1485 1905
1486#if EV_MULTIPLICITY 1906#if EV_MULTIPLICITY
1487struct ev_loop * 1907struct ev_loop *
1492#endif 1912#endif
1493{ 1913{
1494 if (!ev_default_loop_ptr) 1914 if (!ev_default_loop_ptr)
1495 { 1915 {
1496#if EV_MULTIPLICITY 1916#if EV_MULTIPLICITY
1497 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1917 EV_P = ev_default_loop_ptr = &default_loop_struct;
1498#else 1918#else
1499 ev_default_loop_ptr = 1; 1919 ev_default_loop_ptr = 1;
1500#endif 1920#endif
1501 1921
1502 loop_init (EV_A_ flags); 1922 loop_init (EV_A_ flags);
1519 1939
1520void 1940void
1521ev_default_destroy (void) 1941ev_default_destroy (void)
1522{ 1942{
1523#if EV_MULTIPLICITY 1943#if EV_MULTIPLICITY
1524 struct ev_loop *loop = ev_default_loop_ptr; 1944 EV_P = ev_default_loop_ptr;
1525#endif 1945#endif
1946
1947 ev_default_loop_ptr = 0;
1526 1948
1527#ifndef _WIN32 1949#ifndef _WIN32
1528 ev_ref (EV_A); /* child watcher */ 1950 ev_ref (EV_A); /* child watcher */
1529 ev_signal_stop (EV_A_ &childev); 1951 ev_signal_stop (EV_A_ &childev);
1530#endif 1952#endif
1534 1956
1535void 1957void
1536ev_default_fork (void) 1958ev_default_fork (void)
1537{ 1959{
1538#if EV_MULTIPLICITY 1960#if EV_MULTIPLICITY
1539 struct ev_loop *loop = ev_default_loop_ptr; 1961 EV_P = ev_default_loop_ptr;
1540#endif 1962#endif
1541 1963
1542 if (backend)
1543 postfork = 1; /* must be in line with ev_loop_fork */ 1964 postfork = 1; /* must be in line with ev_loop_fork */
1544} 1965}
1545 1966
1546/*****************************************************************************/ 1967/*****************************************************************************/
1547 1968
1548void 1969void
1549ev_invoke (EV_P_ void *w, int revents) 1970ev_invoke (EV_P_ void *w, int revents)
1550{ 1971{
1551 EV_CB_INVOKE ((W)w, revents); 1972 EV_CB_INVOKE ((W)w, revents);
1552} 1973}
1553 1974
1554void inline_speed 1975unsigned int
1555call_pending (EV_P) 1976ev_pending_count (EV_P)
1977{
1978 int pri;
1979 unsigned int count = 0;
1980
1981 for (pri = NUMPRI; pri--; )
1982 count += pendingcnt [pri];
1983
1984 return count;
1985}
1986
1987void noinline
1988ev_invoke_pending (EV_P)
1556{ 1989{
1557 int pri; 1990 int pri;
1558 1991
1559 for (pri = NUMPRI; pri--; ) 1992 for (pri = NUMPRI; pri--; )
1560 while (pendingcnt [pri]) 1993 while (pendingcnt [pri])
1561 { 1994 {
1562 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1995 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1563 1996
1564 if (expect_true (p->w))
1565 {
1566 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1997 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1998 /* ^ this is no longer true, as pending_w could be here */
1567 1999
1568 p->w->pending = 0; 2000 p->w->pending = 0;
1569 EV_CB_INVOKE (p->w, p->events); 2001 EV_CB_INVOKE (p->w, p->events);
1570 } 2002 EV_FREQUENT_CHECK;
1571 } 2003 }
1572} 2004}
1573 2005
1574#if EV_IDLE_ENABLE 2006#if EV_IDLE_ENABLE
1575void inline_size 2007/* make idle watchers pending. this handles the "call-idle */
2008/* only when higher priorities are idle" logic */
2009inline_size void
1576idle_reify (EV_P) 2010idle_reify (EV_P)
1577{ 2011{
1578 if (expect_false (idleall)) 2012 if (expect_false (idleall))
1579 { 2013 {
1580 int pri; 2014 int pri;
1592 } 2026 }
1593 } 2027 }
1594} 2028}
1595#endif 2029#endif
1596 2030
1597void inline_size 2031/* make timers pending */
2032inline_size void
1598timers_reify (EV_P) 2033timers_reify (EV_P)
1599{ 2034{
2035 EV_FREQUENT_CHECK;
2036
1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now) 2037 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1601 { 2038 {
1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2039 do
1603
1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1605
1606 /* first reschedule or stop timer */
1607 if (w->repeat)
1608 { 2040 {
2041 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2042
2043 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2044
2045 /* first reschedule or stop timer */
2046 if (w->repeat)
2047 {
2048 ev_at (w) += w->repeat;
2049 if (ev_at (w) < mn_now)
2050 ev_at (w) = mn_now;
2051
1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2052 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1610 2053
1611 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now;
1614
1615 ANHE_at_set (timers [HEAP0]); 2054 ANHE_at_cache (timers [HEAP0]);
1616 downheap (timers, timercnt, HEAP0); 2055 downheap (timers, timercnt, HEAP0);
2056 }
2057 else
2058 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2059
2060 EV_FREQUENT_CHECK;
2061 feed_reverse (EV_A_ (W)w);
1617 } 2062 }
1618 else 2063 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1620 2064
1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2065 feed_reverse_done (EV_A_ EV_TIMEOUT);
1622 } 2066 }
1623} 2067}
1624 2068
1625#if EV_PERIODIC_ENABLE 2069#if EV_PERIODIC_ENABLE
1626void inline_size 2070/* make periodics pending */
2071inline_size void
1627periodics_reify (EV_P) 2072periodics_reify (EV_P)
1628{ 2073{
2074 EV_FREQUENT_CHECK;
2075
1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now) 2076 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1630 { 2077 {
1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2078 int feed_count = 0;
1632 2079
1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2080 do
1634
1635 /* first reschedule or stop timer */
1636 if (w->reschedule_cb)
1637 { 2081 {
2082 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2083
2084 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2085
2086 /* first reschedule or stop timer */
2087 if (w->reschedule_cb)
2088 {
1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2090
1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 2091 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2092
1640 ANHE_at_set (periodics [HEAP0]); 2093 ANHE_at_cache (periodics [HEAP0]);
1641 downheap (periodics, periodiccnt, HEAP0); 2094 downheap (periodics, periodiccnt, HEAP0);
2095 }
2096 else if (w->interval)
2097 {
2098 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2099 /* if next trigger time is not sufficiently in the future, put it there */
2100 /* this might happen because of floating point inexactness */
2101 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2102 {
2103 ev_at (w) += w->interval;
2104
2105 /* if interval is unreasonably low we might still have a time in the past */
2106 /* so correct this. this will make the periodic very inexact, but the user */
2107 /* has effectively asked to get triggered more often than possible */
2108 if (ev_at (w) < ev_rt_now)
2109 ev_at (w) = ev_rt_now;
2110 }
2111
2112 ANHE_at_cache (periodics [HEAP0]);
2113 downheap (periodics, periodiccnt, HEAP0);
2114 }
2115 else
2116 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2117
2118 EV_FREQUENT_CHECK;
2119 feed_reverse (EV_A_ (W)w);
1642 } 2120 }
1643 else if (w->interval) 2121 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1644 {
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else
1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1653 2122
1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2123 feed_reverse_done (EV_A_ EV_PERIODIC);
1655 } 2124 }
1656} 2125}
1657 2126
2127/* simply recalculate all periodics */
2128/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1658static void noinline 2129static void noinline
1659periodics_reschedule (EV_P) 2130periodics_reschedule (EV_P)
1660{ 2131{
1661 int i; 2132 int i;
1662 2133
1668 if (w->reschedule_cb) 2139 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2140 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1670 else if (w->interval) 2141 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2142 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1672 2143
1673 ANHE_at_set (periodics [i]); 2144 ANHE_at_cache (periodics [i]);
2145 }
2146
2147 reheap (periodics, periodiccnt);
2148}
2149#endif
2150
2151/* adjust all timers by a given offset */
2152static void noinline
2153timers_reschedule (EV_P_ ev_tstamp adjust)
2154{
2155 int i;
2156
2157 for (i = 0; i < timercnt; ++i)
1674 } 2158 {
1675 2159 ANHE *he = timers + i + HEAP0;
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */ 2160 ANHE_w (*he)->at += adjust;
1677 for (i = periodiccnt >> 1; --i; ) 2161 ANHE_at_cache (*he);
1678 downheap (periodics, periodiccnt, i + HEAP0); 2162 }
1679} 2163}
1680#endif
1681 2164
1682void inline_speed 2165/* fetch new monotonic and realtime times from the kernel */
2166/* also detetc if there was a timejump, and act accordingly */
2167inline_speed void
1683time_update (EV_P_ ev_tstamp max_block) 2168time_update (EV_P_ ev_tstamp max_block)
1684{ 2169{
1685 int i;
1686
1687#if EV_USE_MONOTONIC 2170#if EV_USE_MONOTONIC
1688 if (expect_true (have_monotonic)) 2171 if (expect_true (have_monotonic))
1689 { 2172 {
2173 int i;
1690 ev_tstamp odiff = rtmn_diff; 2174 ev_tstamp odiff = rtmn_diff;
1691 2175
1692 mn_now = get_clock (); 2176 mn_now = get_clock ();
1693 2177
1694 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2178 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1720 ev_rt_now = ev_time (); 2204 ev_rt_now = ev_time ();
1721 mn_now = get_clock (); 2205 mn_now = get_clock ();
1722 now_floor = mn_now; 2206 now_floor = mn_now;
1723 } 2207 }
1724 2208
2209 /* no timer adjustment, as the monotonic clock doesn't jump */
2210 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1725# if EV_PERIODIC_ENABLE 2211# if EV_PERIODIC_ENABLE
1726 periodics_reschedule (EV_A); 2212 periodics_reschedule (EV_A);
1727# endif 2213# endif
1728 /* no timer adjustment, as the monotonic clock doesn't jump */
1729 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1730 } 2214 }
1731 else 2215 else
1732#endif 2216#endif
1733 { 2217 {
1734 ev_rt_now = ev_time (); 2218 ev_rt_now = ev_time ();
1735 2219
1736 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2220 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1737 { 2221 {
2222 /* adjust timers. this is easy, as the offset is the same for all of them */
2223 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1738#if EV_PERIODIC_ENABLE 2224#if EV_PERIODIC_ENABLE
1739 periodics_reschedule (EV_A); 2225 periodics_reschedule (EV_A);
1740#endif 2226#endif
1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1742 for (i = 0; i < timercnt; ++i)
1743 {
1744 ANHE *he = timers + i + HEAP0;
1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he);
1747 }
1748 } 2227 }
1749 2228
1750 mn_now = ev_rt_now; 2229 mn_now = ev_rt_now;
1751 } 2230 }
1752} 2231}
1753 2232
1754void 2233void
1755ev_ref (EV_P)
1756{
1757 ++activecnt;
1758}
1759
1760void
1761ev_unref (EV_P)
1762{
1763 --activecnt;
1764}
1765
1766static int loop_done;
1767
1768void
1769ev_loop (EV_P_ int flags) 2234ev_loop (EV_P_ int flags)
1770{ 2235{
2236#if EV_MINIMAL < 2
2237 ++loop_depth;
2238#endif
2239
2240 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2241
1771 loop_done = EVUNLOOP_CANCEL; 2242 loop_done = EVUNLOOP_CANCEL;
1772 2243
1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2244 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1774 2245
1775 do 2246 do
1776 { 2247 {
2248#if EV_VERIFY >= 2
2249 ev_loop_verify (EV_A);
2250#endif
2251
1777#ifndef _WIN32 2252#ifndef _WIN32
1778 if (expect_false (curpid)) /* penalise the forking check even more */ 2253 if (expect_false (curpid)) /* penalise the forking check even more */
1779 if (expect_false (getpid () != curpid)) 2254 if (expect_false (getpid () != curpid))
1780 { 2255 {
1781 curpid = getpid (); 2256 curpid = getpid ();
1787 /* we might have forked, so queue fork handlers */ 2262 /* we might have forked, so queue fork handlers */
1788 if (expect_false (postfork)) 2263 if (expect_false (postfork))
1789 if (forkcnt) 2264 if (forkcnt)
1790 { 2265 {
1791 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2266 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1792 call_pending (EV_A); 2267 EV_INVOKE_PENDING;
1793 } 2268 }
1794#endif 2269#endif
1795 2270
1796 /* queue prepare watchers (and execute them) */ 2271 /* queue prepare watchers (and execute them) */
1797 if (expect_false (preparecnt)) 2272 if (expect_false (preparecnt))
1798 { 2273 {
1799 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2274 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1800 call_pending (EV_A); 2275 EV_INVOKE_PENDING;
1801 } 2276 }
1802 2277
1803 if (expect_false (!activecnt)) 2278 if (expect_false (loop_done))
1804 break; 2279 break;
1805 2280
1806 /* we might have forked, so reify kernel state if necessary */ 2281 /* we might have forked, so reify kernel state if necessary */
1807 if (expect_false (postfork)) 2282 if (expect_false (postfork))
1808 loop_fork (EV_A); 2283 loop_fork (EV_A);
1815 ev_tstamp waittime = 0.; 2290 ev_tstamp waittime = 0.;
1816 ev_tstamp sleeptime = 0.; 2291 ev_tstamp sleeptime = 0.;
1817 2292
1818 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2293 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1819 { 2294 {
2295 /* remember old timestamp for io_blocktime calculation */
2296 ev_tstamp prev_mn_now = mn_now;
2297
1820 /* update time to cancel out callback processing overhead */ 2298 /* update time to cancel out callback processing overhead */
1821 time_update (EV_A_ 1e100); 2299 time_update (EV_A_ 1e100);
1822 2300
1823 waittime = MAX_BLOCKTIME; 2301 waittime = MAX_BLOCKTIME;
1824 2302
1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2312 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1835 if (waittime > to) waittime = to; 2313 if (waittime > to) waittime = to;
1836 } 2314 }
1837#endif 2315#endif
1838 2316
2317 /* don't let timeouts decrease the waittime below timeout_blocktime */
1839 if (expect_false (waittime < timeout_blocktime)) 2318 if (expect_false (waittime < timeout_blocktime))
1840 waittime = timeout_blocktime; 2319 waittime = timeout_blocktime;
1841 2320
1842 sleeptime = waittime - backend_fudge; 2321 /* extra check because io_blocktime is commonly 0 */
1843
1844 if (expect_true (sleeptime > io_blocktime)) 2322 if (expect_false (io_blocktime))
1845 sleeptime = io_blocktime;
1846
1847 if (sleeptime)
1848 { 2323 {
2324 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2325
2326 if (sleeptime > waittime - backend_fudge)
2327 sleeptime = waittime - backend_fudge;
2328
2329 if (expect_true (sleeptime > 0.))
2330 {
1849 ev_sleep (sleeptime); 2331 ev_sleep (sleeptime);
1850 waittime -= sleeptime; 2332 waittime -= sleeptime;
2333 }
1851 } 2334 }
1852 } 2335 }
1853 2336
2337#if EV_MINIMAL < 2
1854 ++loop_count; 2338 ++loop_count;
2339#endif
2340 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1855 backend_poll (EV_A_ waittime); 2341 backend_poll (EV_A_ waittime);
2342 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1856 2343
1857 /* update ev_rt_now, do magic */ 2344 /* update ev_rt_now, do magic */
1858 time_update (EV_A_ waittime + sleeptime); 2345 time_update (EV_A_ waittime + sleeptime);
1859 } 2346 }
1860 2347
1871 2358
1872 /* queue check watchers, to be executed first */ 2359 /* queue check watchers, to be executed first */
1873 if (expect_false (checkcnt)) 2360 if (expect_false (checkcnt))
1874 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2361 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1875 2362
1876 call_pending (EV_A); 2363 EV_INVOKE_PENDING;
1877 } 2364 }
1878 while (expect_true ( 2365 while (expect_true (
1879 activecnt 2366 activecnt
1880 && !loop_done 2367 && !loop_done
1881 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2368 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1882 )); 2369 ));
1883 2370
1884 if (loop_done == EVUNLOOP_ONE) 2371 if (loop_done == EVUNLOOP_ONE)
1885 loop_done = EVUNLOOP_CANCEL; 2372 loop_done = EVUNLOOP_CANCEL;
2373
2374#if EV_MINIMAL < 2
2375 --loop_depth;
2376#endif
1886} 2377}
1887 2378
1888void 2379void
1889ev_unloop (EV_P_ int how) 2380ev_unloop (EV_P_ int how)
1890{ 2381{
1891 loop_done = how; 2382 loop_done = how;
1892} 2383}
1893 2384
2385void
2386ev_ref (EV_P)
2387{
2388 ++activecnt;
2389}
2390
2391void
2392ev_unref (EV_P)
2393{
2394 --activecnt;
2395}
2396
2397void
2398ev_now_update (EV_P)
2399{
2400 time_update (EV_A_ 1e100);
2401}
2402
2403void
2404ev_suspend (EV_P)
2405{
2406 ev_now_update (EV_A);
2407}
2408
2409void
2410ev_resume (EV_P)
2411{
2412 ev_tstamp mn_prev = mn_now;
2413
2414 ev_now_update (EV_A);
2415 timers_reschedule (EV_A_ mn_now - mn_prev);
2416#if EV_PERIODIC_ENABLE
2417 /* TODO: really do this? */
2418 periodics_reschedule (EV_A);
2419#endif
2420}
2421
1894/*****************************************************************************/ 2422/*****************************************************************************/
2423/* singly-linked list management, used when the expected list length is short */
1895 2424
1896void inline_size 2425inline_size void
1897wlist_add (WL *head, WL elem) 2426wlist_add (WL *head, WL elem)
1898{ 2427{
1899 elem->next = *head; 2428 elem->next = *head;
1900 *head = elem; 2429 *head = elem;
1901} 2430}
1902 2431
1903void inline_size 2432inline_size void
1904wlist_del (WL *head, WL elem) 2433wlist_del (WL *head, WL elem)
1905{ 2434{
1906 while (*head) 2435 while (*head)
1907 { 2436 {
1908 if (*head == elem) 2437 if (expect_true (*head == elem))
1909 { 2438 {
1910 *head = elem->next; 2439 *head = elem->next;
1911 return; 2440 break;
1912 } 2441 }
1913 2442
1914 head = &(*head)->next; 2443 head = &(*head)->next;
1915 } 2444 }
1916} 2445}
1917 2446
1918void inline_speed 2447/* internal, faster, version of ev_clear_pending */
2448inline_speed void
1919clear_pending (EV_P_ W w) 2449clear_pending (EV_P_ W w)
1920{ 2450{
1921 if (w->pending) 2451 if (w->pending)
1922 { 2452 {
1923 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2453 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1924 w->pending = 0; 2454 w->pending = 0;
1925 } 2455 }
1926} 2456}
1927 2457
1928int 2458int
1932 int pending = w_->pending; 2462 int pending = w_->pending;
1933 2463
1934 if (expect_true (pending)) 2464 if (expect_true (pending))
1935 { 2465 {
1936 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2466 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2467 p->w = (W)&pending_w;
1937 w_->pending = 0; 2468 w_->pending = 0;
1938 p->w = 0;
1939 return p->events; 2469 return p->events;
1940 } 2470 }
1941 else 2471 else
1942 return 0; 2472 return 0;
1943} 2473}
1944 2474
1945void inline_size 2475inline_size void
1946pri_adjust (EV_P_ W w) 2476pri_adjust (EV_P_ W w)
1947{ 2477{
1948 int pri = w->priority; 2478 int pri = ev_priority (w);
1949 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2479 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1950 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2480 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1951 w->priority = pri; 2481 ev_set_priority (w, pri);
1952} 2482}
1953 2483
1954void inline_speed 2484inline_speed void
1955ev_start (EV_P_ W w, int active) 2485ev_start (EV_P_ W w, int active)
1956{ 2486{
1957 pri_adjust (EV_A_ w); 2487 pri_adjust (EV_A_ w);
1958 w->active = active; 2488 w->active = active;
1959 ev_ref (EV_A); 2489 ev_ref (EV_A);
1960} 2490}
1961 2491
1962void inline_size 2492inline_size void
1963ev_stop (EV_P_ W w) 2493ev_stop (EV_P_ W w)
1964{ 2494{
1965 ev_unref (EV_A); 2495 ev_unref (EV_A);
1966 w->active = 0; 2496 w->active = 0;
1967} 2497}
1974 int fd = w->fd; 2504 int fd = w->fd;
1975 2505
1976 if (expect_false (ev_is_active (w))) 2506 if (expect_false (ev_is_active (w)))
1977 return; 2507 return;
1978 2508
1979 assert (("ev_io_start called with negative fd", fd >= 0)); 2509 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2510 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2511
2512 EV_FREQUENT_CHECK;
1980 2513
1981 ev_start (EV_A_ (W)w, 1); 2514 ev_start (EV_A_ (W)w, 1);
1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2515 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1983 wlist_add (&anfds[fd].head, (WL)w); 2516 wlist_add (&anfds[fd].head, (WL)w);
1984 2517
1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2518 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1986 w->events &= ~EV_IOFDSET; 2519 w->events &= ~EV__IOFDSET;
2520
2521 EV_FREQUENT_CHECK;
1987} 2522}
1988 2523
1989void noinline 2524void noinline
1990ev_io_stop (EV_P_ ev_io *w) 2525ev_io_stop (EV_P_ ev_io *w)
1991{ 2526{
1992 clear_pending (EV_A_ (W)w); 2527 clear_pending (EV_A_ (W)w);
1993 if (expect_false (!ev_is_active (w))) 2528 if (expect_false (!ev_is_active (w)))
1994 return; 2529 return;
1995 2530
1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2531 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2532
2533 EV_FREQUENT_CHECK;
1997 2534
1998 wlist_del (&anfds[w->fd].head, (WL)w); 2535 wlist_del (&anfds[w->fd].head, (WL)w);
1999 ev_stop (EV_A_ (W)w); 2536 ev_stop (EV_A_ (W)w);
2000 2537
2001 fd_change (EV_A_ w->fd, 1); 2538 fd_change (EV_A_ w->fd, 1);
2539
2540 EV_FREQUENT_CHECK;
2002} 2541}
2003 2542
2004void noinline 2543void noinline
2005ev_timer_start (EV_P_ ev_timer *w) 2544ev_timer_start (EV_P_ ev_timer *w)
2006{ 2545{
2007 if (expect_false (ev_is_active (w))) 2546 if (expect_false (ev_is_active (w)))
2008 return; 2547 return;
2009 2548
2010 ev_at (w) += mn_now; 2549 ev_at (w) += mn_now;
2011 2550
2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2551 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2013 2552
2553 EV_FREQUENT_CHECK;
2554
2555 ++timercnt;
2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2556 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2557 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2016 ANHE_w (timers [ev_active (w)]) = (WT)w; 2558 ANHE_w (timers [ev_active (w)]) = (WT)w;
2017 ANHE_at_set (timers [ev_active (w)]); 2559 ANHE_at_cache (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w)); 2560 upheap (timers, ev_active (w));
2019 2561
2562 EV_FREQUENT_CHECK;
2563
2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2564 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2021} 2565}
2022 2566
2023void noinline 2567void noinline
2024ev_timer_stop (EV_P_ ev_timer *w) 2568ev_timer_stop (EV_P_ ev_timer *w)
2025{ 2569{
2026 clear_pending (EV_A_ (W)w); 2570 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 2571 if (expect_false (!ev_is_active (w)))
2028 return; 2572 return;
2029 2573
2574 EV_FREQUENT_CHECK;
2575
2030 { 2576 {
2031 int active = ev_active (w); 2577 int active = ev_active (w);
2032 2578
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2579 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034 2580
2581 --timercnt;
2582
2035 if (expect_true (active < timercnt + HEAP0 - 1)) 2583 if (expect_true (active < timercnt + HEAP0))
2036 { 2584 {
2037 timers [active] = timers [timercnt + HEAP0 - 1]; 2585 timers [active] = timers [timercnt + HEAP0];
2038 adjustheap (timers, timercnt, active); 2586 adjustheap (timers, timercnt, active);
2039 } 2587 }
2040
2041 --timercnt;
2042 } 2588 }
2589
2590 EV_FREQUENT_CHECK;
2043 2591
2044 ev_at (w) -= mn_now; 2592 ev_at (w) -= mn_now;
2045 2593
2046 ev_stop (EV_A_ (W)w); 2594 ev_stop (EV_A_ (W)w);
2047} 2595}
2048 2596
2049void noinline 2597void noinline
2050ev_timer_again (EV_P_ ev_timer *w) 2598ev_timer_again (EV_P_ ev_timer *w)
2051{ 2599{
2600 EV_FREQUENT_CHECK;
2601
2052 if (ev_is_active (w)) 2602 if (ev_is_active (w))
2053 { 2603 {
2054 if (w->repeat) 2604 if (w->repeat)
2055 { 2605 {
2056 ev_at (w) = mn_now + w->repeat; 2606 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]); 2607 ANHE_at_cache (timers [ev_active (w)]);
2058 adjustheap (timers, timercnt, ev_active (w)); 2608 adjustheap (timers, timercnt, ev_active (w));
2059 } 2609 }
2060 else 2610 else
2061 ev_timer_stop (EV_A_ w); 2611 ev_timer_stop (EV_A_ w);
2062 } 2612 }
2063 else if (w->repeat) 2613 else if (w->repeat)
2064 { 2614 {
2065 ev_at (w) = w->repeat; 2615 ev_at (w) = w->repeat;
2066 ev_timer_start (EV_A_ w); 2616 ev_timer_start (EV_A_ w);
2067 } 2617 }
2618
2619 EV_FREQUENT_CHECK;
2620}
2621
2622ev_tstamp
2623ev_timer_remaining (EV_P_ ev_timer *w)
2624{
2625 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2068} 2626}
2069 2627
2070#if EV_PERIODIC_ENABLE 2628#if EV_PERIODIC_ENABLE
2071void noinline 2629void noinline
2072ev_periodic_start (EV_P_ ev_periodic *w) 2630ev_periodic_start (EV_P_ ev_periodic *w)
2076 2634
2077 if (w->reschedule_cb) 2635 if (w->reschedule_cb)
2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2636 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2079 else if (w->interval) 2637 else if (w->interval)
2080 { 2638 {
2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2639 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2082 /* this formula differs from the one in periodic_reify because we do not always round up */ 2640 /* this formula differs from the one in periodic_reify because we do not always round up */
2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2641 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2084 } 2642 }
2085 else 2643 else
2086 ev_at (w) = w->offset; 2644 ev_at (w) = w->offset;
2087 2645
2646 EV_FREQUENT_CHECK;
2647
2648 ++periodiccnt;
2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2649 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2650 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2090 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2651 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2652 ANHE_at_cache (periodics [ev_active (w)]);
2091 upheap (periodics, ev_active (w)); 2653 upheap (periodics, ev_active (w));
2092 2654
2655 EV_FREQUENT_CHECK;
2656
2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2657 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2094} 2658}
2095 2659
2096void noinline 2660void noinline
2097ev_periodic_stop (EV_P_ ev_periodic *w) 2661ev_periodic_stop (EV_P_ ev_periodic *w)
2098{ 2662{
2099 clear_pending (EV_A_ (W)w); 2663 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w))) 2664 if (expect_false (!ev_is_active (w)))
2101 return; 2665 return;
2102 2666
2667 EV_FREQUENT_CHECK;
2668
2103 { 2669 {
2104 int active = ev_active (w); 2670 int active = ev_active (w);
2105 2671
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2672 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107 2673
2674 --periodiccnt;
2675
2108 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2676 if (expect_true (active < periodiccnt + HEAP0))
2109 { 2677 {
2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2678 periodics [active] = periodics [periodiccnt + HEAP0];
2111 adjustheap (periodics, periodiccnt, active); 2679 adjustheap (periodics, periodiccnt, active);
2112 } 2680 }
2113
2114 --periodiccnt;
2115 } 2681 }
2682
2683 EV_FREQUENT_CHECK;
2116 2684
2117 ev_stop (EV_A_ (W)w); 2685 ev_stop (EV_A_ (W)w);
2118} 2686}
2119 2687
2120void noinline 2688void noinline
2131#endif 2699#endif
2132 2700
2133void noinline 2701void noinline
2134ev_signal_start (EV_P_ ev_signal *w) 2702ev_signal_start (EV_P_ ev_signal *w)
2135{ 2703{
2136#if EV_MULTIPLICITY
2137 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2138#endif
2139 if (expect_false (ev_is_active (w))) 2704 if (expect_false (ev_is_active (w)))
2140 return; 2705 return;
2141 2706
2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2707 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2143 2708
2144 evpipe_init (EV_A); 2709#if EV_MULTIPLICITY
2710 assert (("libev: a signal must not be attached to two different loops",
2711 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2145 2712
2713 signals [w->signum - 1].loop = EV_A;
2714#endif
2715
2716 EV_FREQUENT_CHECK;
2717
2718#if EV_USE_SIGNALFD
2719 if (sigfd == -2)
2146 { 2720 {
2147#ifndef _WIN32 2721 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2148 sigset_t full, prev; 2722 if (sigfd < 0 && errno == EINVAL)
2149 sigfillset (&full); 2723 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2150 sigprocmask (SIG_SETMASK, &full, &prev);
2151#endif
2152 2724
2153 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2725 if (sigfd >= 0)
2726 {
2727 fd_intern (sigfd); /* doing it twice will not hurt */
2154 2728
2155#ifndef _WIN32 2729 sigemptyset (&sigfd_set);
2156 sigprocmask (SIG_SETMASK, &prev, 0); 2730
2157#endif 2731 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2732 ev_set_priority (&sigfd_w, EV_MAXPRI);
2733 ev_io_start (EV_A_ &sigfd_w);
2734 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2735 }
2158 } 2736 }
2737
2738 if (sigfd >= 0)
2739 {
2740 /* TODO: check .head */
2741 sigaddset (&sigfd_set, w->signum);
