ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC vs.
Revision 1.356 by root, Fri Oct 22 11:21:52 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
52# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
55# endif 65# endif
56# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
58# endif 68# endif
59# else 69# else
60# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
62# endif 72# endif
63# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
65# endif 75# endif
66# endif 76# endif
67 77
78# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
71# else 82# else
83# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
74# endif 94# endif
75 95
96# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 99# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 100# else
101# undef EV_USE_POLL
88# define EV_USE_POLL 0 102# define EV_USE_POLL 0
89# endif
90# endif 103# endif
91 104
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
95# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
98# endif 112# endif
99 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
106# endif 121# endif
107 122
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
111# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
114# endif 130# endif
115 131
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
122# endif 139# endif
123 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 142# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 143# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
130# endif 148# endif
131 149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
132#endif 159#endif
133 160
134#include <math.h> 161#include <math.h>
135#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
136#include <fcntl.h> 164#include <fcntl.h>
137#include <stddef.h> 165#include <stddef.h>
138 166
139#include <stdio.h> 167#include <stdio.h>
140 168
141#include <assert.h> 169#include <assert.h>
142#include <errno.h> 170#include <errno.h>
143#include <sys/types.h> 171#include <sys/types.h>
144#include <time.h> 172#include <time.h>
173#include <limits.h>
145 174
146#include <signal.h> 175#include <signal.h>
147 176
148#ifdef EV_H 177#ifdef EV_H
149# include EV_H 178# include EV_H
150#else 179#else
151# include "ev.h" 180# include "ev.h"
152#endif 181#endif
182
183EV_CPP(extern "C" {)
153 184
154#ifndef _WIN32 185#ifndef _WIN32
155# include <sys/time.h> 186# include <sys/time.h>
156# include <sys/wait.h> 187# include <sys/wait.h>
157# include <unistd.h> 188# include <unistd.h>
158#else 189#else
190# include <io.h>
159# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 192# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
163# endif 195# endif
196# undef EV_AVOID_STDIO
164#endif 197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
165 206
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 207/* this block tries to deduce configuration from header-defined symbols and defaults */
167 208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
244
168#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
169# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
170#endif 251#endif
171 252
172#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 255#endif
175 256
176#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
177# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
262# endif
178#endif 263#endif
179 264
180#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 267#endif
183 268
184#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
185# ifdef _WIN32 270# ifdef _WIN32
186# define EV_USE_POLL 0 271# define EV_USE_POLL 0
187# else 272# else
188# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 274# endif
190#endif 275#endif
191 276
192#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 280# else
196# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
197# endif 282# endif
198#endif 283#endif
199 284
205# define EV_USE_PORT 0 290# define EV_USE_PORT 0
206#endif 291#endif
207 292
208#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 295# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 296# else
212# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
213# endif 298# endif
214#endif 299#endif
215 300
216#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 303#endif
223 304
224#ifndef EV_INOTIFY_HASHSIZE 305#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 307#endif
231 308
232#ifndef EV_USE_EVENTFD 309#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 311# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 312# else
236# define EV_USE_EVENTFD 0 313# define EV_USE_EVENTFD 0
237# endif 314# endif
238#endif 315#endif
239 316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
241 364
242#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
245#endif 368#endif
259# include <sys/select.h> 382# include <sys/select.h>
260# endif 383# endif
261#endif 384#endif
262 385
263#if EV_USE_INOTIFY 386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
264# include <sys/inotify.h> 388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
265#endif 394#endif
266 395
267#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 397# include <winsock.h>
269#endif 398#endif
270 399
271#if EV_USE_EVENTFD 400#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 402# include <stdint.h>
274# ifdef __cplusplus 403# ifndef EFD_NONBLOCK
275extern "C" { 404# define EFD_NONBLOCK O_NONBLOCK
276# endif 405# endif
277int eventfd (unsigned int initval, int flags); 406# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 407# ifdef O_CLOEXEC
279} 408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
280# endif 412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
281#endif 436#endif
282 437
283/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
284 445
285/* 446/*
286 * This is used to avoid floating point rounding problems. 447 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 448 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 449 * to ensure progress, time-wise, even when rounding
292 */ 453 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294 455
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
298 461
299#if __GNUC__ >= 4 462#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
302#else 465#else
309 472
310#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline 475#define inline_size static inline
313 476
314#if EV_MINIMAL 477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
315# define inline_speed static noinline 480# define inline_speed static noinline
481#endif
482
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
316#else 487#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
322 490
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
325 493
326typedef ev_watcher *W; 494typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
329 497
330#define ev_active(w) ((W)(w))->active 498#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 499#define ev_at(w) ((WT)(w))->at
332 500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
333#if EV_USE_MONOTONIC 507#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 519#endif
338 520
339#ifdef _WIN32 521#ifdef _WIN32
340# include "ev_win32.c" 522# include "ev_win32.c"
341#endif 523#endif
342 524
343/*****************************************************************************/ 525/*****************************************************************************/
344 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 struct utsname buf;
536 unsigned int v;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
345static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
346 578
347void 579void
348ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
349{ 581{
350 syserr_cb = cb; 582 syserr_cb = cb;
351} 583}
352 584
353static void noinline 585static void noinline
354syserr (const char *msg) 586ev_syserr (const char *msg)
355{ 587{
356 if (!msg) 588 if (!msg)
357 msg = "(libev) system error"; 589 msg = "(libev) system error";
358 590
359 if (syserr_cb) 591 if (syserr_cb)
360 syserr_cb (msg); 592 syserr_cb (msg);
361 else 593 else
362 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
363 perror (msg); 603 perror (msg);
604#endif
364 abort (); 605 abort ();
365 } 606 }
366} 607}
367 608
368static void * 609static void *
369ev_realloc_emul (void *ptr, long size) 610ev_realloc_emul (void *ptr, long size)
370{ 611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
371 /* some systems, notably openbsd and darwin, fail to properly 615 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 616 * implement realloc (x, 0) (as required by both ansi c-89 and
373 * the single unix specification, so work around them here. 617 * the single unix specification, so work around them here.
374 */ 618 */
375 619
376 if (size) 620 if (size)
377 return realloc (ptr, size); 621 return realloc (ptr, size);
378 622
379 free (ptr); 623 free (ptr);
380 return 0; 624 return 0;
625#endif
381} 626}
382 627
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384 629
385void 630void
393{ 638{
394 ptr = alloc (ptr, size); 639 ptr = alloc (ptr, size);
395 640
396 if (!ptr && size) 641 if (!ptr && size)
397 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
399 abort (); 648 abort ();
400 } 649 }
401 650
402 return ptr; 651 return ptr;
403} 652}
405#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
407 656
408/*****************************************************************************/ 657/*****************************************************************************/
409 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
410typedef struct 663typedef struct
411{ 664{
412 WL head; 665 WL head;
413 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
415#if EV_SELECT_IS_WINSOCKET 673#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 674 SOCKET handle;
417#endif 675#endif
418} ANFD; 676} ANFD;
419 677
678/* stores the pending event set for a given watcher */
420typedef struct 679typedef struct
421{ 680{
422 W w; 681 W w;
423 int events; 682 int events; /* the pending event set for the given watcher */
424} ANPENDING; 683} ANPENDING;
425 684
426#if EV_USE_INOTIFY 685#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */ 686/* hash table entry per inotify-id */
428typedef struct 687typedef struct
430 WL head; 689 WL head;
431} ANFS; 690} ANFS;
432#endif 691#endif
433 692
434/* Heap Entry */ 693/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT 694#if EV_HEAP_CACHE_AT
695 /* a heap element */
437 typedef struct { 696 typedef struct {
697 ev_tstamp at;
438 WT w; 698 WT w;
439 ev_tstamp at;
440 } ANHE; 699 } ANHE;
441 700
442 #define ANHE_w(he) (he).w /* access watcher, read-write */ 701 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */ 702 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 703 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
445#else 704#else
705 /* a heap element */
446 typedef WT ANHE; 706 typedef WT ANHE;
447 707
448 #define ANHE_w(he) (he) 708 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at 709 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he) 710 #define ANHE_at_cache(he)
451#endif 711#endif
452 712
453#if EV_MULTIPLICITY 713#if EV_MULTIPLICITY
454 714
455 struct ev_loop 715 struct ev_loop
474 734
475 static int ev_default_loop_ptr; 735 static int ev_default_loop_ptr;
476 736
477#endif 737#endif
478 738
739#if EV_FEATURE_API
740# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
741# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
742# define EV_INVOKE_PENDING invoke_cb (EV_A)
743#else
744# define EV_RELEASE_CB (void)0
745# define EV_ACQUIRE_CB (void)0
746# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
747#endif
748
749#define EVBREAK_RECURSE 0x80
750
479/*****************************************************************************/ 751/*****************************************************************************/
480 752
753#ifndef EV_HAVE_EV_TIME
481ev_tstamp 754ev_tstamp
482ev_time (void) 755ev_time (void)
483{ 756{
484#if EV_USE_REALTIME 757#if EV_USE_REALTIME
758 if (expect_true (have_realtime))
759 {
485 struct timespec ts; 760 struct timespec ts;
486 clock_gettime (CLOCK_REALTIME, &ts); 761 clock_gettime (CLOCK_REALTIME, &ts);
487 return ts.tv_sec + ts.tv_nsec * 1e-9; 762 return ts.tv_sec + ts.tv_nsec * 1e-9;
488#else 763 }
764#endif
765
489 struct timeval tv; 766 struct timeval tv;
490 gettimeofday (&tv, 0); 767 gettimeofday (&tv, 0);
491 return tv.tv_sec + tv.tv_usec * 1e-6; 768 return tv.tv_sec + tv.tv_usec * 1e-6;
492#endif
493} 769}
770#endif
494 771
495ev_tstamp inline_size 772inline_size ev_tstamp
496get_clock (void) 773get_clock (void)
497{ 774{
498#if EV_USE_MONOTONIC 775#if EV_USE_MONOTONIC
499 if (expect_true (have_monotonic)) 776 if (expect_true (have_monotonic))
500 { 777 {
521 if (delay > 0.) 798 if (delay > 0.)
522 { 799 {
523#if EV_USE_NANOSLEEP 800#if EV_USE_NANOSLEEP
524 struct timespec ts; 801 struct timespec ts;
525 802
526 ts.tv_sec = (time_t)delay; 803 EV_TS_SET (ts, delay);
527 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
528
529 nanosleep (&ts, 0); 804 nanosleep (&ts, 0);
530#elif defined(_WIN32) 805#elif defined(_WIN32)
531 Sleep ((unsigned long)(delay * 1e3)); 806 Sleep ((unsigned long)(delay * 1e3));
532#else 807#else
533 struct timeval tv; 808 struct timeval tv;
534 809
535 tv.tv_sec = (time_t)delay; 810 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 811 /* something not guaranteed by newer posix versions, but guaranteed */
537 812 /* by older ones */
813 EV_TV_SET (tv, delay);
538 select (0, 0, 0, 0, &tv); 814 select (0, 0, 0, 0, &tv);
539#endif 815#endif
540 } 816 }
541} 817}
542 818
543/*****************************************************************************/ 819/*****************************************************************************/
544 820
545#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 821#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
546 822
547int inline_size 823/* find a suitable new size for the given array, */
824/* hopefully by rounding to a nice-to-malloc size */
825inline_size int
548array_nextsize (int elem, int cur, int cnt) 826array_nextsize (int elem, int cur, int cnt)
549{ 827{
550 int ncur = cur + 1; 828 int ncur = cur + 1;
551 829
552 do 830 do
569array_realloc (int elem, void *base, int *cur, int cnt) 847array_realloc (int elem, void *base, int *cur, int cnt)
570{ 848{
571 *cur = array_nextsize (elem, *cur, cnt); 849 *cur = array_nextsize (elem, *cur, cnt);
572 return ev_realloc (base, elem * *cur); 850 return ev_realloc (base, elem * *cur);
573} 851}
852
853#define array_init_zero(base,count) \
854 memset ((void *)(base), 0, sizeof (*(base)) * (count))
574 855
575#define array_needsize(type,base,cur,cnt,init) \ 856#define array_needsize(type,base,cur,cnt,init) \
576 if (expect_false ((cnt) > (cur))) \ 857 if (expect_false ((cnt) > (cur))) \
577 { \ 858 { \
578 int ocur_ = (cur); \ 859 int ocur_ = (cur); \
590 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 871 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
591 } 872 }
592#endif 873#endif
593 874
594#define array_free(stem, idx) \ 875#define array_free(stem, idx) \
595 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 876 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
596 877
597/*****************************************************************************/ 878/*****************************************************************************/
879
880/* dummy callback for pending events */
881static void noinline
882pendingcb (EV_P_ ev_prepare *w, int revents)
883{
884}
598 885
599void noinline 886void noinline
600ev_feed_event (EV_P_ void *w, int revents) 887ev_feed_event (EV_P_ void *w, int revents)
601{ 888{
602 W w_ = (W)w; 889 W w_ = (W)w;
611 pendings [pri][w_->pending - 1].w = w_; 898 pendings [pri][w_->pending - 1].w = w_;
612 pendings [pri][w_->pending - 1].events = revents; 899 pendings [pri][w_->pending - 1].events = revents;
613 } 900 }
614} 901}
615 902
616void inline_speed 903inline_speed void
904feed_reverse (EV_P_ W w)
905{
906 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
907 rfeeds [rfeedcnt++] = w;
908}
909
910inline_size void
911feed_reverse_done (EV_P_ int revents)
912{
913 do
914 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
915 while (rfeedcnt);
916}
917
918inline_speed void
617queue_events (EV_P_ W *events, int eventcnt, int type) 919queue_events (EV_P_ W *events, int eventcnt, int type)
618{ 920{
619 int i; 921 int i;
620 922
621 for (i = 0; i < eventcnt; ++i) 923 for (i = 0; i < eventcnt; ++i)
622 ev_feed_event (EV_A_ events [i], type); 924 ev_feed_event (EV_A_ events [i], type);
623} 925}
624 926
625/*****************************************************************************/ 927/*****************************************************************************/
626 928
627void inline_size 929inline_speed void
628anfds_init (ANFD *base, int count)
629{
630 while (count--)
631 {
632 base->head = 0;
633 base->events = EV_NONE;
634 base->reify = 0;
635
636 ++base;
637 }
638}
639
640void inline_speed
641fd_event (EV_P_ int fd, int revents) 930fd_event_nocheck (EV_P_ int fd, int revents)
642{ 931{
643 ANFD *anfd = anfds + fd; 932 ANFD *anfd = anfds + fd;
644 ev_io *w; 933 ev_io *w;
645 934
646 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 935 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
650 if (ev) 939 if (ev)
651 ev_feed_event (EV_A_ (W)w, ev); 940 ev_feed_event (EV_A_ (W)w, ev);
652 } 941 }
653} 942}
654 943
944/* do not submit kernel events for fds that have reify set */
945/* because that means they changed while we were polling for new events */
946inline_speed void
947fd_event (EV_P_ int fd, int revents)
948{
949 ANFD *anfd = anfds + fd;
950
951 if (expect_true (!anfd->reify))
952 fd_event_nocheck (EV_A_ fd, revents);
953}
954
655void 955void
656ev_feed_fd_event (EV_P_ int fd, int revents) 956ev_feed_fd_event (EV_P_ int fd, int revents)
657{ 957{
658 if (fd >= 0 && fd < anfdmax) 958 if (fd >= 0 && fd < anfdmax)
659 fd_event (EV_A_ fd, revents); 959 fd_event_nocheck (EV_A_ fd, revents);
660} 960}
661 961
662void inline_size 962/* make sure the external fd watch events are in-sync */
963/* with the kernel/libev internal state */
964inline_size void
663fd_reify (EV_P) 965fd_reify (EV_P)
664{ 966{
665 int i; 967 int i;
666 968
667 for (i = 0; i < fdchangecnt; ++i) 969 for (i = 0; i < fdchangecnt; ++i)
668 { 970 {
669 int fd = fdchanges [i]; 971 int fd = fdchanges [i];
670 ANFD *anfd = anfds + fd; 972 ANFD *anfd = anfds + fd;
671 ev_io *w; 973 ev_io *w;
672 974
673 unsigned char events = 0; 975 unsigned char o_events = anfd->events;
976 unsigned char o_reify = anfd->reify;
674 977
675 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 978 anfd->reify = 0;
676 events |= (unsigned char)w->events;
677 979
678#if EV_SELECT_IS_WINSOCKET 980#if EV_SELECT_IS_WINSOCKET
679 if (events) 981 if (o_reify & EV__IOFDSET)
680 { 982 {
681 unsigned long argp; 983 unsigned long arg;
682 #ifdef EV_FD_TO_WIN32_HANDLE
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 984 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
684 #else
685 anfd->handle = _get_osfhandle (fd);
686 #endif
687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 985 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
688 } 986 }
689#endif 987#endif
690 988
989 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
691 { 990 {
692 unsigned char o_events = anfd->events;
693 unsigned char o_reify = anfd->reify;
694
695 anfd->reify = 0;
696 anfd->events = events; 991 anfd->events = 0;
697 992
698 if (o_events != events || o_reify & EV_IOFDSET) 993 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
994 anfd->events |= (unsigned char)w->events;
995
996 if (o_events != anfd->events)
997 o_reify = EV__IOFDSET; /* actually |= */
998 }
999
1000 if (o_reify & EV__IOFDSET)
699 backend_modify (EV_A_ fd, o_events, events); 1001 backend_modify (EV_A_ fd, o_events, anfd->events);
700 }
701 } 1002 }
702 1003
703 fdchangecnt = 0; 1004 fdchangecnt = 0;
704} 1005}
705 1006
706void inline_size 1007/* something about the given fd changed */
1008inline_size void
707fd_change (EV_P_ int fd, int flags) 1009fd_change (EV_P_ int fd, int flags)
708{ 1010{
709 unsigned char reify = anfds [fd].reify; 1011 unsigned char reify = anfds [fd].reify;
710 anfds [fd].reify |= flags; 1012 anfds [fd].reify |= flags;
711 1013
715 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1017 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
716 fdchanges [fdchangecnt - 1] = fd; 1018 fdchanges [fdchangecnt - 1] = fd;
717 } 1019 }
718} 1020}
719 1021
720void inline_speed 1022/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1023inline_speed void
721fd_kill (EV_P_ int fd) 1024fd_kill (EV_P_ int fd)
722{ 1025{
723 ev_io *w; 1026 ev_io *w;
724 1027
725 while ((w = (ev_io *)anfds [fd].head)) 1028 while ((w = (ev_io *)anfds [fd].head))
727 ev_io_stop (EV_A_ w); 1030 ev_io_stop (EV_A_ w);
728 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1031 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
729 } 1032 }
730} 1033}
731 1034
732int inline_size 1035/* check whether the given fd is actually valid, for error recovery */
1036inline_size int
733fd_valid (int fd) 1037fd_valid (int fd)
734{ 1038{
735#ifdef _WIN32 1039#ifdef _WIN32
736 return _get_osfhandle (fd) != -1; 1040 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
737#else 1041#else
738 return fcntl (fd, F_GETFD) != -1; 1042 return fcntl (fd, F_GETFD) != -1;
739#endif 1043#endif
740} 1044}
741 1045
745{ 1049{
746 int fd; 1050 int fd;
747 1051
748 for (fd = 0; fd < anfdmax; ++fd) 1052 for (fd = 0; fd < anfdmax; ++fd)
749 if (anfds [fd].events) 1053 if (anfds [fd].events)
750 if (!fd_valid (fd) == -1 && errno == EBADF) 1054 if (!fd_valid (fd) && errno == EBADF)
751 fd_kill (EV_A_ fd); 1055 fd_kill (EV_A_ fd);
752} 1056}
753 1057
754/* called on ENOMEM in select/poll to kill some fds and retry */ 1058/* called on ENOMEM in select/poll to kill some fds and retry */
755static void noinline 1059static void noinline
759 1063
760 for (fd = anfdmax; fd--; ) 1064 for (fd = anfdmax; fd--; )
761 if (anfds [fd].events) 1065 if (anfds [fd].events)
762 { 1066 {
763 fd_kill (EV_A_ fd); 1067 fd_kill (EV_A_ fd);
764 return; 1068 break;
765 } 1069 }
766} 1070}
767 1071
768/* usually called after fork if backend needs to re-arm all fds from scratch */ 1072/* usually called after fork if backend needs to re-arm all fds from scratch */
769static void noinline 1073static void noinline
773 1077
774 for (fd = 0; fd < anfdmax; ++fd) 1078 for (fd = 0; fd < anfdmax; ++fd)
775 if (anfds [fd].events) 1079 if (anfds [fd].events)
776 { 1080 {
777 anfds [fd].events = 0; 1081 anfds [fd].events = 0;
1082 anfds [fd].emask = 0;
778 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1083 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
779 } 1084 }
780} 1085}
781 1086
1087/* used to prepare libev internal fd's */
1088/* this is not fork-safe */
1089inline_speed void
1090fd_intern (int fd)
1091{
1092#ifdef _WIN32
1093 unsigned long arg = 1;
1094 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1095#else
1096 fcntl (fd, F_SETFD, FD_CLOEXEC);
1097 fcntl (fd, F_SETFL, O_NONBLOCK);
1098#endif
1099}
1100
782/*****************************************************************************/ 1101/*****************************************************************************/
783 1102
784/* 1103/*
785 * the heap functions want a real array index. array index 0 uis guaranteed to not 1104 * the heap functions want a real array index. array index 0 is guaranteed to not
786 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1105 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
787 * the branching factor of the d-tree. 1106 * the branching factor of the d-tree.
788 */ 1107 */
789 1108
790/* 1109/*
791 * at the moment we allow libev the luxury of two heaps, 1110 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 1111 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient. 1112 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers. 1113 * the difference is about 5% with 50000+ watchers.
795 */ 1114 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP 1115#if EV_USE_4HEAP
798 1116
799#define DHEAP 4 1117#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1118#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801 1119#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
802/* towards the root */ 1120#define UPHEAP_DONE(p,k) ((p) == (k))
803void inline_speed
804upheap (ANHE *heap, int k)
805{
806 ANHE he = heap [k];
807
808 for (;;)
809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
815 heap [k] = heap [p];
816 ev_active (ANHE_w (heap [k])) = k;
817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823 1121
824/* away from the root */ 1122/* away from the root */
825void inline_speed 1123inline_speed void
826downheap (ANHE *heap, int N, int k) 1124downheap (ANHE *heap, int N, int k)
827{ 1125{
828 ANHE he = heap [k]; 1126 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0; 1127 ANHE *E = heap + N + HEAP0;
830 1128
831 for (;;) 1129 for (;;)
832 { 1130 {
833 ev_tstamp minat; 1131 ev_tstamp minat;
834 ANHE *minpos; 1132 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1133 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
836 1134
837 // find minimum child 1135 /* find minimum child */
838 if (expect_true (pos + DHEAP - 1 < E)) 1136 if (expect_true (pos + DHEAP - 1 < E))
839 { 1137 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1138 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1139 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1140 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 1141 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 } 1142 }
845 else if (pos < E) 1143 else if (pos < E)
846 { 1144 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1145 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1146 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
853 break; 1151 break;
854 1152
855 if (ANHE_at (he) <= minat) 1153 if (ANHE_at (he) <= minat)
856 break; 1154 break;
857 1155
1156 heap [k] = *minpos;
858 ev_active (ANHE_w (*minpos)) = k; 1157 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860 1158
861 k = minpos - heap; 1159 k = minpos - heap;
862 } 1160 }
863 1161
1162 heap [k] = he;
864 ev_active (ANHE_w (he)) = k; 1163 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866} 1164}
867 1165
868#else // 4HEAP 1166#else /* 4HEAP */
869 1167
870#define HEAP0 1 1168#define HEAP0 1
1169#define HPARENT(k) ((k) >> 1)
1170#define UPHEAP_DONE(p,k) (!(p))
871 1171
872/* towards the root */ 1172/* away from the root */
873void inline_speed 1173inline_speed void
874upheap (ANHE *heap, int k) 1174downheap (ANHE *heap, int N, int k)
875{ 1175{
876 ANHE he = heap [k]; 1176 ANHE he = heap [k];
877 1177
878 for (;;) 1178 for (;;)
879 { 1179 {
880 int p = k >> 1; 1180 int c = k << 1;
881 1181
882 /* maybe we could use a dummy element at heap [0]? */ 1182 if (c >= N + HEAP0)
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break; 1183 break;
885 1184
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
889 }
890
891 heap [k] = w;
892 ev_active (ANHE_w (heap [k])) = k;
893}
894
895/* away from the root */
896void inline_speed
897downheap (ANHE *heap, int N, int k)
898{
899 ANHE he = heap [k];
900
901 for (;;)
902 {
903 int c = k << 1;
904
905 if (c > N)
906 break;
907
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1185 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0; 1186 ? 1 : 0;
910 1187
911 if (w->at <= ANHE_at (heap [c])) 1188 if (ANHE_at (he) <= ANHE_at (heap [c]))
912 break; 1189 break;
913 1190
914 heap [k] = heap [c]; 1191 heap [k] = heap [c];
915 ev_active (ANHE_w (heap [k])) = k; 1192 ev_active (ANHE_w (heap [k])) = k;
916 1193
920 heap [k] = he; 1197 heap [k] = he;
921 ev_active (ANHE_w (he)) = k; 1198 ev_active (ANHE_w (he)) = k;
922} 1199}
923#endif 1200#endif
924 1201
925void inline_size 1202/* towards the root */
1203inline_speed void
1204upheap (ANHE *heap, int k)
1205{
1206 ANHE he = heap [k];
1207
1208 for (;;)
1209 {
1210 int p = HPARENT (k);
1211
1212 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1213 break;
1214
1215 heap [k] = heap [p];
1216 ev_active (ANHE_w (heap [k])) = k;
1217 k = p;
1218 }
1219
1220 heap [k] = he;
1221 ev_active (ANHE_w (he)) = k;
1222}
1223
1224/* move an element suitably so it is in a correct place */
1225inline_size void
926adjustheap (ANHE *heap, int N, int k) 1226adjustheap (ANHE *heap, int N, int k)
927{ 1227{
1228 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
928 upheap (heap, k); 1229 upheap (heap, k);
1230 else
929 downheap (heap, N, k); 1231 downheap (heap, N, k);
1232}
1233
1234/* rebuild the heap: this function is used only once and executed rarely */
1235inline_size void
1236reheap (ANHE *heap, int N)
1237{
1238 int i;
1239
1240 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1241 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1242 for (i = 0; i < N; ++i)
1243 upheap (heap, i + HEAP0);
930} 1244}
931 1245
932/*****************************************************************************/ 1246/*****************************************************************************/
933 1247
1248/* associate signal watchers to a signal signal */
934typedef struct 1249typedef struct
935{ 1250{
1251 EV_ATOMIC_T pending;
1252#if EV_MULTIPLICITY
1253 EV_P;
1254#endif
936 WL head; 1255 WL head;
937 EV_ATOMIC_T gotsig;
938} ANSIG; 1256} ANSIG;
939 1257
940static ANSIG *signals; 1258static ANSIG signals [EV_NSIG - 1];
941static int signalmax;
942
943static EV_ATOMIC_T gotsig;
944
945void inline_size
946signals_init (ANSIG *base, int count)
947{
948 while (count--)
949 {
950 base->head = 0;
951 base->gotsig = 0;
952
953 ++base;
954 }
955}
956 1259
957/*****************************************************************************/ 1260/*****************************************************************************/
958 1261
959void inline_speed 1262#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
960fd_intern (int fd)
961{
962#ifdef _WIN32
963 int arg = 1;
964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
965#else
966 fcntl (fd, F_SETFD, FD_CLOEXEC);
967 fcntl (fd, F_SETFL, O_NONBLOCK);
968#endif
969}
970 1263
971static void noinline 1264static void noinline
972evpipe_init (EV_P) 1265evpipe_init (EV_P)
973{ 1266{
974 if (!ev_is_active (&pipeev)) 1267 if (!ev_is_active (&pipe_w))
975 { 1268 {
976#if EV_USE_EVENTFD 1269# if EV_USE_EVENTFD
1270 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1271 if (evfd < 0 && errno == EINVAL)
977 if ((evfd = eventfd (0, 0)) >= 0) 1272 evfd = eventfd (0, 0);
1273
1274 if (evfd >= 0)
978 { 1275 {
979 evpipe [0] = -1; 1276 evpipe [0] = -1;
980 fd_intern (evfd); 1277 fd_intern (evfd); /* doing it twice doesn't hurt */
981 ev_io_set (&pipeev, evfd, EV_READ); 1278 ev_io_set (&pipe_w, evfd, EV_READ);
982 } 1279 }
983 else 1280 else
984#endif 1281# endif
985 { 1282 {
986 while (pipe (evpipe)) 1283 while (pipe (evpipe))
987 syserr ("(libev) error creating signal/async pipe"); 1284 ev_syserr ("(libev) error creating signal/async pipe");
988 1285
989 fd_intern (evpipe [0]); 1286 fd_intern (evpipe [0]);
990 fd_intern (evpipe [1]); 1287 fd_intern (evpipe [1]);
991 ev_io_set (&pipeev, evpipe [0], EV_READ); 1288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
992 } 1289 }
993 1290
994 ev_io_start (EV_A_ &pipeev); 1291 ev_io_start (EV_A_ &pipe_w);
995 ev_unref (EV_A); /* watcher should not keep loop alive */ 1292 ev_unref (EV_A); /* watcher should not keep loop alive */
996 } 1293 }
997} 1294}
998 1295
999void inline_size 1296inline_size void
1000evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1297evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1001{ 1298{
1002 if (!*flag) 1299 if (!*flag)
1003 { 1300 {
1004 int old_errno = errno; /* save errno because write might clobber it */ 1301 int old_errno = errno; /* save errno because write might clobber it */
1302 char dummy;
1005 1303
1006 *flag = 1; 1304 *flag = 1;
1007 1305
1008#if EV_USE_EVENTFD 1306#if EV_USE_EVENTFD
1009 if (evfd >= 0) 1307 if (evfd >= 0)
1011 uint64_t counter = 1; 1309 uint64_t counter = 1;
1012 write (evfd, &counter, sizeof (uint64_t)); 1310 write (evfd, &counter, sizeof (uint64_t));
1013 } 1311 }
1014 else 1312 else
1015#endif 1313#endif
1314 /* win32 people keep sending patches that change this write() to send() */
1315 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1316 /* so when you think this write should be a send instead, please find out */
1317 /* where your send() is from - it's definitely not the microsoft send, and */
1318 /* tell me. thank you. */
1016 write (evpipe [1], &old_errno, 1); 1319 write (evpipe [1], &dummy, 1);
1017 1320
1018 errno = old_errno; 1321 errno = old_errno;
1019 } 1322 }
1020} 1323}
1021 1324
1325/* called whenever the libev signal pipe */
1326/* got some events (signal, async) */
1022static void 1327static void
1023pipecb (EV_P_ ev_io *iow, int revents) 1328pipecb (EV_P_ ev_io *iow, int revents)
1024{ 1329{
1330 int i;
1331
1025#if EV_USE_EVENTFD 1332#if EV_USE_EVENTFD
1026 if (evfd >= 0) 1333 if (evfd >= 0)
1027 { 1334 {
1028 uint64_t counter; 1335 uint64_t counter;
1029 read (evfd, &counter, sizeof (uint64_t)); 1336 read (evfd, &counter, sizeof (uint64_t));
1030 } 1337 }
1031 else 1338 else
1032#endif 1339#endif
1033 { 1340 {
1034 char dummy; 1341 char dummy;
1342 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1035 read (evpipe [0], &dummy, 1); 1343 read (evpipe [0], &dummy, 1);
1036 } 1344 }
1037 1345
1038 if (gotsig && ev_is_default_loop (EV_A)) 1346 if (sig_pending)
1039 { 1347 {
1040 int signum; 1348 sig_pending = 0;
1041 gotsig = 0;
1042 1349
1043 for (signum = signalmax; signum--; ) 1350 for (i = EV_NSIG - 1; i--; )
1044 if (signals [signum].gotsig) 1351 if (expect_false (signals [i].pending))
1045 ev_feed_signal_event (EV_A_ signum + 1); 1352 ev_feed_signal_event (EV_A_ i + 1);
1046 } 1353 }
1047 1354
1048#if EV_ASYNC_ENABLE 1355#if EV_ASYNC_ENABLE
1049 if (gotasync) 1356 if (async_pending)
1050 { 1357 {
1051 int i; 1358 async_pending = 0;
1052 gotasync = 0;
1053 1359
1054 for (i = asynccnt; i--; ) 1360 for (i = asynccnt; i--; )
1055 if (asyncs [i]->sent) 1361 if (asyncs [i]->sent)
1056 { 1362 {
1057 asyncs [i]->sent = 0; 1363 asyncs [i]->sent = 0;
1065 1371
1066static void 1372static void
1067ev_sighandler (int signum) 1373ev_sighandler (int signum)
1068{ 1374{
1069#if EV_MULTIPLICITY 1375#if EV_MULTIPLICITY
1070 struct ev_loop *loop = &default_loop_struct; 1376 EV_P = signals [signum - 1].loop;
1071#endif 1377#endif
1072 1378
1073#if _WIN32 1379#ifdef _WIN32
1074 signal (signum, ev_sighandler); 1380 signal (signum, ev_sighandler);
1075#endif 1381#endif
1076 1382
1077 signals [signum - 1].gotsig = 1; 1383 signals [signum - 1].pending = 1;
1078 evpipe_write (EV_A_ &gotsig); 1384 evpipe_write (EV_A_ &sig_pending);
1079} 1385}
1080 1386
1081void noinline 1387void noinline
1082ev_feed_signal_event (EV_P_ int signum) 1388ev_feed_signal_event (EV_P_ int signum)
1083{ 1389{
1084 WL w; 1390 WL w;
1085 1391
1392 if (expect_false (signum <= 0 || signum > EV_NSIG))
1393 return;
1394
1395 --signum;
1396
1086#if EV_MULTIPLICITY 1397#if EV_MULTIPLICITY
1087 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1398 /* it is permissible to try to feed a signal to the wrong loop */
1088#endif 1399 /* or, likely more useful, feeding a signal nobody is waiting for */
1089 1400
1090 --signum; 1401 if (expect_false (signals [signum].loop != EV_A))
1091
1092 if (signum < 0 || signum >= signalmax)
1093 return; 1402 return;
1403#endif
1094 1404
1095 signals [signum].gotsig = 0; 1405 signals [signum].pending = 0;
1096 1406
1097 for (w = signals [signum].head; w; w = w->next) 1407 for (w = signals [signum].head; w; w = w->next)
1098 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1408 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1099} 1409}
1100 1410
1411#if EV_USE_SIGNALFD
1412static void
1413sigfdcb (EV_P_ ev_io *iow, int revents)
1414{
1415 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1416
1417 for (;;)
1418 {
1419 ssize_t res = read (sigfd, si, sizeof (si));
1420
1421 /* not ISO-C, as res might be -1, but works with SuS */
1422 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1423 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1424
1425 if (res < (ssize_t)sizeof (si))
1426 break;
1427 }
1428}
1429#endif
1430
1431#endif
1432
1101/*****************************************************************************/ 1433/*****************************************************************************/
1102 1434
1435#if EV_CHILD_ENABLE
1103static WL childs [EV_PID_HASHSIZE]; 1436static WL childs [EV_PID_HASHSIZE];
1104
1105#ifndef _WIN32
1106 1437
1107static ev_signal childev; 1438static ev_signal childev;
1108 1439
1109#ifndef WIFCONTINUED 1440#ifndef WIFCONTINUED
1110# define WIFCONTINUED(status) 0 1441# define WIFCONTINUED(status) 0
1111#endif 1442#endif
1112 1443
1113void inline_speed 1444/* handle a single child status event */
1445inline_speed void
1114child_reap (EV_P_ int chain, int pid, int status) 1446child_reap (EV_P_ int chain, int pid, int status)
1115{ 1447{
1116 ev_child *w; 1448 ev_child *w;
1117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1449 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1118 1450
1119 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1451 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1120 { 1452 {
1121 if ((w->pid == pid || !w->pid) 1453 if ((w->pid == pid || !w->pid)
1122 && (!traced || (w->flags & 1))) 1454 && (!traced || (w->flags & 1)))
1123 { 1455 {
1124 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1456 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1131 1463
1132#ifndef WCONTINUED 1464#ifndef WCONTINUED
1133# define WCONTINUED 0 1465# define WCONTINUED 0
1134#endif 1466#endif
1135 1467
1468/* called on sigchld etc., calls waitpid */
1136static void 1469static void
1137childcb (EV_P_ ev_signal *sw, int revents) 1470childcb (EV_P_ ev_signal *sw, int revents)
1138{ 1471{
1139 int pid, status; 1472 int pid, status;
1140 1473
1148 /* make sure we are called again until all children have been reaped */ 1481 /* make sure we are called again until all children have been reaped */
1149 /* we need to do it this way so that the callback gets called before we continue */ 1482 /* we need to do it this way so that the callback gets called before we continue */
1150 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1483 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1151 1484
1152 child_reap (EV_A_ pid, pid, status); 1485 child_reap (EV_A_ pid, pid, status);
1153 if (EV_PID_HASHSIZE > 1) 1486 if ((EV_PID_HASHSIZE) > 1)
1154 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1487 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1155} 1488}
1156 1489
1157#endif 1490#endif
1158 1491
1221 /* kqueue is borked on everything but netbsd apparently */ 1554 /* kqueue is borked on everything but netbsd apparently */
1222 /* it usually doesn't work correctly on anything but sockets and pipes */ 1555 /* it usually doesn't work correctly on anything but sockets and pipes */
1223 flags &= ~EVBACKEND_KQUEUE; 1556 flags &= ~EVBACKEND_KQUEUE;
1224#endif 1557#endif
1225#ifdef __APPLE__ 1558#ifdef __APPLE__
1226 // flags &= ~EVBACKEND_KQUEUE; for documentation 1559 /* only select works correctly on that "unix-certified" platform */
1227 flags &= ~EVBACKEND_POLL; 1560 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1561 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1562#endif
1563#ifdef __FreeBSD__
1564 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1228#endif 1565#endif
1229 1566
1230 return flags; 1567 return flags;
1231} 1568}
1232 1569
1234ev_embeddable_backends (void) 1571ev_embeddable_backends (void)
1235{ 1572{
1236 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1573 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1237 1574
1238 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1575 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1239 /* please fix it and tell me how to detect the fix */ 1576 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1240 flags &= ~EVBACKEND_EPOLL; 1577 flags &= ~EVBACKEND_EPOLL;
1241 1578
1242 return flags; 1579 return flags;
1243} 1580}
1244 1581
1245unsigned int 1582unsigned int
1246ev_backend (EV_P) 1583ev_backend (EV_P)
1247{ 1584{
1248 return backend; 1585 return backend;
1249} 1586}
1250 1587
1588#if EV_FEATURE_API
1251unsigned int 1589unsigned int
1252ev_loop_count (EV_P) 1590ev_iteration (EV_P)
1253{ 1591{
1254 return loop_count; 1592 return loop_count;
1255} 1593}
1256 1594
1595unsigned int
1596ev_depth (EV_P)
1597{
1598 return loop_depth;
1599}
1600
1257void 1601void
1258ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1602ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1259{ 1603{
1260 io_blocktime = interval; 1604 io_blocktime = interval;
1261} 1605}
1264ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1608ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1265{ 1609{
1266 timeout_blocktime = interval; 1610 timeout_blocktime = interval;
1267} 1611}
1268 1612
1613void
1614ev_set_userdata (EV_P_ void *data)
1615{
1616 userdata = data;
1617}
1618
1619void *
1620ev_userdata (EV_P)
1621{
1622 return userdata;
1623}
1624
1625void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1626{
1627 invoke_cb = invoke_pending_cb;
1628}
1629
1630void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1631{
1632 release_cb = release;
1633 acquire_cb = acquire;
1634}
1635#endif
1636
1637/* initialise a loop structure, must be zero-initialised */
1269static void noinline 1638static void noinline
1270loop_init (EV_P_ unsigned int flags) 1639loop_init (EV_P_ unsigned int flags)
1271{ 1640{
1272 if (!backend) 1641 if (!backend)
1273 { 1642 {
1643#if EV_USE_REALTIME
1644 if (!have_realtime)
1645 {
1646 struct timespec ts;
1647
1648 if (!clock_gettime (CLOCK_REALTIME, &ts))
1649 have_realtime = 1;
1650 }
1651#endif
1652
1274#if EV_USE_MONOTONIC 1653#if EV_USE_MONOTONIC
1654 if (!have_monotonic)
1275 { 1655 {
1276 struct timespec ts; 1656 struct timespec ts;
1657
1277 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1658 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1278 have_monotonic = 1; 1659 have_monotonic = 1;
1279 } 1660 }
1280#endif 1661#endif
1662
1663 /* pid check not overridable via env */
1664#ifndef _WIN32
1665 if (flags & EVFLAG_FORKCHECK)
1666 curpid = getpid ();
1667#endif
1668
1669 if (!(flags & EVFLAG_NOENV)
1670 && !enable_secure ()
1671 && getenv ("LIBEV_FLAGS"))
1672 flags = atoi (getenv ("LIBEV_FLAGS"));
1281 1673
1282 ev_rt_now = ev_time (); 1674 ev_rt_now = ev_time ();
1283 mn_now = get_clock (); 1675 mn_now = get_clock ();
1284 now_floor = mn_now; 1676 now_floor = mn_now;
1285 rtmn_diff = ev_rt_now - mn_now; 1677 rtmn_diff = ev_rt_now - mn_now;
1678#if EV_FEATURE_API
1679 invoke_cb = ev_invoke_pending;
1680#endif
1286 1681
1287 io_blocktime = 0.; 1682 io_blocktime = 0.;
1288 timeout_blocktime = 0.; 1683 timeout_blocktime = 0.;
1289 backend = 0; 1684 backend = 0;
1290 backend_fd = -1; 1685 backend_fd = -1;
1291 gotasync = 0; 1686 sig_pending = 0;
1687#if EV_ASYNC_ENABLE
1688 async_pending = 0;
1689#endif
1292#if EV_USE_INOTIFY 1690#if EV_USE_INOTIFY
1293 fs_fd = -2; 1691 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1294#endif 1692#endif
1295 1693#if EV_USE_SIGNALFD
1296 /* pid check not overridable via env */ 1694 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1297#ifndef _WIN32
1298 if (flags & EVFLAG_FORKCHECK)
1299 curpid = getpid ();
1300#endif 1695#endif
1301
1302 if (!(flags & EVFLAG_NOENV)
1303 && !enable_secure ()
1304 && getenv ("LIBEV_FLAGS"))
1305 flags = atoi (getenv ("LIBEV_FLAGS"));
1306 1696
1307 if (!(flags & 0x0000ffffU)) 1697 if (!(flags & 0x0000ffffU))
1308 flags |= ev_recommended_backends (); 1698 flags |= ev_recommended_backends ();
1309 1699
1310#if EV_USE_PORT 1700#if EV_USE_PORT
1321#endif 1711#endif
1322#if EV_USE_SELECT 1712#if EV_USE_SELECT
1323 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1713 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1324#endif 1714#endif
1325 1715
1716 ev_prepare_init (&pending_w, pendingcb);
1717
1718#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1326 ev_init (&pipeev, pipecb); 1719 ev_init (&pipe_w, pipecb);
1327 ev_set_priority (&pipeev, EV_MAXPRI); 1720 ev_set_priority (&pipe_w, EV_MAXPRI);
1721#endif
1328 } 1722 }
1329} 1723}
1330 1724
1725/* free up a loop structure */
1331static void noinline 1726static void noinline
1332loop_destroy (EV_P) 1727loop_destroy (EV_P)
1333{ 1728{
1334 int i; 1729 int i;
1335 1730
1336 if (ev_is_active (&pipeev)) 1731 if (ev_is_active (&pipe_w))
1337 { 1732 {
1338 ev_ref (EV_A); /* signal watcher */ 1733 /*ev_ref (EV_A);*/
1339 ev_io_stop (EV_A_ &pipeev); 1734 /*ev_io_stop (EV_A_ &pipe_w);*/
1340 1735
1341#if EV_USE_EVENTFD 1736#if EV_USE_EVENTFD
1342 if (evfd >= 0) 1737 if (evfd >= 0)
1343 close (evfd); 1738 close (evfd);
1344#endif 1739#endif
1345 1740
1346 if (evpipe [0] >= 0) 1741 if (evpipe [0] >= 0)
1347 { 1742 {
1348 close (evpipe [0]); 1743 EV_WIN32_CLOSE_FD (evpipe [0]);
1349 close (evpipe [1]); 1744 EV_WIN32_CLOSE_FD (evpipe [1]);
1350 } 1745 }
1351 } 1746 }
1747
1748#if EV_USE_SIGNALFD
1749 if (ev_is_active (&sigfd_w))
1750 close (sigfd);
1751#endif
1352 1752
1353#if EV_USE_INOTIFY 1753#if EV_USE_INOTIFY
1354 if (fs_fd >= 0) 1754 if (fs_fd >= 0)
1355 close (fs_fd); 1755 close (fs_fd);
1356#endif 1756#endif
1380#if EV_IDLE_ENABLE 1780#if EV_IDLE_ENABLE
1381 array_free (idle, [i]); 1781 array_free (idle, [i]);
1382#endif 1782#endif
1383 } 1783 }
1384 1784
1385 ev_free (anfds); anfdmax = 0; 1785 ev_free (anfds); anfds = 0; anfdmax = 0;
1386 1786
1387 /* have to use the microsoft-never-gets-it-right macro */ 1787 /* have to use the microsoft-never-gets-it-right macro */
1788 array_free (rfeed, EMPTY);
1388 array_free (fdchange, EMPTY); 1789 array_free (fdchange, EMPTY);
1389 array_free (timer, EMPTY); 1790 array_free (timer, EMPTY);
1390#if EV_PERIODIC_ENABLE 1791#if EV_PERIODIC_ENABLE
1391 array_free (periodic, EMPTY); 1792 array_free (periodic, EMPTY);
1392#endif 1793#endif
1401 1802
1402 backend = 0; 1803 backend = 0;
1403} 1804}
1404 1805
1405#if EV_USE_INOTIFY 1806#if EV_USE_INOTIFY
1406void inline_size infy_fork (EV_P); 1807inline_size void infy_fork (EV_P);
1407#endif 1808#endif
1408 1809
1409void inline_size 1810inline_size void
1410loop_fork (EV_P) 1811loop_fork (EV_P)
1411{ 1812{
1412#if EV_USE_PORT 1813#if EV_USE_PORT
1413 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1814 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1414#endif 1815#endif
1420#endif 1821#endif
1421#if EV_USE_INOTIFY 1822#if EV_USE_INOTIFY
1422 infy_fork (EV_A); 1823 infy_fork (EV_A);
1423#endif 1824#endif
1424 1825
1425 if (ev_is_active (&pipeev)) 1826 if (ev_is_active (&pipe_w))
1426 { 1827 {
1427 /* this "locks" the handlers against writing to the pipe */ 1828 /* this "locks" the handlers against writing to the pipe */
1428 /* while we modify the fd vars */ 1829 /* while we modify the fd vars */
1429 gotsig = 1; 1830 sig_pending = 1;
1430#if EV_ASYNC_ENABLE 1831#if EV_ASYNC_ENABLE
1431 gotasync = 1; 1832 async_pending = 1;
1432#endif 1833#endif
1433 1834
1434 ev_ref (EV_A); 1835 ev_ref (EV_A);
1435 ev_io_stop (EV_A_ &pipeev); 1836 ev_io_stop (EV_A_ &pipe_w);
1436 1837
1437#if EV_USE_EVENTFD 1838#if EV_USE_EVENTFD
1438 if (evfd >= 0) 1839 if (evfd >= 0)
1439 close (evfd); 1840 close (evfd);
1440#endif 1841#endif
1441 1842
1442 if (evpipe [0] >= 0) 1843 if (evpipe [0] >= 0)
1443 { 1844 {
1444 close (evpipe [0]); 1845 EV_WIN32_CLOSE_FD (evpipe [0]);
1445 close (evpipe [1]); 1846 EV_WIN32_CLOSE_FD (evpipe [1]);
1446 } 1847 }
1447 1848
1849#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1448 evpipe_init (EV_A); 1850 evpipe_init (EV_A);
1449 /* now iterate over everything, in case we missed something */ 1851 /* now iterate over everything, in case we missed something */
1450 pipecb (EV_A_ &pipeev, EV_READ); 1852 pipecb (EV_A_ &pipe_w, EV_READ);
1853#endif
1451 } 1854 }
1452 1855
1453 postfork = 0; 1856 postfork = 0;
1454} 1857}
1455 1858
1456#if EV_MULTIPLICITY 1859#if EV_MULTIPLICITY
1860
1457struct ev_loop * 1861struct ev_loop *
1458ev_loop_new (unsigned int flags) 1862ev_loop_new (unsigned int flags)
1459{ 1863{
1460 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1864 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1461 1865
1462 memset (loop, 0, sizeof (struct ev_loop)); 1866 memset (EV_A, 0, sizeof (struct ev_loop));
1463
1464 loop_init (EV_A_ flags); 1867 loop_init (EV_A_ flags);
1465 1868
1466 if (ev_backend (EV_A)) 1869 if (ev_backend (EV_A))
1467 return loop; 1870 return EV_A;
1468 1871
1469 return 0; 1872 return 0;
1470} 1873}
1471 1874
1472void 1875void
1478 1881
1479void 1882void
1480ev_loop_fork (EV_P) 1883ev_loop_fork (EV_P)
1481{ 1884{
1482 postfork = 1; /* must be in line with ev_default_fork */ 1885 postfork = 1; /* must be in line with ev_default_fork */
1886}
1887#endif /* multiplicity */
1888
1889#if EV_VERIFY
1890static void noinline
1891verify_watcher (EV_P_ W w)
1892{
1893 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1894
1895 if (w->pending)
1896 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1897}
1898
1899static void noinline
1900verify_heap (EV_P_ ANHE *heap, int N)
1901{
1902 int i;
1903
1904 for (i = HEAP0; i < N + HEAP0; ++i)
1905 {
1906 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1907 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1908 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1909
1910 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1911 }
1912}
1913
1914static void noinline
1915array_verify (EV_P_ W *ws, int cnt)
1916{
1917 while (cnt--)
1918 {
1919 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1920 verify_watcher (EV_A_ ws [cnt]);
1921 }
1922}
1923#endif
1924
1925#if EV_FEATURE_API
1926void
1927ev_verify (EV_P)
1928{
1929#if EV_VERIFY
1930 int i;
1931 WL w;
1932
1933 assert (activecnt >= -1);
1934
1935 assert (fdchangemax >= fdchangecnt);
1936 for (i = 0; i < fdchangecnt; ++i)
1937 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1938
1939 assert (anfdmax >= 0);
1940 for (i = 0; i < anfdmax; ++i)
1941 for (w = anfds [i].head; w; w = w->next)
1942 {
1943 verify_watcher (EV_A_ (W)w);
1944 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1945 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1946 }
1947
1948 assert (timermax >= timercnt);
1949 verify_heap (EV_A_ timers, timercnt);
1950
1951#if EV_PERIODIC_ENABLE
1952 assert (periodicmax >= periodiccnt);
1953 verify_heap (EV_A_ periodics, periodiccnt);
1954#endif
1955
1956 for (i = NUMPRI; i--; )
1957 {
1958 assert (pendingmax [i] >= pendingcnt [i]);
1959#if EV_IDLE_ENABLE
1960 assert (idleall >= 0);
1961 assert (idlemax [i] >= idlecnt [i]);
1962 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1963#endif
1964 }
1965
1966#if EV_FORK_ENABLE
1967 assert (forkmax >= forkcnt);
1968 array_verify (EV_A_ (W *)forks, forkcnt);
1969#endif
1970
1971#if EV_ASYNC_ENABLE
1972 assert (asyncmax >= asynccnt);
1973 array_verify (EV_A_ (W *)asyncs, asynccnt);
1974#endif
1975
1976#if EV_PREPARE_ENABLE
1977 assert (preparemax >= preparecnt);
1978 array_verify (EV_A_ (W *)prepares, preparecnt);
1979#endif
1980
1981#if EV_CHECK_ENABLE
1982 assert (checkmax >= checkcnt);
1983 array_verify (EV_A_ (W *)checks, checkcnt);
1984#endif
1985
1986# if 0
1987#if EV_CHILD_ENABLE
1988 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1989 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1990#endif
1991# endif
1992#endif
1483} 1993}
1484#endif 1994#endif
1485 1995
1486#if EV_MULTIPLICITY 1996#if EV_MULTIPLICITY
1487struct ev_loop * 1997struct ev_loop *
1492#endif 2002#endif
1493{ 2003{
1494 if (!ev_default_loop_ptr) 2004 if (!ev_default_loop_ptr)
1495 { 2005 {
1496#if EV_MULTIPLICITY 2006#if EV_MULTIPLICITY
1497 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2007 EV_P = ev_default_loop_ptr = &default_loop_struct;
1498#else 2008#else
1499 ev_default_loop_ptr = 1; 2009 ev_default_loop_ptr = 1;
1500#endif 2010#endif
1501 2011
1502 loop_init (EV_A_ flags); 2012 loop_init (EV_A_ flags);
1503 2013
1504 if (ev_backend (EV_A)) 2014 if (ev_backend (EV_A))
1505 { 2015 {
1506#ifndef _WIN32 2016#if EV_CHILD_ENABLE
1507 ev_signal_init (&childev, childcb, SIGCHLD); 2017 ev_signal_init (&childev, childcb, SIGCHLD);
1508 ev_set_priority (&childev, EV_MAXPRI); 2018 ev_set_priority (&childev, EV_MAXPRI);
1509 ev_signal_start (EV_A_ &childev); 2019 ev_signal_start (EV_A_ &childev);
1510 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2020 ev_unref (EV_A); /* child watcher should not keep loop alive */
1511#endif 2021#endif
1519 2029
1520void 2030void
1521ev_default_destroy (void) 2031ev_default_destroy (void)
1522{ 2032{
1523#if EV_MULTIPLICITY 2033#if EV_MULTIPLICITY
1524 struct ev_loop *loop = ev_default_loop_ptr; 2034 EV_P = ev_default_loop_ptr;
1525#endif 2035#endif
1526 2036
1527#ifndef _WIN32 2037 ev_default_loop_ptr = 0;
2038
2039#if EV_CHILD_ENABLE
1528 ev_ref (EV_A); /* child watcher */ 2040 ev_ref (EV_A); /* child watcher */
1529 ev_signal_stop (EV_A_ &childev); 2041 ev_signal_stop (EV_A_ &childev);
1530#endif 2042#endif
1531 2043
1532 loop_destroy (EV_A); 2044 loop_destroy (EV_A);
1534 2046
1535void 2047void
1536ev_default_fork (void) 2048ev_default_fork (void)
1537{ 2049{
1538#if EV_MULTIPLICITY 2050#if EV_MULTIPLICITY
1539 struct ev_loop *loop = ev_default_loop_ptr; 2051 EV_P = ev_default_loop_ptr;
1540#endif 2052#endif
1541 2053
1542 if (backend)
1543 postfork = 1; /* must be in line with ev_loop_fork */ 2054 postfork = 1; /* must be in line with ev_loop_fork */
1544} 2055}
1545 2056
1546/*****************************************************************************/ 2057/*****************************************************************************/
1547 2058
1548void 2059void
1549ev_invoke (EV_P_ void *w, int revents) 2060ev_invoke (EV_P_ void *w, int revents)
1550{ 2061{
1551 EV_CB_INVOKE ((W)w, revents); 2062 EV_CB_INVOKE ((W)w, revents);
1552} 2063}
1553 2064
1554void inline_speed 2065unsigned int
1555call_pending (EV_P) 2066ev_pending_count (EV_P)
2067{
2068 int pri;
2069 unsigned int count = 0;
2070
2071 for (pri = NUMPRI; pri--; )
2072 count += pendingcnt [pri];
2073
2074 return count;
2075}
2076
2077void noinline
2078ev_invoke_pending (EV_P)
1556{ 2079{
1557 int pri; 2080 int pri;
1558 2081
1559 for (pri = NUMPRI; pri--; ) 2082 for (pri = NUMPRI; pri--; )
1560 while (pendingcnt [pri]) 2083 while (pendingcnt [pri])
1561 { 2084 {
1562 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2085 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1563 2086
1564 if (expect_true (p->w))
1565 {
1566 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2087 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2088 /* ^ this is no longer true, as pending_w could be here */
1567 2089
1568 p->w->pending = 0; 2090 p->w->pending = 0;
1569 EV_CB_INVOKE (p->w, p->events); 2091 EV_CB_INVOKE (p->w, p->events);
1570 } 2092 EV_FREQUENT_CHECK;
1571 } 2093 }
1572} 2094}
1573 2095
1574#if EV_IDLE_ENABLE 2096#if EV_IDLE_ENABLE
1575void inline_size 2097/* make idle watchers pending. this handles the "call-idle */
2098/* only when higher priorities are idle" logic */
2099inline_size void
1576idle_reify (EV_P) 2100idle_reify (EV_P)
1577{ 2101{
1578 if (expect_false (idleall)) 2102 if (expect_false (idleall))
1579 { 2103 {
1580 int pri; 2104 int pri;
1592 } 2116 }
1593 } 2117 }
1594} 2118}
1595#endif 2119#endif
1596 2120
1597void inline_size 2121/* make timers pending */
2122inline_size void
1598timers_reify (EV_P) 2123timers_reify (EV_P)
1599{ 2124{
2125 EV_FREQUENT_CHECK;
2126
1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now) 2127 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1601 { 2128 {
1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2129 do
1603
1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1605
1606 /* first reschedule or stop timer */
1607 if (w->repeat)
1608 { 2130 {
2131 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2132
2133 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2134
2135 /* first reschedule or stop timer */
2136 if (w->repeat)
2137 {
2138 ev_at (w) += w->repeat;
2139 if (ev_at (w) < mn_now)
2140 ev_at (w) = mn_now;
2141
1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2142 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1610 2143
1611 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now;
1614
1615 ANHE_at_set (timers [HEAP0]); 2144 ANHE_at_cache (timers [HEAP0]);
1616 downheap (timers, timercnt, HEAP0); 2145 downheap (timers, timercnt, HEAP0);
2146 }
2147 else
2148 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2149
2150 EV_FREQUENT_CHECK;
2151 feed_reverse (EV_A_ (W)w);
1617 } 2152 }
1618 else 2153 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1620 2154
1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2155 feed_reverse_done (EV_A_ EV_TIMER);
1622 } 2156 }
1623} 2157}
1624 2158
1625#if EV_PERIODIC_ENABLE 2159#if EV_PERIODIC_ENABLE
1626void inline_size 2160/* make periodics pending */
2161inline_size void
1627periodics_reify (EV_P) 2162periodics_reify (EV_P)
1628{ 2163{
2164 EV_FREQUENT_CHECK;
2165
1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now) 2166 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1630 { 2167 {
1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2168 int feed_count = 0;
1632 2169
1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2170 do
1634
1635 /* first reschedule or stop timer */
1636 if (w->reschedule_cb)
1637 { 2171 {
2172 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2173
2174 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2175
2176 /* first reschedule or stop timer */
2177 if (w->reschedule_cb)
2178 {
1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 2179 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2180
1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 2181 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2182
1640 ANHE_at_set (periodics [HEAP0]); 2183 ANHE_at_cache (periodics [HEAP0]);
1641 downheap (periodics, periodiccnt, HEAP0); 2184 downheap (periodics, periodiccnt, HEAP0);
2185 }
2186 else if (w->interval)
2187 {
2188 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2189 /* if next trigger time is not sufficiently in the future, put it there */
2190 /* this might happen because of floating point inexactness */
2191 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2192 {
2193 ev_at (w) += w->interval;
2194
2195 /* if interval is unreasonably low we might still have a time in the past */
2196 /* so correct this. this will make the periodic very inexact, but the user */
2197 /* has effectively asked to get triggered more often than possible */
2198 if (ev_at (w) < ev_rt_now)
2199 ev_at (w) = ev_rt_now;
2200 }
2201
2202 ANHE_at_cache (periodics [HEAP0]);
2203 downheap (periodics, periodiccnt, HEAP0);
2204 }
2205 else
2206 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2207
2208 EV_FREQUENT_CHECK;
2209 feed_reverse (EV_A_ (W)w);
1642 } 2210 }
1643 else if (w->interval) 2211 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1644 {
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else
1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1653 2212
1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2213 feed_reverse_done (EV_A_ EV_PERIODIC);
1655 } 2214 }
1656} 2215}
1657 2216
2217/* simply recalculate all periodics */
2218/* TODO: maybe ensure that at least one event happens when jumping forward? */
1658static void noinline 2219static void noinline
1659periodics_reschedule (EV_P) 2220periodics_reschedule (EV_P)
1660{ 2221{
1661 int i; 2222 int i;
1662 2223
1668 if (w->reschedule_cb) 2229 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2230 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1670 else if (w->interval) 2231 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2232 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1672 2233
1673 ANHE_at_set (periodics [i]); 2234 ANHE_at_cache (periodics [i]);
2235 }
2236
2237 reheap (periodics, periodiccnt);
2238}
2239#endif
2240
2241/* adjust all timers by a given offset */
2242static void noinline
2243timers_reschedule (EV_P_ ev_tstamp adjust)
2244{
2245 int i;
2246
2247 for (i = 0; i < timercnt; ++i)
1674 } 2248 {
1675 2249 ANHE *he = timers + i + HEAP0;
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */ 2250 ANHE_w (*he)->at += adjust;
1677 for (i = periodiccnt >> 1; --i; ) 2251 ANHE_at_cache (*he);
1678 downheap (periodics, periodiccnt, i + HEAP0); 2252 }
1679} 2253}
1680#endif
1681 2254
1682void inline_speed 2255/* fetch new monotonic and realtime times from the kernel */
2256/* also detect if there was a timejump, and act accordingly */
2257inline_speed void
1683time_update (EV_P_ ev_tstamp max_block) 2258time_update (EV_P_ ev_tstamp max_block)
1684{ 2259{
1685 int i;
1686
1687#if EV_USE_MONOTONIC 2260#if EV_USE_MONOTONIC
1688 if (expect_true (have_monotonic)) 2261 if (expect_true (have_monotonic))
1689 { 2262 {
2263 int i;
1690 ev_tstamp odiff = rtmn_diff; 2264 ev_tstamp odiff = rtmn_diff;
1691 2265
1692 mn_now = get_clock (); 2266 mn_now = get_clock ();
1693 2267
1694 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2268 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1720 ev_rt_now = ev_time (); 2294 ev_rt_now = ev_time ();
1721 mn_now = get_clock (); 2295 mn_now = get_clock ();
1722 now_floor = mn_now; 2296 now_floor = mn_now;
1723 } 2297 }
1724 2298
2299 /* no timer adjustment, as the monotonic clock doesn't jump */
2300 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1725# if EV_PERIODIC_ENABLE 2301# if EV_PERIODIC_ENABLE
1726 periodics_reschedule (EV_A); 2302 periodics_reschedule (EV_A);
1727# endif 2303# endif
1728 /* no timer adjustment, as the monotonic clock doesn't jump */
1729 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1730 } 2304 }
1731 else 2305 else
1732#endif 2306#endif
1733 { 2307 {
1734 ev_rt_now = ev_time (); 2308 ev_rt_now = ev_time ();
1735 2309
1736 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2310 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1737 { 2311 {
2312 /* adjust timers. this is easy, as the offset is the same for all of them */
2313 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1738#if EV_PERIODIC_ENABLE 2314#if EV_PERIODIC_ENABLE
1739 periodics_reschedule (EV_A); 2315 periodics_reschedule (EV_A);
1740#endif 2316#endif
1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1742 for (i = 0; i < timercnt; ++i)
1743 {
1744 ANHE *he = timers + i + HEAP0;
1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he);
1747 }
1748 } 2317 }
1749 2318
1750 mn_now = ev_rt_now; 2319 mn_now = ev_rt_now;
1751 } 2320 }
1752} 2321}
1753 2322
1754void 2323void
1755ev_ref (EV_P)
1756{
1757 ++activecnt;
1758}
1759
1760void
1761ev_unref (EV_P)
1762{
1763 --activecnt;
1764}
1765
1766static int loop_done;
1767
1768void
1769ev_loop (EV_P_ int flags) 2324ev_run (EV_P_ int flags)
1770{ 2325{
2326#if EV_FEATURE_API
2327 ++loop_depth;
2328#endif
2329
2330 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2331
1771 loop_done = EVUNLOOP_CANCEL; 2332 loop_done = EVBREAK_CANCEL;
1772 2333
1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2334 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1774 2335
1775 do 2336 do
1776 { 2337 {
2338#if EV_VERIFY >= 2
2339 ev_verify (EV_A);
2340#endif
2341
1777#ifndef _WIN32 2342#ifndef _WIN32
1778 if (expect_false (curpid)) /* penalise the forking check even more */ 2343 if (expect_false (curpid)) /* penalise the forking check even more */
1779 if (expect_false (getpid () != curpid)) 2344 if (expect_false (getpid () != curpid))
1780 { 2345 {
1781 curpid = getpid (); 2346 curpid = getpid ();
1787 /* we might have forked, so queue fork handlers */ 2352 /* we might have forked, so queue fork handlers */
1788 if (expect_false (postfork)) 2353 if (expect_false (postfork))
1789 if (forkcnt) 2354 if (forkcnt)
1790 { 2355 {
1791 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2356 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1792 call_pending (EV_A); 2357 EV_INVOKE_PENDING;
1793 } 2358 }
1794#endif 2359#endif
1795 2360
2361#if EV_PREPARE_ENABLE
1796 /* queue prepare watchers (and execute them) */ 2362 /* queue prepare watchers (and execute them) */
1797 if (expect_false (preparecnt)) 2363 if (expect_false (preparecnt))
1798 { 2364 {
1799 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2365 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1800 call_pending (EV_A); 2366 EV_INVOKE_PENDING;
1801 } 2367 }
2368#endif
1802 2369
1803 if (expect_false (!activecnt)) 2370 if (expect_false (loop_done))
1804 break; 2371 break;
1805 2372
1806 /* we might have forked, so reify kernel state if necessary */ 2373 /* we might have forked, so reify kernel state if necessary */
1807 if (expect_false (postfork)) 2374 if (expect_false (postfork))
1808 loop_fork (EV_A); 2375 loop_fork (EV_A);
1813 /* calculate blocking time */ 2380 /* calculate blocking time */
1814 { 2381 {
1815 ev_tstamp waittime = 0.; 2382 ev_tstamp waittime = 0.;
1816 ev_tstamp sleeptime = 0.; 2383 ev_tstamp sleeptime = 0.;
1817 2384
2385 /* remember old timestamp for io_blocktime calculation */
2386 ev_tstamp prev_mn_now = mn_now;
2387
2388 /* update time to cancel out callback processing overhead */
2389 time_update (EV_A_ 1e100);
2390
1818 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2391 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1819 { 2392 {
1820 /* update time to cancel out callback processing overhead */
1821 time_update (EV_A_ 1e100);
1822
1823 waittime = MAX_BLOCKTIME; 2393 waittime = MAX_BLOCKTIME;
1824 2394
1825 if (timercnt) 2395 if (timercnt)
1826 { 2396 {
1827 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2397 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2404 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1835 if (waittime > to) waittime = to; 2405 if (waittime > to) waittime = to;
1836 } 2406 }
1837#endif 2407#endif
1838 2408
2409 /* don't let timeouts decrease the waittime below timeout_blocktime */
1839 if (expect_false (waittime < timeout_blocktime)) 2410 if (expect_false (waittime < timeout_blocktime))
1840 waittime = timeout_blocktime; 2411 waittime = timeout_blocktime;
1841 2412
1842 sleeptime = waittime - backend_fudge; 2413 /* extra check because io_blocktime is commonly 0 */
1843
1844 if (expect_true (sleeptime > io_blocktime)) 2414 if (expect_false (io_blocktime))
1845 sleeptime = io_blocktime;
1846
1847 if (sleeptime)
1848 { 2415 {
2416 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2417
2418 if (sleeptime > waittime - backend_fudge)
2419 sleeptime = waittime - backend_fudge;
2420
2421 if (expect_true (sleeptime > 0.))
2422 {
1849 ev_sleep (sleeptime); 2423 ev_sleep (sleeptime);
1850 waittime -= sleeptime; 2424 waittime -= sleeptime;
2425 }
1851 } 2426 }
1852 } 2427 }
1853 2428
2429#if EV_FEATURE_API
1854 ++loop_count; 2430 ++loop_count;
2431#endif
2432 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1855 backend_poll (EV_A_ waittime); 2433 backend_poll (EV_A_ waittime);
2434 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1856 2435
1857 /* update ev_rt_now, do magic */ 2436 /* update ev_rt_now, do magic */
1858 time_update (EV_A_ waittime + sleeptime); 2437 time_update (EV_A_ waittime + sleeptime);
1859 } 2438 }
1860 2439
1867#if EV_IDLE_ENABLE 2446#if EV_IDLE_ENABLE
1868 /* queue idle watchers unless other events are pending */ 2447 /* queue idle watchers unless other events are pending */
1869 idle_reify (EV_A); 2448 idle_reify (EV_A);
1870#endif 2449#endif
1871 2450
2451#if EV_CHECK_ENABLE
1872 /* queue check watchers, to be executed first */ 2452 /* queue check watchers, to be executed first */
1873 if (expect_false (checkcnt)) 2453 if (expect_false (checkcnt))
1874 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2454 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2455#endif
1875 2456
1876 call_pending (EV_A); 2457 EV_INVOKE_PENDING;
1877 } 2458 }
1878 while (expect_true ( 2459 while (expect_true (
1879 activecnt 2460 activecnt
1880 && !loop_done 2461 && !loop_done
1881 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2462 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1882 )); 2463 ));
1883 2464
1884 if (loop_done == EVUNLOOP_ONE) 2465 if (loop_done == EVBREAK_ONE)
1885 loop_done = EVUNLOOP_CANCEL; 2466 loop_done = EVBREAK_CANCEL;
1886}
1887 2467
2468#if EV_FEATURE_API
2469 --loop_depth;
2470#endif
2471}
2472
1888void 2473void
1889ev_unloop (EV_P_ int how) 2474ev_break (EV_P_ int how)
1890{ 2475{
1891 loop_done = how; 2476 loop_done = how;
1892} 2477}
1893 2478
2479void
2480ev_ref (EV_P)
2481{
2482 ++activecnt;
2483}
2484
2485void
2486ev_unref (EV_P)
2487{
2488 --activecnt;
2489}
2490
2491void
2492ev_now_update (EV_P)
2493{
2494 time_update (EV_A_ 1e100);
2495}
2496
2497void
2498ev_suspend (EV_P)
2499{
2500 ev_now_update (EV_A);
2501}
2502
2503void
2504ev_resume (EV_P)
2505{
2506 ev_tstamp mn_prev = mn_now;
2507
2508 ev_now_update (EV_A);
2509 timers_reschedule (EV_A_ mn_now - mn_prev);
2510#if EV_PERIODIC_ENABLE
2511 /* TODO: really do this? */
2512 periodics_reschedule (EV_A);
2513#endif
2514}
2515
1894/*****************************************************************************/ 2516/*****************************************************************************/
2517/* singly-linked list management, used when the expected list length is short */
1895 2518
1896void inline_size 2519inline_size void
1897wlist_add (WL *head, WL elem) 2520wlist_add (WL *head, WL elem)
1898{ 2521{
1899 elem->next = *head; 2522 elem->next = *head;
1900 *head = elem; 2523 *head = elem;
1901} 2524}
1902 2525
1903void inline_size 2526inline_size void
1904wlist_del (WL *head, WL elem) 2527wlist_del (WL *head, WL elem)
1905{ 2528{
1906 while (*head) 2529 while (*head)
1907 { 2530 {
1908 if (*head == elem) 2531 if (expect_true (*head == elem))
1909 { 2532 {
1910 *head = elem->next; 2533 *head = elem->next;
1911 return; 2534 break;
1912 } 2535 }
1913 2536
1914 head = &(*head)->next; 2537 head = &(*head)->next;
1915 } 2538 }
1916} 2539}
1917 2540
1918void inline_speed 2541/* internal, faster, version of ev_clear_pending */
2542inline_speed void
1919clear_pending (EV_P_ W w) 2543clear_pending (EV_P_ W w)
1920{ 2544{
1921 if (w->pending) 2545 if (w->pending)
1922 { 2546 {
1923 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2547 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1924 w->pending = 0; 2548 w->pending = 0;
1925 } 2549 }
1926} 2550}
1927 2551
1928int 2552int
1932 int pending = w_->pending; 2556 int pending = w_->pending;
1933 2557
1934 if (expect_true (pending)) 2558 if (expect_true (pending))
1935 { 2559 {
1936 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2560 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2561 p->w = (W)&pending_w;
1937 w_->pending = 0; 2562 w_->pending = 0;
1938 p->w = 0;
1939 return p->events; 2563 return p->events;
1940 } 2564 }
1941 else 2565 else
1942 return 0; 2566 return 0;
1943} 2567}
1944 2568
1945void inline_size 2569inline_size void
1946pri_adjust (EV_P_ W w) 2570pri_adjust (EV_P_ W w)
1947{ 2571{
1948 int pri = w->priority; 2572 int pri = ev_priority (w);
1949 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2573 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1950 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2574 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1951 w->priority = pri; 2575 ev_set_priority (w, pri);
1952} 2576}
1953 2577
1954void inline_speed 2578inline_speed void
1955ev_start (EV_P_ W w, int active) 2579ev_start (EV_P_ W w, int active)
1956{ 2580{
1957 pri_adjust (EV_A_ w); 2581 pri_adjust (EV_A_ w);
1958 w->active = active; 2582 w->active = active;
1959 ev_ref (EV_A); 2583 ev_ref (EV_A);
1960} 2584}
1961 2585
1962void inline_size 2586inline_size void
1963ev_stop (EV_P_ W w) 2587ev_stop (EV_P_ W w)
1964{ 2588{
1965 ev_unref (EV_A); 2589 ev_unref (EV_A);
1966 w->active = 0; 2590 w->active = 0;
1967} 2591}
1974 int fd = w->fd; 2598 int fd = w->fd;
1975 2599
1976 if (expect_false (ev_is_active (w))) 2600 if (expect_false (ev_is_active (w)))
1977 return; 2601 return;
1978 2602
1979 assert (("ev_io_start called with negative fd", fd >= 0)); 2603 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2604 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2605
2606 EV_FREQUENT_CHECK;
1980 2607
1981 ev_start (EV_A_ (W)w, 1); 2608 ev_start (EV_A_ (W)w, 1);
1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2609 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1983 wlist_add (&anfds[fd].head, (WL)w); 2610 wlist_add (&anfds[fd].head, (WL)w);
1984 2611
1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2612 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1986 w->events &= ~EV_IOFDSET; 2613 w->events &= ~EV__IOFDSET;
2614
2615 EV_FREQUENT_CHECK;
1987} 2616}
1988 2617
1989void noinline 2618void noinline
1990ev_io_stop (EV_P_ ev_io *w) 2619ev_io_stop (EV_P_ ev_io *w)
1991{ 2620{
1992 clear_pending (EV_A_ (W)w); 2621 clear_pending (EV_A_ (W)w);
1993 if (expect_false (!ev_is_active (w))) 2622 if (expect_false (!ev_is_active (w)))
1994 return; 2623 return;
1995 2624
1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2625 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2626
2627 EV_FREQUENT_CHECK;
1997 2628
1998 wlist_del (&anfds[w->fd].head, (WL)w); 2629 wlist_del (&anfds[w->fd].head, (WL)w);
1999 ev_stop (EV_A_ (W)w); 2630 ev_stop (EV_A_ (W)w);
2000 2631
2001 fd_change (EV_A_ w->fd, 1); 2632 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2633
2634 EV_FREQUENT_CHECK;
2002} 2635}
2003 2636
2004void noinline 2637void noinline
2005ev_timer_start (EV_P_ ev_timer *w) 2638ev_timer_start (EV_P_ ev_timer *w)
2006{ 2639{
2007 if (expect_false (ev_is_active (w))) 2640 if (expect_false (ev_is_active (w)))
2008 return; 2641 return;
2009 2642
2010 ev_at (w) += mn_now; 2643 ev_at (w) += mn_now;
2011 2644
2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2645 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2013 2646
2647 EV_FREQUENT_CHECK;
2648
2649 ++timercnt;
2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2650 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2651 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2016 ANHE_w (timers [ev_active (w)]) = (WT)w; 2652 ANHE_w (timers [ev_active (w)]) = (WT)w;
2017 ANHE_at_set (timers [ev_active (w)]); 2653 ANHE_at_cache (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w)); 2654 upheap (timers, ev_active (w));
2019 2655
2656 EV_FREQUENT_CHECK;
2657
2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2658 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2021} 2659}
2022 2660
2023void noinline 2661void noinline
2024ev_timer_stop (EV_P_ ev_timer *w) 2662ev_timer_stop (EV_P_ ev_timer *w)
2025{ 2663{
2026 clear_pending (EV_A_ (W)w); 2664 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 2665 if (expect_false (!ev_is_active (w)))
2028 return; 2666 return;
2029 2667
2668 EV_FREQUENT_CHECK;
2669
2030 { 2670 {
2031 int active = ev_active (w); 2671 int active = ev_active (w);
2032 2672
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2673 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034 2674
2675 --timercnt;
2676
2035 if (expect_true (active < timercnt + HEAP0 - 1)) 2677 if (expect_true (active < timercnt + HEAP0))
2036 { 2678 {
2037 timers [active] = timers [timercnt + HEAP0 - 1]; 2679 timers [active] = timers [timercnt + HEAP0];
2038 adjustheap (timers, timercnt, active); 2680 adjustheap (timers, timercnt, active);
2039 } 2681 }
2040
2041 --timercnt;
2042 } 2682 }
2043 2683
2044 ev_at (w) -= mn_now; 2684 ev_at (w) -= mn_now;
2045 2685
2046 ev_stop (EV_A_ (W)w); 2686 ev_stop (EV_A_ (W)w);
2687
2688 EV_FREQUENT_CHECK;
2047} 2689}
2048 2690
2049void noinline 2691void noinline
2050ev_timer_again (EV_P_ ev_timer *w) 2692ev_timer_again (EV_P_ ev_timer *w)
2051{ 2693{
2694 EV_FREQUENT_CHECK;
2695
2052 if (ev_is_active (w)) 2696 if (ev_is_active (w))
2053 { 2697 {
2054 if (w->repeat) 2698 if (w->repeat)
2055 { 2699 {
2056 ev_at (w) = mn_now + w->repeat; 2700 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]); 2701 ANHE_at_cache (timers [ev_active (w)]);
2058 adjustheap (timers, timercnt, ev_active (w)); 2702 adjustheap (timers, timercnt, ev_active (w));
2059 } 2703 }
2060 else 2704 else
2061 ev_timer_stop (EV_A_ w); 2705 ev_timer_stop (EV_A_ w);
2062 } 2706 }
2063 else if (w->repeat) 2707 else if (w->repeat)
2064 { 2708 {
2065 ev_at (w) = w->repeat; 2709 ev_at (w) = w->repeat;
2066 ev_timer_start (EV_A_ w); 2710 ev_timer_start (EV_A_ w);
2067 } 2711 }
2712
2713 EV_FREQUENT_CHECK;
2714}
2715
2716ev_tstamp
2717ev_timer_remaining (EV_P_ ev_timer *w)
2718{
2719 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2068} 2720}
2069 2721
2070#if EV_PERIODIC_ENABLE 2722#if EV_PERIODIC_ENABLE
2071void noinline 2723void noinline
2072ev_periodic_start (EV_P_ ev_periodic *w) 2724ev_periodic_start (EV_P_ ev_periodic *w)
2076 2728
2077 if (w->reschedule_cb) 2729 if (w->reschedule_cb)
2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2730 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2079 else if (w->interval) 2731 else if (w->interval)
2080 { 2732 {
2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2733 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2082 /* this formula differs from the one in periodic_reify because we do not always round up */ 2734 /* this formula differs from the one in periodic_reify because we do not always round up */
2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2735 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2084 } 2736 }
2085 else 2737 else
2086 ev_at (w) = w->offset; 2738 ev_at (w) = w->offset;
2087 2739
2740 EV_FREQUENT_CHECK;
2741
2742 ++periodiccnt;
2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2743 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2744 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2090 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2745 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2746 ANHE_at_cache (periodics [ev_active (w)]);
2091 upheap (periodics, ev_active (w)); 2747 upheap (periodics, ev_active (w));
2092 2748
2749 EV_FREQUENT_CHECK;
2750
2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2751 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2094} 2752}
2095 2753
2096void noinline 2754void noinline
2097ev_periodic_stop (EV_P_ ev_periodic *w) 2755ev_periodic_stop (EV_P_ ev_periodic *w)
2098{ 2756{
2099 clear_pending (EV_A_ (W)w); 2757 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w))) 2758 if (expect_false (!ev_is_active (w)))
2101 return; 2759 return;
2102 2760
2761 EV_FREQUENT_CHECK;
2762
2103 { 2763 {
2104 int active = ev_active (w); 2764 int active = ev_active (w);
2105 2765
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2766 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107 2767
2768 --periodiccnt;
2769
2108 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2770 if (expect_true (active < periodiccnt + HEAP0))
2109 { 2771 {
2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2772 periodics [active] = periodics [periodiccnt + HEAP0];
2111 adjustheap (periodics, periodiccnt, active); 2773 adjustheap (periodics, periodiccnt, active);
2112 } 2774 }
2113
2114 --periodiccnt;
2115 } 2775 }
2116 2776
2117 ev_stop (EV_A_ (W)w); 2777 ev_stop (EV_A_ (W)w);
2778
2779 EV_FREQUENT_CHECK;
2118} 2780}
2119 2781
2120void noinline 2782void noinline
2121ev_periodic_again (EV_P_ ev_periodic *w) 2783ev_periodic_again (EV_P_ ev_periodic *w)
2122{ 2784{
2128 2790
2129#ifndef SA_RESTART 2791#ifndef SA_RESTART
2130# define SA_RESTART 0 2792# define SA_RESTART 0
2131#endif 2793#endif
2132 2794
2795#if EV_SIGNAL_ENABLE
2796
2133void noinline 2797void noinline
2134ev_signal_start (EV_P_ ev_signal *w) 2798ev_signal_start (EV_P_ ev_signal *w)
2135{ 2799{
2136#if EV_MULTIPLICITY
2137 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2138#endif
2139 if (expect_false (ev_is_active (w))) 2800 if (expect_false (ev_is_active (w)))
2140 return; 2801 return;
2141 2802
2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2803 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2143 2804
2144 evpipe_init (EV_A); 2805#if EV_MULTIPLICITY
2806 assert (("libev: a signal must not be attached to two different loops",
2807 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2145 2808
2809 signals [w->signum - 1].loop = EV_A;
2810#endif
2811
2812 EV_FREQUENT_CHECK;
2813
2814#if EV_USE_SIGNALFD
2815 if (sigfd == -2)
2146 { 2816 {
2147#ifndef _WIN32 2817 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2148 sigset_t full, prev; 2818 if (sigfd < 0 && errno == EINVAL)
2149 sigfillset (&full); 2819 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2150 sigprocmask (SIG_SETMASK, &full, &prev);
2151#endif
2152 2820
2153 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2821 if (sigfd >= 0)
2822 {
2823 fd_intern (sigfd); /* doing it twice will not hurt */
2154 2824
2155#ifndef _WIN32 2825 sigemptyset (&sigfd_set);
2156 sigprocmask (SIG_SETMASK, &prev, 0); 2826
2157#endif 2827 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2828 ev_set_priority (&sigfd_w, EV_MAXPRI);
2829 ev_io_start (EV_A_ &sigfd_w);
2830 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2831 }
2158 } 2832 }
2833
2834 if (sigfd >= 0)
2835 {
2836 /* TODO: check .head */
2837 sigaddset (&sigfd_set, w->signum);
2838 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2839
2840 signalfd (sigfd, &sigfd_set, 0);
2841 }
2842#endif
2159 2843
2160 ev_start (EV_A_ (W)w, 1); 2844 ev_start (EV_A_ (W)w, 1);
2161 wlist_add (&signals [w->signum - 1].head, (WL)w); 2845 wlist_add (&signals [w->signum - 1].head, (WL)w);
2162 2846
2163 if (!((WL)w)->next) 2847 if (!((WL)w)->next)
2848# if EV_USE_SIGNALFD
2849 if (sigfd < 0) /*TODO*/
2850# endif
2164 { 2851 {
2165#if _WIN32 2852# ifdef _WIN32
2853 evpipe_init (EV_A);
2854
2166 signal (w->signum, ev_sighandler); 2855 signal (w->signum, ev_sighandler);
2167#else 2856# else
2168 struct sigaction sa; 2857 struct sigaction sa;
2858
2859 evpipe_init (EV_A);
2860
2169 sa.sa_handler = ev_sighandler; 2861 sa.sa_handler = ev_sighandler;
2170 sigfillset (&sa.sa_mask); 2862 sigfillset (&sa.sa_mask);
2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2863 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2172 sigaction (w->signum, &sa, 0); 2864 sigaction (w->signum, &sa, 0);
2865
2866 sigemptyset (&sa.sa_mask);
2867 sigaddset (&sa.sa_mask, w->signum);
2868 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2173#endif 2869#endif
2174 } 2870 }
2871
2872 EV_FREQUENT_CHECK;
2175} 2873}
2176 2874
2177void noinline 2875void noinline
2178ev_signal_stop (EV_P_ ev_signal *w) 2876ev_signal_stop (EV_P_ ev_signal *w)
2179{ 2877{
2180 clear_pending (EV_A_ (W)w); 2878 clear_pending (EV_A_ (W)w);
2181 if (expect_false (!ev_is_active (w))) 2879 if (expect_false (!ev_is_active (w)))
2182 return; 2880 return;
2183 2881
2882 EV_FREQUENT_CHECK;
2883
2184 wlist_del (&signals [w->signum - 1].head, (WL)w); 2884 wlist_del (&signals [w->signum - 1].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 2885 ev_stop (EV_A_ (W)w);
2186 2886
2187 if (!signals [w->signum - 1].head) 2887 if (!signals [w->signum - 1].head)
2888 {
2889#if EV_MULTIPLICITY
2890 signals [w->signum - 1].loop = 0; /* unattach from signal */
2891#endif
2892#if EV_USE_SIGNALFD
2893 if (sigfd >= 0)
2894 {
2895 sigset_t ss;
2896
2897 sigemptyset (&ss);
2898 sigaddset (&ss, w->signum);
2899 sigdelset (&sigfd_set, w->signum);
2900
2901 signalfd (sigfd, &sigfd_set, 0);
2902 sigprocmask (SIG_UNBLOCK, &ss, 0);
2903 }
2904 else
2905#endif
2188 signal (w->signum, SIG_DFL); 2906 signal (w->signum, SIG_DFL);
2907 }
2908
2909 EV_FREQUENT_CHECK;
2189} 2910}
2911
2912#endif
2913
2914#if EV_CHILD_ENABLE
2190 2915
2191void 2916void
2192ev_child_start (EV_P_ ev_child *w) 2917ev_child_start (EV_P_ ev_child *w)
2193{ 2918{
2194#if EV_MULTIPLICITY 2919#if EV_MULTIPLICITY
2195 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2920 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2196#endif 2921#endif
2197 if (expect_false (ev_is_active (w))) 2922 if (expect_false (ev_is_active (w)))
2198 return; 2923 return;
2199 2924
2925 EV_FREQUENT_CHECK;
2926
2200 ev_start (EV_A_ (W)w, 1); 2927 ev_start (EV_A_ (W)w, 1);
2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2928 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2929
2930 EV_FREQUENT_CHECK;
2202} 2931}
2203 2932
2204void 2933void
2205ev_child_stop (EV_P_ ev_child *w) 2934ev_child_stop (EV_P_ ev_child *w)
2206{ 2935{
2207 clear_pending (EV_A_ (W)w); 2936 clear_pending (EV_A_ (W)w);
2208 if (expect_false (!ev_is_active (w))) 2937 if (expect_false (!ev_is_active (w)))
2209 return; 2938 return;
2210 2939
2940 EV_FREQUENT_CHECK;
2941
2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2942 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2212 ev_stop (EV_A_ (W)w); 2943 ev_stop (EV_A_ (W)w);
2944
2945 EV_FREQUENT_CHECK;
2213} 2946}
2947
2948#endif
2214 2949
2215#if EV_STAT_ENABLE 2950#if EV_STAT_ENABLE
2216 2951
2217# ifdef _WIN32 2952# ifdef _WIN32
2218# undef lstat 2953# undef lstat
2219# define lstat(a,b) _stati64 (a,b) 2954# define lstat(a,b) _stati64 (a,b)
2220# endif 2955# endif
2221 2956
2222#define DEF_STAT_INTERVAL 5.0074891 2957#define DEF_STAT_INTERVAL 5.0074891
2958#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2223#define MIN_STAT_INTERVAL 0.1074891 2959#define MIN_STAT_INTERVAL 0.1074891
2224 2960
2225static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2961static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2226 2962
2227#if EV_USE_INOTIFY 2963#if EV_USE_INOTIFY
2228# define EV_INOTIFY_BUFSIZE 8192 2964
2965/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2966# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2229 2967
2230static void noinline 2968static void noinline
2231infy_add (EV_P_ ev_stat *w) 2969infy_add (EV_P_ ev_stat *w)
2232{ 2970{
2233 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2971 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2234 2972
2235 if (w->wd < 0) 2973 if (w->wd >= 0)
2974 {
2975 struct statfs sfs;
2976
2977 /* now local changes will be tracked by inotify, but remote changes won't */
2978 /* unless the filesystem is known to be local, we therefore still poll */
2979 /* also do poll on <2.6.25, but with normal frequency */
2980
2981 if (!fs_2625)
2982 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2983 else if (!statfs (w->path, &sfs)
2984 && (sfs.f_type == 0x1373 /* devfs */
2985 || sfs.f_type == 0xEF53 /* ext2/3 */
2986 || sfs.f_type == 0x3153464a /* jfs */
2987 || sfs.f_type == 0x52654973 /* reiser3 */
2988 || sfs.f_type == 0x01021994 /* tempfs */
2989 || sfs.f_type == 0x58465342 /* xfs */))
2990 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2991 else
2992 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2236 { 2993 }
2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2994 else
2995 {
2996 /* can't use inotify, continue to stat */
2997 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2238 2998
2239 /* monitor some parent directory for speedup hints */ 2999 /* if path is not there, monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3000 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2241 /* but an efficiency issue only */ 3001 /* but an efficiency issue only */
2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3002 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2243 { 3003 {
2244 char path [4096]; 3004 char path [4096];
2245 strcpy (path, w->path); 3005 strcpy (path, w->path);
2249 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3009 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2250 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3010 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2251 3011
2252 char *pend = strrchr (path, '/'); 3012 char *pend = strrchr (path, '/');
2253 3013
2254 if (!pend) 3014 if (!pend || pend == path)
2255 break; /* whoops, no '/', complain to your admin */ 3015 break;
2256 3016
2257 *pend = 0; 3017 *pend = 0;
2258 w->wd = inotify_add_watch (fs_fd, path, mask); 3018 w->wd = inotify_add_watch (fs_fd, path, mask);
2259 } 3019 }
2260 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3020 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2261 } 3021 }
2262 } 3022 }
2263 else
2264 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2265 3023
2266 if (w->wd >= 0) 3024 if (w->wd >= 0)
2267 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3025 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3026
3027 /* now re-arm timer, if required */
3028 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3029 ev_timer_again (EV_A_ &w->timer);
3030 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2268} 3031}
2269 3032
2270static void noinline 3033static void noinline
2271infy_del (EV_P_ ev_stat *w) 3034infy_del (EV_P_ ev_stat *w)
2272{ 3035{
2275 3038
2276 if (wd < 0) 3039 if (wd < 0)
2277 return; 3040 return;
2278 3041
2279 w->wd = -2; 3042 w->wd = -2;
2280 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3043 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2281 wlist_del (&fs_hash [slot].head, (WL)w); 3044 wlist_del (&fs_hash [slot].head, (WL)w);
2282 3045
2283 /* remove this watcher, if others are watching it, they will rearm */ 3046 /* remove this watcher, if others are watching it, they will rearm */
2284 inotify_rm_watch (fs_fd, wd); 3047 inotify_rm_watch (fs_fd, wd);
2285} 3048}
2286 3049
2287static void noinline 3050static void noinline
2288infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3051infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2289{ 3052{
2290 if (slot < 0) 3053 if (slot < 0)
2291 /* overflow, need to check for all hahs slots */ 3054 /* overflow, need to check for all hash slots */
2292 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3055 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2293 infy_wd (EV_A_ slot, wd, ev); 3056 infy_wd (EV_A_ slot, wd, ev);
2294 else 3057 else
2295 { 3058 {
2296 WL w_; 3059 WL w_;
2297 3060
2298 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3061 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2299 { 3062 {
2300 ev_stat *w = (ev_stat *)w_; 3063 ev_stat *w = (ev_stat *)w_;
2301 w_ = w_->next; /* lets us remove this watcher and all before it */ 3064 w_ = w_->next; /* lets us remove this watcher and all before it */
2302 3065
2303 if (w->wd == wd || wd == -1) 3066 if (w->wd == wd || wd == -1)
2304 { 3067 {
2305 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3068 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2306 { 3069 {
3070 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2307 w->wd = -1; 3071 w->wd = -1;
2308 infy_add (EV_A_ w); /* re-add, no matter what */ 3072 infy_add (EV_A_ w); /* re-add, no matter what */
2309 } 3073 }
2310 3074
2311 stat_timer_cb (EV_A_ &w->timer, 0); 3075 stat_timer_cb (EV_A_ &w->timer, 0);
2316 3080
2317static void 3081static void
2318infy_cb (EV_P_ ev_io *w, int revents) 3082infy_cb (EV_P_ ev_io *w, int revents)
2319{ 3083{
2320 char buf [EV_INOTIFY_BUFSIZE]; 3084 char buf [EV_INOTIFY_BUFSIZE];
2321 struct inotify_event *ev = (struct inotify_event *)buf;
2322 int ofs; 3085 int ofs;
2323 int len = read (fs_fd, buf, sizeof (buf)); 3086 int len = read (fs_fd, buf, sizeof (buf));
2324 3087
2325 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3088 for (ofs = 0; ofs < len; )
3089 {
3090 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2326 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3091 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3092 ofs += sizeof (struct inotify_event) + ev->len;
3093 }
2327} 3094}
2328 3095
2329void inline_size 3096inline_size void
3097ev_check_2625 (EV_P)
3098{
3099 /* kernels < 2.6.25 are borked
3100 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3101 */
3102 if (ev_linux_version () < 0x020619)
3103 return;
3104
3105 fs_2625 = 1;
3106}
3107
3108inline_size int
3109infy_newfd (void)
3110{
3111#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3112 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3113 if (fd >= 0)
3114 return fd;
3115#endif
3116 return inotify_init ();
3117}
3118
3119inline_size void
2330infy_init (EV_P) 3120infy_init (EV_P)
2331{ 3121{
2332 if (fs_fd != -2) 3122 if (fs_fd != -2)
2333 return; 3123 return;
2334 3124
3125 fs_fd = -1;
3126
3127 ev_check_2625 (EV_A);
3128
2335 fs_fd = inotify_init (); 3129 fs_fd = infy_newfd ();
2336 3130
2337 if (fs_fd >= 0) 3131 if (fs_fd >= 0)
2338 { 3132 {
3133 fd_intern (fs_fd);
2339 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3134 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2340 ev_set_priority (&fs_w, EV_MAXPRI); 3135 ev_set_priority (&fs_w, EV_MAXPRI);
2341 ev_io_start (EV_A_ &fs_w); 3136 ev_io_start (EV_A_ &fs_w);
3137 ev_unref (EV_A);
2342 } 3138 }
2343} 3139}
2344 3140
2345void inline_size 3141inline_size void
2346infy_fork (EV_P) 3142infy_fork (EV_P)
2347{ 3143{
2348 int slot; 3144 int slot;
2349 3145
2350 if (fs_fd < 0) 3146 if (fs_fd < 0)
2351 return; 3147 return;
2352 3148
3149 ev_ref (EV_A);
3150 ev_io_stop (EV_A_ &fs_w);
2353 close (fs_fd); 3151 close (fs_fd);
2354 fs_fd = inotify_init (); 3152 fs_fd = infy_newfd ();
2355 3153
3154 if (fs_fd >= 0)
3155 {
3156 fd_intern (fs_fd);
3157 ev_io_set (&fs_w, fs_fd, EV_READ);
3158 ev_io_start (EV_A_ &fs_w);
3159 ev_unref (EV_A);
3160 }
3161
2356 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3162 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2357 { 3163 {
2358 WL w_ = fs_hash [slot].head; 3164 WL w_ = fs_hash [slot].head;
2359 fs_hash [slot].head = 0; 3165 fs_hash [slot].head = 0;
2360 3166
2361 while (w_) 3167 while (w_)
2366 w->wd = -1; 3172 w->wd = -1;
2367 3173
2368 if (fs_fd >= 0) 3174 if (fs_fd >= 0)
2369 infy_add (EV_A_ w); /* re-add, no matter what */ 3175 infy_add (EV_A_ w); /* re-add, no matter what */
2370 else 3176 else
3177 {
3178 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3179 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2371 ev_timer_start (EV_A_ &w->timer); 3180 ev_timer_again (EV_A_ &w->timer);
3181 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3182 }
2372 } 3183 }
2373
2374 } 3184 }
2375} 3185}
2376 3186
3187#endif
3188
3189#ifdef _WIN32
3190# define EV_LSTAT(p,b) _stati64 (p, b)
3191#else
3192# define EV_LSTAT(p,b) lstat (p, b)
2377#endif 3193#endif
2378 3194
2379void 3195void
2380ev_stat_stat (EV_P_ ev_stat *w) 3196ev_stat_stat (EV_P_ ev_stat *w)
2381{ 3197{
2388static void noinline 3204static void noinline
2389stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3205stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2390{ 3206{
2391 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3207 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2392 3208
2393 /* we copy this here each the time so that */ 3209 ev_statdata prev = w->attr;
2394 /* prev has the old value when the callback gets invoked */
2395 w->prev = w->attr;
2396 ev_stat_stat (EV_A_ w); 3210 ev_stat_stat (EV_A_ w);
2397 3211
2398 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3212 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2399 if ( 3213 if (
2400 w->prev.st_dev != w->attr.st_dev 3214 prev.st_dev != w->attr.st_dev
2401 || w->prev.st_ino != w->attr.st_ino 3215 || prev.st_ino != w->attr.st_ino
2402 || w->prev.st_mode != w->attr.st_mode 3216 || prev.st_mode != w->attr.st_mode
2403 || w->prev.st_nlink != w->attr.st_nlink 3217 || prev.st_nlink != w->attr.st_nlink
2404 || w->prev.st_uid != w->attr.st_uid 3218 || prev.st_uid != w->attr.st_uid
2405 || w->prev.st_gid != w->attr.st_gid 3219 || prev.st_gid != w->attr.st_gid
2406 || w->prev.st_rdev != w->attr.st_rdev 3220 || prev.st_rdev != w->attr.st_rdev
2407 || w->prev.st_size != w->attr.st_size 3221 || prev.st_size != w->attr.st_size
2408 || w->prev.st_atime != w->attr.st_atime 3222 || prev.st_atime != w->attr.st_atime
2409 || w->prev.st_mtime != w->attr.st_mtime 3223 || prev.st_mtime != w->attr.st_mtime
2410 || w->prev.st_ctime != w->attr.st_ctime 3224 || prev.st_ctime != w->attr.st_ctime
2411 ) { 3225 ) {
3226 /* we only update w->prev on actual differences */
3227 /* in case we test more often than invoke the callback, */
3228 /* to ensure that prev is always different to attr */
3229 w->prev = prev;
3230
2412 #if EV_USE_INOTIFY 3231 #if EV_USE_INOTIFY
3232 if (fs_fd >= 0)
3233 {
2413 infy_del (EV_A_ w); 3234 infy_del (EV_A_ w);
2414 infy_add (EV_A_ w); 3235 infy_add (EV_A_ w);
2415 ev_stat_stat (EV_A_ w); /* avoid race... */ 3236 ev_stat_stat (EV_A_ w); /* avoid race... */
3237 }
2416 #endif 3238 #endif
2417 3239
2418 ev_feed_event (EV_A_ w, EV_STAT); 3240 ev_feed_event (EV_A_ w, EV_STAT);
2419 } 3241 }
2420} 3242}
2423ev_stat_start (EV_P_ ev_stat *w) 3245ev_stat_start (EV_P_ ev_stat *w)
2424{ 3246{
2425 if (expect_false (ev_is_active (w))) 3247 if (expect_false (ev_is_active (w)))
2426 return; 3248 return;
2427 3249
2428 /* since we use memcmp, we need to clear any padding data etc. */
2429 memset (&w->prev, 0, sizeof (ev_statdata));
2430 memset (&w->attr, 0, sizeof (ev_statdata));
2431
2432 ev_stat_stat (EV_A_ w); 3250 ev_stat_stat (EV_A_ w);
2433 3251
3252 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2434 if (w->interval < MIN_STAT_INTERVAL) 3253 w->interval = MIN_STAT_INTERVAL;
2435 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2436 3254
2437 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3255 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2438 ev_set_priority (&w->timer, ev_priority (w)); 3256 ev_set_priority (&w->timer, ev_priority (w));
2439 3257
2440#if EV_USE_INOTIFY 3258#if EV_USE_INOTIFY
2441 infy_init (EV_A); 3259 infy_init (EV_A);
2442 3260
2443 if (fs_fd >= 0) 3261 if (fs_fd >= 0)
2444 infy_add (EV_A_ w); 3262 infy_add (EV_A_ w);
2445 else 3263 else
2446#endif 3264#endif
3265 {
2447 ev_timer_start (EV_A_ &w->timer); 3266 ev_timer_again (EV_A_ &w->timer);
3267 ev_unref (EV_A);
3268 }
2448 3269
2449 ev_start (EV_A_ (W)w, 1); 3270 ev_start (EV_A_ (W)w, 1);
3271
3272 EV_FREQUENT_CHECK;
2450} 3273}
2451 3274
2452void 3275void
2453ev_stat_stop (EV_P_ ev_stat *w) 3276ev_stat_stop (EV_P_ ev_stat *w)
2454{ 3277{
2455 clear_pending (EV_A_ (W)w); 3278 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 3279 if (expect_false (!ev_is_active (w)))
2457 return; 3280 return;
2458 3281
3282 EV_FREQUENT_CHECK;
3283
2459#if EV_USE_INOTIFY 3284#if EV_USE_INOTIFY
2460 infy_del (EV_A_ w); 3285 infy_del (EV_A_ w);
2461#endif 3286#endif
3287
3288 if (ev_is_active (&w->timer))
3289 {
3290 ev_ref (EV_A);
2462 ev_timer_stop (EV_A_ &w->timer); 3291 ev_timer_stop (EV_A_ &w->timer);
3292 }
2463 3293
2464 ev_stop (EV_A_ (W)w); 3294 ev_stop (EV_A_ (W)w);
3295
3296 EV_FREQUENT_CHECK;
2465} 3297}
2466#endif 3298#endif
2467 3299
2468#if EV_IDLE_ENABLE 3300#if EV_IDLE_ENABLE
2469void 3301void
2471{ 3303{
2472 if (expect_false (ev_is_active (w))) 3304 if (expect_false (ev_is_active (w)))
2473 return; 3305 return;
2474 3306
2475 pri_adjust (EV_A_ (W)w); 3307 pri_adjust (EV_A_ (W)w);
3308
3309 EV_FREQUENT_CHECK;
2476 3310
2477 { 3311 {
2478 int active = ++idlecnt [ABSPRI (w)]; 3312 int active = ++idlecnt [ABSPRI (w)];
2479 3313
2480 ++idleall; 3314 ++idleall;
2481 ev_start (EV_A_ (W)w, active); 3315 ev_start (EV_A_ (W)w, active);
2482 3316
2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3317 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2484 idles [ABSPRI (w)][active - 1] = w; 3318 idles [ABSPRI (w)][active - 1] = w;
2485 } 3319 }
3320
3321 EV_FREQUENT_CHECK;
2486} 3322}
2487 3323
2488void 3324void
2489ev_idle_stop (EV_P_ ev_idle *w) 3325ev_idle_stop (EV_P_ ev_idle *w)
2490{ 3326{
2491 clear_pending (EV_A_ (W)w); 3327 clear_pending (EV_A_ (W)w);
2492 if (expect_false (!ev_is_active (w))) 3328 if (expect_false (!ev_is_active (w)))
2493 return; 3329 return;
2494 3330
3331 EV_FREQUENT_CHECK;
3332
2495 { 3333 {
2496 int active = ev_active (w); 3334 int active = ev_active (w);
2497 3335
2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3336 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3337 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500 3338
2501 ev_stop (EV_A_ (W)w); 3339 ev_stop (EV_A_ (W)w);
2502 --idleall; 3340 --idleall;
2503 } 3341 }
2504}
2505#endif
2506 3342
3343 EV_FREQUENT_CHECK;
3344}
3345#endif
3346
3347#if EV_PREPARE_ENABLE
2507void 3348void
2508ev_prepare_start (EV_P_ ev_prepare *w) 3349ev_prepare_start (EV_P_ ev_prepare *w)
2509{ 3350{
2510 if (expect_false (ev_is_active (w))) 3351 if (expect_false (ev_is_active (w)))
2511 return; 3352 return;
3353
3354 EV_FREQUENT_CHECK;
2512 3355
2513 ev_start (EV_A_ (W)w, ++preparecnt); 3356 ev_start (EV_A_ (W)w, ++preparecnt);
2514 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3357 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2515 prepares [preparecnt - 1] = w; 3358 prepares [preparecnt - 1] = w;
3359
3360 EV_FREQUENT_CHECK;
2516} 3361}
2517 3362
2518void 3363void
2519ev_prepare_stop (EV_P_ ev_prepare *w) 3364ev_prepare_stop (EV_P_ ev_prepare *w)
2520{ 3365{
2521 clear_pending (EV_A_ (W)w); 3366 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 3367 if (expect_false (!ev_is_active (w)))
2523 return; 3368 return;
2524 3369
3370 EV_FREQUENT_CHECK;
3371
2525 { 3372 {
2526 int active = ev_active (w); 3373 int active = ev_active (w);
2527 3374
2528 prepares [active - 1] = prepares [--preparecnt]; 3375 prepares [active - 1] = prepares [--preparecnt];
2529 ev_active (prepares [active - 1]) = active; 3376 ev_active (prepares [active - 1]) = active;
2530 } 3377 }
2531 3378
2532 ev_stop (EV_A_ (W)w); 3379 ev_stop (EV_A_ (W)w);
2533}
2534 3380
3381 EV_FREQUENT_CHECK;
3382}
3383#endif
3384
3385#if EV_CHECK_ENABLE
2535void 3386void
2536ev_check_start (EV_P_ ev_check *w) 3387ev_check_start (EV_P_ ev_check *w)
2537{ 3388{
2538 if (expect_false (ev_is_active (w))) 3389 if (expect_false (ev_is_active (w)))
2539 return; 3390 return;
3391
3392 EV_FREQUENT_CHECK;
2540 3393
2541 ev_start (EV_A_ (W)w, ++checkcnt); 3394 ev_start (EV_A_ (W)w, ++checkcnt);
2542 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3395 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2543 checks [checkcnt - 1] = w; 3396 checks [checkcnt - 1] = w;
3397
3398 EV_FREQUENT_CHECK;
2544} 3399}
2545 3400
2546void 3401void
2547ev_check_stop (EV_P_ ev_check *w) 3402ev_check_stop (EV_P_ ev_check *w)
2548{ 3403{
2549 clear_pending (EV_A_ (W)w); 3404 clear_pending (EV_A_ (W)w);
2550 if (expect_false (!ev_is_active (w))) 3405 if (expect_false (!ev_is_active (w)))
2551 return; 3406 return;
2552 3407
3408 EV_FREQUENT_CHECK;
3409
2553 { 3410 {
2554 int active = ev_active (w); 3411 int active = ev_active (w);
2555 3412
2556 checks [active - 1] = checks [--checkcnt]; 3413 checks [active - 1] = checks [--checkcnt];
2557 ev_active (checks [active - 1]) = active; 3414 ev_active (checks [active - 1]) = active;
2558 } 3415 }
2559 3416
2560 ev_stop (EV_A_ (W)w); 3417 ev_stop (EV_A_ (W)w);
3418
3419 EV_FREQUENT_CHECK;
2561} 3420}
3421#endif
2562 3422
2563#if EV_EMBED_ENABLE 3423#if EV_EMBED_ENABLE
2564void noinline 3424void noinline
2565ev_embed_sweep (EV_P_ ev_embed *w) 3425ev_embed_sweep (EV_P_ ev_embed *w)
2566{ 3426{
2567 ev_loop (w->other, EVLOOP_NONBLOCK); 3427 ev_run (w->other, EVRUN_NOWAIT);
2568} 3428}
2569 3429
2570static void 3430static void
2571embed_io_cb (EV_P_ ev_io *io, int revents) 3431embed_io_cb (EV_P_ ev_io *io, int revents)
2572{ 3432{
2573 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3433 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2574 3434
2575 if (ev_cb (w)) 3435 if (ev_cb (w))
2576 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3436 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2577 else 3437 else
2578 ev_loop (w->other, EVLOOP_NONBLOCK); 3438 ev_run (w->other, EVRUN_NOWAIT);
2579} 3439}
2580 3440
2581static void 3441static void
2582embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3442embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2583{ 3443{
2584 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3444 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2585 3445
2586 { 3446 {
2587 struct ev_loop *loop = w->other; 3447 EV_P = w->other;
2588 3448
2589 while (fdchangecnt) 3449 while (fdchangecnt)
2590 { 3450 {
2591 fd_reify (EV_A); 3451 fd_reify (EV_A);
2592 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3452 ev_run (EV_A_ EVRUN_NOWAIT);
2593 } 3453 }
2594 } 3454 }
3455}
3456
3457static void
3458embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3459{
3460 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3461
3462 ev_embed_stop (EV_A_ w);
3463
3464 {
3465 EV_P = w->other;
3466
3467 ev_loop_fork (EV_A);
3468 ev_run (EV_A_ EVRUN_NOWAIT);
3469 }
3470
3471 ev_embed_start (EV_A_ w);
2595} 3472}
2596 3473
2597#if 0 3474#if 0
2598static void 3475static void
2599embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3476embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2607{ 3484{
2608 if (expect_false (ev_is_active (w))) 3485 if (expect_false (ev_is_active (w)))
2609 return; 3486 return;
2610 3487
2611 { 3488 {
2612 struct ev_loop *loop = w->other; 3489 EV_P = w->other;
2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3490 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3491 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2615 } 3492 }
3493
3494 EV_FREQUENT_CHECK;
2616 3495
2617 ev_set_priority (&w->io, ev_priority (w)); 3496 ev_set_priority (&w->io, ev_priority (w));
2618 ev_io_start (EV_A_ &w->io); 3497 ev_io_start (EV_A_ &w->io);
2619 3498
2620 ev_prepare_init (&w->prepare, embed_prepare_cb); 3499 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI); 3500 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare); 3501 ev_prepare_start (EV_A_ &w->prepare);
2623 3502
3503 ev_fork_init (&w->fork, embed_fork_cb);
3504 ev_fork_start (EV_A_ &w->fork);
3505
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3506 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625 3507
2626 ev_start (EV_A_ (W)w, 1); 3508 ev_start (EV_A_ (W)w, 1);
3509
3510 EV_FREQUENT_CHECK;
2627} 3511}
2628 3512
2629void 3513void
2630ev_embed_stop (EV_P_ ev_embed *w) 3514ev_embed_stop (EV_P_ ev_embed *w)
2631{ 3515{
2632 clear_pending (EV_A_ (W)w); 3516 clear_pending (EV_A_ (W)w);
2633 if (expect_false (!ev_is_active (w))) 3517 if (expect_false (!ev_is_active (w)))
2634 return; 3518 return;
2635 3519
3520 EV_FREQUENT_CHECK;
3521
2636 ev_io_stop (EV_A_ &w->io); 3522 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare); 3523 ev_prepare_stop (EV_A_ &w->prepare);
3524 ev_fork_stop (EV_A_ &w->fork);
2638 3525
2639 ev_stop (EV_A_ (W)w); 3526 ev_stop (EV_A_ (W)w);
3527
3528 EV_FREQUENT_CHECK;
2640} 3529}
2641#endif 3530#endif
2642 3531
2643#if EV_FORK_ENABLE 3532#if EV_FORK_ENABLE
2644void 3533void
2645ev_fork_start (EV_P_ ev_fork *w) 3534ev_fork_start (EV_P_ ev_fork *w)
2646{ 3535{
2647 if (expect_false (ev_is_active (w))) 3536 if (expect_false (ev_is_active (w)))
2648 return; 3537 return;
3538
3539 EV_FREQUENT_CHECK;
2649 3540
2650 ev_start (EV_A_ (W)w, ++forkcnt); 3541 ev_start (EV_A_ (W)w, ++forkcnt);
2651 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3542 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2652 forks [forkcnt - 1] = w; 3543 forks [forkcnt - 1] = w;
3544
3545 EV_FREQUENT_CHECK;
2653} 3546}
2654 3547
2655void 3548void
2656ev_fork_stop (EV_P_ ev_fork *w) 3549ev_fork_stop (EV_P_ ev_fork *w)
2657{ 3550{
2658 clear_pending (EV_A_ (W)w); 3551 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w))) 3552 if (expect_false (!ev_is_active (w)))
2660 return; 3553 return;
2661 3554
3555 EV_FREQUENT_CHECK;
3556
2662 { 3557 {
2663 int active = ev_active (w); 3558 int active = ev_active (w);
2664 3559
2665 forks [active - 1] = forks [--forkcnt]; 3560 forks [active - 1] = forks [--forkcnt];
2666 ev_active (forks [active - 1]) = active; 3561 ev_active (forks [active - 1]) = active;
2667 } 3562 }
2668 3563
2669 ev_stop (EV_A_ (W)w); 3564 ev_stop (EV_A_ (W)w);
3565
3566 EV_FREQUENT_CHECK;
2670} 3567}
2671#endif 3568#endif
2672 3569
2673#if EV_ASYNC_ENABLE 3570#if EV_ASYNC_ENABLE
2674void 3571void
2675ev_async_start (EV_P_ ev_async *w) 3572ev_async_start (EV_P_ ev_async *w)
2676{ 3573{
2677 if (expect_false (ev_is_active (w))) 3574 if (expect_false (ev_is_active (w)))
2678 return; 3575 return;
2679 3576
3577 w->sent = 0;
3578
2680 evpipe_init (EV_A); 3579 evpipe_init (EV_A);
3580
3581 EV_FREQUENT_CHECK;
2681 3582
2682 ev_start (EV_A_ (W)w, ++asynccnt); 3583 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3584 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w; 3585 asyncs [asynccnt - 1] = w;
3586
3587 EV_FREQUENT_CHECK;
2685} 3588}
2686 3589
2687void 3590void
2688ev_async_stop (EV_P_ ev_async *w) 3591ev_async_stop (EV_P_ ev_async *w)
2689{ 3592{
2690 clear_pending (EV_A_ (W)w); 3593 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w))) 3594 if (expect_false (!ev_is_active (w)))
2692 return; 3595 return;
2693 3596
3597 EV_FREQUENT_CHECK;
3598
2694 { 3599 {
2695 int active = ev_active (w); 3600 int active = ev_active (w);
2696 3601
2697 asyncs [active - 1] = asyncs [--asynccnt]; 3602 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active; 3603 ev_active (asyncs [active - 1]) = active;
2699 } 3604 }
2700 3605
2701 ev_stop (EV_A_ (W)w); 3606 ev_stop (EV_A_ (W)w);
3607
3608 EV_FREQUENT_CHECK;
2702} 3609}
2703 3610
2704void 3611void
2705ev_async_send (EV_P_ ev_async *w) 3612ev_async_send (EV_P_ ev_async *w)
2706{ 3613{
2707 w->sent = 1; 3614 w->sent = 1;
2708 evpipe_write (EV_A_ &gotasync); 3615 evpipe_write (EV_A_ &async_pending);
2709} 3616}
2710#endif 3617#endif
2711 3618
2712/*****************************************************************************/ 3619/*****************************************************************************/
2713 3620
2723once_cb (EV_P_ struct ev_once *once, int revents) 3630once_cb (EV_P_ struct ev_once *once, int revents)
2724{ 3631{
2725 void (*cb)(int revents, void *arg) = once->cb; 3632 void (*cb)(int revents, void *arg) = once->cb;
2726 void *arg = once->arg; 3633 void *arg = once->arg;
2727 3634
2728 ev_io_stop (EV_A_ &once->io); 3635 ev_io_stop (EV_A_ &once->io);
2729 ev_timer_stop (EV_A_ &once->to); 3636 ev_timer_stop (EV_A_ &once->to);
2730 ev_free (once); 3637 ev_free (once);
2731 3638
2732 cb (revents, arg); 3639 cb (revents, arg);
2733} 3640}
2734 3641
2735static void 3642static void
2736once_cb_io (EV_P_ ev_io *w, int revents) 3643once_cb_io (EV_P_ ev_io *w, int revents)
2737{ 3644{
2738 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3645 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3646
3647 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2739} 3648}
2740 3649
2741static void 3650static void
2742once_cb_to (EV_P_ ev_timer *w, int revents) 3651once_cb_to (EV_P_ ev_timer *w, int revents)
2743{ 3652{
2744 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3653 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3654
3655 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2745} 3656}
2746 3657
2747void 3658void
2748ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3659ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2749{ 3660{
2750 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3661 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2751 3662
2752 if (expect_false (!once)) 3663 if (expect_false (!once))
2753 { 3664 {
2754 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3665 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2755 return; 3666 return;
2756 } 3667 }
2757 3668
2758 once->cb = cb; 3669 once->cb = cb;
2759 once->arg = arg; 3670 once->arg = arg;
2771 ev_timer_set (&once->to, timeout, 0.); 3682 ev_timer_set (&once->to, timeout, 0.);
2772 ev_timer_start (EV_A_ &once->to); 3683 ev_timer_start (EV_A_ &once->to);
2773 } 3684 }
2774} 3685}
2775 3686
3687/*****************************************************************************/
3688
3689#if EV_WALK_ENABLE
3690void
3691ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3692{
3693 int i, j;
3694 ev_watcher_list *wl, *wn;
3695
3696 if (types & (EV_IO | EV_EMBED))
3697 for (i = 0; i < anfdmax; ++i)
3698 for (wl = anfds [i].head; wl; )
3699 {
3700 wn = wl->next;
3701
3702#if EV_EMBED_ENABLE
3703 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3704 {
3705 if (types & EV_EMBED)
3706 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3707 }
3708 else
3709#endif
3710#if EV_USE_INOTIFY
3711 if (ev_cb ((ev_io *)wl) == infy_cb)
3712 ;
3713 else
3714#endif
3715 if ((ev_io *)wl != &pipe_w)
3716 if (types & EV_IO)
3717 cb (EV_A_ EV_IO, wl);
3718
3719 wl = wn;
3720 }
3721
3722 if (types & (EV_TIMER | EV_STAT))
3723 for (i = timercnt + HEAP0; i-- > HEAP0; )
3724#if EV_STAT_ENABLE
3725 /*TODO: timer is not always active*/
3726 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3727 {
3728 if (types & EV_STAT)
3729 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3730 }
3731 else
3732#endif
3733 if (types & EV_TIMER)
3734 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3735
3736#if EV_PERIODIC_ENABLE
3737 if (types & EV_PERIODIC)
3738 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3739 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3740#endif
3741
3742#if EV_IDLE_ENABLE
3743 if (types & EV_IDLE)
3744 for (j = NUMPRI; i--; )
3745 for (i = idlecnt [j]; i--; )
3746 cb (EV_A_ EV_IDLE, idles [j][i]);
3747#endif
3748
3749#if EV_FORK_ENABLE
3750 if (types & EV_FORK)
3751 for (i = forkcnt; i--; )
3752 if (ev_cb (forks [i]) != embed_fork_cb)
3753 cb (EV_A_ EV_FORK, forks [i]);
3754#endif
3755
3756#if EV_ASYNC_ENABLE
3757 if (types & EV_ASYNC)
3758 for (i = asynccnt; i--; )
3759 cb (EV_A_ EV_ASYNC, asyncs [i]);
3760#endif
3761
3762#if EV_PREPARE_ENABLE
3763 if (types & EV_PREPARE)
3764 for (i = preparecnt; i--; )
3765# if EV_EMBED_ENABLE
3766 if (ev_cb (prepares [i]) != embed_prepare_cb)
3767# endif
3768 cb (EV_A_ EV_PREPARE, prepares [i]);
3769#endif
3770
3771#if EV_CHECK_ENABLE
3772 if (types & EV_CHECK)
3773 for (i = checkcnt; i--; )
3774 cb (EV_A_ EV_CHECK, checks [i]);
3775#endif
3776
3777#if EV_SIGNAL_ENABLE
3778 if (types & EV_SIGNAL)
3779 for (i = 0; i < EV_NSIG - 1; ++i)
3780 for (wl = signals [i].head; wl; )
3781 {
3782 wn = wl->next;
3783 cb (EV_A_ EV_SIGNAL, wl);
3784 wl = wn;
3785 }
3786#endif
3787
3788#if EV_CHILD_ENABLE
3789 if (types & EV_CHILD)
3790 for (i = (EV_PID_HASHSIZE); i--; )
3791 for (wl = childs [i]; wl; )
3792 {
3793 wn = wl->next;
3794 cb (EV_A_ EV_CHILD, wl);
3795 wl = wn;
3796 }
3797#endif
3798/* EV_STAT 0x00001000 /* stat data changed */
3799/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3800}
3801#endif
3802
2776#if EV_MULTIPLICITY 3803#if EV_MULTIPLICITY
2777 #include "ev_wrap.h" 3804 #include "ev_wrap.h"
2778#endif 3805#endif
2779 3806
2780#ifdef __cplusplus 3807EV_CPP(})
2781}
2782#endif
2783 3808

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines