ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC vs.
Revision 1.364 by root, Sun Oct 24 21:51:03 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
52# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
55# endif 65# endif
56# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
58# endif 68# endif
59# else 69# else
60# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
62# endif 72# endif
63# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
65# endif 75# endif
66# endif 76# endif
67 77
78# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
71# else 82# else
83# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
74# endif 94# endif
75 95
96# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 99# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 100# else
101# undef EV_USE_POLL
88# define EV_USE_POLL 0 102# define EV_USE_POLL 0
89# endif
90# endif 103# endif
91 104
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
95# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
98# endif 112# endif
99 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
106# endif 121# endif
107 122
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
111# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
114# endif 130# endif
115 131
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
122# endif 139# endif
123 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 142# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 143# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
130# endif 148# endif
131 149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
132#endif 159#endif
133 160
134#include <math.h> 161#include <math.h>
135#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
136#include <fcntl.h> 164#include <fcntl.h>
137#include <stddef.h> 165#include <stddef.h>
138 166
139#include <stdio.h> 167#include <stdio.h>
140 168
141#include <assert.h> 169#include <assert.h>
142#include <errno.h> 170#include <errno.h>
143#include <sys/types.h> 171#include <sys/types.h>
144#include <time.h> 172#include <time.h>
173#include <limits.h>
145 174
146#include <signal.h> 175#include <signal.h>
147 176
148#ifdef EV_H 177#ifdef EV_H
149# include EV_H 178# include EV_H
150#else 179#else
151# include "ev.h" 180# include "ev.h"
152#endif 181#endif
182
183EV_CPP(extern "C" {)
153 184
154#ifndef _WIN32 185#ifndef _WIN32
155# include <sys/time.h> 186# include <sys/time.h>
156# include <sys/wait.h> 187# include <sys/wait.h>
157# include <unistd.h> 188# include <unistd.h>
158#else 189#else
190# include <io.h>
159# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 192# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
163# endif 195# endif
196# undef EV_AVOID_STDIO
164#endif 197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
165 206
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 207/* this block tries to deduce configuration from header-defined symbols and defaults */
167 208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
244
168#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
169# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
170#endif 251#endif
171 252
172#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 255#endif
175 256
176#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
177# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
262# endif
178#endif 263#endif
179 264
180#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 267#endif
183 268
184#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
185# ifdef _WIN32 270# ifdef _WIN32
186# define EV_USE_POLL 0 271# define EV_USE_POLL 0
187# else 272# else
188# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 274# endif
190#endif 275#endif
191 276
192#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 280# else
196# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
197# endif 282# endif
198#endif 283#endif
199 284
205# define EV_USE_PORT 0 290# define EV_USE_PORT 0
206#endif 291#endif
207 292
208#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 295# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 296# else
212# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
213# endif 298# endif
214#endif 299#endif
215 300
216#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 303#endif
223 304
224#ifndef EV_INOTIFY_HASHSIZE 305#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 307#endif
231 308
232#ifndef EV_USE_EVENTFD 309#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 311# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 312# else
236# define EV_USE_EVENTFD 0 313# define EV_USE_EVENTFD 0
237# endif 314# endif
238#endif 315#endif
239 316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
241 364
242#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
245#endif 368#endif
259# include <sys/select.h> 382# include <sys/select.h>
260# endif 383# endif
261#endif 384#endif
262 385
263#if EV_USE_INOTIFY 386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
264# include <sys/inotify.h> 388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
265#endif 394#endif
266 395
267#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 397# include <winsock.h>
269#endif 398#endif
270 399
271#if EV_USE_EVENTFD 400#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 402# include <stdint.h>
274# ifdef __cplusplus 403# ifndef EFD_NONBLOCK
275extern "C" { 404# define EFD_NONBLOCK O_NONBLOCK
276# endif 405# endif
277int eventfd (unsigned int initval, int flags); 406# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 407# ifdef O_CLOEXEC
279} 408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
280# endif 412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
281#endif 436#endif
282 437
283/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
284 445
285/* 446/*
286 * This is used to avoid floating point rounding problems. 447 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 448 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 449 * to ensure progress, time-wise, even when rounding
292 */ 453 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294 455
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
298 461
299#if __GNUC__ >= 4 462#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
302#else 465#else
309 472
310#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline 475#define inline_size static inline
313 476
314#if EV_MINIMAL 477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
315# define inline_speed static noinline 480# define inline_speed static noinline
481#endif
482
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
316#else 487#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
322 490
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
325 493
326typedef ev_watcher *W; 494typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
329 497
330#define ev_active(w) ((W)(w))->active 498#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 499#define ev_at(w) ((WT)(w))->at
332 500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
333#if EV_USE_MONOTONIC 507#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 519#endif
338 520
339#ifdef _WIN32 521#ifdef _WIN32
340# include "ev_win32.c" 522# include "ev_win32.c"
341#endif 523#endif
342 524
343/*****************************************************************************/ 525/*****************************************************************************/
344 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
345static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
346 578
347void 579void
348ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
349{ 581{
350 syserr_cb = cb; 582 syserr_cb = cb;
351} 583}
352 584
353static void noinline 585static void noinline
354syserr (const char *msg) 586ev_syserr (const char *msg)
355{ 587{
356 if (!msg) 588 if (!msg)
357 msg = "(libev) system error"; 589 msg = "(libev) system error";
358 590
359 if (syserr_cb) 591 if (syserr_cb)
360 syserr_cb (msg); 592 syserr_cb (msg);
361 else 593 else
362 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
363 perror (msg); 603 perror (msg);
604#endif
364 abort (); 605 abort ();
365 } 606 }
366} 607}
367 608
368static void * 609static void *
369ev_realloc_emul (void *ptr, long size) 610ev_realloc_emul (void *ptr, long size)
370{ 611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
371 /* some systems, notably openbsd and darwin, fail to properly 615 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 616 * implement realloc (x, 0) (as required by both ansi c-89 and
373 * the single unix specification, so work around them here. 617 * the single unix specification, so work around them here.
374 */ 618 */
375 619
376 if (size) 620 if (size)
377 return realloc (ptr, size); 621 return realloc (ptr, size);
378 622
379 free (ptr); 623 free (ptr);
380 return 0; 624 return 0;
625#endif
381} 626}
382 627
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384 629
385void 630void
393{ 638{
394 ptr = alloc (ptr, size); 639 ptr = alloc (ptr, size);
395 640
396 if (!ptr && size) 641 if (!ptr && size)
397 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
399 abort (); 648 abort ();
400 } 649 }
401 650
402 return ptr; 651 return ptr;
403} 652}
405#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
407 656
408/*****************************************************************************/ 657/*****************************************************************************/
409 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
410typedef struct 663typedef struct
411{ 664{
412 WL head; 665 WL head;
413 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
415#if EV_SELECT_IS_WINSOCKET 673#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
416 SOCKET handle; 674 SOCKET handle;
417#endif 675#endif
676#if EV_USE_IOCP
677 OVERLAPPED or, ow;
678#endif
418} ANFD; 679} ANFD;
419 680
681/* stores the pending event set for a given watcher */
420typedef struct 682typedef struct
421{ 683{
422 W w; 684 W w;
423 int events; 685 int events; /* the pending event set for the given watcher */
424} ANPENDING; 686} ANPENDING;
425 687
426#if EV_USE_INOTIFY 688#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */ 689/* hash table entry per inotify-id */
428typedef struct 690typedef struct
430 WL head; 692 WL head;
431} ANFS; 693} ANFS;
432#endif 694#endif
433 695
434/* Heap Entry */ 696/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT 697#if EV_HEAP_CACHE_AT
698 /* a heap element */
437 typedef struct { 699 typedef struct {
700 ev_tstamp at;
438 WT w; 701 WT w;
439 ev_tstamp at;
440 } ANHE; 702 } ANHE;
441 703
442 #define ANHE_w(he) (he).w /* access watcher, read-write */ 704 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */ 705 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 706 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
445#else 707#else
708 /* a heap element */
446 typedef WT ANHE; 709 typedef WT ANHE;
447 710
448 #define ANHE_w(he) (he) 711 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at 712 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he) 713 #define ANHE_at_cache(he)
451#endif 714#endif
452 715
453#if EV_MULTIPLICITY 716#if EV_MULTIPLICITY
454 717
455 struct ev_loop 718 struct ev_loop
474 737
475 static int ev_default_loop_ptr; 738 static int ev_default_loop_ptr;
476 739
477#endif 740#endif
478 741
742#if EV_FEATURE_API
743# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745# define EV_INVOKE_PENDING invoke_cb (EV_A)
746#else
747# define EV_RELEASE_CB (void)0
748# define EV_ACQUIRE_CB (void)0
749# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750#endif
751
752#define EVBREAK_RECURSE 0x80
753
479/*****************************************************************************/ 754/*****************************************************************************/
480 755
756#ifndef EV_HAVE_EV_TIME
481ev_tstamp 757ev_tstamp
482ev_time (void) 758ev_time (void)
483{ 759{
484#if EV_USE_REALTIME 760#if EV_USE_REALTIME
761 if (expect_true (have_realtime))
762 {
485 struct timespec ts; 763 struct timespec ts;
486 clock_gettime (CLOCK_REALTIME, &ts); 764 clock_gettime (CLOCK_REALTIME, &ts);
487 return ts.tv_sec + ts.tv_nsec * 1e-9; 765 return ts.tv_sec + ts.tv_nsec * 1e-9;
488#else 766 }
767#endif
768
489 struct timeval tv; 769 struct timeval tv;
490 gettimeofday (&tv, 0); 770 gettimeofday (&tv, 0);
491 return tv.tv_sec + tv.tv_usec * 1e-6; 771 return tv.tv_sec + tv.tv_usec * 1e-6;
492#endif
493} 772}
773#endif
494 774
495ev_tstamp inline_size 775inline_size ev_tstamp
496get_clock (void) 776get_clock (void)
497{ 777{
498#if EV_USE_MONOTONIC 778#if EV_USE_MONOTONIC
499 if (expect_true (have_monotonic)) 779 if (expect_true (have_monotonic))
500 { 780 {
521 if (delay > 0.) 801 if (delay > 0.)
522 { 802 {
523#if EV_USE_NANOSLEEP 803#if EV_USE_NANOSLEEP
524 struct timespec ts; 804 struct timespec ts;
525 805
526 ts.tv_sec = (time_t)delay; 806 EV_TS_SET (ts, delay);
527 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
528
529 nanosleep (&ts, 0); 807 nanosleep (&ts, 0);
530#elif defined(_WIN32) 808#elif defined(_WIN32)
531 Sleep ((unsigned long)(delay * 1e3)); 809 Sleep ((unsigned long)(delay * 1e3));
532#else 810#else
533 struct timeval tv; 811 struct timeval tv;
534 812
535 tv.tv_sec = (time_t)delay; 813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 814 /* something not guaranteed by newer posix versions, but guaranteed */
537 815 /* by older ones */
816 EV_TV_SET (tv, delay);
538 select (0, 0, 0, 0, &tv); 817 select (0, 0, 0, 0, &tv);
539#endif 818#endif
540 } 819 }
541} 820}
542 821
543/*****************************************************************************/ 822/*****************************************************************************/
544 823
545#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 824#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
546 825
547int inline_size 826/* find a suitable new size for the given array, */
827/* hopefully by rounding to a nice-to-malloc size */
828inline_size int
548array_nextsize (int elem, int cur, int cnt) 829array_nextsize (int elem, int cur, int cnt)
549{ 830{
550 int ncur = cur + 1; 831 int ncur = cur + 1;
551 832
552 do 833 do
569array_realloc (int elem, void *base, int *cur, int cnt) 850array_realloc (int elem, void *base, int *cur, int cnt)
570{ 851{
571 *cur = array_nextsize (elem, *cur, cnt); 852 *cur = array_nextsize (elem, *cur, cnt);
572 return ev_realloc (base, elem * *cur); 853 return ev_realloc (base, elem * *cur);
573} 854}
855
856#define array_init_zero(base,count) \
857 memset ((void *)(base), 0, sizeof (*(base)) * (count))
574 858
575#define array_needsize(type,base,cur,cnt,init) \ 859#define array_needsize(type,base,cur,cnt,init) \
576 if (expect_false ((cnt) > (cur))) \ 860 if (expect_false ((cnt) > (cur))) \
577 { \ 861 { \
578 int ocur_ = (cur); \ 862 int ocur_ = (cur); \
590 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 874 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
591 } 875 }
592#endif 876#endif
593 877
594#define array_free(stem, idx) \ 878#define array_free(stem, idx) \
595 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 879 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
596 880
597/*****************************************************************************/ 881/*****************************************************************************/
882
883/* dummy callback for pending events */
884static void noinline
885pendingcb (EV_P_ ev_prepare *w, int revents)
886{
887}
598 888
599void noinline 889void noinline
600ev_feed_event (EV_P_ void *w, int revents) 890ev_feed_event (EV_P_ void *w, int revents)
601{ 891{
602 W w_ = (W)w; 892 W w_ = (W)w;
611 pendings [pri][w_->pending - 1].w = w_; 901 pendings [pri][w_->pending - 1].w = w_;
612 pendings [pri][w_->pending - 1].events = revents; 902 pendings [pri][w_->pending - 1].events = revents;
613 } 903 }
614} 904}
615 905
616void inline_speed 906inline_speed void
907feed_reverse (EV_P_ W w)
908{
909 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910 rfeeds [rfeedcnt++] = w;
911}
912
913inline_size void
914feed_reverse_done (EV_P_ int revents)
915{
916 do
917 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918 while (rfeedcnt);
919}
920
921inline_speed void
617queue_events (EV_P_ W *events, int eventcnt, int type) 922queue_events (EV_P_ W *events, int eventcnt, int type)
618{ 923{
619 int i; 924 int i;
620 925
621 for (i = 0; i < eventcnt; ++i) 926 for (i = 0; i < eventcnt; ++i)
622 ev_feed_event (EV_A_ events [i], type); 927 ev_feed_event (EV_A_ events [i], type);
623} 928}
624 929
625/*****************************************************************************/ 930/*****************************************************************************/
626 931
627void inline_size 932inline_speed void
628anfds_init (ANFD *base, int count)
629{
630 while (count--)
631 {
632 base->head = 0;
633 base->events = EV_NONE;
634 base->reify = 0;
635
636 ++base;
637 }
638}
639
640void inline_speed
641fd_event (EV_P_ int fd, int revents) 933fd_event_nocheck (EV_P_ int fd, int revents)
642{ 934{
643 ANFD *anfd = anfds + fd; 935 ANFD *anfd = anfds + fd;
644 ev_io *w; 936 ev_io *w;
645 937
646 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
650 if (ev) 942 if (ev)
651 ev_feed_event (EV_A_ (W)w, ev); 943 ev_feed_event (EV_A_ (W)w, ev);
652 } 944 }
653} 945}
654 946
947/* do not submit kernel events for fds that have reify set */
948/* because that means they changed while we were polling for new events */
949inline_speed void
950fd_event (EV_P_ int fd, int revents)
951{
952 ANFD *anfd = anfds + fd;
953
954 if (expect_true (!anfd->reify))
955 fd_event_nocheck (EV_A_ fd, revents);
956}
957
655void 958void
656ev_feed_fd_event (EV_P_ int fd, int revents) 959ev_feed_fd_event (EV_P_ int fd, int revents)
657{ 960{
658 if (fd >= 0 && fd < anfdmax) 961 if (fd >= 0 && fd < anfdmax)
659 fd_event (EV_A_ fd, revents); 962 fd_event_nocheck (EV_A_ fd, revents);
660} 963}
661 964
662void inline_size 965/* make sure the external fd watch events are in-sync */
966/* with the kernel/libev internal state */
967inline_size void
663fd_reify (EV_P) 968fd_reify (EV_P)
664{ 969{
665 int i; 970 int i;
666 971
667 for (i = 0; i < fdchangecnt; ++i) 972 for (i = 0; i < fdchangecnt; ++i)
668 { 973 {
669 int fd = fdchanges [i]; 974 int fd = fdchanges [i];
670 ANFD *anfd = anfds + fd; 975 ANFD *anfd = anfds + fd;
671 ev_io *w; 976 ev_io *w;
672 977
673 unsigned char events = 0; 978 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify;
674 980
675 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 981 anfd->reify = 0;
676 events |= (unsigned char)w->events;
677 982
678#if EV_SELECT_IS_WINSOCKET 983#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
679 if (events) 984 if (o_reify & EV__IOFDSET)
680 { 985 {
681 unsigned long argp; 986 unsigned long arg;
682 #ifdef EV_FD_TO_WIN32_HANDLE
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
684 #else
685 anfd->handle = _get_osfhandle (fd);
686 #endif
687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
688 } 990 }
689#endif 991#endif
690 992
993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
691 { 994 {
692 unsigned char o_events = anfd->events;
693 unsigned char o_reify = anfd->reify;
694
695 anfd->reify = 0;
696 anfd->events = events; 995 anfd->events = 0;
697 996
698 if (o_events != events || o_reify & EV_IOFDSET) 997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998 anfd->events |= (unsigned char)w->events;
999
1000 if (o_events != anfd->events)
1001 o_reify = EV__IOFDSET; /* actually |= */
1002 }
1003
1004 if (o_reify & EV__IOFDSET)
699 backend_modify (EV_A_ fd, o_events, events); 1005 backend_modify (EV_A_ fd, o_events, anfd->events);
700 }
701 } 1006 }
702 1007
703 fdchangecnt = 0; 1008 fdchangecnt = 0;
704} 1009}
705 1010
706void inline_size 1011/* something about the given fd changed */
1012inline_size void
707fd_change (EV_P_ int fd, int flags) 1013fd_change (EV_P_ int fd, int flags)
708{ 1014{
709 unsigned char reify = anfds [fd].reify; 1015 unsigned char reify = anfds [fd].reify;
710 anfds [fd].reify |= flags; 1016 anfds [fd].reify |= flags;
711 1017
715 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1021 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
716 fdchanges [fdchangecnt - 1] = fd; 1022 fdchanges [fdchangecnt - 1] = fd;
717 } 1023 }
718} 1024}
719 1025
720void inline_speed 1026/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027inline_speed void
721fd_kill (EV_P_ int fd) 1028fd_kill (EV_P_ int fd)
722{ 1029{
723 ev_io *w; 1030 ev_io *w;
724 1031
725 while ((w = (ev_io *)anfds [fd].head)) 1032 while ((w = (ev_io *)anfds [fd].head))
727 ev_io_stop (EV_A_ w); 1034 ev_io_stop (EV_A_ w);
728 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
729 } 1036 }
730} 1037}
731 1038
732int inline_size 1039/* check whether the given fd is actually valid, for error recovery */
1040inline_size int
733fd_valid (int fd) 1041fd_valid (int fd)
734{ 1042{
735#ifdef _WIN32 1043#ifdef _WIN32
736 return _get_osfhandle (fd) != -1; 1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
737#else 1045#else
738 return fcntl (fd, F_GETFD) != -1; 1046 return fcntl (fd, F_GETFD) != -1;
739#endif 1047#endif
740} 1048}
741 1049
745{ 1053{
746 int fd; 1054 int fd;
747 1055
748 for (fd = 0; fd < anfdmax; ++fd) 1056 for (fd = 0; fd < anfdmax; ++fd)
749 if (anfds [fd].events) 1057 if (anfds [fd].events)
750 if (!fd_valid (fd) == -1 && errno == EBADF) 1058 if (!fd_valid (fd) && errno == EBADF)
751 fd_kill (EV_A_ fd); 1059 fd_kill (EV_A_ fd);
752} 1060}
753 1061
754/* called on ENOMEM in select/poll to kill some fds and retry */ 1062/* called on ENOMEM in select/poll to kill some fds and retry */
755static void noinline 1063static void noinline
759 1067
760 for (fd = anfdmax; fd--; ) 1068 for (fd = anfdmax; fd--; )
761 if (anfds [fd].events) 1069 if (anfds [fd].events)
762 { 1070 {
763 fd_kill (EV_A_ fd); 1071 fd_kill (EV_A_ fd);
764 return; 1072 break;
765 } 1073 }
766} 1074}
767 1075
768/* usually called after fork if backend needs to re-arm all fds from scratch */ 1076/* usually called after fork if backend needs to re-arm all fds from scratch */
769static void noinline 1077static void noinline
773 1081
774 for (fd = 0; fd < anfdmax; ++fd) 1082 for (fd = 0; fd < anfdmax; ++fd)
775 if (anfds [fd].events) 1083 if (anfds [fd].events)
776 { 1084 {
777 anfds [fd].events = 0; 1085 anfds [fd].events = 0;
1086 anfds [fd].emask = 0;
778 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1087 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
779 } 1088 }
780} 1089}
781 1090
1091/* used to prepare libev internal fd's */
1092/* this is not fork-safe */
1093inline_speed void
1094fd_intern (int fd)
1095{
1096#ifdef _WIN32
1097 unsigned long arg = 1;
1098 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1099#else
1100 fcntl (fd, F_SETFD, FD_CLOEXEC);
1101 fcntl (fd, F_SETFL, O_NONBLOCK);
1102#endif
1103}
1104
782/*****************************************************************************/ 1105/*****************************************************************************/
783 1106
784/* 1107/*
785 * the heap functions want a real array index. array index 0 uis guaranteed to not 1108 * the heap functions want a real array index. array index 0 is guaranteed to not
786 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1109 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
787 * the branching factor of the d-tree. 1110 * the branching factor of the d-tree.
788 */ 1111 */
789 1112
790/* 1113/*
791 * at the moment we allow libev the luxury of two heaps, 1114 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 1115 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient. 1116 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers. 1117 * the difference is about 5% with 50000+ watchers.
795 */ 1118 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP 1119#if EV_USE_4HEAP
798 1120
799#define DHEAP 4 1121#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1122#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801 1123#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
802/* towards the root */ 1124#define UPHEAP_DONE(p,k) ((p) == (k))
803void inline_speed
804upheap (ANHE *heap, int k)
805{
806 ANHE he = heap [k];
807
808 for (;;)
809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
815 heap [k] = heap [p];
816 ev_active (ANHE_w (heap [k])) = k;
817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823 1125
824/* away from the root */ 1126/* away from the root */
825void inline_speed 1127inline_speed void
826downheap (ANHE *heap, int N, int k) 1128downheap (ANHE *heap, int N, int k)
827{ 1129{
828 ANHE he = heap [k]; 1130 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0; 1131 ANHE *E = heap + N + HEAP0;
830 1132
831 for (;;) 1133 for (;;)
832 { 1134 {
833 ev_tstamp minat; 1135 ev_tstamp minat;
834 ANHE *minpos; 1136 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1137 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
836 1138
837 // find minimum child 1139 /* find minimum child */
838 if (expect_true (pos + DHEAP - 1 < E)) 1140 if (expect_true (pos + DHEAP - 1 < E))
839 { 1141 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1142 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1143 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1144 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 1145 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 } 1146 }
845 else if (pos < E) 1147 else if (pos < E)
846 { 1148 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1149 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1150 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
853 break; 1155 break;
854 1156
855 if (ANHE_at (he) <= minat) 1157 if (ANHE_at (he) <= minat)
856 break; 1158 break;
857 1159
1160 heap [k] = *minpos;
858 ev_active (ANHE_w (*minpos)) = k; 1161 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860 1162
861 k = minpos - heap; 1163 k = minpos - heap;
862 } 1164 }
863 1165
1166 heap [k] = he;
864 ev_active (ANHE_w (he)) = k; 1167 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866} 1168}
867 1169
868#else // 4HEAP 1170#else /* 4HEAP */
869 1171
870#define HEAP0 1 1172#define HEAP0 1
1173#define HPARENT(k) ((k) >> 1)
1174#define UPHEAP_DONE(p,k) (!(p))
871 1175
872/* towards the root */ 1176/* away from the root */
873void inline_speed 1177inline_speed void
874upheap (ANHE *heap, int k) 1178downheap (ANHE *heap, int N, int k)
875{ 1179{
876 ANHE he = heap [k]; 1180 ANHE he = heap [k];
877 1181
878 for (;;) 1182 for (;;)
879 { 1183 {
880 int p = k >> 1; 1184 int c = k << 1;
881 1185
882 /* maybe we could use a dummy element at heap [0]? */ 1186 if (c >= N + HEAP0)
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break; 1187 break;
885 1188
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
889 }
890
891 heap [k] = w;
892 ev_active (ANHE_w (heap [k])) = k;
893}
894
895/* away from the root */
896void inline_speed
897downheap (ANHE *heap, int N, int k)
898{
899 ANHE he = heap [k];
900
901 for (;;)
902 {
903 int c = k << 1;
904
905 if (c > N)
906 break;
907
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1189 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0; 1190 ? 1 : 0;
910 1191
911 if (w->at <= ANHE_at (heap [c])) 1192 if (ANHE_at (he) <= ANHE_at (heap [c]))
912 break; 1193 break;
913 1194
914 heap [k] = heap [c]; 1195 heap [k] = heap [c];
915 ev_active (ANHE_w (heap [k])) = k; 1196 ev_active (ANHE_w (heap [k])) = k;
916 1197
920 heap [k] = he; 1201 heap [k] = he;
921 ev_active (ANHE_w (he)) = k; 1202 ev_active (ANHE_w (he)) = k;
922} 1203}
923#endif 1204#endif
924 1205
925void inline_size 1206/* towards the root */
1207inline_speed void
1208upheap (ANHE *heap, int k)
1209{
1210 ANHE he = heap [k];
1211
1212 for (;;)
1213 {
1214 int p = HPARENT (k);
1215
1216 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1217 break;
1218
1219 heap [k] = heap [p];
1220 ev_active (ANHE_w (heap [k])) = k;
1221 k = p;
1222 }
1223
1224 heap [k] = he;
1225 ev_active (ANHE_w (he)) = k;
1226}
1227
1228/* move an element suitably so it is in a correct place */
1229inline_size void
926adjustheap (ANHE *heap, int N, int k) 1230adjustheap (ANHE *heap, int N, int k)
927{ 1231{
1232 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
928 upheap (heap, k); 1233 upheap (heap, k);
1234 else
929 downheap (heap, N, k); 1235 downheap (heap, N, k);
1236}
1237
1238/* rebuild the heap: this function is used only once and executed rarely */
1239inline_size void
1240reheap (ANHE *heap, int N)
1241{
1242 int i;
1243
1244 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1245 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1246 for (i = 0; i < N; ++i)
1247 upheap (heap, i + HEAP0);
930} 1248}
931 1249
932/*****************************************************************************/ 1250/*****************************************************************************/
933 1251
1252/* associate signal watchers to a signal signal */
934typedef struct 1253typedef struct
935{ 1254{
1255 EV_ATOMIC_T pending;
1256#if EV_MULTIPLICITY
1257 EV_P;
1258#endif
936 WL head; 1259 WL head;
937 EV_ATOMIC_T gotsig;
938} ANSIG; 1260} ANSIG;
939 1261
940static ANSIG *signals; 1262static ANSIG signals [EV_NSIG - 1];
941static int signalmax;
942
943static EV_ATOMIC_T gotsig;
944
945void inline_size
946signals_init (ANSIG *base, int count)
947{
948 while (count--)
949 {
950 base->head = 0;
951 base->gotsig = 0;
952
953 ++base;
954 }
955}
956 1263
957/*****************************************************************************/ 1264/*****************************************************************************/
958 1265
959void inline_speed 1266#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
960fd_intern (int fd)
961{
962#ifdef _WIN32
963 int arg = 1;
964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
965#else
966 fcntl (fd, F_SETFD, FD_CLOEXEC);
967 fcntl (fd, F_SETFL, O_NONBLOCK);
968#endif
969}
970 1267
971static void noinline 1268static void noinline
972evpipe_init (EV_P) 1269evpipe_init (EV_P)
973{ 1270{
974 if (!ev_is_active (&pipeev)) 1271 if (!ev_is_active (&pipe_w))
975 { 1272 {
976#if EV_USE_EVENTFD 1273# if EV_USE_EVENTFD
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL)
977 if ((evfd = eventfd (0, 0)) >= 0) 1276 evfd = eventfd (0, 0);
1277
1278 if (evfd >= 0)
978 { 1279 {
979 evpipe [0] = -1; 1280 evpipe [0] = -1;
980 fd_intern (evfd); 1281 fd_intern (evfd); /* doing it twice doesn't hurt */
981 ev_io_set (&pipeev, evfd, EV_READ); 1282 ev_io_set (&pipe_w, evfd, EV_READ);
982 } 1283 }
983 else 1284 else
984#endif 1285# endif
985 { 1286 {
986 while (pipe (evpipe)) 1287 while (pipe (evpipe))
987 syserr ("(libev) error creating signal/async pipe"); 1288 ev_syserr ("(libev) error creating signal/async pipe");
988 1289
989 fd_intern (evpipe [0]); 1290 fd_intern (evpipe [0]);
990 fd_intern (evpipe [1]); 1291 fd_intern (evpipe [1]);
991 ev_io_set (&pipeev, evpipe [0], EV_READ); 1292 ev_io_set (&pipe_w, evpipe [0], EV_READ);
992 } 1293 }
993 1294
994 ev_io_start (EV_A_ &pipeev); 1295 ev_io_start (EV_A_ &pipe_w);
995 ev_unref (EV_A); /* watcher should not keep loop alive */ 1296 ev_unref (EV_A); /* watcher should not keep loop alive */
996 } 1297 }
997} 1298}
998 1299
999void inline_size 1300inline_size void
1000evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1301evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1001{ 1302{
1002 if (!*flag) 1303 if (!*flag)
1003 { 1304 {
1004 int old_errno = errno; /* save errno because write might clobber it */ 1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
1005 1307
1006 *flag = 1; 1308 *flag = 1;
1007 1309
1008#if EV_USE_EVENTFD 1310#if EV_USE_EVENTFD
1009 if (evfd >= 0) 1311 if (evfd >= 0)
1011 uint64_t counter = 1; 1313 uint64_t counter = 1;
1012 write (evfd, &counter, sizeof (uint64_t)); 1314 write (evfd, &counter, sizeof (uint64_t));
1013 } 1315 }
1014 else 1316 else
1015#endif 1317#endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
1016 write (evpipe [1], &old_errno, 1); 1323 write (evpipe [1], &dummy, 1);
1017 1324
1018 errno = old_errno; 1325 errno = old_errno;
1019 } 1326 }
1020} 1327}
1021 1328
1329/* called whenever the libev signal pipe */
1330/* got some events (signal, async) */
1022static void 1331static void
1023pipecb (EV_P_ ev_io *iow, int revents) 1332pipecb (EV_P_ ev_io *iow, int revents)
1024{ 1333{
1334 int i;
1335
1025#if EV_USE_EVENTFD 1336#if EV_USE_EVENTFD
1026 if (evfd >= 0) 1337 if (evfd >= 0)
1027 { 1338 {
1028 uint64_t counter; 1339 uint64_t counter;
1029 read (evfd, &counter, sizeof (uint64_t)); 1340 read (evfd, &counter, sizeof (uint64_t));
1030 } 1341 }
1031 else 1342 else
1032#endif 1343#endif
1033 { 1344 {
1034 char dummy; 1345 char dummy;
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1035 read (evpipe [0], &dummy, 1); 1347 read (evpipe [0], &dummy, 1);
1036 } 1348 }
1037 1349
1038 if (gotsig && ev_is_default_loop (EV_A)) 1350 if (sig_pending)
1039 { 1351 {
1040 int signum; 1352 sig_pending = 0;
1041 gotsig = 0;
1042 1353
1043 for (signum = signalmax; signum--; ) 1354 for (i = EV_NSIG - 1; i--; )
1044 if (signals [signum].gotsig) 1355 if (expect_false (signals [i].pending))
1045 ev_feed_signal_event (EV_A_ signum + 1); 1356 ev_feed_signal_event (EV_A_ i + 1);
1046 } 1357 }
1047 1358
1048#if EV_ASYNC_ENABLE 1359#if EV_ASYNC_ENABLE
1049 if (gotasync) 1360 if (async_pending)
1050 { 1361 {
1051 int i; 1362 async_pending = 0;
1052 gotasync = 0;
1053 1363
1054 for (i = asynccnt; i--; ) 1364 for (i = asynccnt; i--; )
1055 if (asyncs [i]->sent) 1365 if (asyncs [i]->sent)
1056 { 1366 {
1057 asyncs [i]->sent = 0; 1367 asyncs [i]->sent = 0;
1065 1375
1066static void 1376static void
1067ev_sighandler (int signum) 1377ev_sighandler (int signum)
1068{ 1378{
1069#if EV_MULTIPLICITY 1379#if EV_MULTIPLICITY
1070 struct ev_loop *loop = &default_loop_struct; 1380 EV_P = signals [signum - 1].loop;
1071#endif 1381#endif
1072 1382
1073#if _WIN32 1383#ifdef _WIN32
1074 signal (signum, ev_sighandler); 1384 signal (signum, ev_sighandler);
1075#endif 1385#endif
1076 1386
1077 signals [signum - 1].gotsig = 1; 1387 signals [signum - 1].pending = 1;
1078 evpipe_write (EV_A_ &gotsig); 1388 evpipe_write (EV_A_ &sig_pending);
1079} 1389}
1080 1390
1081void noinline 1391void noinline
1082ev_feed_signal_event (EV_P_ int signum) 1392ev_feed_