2742 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2743
2744 signalfd (sigfd, &sigfd_set, 0);
2745 }
2746#endif
2159 2747
2160 ev_start (EV_A_ (W)w, 1); 2748 ev_start (EV_A_ (W)w, 1);
2161 wlist_add (&signals [w->signum - 1].head, (WL)w); 2749 wlist_add (&signals [w->signum - 1].head, (WL)w);
2162 2750
2163 if (!((WL)w)->next) 2751 if (!((WL)w)->next)
2752# if EV_USE_SIGNALFD
2753 if (sigfd < 0) /*TODO*/
2754# endif
2164 { 2755 {
2165#if _WIN32 2756# if _WIN32
2166 signal (w->signum, ev_sighandler); 2757 signal (w->signum, ev_sighandler);
2167#else 2758# else
2168 struct sigaction sa; 2759 struct sigaction sa;
2760
2761 evpipe_init (EV_A);
2762
2169 sa.sa_handler = ev_sighandler; 2763 sa.sa_handler = ev_sighandler;
2170 sigfillset (&sa.sa_mask); 2764 sigfillset (&sa.sa_mask);
2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2765 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2172 sigaction (w->signum, &sa, 0); 2766 sigaction (w->signum, &sa, 0);
2767
2768 sigemptyset (&sa.sa_mask);
2769 sigaddset (&sa.sa_mask, w->signum);
2770 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2173#endif 2771#endif
2174 } 2772 }
2773
2774 EV_FREQUENT_CHECK;
2175} 2775}
2176 2776
2177void noinline 2777void noinline
2178ev_signal_stop (EV_P_ ev_signal *w) 2778ev_signal_stop (EV_P_ ev_signal *w)
2179{ 2779{
2180 clear_pending (EV_A_ (W)w); 2780 clear_pending (EV_A_ (W)w);
2181 if (expect_false (!ev_is_active (w))) 2781 if (expect_false (!ev_is_active (w)))
2182 return; 2782 return;
2183 2783
2784 EV_FREQUENT_CHECK;
2785
2184 wlist_del (&signals [w->signum - 1].head, (WL)w); 2786 wlist_del (&signals [w->signum - 1].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 2787 ev_stop (EV_A_ (W)w);
2186 2788
2187 if (!signals [w->signum - 1].head) 2789 if (!signals [w->signum - 1].head)
2790 {
2791#if EV_MULTIPLICITY
2792 signals [w->signum - 1].loop = 0; /* unattach from signal */
2793#endif
2794#if EV_USE_SIGNALFD
2795 if (sigfd >= 0)
2796 {
2797 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2798 sigdelset (&sigfd_set, w->signum);
2799 signalfd (sigfd, &sigfd_set, 0);
2800 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2801 /*TODO: maybe unblock signal? */
2802 }
2803 else
2804#endif
2188 signal (w->signum, SIG_DFL); 2805 signal (w->signum, SIG_DFL);
2806 }
2807
2808 EV_FREQUENT_CHECK;
2189} 2809}
2190 2810
2191void 2811void
2192ev_child_start (EV_P_ ev_child *w) 2812ev_child_start (EV_P_ ev_child *w)
2193{ 2813{
2194#if EV_MULTIPLICITY 2814#if EV_MULTIPLICITY
2195 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2815 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2196#endif 2816#endif
2197 if (expect_false (ev_is_active (w))) 2817 if (expect_false (ev_is_active (w)))
2198 return; 2818 return;
2199 2819
2820 EV_FREQUENT_CHECK;
2821
2200 ev_start (EV_A_ (W)w, 1); 2822 ev_start (EV_A_ (W)w, 1);
2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2823 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2824
2825 EV_FREQUENT_CHECK;
2202} 2826}
2203 2827
2204void 2828void
2205ev_child_stop (EV_P_ ev_child *w) 2829ev_child_stop (EV_P_ ev_child *w)
2206{ 2830{
2207 clear_pending (EV_A_ (W)w); 2831 clear_pending (EV_A_ (W)w);
2208 if (expect_false (!ev_is_active (w))) 2832 if (expect_false (!ev_is_active (w)))
2209 return; 2833 return;
2210 2834
2835 EV_FREQUENT_CHECK;
2836
2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2837 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2212 ev_stop (EV_A_ (W)w); 2838 ev_stop (EV_A_ (W)w);
2839
2840 EV_FREQUENT_CHECK;
2213} 2841}
2214 2842
2215#if EV_STAT_ENABLE 2843#if EV_STAT_ENABLE
2216 2844
2217# ifdef _WIN32 2845# ifdef _WIN32
2218# undef lstat 2846# undef lstat
2219# define lstat(a,b) _stati64 (a,b) 2847# define lstat(a,b) _stati64 (a,b)
2220# endif 2848# endif
2221 2849
2222#define DEF_STAT_INTERVAL 5.0074891 2850#define DEF_STAT_INTERVAL 5.0074891
2851#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2223#define MIN_STAT_INTERVAL 0.1074891 2852#define MIN_STAT_INTERVAL 0.1074891
2224 2853
2225static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2854static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2226 2855
2227#if EV_USE_INOTIFY 2856#if EV_USE_INOTIFY
2228# define EV_INOTIFY_BUFSIZE 8192 2857# define EV_INOTIFY_BUFSIZE 8192
2232{ 2861{
2233 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2862 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2234 2863
2235 if (w->wd < 0) 2864 if (w->wd < 0)
2236 { 2865 {
2866 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2867 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2238 2868
2239 /* monitor some parent directory for speedup hints */ 2869 /* monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2870 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2241 /* but an efficiency issue only */ 2871 /* but an efficiency issue only */
2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2872 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2243 { 2873 {
2244 char path [4096]; 2874 char path [4096];
2245 strcpy (path, w->path); 2875 strcpy (path, w->path);
2249 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2879 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2250 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2880 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2251 2881
2252 char *pend = strrchr (path, '/'); 2882 char *pend = strrchr (path, '/');
2253 2883
2254 if (!pend) 2884 if (!pend || pend == path)
2255 break; /* whoops, no '/', complain to your admin */ 2885 break;
2256 2886
2257 *pend = 0; 2887 *pend = 0;
2258 w->wd = inotify_add_watch (fs_fd, path, mask); 2888 w->wd = inotify_add_watch (fs_fd, path, mask);
2259 } 2889 }
2260 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2890 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2261 } 2891 }
2262 } 2892 }
2263 else
2264 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2265 2893
2266 if (w->wd >= 0) 2894 if (w->wd >= 0)
2895 {
2896 struct statfs sfs;
2897
2267 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2898 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2899
2900 /* now local changes will be tracked by inotify, but remote changes won't */
2901 /* unless the filesystem it known to be local, we therefore still poll */
2902 /* also do poll on <2.6.25, but with normal frequency */
2903
2904 if (fs_2625 && !statfs (w->path, &sfs))
2905 if (sfs.f_type == 0x1373 /* devfs */
2906 || sfs.f_type == 0xEF53 /* ext2/3 */
2907 || sfs.f_type == 0x3153464a /* jfs */
2908 || sfs.f_type == 0x52654973 /* reiser3 */
2909 || sfs.f_type == 0x01021994 /* tempfs */
2910 || sfs.f_type == 0x58465342 /* xfs */)
2911 return;
2912
2913 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2914 ev_timer_again (EV_A_ &w->timer);
2915 }
2268} 2916}
2269 2917
2270static void noinline 2918static void noinline
2271infy_del (EV_P_ ev_stat *w) 2919infy_del (EV_P_ ev_stat *w)
2272{ 2920{
2286 2934
2287static void noinline 2935static void noinline
2288infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2936infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2289{ 2937{
2290 if (slot < 0) 2938 if (slot < 0)
2291 /* overflow, need to check for all hahs slots */ 2939 /* overflow, need to check for all hash slots */
2292 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2940 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2293 infy_wd (EV_A_ slot, wd, ev); 2941 infy_wd (EV_A_ slot, wd, ev);
2294 else 2942 else
2295 { 2943 {
2296 WL w_; 2944 WL w_;
2302 2950
2303 if (w->wd == wd || wd == -1) 2951 if (w->wd == wd || wd == -1)
2304 { 2952 {
2305 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2953 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2306 { 2954 {
2955 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2307 w->wd = -1; 2956 w->wd = -1;
2308 infy_add (EV_A_ w); /* re-add, no matter what */ 2957 infy_add (EV_A_ w); /* re-add, no matter what */
2309 } 2958 }
2310 2959
2311 stat_timer_cb (EV_A_ &w->timer, 0); 2960 stat_timer_cb (EV_A_ &w->timer, 0);
2324 2973
2325 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2974 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2326 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2975 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2327} 2976}
2328 2977
2329void inline_size 2978inline_size void
2979check_2625 (EV_P)
2980{
2981 /* kernels < 2.6.25 are borked
2982 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2983 */
2984 struct utsname buf;
2985 int major, minor, micro;
2986
2987 if (uname (&buf))
2988 return;
2989
2990 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2991 return;
2992
2993 if (major < 2
2994 || (major == 2 && minor < 6)
2995 || (major == 2 && minor == 6 && micro < 25))
2996 return;
2997
2998 fs_2625 = 1;
2999}
3000
3001inline_size int
3002infy_newfd (void)
3003{
3004#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3005 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3006 if (fd >= 0)
3007 return fd;
3008#endif
3009 return inotify_init ();
3010}
3011
3012inline_size void
2330infy_init (EV_P) 3013infy_init (EV_P)
2331{ 3014{
2332 if (fs_fd != -2) 3015 if (fs_fd != -2)
2333 return; 3016 return;
2334 3017
3018 fs_fd = -1;
3019
3020 check_2625 (EV_A);
3021
2335 fs_fd = inotify_init (); 3022 fs_fd = infy_newfd ();
2336 3023
2337 if (fs_fd >= 0) 3024 if (fs_fd >= 0)
2338 { 3025 {
3026 fd_intern (fs_fd);
2339 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3027 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2340 ev_set_priority (&fs_w, EV_MAXPRI); 3028 ev_set_priority (&fs_w, EV_MAXPRI);
2341 ev_io_start (EV_A_ &fs_w); 3029 ev_io_start (EV_A_ &fs_w);
2342 } 3030 }
2343} 3031}
2344 3032
2345void inline_size 3033inline_size void
2346infy_fork (EV_P) 3034infy_fork (EV_P)
2347{ 3035{
2348 int slot; 3036 int slot;
2349 3037
2350 if (fs_fd < 0) 3038 if (fs_fd < 0)
2351 return; 3039 return;
2352 3040
3041 ev_io_stop (EV_A_ &fs_w);
2353 close (fs_fd); 3042 close (fs_fd);
2354 fs_fd = inotify_init (); 3043 fs_fd = infy_newfd ();
3044
3045 if (fs_fd >= 0)
3046 {
3047 fd_intern (fs_fd);
3048 ev_io_set (&fs_w, fs_fd, EV_READ);
3049 ev_io_start (EV_A_ &fs_w);
3050 }
2355 3051
2356 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3052 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2357 { 3053 {
2358 WL w_ = fs_hash [slot].head; 3054 WL w_ = fs_hash [slot].head;
2359 fs_hash [slot].head = 0; 3055 fs_hash [slot].head = 0;
2366 w->wd = -1; 3062 w->wd = -1;
2367 3063
2368 if (fs_fd >= 0) 3064 if (fs_fd >= 0)
2369 infy_add (EV_A_ w); /* re-add, no matter what */ 3065 infy_add (EV_A_ w); /* re-add, no matter what */
2370 else 3066 else
2371 ev_timer_start (EV_A_ &w->timer); 3067 ev_timer_again (EV_A_ &w->timer);
2372 } 3068 }
2373
2374 } 3069 }
2375} 3070}
2376 3071
3072#endif
3073
3074#ifdef _WIN32
3075# define EV_LSTAT(p,b) _stati64 (p, b)
3076#else
3077# define EV_LSTAT(p,b) lstat (p, b)
2377#endif 3078#endif
2378 3079
2379void 3080void
2380ev_stat_stat (EV_P_ ev_stat *w) 3081ev_stat_stat (EV_P_ ev_stat *w)
2381{ 3082{
2408 || w->prev.st_atime != w->attr.st_atime 3109 || w->prev.st_atime != w->attr.st_atime
2409 || w->prev.st_mtime != w->attr.st_mtime 3110 || w->prev.st_mtime != w->attr.st_mtime
2410 || w->prev.st_ctime != w->attr.st_ctime 3111 || w->prev.st_ctime != w->attr.st_ctime
2411 ) { 3112 ) {
2412 #if EV_USE_INOTIFY 3113 #if EV_USE_INOTIFY
3114 if (fs_fd >= 0)
3115 {
2413 infy_del (EV_A_ w); 3116 infy_del (EV_A_ w);
2414 infy_add (EV_A_ w); 3117 infy_add (EV_A_ w);
2415 ev_stat_stat (EV_A_ w); /* avoid race... */ 3118 ev_stat_stat (EV_A_ w); /* avoid race... */
3119 }
2416 #endif 3120 #endif
2417 3121
2418 ev_feed_event (EV_A_ w, EV_STAT); 3122 ev_feed_event (EV_A_ w, EV_STAT);
2419 } 3123 }
2420} 3124}
2423ev_stat_start (EV_P_ ev_stat *w) 3127ev_stat_start (EV_P_ ev_stat *w)
2424{ 3128{
2425 if (expect_false (ev_is_active (w))) 3129 if (expect_false (ev_is_active (w)))
2426 return; 3130 return;
2427 3131
2428 /* since we use memcmp, we need to clear any padding data etc. */
2429 memset (&w->prev, 0, sizeof (ev_statdata));
2430 memset (&w->attr, 0, sizeof (ev_statdata));
2431
2432 ev_stat_stat (EV_A_ w); 3132 ev_stat_stat (EV_A_ w);
2433 3133
3134 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2434 if (w->interval < MIN_STAT_INTERVAL) 3135 w->interval = MIN_STAT_INTERVAL;
2435 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2436 3136
2437 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3137 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2438 ev_set_priority (&w->timer, ev_priority (w)); 3138 ev_set_priority (&w->timer, ev_priority (w));
2439 3139
2440#if EV_USE_INOTIFY 3140#if EV_USE_INOTIFY
2441 infy_init (EV_A); 3141 infy_init (EV_A);
2442 3142
2443 if (fs_fd >= 0) 3143 if (fs_fd >= 0)
2444 infy_add (EV_A_ w); 3144 infy_add (EV_A_ w);
2445 else 3145 else
2446#endif 3146#endif
2447 ev_timer_start (EV_A_ &w->timer); 3147 ev_timer_again (EV_A_ &w->timer);
2448 3148
2449 ev_start (EV_A_ (W)w, 1); 3149 ev_start (EV_A_ (W)w, 1);
3150
3151 EV_FREQUENT_CHECK;
2450} 3152}
2451 3153
2452void 3154void
2453ev_stat_stop (EV_P_ ev_stat *w) 3155ev_stat_stop (EV_P_ ev_stat *w)
2454{ 3156{
2455 clear_pending (EV_A_ (W)w); 3157 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 3158 if (expect_false (!ev_is_active (w)))
2457 return; 3159 return;
2458 3160
3161 EV_FREQUENT_CHECK;
3162
2459#if EV_USE_INOTIFY 3163#if EV_USE_INOTIFY
2460 infy_del (EV_A_ w); 3164 infy_del (EV_A_ w);
2461#endif 3165#endif
2462 ev_timer_stop (EV_A_ &w->timer); 3166 ev_timer_stop (EV_A_ &w->timer);
2463 3167
2464 ev_stop (EV_A_ (W)w); 3168 ev_stop (EV_A_ (W)w);
3169
3170 EV_FREQUENT_CHECK;
2465} 3171}
2466#endif 3172#endif
2467 3173
2468#if EV_IDLE_ENABLE 3174#if EV_IDLE_ENABLE
2469void 3175void
2471{ 3177{
2472 if (expect_false (ev_is_active (w))) 3178 if (expect_false (ev_is_active (w)))
2473 return; 3179 return;
2474 3180
2475 pri_adjust (EV_A_ (W)w); 3181 pri_adjust (EV_A_ (W)w);
3182
3183 EV_FREQUENT_CHECK;
2476 3184
2477 { 3185 {
2478 int active = ++idlecnt [ABSPRI (w)]; 3186 int active = ++idlecnt [ABSPRI (w)];
2479 3187
2480 ++idleall; 3188 ++idleall;
2481 ev_start (EV_A_ (W)w, active); 3189 ev_start (EV_A_ (W)w, active);
2482 3190
2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3191 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2484 idles [ABSPRI (w)][active - 1] = w; 3192 idles [ABSPRI (w)][active - 1] = w;
2485 } 3193 }
3194
3195 EV_FREQUENT_CHECK;
2486} 3196}
2487 3197
2488void 3198void
2489ev_idle_stop (EV_P_ ev_idle *w) 3199ev_idle_stop (EV_P_ ev_idle *w)
2490{ 3200{
2491 clear_pending (EV_A_ (W)w); 3201 clear_pending (EV_A_ (W)w);
2492 if (expect_false (!ev_is_active (w))) 3202 if (expect_false (!ev_is_active (w)))
2493 return; 3203 return;
2494 3204
3205 EV_FREQUENT_CHECK;
3206
2495 { 3207 {
2496 int active = ev_active (w); 3208 int active = ev_active (w);
2497 3209
2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3210 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3211 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500 3212
2501 ev_stop (EV_A_ (W)w); 3213 ev_stop (EV_A_ (W)w);
2502 --idleall; 3214 --idleall;
2503 } 3215 }
3216
3217 EV_FREQUENT_CHECK;
2504} 3218}
2505#endif 3219#endif
2506 3220
2507void 3221void
2508ev_prepare_start (EV_P_ ev_prepare *w) 3222ev_prepare_start (EV_P_ ev_prepare *w)
2509{ 3223{
2510 if (expect_false (ev_is_active (w))) 3224 if (expect_false (ev_is_active (w)))
2511 return; 3225 return;
3226
3227 EV_FREQUENT_CHECK;
2512 3228
2513 ev_start (EV_A_ (W)w, ++preparecnt); 3229 ev_start (EV_A_ (W)w, ++preparecnt);
2514 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3230 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2515 prepares [preparecnt - 1] = w; 3231 prepares [preparecnt - 1] = w;
3232
3233 EV_FREQUENT_CHECK;
2516} 3234}
2517 3235
2518void 3236void
2519ev_prepare_stop (EV_P_ ev_prepare *w) 3237ev_prepare_stop (EV_P_ ev_prepare *w)
2520{ 3238{
2521 clear_pending (EV_A_ (W)w); 3239 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 3240 if (expect_false (!ev_is_active (w)))
2523 return; 3241 return;
2524 3242
3243 EV_FREQUENT_CHECK;
3244
2525 { 3245 {
2526 int active = ev_active (w); 3246 int active = ev_active (w);
2527 3247
2528 prepares [active - 1] = prepares [--preparecnt]; 3248 prepares [active - 1] = prepares [--preparecnt];
2529 ev_active (prepares [active - 1]) = active; 3249 ev_active (prepares [active - 1]) = active;
2530 } 3250 }
2531 3251
2532 ev_stop (EV_A_ (W)w); 3252 ev_stop (EV_A_ (W)w);
3253
3254 EV_FREQUENT_CHECK;
2533} 3255}
2534 3256
2535void 3257void
2536ev_check_start (EV_P_ ev_check *w) 3258ev_check_start (EV_P_ ev_check *w)
2537{ 3259{
2538 if (expect_false (ev_is_active (w))) 3260 if (expect_false (ev_is_active (w)))
2539 return; 3261 return;
3262
3263 EV_FREQUENT_CHECK;
2540 3264
2541 ev_start (EV_A_ (W)w, ++checkcnt); 3265 ev_start (EV_A_ (W)w, ++checkcnt);
2542 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3266 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2543 checks [checkcnt - 1] = w; 3267 checks [checkcnt - 1] = w;
3268
3269 EV_FREQUENT_CHECK;
2544} 3270}
2545 3271
2546void 3272void
2547ev_check_stop (EV_P_ ev_check *w) 3273ev_check_stop (EV_P_ ev_check *w)
2548{ 3274{
2549 clear_pending (EV_A_ (W)w); 3275 clear_pending (EV_A_ (W)w);
2550 if (expect_false (!ev_is_active (w))) 3276 if (expect_false (!ev_is_active (w)))
2551 return; 3277 return;
2552 3278
3279 EV_FREQUENT_CHECK;
3280
2553 { 3281 {
2554 int active = ev_active (w); 3282 int active = ev_active (w);
2555 3283
2556 checks [active - 1] = checks [--checkcnt]; 3284 checks [active - 1] = checks [--checkcnt];
2557 ev_active (checks [active - 1]) = active; 3285 ev_active (checks [active - 1]) = active;
2558 } 3286 }
2559 3287
2560 ev_stop (EV_A_ (W)w); 3288 ev_stop (EV_A_ (W)w);
3289
3290 EV_FREQUENT_CHECK;
2561} 3291}
2562 3292
2563#if EV_EMBED_ENABLE 3293#if EV_EMBED_ENABLE
2564void noinline 3294void noinline
2565ev_embed_sweep (EV_P_ ev_embed *w) 3295ev_embed_sweep (EV_P_ ev_embed *w)
2582embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3312embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2583{ 3313{
2584 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3314 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2585 3315
2586 { 3316 {
2587 struct ev_loop *loop = w->other; 3317 EV_P = w->other;
2588 3318
2589 while (fdchangecnt) 3319 while (fdchangecnt)
2590 { 3320 {
2591 fd_reify (EV_A); 3321 fd_reify (EV_A);
2592 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3322 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2593 } 3323 }
2594 } 3324 }
2595} 3325}
2596 3326
3327static void
3328embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3329{
3330 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3331
3332 ev_embed_stop (EV_A_ w);
3333
3334 {
3335 EV_P = w->other;
3336
3337 ev_loop_fork (EV_A);
3338 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3339 }
3340
3341 ev_embed_start (EV_A_ w);
3342}
3343
2597#if 0 3344#if 0
2598static void 3345static void
2599embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3346embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2600{ 3347{
2601 ev_idle_stop (EV_A_ idle); 3348 ev_idle_stop (EV_A_ idle);
2607{ 3354{
2608 if (expect_false (ev_is_active (w))) 3355 if (expect_false (ev_is_active (w)))
2609 return; 3356 return;
2610 3357
2611 { 3358 {
2612 struct ev_loop *loop = w->other; 3359 EV_P = w->other;
2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3360 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3361 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2615 } 3362 }
3363
3364 EV_FREQUENT_CHECK;
2616 3365
2617 ev_set_priority (&w->io, ev_priority (w)); 3366 ev_set_priority (&w->io, ev_priority (w));
2618 ev_io_start (EV_A_ &w->io); 3367 ev_io_start (EV_A_ &w->io);
2619 3368
2620 ev_prepare_init (&w->prepare, embed_prepare_cb); 3369 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI); 3370 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare); 3371 ev_prepare_start (EV_A_ &w->prepare);
2623 3372
3373 ev_fork_init (&w->fork, embed_fork_cb);
3374 ev_fork_start (EV_A_ &w->fork);
3375
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3376 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625 3377
2626 ev_start (EV_A_ (W)w, 1); 3378 ev_start (EV_A_ (W)w, 1);
3379
3380 EV_FREQUENT_CHECK;
2627} 3381}
2628 3382
2629void 3383void
2630ev_embed_stop (EV_P_ ev_embed *w) 3384ev_embed_stop (EV_P_ ev_embed *w)
2631{ 3385{
2632 clear_pending (EV_A_ (W)w); 3386 clear_pending (EV_A_ (W)w);
2633 if (expect_false (!ev_is_active (w))) 3387 if (expect_false (!ev_is_active (w)))
2634 return; 3388 return;
2635 3389
3390 EV_FREQUENT_CHECK;
3391
2636 ev_io_stop (EV_A_ &w->io); 3392 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare); 3393 ev_prepare_stop (EV_A_ &w->prepare);
3394 ev_fork_stop (EV_A_ &w->fork);
2638 3395
2639 ev_stop (EV_A_ (W)w); 3396 EV_FREQUENT_CHECK;
2640} 3397}
2641#endif 3398#endif
2642 3399
2643#if EV_FORK_ENABLE 3400#if EV_FORK_ENABLE
2644void 3401void
2645ev_fork_start (EV_P_ ev_fork *w) 3402ev_fork_start (EV_P_ ev_fork *w)
2646{ 3403{
2647 if (expect_false (ev_is_active (w))) 3404 if (expect_false (ev_is_active (w)))
2648 return; 3405 return;
3406
3407 EV_FREQUENT_CHECK;
2649 3408
2650 ev_start (EV_A_ (W)w, ++forkcnt); 3409 ev_start (EV_A_ (W)w, ++forkcnt);
2651 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3410 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2652 forks [forkcnt - 1] = w; 3411 forks [forkcnt - 1] = w;
3412
3413 EV_FREQUENT_CHECK;
2653} 3414}
2654 3415
2655void 3416void
2656ev_fork_stop (EV_P_ ev_fork *w) 3417ev_fork_stop (EV_P_ ev_fork *w)
2657{ 3418{
2658 clear_pending (EV_A_ (W)w); 3419 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w))) 3420 if (expect_false (!ev_is_active (w)))
2660 return; 3421 return;
2661 3422
3423 EV_FREQUENT_CHECK;
3424
2662 { 3425 {
2663 int active = ev_active (w); 3426 int active = ev_active (w);
2664 3427
2665 forks [active - 1] = forks [--forkcnt]; 3428 forks [active - 1] = forks [--forkcnt];
2666 ev_active (forks [active - 1]) = active; 3429 ev_active (forks [active - 1]) = active;
2667 } 3430 }
2668 3431
2669 ev_stop (EV_A_ (W)w); 3432 ev_stop (EV_A_ (W)w);
3433
3434 EV_FREQUENT_CHECK;
2670} 3435}
2671#endif 3436#endif
2672 3437
2673#if EV_ASYNC_ENABLE 3438#if EV_ASYNC_ENABLE
2674void 3439void
2676{ 3441{
2677 if (expect_false (ev_is_active (w))) 3442 if (expect_false (ev_is_active (w)))
2678 return; 3443 return;
2679 3444
2680 evpipe_init (EV_A); 3445 evpipe_init (EV_A);
3446
3447 EV_FREQUENT_CHECK;
2681 3448
2682 ev_start (EV_A_ (W)w, ++asynccnt); 3449 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3450 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w; 3451 asyncs [asynccnt - 1] = w;
3452
3453 EV_FREQUENT_CHECK;
2685} 3454}
2686 3455
2687void 3456void
2688ev_async_stop (EV_P_ ev_async *w) 3457ev_async_stop (EV_P_ ev_async *w)
2689{ 3458{
2690 clear_pending (EV_A_ (W)w); 3459 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w))) 3460 if (expect_false (!ev_is_active (w)))
2692 return; 3461 return;
2693 3462
3463 EV_FREQUENT_CHECK;
3464
2694 { 3465 {
2695 int active = ev_active (w); 3466 int active = ev_active (w);
2696 3467
2697 asyncs [active - 1] = asyncs [--asynccnt]; 3468 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active; 3469 ev_active (asyncs [active - 1]) = active;
2699 } 3470 }
2700 3471
2701 ev_stop (EV_A_ (W)w); 3472 ev_stop (EV_A_ (W)w);
3473
3474 EV_FREQUENT_CHECK;
2702} 3475}
2703 3476
2704void 3477void
2705ev_async_send (EV_P_ ev_async *w) 3478ev_async_send (EV_P_ ev_async *w)
2706{ 3479{
2707 w->sent = 1; 3480 w->sent = 1;
2708 evpipe_write (EV_A_ &gotasync); 3481 evpipe_write (EV_A_ &async_pending);
2709} 3482}
2710#endif 3483#endif
2711 3484
2712/*****************************************************************************/ 3485/*****************************************************************************/
2713 3486
2723once_cb (EV_P_ struct ev_once *once, int revents) 3496once_cb (EV_P_ struct ev_once *once, int revents)
2724{ 3497{
2725 void (*cb)(int revents, void *arg) = once->cb; 3498 void (*cb)(int revents, void *arg) = once->cb;
2726 void *arg = once->arg; 3499 void *arg = once->arg;
2727 3500
2728 ev_io_stop (EV_A_ &once->io); 3501 ev_io_stop (EV_A_ &once->io);
2729 ev_timer_stop (EV_A_ &once->to); 3502 ev_timer_stop (EV_A_ &once->to);
2730 ev_free (once); 3503 ev_free (once);
2731 3504
2732 cb (revents, arg); 3505 cb (revents, arg);
2733} 3506}
2734 3507
2735static void 3508static void
2736once_cb_io (EV_P_ ev_io *w, int revents) 3509once_cb_io (EV_P_ ev_io *w, int revents)
2737{ 3510{
2738 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3511 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3512
3513 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2739} 3514}
2740 3515
2741static void 3516static void
2742once_cb_to (EV_P_ ev_timer *w, int revents) 3517once_cb_to (EV_P_ ev_timer *w, int revents)
2743{ 3518{
2744 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3519 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3520
3521 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2745} 3522}
2746 3523
2747void 3524void
2748ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3525ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2749{ 3526{
2771 ev_timer_set (&once->to, timeout, 0.); 3548 ev_timer_set (&once->to, timeout, 0.);
2772 ev_timer_start (EV_A_ &once->to); 3549 ev_timer_start (EV_A_ &once->to);
2773 } 3550 }
2774} 3551}
2775 3552
3553/*****************************************************************************/
3554
3555#if EV_WALK_ENABLE
3556void
3557ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3558{
3559 int i, j;
3560 ev_watcher_list *wl, *wn;
3561
3562 if (types & (EV_IO | EV_EMBED))
3563 for (i = 0; i < anfdmax; ++i)
3564 for (wl = anfds [i].head; wl; )
3565 {
3566 wn = wl->next;
3567
3568#if EV_EMBED_ENABLE
3569 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3570 {
3571 if (types & EV_EMBED)
3572 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3573 }
3574 else
3575#endif
3576#if EV_USE_INOTIFY
3577 if (ev_cb ((ev_io *)wl) == infy_cb)
3578 ;
3579 else
3580#endif
3581 if ((ev_io *)wl != &pipe_w)
3582 if (types & EV_IO)
3583 cb (EV_A_ EV_IO, wl);
3584
3585 wl = wn;
3586 }
3587
3588 if (types & (EV_TIMER | EV_STAT))
3589 for (i = timercnt + HEAP0; i-- > HEAP0; )
3590#if EV_STAT_ENABLE
3591 /*TODO: timer is not always active*/
3592 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3593 {
3594 if (types & EV_STAT)
3595 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3596 }
3597 else
3598#endif
3599 if (types & EV_TIMER)
3600 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3601
3602#if EV_PERIODIC_ENABLE
3603 if (types & EV_PERIODIC)
3604 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3605 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3606#endif
3607
3608#if EV_IDLE_ENABLE
3609 if (types & EV_IDLE)
3610 for (j = NUMPRI; i--; )
3611 for (i = idlecnt [j]; i--; )
3612 cb (EV_A_ EV_IDLE, idles [j][i]);
3613#endif
3614
3615#if EV_FORK_ENABLE
3616 if (types & EV_FORK)
3617 for (i = forkcnt; i--; )
3618 if (ev_cb (forks [i]) != embed_fork_cb)
3619 cb (EV_A_ EV_FORK, forks [i]);
3620#endif
3621
3622#if EV_ASYNC_ENABLE
3623 if (types & EV_ASYNC)
3624 for (i = asynccnt; i--; )
3625 cb (EV_A_ EV_ASYNC, asyncs [i]);
3626#endif
3627
3628 if (types & EV_PREPARE)
3629 for (i = preparecnt; i--; )
3630#if EV_EMBED_ENABLE
3631 if (ev_cb (prepares [i]) != embed_prepare_cb)
3632#endif
3633 cb (EV_A_ EV_PREPARE, prepares [i]);
3634
3635 if (types & EV_CHECK)
3636 for (i = checkcnt; i--; )
3637 cb (EV_A_ EV_CHECK, checks [i]);
3638
3639 if (types & EV_SIGNAL)
3640 for (i = 0; i < EV_NSIG - 1; ++i)
3641 for (wl = signals [i].head; wl; )
3642 {
3643 wn = wl->next;
3644 cb (EV_A_ EV_SIGNAL, wl);
3645 wl = wn;
3646 }
3647
3648 if (types & EV_CHILD)
3649 for (i = EV_PID_HASHSIZE; i--; )
3650 for (wl = childs [i]; wl; )
3651 {
3652 wn = wl->next;
3653 cb (EV_A_ EV_CHILD, wl);
3654 wl = wn;
3655 }
3656/* EV_STAT 0x00001000 /* stat data changed */
3657/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3658}
3659#endif
3660
2776#if EV_MULTIPLICITY 3661#if EV_MULTIPLICITY
2777 #include "ev_wrap.h" 3662 #include "ev_wrap.h"
2778#endif 3663#endif
2779 3664
2780#ifdef __cplusplus 3665#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines