ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC vs.
Revision 1.325 by root, Sun Jan 24 12:31:55 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
96# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
97# endif 111# endif
98# endif 112# endif
99 113
100# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
102# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
103# else 117# else
104# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
105# endif 119# endif
106# endif 120# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
136#include <fcntl.h> 159#include <fcntl.h>
137#include <stddef.h> 160#include <stddef.h>
138 161
139#include <stdio.h> 162#include <stdio.h>
140 163
154#ifndef _WIN32 177#ifndef _WIN32
155# include <sys/time.h> 178# include <sys/time.h>
156# include <sys/wait.h> 179# include <sys/wait.h>
157# include <unistd.h> 180# include <unistd.h>
158#else 181#else
182# include <io.h>
159# define WIN32_LEAN_AND_MEAN 183# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 184# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 185# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 186# define EV_SELECT_IS_WINSOCKET 1
163# endif 187# endif
164#endif 188#endif
165 189
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 190/* this block tries to deduce configuration from header-defined symbols and defaults */
167 191
192/* try to deduce the maximum number of signals on this platform */
193#if defined (EV_NSIG)
194/* use what's provided */
195#elif defined (NSIG)
196# define EV_NSIG (NSIG)
197#elif defined(_NSIG)
198# define EV_NSIG (_NSIG)
199#elif defined (SIGMAX)
200# define EV_NSIG (SIGMAX+1)
201#elif defined (SIG_MAX)
202# define EV_NSIG (SIG_MAX+1)
203#elif defined (_SIG_MAX)
204# define EV_NSIG (_SIG_MAX+1)
205#elif defined (MAXSIG)
206# define EV_NSIG (MAXSIG+1)
207#elif defined (MAX_SIG)
208# define EV_NSIG (MAX_SIG+1)
209#elif defined (SIGARRAYSIZE)
210# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
211#elif defined (_sys_nsig)
212# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
213#else
214# error "unable to find value for NSIG, please report"
215/* to make it compile regardless, just remove the above line */
216# define EV_NSIG 65
217#endif
218
219#ifndef EV_USE_CLOCK_SYSCALL
220# if __linux && __GLIBC__ >= 2
221# define EV_USE_CLOCK_SYSCALL 1
222# else
223# define EV_USE_CLOCK_SYSCALL 0
224# endif
225#endif
226
168#ifndef EV_USE_MONOTONIC 227#ifndef EV_USE_MONOTONIC
228# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
229# define EV_USE_MONOTONIC 1
230# else
169# define EV_USE_MONOTONIC 0 231# define EV_USE_MONOTONIC 0
232# endif
170#endif 233#endif
171 234
172#ifndef EV_USE_REALTIME 235#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 236# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 237#endif
175 238
176#ifndef EV_USE_NANOSLEEP 239#ifndef EV_USE_NANOSLEEP
240# if _POSIX_C_SOURCE >= 199309L
241# define EV_USE_NANOSLEEP 1
242# else
177# define EV_USE_NANOSLEEP 0 243# define EV_USE_NANOSLEEP 0
244# endif
178#endif 245#endif
179 246
180#ifndef EV_USE_SELECT 247#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 248# define EV_USE_SELECT 1
182#endif 249#endif
235# else 302# else
236# define EV_USE_EVENTFD 0 303# define EV_USE_EVENTFD 0
237# endif 304# endif
238#endif 305#endif
239 306
307#ifndef EV_USE_SIGNALFD
308# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
309# define EV_USE_SIGNALFD 1
310# else
311# define EV_USE_SIGNALFD 0
312# endif
313#endif
314
315#if 0 /* debugging */
316# define EV_VERIFY 3
317# define EV_USE_4HEAP 1
318# define EV_HEAP_CACHE_AT 1
319#endif
320
321#ifndef EV_VERIFY
322# define EV_VERIFY !EV_MINIMAL
323#endif
324
325#ifndef EV_USE_4HEAP
326# define EV_USE_4HEAP !EV_MINIMAL
327#endif
328
329#ifndef EV_HEAP_CACHE_AT
330# define EV_HEAP_CACHE_AT !EV_MINIMAL
331#endif
332
333/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
334/* which makes programs even slower. might work on other unices, too. */
335#if EV_USE_CLOCK_SYSCALL
336# include <syscall.h>
337# ifdef SYS_clock_gettime
338# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
339# undef EV_USE_MONOTONIC
340# define EV_USE_MONOTONIC 1
341# else
342# undef EV_USE_CLOCK_SYSCALL
343# define EV_USE_CLOCK_SYSCALL 0
344# endif
345#endif
346
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 347/* this block fixes any misconfiguration where we know we run into trouble otherwise */
348
349#ifdef _AIX
350/* AIX has a completely broken poll.h header */
351# undef EV_USE_POLL
352# define EV_USE_POLL 0
353#endif
241 354
242#ifndef CLOCK_MONOTONIC 355#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 356# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 357# define EV_USE_MONOTONIC 0
245#endif 358#endif
259# include <sys/select.h> 372# include <sys/select.h>
260# endif 373# endif
261#endif 374#endif
262 375
263#if EV_USE_INOTIFY 376#if EV_USE_INOTIFY
377# include <sys/utsname.h>
378# include <sys/statfs.h>
264# include <sys/inotify.h> 379# include <sys/inotify.h>
380/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
381# ifndef IN_DONT_FOLLOW
382# undef EV_USE_INOTIFY
383# define EV_USE_INOTIFY 0
384# endif
265#endif 385#endif
266 386
267#if EV_SELECT_IS_WINSOCKET 387#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 388# include <winsock.h>
269#endif 389#endif
270 390
271#if EV_USE_EVENTFD 391#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 392/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 393# include <stdint.h>
394# ifndef EFD_NONBLOCK
395# define EFD_NONBLOCK O_NONBLOCK
396# endif
397# ifndef EFD_CLOEXEC
398# ifdef O_CLOEXEC
399# define EFD_CLOEXEC O_CLOEXEC
400# else
401# define EFD_CLOEXEC 02000000
402# endif
403# endif
274# ifdef __cplusplus 404# ifdef __cplusplus
275extern "C" { 405extern "C" {
276# endif 406# endif
277int eventfd (unsigned int initval, int flags); 407int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus 408# ifdef __cplusplus
279} 409}
280# endif 410# endif
281#endif 411#endif
282 412
413#if EV_USE_SIGNALFD
414/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
415# include <stdint.h>
416# ifndef SFD_NONBLOCK
417# define SFD_NONBLOCK O_NONBLOCK
418# endif
419# ifndef SFD_CLOEXEC
420# ifdef O_CLOEXEC
421# define SFD_CLOEXEC O_CLOEXEC
422# else
423# define SFD_CLOEXEC 02000000
424# endif
425# endif
426# ifdef __cplusplus
427extern "C" {
428# endif
429int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436# ifdef __cplusplus
437}
438# endif
439#endif
440
441
283/**/ 442/**/
443
444#if EV_VERIFY >= 3
445# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
446#else
447# define EV_FREQUENT_CHECK do { } while (0)
448#endif
284 449
285/* 450/*
286 * This is used to avoid floating point rounding problems. 451 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 452 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 453 * to ensure progress, time-wise, even when rounding
292 */ 457 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 458#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294 459
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 460#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 461#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 462
299#if __GNUC__ >= 4 463#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value)) 464# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 465# define noinline __attribute__ ((noinline))
302#else 466#else
315# define inline_speed static noinline 479# define inline_speed static noinline
316#else 480#else
317# define inline_speed static inline 481# define inline_speed static inline
318#endif 482#endif
319 483
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 484#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
485
486#if EV_MINPRI == EV_MAXPRI
487# define ABSPRI(w) (((W)w), 0)
488#else
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 489# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
490#endif
322 491
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 492#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 493#define EMPTY2(a,b) /* used to suppress some warnings */
325 494
326typedef ev_watcher *W; 495typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 497typedef ev_watcher_time *WT;
329 498
330#define ev_active(w) ((W)(w))->active 499#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 500#define ev_at(w) ((WT)(w))->at
332 501
333#if EV_USE_MONOTONIC 502#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 503/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 504/* giving it a reasonably high chance of working on typical architetcures */
505static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
506#endif
507
508#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 509static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
510#endif
511
512#ifndef EV_FD_TO_WIN32_HANDLE
513# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
514#endif
515#ifndef EV_WIN32_HANDLE_TO_FD
516# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
517#endif
518#ifndef EV_WIN32_CLOSE_FD
519# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 520#endif
338 521
339#ifdef _WIN32 522#ifdef _WIN32
340# include "ev_win32.c" 523# include "ev_win32.c"
341#endif 524#endif
349{ 532{
350 syserr_cb = cb; 533 syserr_cb = cb;
351} 534}
352 535
353static void noinline 536static void noinline
354syserr (const char *msg) 537ev_syserr (const char *msg)
355{ 538{
356 if (!msg) 539 if (!msg)
357 msg = "(libev) system error"; 540 msg = "(libev) system error";
358 541
359 if (syserr_cb) 542 if (syserr_cb)
405#define ev_malloc(size) ev_realloc (0, (size)) 588#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 589#define ev_free(ptr) ev_realloc ((ptr), 0)
407 590
408/*****************************************************************************/ 591/*****************************************************************************/
409 592
593/* set in reify when reification needed */
594#define EV_ANFD_REIFY 1
595
596/* file descriptor info structure */
410typedef struct 597typedef struct
411{ 598{
412 WL head; 599 WL head;
413 unsigned char events; 600 unsigned char events; /* the events watched for */
601 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
602 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 603 unsigned char unused;
604#if EV_USE_EPOLL
605 unsigned int egen; /* generation counter to counter epoll bugs */
606#endif
415#if EV_SELECT_IS_WINSOCKET 607#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 608 SOCKET handle;
417#endif 609#endif
418} ANFD; 610} ANFD;
419 611
612/* stores the pending event set for a given watcher */
420typedef struct 613typedef struct
421{ 614{
422 W w; 615 W w;
423 int events; 616 int events; /* the pending event set for the given watcher */
424} ANPENDING; 617} ANPENDING;
425 618
426#if EV_USE_INOTIFY 619#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */ 620/* hash table entry per inotify-id */
428typedef struct 621typedef struct
430 WL head; 623 WL head;
431} ANFS; 624} ANFS;
432#endif 625#endif
433 626
434/* Heap Entry */ 627/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT 628#if EV_HEAP_CACHE_AT
629 /* a heap element */
437 typedef struct { 630 typedef struct {
631 ev_tstamp at;
438 WT w; 632 WT w;
439 ev_tstamp at;
440 } ANHE; 633 } ANHE;
441 634
442 #define ANHE_w(he) (he).w /* access watcher, read-write */ 635 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */ 636 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 637 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
445#else 638#else
639 /* a heap element */
446 typedef WT ANHE; 640 typedef WT ANHE;
447 641
448 #define ANHE_w(he) (he) 642 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at 643 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he) 644 #define ANHE_at_cache(he)
451#endif 645#endif
452 646
453#if EV_MULTIPLICITY 647#if EV_MULTIPLICITY
454 648
455 struct ev_loop 649 struct ev_loop
474 668
475 static int ev_default_loop_ptr; 669 static int ev_default_loop_ptr;
476 670
477#endif 671#endif
478 672
673#if EV_MINIMAL < 2
674# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
675# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
676# define EV_INVOKE_PENDING invoke_cb (EV_A)
677#else
678# define EV_RELEASE_CB (void)0
679# define EV_ACQUIRE_CB (void)0
680# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
681#endif
682
683#define EVUNLOOP_RECURSE 0x80
684
479/*****************************************************************************/ 685/*****************************************************************************/
480 686
687#ifndef EV_HAVE_EV_TIME
481ev_tstamp 688ev_tstamp
482ev_time (void) 689ev_time (void)
483{ 690{
484#if EV_USE_REALTIME 691#if EV_USE_REALTIME
692 if (expect_true (have_realtime))
693 {
485 struct timespec ts; 694 struct timespec ts;
486 clock_gettime (CLOCK_REALTIME, &ts); 695 clock_gettime (CLOCK_REALTIME, &ts);
487 return ts.tv_sec + ts.tv_nsec * 1e-9; 696 return ts.tv_sec + ts.tv_nsec * 1e-9;
488#else 697 }
698#endif
699
489 struct timeval tv; 700 struct timeval tv;
490 gettimeofday (&tv, 0); 701 gettimeofday (&tv, 0);
491 return tv.tv_sec + tv.tv_usec * 1e-6; 702 return tv.tv_sec + tv.tv_usec * 1e-6;
492#endif
493} 703}
704#endif
494 705
495ev_tstamp inline_size 706inline_size ev_tstamp
496get_clock (void) 707get_clock (void)
497{ 708{
498#if EV_USE_MONOTONIC 709#if EV_USE_MONOTONIC
499 if (expect_true (have_monotonic)) 710 if (expect_true (have_monotonic))
500 { 711 {
533 struct timeval tv; 744 struct timeval tv;
534 745
535 tv.tv_sec = (time_t)delay; 746 tv.tv_sec = (time_t)delay;
536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 747 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
537 748
749 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
750 /* something not guaranteed by newer posix versions, but guaranteed */
751 /* by older ones */
538 select (0, 0, 0, 0, &tv); 752 select (0, 0, 0, 0, &tv);
539#endif 753#endif
540 } 754 }
541} 755}
542 756
543/*****************************************************************************/ 757/*****************************************************************************/
544 758
545#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 759#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
546 760
547int inline_size 761/* find a suitable new size for the given array, */
762/* hopefully by rounding to a ncie-to-malloc size */
763inline_size int
548array_nextsize (int elem, int cur, int cnt) 764array_nextsize (int elem, int cur, int cnt)
549{ 765{
550 int ncur = cur + 1; 766 int ncur = cur + 1;
551 767
552 do 768 do
569array_realloc (int elem, void *base, int *cur, int cnt) 785array_realloc (int elem, void *base, int *cur, int cnt)
570{ 786{
571 *cur = array_nextsize (elem, *cur, cnt); 787 *cur = array_nextsize (elem, *cur, cnt);
572 return ev_realloc (base, elem * *cur); 788 return ev_realloc (base, elem * *cur);
573} 789}
790
791#define array_init_zero(base,count) \
792 memset ((void *)(base), 0, sizeof (*(base)) * (count))
574 793
575#define array_needsize(type,base,cur,cnt,init) \ 794#define array_needsize(type,base,cur,cnt,init) \
576 if (expect_false ((cnt) > (cur))) \ 795 if (expect_false ((cnt) > (cur))) \
577 { \ 796 { \
578 int ocur_ = (cur); \ 797 int ocur_ = (cur); \
590 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 809 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
591 } 810 }
592#endif 811#endif
593 812
594#define array_free(stem, idx) \ 813#define array_free(stem, idx) \
595 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 814 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
596 815
597/*****************************************************************************/ 816/*****************************************************************************/
817
818/* dummy callback for pending events */
819static void noinline
820pendingcb (EV_P_ ev_prepare *w, int revents)
821{
822}
598 823
599void noinline 824void noinline
600ev_feed_event (EV_P_ void *w, int revents) 825ev_feed_event (EV_P_ void *w, int revents)
601{ 826{
602 W w_ = (W)w; 827 W w_ = (W)w;
611 pendings [pri][w_->pending - 1].w = w_; 836 pendings [pri][w_->pending - 1].w = w_;
612 pendings [pri][w_->pending - 1].events = revents; 837 pendings [pri][w_->pending - 1].events = revents;
613 } 838 }
614} 839}
615 840
616void inline_speed 841inline_speed void
842feed_reverse (EV_P_ W w)
843{
844 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
845 rfeeds [rfeedcnt++] = w;
846}
847
848inline_size void
849feed_reverse_done (EV_P_ int revents)
850{
851 do
852 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
853 while (rfeedcnt);
854}
855
856inline_speed void
617queue_events (EV_P_ W *events, int eventcnt, int type) 857queue_events (EV_P_ W *events, int eventcnt, int type)
618{ 858{
619 int i; 859 int i;
620 860
621 for (i = 0; i < eventcnt; ++i) 861 for (i = 0; i < eventcnt; ++i)
622 ev_feed_event (EV_A_ events [i], type); 862 ev_feed_event (EV_A_ events [i], type);
623} 863}
624 864
625/*****************************************************************************/ 865/*****************************************************************************/
626 866
627void inline_size 867inline_speed void
628anfds_init (ANFD *base, int count)
629{
630 while (count--)
631 {
632 base->head = 0;
633 base->events = EV_NONE;
634 base->reify = 0;
635
636 ++base;
637 }
638}
639
640void inline_speed
641fd_event (EV_P_ int fd, int revents) 868fd_event_nc (EV_P_ int fd, int revents)
642{ 869{
643 ANFD *anfd = anfds + fd; 870 ANFD *anfd = anfds + fd;
644 ev_io *w; 871 ev_io *w;
645 872
646 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 873 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
650 if (ev) 877 if (ev)
651 ev_feed_event (EV_A_ (W)w, ev); 878 ev_feed_event (EV_A_ (W)w, ev);
652 } 879 }
653} 880}
654 881
882/* do not submit kernel events for fds that have reify set */
883/* because that means they changed while we were polling for new events */
884inline_speed void
885fd_event (EV_P_ int fd, int revents)
886{
887 ANFD *anfd = anfds + fd;
888
889 if (expect_true (!anfd->reify))
890 fd_event_nc (EV_A_ fd, revents);
891}
892
655void 893void
656ev_feed_fd_event (EV_P_ int fd, int revents) 894ev_feed_fd_event (EV_P_ int fd, int revents)
657{ 895{
658 if (fd >= 0 && fd < anfdmax) 896 if (fd >= 0 && fd < anfdmax)
659 fd_event (EV_A_ fd, revents); 897 fd_event_nc (EV_A_ fd, revents);
660} 898}
661 899
662void inline_size 900/* make sure the external fd watch events are in-sync */
901/* with the kernel/libev internal state */
902inline_size void
663fd_reify (EV_P) 903fd_reify (EV_P)
664{ 904{
665 int i; 905 int i;
666 906
667 for (i = 0; i < fdchangecnt; ++i) 907 for (i = 0; i < fdchangecnt; ++i)
676 events |= (unsigned char)w->events; 916 events |= (unsigned char)w->events;
677 917
678#if EV_SELECT_IS_WINSOCKET 918#if EV_SELECT_IS_WINSOCKET
679 if (events) 919 if (events)
680 { 920 {
681 unsigned long argp; 921 unsigned long arg;
682 #ifdef EV_FD_TO_WIN32_HANDLE
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 922 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
684 #else
685 anfd->handle = _get_osfhandle (fd);
686 #endif
687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 923 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
688 } 924 }
689#endif 925#endif
690 926
691 { 927 {
692 unsigned char o_events = anfd->events; 928 unsigned char o_events = anfd->events;
693 unsigned char o_reify = anfd->reify; 929 unsigned char o_reify = anfd->reify;
694 930
695 anfd->reify = 0; 931 anfd->reify = 0;
696 anfd->events = events; 932 anfd->events = events;
697 933
698 if (o_events != events || o_reify & EV_IOFDSET) 934 if (o_events != events || o_reify & EV__IOFDSET)
699 backend_modify (EV_A_ fd, o_events, events); 935 backend_modify (EV_A_ fd, o_events, events);
700 } 936 }
701 } 937 }
702 938
703 fdchangecnt = 0; 939 fdchangecnt = 0;
704} 940}
705 941
706void inline_size 942/* something about the given fd changed */
943inline_size void
707fd_change (EV_P_ int fd, int flags) 944fd_change (EV_P_ int fd, int flags)
708{ 945{
709 unsigned char reify = anfds [fd].reify; 946 unsigned char reify = anfds [fd].reify;
710 anfds [fd].reify |= flags; 947 anfds [fd].reify |= flags;
711 948
715 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 952 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
716 fdchanges [fdchangecnt - 1] = fd; 953 fdchanges [fdchangecnt - 1] = fd;
717 } 954 }
718} 955}
719 956
720void inline_speed 957/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
958inline_speed void
721fd_kill (EV_P_ int fd) 959fd_kill (EV_P_ int fd)
722{ 960{
723 ev_io *w; 961 ev_io *w;
724 962
725 while ((w = (ev_io *)anfds [fd].head)) 963 while ((w = (ev_io *)anfds [fd].head))
727 ev_io_stop (EV_A_ w); 965 ev_io_stop (EV_A_ w);
728 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 966 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
729 } 967 }
730} 968}
731 969
732int inline_size 970/* check whether the given fd is atcually valid, for error recovery */
971inline_size int
733fd_valid (int fd) 972fd_valid (int fd)
734{ 973{
735#ifdef _WIN32 974#ifdef _WIN32
736 return _get_osfhandle (fd) != -1; 975 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
737#else 976#else
738 return fcntl (fd, F_GETFD) != -1; 977 return fcntl (fd, F_GETFD) != -1;
739#endif 978#endif
740} 979}
741 980
745{ 984{
746 int fd; 985 int fd;
747 986
748 for (fd = 0; fd < anfdmax; ++fd) 987 for (fd = 0; fd < anfdmax; ++fd)
749 if (anfds [fd].events) 988 if (anfds [fd].events)
750 if (!fd_valid (fd) == -1 && errno == EBADF) 989 if (!fd_valid (fd) && errno == EBADF)
751 fd_kill (EV_A_ fd); 990 fd_kill (EV_A_ fd);
752} 991}
753 992
754/* called on ENOMEM in select/poll to kill some fds and retry */ 993/* called on ENOMEM in select/poll to kill some fds and retry */
755static void noinline 994static void noinline
759 998
760 for (fd = anfdmax; fd--; ) 999 for (fd = anfdmax; fd--; )
761 if (anfds [fd].events) 1000 if (anfds [fd].events)
762 { 1001 {
763 fd_kill (EV_A_ fd); 1002 fd_kill (EV_A_ fd);
764 return; 1003 break;
765 } 1004 }
766} 1005}
767 1006
768/* usually called after fork if backend needs to re-arm all fds from scratch */ 1007/* usually called after fork if backend needs to re-arm all fds from scratch */
769static void noinline 1008static void noinline
773 1012
774 for (fd = 0; fd < anfdmax; ++fd) 1013 for (fd = 0; fd < anfdmax; ++fd)
775 if (anfds [fd].events) 1014 if (anfds [fd].events)
776 { 1015 {
777 anfds [fd].events = 0; 1016 anfds [fd].events = 0;
1017 anfds [fd].emask = 0;
778 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1018 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
779 } 1019 }
780} 1020}
781 1021
782/*****************************************************************************/ 1022/*****************************************************************************/
783 1023
791 * at the moment we allow libev the luxury of two heaps, 1031 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 1032 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient. 1033 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers. 1034 * the difference is about 5% with 50000+ watchers.
795 */ 1035 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP 1036#if EV_USE_4HEAP
798 1037
799#define DHEAP 4 1038#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1039#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801 1040#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
802/* towards the root */ 1041#define UPHEAP_DONE(p,k) ((p) == (k))
803void inline_speed
804upheap (ANHE *heap, int k)
805{
806 ANHE he = heap [k];
807
808 for (;;)
809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
815 heap [k] = heap [p];
816 ev_active (ANHE_w (heap [k])) = k;
817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823 1042
824/* away from the root */ 1043/* away from the root */
825void inline_speed 1044inline_speed void
826downheap (ANHE *heap, int N, int k) 1045downheap (ANHE *heap, int N, int k)
827{ 1046{
828 ANHE he = heap [k]; 1047 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0; 1048 ANHE *E = heap + N + HEAP0;
830 1049
831 for (;;) 1050 for (;;)
832 { 1051 {
833 ev_tstamp minat; 1052 ev_tstamp minat;
834 ANHE *minpos; 1053 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1054 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
836 1055
837 // find minimum child 1056 /* find minimum child */
838 if (expect_true (pos + DHEAP - 1 < E)) 1057 if (expect_true (pos + DHEAP - 1 < E))
839 { 1058 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1059 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1060 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1061 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 1062 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 } 1063 }
845 else if (pos < E) 1064 else if (pos < E)
846 { 1065 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1066 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1067 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
853 break; 1072 break;
854 1073
855 if (ANHE_at (he) <= minat) 1074 if (ANHE_at (he) <= minat)
856 break; 1075 break;
857 1076
1077 heap [k] = *minpos;
858 ev_active (ANHE_w (*minpos)) = k; 1078 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860 1079
861 k = minpos - heap; 1080 k = minpos - heap;
862 } 1081 }
863 1082
1083 heap [k] = he;
864 ev_active (ANHE_w (he)) = k; 1084 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866} 1085}
867 1086
868#else // 4HEAP 1087#else /* 4HEAP */
869 1088
870#define HEAP0 1 1089#define HEAP0 1
1090#define HPARENT(k) ((k) >> 1)
1091#define UPHEAP_DONE(p,k) (!(p))
871 1092
872/* towards the root */ 1093/* away from the root */
873void inline_speed 1094inline_speed void
874upheap (ANHE *heap, int k) 1095downheap (ANHE *heap, int N, int k)
875{ 1096{
876 ANHE he = heap [k]; 1097 ANHE he = heap [k];
877 1098
878 for (;;) 1099 for (;;)
879 { 1100 {
880 int p = k >> 1; 1101 int c = k << 1;
881 1102
882 /* maybe we could use a dummy element at heap [0]? */ 1103 if (c >= N + HEAP0)
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break; 1104 break;
885 1105
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
889 }
890
891 heap [k] = w;
892 ev_active (ANHE_w (heap [k])) = k;
893}
894
895/* away from the root */
896void inline_speed
897downheap (ANHE *heap, int N, int k)
898{
899 ANHE he = heap [k];
900
901 for (;;)
902 {
903 int c = k << 1;
904
905 if (c > N)
906 break;
907
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1106 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0; 1107 ? 1 : 0;
910 1108
911 if (w->at <= ANHE_at (heap [c])) 1109 if (ANHE_at (he) <= ANHE_at (heap [c]))
912 break; 1110 break;
913 1111
914 heap [k] = heap [c]; 1112 heap [k] = heap [c];
915 ev_active (ANHE_w (heap [k])) = k; 1113 ev_active (ANHE_w (heap [k])) = k;
916 1114
920 heap [k] = he; 1118 heap [k] = he;
921 ev_active (ANHE_w (he)) = k; 1119 ev_active (ANHE_w (he)) = k;
922} 1120}
923#endif 1121#endif
924 1122
925void inline_size 1123/* towards the root */
1124inline_speed void
1125upheap (ANHE *heap, int k)
1126{
1127 ANHE he = heap [k];
1128
1129 for (;;)
1130 {
1131 int p = HPARENT (k);
1132
1133 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1134 break;
1135
1136 heap [k] = heap [p];
1137 ev_active (ANHE_w (heap [k])) = k;
1138 k = p;
1139 }
1140
1141 heap [k] = he;
1142 ev_active (ANHE_w (he)) = k;
1143}
1144
1145/* move an element suitably so it is in a correct place */
1146inline_size void
926adjustheap (ANHE *heap, int N, int k) 1147adjustheap (ANHE *heap, int N, int k)
927{ 1148{
1149 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
928 upheap (heap, k); 1150 upheap (heap, k);
1151 else
929 downheap (heap, N, k); 1152 downheap (heap, N, k);
1153}
1154
1155/* rebuild the heap: this function is used only once and executed rarely */
1156inline_size void
1157reheap (ANHE *heap, int N)
1158{
1159 int i;
1160
1161 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1162 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1163 for (i = 0; i < N; ++i)
1164 upheap (heap, i + HEAP0);
930} 1165}
931 1166
932/*****************************************************************************/ 1167/*****************************************************************************/
933 1168
1169/* associate signal watchers to a signal signal */
934typedef struct 1170typedef struct
935{ 1171{
1172 EV_ATOMIC_T pending;
1173#if EV_MULTIPLICITY
1174 EV_P;
1175#endif
936 WL head; 1176 WL head;
937 EV_ATOMIC_T gotsig;
938} ANSIG; 1177} ANSIG;
939 1178
940static ANSIG *signals; 1179static ANSIG signals [EV_NSIG - 1];
941static int signalmax;
942
943static EV_ATOMIC_T gotsig;
944
945void inline_size
946signals_init (ANSIG *base, int count)
947{
948 while (count--)
949 {
950 base->head = 0;
951 base->gotsig = 0;
952
953 ++base;
954 }
955}
956 1180
957/*****************************************************************************/ 1181/*****************************************************************************/
958 1182
959void inline_speed 1183/* used to prepare libev internal fd's */
1184/* this is not fork-safe */
1185inline_speed void
960fd_intern (int fd) 1186fd_intern (int fd)
961{ 1187{
962#ifdef _WIN32 1188#ifdef _WIN32
963 int arg = 1; 1189 unsigned long arg = 1;
964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1190 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
965#else 1191#else
966 fcntl (fd, F_SETFD, FD_CLOEXEC); 1192 fcntl (fd, F_SETFD, FD_CLOEXEC);
967 fcntl (fd, F_SETFL, O_NONBLOCK); 1193 fcntl (fd, F_SETFL, O_NONBLOCK);
968#endif 1194#endif
969} 1195}
970 1196
971static void noinline 1197static void noinline
972evpipe_init (EV_P) 1198evpipe_init (EV_P)
973{ 1199{
974 if (!ev_is_active (&pipeev)) 1200 if (!ev_is_active (&pipe_w))
975 { 1201 {
976#if EV_USE_EVENTFD 1202#if EV_USE_EVENTFD
1203 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1204 if (evfd < 0 && errno == EINVAL)
977 if ((evfd = eventfd (0, 0)) >= 0) 1205 evfd = eventfd (0, 0);
1206
1207 if (evfd >= 0)
978 { 1208 {
979 evpipe [0] = -1; 1209 evpipe [0] = -1;
980 fd_intern (evfd); 1210 fd_intern (evfd); /* doing it twice doesn't hurt */
981 ev_io_set (&pipeev, evfd, EV_READ); 1211 ev_io_set (&pipe_w, evfd, EV_READ);
982 } 1212 }
983 else 1213 else
984#endif 1214#endif
985 { 1215 {
986 while (pipe (evpipe)) 1216 while (pipe (evpipe))
987 syserr ("(libev) error creating signal/async pipe"); 1217 ev_syserr ("(libev) error creating signal/async pipe");
988 1218
989 fd_intern (evpipe [0]); 1219 fd_intern (evpipe [0]);
990 fd_intern (evpipe [1]); 1220 fd_intern (evpipe [1]);
991 ev_io_set (&pipeev, evpipe [0], EV_READ); 1221 ev_io_set (&pipe_w, evpipe [0], EV_READ);
992 } 1222 }
993 1223
994 ev_io_start (EV_A_ &pipeev); 1224 ev_io_start (EV_A_ &pipe_w);
995 ev_unref (EV_A); /* watcher should not keep loop alive */ 1225 ev_unref (EV_A); /* watcher should not keep loop alive */
996 } 1226 }
997} 1227}
998 1228
999void inline_size 1229inline_size void
1000evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1230evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1001{ 1231{
1002 if (!*flag) 1232 if (!*flag)
1003 { 1233 {
1004 int old_errno = errno; /* save errno because write might clobber it */ 1234 int old_errno = errno; /* save errno because write might clobber it */
1017 1247
1018 errno = old_errno; 1248 errno = old_errno;
1019 } 1249 }
1020} 1250}
1021 1251
1252/* called whenever the libev signal pipe */
1253/* got some events (signal, async) */
1022static void 1254static void
1023pipecb (EV_P_ ev_io *iow, int revents) 1255pipecb (EV_P_ ev_io *iow, int revents)
1024{ 1256{
1257 int i;
1258
1025#if EV_USE_EVENTFD 1259#if EV_USE_EVENTFD
1026 if (evfd >= 0) 1260 if (evfd >= 0)
1027 { 1261 {
1028 uint64_t counter; 1262 uint64_t counter;
1029 read (evfd, &counter, sizeof (uint64_t)); 1263 read (evfd, &counter, sizeof (uint64_t));
1033 { 1267 {
1034 char dummy; 1268 char dummy;
1035 read (evpipe [0], &dummy, 1); 1269 read (evpipe [0], &dummy, 1);
1036 } 1270 }
1037 1271
1038 if (gotsig && ev_is_default_loop (EV_A)) 1272 if (sig_pending)
1039 { 1273 {
1040 int signum; 1274 sig_pending = 0;
1041 gotsig = 0;
1042 1275
1043 for (signum = signalmax; signum--; ) 1276 for (i = EV_NSIG - 1; i--; )
1044 if (signals [signum].gotsig) 1277 if (expect_false (signals [i].pending))
1045 ev_feed_signal_event (EV_A_ signum + 1); 1278 ev_feed_signal_event (EV_A_ i + 1);
1046 } 1279 }
1047 1280
1048#if EV_ASYNC_ENABLE 1281#if EV_ASYNC_ENABLE
1049 if (gotasync) 1282 if (async_pending)
1050 { 1283 {
1051 int i; 1284 async_pending = 0;
1052 gotasync = 0;
1053 1285
1054 for (i = asynccnt; i--; ) 1286 for (i = asynccnt; i--; )
1055 if (asyncs [i]->sent) 1287 if (asyncs [i]->sent)
1056 { 1288 {
1057 asyncs [i]->sent = 0; 1289 asyncs [i]->sent = 0;
1065 1297
1066static void 1298static void
1067ev_sighandler (int signum) 1299ev_sighandler (int signum)
1068{ 1300{
1069#if EV_MULTIPLICITY 1301#if EV_MULTIPLICITY
1070 struct ev_loop *loop = &default_loop_struct; 1302 EV_P = signals [signum - 1].loop;
1071#endif 1303#endif
1072 1304
1073#if _WIN32 1305#ifdef _WIN32
1074 signal (signum, ev_sighandler); 1306 signal (signum, ev_sighandler);
1075#endif 1307#endif
1076 1308
1077 signals [signum - 1].gotsig = 1; 1309 signals [signum - 1].pending = 1;
1078 evpipe_write (EV_A_ &gotsig); 1310 evpipe_write (EV_A_ &sig_pending);
1079} 1311}
1080 1312
1081void noinline 1313void noinline
1082ev_feed_signal_event (EV_P_ int signum) 1314ev_feed_signal_event (EV_P_ int signum)
1083{ 1315{
1084 WL w; 1316 WL w;
1085 1317
1318 if (expect_false (signum <= 0 || signum > EV_NSIG))
1319 return;
1320
1321 --signum;
1322
1086#if EV_MULTIPLICITY 1323#if EV_MULTIPLICITY
1087 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1324 /* it is permissible to try to feed a signal to the wrong loop */
1088#endif 1325 /* or, likely more useful, feeding a signal nobody is waiting for */
1089 1326
1090 --signum; 1327 if (expect_false (signals [signum].loop != EV_A))
1091
1092 if (signum < 0 || signum >= signalmax)
1093 return; 1328 return;
1329#endif
1094 1330
1095 signals [signum].gotsig = 0; 1331 signals [signum].pending = 0;
1096 1332
1097 for (w = signals [signum].head; w; w = w->next) 1333 for (w = signals [signum].head; w; w = w->next)
1098 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1334 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1099} 1335}
1100 1336
1337#if EV_USE_SIGNALFD
1338static void
1339sigfdcb (EV_P_ ev_io *iow, int revents)
1340{
1341 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1342
1343 for (;;)
1344 {
1345 ssize_t res = read (sigfd, si, sizeof (si));
1346
1347 /* not ISO-C, as res might be -1, but works with SuS */
1348 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1349 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1350
1351 if (res < (ssize_t)sizeof (si))
1352 break;
1353 }
1354}
1355#endif
1356
1101/*****************************************************************************/ 1357/*****************************************************************************/
1102 1358
1103static WL childs [EV_PID_HASHSIZE]; 1359static WL childs [EV_PID_HASHSIZE];
1104 1360
1105#ifndef _WIN32 1361#ifndef _WIN32
1108 1364
1109#ifndef WIFCONTINUED 1365#ifndef WIFCONTINUED
1110# define WIFCONTINUED(status) 0 1366# define WIFCONTINUED(status) 0
1111#endif 1367#endif
1112 1368
1113void inline_speed 1369/* handle a single child status event */
1370inline_speed void
1114child_reap (EV_P_ int chain, int pid, int status) 1371child_reap (EV_P_ int chain, int pid, int status)
1115{ 1372{
1116 ev_child *w; 1373 ev_child *w;
1117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1374 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1118 1375
1131 1388
1132#ifndef WCONTINUED 1389#ifndef WCONTINUED
1133# define WCONTINUED 0 1390# define WCONTINUED 0
1134#endif 1391#endif
1135 1392
1393/* called on sigchld etc., calls waitpid */
1136static void 1394static void
1137childcb (EV_P_ ev_signal *sw, int revents) 1395childcb (EV_P_ ev_signal *sw, int revents)
1138{ 1396{
1139 int pid, status; 1397 int pid, status;
1140 1398
1221 /* kqueue is borked on everything but netbsd apparently */ 1479 /* kqueue is borked on everything but netbsd apparently */
1222 /* it usually doesn't work correctly on anything but sockets and pipes */ 1480 /* it usually doesn't work correctly on anything but sockets and pipes */
1223 flags &= ~EVBACKEND_KQUEUE; 1481 flags &= ~EVBACKEND_KQUEUE;
1224#endif 1482#endif
1225#ifdef __APPLE__ 1483#ifdef __APPLE__
1226 // flags &= ~EVBACKEND_KQUEUE; for documentation 1484 /* only select works correctly on that "unix-certified" platform */
1227 flags &= ~EVBACKEND_POLL; 1485 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1486 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1228#endif 1487#endif
1229 1488
1230 return flags; 1489 return flags;
1231} 1490}
1232 1491
1246ev_backend (EV_P) 1505ev_backend (EV_P)
1247{ 1506{
1248 return backend; 1507 return backend;
1249} 1508}
1250 1509
1510#if EV_MINIMAL < 2
1251unsigned int 1511unsigned int
1252ev_loop_count (EV_P) 1512ev_loop_count (EV_P)
1253{ 1513{
1254 return loop_count; 1514 return loop_count;
1255} 1515}
1256 1516
1517unsigned int
1518ev_loop_depth (EV_P)
1519{
1520 return loop_depth;
1521}
1522
1257void 1523void
1258ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1524ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1259{ 1525{
1260 io_blocktime = interval; 1526 io_blocktime = interval;
1261} 1527}
1264ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1530ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1265{ 1531{
1266 timeout_blocktime = interval; 1532 timeout_blocktime = interval;
1267} 1533}
1268 1534
1535void
1536ev_set_userdata (EV_P_ void *data)
1537{
1538 userdata = data;
1539}
1540
1541void *
1542ev_userdata (EV_P)
1543{
1544 return userdata;
1545}
1546
1547void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1548{
1549 invoke_cb = invoke_pending_cb;
1550}
1551
1552void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1553{
1554 release_cb = release;
1555 acquire_cb = acquire;
1556}
1557#endif
1558
1559/* initialise a loop structure, must be zero-initialised */
1269static void noinline 1560static void noinline
1270loop_init (EV_P_ unsigned int flags) 1561loop_init (EV_P_ unsigned int flags)
1271{ 1562{
1272 if (!backend) 1563 if (!backend)
1273 { 1564 {
1565#if EV_USE_REALTIME
1566 if (!have_realtime)
1567 {
1568 struct timespec ts;
1569
1570 if (!clock_gettime (CLOCK_REALTIME, &ts))
1571 have_realtime = 1;
1572 }
1573#endif
1574
1274#if EV_USE_MONOTONIC 1575#if EV_USE_MONOTONIC
1576 if (!have_monotonic)
1275 { 1577 {
1276 struct timespec ts; 1578 struct timespec ts;
1579
1277 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1580 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1278 have_monotonic = 1; 1581 have_monotonic = 1;
1279 } 1582 }
1280#endif 1583#endif
1584
1585 /* pid check not overridable via env */
1586#ifndef _WIN32
1587 if (flags & EVFLAG_FORKCHECK)
1588 curpid = getpid ();
1589#endif
1590
1591 if (!(flags & EVFLAG_NOENV)
1592 && !enable_secure ()
1593 && getenv ("LIBEV_FLAGS"))
1594 flags = atoi (getenv ("LIBEV_FLAGS"));
1281 1595
1282 ev_rt_now = ev_time (); 1596 ev_rt_now = ev_time ();
1283 mn_now = get_clock (); 1597 mn_now = get_clock ();
1284 now_floor = mn_now; 1598 now_floor = mn_now;
1285 rtmn_diff = ev_rt_now - mn_now; 1599 rtmn_diff = ev_rt_now - mn_now;
1600#if EV_MINIMAL < 2
1601 invoke_cb = ev_invoke_pending;
1602#endif
1286 1603
1287 io_blocktime = 0.; 1604 io_blocktime = 0.;
1288 timeout_blocktime = 0.; 1605 timeout_blocktime = 0.;
1289 backend = 0; 1606 backend = 0;
1290 backend_fd = -1; 1607 backend_fd = -1;
1291 gotasync = 0; 1608 sig_pending = 0;
1609#if EV_ASYNC_ENABLE
1610 async_pending = 0;
1611#endif
1292#if EV_USE_INOTIFY 1612#if EV_USE_INOTIFY
1293 fs_fd = -2; 1613 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1294#endif 1614#endif
1295 1615#if EV_USE_SIGNALFD
1296 /* pid check not overridable via env */ 1616 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1297#ifndef _WIN32
1298 if (flags & EVFLAG_FORKCHECK)
1299 curpid = getpid ();
1300#endif 1617#endif
1301
1302 if (!(flags & EVFLAG_NOENV)
1303 && !enable_secure ()
1304 && getenv ("LIBEV_FLAGS"))
1305 flags = atoi (getenv ("LIBEV_FLAGS"));
1306 1618
1307 if (!(flags & 0x0000ffffU)) 1619 if (!(flags & 0x0000ffffU))
1308 flags |= ev_recommended_backends (); 1620 flags |= ev_recommended_backends ();
1309 1621
1310#if EV_USE_PORT 1622#if EV_USE_PORT
1321#endif 1633#endif
1322#if EV_USE_SELECT 1634#if EV_USE_SELECT
1323 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1635 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1324#endif 1636#endif
1325 1637
1638 ev_prepare_init (&pending_w, pendingcb);
1639
1326 ev_init (&pipeev, pipecb); 1640 ev_init (&pipe_w, pipecb);
1327 ev_set_priority (&pipeev, EV_MAXPRI); 1641 ev_set_priority (&pipe_w, EV_MAXPRI);
1328 } 1642 }
1329} 1643}
1330 1644
1645/* free up a loop structure */
1331static void noinline 1646static void noinline
1332loop_destroy (EV_P) 1647loop_destroy (EV_P)
1333{ 1648{
1334 int i; 1649 int i;
1335 1650
1336 if (ev_is_active (&pipeev)) 1651 if (ev_is_active (&pipe_w))
1337 { 1652 {
1338 ev_ref (EV_A); /* signal watcher */ 1653 /*ev_ref (EV_A);*/
1339 ev_io_stop (EV_A_ &pipeev); 1654 /*ev_io_stop (EV_A_ &pipe_w);*/
1340 1655
1341#if EV_USE_EVENTFD 1656#if EV_USE_EVENTFD
1342 if (evfd >= 0) 1657 if (evfd >= 0)
1343 close (evfd); 1658 close (evfd);
1344#endif 1659#endif
1345 1660
1346 if (evpipe [0] >= 0) 1661 if (evpipe [0] >= 0)
1347 { 1662 {
1348 close (evpipe [0]); 1663 EV_WIN32_CLOSE_FD (evpipe [0]);
1349 close (evpipe [1]); 1664 EV_WIN32_CLOSE_FD (evpipe [1]);
1350 } 1665 }
1351 } 1666 }
1667
1668#if EV_USE_SIGNALFD
1669 if (ev_is_active (&sigfd_w))
1670 close (sigfd);
1671#endif
1352 1672
1353#if EV_USE_INOTIFY 1673#if EV_USE_INOTIFY
1354 if (fs_fd >= 0) 1674 if (fs_fd >= 0)
1355 close (fs_fd); 1675 close (fs_fd);
1356#endif 1676#endif
1380#if EV_IDLE_ENABLE 1700#if EV_IDLE_ENABLE
1381 array_free (idle, [i]); 1701 array_free (idle, [i]);
1382#endif 1702#endif
1383 } 1703 }
1384 1704
1385 ev_free (anfds); anfdmax = 0; 1705 ev_free (anfds); anfds = 0; anfdmax = 0;
1386 1706
1387 /* have to use the microsoft-never-gets-it-right macro */ 1707 /* have to use the microsoft-never-gets-it-right macro */
1708 array_free (rfeed, EMPTY);
1388 array_free (fdchange, EMPTY); 1709 array_free (fdchange, EMPTY);
1389 array_free (timer, EMPTY); 1710 array_free (timer, EMPTY);
1390#if EV_PERIODIC_ENABLE 1711#if EV_PERIODIC_ENABLE
1391 array_free (periodic, EMPTY); 1712 array_free (periodic, EMPTY);
1392#endif 1713#endif
1401 1722
1402 backend = 0; 1723 backend = 0;
1403} 1724}
1404 1725
1405#if EV_USE_INOTIFY 1726#if EV_USE_INOTIFY
1406void inline_size infy_fork (EV_P); 1727inline_size void infy_fork (EV_P);
1407#endif 1728#endif
1408 1729
1409void inline_size 1730inline_size void
1410loop_fork (EV_P) 1731loop_fork (EV_P)
1411{ 1732{
1412#if EV_USE_PORT 1733#if EV_USE_PORT
1413 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1734 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1414#endif 1735#endif
1420#endif 1741#endif
1421#if EV_USE_INOTIFY 1742#if EV_USE_INOTIFY
1422 infy_fork (EV_A); 1743 infy_fork (EV_A);
1423#endif 1744#endif
1424 1745
1425 if (ev_is_active (&pipeev)) 1746 if (ev_is_active (&pipe_w))
1426 { 1747 {
1427 /* this "locks" the handlers against writing to the pipe */ 1748 /* this "locks" the handlers against writing to the pipe */
1428 /* while we modify the fd vars */ 1749 /* while we modify the fd vars */
1429 gotsig = 1; 1750 sig_pending = 1;
1430#if EV_ASYNC_ENABLE 1751#if EV_ASYNC_ENABLE
1431 gotasync = 1; 1752 async_pending = 1;
1432#endif 1753#endif
1433 1754
1434 ev_ref (EV_A); 1755 ev_ref (EV_A);
1435 ev_io_stop (EV_A_ &pipeev); 1756 ev_io_stop (EV_A_ &pipe_w);
1436 1757
1437#if EV_USE_EVENTFD 1758#if EV_USE_EVENTFD
1438 if (evfd >= 0) 1759 if (evfd >= 0)
1439 close (evfd); 1760 close (evfd);
1440#endif 1761#endif
1441 1762
1442 if (evpipe [0] >= 0) 1763 if (evpipe [0] >= 0)
1443 { 1764 {
1444 close (evpipe [0]); 1765 EV_WIN32_CLOSE_FD (evpipe [0]);
1445 close (evpipe [1]); 1766 EV_WIN32_CLOSE_FD (evpipe [1]);
1446 } 1767 }
1447 1768
1448 evpipe_init (EV_A); 1769 evpipe_init (EV_A);
1449 /* now iterate over everything, in case we missed something */ 1770 /* now iterate over everything, in case we missed something */
1450 pipecb (EV_A_ &pipeev, EV_READ); 1771 pipecb (EV_A_ &pipe_w, EV_READ);
1451 } 1772 }
1452 1773
1453 postfork = 0; 1774 postfork = 0;
1454} 1775}
1455 1776
1456#if EV_MULTIPLICITY 1777#if EV_MULTIPLICITY
1778
1457struct ev_loop * 1779struct ev_loop *
1458ev_loop_new (unsigned int flags) 1780ev_loop_new (unsigned int flags)
1459{ 1781{
1460 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1782 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1461 1783
1462 memset (loop, 0, sizeof (struct ev_loop)); 1784 memset (EV_A, 0, sizeof (struct ev_loop));
1463
1464 loop_init (EV_A_ flags); 1785 loop_init (EV_A_ flags);
1465 1786
1466 if (ev_backend (EV_A)) 1787 if (ev_backend (EV_A))
1467 return loop; 1788 return EV_A;
1468 1789
1469 return 0; 1790 return 0;
1470} 1791}
1471 1792
1472void 1793void
1478 1799
1479void 1800void
1480ev_loop_fork (EV_P) 1801ev_loop_fork (EV_P)
1481{ 1802{
1482 postfork = 1; /* must be in line with ev_default_fork */ 1803 postfork = 1; /* must be in line with ev_default_fork */
1804}
1805#endif /* multiplicity */
1806
1807#if EV_VERIFY
1808static void noinline
1809verify_watcher (EV_P_ W w)
1810{
1811 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1812
1813 if (w->pending)
1814 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1815}
1816
1817static void noinline
1818verify_heap (EV_P_ ANHE *heap, int N)
1819{
1820 int i;
1821
1822 for (i = HEAP0; i < N + HEAP0; ++i)
1823 {
1824 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1825 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1826 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1827
1828 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1829 }
1830}
1831
1832static void noinline
1833array_verify (EV_P_ W *ws, int cnt)
1834{
1835 while (cnt--)
1836 {
1837 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1838 verify_watcher (EV_A_ ws [cnt]);
1839 }
1840}
1841#endif
1842
1843#if EV_MINIMAL < 2
1844void
1845ev_loop_verify (EV_P)
1846{
1847#if EV_VERIFY
1848 int i;
1849 WL w;
1850
1851 assert (activecnt >= -1);
1852
1853 assert (fdchangemax >= fdchangecnt);
1854 for (i = 0; i < fdchangecnt; ++i)
1855 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1856
1857 assert (anfdmax >= 0);
1858 for (i = 0; i < anfdmax; ++i)
1859 for (w = anfds [i].head; w; w = w->next)
1860 {
1861 verify_watcher (EV_A_ (W)w);
1862 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1863 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1864 }
1865
1866 assert (timermax >= timercnt);
1867 verify_heap (EV_A_ timers, timercnt);
1868
1869#if EV_PERIODIC_ENABLE
1870 assert (periodicmax >= periodiccnt);
1871 verify_heap (EV_A_ periodics, periodiccnt);
1872#endif
1873
1874 for (i = NUMPRI; i--; )
1875 {
1876 assert (pendingmax [i] >= pendingcnt [i]);
1877#if EV_IDLE_ENABLE
1878 assert (idleall >= 0);
1879 assert (idlemax [i] >= idlecnt [i]);
1880 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1881#endif
1882 }
1883
1884#if EV_FORK_ENABLE
1885 assert (forkmax >= forkcnt);
1886 array_verify (EV_A_ (W *)forks, forkcnt);
1887#endif
1888
1889#if EV_ASYNC_ENABLE
1890 assert (asyncmax >= asynccnt);
1891 array_verify (EV_A_ (W *)asyncs, asynccnt);
1892#endif
1893
1894 assert (preparemax >= preparecnt);
1895 array_verify (EV_A_ (W *)prepares, preparecnt);
1896
1897 assert (checkmax >= checkcnt);
1898 array_verify (EV_A_ (W *)checks, checkcnt);
1899
1900# if 0
1901 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1902 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1903# endif
1904#endif
1483} 1905}
1484#endif 1906#endif
1485 1907
1486#if EV_MULTIPLICITY 1908#if EV_MULTIPLICITY
1487struct ev_loop * 1909struct ev_loop *
1492#endif 1914#endif
1493{ 1915{
1494 if (!ev_default_loop_ptr) 1916 if (!ev_default_loop_ptr)
1495 { 1917 {
1496#if EV_MULTIPLICITY 1918#if EV_MULTIPLICITY
1497 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1919 EV_P = ev_default_loop_ptr = &default_loop_struct;
1498#else 1920#else
1499 ev_default_loop_ptr = 1; 1921 ev_default_loop_ptr = 1;
1500#endif 1922#endif
1501 1923
1502 loop_init (EV_A_ flags); 1924 loop_init (EV_A_ flags);
1519 1941
1520void 1942void
1521ev_default_destroy (void) 1943ev_default_destroy (void)
1522{ 1944{
1523#if EV_MULTIPLICITY 1945#if EV_MULTIPLICITY
1524 struct ev_loop *loop = ev_default_loop_ptr; 1946 EV_P = ev_default_loop_ptr;
1525#endif 1947#endif
1948
1949 ev_default_loop_ptr = 0;
1526 1950
1527#ifndef _WIN32 1951#ifndef _WIN32
1528 ev_ref (EV_A); /* child watcher */ 1952 ev_ref (EV_A); /* child watcher */
1529 ev_signal_stop (EV_A_ &childev); 1953 ev_signal_stop (EV_A_ &childev);
1530#endif 1954#endif
1534 1958
1535void 1959void
1536ev_default_fork (void) 1960ev_default_fork (void)
1537{ 1961{
1538#if EV_MULTIPLICITY 1962#if EV_MULTIPLICITY
1539 struct ev_loop *loop = ev_default_loop_ptr; 1963 EV_P = ev_default_loop_ptr;
1540#endif 1964#endif
1541 1965
1542 if (backend)
1543 postfork = 1; /* must be in line with ev_loop_fork */ 1966 postfork = 1; /* must be in line with ev_loop_fork */
1544} 1967}
1545 1968
1546/*****************************************************************************/ 1969/*****************************************************************************/
1547 1970
1548void 1971void
1549ev_invoke (EV_P_ void *w, int revents) 1972ev_invoke (EV_P_ void *w, int revents)
1550{ 1973{
1551 EV_CB_INVOKE ((W)w, revents); 1974 EV_CB_INVOKE ((W)w, revents);
1552} 1975}
1553 1976
1554void inline_speed 1977unsigned int
1555call_pending (EV_P) 1978ev_pending_count (EV_P)
1979{
1980 int pri;
1981 unsigned int count = 0;
1982
1983 for (pri = NUMPRI; pri--; )
1984 count += pendingcnt [pri];
1985
1986 return count;
1987}
1988
1989void noinline
1990ev_invoke_pending (EV_P)
1556{ 1991{
1557 int pri; 1992 int pri;
1558 1993
1559 for (pri = NUMPRI; pri--; ) 1994 for (pri = NUMPRI; pri--; )
1560 while (pendingcnt [pri]) 1995 while (pendingcnt [pri])
1561 { 1996 {
1562 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1997 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1563 1998
1564 if (expect_true (p->w))
1565 {
1566 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1999 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2000 /* ^ this is no longer true, as pending_w could be here */
1567 2001
1568 p->w->pending = 0; 2002 p->w->pending = 0;
1569 EV_CB_INVOKE (p->w, p->events); 2003 EV_CB_INVOKE (p->w, p->events);
1570 } 2004 EV_FREQUENT_CHECK;
1571 } 2005 }
1572} 2006}
1573 2007
1574#if EV_IDLE_ENABLE 2008#if EV_IDLE_ENABLE
1575void inline_size 2009/* make idle watchers pending. this handles the "call-idle */
2010/* only when higher priorities are idle" logic */
2011inline_size void
1576idle_reify (EV_P) 2012idle_reify (EV_P)
1577{ 2013{
1578 if (expect_false (idleall)) 2014 if (expect_false (idleall))
1579 { 2015 {
1580 int pri; 2016 int pri;
1592 } 2028 }
1593 } 2029 }
1594} 2030}
1595#endif 2031#endif
1596 2032
1597void inline_size 2033/* make timers pending */
2034inline_size void
1598timers_reify (EV_P) 2035timers_reify (EV_P)
1599{ 2036{
2037 EV_FREQUENT_CHECK;
2038
1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now) 2039 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1601 { 2040 {
1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2041 do
1603
1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1605
1606 /* first reschedule or stop timer */
1607 if (w->repeat)
1608 { 2042 {
2043 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2044
2045 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2046
2047 /* first reschedule or stop timer */
2048 if (w->repeat)
2049 {
2050 ev_at (w) += w->repeat;
2051 if (ev_at (w) < mn_now)
2052 ev_at (w) = mn_now;
2053
1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2054 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1610 2055
1611 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now;
1614
1615 ANHE_at_set (timers [HEAP0]); 2056 ANHE_at_cache (timers [HEAP0]);
1616 downheap (timers, timercnt, HEAP0); 2057 downheap (timers, timercnt, HEAP0);
2058 }
2059 else
2060 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2061
2062 EV_FREQUENT_CHECK;
2063 feed_reverse (EV_A_ (W)w);
1617 } 2064 }
1618 else 2065 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1620 2066
1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2067 feed_reverse_done (EV_A_ EV_TIMEOUT);
1622 } 2068 }
1623} 2069}
1624 2070
1625#if EV_PERIODIC_ENABLE 2071#if EV_PERIODIC_ENABLE
1626void inline_size 2072/* make periodics pending */
2073inline_size void
1627periodics_reify (EV_P) 2074periodics_reify (EV_P)
1628{ 2075{
2076 EV_FREQUENT_CHECK;
2077
1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now) 2078 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1630 { 2079 {
1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2080 int feed_count = 0;
1632 2081
1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2082 do
1634
1635 /* first reschedule or stop timer */
1636 if (w->reschedule_cb)
1637 { 2083 {
2084 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2085
2086 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2087
2088 /* first reschedule or stop timer */
2089 if (w->reschedule_cb)
2090 {
1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 2091 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2092
1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 2093 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2094
1640 ANHE_at_set (periodics [HEAP0]); 2095 ANHE_at_cache (periodics [HEAP0]);
1641 downheap (periodics, periodiccnt, HEAP0); 2096 downheap (periodics, periodiccnt, HEAP0);
2097 }
2098 else if (w->interval)
2099 {
2100 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2101 /* if next trigger time is not sufficiently in the future, put it there */
2102 /* this might happen because of floating point inexactness */
2103 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2104 {
2105 ev_at (w) += w->interval;
2106
2107 /* if interval is unreasonably low we might still have a time in the past */
2108 /* so correct this. this will make the periodic very inexact, but the user */
2109 /* has effectively asked to get triggered more often than possible */
2110 if (ev_at (w) < ev_rt_now)
2111 ev_at (w) = ev_rt_now;
2112 }
2113
2114 ANHE_at_cache (periodics [HEAP0]);
2115 downheap (periodics, periodiccnt, HEAP0);
2116 }
2117 else
2118 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2119
2120 EV_FREQUENT_CHECK;
2121 feed_reverse (EV_A_ (W)w);
1642 } 2122 }
1643 else if (w->interval) 2123 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1644 {
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else
1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1653 2124
1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2125 feed_reverse_done (EV_A_ EV_PERIODIC);
1655 } 2126 }
1656} 2127}
1657 2128
2129/* simply recalculate all periodics */
2130/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1658static void noinline 2131static void noinline
1659periodics_reschedule (EV_P) 2132periodics_reschedule (EV_P)
1660{ 2133{
1661 int i; 2134 int i;
1662 2135
1668 if (w->reschedule_cb) 2141 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2142 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1670 else if (w->interval) 2143 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2144 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1672 2145
1673 ANHE_at_set (periodics [i]); 2146 ANHE_at_cache (periodics [i]);
2147 }
2148
2149 reheap (periodics, periodiccnt);
2150}
2151#endif
2152
2153/* adjust all timers by a given offset */
2154static void noinline
2155timers_reschedule (EV_P_ ev_tstamp adjust)
2156{
2157 int i;
2158
2159 for (i = 0; i < timercnt; ++i)
1674 } 2160 {
1675 2161 ANHE *he = timers + i + HEAP0;
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */ 2162 ANHE_w (*he)->at += adjust;
1677 for (i = periodiccnt >> 1; --i; ) 2163 ANHE_at_cache (*he);
1678 downheap (periodics, periodiccnt, i + HEAP0); 2164 }
1679} 2165}
1680#endif
1681 2166
1682void inline_speed 2167/* fetch new monotonic and realtime times from the kernel */
2168/* also detect if there was a timejump, and act accordingly */
2169inline_speed void
1683time_update (EV_P_ ev_tstamp max_block) 2170time_update (EV_P_ ev_tstamp max_block)
1684{ 2171{
1685 int i;
1686
1687#if EV_USE_MONOTONIC 2172#if EV_USE_MONOTONIC
1688 if (expect_true (have_monotonic)) 2173 if (expect_true (have_monotonic))
1689 { 2174 {
2175 int i;
1690 ev_tstamp odiff = rtmn_diff; 2176 ev_tstamp odiff = rtmn_diff;
1691 2177
1692 mn_now = get_clock (); 2178 mn_now = get_clock ();
1693 2179
1694 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2180 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1720 ev_rt_now = ev_time (); 2206 ev_rt_now = ev_time ();
1721 mn_now = get_clock (); 2207 mn_now = get_clock ();
1722 now_floor = mn_now; 2208 now_floor = mn_now;
1723 } 2209 }
1724 2210
2211 /* no timer adjustment, as the monotonic clock doesn't jump */
2212 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1725# if EV_PERIODIC_ENABLE 2213# if EV_PERIODIC_ENABLE
1726 periodics_reschedule (EV_A); 2214 periodics_reschedule (EV_A);
1727# endif 2215# endif
1728 /* no timer adjustment, as the monotonic clock doesn't jump */
1729 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1730 } 2216 }
1731 else 2217 else
1732#endif 2218#endif
1733 { 2219 {
1734 ev_rt_now = ev_time (); 2220 ev_rt_now = ev_time ();
1735 2221
1736 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2222 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1737 { 2223 {
2224 /* adjust timers. this is easy, as the offset is the same for all of them */
2225 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1738#if EV_PERIODIC_ENABLE 2226#if EV_PERIODIC_ENABLE
1739 periodics_reschedule (EV_A); 2227 periodics_reschedule (EV_A);
1740#endif 2228#endif
1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1742 for (i = 0; i < timercnt; ++i)
1743 {
1744 ANHE *he = timers + i + HEAP0;
1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he);
1747 }
1748 } 2229 }
1749 2230
1750 mn_now = ev_rt_now; 2231 mn_now = ev_rt_now;
1751 } 2232 }
1752} 2233}
1753 2234
1754void 2235void
1755ev_ref (EV_P)
1756{
1757 ++activecnt;
1758}
1759
1760void
1761ev_unref (EV_P)
1762{
1763 --activecnt;
1764}
1765
1766static int loop_done;
1767
1768void
1769ev_loop (EV_P_ int flags) 2236ev_loop (EV_P_ int flags)
1770{ 2237{
2238#if EV_MINIMAL < 2
2239 ++loop_depth;
2240#endif
2241
2242 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2243
1771 loop_done = EVUNLOOP_CANCEL; 2244 loop_done = EVUNLOOP_CANCEL;
1772 2245
1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2246 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1774 2247
1775 do 2248 do
1776 { 2249 {
2250#if EV_VERIFY >= 2
2251 ev_loop_verify (EV_A);
2252#endif
2253
1777#ifndef _WIN32 2254#ifndef _WIN32
1778 if (expect_false (curpid)) /* penalise the forking check even more */ 2255 if (expect_false (curpid)) /* penalise the forking check even more */
1779 if (expect_false (getpid () != curpid)) 2256 if (expect_false (getpid () != curpid))
1780 { 2257 {
1781 curpid = getpid (); 2258 curpid = getpid ();
1787 /* we might have forked, so queue fork handlers */ 2264 /* we might have forked, so queue fork handlers */
1788 if (expect_false (postfork)) 2265 if (expect_false (postfork))
1789 if (forkcnt) 2266 if (forkcnt)
1790 { 2267 {
1791 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2268 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1792 call_pending (EV_A); 2269 EV_INVOKE_PENDING;
1793 } 2270 }
1794#endif 2271#endif
1795 2272
1796 /* queue prepare watchers (and execute them) */ 2273 /* queue prepare watchers (and execute them) */
1797 if (expect_false (preparecnt)) 2274 if (expect_false (preparecnt))
1798 { 2275 {
1799 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2276 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1800 call_pending (EV_A); 2277 EV_INVOKE_PENDING;
1801 } 2278 }
1802 2279
1803 if (expect_false (!activecnt)) 2280 if (expect_false (loop_done))
1804 break; 2281 break;
1805 2282
1806 /* we might have forked, so reify kernel state if necessary */ 2283 /* we might have forked, so reify kernel state if necessary */
1807 if (expect_false (postfork)) 2284 if (expect_false (postfork))
1808 loop_fork (EV_A); 2285 loop_fork (EV_A);
1815 ev_tstamp waittime = 0.; 2292 ev_tstamp waittime = 0.;
1816 ev_tstamp sleeptime = 0.; 2293 ev_tstamp sleeptime = 0.;
1817 2294
1818 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2295 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1819 { 2296 {
2297 /* remember old timestamp for io_blocktime calculation */
2298 ev_tstamp prev_mn_now = mn_now;
2299
1820 /* update time to cancel out callback processing overhead */ 2300 /* update time to cancel out callback processing overhead */
1821 time_update (EV_A_ 1e100); 2301 time_update (EV_A_ 1e100);
1822 2302
1823 waittime = MAX_BLOCKTIME; 2303 waittime = MAX_BLOCKTIME;
1824 2304
1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2314 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1835 if (waittime > to) waittime = to; 2315 if (waittime > to) waittime = to;
1836 } 2316 }
1837#endif 2317#endif
1838 2318
2319 /* don't let timeouts decrease the waittime below timeout_blocktime */
1839 if (expect_false (waittime < timeout_blocktime)) 2320 if (expect_false (waittime < timeout_blocktime))
1840 waittime = timeout_blocktime; 2321 waittime = timeout_blocktime;
1841 2322
1842 sleeptime = waittime - backend_fudge; 2323 /* extra check because io_blocktime is commonly 0 */
1843
1844 if (expect_true (sleeptime > io_blocktime)) 2324 if (expect_false (io_blocktime))
1845 sleeptime = io_blocktime;
1846
1847 if (sleeptime)
1848 { 2325 {
2326 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2327
2328 if (sleeptime > waittime - backend_fudge)
2329 sleeptime = waittime - backend_fudge;
2330
2331 if (expect_true (sleeptime > 0.))
2332 {
1849 ev_sleep (sleeptime); 2333 ev_sleep (sleeptime);
1850 waittime -= sleeptime; 2334 waittime -= sleeptime;
2335 }
1851 } 2336 }
1852 } 2337 }
1853 2338
2339#if EV_MINIMAL < 2
1854 ++loop_count; 2340 ++loop_count;
2341#endif
2342 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1855 backend_poll (EV_A_ waittime); 2343 backend_poll (EV_A_ waittime);
2344 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1856 2345
1857 /* update ev_rt_now, do magic */ 2346 /* update ev_rt_now, do magic */
1858 time_update (EV_A_ waittime + sleeptime); 2347 time_update (EV_A_ waittime + sleeptime);
1859 } 2348 }
1860 2349
1871 2360
1872 /* queue check watchers, to be executed first */ 2361 /* queue check watchers, to be executed first */
1873 if (expect_false (checkcnt)) 2362 if (expect_false (checkcnt))
1874 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2363 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1875 2364
1876 call_pending (EV_A); 2365 EV_INVOKE_PENDING;
1877 } 2366 }
1878 while (expect_true ( 2367 while (expect_true (
1879 activecnt 2368 activecnt
1880 && !loop_done 2369 && !loop_done
1881 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2370 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1882 )); 2371 ));
1883 2372
1884 if (loop_done == EVUNLOOP_ONE) 2373 if (loop_done == EVUNLOOP_ONE)
1885 loop_done = EVUNLOOP_CANCEL; 2374 loop_done = EVUNLOOP_CANCEL;
2375
2376#if EV_MINIMAL < 2
2377 --loop_depth;
2378#endif
1886} 2379}
1887 2380
1888void 2381void
1889ev_unloop (EV_P_ int how) 2382ev_unloop (EV_P_ int how)
1890{ 2383{
1891 loop_done = how; 2384 loop_done = how;
1892} 2385}
1893 2386
2387void
2388ev_ref (EV_P)
2389{
2390 ++activecnt;
2391}
2392
2393void
2394ev_unref (EV_P)
2395{
2396 --activecnt;
2397}
2398
2399void
2400ev_now_update (EV_P)
2401{
2402 time_update (EV_A_ 1e100);
2403}
2404
2405void
2406ev_suspend (EV_P)
2407{
2408 ev_now_update (EV_A);
2409}
2410
2411void
2412ev_resume (EV_P)
2413{
2414 ev_tstamp mn_prev = mn_now;
2415
2416 ev_now_update (EV_A);
2417 timers_reschedule (EV_A_ mn_now - mn_prev);
2418#if EV_PERIODIC_ENABLE
2419 /* TODO: really do this? */
2420 periodics_reschedule (EV_A);
2421#endif
2422}
2423
1894/*****************************************************************************/ 2424/*****************************************************************************/
2425/* singly-linked list management, used when the expected list length is short */
1895 2426
1896void inline_size 2427inline_size void
1897wlist_add (WL *head, WL elem) 2428wlist_add (WL *head, WL elem)
1898{ 2429{
1899 elem->next = *head; 2430 elem->next = *head;
1900 *head = elem; 2431 *head = elem;
1901} 2432}
1902 2433
1903void inline_size 2434inline_size void
1904wlist_del (WL *head, WL elem) 2435wlist_del (WL *head, WL elem)
1905{ 2436{
1906 while (*head) 2437 while (*head)
1907 { 2438 {
1908 if (*head == elem) 2439 if (expect_true (*head == elem))
1909 { 2440 {
1910 *head = elem->next; 2441 *head = elem->next;
1911 return; 2442 break;
1912 } 2443 }
1913 2444
1914 head = &(*head)->next; 2445 head = &(*head)->next;
1915 } 2446 }
1916} 2447}
1917 2448
1918void inline_speed 2449/* internal, faster, version of ev_clear_pending */
2450inline_speed void
1919clear_pending (EV_P_ W w) 2451clear_pending (EV_P_ W w)
1920{ 2452{
1921 if (w->pending) 2453 if (w->pending)
1922 { 2454 {
1923 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2455 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1924 w->pending = 0; 2456 w->pending = 0;
1925 } 2457 }
1926} 2458}
1927 2459
1928int 2460int
1932 int pending = w_->pending; 2464 int pending = w_->pending;
1933 2465
1934 if (expect_true (pending)) 2466 if (expect_true (pending))
1935 { 2467 {
1936 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2468 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2469 p->w = (W)&pending_w;
1937 w_->pending = 0; 2470 w_->pending = 0;
1938 p->w = 0;
1939 return p->events; 2471 return p->events;
1940 } 2472 }
1941 else 2473 else
1942 return 0; 2474 return 0;
1943} 2475}
1944 2476
1945void inline_size 2477inline_size void
1946pri_adjust (EV_P_ W w) 2478pri_adjust (EV_P_ W w)
1947{ 2479{
1948 int pri = w->priority; 2480 int pri = ev_priority (w);
1949 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2481 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1950 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2482 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1951 w->priority = pri; 2483 ev_set_priority (w, pri);
1952} 2484}
1953 2485
1954void inline_speed 2486inline_speed void
1955ev_start (EV_P_ W w, int active) 2487ev_start (EV_P_ W w, int active)
1956{ 2488{
1957 pri_adjust (EV_A_ w); 2489 pri_adjust (EV_A_ w);
1958 w->active = active; 2490 w->active = active;
1959 ev_ref (EV_A); 2491 ev_ref (EV_A);
1960} 2492}
1961 2493
1962void inline_size 2494inline_size void
1963ev_stop (EV_P_ W w) 2495ev_stop (EV_P_ W w)
1964{ 2496{
1965 ev_unref (EV_A); 2497 ev_unref (EV_A);
1966 w->active = 0; 2498 w->active = 0;
1967} 2499}
1974 int fd = w->fd; 2506 int fd = w->fd;
1975 2507
1976 if (expect_false (ev_is_active (w))) 2508 if (expect_false (ev_is_active (w)))
1977 return; 2509 return;
1978 2510
1979 assert (("ev_io_start called with negative fd", fd >= 0)); 2511 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2512 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2513
2514 EV_FREQUENT_CHECK;
1980 2515
1981 ev_start (EV_A_ (W)w, 1); 2516 ev_start (EV_A_ (W)w, 1);
1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2517 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1983 wlist_add (&anfds[fd].head, (WL)w); 2518 wlist_add (&anfds[fd].head, (WL)w);
1984 2519
1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2520 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1986 w->events &= ~EV_IOFDSET; 2521 w->events &= ~EV__IOFDSET;
2522
2523 EV_FREQUENT_CHECK;
1987} 2524}
1988 2525
1989void noinline 2526void noinline
1990ev_io_stop (EV_P_ ev_io *w) 2527ev_io_stop (EV_P_ ev_io *w)
1991{ 2528{
1992 clear_pending (EV_A_ (W)w); 2529 clear_pending (EV_A_ (W)w);
1993 if (expect_false (!ev_is_active (w))) 2530 if (expect_false (!ev_is_active (w)))
1994 return; 2531 return;
1995 2532
1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2533 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2534
2535 EV_FREQUENT_CHECK;
1997 2536
1998 wlist_del (&anfds[w->fd].head, (WL)w); 2537 wlist_del (&anfds[w->fd].head, (WL)w);
1999 ev_stop (EV_A_ (W)w); 2538 ev_stop (EV_A_ (W)w);
2000 2539
2001 fd_change (EV_A_ w->fd, 1); 2540 fd_change (EV_A_ w->fd, 1);
2541
2542 EV_FREQUENT_CHECK;
2002} 2543}
2003 2544
2004void noinline 2545void noinline
2005ev_timer_start (EV_P_ ev_timer *w) 2546ev_timer_start (EV_P_ ev_timer *w)
2006{ 2547{
2007 if (expect_false (ev_is_active (w))) 2548 if (expect_false (ev_is_active (w)))
2008 return; 2549 return;
2009 2550
2010 ev_at (w) += mn_now; 2551 ev_at (w) += mn_now;
2011 2552
2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2553 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2013 2554
2555 EV_FREQUENT_CHECK;
2556
2557 ++timercnt;
2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2558 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2559 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2016 ANHE_w (timers [ev_active (w)]) = (WT)w; 2560 ANHE_w (timers [ev_active (w)]) = (WT)w;
2017 ANHE_at_set (timers [ev_active (w)]); 2561 ANHE_at_cache (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w)); 2562 upheap (timers, ev_active (w));
2019 2563
2564 EV_FREQUENT_CHECK;
2565
2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2566 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2021} 2567}
2022 2568
2023void noinline 2569void noinline
2024ev_timer_stop (EV_P_ ev_timer *w) 2570ev_timer_stop (EV_P_ ev_timer *w)
2025{ 2571{
2026 clear_pending (EV_A_ (W)w); 2572 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 2573 if (expect_false (!ev_is_active (w)))
2028 return; 2574 return;
2029 2575
2576 EV_FREQUENT_CHECK;
2577
2030 { 2578 {
2031 int active = ev_active (w); 2579 int active = ev_active (w);
2032 2580
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2581 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034 2582
2583 --timercnt;
2584
2035 if (expect_true (active < timercnt + HEAP0 - 1)) 2585 if (expect_true (active < timercnt + HEAP0))
2036 { 2586 {
2037 timers [active] = timers [timercnt + HEAP0 - 1]; 2587 timers [active] = timers [timercnt + HEAP0];
2038 adjustheap (timers, timercnt, active); 2588 adjustheap (timers, timercnt, active);
2039 } 2589 }
2040
2041 --timercnt;
2042 } 2590 }
2591
2592 EV_FREQUENT_CHECK;
2043 2593
2044 ev_at (w) -= mn_now; 2594 ev_at (w) -= mn_now;
2045 2595
2046 ev_stop (EV_A_ (W)w); 2596 ev_stop (EV_A_ (W)w);
2047} 2597}
2048 2598
2049void noinline 2599void noinline
2050ev_timer_again (EV_P_ ev_timer *w) 2600ev_timer_again (EV_P_ ev_timer *w)
2051{ 2601{
2602 EV_FREQUENT_CHECK;
2603
2052 if (ev_is_active (w)) 2604 if (ev_is_active (w))
2053 { 2605 {
2054 if (w->repeat) 2606 if (w->repeat)
2055 { 2607 {
2056 ev_at (w) = mn_now + w->repeat; 2608 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]); 2609 ANHE_at_cache (timers [ev_active (w)]);
2058 adjustheap (timers, timercnt, ev_active (w)); 2610 adjustheap (timers, timercnt, ev_active (w));
2059 } 2611 }
2060 else 2612 else
2061 ev_timer_stop (EV_A_ w); 2613 ev_timer_stop (EV_A_ w);
2062 } 2614 }
2063 else if (w->repeat) 2615 else if (w->repeat)
2064 { 2616 {
2065 ev_at (w) = w->repeat; 2617 ev_at (w) = w->repeat;
2066 ev_timer_start (EV_A_ w); 2618 ev_timer_start (EV_A_ w);
2067 } 2619 }
2620
2621 EV_FREQUENT_CHECK;
2622}
2623
2624ev_tstamp
2625ev_timer_remaining (EV_P_ ev_timer *w)
2626{
2627 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2068} 2628}
2069 2629
2070#if EV_PERIODIC_ENABLE 2630#if EV_PERIODIC_ENABLE
2071void noinline 2631void noinline
2072ev_periodic_start (EV_P_ ev_periodic *w) 2632ev_periodic_start (EV_P_ ev_periodic *w)
2076 2636
2077 if (w->reschedule_cb) 2637 if (w->reschedule_cb)
2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2638 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2079 else if (w->interval) 2639 else if (w->interval)
2080 { 2640 {
2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2641 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2082 /* this formula differs from the one in periodic_reify because we do not always round up */ 2642 /* this formula differs from the one in periodic_reify because we do not always round up */
2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2643 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2084 } 2644 }
2085 else 2645 else
2086 ev_at (w) = w->offset; 2646 ev_at (w) = w->offset;
2087 2647
2648 EV_FREQUENT_CHECK;
2649
2650 ++periodiccnt;
2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2651 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2652 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2090 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2653 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2654 ANHE_at_cache (periodics [ev_active (w)]);
2091 upheap (periodics, ev_active (w)); 2655 upheap (periodics, ev_active (w));
2092 2656
2657 EV_FREQUENT_CHECK;
2658
2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2659 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2094} 2660}
2095 2661
2096void noinline 2662void noinline
2097ev_periodic_stop (EV_P_ ev_periodic *w) 2663ev_periodic_stop (EV_P_ ev_periodic *w)
2098{ 2664{
2099 clear_pending (EV_A_ (W)w); 2665 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w))) 2666 if (expect_false (!ev_is_active (w)))
2101 return; 2667 return;
2102 2668
2669 EV_FREQUENT_CHECK;
2670
2103 { 2671 {
2104 int active = ev_active (w); 2672 int active = ev_active (w);
2105 2673
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2674 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107 2675
2676 --periodiccnt;
2677
2108 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2678 if (expect_true (active < periodiccnt + HEAP0))
2109 { 2679 {
2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2680 periodics [active] = periodics [periodiccnt + HEAP0];
2111 adjustheap (periodics, periodiccnt, active); 2681 adjustheap (periodics, periodiccnt, active);
2112 } 2682 }
2113
2114 --periodiccnt;
2115 } 2683 }
2684
2685 EV_FREQUENT_CHECK;
2116 2686
2117 ev_stop (EV_A_ (W)w); 2687 ev_stop (EV_A_ (W)w);
2118} 2688}
2119 2689
2120void noinline 2690void noinline
2131#endif 2701#endif
2132 2702
2133void noinline 2703void noinline
2134ev_signal_start (EV_P_ ev_signal *w) 2704ev_signal_start (EV_P_ ev_signal *w)
2135{ 2705{
2136#if EV_MULTIPLICITY
2137 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2138#endif
2139 if (expect_false (ev_is_active (w))) 2706 if (expect_false (ev_is_active (w)))
2140 return; 2707 return;
2141 2708
2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2709 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2143 2710
2144 evpipe_init (EV_A); 2711#if EV_MULTIPLICITY
2712 assert (("libev: a signal must not be attached to two different loops",
2713 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2145 2714
2715 signals [w->signum - 1].loop = EV_A;
2716#endif
2717
2718 EV_FREQUENT_CHECK;
2719
2720#if EV_USE_SIGNALFD
2721 if (sigfd == -2)
2146 { 2722 {
2147#ifndef _WIN32 2723 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2148 sigset_t full, prev; 2724 if (sigfd < 0 && errno == EINVAL)
2149 sigfillset (&full); 2725 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2150 sigprocmask (SIG_SETMASK, &full, &prev);
2151#endif
2152 2726
2153 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2727 if (sigfd >= 0)
2728 {
2729 fd_intern (sigfd); /* doing it twice will not hurt */
2154 2730
2155#ifndef _WIN32 2731 sigemptyset (&sigfd_set);
2156 sigprocmask (SIG_SETMASK, &prev, 0); 2732
2157#endif 2733 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2734 ev_set_priority (&sigfd_w, EV_MAXPRI);
2735 ev_io_start (EV_A_ &sigfd_w);
2736 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2737 }
2158 } 2738 }
2739
2740 if (sigfd >= 0)
2741 {
2742 /* TODO: check .head */
2743 sigaddset (&sigfd_set, w->signum);
2744 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2745
2746 signalfd (sigfd, &sigfd_set, 0);
2747 }
2748#endif
2159 2749
2160 ev_start (EV_A_ (W)w, 1); 2750 ev_start (EV_A_ (W)w, 1);
2161 wlist_add (&signals [w->signum - 1].head, (WL)w); 2751 wlist_add (&signals [w->signum - 1].head, (WL)w);
2162 2752
2163 if (!((WL)w)->next) 2753 if (!((WL)w)->next)
2754# if EV_USE_SIGNALFD
2755 if (sigfd < 0) /*TODO*/
2756# endif
2164 { 2757 {
2165#if _WIN32 2758# ifdef _WIN32
2759 evpipe_init (EV_A);
2760
2166 signal (w->signum, ev_sighandler); 2761 signal (w->signum, ev_sighandler);
2167#else 2762# else
2168 struct sigaction sa; 2763 struct sigaction sa;
2764
2765 evpipe_init (EV_A);
2766
2169 sa.sa_handler = ev_sighandler; 2767 sa.sa_handler = ev_sighandler;
2170 sigfillset (&sa.sa_mask); 2768 sigfillset (&sa.sa_mask);
2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2769 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2172 sigaction (w->signum, &sa, 0); 2770 sigaction (w->signum, &sa, 0);
2771
2772 sigemptyset (&sa.sa_mask);
2773 sigaddset (&sa.sa_mask, w->signum);
2774 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2173#endif 2775#endif
2174 } 2776 }
2777
2778 EV_FREQUENT_CHECK;
2175} 2779}
2176 2780
2177void noinline 2781void noinline
2178ev_signal_stop (EV_P_ ev_signal *w) 2782ev_signal_stop (EV_P_ ev_signal *w)
2179{ 2783{
2180 clear_pending (EV_A_ (W)w); 2784 clear_pending (EV_A_ (W)w);
2181 if (expect_false (!ev_is_active (w))) 2785 if (expect_false (!ev_is_active (w)))
2182 return; 2786 return;
2183 2787
2788 EV_FREQUENT_CHECK;
2789
2184 wlist_del (&signals [w->signum - 1].head, (WL)w); 2790 wlist_del (&signals [w->signum - 1].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 2791 ev_stop (EV_A_ (W)w);
2186 2792
2187 if (!signals [w->signum - 1].head) 2793 if (!signals [w->signum - 1].head)
2794 {
2795#if EV_MULTIPLICITY
2796 signals [w->signum - 1].loop = 0; /* unattach from signal */
2797#endif
2798#if EV_USE_SIGNALFD
2799 if (sigfd >= 0)
2800 {
2801 sigset_t ss;
2802
2803 sigemptyset (&ss);
2804 sigaddset (&ss, w->signum);
2805 sigdelset (&sigfd_set, w->signum);
2806
2807 signalfd (sigfd, &sigfd_set, 0);
2808 sigprocmask (SIG_UNBLOCK, &ss, 0);
2809 }
2810 else
2811#endif
2188 signal (w->signum, SIG_DFL); 2812 signal (w->signum, SIG_DFL);
2813 }
2814
2815 EV_FREQUENT_CHECK;
2189} 2816}
2190 2817
2191void 2818void
2192ev_child_start (EV_P_ ev_child *w) 2819ev_child_start (EV_P_ ev_child *w)
2193{ 2820{
2194#if EV_MULTIPLICITY 2821#if EV_MULTIPLICITY
2195 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2822 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2196#endif 2823#endif
2197 if (expect_false (ev_is_active (w))) 2824 if (expect_false (ev_is_active (w)))
2198 return; 2825 return;
2199 2826
2827 EV_FREQUENT_CHECK;
2828
2200 ev_start (EV_A_ (W)w, 1); 2829 ev_start (EV_A_ (W)w, 1);
2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2830 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2831
2832 EV_FREQUENT_CHECK;
2202} 2833}
2203 2834
2204void 2835void
2205ev_child_stop (EV_P_ ev_child *w) 2836ev_child_stop (EV_P_ ev_child *w)
2206{ 2837{
2207 clear_pending (EV_A_ (W)w); 2838 clear_pending (EV_A_ (W)w);
2208 if (expect_false (!ev_is_active (w))) 2839 if (expect_false (!ev_is_active (w)))
2209 return; 2840 return;
2210 2841
2842 EV_FREQUENT_CHECK;
2843
2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2844 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2212 ev_stop (EV_A_ (W)w); 2845 ev_stop (EV_A_ (W)w);
2846
2847 EV_FREQUENT_CHECK;
2213} 2848}
2214 2849
2215#if EV_STAT_ENABLE 2850#if EV_STAT_ENABLE
2216 2851
2217# ifdef _WIN32 2852# ifdef _WIN32
2218# undef lstat 2853# undef lstat
2219# define lstat(a,b) _stati64 (a,b) 2854# define lstat(a,b) _stati64 (a,b)
2220# endif 2855# endif
2221 2856
2222#define DEF_STAT_INTERVAL 5.0074891 2857#define DEF_STAT_INTERVAL 5.0074891
2858#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2223#define MIN_STAT_INTERVAL 0.1074891 2859#define MIN_STAT_INTERVAL 0.1074891
2224 2860
2225static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2861static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2226 2862
2227#if EV_USE_INOTIFY 2863#if EV_USE_INOTIFY
2228# define EV_INOTIFY_BUFSIZE 8192 2864# define EV_INOTIFY_BUFSIZE 8192
2230static void noinline 2866static void noinline
2231infy_add (EV_P_ ev_stat *w) 2867infy_add (EV_P_ ev_stat *w)
2232{ 2868{
2233 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2869 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2234 2870
2235 if (w->wd < 0) 2871 if (w->wd >= 0)
2872 {
2873 struct statfs sfs;
2874
2875 /* now local changes will be tracked by inotify, but remote changes won't */
2876 /* unless the filesystem is known to be local, we therefore still poll */
2877 /* also do poll on <2.6.25, but with normal frequency */
2878
2879 if (!fs_2625)
2880 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2881 else if (!statfs (w->path, &sfs)
2882 && (sfs.f_type == 0x1373 /* devfs */
2883 || sfs.f_type == 0xEF53 /* ext2/3 */
2884 || sfs.f_type == 0x3153464a /* jfs */
2885 || sfs.f_type == 0x52654973 /* reiser3 */
2886 || sfs.f_type == 0x01021994 /* tempfs */
2887 || sfs.f_type == 0x58465342 /* xfs */))
2888 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2889 else
2890 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2236 { 2891 }
2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2892 else
2893 {
2894 /* can't use inotify, continue to stat */
2895 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2238 2896
2239 /* monitor some parent directory for speedup hints */ 2897 /* if path is not there, monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2898 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2241 /* but an efficiency issue only */ 2899 /* but an efficiency issue only */
2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2900 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2243 { 2901 {
2244 char path [4096]; 2902 char path [4096];
2245 strcpy (path, w->path); 2903 strcpy (path, w->path);
2249 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2907 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2250 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2908 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2251 2909
2252 char *pend = strrchr (path, '/'); 2910 char *pend = strrchr (path, '/');
2253 2911
2254 if (!pend) 2912 if (!pend || pend == path)
2255 break; /* whoops, no '/', complain to your admin */ 2913 break;
2256 2914
2257 *pend = 0; 2915 *pend = 0;
2258 w->wd = inotify_add_watch (fs_fd, path, mask); 2916 w->wd = inotify_add_watch (fs_fd, path, mask);
2259 } 2917 }
2260 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2918 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2261 } 2919 }
2262 } 2920 }
2263 else
2264 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2265 2921
2266 if (w->wd >= 0) 2922 if (w->wd >= 0)
2267 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2923 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2924
2925 /* now re-arm timer, if required */
2926 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2927 ev_timer_again (EV_A_ &w->timer);
2928 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2268} 2929}
2269 2930
2270static void noinline 2931static void noinline
2271infy_del (EV_P_ ev_stat *w) 2932infy_del (EV_P_ ev_stat *w)
2272{ 2933{
2286 2947
2287static void noinline 2948static void noinline
2288infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2949infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2289{ 2950{
2290 if (slot < 0) 2951 if (slot < 0)
2291 /* overflow, need to check for all hahs slots */ 2952 /* overflow, need to check for all hash slots */
2292 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2953 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2293 infy_wd (EV_A_ slot, wd, ev); 2954 infy_wd (EV_A_ slot, wd, ev);
2294 else 2955 else
2295 { 2956 {
2296 WL w_; 2957 WL w_;
2302 2963
2303 if (w->wd == wd || wd == -1) 2964 if (w->wd == wd || wd == -1)
2304 { 2965 {
2305 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2966 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2306 { 2967 {
2968 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2307 w->wd = -1; 2969 w->wd = -1;
2308 infy_add (EV_A_ w); /* re-add, no matter what */ 2970 infy_add (EV_A_ w); /* re-add, no matter what */
2309 } 2971 }
2310 2972
2311 stat_timer_cb (EV_A_ &w->timer, 0); 2973 stat_timer_cb (EV_A_ &w->timer, 0);
2324 2986
2325 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2987 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2326 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2988 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2327} 2989}
2328 2990
2329void inline_size 2991inline_size void
2992check_2625 (EV_P)
2993{
2994 /* kernels < 2.6.25 are borked
2995 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2996 */
2997 struct utsname buf;
2998 int major, minor, micro;
2999
3000 if (uname (&buf))
3001 return;
3002
3003 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
3004 return;
3005
3006 if (major < 2
3007 || (major == 2 && minor < 6)
3008 || (major == 2 && minor == 6 && micro < 25))
3009 return;
3010
3011 fs_2625 = 1;
3012}
3013
3014inline_size int
3015infy_newfd (void)
3016{
3017#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3018 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3019 if (fd >= 0)
3020 return fd;
3021#endif
3022 return inotify_init ();
3023}
3024
3025inline_size void
2330infy_init (EV_P) 3026infy_init (EV_P)
2331{ 3027{
2332 if (fs_fd != -2) 3028 if (fs_fd != -2)
2333 return; 3029 return;
2334 3030
3031 fs_fd = -1;
3032
3033 check_2625 (EV_A);
3034
2335 fs_fd = inotify_init (); 3035 fs_fd = infy_newfd ();
2336 3036
2337 if (fs_fd >= 0) 3037 if (fs_fd >= 0)
2338 { 3038 {
3039 fd_intern (fs_fd);
2339 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3040 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2340 ev_set_priority (&fs_w, EV_MAXPRI); 3041 ev_set_priority (&fs_w, EV_MAXPRI);
2341 ev_io_start (EV_A_ &fs_w); 3042 ev_io_start (EV_A_ &fs_w);
3043 ev_unref (EV_A);
2342 } 3044 }
2343} 3045}
2344 3046
2345void inline_size 3047inline_size void
2346infy_fork (EV_P) 3048infy_fork (EV_P)
2347{ 3049{
2348 int slot; 3050 int slot;
2349 3051
2350 if (fs_fd < 0) 3052 if (fs_fd < 0)
2351 return; 3053 return;
2352 3054
3055 ev_ref (EV_A);
3056 ev_io_stop (EV_A_ &fs_w);
2353 close (fs_fd); 3057 close (fs_fd);
2354 fs_fd = inotify_init (); 3058 fs_fd = infy_newfd ();
3059
3060 if (fs_fd >= 0)
3061 {
3062 fd_intern (fs_fd);
3063 ev_io_set (&fs_w, fs_fd, EV_READ);
3064 ev_io_start (EV_A_ &fs_w);
3065 ev_unref (EV_A);
3066 }
2355 3067
2356 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3068 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2357 { 3069 {
2358 WL w_ = fs_hash [slot].head; 3070 WL w_ = fs_hash [slot].head;
2359 fs_hash [slot].head = 0; 3071 fs_hash [slot].head = 0;
2366 w->wd = -1; 3078 w->wd = -1;
2367 3079
2368 if (fs_fd >= 0) 3080 if (fs_fd >= 0)
2369 infy_add (EV_A_ w); /* re-add, no matter what */ 3081 infy_add (EV_A_ w); /* re-add, no matter what */
2370 else 3082 else
3083 {
3084 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3085 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2371 ev_timer_start (EV_A_ &w->timer); 3086 ev_timer_again (EV_A_ &w->timer);
3087 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3088 }
2372 } 3089 }
2373
2374 } 3090 }
2375} 3091}
2376 3092
3093#endif
3094
3095#ifdef _WIN32
3096# define EV_LSTAT(p,b) _stati64 (p, b)
3097#else
3098# define EV_LSTAT(p,b) lstat (p, b)
2377#endif 3099#endif
2378 3100
2379void 3101void
2380ev_stat_stat (EV_P_ ev_stat *w) 3102ev_stat_stat (EV_P_ ev_stat *w)
2381{ 3103{
2388static void noinline 3110static void noinline
2389stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3111stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2390{ 3112{
2391 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3113 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2392 3114
2393 /* we copy this here each the time so that */ 3115 ev_statdata prev = w->attr;
2394 /* prev has the old value when the callback gets invoked */
2395 w->prev = w->attr;
2396 ev_stat_stat (EV_A_ w); 3116 ev_stat_stat (EV_A_ w);
2397 3117
2398 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3118 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2399 if ( 3119 if (
2400 w->prev.st_dev != w->attr.st_dev 3120 prev.st_dev != w->attr.st_dev
2401 || w->prev.st_ino != w->attr.st_ino 3121 || prev.st_ino != w->attr.st_ino
2402 || w->prev.st_mode != w->attr.st_mode 3122 || prev.st_mode != w->attr.st_mode
2403 || w->prev.st_nlink != w->attr.st_nlink 3123 || prev.st_nlink != w->attr.st_nlink
2404 || w->prev.st_uid != w->attr.st_uid 3124 || prev.st_uid != w->attr.st_uid
2405 || w->prev.st_gid != w->attr.st_gid 3125 || prev.st_gid != w->attr.st_gid
2406 || w->prev.st_rdev != w->attr.st_rdev 3126 || prev.st_rdev != w->attr.st_rdev
2407 || w->prev.st_size != w->attr.st_size 3127 || prev.st_size != w->attr.st_size
2408 || w->prev.st_atime != w->attr.st_atime 3128 || prev.st_atime != w->attr.st_atime
2409 || w->prev.st_mtime != w->attr.st_mtime 3129 || prev.st_mtime != w->attr.st_mtime
2410 || w->prev.st_ctime != w->attr.st_ctime 3130 || prev.st_ctime != w->attr.st_ctime
2411 ) { 3131 ) {
3132 /* we only update w->prev on actual differences */
3133 /* in case we test more often than invoke the callback, */
3134 /* to ensure that prev is always different to attr */
3135 w->prev = prev;
3136
2412 #if EV_USE_INOTIFY 3137 #if EV_USE_INOTIFY
3138 if (fs_fd >= 0)
3139 {
2413 infy_del (EV_A_ w); 3140 infy_del (EV_A_ w);
2414 infy_add (EV_A_ w); 3141 infy_add (EV_A_ w);
2415 ev_stat_stat (EV_A_ w); /* avoid race... */ 3142 ev_stat_stat (EV_A_ w); /* avoid race... */
3143 }
2416 #endif 3144 #endif
2417 3145
2418 ev_feed_event (EV_A_ w, EV_STAT); 3146 ev_feed_event (EV_A_ w, EV_STAT);
2419 } 3147 }
2420} 3148}
2423ev_stat_start (EV_P_ ev_stat *w) 3151ev_stat_start (EV_P_ ev_stat *w)
2424{ 3152{
2425 if (expect_false (ev_is_active (w))) 3153 if (expect_false (ev_is_active (w)))
2426 return; 3154 return;
2427 3155
2428 /* since we use memcmp, we need to clear any padding data etc. */
2429 memset (&w->prev, 0, sizeof (ev_statdata));
2430 memset (&w->attr, 0, sizeof (ev_statdata));
2431
2432 ev_stat_stat (EV_A_ w); 3156 ev_stat_stat (EV_A_ w);
2433 3157
3158 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2434 if (w->interval < MIN_STAT_INTERVAL) 3159 w->interval = MIN_STAT_INTERVAL;
2435 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2436 3160
2437 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3161 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2438 ev_set_priority (&w->timer, ev_priority (w)); 3162 ev_set_priority (&w->timer, ev_priority (w));
2439 3163
2440#if EV_USE_INOTIFY 3164#if EV_USE_INOTIFY
2441 infy_init (EV_A); 3165 infy_init (EV_A);
2442 3166
2443 if (fs_fd >= 0) 3167 if (fs_fd >= 0)
2444 infy_add (EV_A_ w); 3168 infy_add (EV_A_ w);
2445 else 3169 else
2446#endif 3170#endif
3171 {
2447 ev_timer_start (EV_A_ &w->timer); 3172 ev_timer_again (EV_A_ &w->timer);
3173 ev_unref (EV_A);
3174 }
2448 3175
2449 ev_start (EV_A_ (W)w, 1); 3176 ev_start (EV_A_ (W)w, 1);
3177
3178 EV_FREQUENT_CHECK;
2450} 3179}
2451 3180
2452void 3181void
2453ev_stat_stop (EV_P_ ev_stat *w) 3182ev_stat_stop (EV_P_ ev_stat *w)
2454{ 3183{
2455 clear_pending (EV_A_ (W)w); 3184 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 3185 if (expect_false (!ev_is_active (w)))
2457 return; 3186 return;
2458 3187
3188 EV_FREQUENT_CHECK;
3189
2459#if EV_USE_INOTIFY 3190#if EV_USE_INOTIFY
2460 infy_del (EV_A_ w); 3191 infy_del (EV_A_ w);
2461#endif 3192#endif
3193
3194 if (ev_is_active (&w->timer))
3195 {
3196 ev_ref (EV_A);
2462 ev_timer_stop (EV_A_ &w->timer); 3197 ev_timer_stop (EV_A_ &w->timer);
3198 }
2463 3199
2464 ev_stop (EV_A_ (W)w); 3200 ev_stop (EV_A_ (W)w);
3201
3202 EV_FREQUENT_CHECK;
2465} 3203}
2466#endif 3204#endif
2467 3205
2468#if EV_IDLE_ENABLE 3206#if EV_IDLE_ENABLE
2469void 3207void
2471{ 3209{
2472 if (expect_false (ev_is_active (w))) 3210 if (expect_false (ev_is_active (w)))
2473 return; 3211 return;
2474 3212
2475 pri_adjust (EV_A_ (W)w); 3213 pri_adjust (EV_A_ (W)w);
3214
3215 EV_FREQUENT_CHECK;
2476 3216
2477 { 3217 {
2478 int active = ++idlecnt [ABSPRI (w)]; 3218 int active = ++idlecnt [ABSPRI (w)];
2479 3219
2480 ++idleall; 3220 ++idleall;
2481 ev_start (EV_A_ (W)w, active); 3221 ev_start (EV_A_ (W)w, active);
2482 3222
2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3223 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2484 idles [ABSPRI (w)][active - 1] = w; 3224 idles [ABSPRI (w)][active - 1] = w;
2485 } 3225 }
3226
3227 EV_FREQUENT_CHECK;
2486} 3228}
2487 3229
2488void 3230void
2489ev_idle_stop (EV_P_ ev_idle *w) 3231ev_idle_stop (EV_P_ ev_idle *w)
2490{ 3232{
2491 clear_pending (EV_A_ (W)w); 3233 clear_pending (EV_A_ (W)w);
2492 if (expect_false (!ev_is_active (w))) 3234 if (expect_false (!ev_is_active (w)))
2493 return; 3235 return;
2494 3236
3237 EV_FREQUENT_CHECK;
3238
2495 { 3239 {
2496 int active = ev_active (w); 3240 int active = ev_active (w);
2497 3241
2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3242 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3243 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500 3244
2501 ev_stop (EV_A_ (W)w); 3245 ev_stop (EV_A_ (W)w);
2502 --idleall; 3246 --idleall;
2503 } 3247 }
3248
3249 EV_FREQUENT_CHECK;
2504} 3250}
2505#endif 3251#endif
2506 3252
2507void 3253void
2508ev_prepare_start (EV_P_ ev_prepare *w) 3254ev_prepare_start (EV_P_ ev_prepare *w)
2509{ 3255{
2510 if (expect_false (ev_is_active (w))) 3256 if (expect_false (ev_is_active (w)))
2511 return; 3257 return;
3258
3259 EV_FREQUENT_CHECK;
2512 3260
2513 ev_start (EV_A_ (W)w, ++preparecnt); 3261 ev_start (EV_A_ (W)w, ++preparecnt);
2514 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3262 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2515 prepares [preparecnt - 1] = w; 3263 prepares [preparecnt - 1] = w;
3264
3265 EV_FREQUENT_CHECK;
2516} 3266}
2517 3267
2518void 3268void
2519ev_prepare_stop (EV_P_ ev_prepare *w) 3269ev_prepare_stop (EV_P_ ev_prepare *w)
2520{ 3270{
2521 clear_pending (EV_A_ (W)w); 3271 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 3272 if (expect_false (!ev_is_active (w)))
2523 return; 3273 return;
2524 3274
3275 EV_FREQUENT_CHECK;
3276
2525 { 3277 {
2526 int active = ev_active (w); 3278 int active = ev_active (w);
2527 3279
2528 prepares [active - 1] = prepares [--preparecnt]; 3280 prepares [active - 1] = prepares [--preparecnt];
2529 ev_active (prepares [active - 1]) = active; 3281 ev_active (prepares [active - 1]) = active;
2530 } 3282 }
2531 3283
2532 ev_stop (EV_A_ (W)w); 3284 ev_stop (EV_A_ (W)w);
3285
3286 EV_FREQUENT_CHECK;
2533} 3287}
2534 3288
2535void 3289void
2536ev_check_start (EV_P_ ev_check *w) 3290ev_check_start (EV_P_ ev_check *w)
2537{ 3291{
2538 if (expect_false (ev_is_active (w))) 3292 if (expect_false (ev_is_active (w)))
2539 return; 3293 return;
3294
3295 EV_FREQUENT_CHECK;
2540 3296
2541 ev_start (EV_A_ (W)w, ++checkcnt); 3297 ev_start (EV_A_ (W)w, ++checkcnt);
2542 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3298 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2543 checks [checkcnt - 1] = w; 3299 checks [checkcnt - 1] = w;
3300
3301 EV_FREQUENT_CHECK;
2544} 3302}
2545 3303
2546void 3304void
2547ev_check_stop (EV_P_ ev_check *w) 3305ev_check_stop (EV_P_ ev_check *w)
2548{ 3306{
2549 clear_pending (EV_A_ (W)w); 3307 clear_pending (EV_A_ (W)w);
2550 if (expect_false (!ev_is_active (w))) 3308 if (expect_false (!ev_is_active (w)))
2551 return; 3309 return;
2552 3310
3311 EV_FREQUENT_CHECK;
3312
2553 { 3313 {
2554 int active = ev_active (w); 3314 int active = ev_active (w);
2555 3315
2556 checks [active - 1] = checks [--checkcnt]; 3316 checks [active - 1] = checks [--checkcnt];
2557 ev_active (checks [active - 1]) = active; 3317 ev_active (checks [active - 1]) = active;
2558 } 3318 }
2559 3319
2560 ev_stop (EV_A_ (W)w); 3320 ev_stop (EV_A_ (W)w);
3321
3322 EV_FREQUENT_CHECK;
2561} 3323}
2562 3324
2563#if EV_EMBED_ENABLE 3325#if EV_EMBED_ENABLE
2564void noinline 3326void noinline
2565ev_embed_sweep (EV_P_ ev_embed *w) 3327ev_embed_sweep (EV_P_ ev_embed *w)
2582embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3344embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2583{ 3345{
2584 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3346 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2585 3347
2586 { 3348 {
2587 struct ev_loop *loop = w->other; 3349 EV_P = w->other;
2588 3350
2589 while (fdchangecnt) 3351 while (fdchangecnt)
2590 { 3352 {
2591 fd_reify (EV_A); 3353 fd_reify (EV_A);
2592 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3354 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2593 } 3355 }
2594 } 3356 }
2595} 3357}
2596 3358
3359static void
3360embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3361{
3362 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3363
3364 ev_embed_stop (EV_A_ w);
3365
3366 {
3367 EV_P = w->other;
3368
3369 ev_loop_fork (EV_A);
3370 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3371 }
3372
3373 ev_embed_start (EV_A_ w);
3374}
3375
2597#if 0 3376#if 0
2598static void 3377static void
2599embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3378embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2600{ 3379{
2601 ev_idle_stop (EV_A_ idle); 3380 ev_idle_stop (EV_A_ idle);
2607{ 3386{
2608 if (expect_false (ev_is_active (w))) 3387 if (expect_false (ev_is_active (w)))
2609 return; 3388 return;
2610 3389
2611 { 3390 {
2612 struct ev_loop *loop = w->other; 3391 EV_P = w->other;
2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3392 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3393 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2615 } 3394 }
3395
3396 EV_FREQUENT_CHECK;
2616 3397
2617 ev_set_priority (&w->io, ev_priority (w)); 3398 ev_set_priority (&w->io, ev_priority (w));
2618 ev_io_start (EV_A_ &w->io); 3399 ev_io_start (EV_A_ &w->io);
2619 3400
2620 ev_prepare_init (&w->prepare, embed_prepare_cb); 3401 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI); 3402 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare); 3403 ev_prepare_start (EV_A_ &w->prepare);
2623 3404
3405 ev_fork_init (&w->fork, embed_fork_cb);
3406 ev_fork_start (EV_A_ &w->fork);
3407
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3408 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625 3409
2626 ev_start (EV_A_ (W)w, 1); 3410 ev_start (EV_A_ (W)w, 1);
3411
3412 EV_FREQUENT_CHECK;
2627} 3413}
2628 3414
2629void 3415void
2630ev_embed_stop (EV_P_ ev_embed *w) 3416ev_embed_stop (EV_P_ ev_embed *w)
2631{ 3417{
2632 clear_pending (EV_A_ (W)w); 3418 clear_pending (EV_A_ (W)w);
2633 if (expect_false (!ev_is_active (w))) 3419 if (expect_false (!ev_is_active (w)))
2634 return; 3420 return;
2635 3421
3422 EV_FREQUENT_CHECK;
3423
2636 ev_io_stop (EV_A_ &w->io); 3424 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare); 3425 ev_prepare_stop (EV_A_ &w->prepare);
3426 ev_fork_stop (EV_A_ &w->fork);
2638 3427
2639 ev_stop (EV_A_ (W)w); 3428 EV_FREQUENT_CHECK;
2640} 3429}
2641#endif 3430#endif
2642 3431
2643#if EV_FORK_ENABLE 3432#if EV_FORK_ENABLE
2644void 3433void
2645ev_fork_start (EV_P_ ev_fork *w) 3434ev_fork_start (EV_P_ ev_fork *w)
2646{ 3435{
2647 if (expect_false (ev_is_active (w))) 3436 if (expect_false (ev_is_active (w)))
2648 return; 3437 return;
3438
3439 EV_FREQUENT_CHECK;
2649 3440
2650 ev_start (EV_A_ (W)w, ++forkcnt); 3441 ev_start (EV_A_ (W)w, ++forkcnt);
2651 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3442 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2652 forks [forkcnt - 1] = w; 3443 forks [forkcnt - 1] = w;
3444
3445 EV_FREQUENT_CHECK;
2653} 3446}
2654 3447
2655void 3448void
2656ev_fork_stop (EV_P_ ev_fork *w) 3449ev_fork_stop (EV_P_ ev_fork *w)
2657{ 3450{
2658 clear_pending (EV_A_ (W)w); 3451 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w))) 3452 if (expect_false (!ev_is_active (w)))
2660 return; 3453 return;
2661 3454
3455 EV_FREQUENT_CHECK;
3456
2662 { 3457 {
2663 int active = ev_active (w); 3458 int active = ev_active (w);
2664 3459
2665 forks [active - 1] = forks [--forkcnt]; 3460 forks [active - 1] = forks [--forkcnt];
2666 ev_active (forks [active - 1]) = active; 3461 ev_active (forks [active - 1]) = active;
2667 } 3462 }
2668 3463
2669 ev_stop (EV_A_ (W)w); 3464 ev_stop (EV_A_ (W)w);
3465
3466 EV_FREQUENT_CHECK;
2670} 3467}
2671#endif 3468#endif
2672 3469
2673#if EV_ASYNC_ENABLE 3470#if EV_ASYNC_ENABLE
2674void 3471void
2676{ 3473{
2677 if (expect_false (ev_is_active (w))) 3474 if (expect_false (ev_is_active (w)))
2678 return; 3475 return;
2679 3476
2680 evpipe_init (EV_A); 3477 evpipe_init (EV_A);
3478
3479 EV_FREQUENT_CHECK;
2681 3480
2682 ev_start (EV_A_ (W)w, ++asynccnt); 3481 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3482 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w; 3483 asyncs [asynccnt - 1] = w;
3484
3485 EV_FREQUENT_CHECK;
2685} 3486}
2686 3487
2687void 3488void
2688ev_async_stop (EV_P_ ev_async *w) 3489ev_async_stop (EV_P_ ev_async *w)
2689{ 3490{
2690 clear_pending (EV_A_ (W)w); 3491 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w))) 3492 if (expect_false (!ev_is_active (w)))
2692 return; 3493 return;
2693 3494
3495 EV_FREQUENT_CHECK;
3496
2694 { 3497 {
2695 int active = ev_active (w); 3498 int active = ev_active (w);
2696 3499
2697 asyncs [active - 1] = asyncs [--asynccnt]; 3500 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active; 3501 ev_active (asyncs [active - 1]) = active;
2699 } 3502 }
2700 3503
2701 ev_stop (EV_A_ (W)w); 3504 ev_stop (EV_A_ (W)w);
3505
3506 EV_FREQUENT_CHECK;
2702} 3507}
2703 3508
2704void 3509void
2705ev_async_send (EV_P_ ev_async *w) 3510ev_async_send (EV_P_ ev_async *w)
2706{ 3511{
2707 w->sent = 1; 3512 w->sent = 1;
2708 evpipe_write (EV_A_ &gotasync); 3513 evpipe_write (EV_A_ &async_pending);
2709} 3514}
2710#endif 3515#endif
2711 3516
2712/*****************************************************************************/ 3517/*****************************************************************************/
2713 3518
2723once_cb (EV_P_ struct ev_once *once, int revents) 3528once_cb (EV_P_ struct ev_once *once, int revents)
2724{ 3529{
2725 void (*cb)(int revents, void *arg) = once->cb; 3530 void (*cb)(int revents, void *arg) = once->cb;
2726 void *arg = once->arg; 3531 void *arg = once->arg;
2727 3532
2728 ev_io_stop (EV_A_ &once->io); 3533 ev_io_stop (EV_A_ &once->io);
2729 ev_timer_stop (EV_A_ &once->to); 3534 ev_timer_stop (EV_A_ &once->to);
2730 ev_free (once); 3535 ev_free (once);
2731 3536
2732 cb (revents, arg); 3537 cb (revents, arg);
2733} 3538}
2734 3539
2735static void 3540static void
2736once_cb_io (EV_P_ ev_io *w, int revents) 3541once_cb_io (EV_P_ ev_io *w, int revents)
2737{ 3542{
2738 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3543 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3544
3545 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2739} 3546}
2740 3547
2741static void 3548static void
2742once_cb_to (EV_P_ ev_timer *w, int revents) 3549once_cb_to (EV_P_ ev_timer *w, int revents)
2743{ 3550{
2744 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3551 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3552
3553 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2745} 3554}
2746 3555
2747void 3556void
2748ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3557ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2749{ 3558{
2771 ev_timer_set (&once->to, timeout, 0.); 3580 ev_timer_set (&once->to, timeout, 0.);
2772 ev_timer_start (EV_A_ &once->to); 3581 ev_timer_start (EV_A_ &once->to);
2773 } 3582 }
2774} 3583}
2775 3584
3585/*****************************************************************************/
3586
3587#if EV_WALK_ENABLE
3588void
3589ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3590{
3591 int i, j;
3592 ev_watcher_list *wl, *wn;
3593
3594 if (types & (EV_IO | EV_EMBED))
3595 for (i = 0; i < anfdmax; ++i)
3596 for (wl = anfds [i].head; wl; )
3597 {
3598 wn = wl->next;
3599
3600#if EV_EMBED_ENABLE
3601 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3602 {
3603 if (types & EV_EMBED)
3604 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3605 }
3606 else
3607#endif
3608#if EV_USE_INOTIFY
3609 if (ev_cb ((ev_io *)wl) == infy_cb)
3610 ;
3611 else
3612#endif
3613 if ((ev_io *)wl != &pipe_w)
3614 if (types & EV_IO)
3615 cb (EV_A_ EV_IO, wl);
3616
3617 wl = wn;
3618 }
3619
3620 if (types & (EV_TIMER | EV_STAT))
3621 for (i = timercnt + HEAP0; i-- > HEAP0; )
3622#if EV_STAT_ENABLE
3623 /*TODO: timer is not always active*/
3624 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3625 {
3626 if (types & EV_STAT)
3627 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3628 }
3629 else
3630#endif
3631 if (types & EV_TIMER)
3632 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3633
3634#if EV_PERIODIC_ENABLE
3635 if (types & EV_PERIODIC)
3636 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3637 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3638#endif
3639
3640#if EV_IDLE_ENABLE
3641 if (types & EV_IDLE)
3642 for (j = NUMPRI; i--; )
3643 for (i = idlecnt [j]; i--; )
3644 cb (EV_A_ EV_IDLE, idles [j][i]);
3645#endif
3646
3647#if EV_FORK_ENABLE
3648 if (types & EV_FORK)
3649 for (i = forkcnt; i--; )
3650 if (ev_cb (forks [i]) != embed_fork_cb)
3651 cb (EV_A_ EV_FORK, forks [i]);
3652#endif
3653
3654#if EV_ASYNC_ENABLE
3655 if (types & EV_ASYNC)
3656 for (i = asynccnt; i--; )
3657 cb (EV_A_ EV_ASYNC, asyncs [i]);
3658#endif
3659
3660 if (types & EV_PREPARE)
3661 for (i = preparecnt; i--; )
3662#if EV_EMBED_ENABLE
3663 if (ev_cb (prepares [i]) != embed_prepare_cb)
3664#endif
3665 cb (EV_A_ EV_PREPARE, prepares [i]);
3666
3667 if (types & EV_CHECK)
3668 for (i = checkcnt; i--; )
3669 cb (EV_A_ EV_CHECK, checks [i]);
3670
3671 if (types & EV_SIGNAL)
3672 for (i = 0; i < EV_NSIG - 1; ++i)
3673 for (wl = signals [i].head; wl; )
3674 {
3675 wn = wl->next;
3676 cb (EV_A_ EV_SIGNAL, wl);
3677 wl = wn;
3678 }
3679
3680 if (types & EV_CHILD)
3681 for (i = EV_PID_HASHSIZE; i--; )
3682 for (wl = childs [i]; wl; )
3683 {
3684 wn = wl->next;
3685 cb (EV_A_ EV_CHILD, wl);
3686 wl = wn;
3687 }
3688/* EV_STAT 0x00001000 /* stat data changed */
3689/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3690}
3691#endif
3692
2776#if EV_MULTIPLICITY 3693#if EV_MULTIPLICITY
2777 #include "ev_wrap.h" 3694 #include "ev_wrap.h"
2778#endif 3695#endif
2779 3696
2780#ifdef __cplusplus 3697#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines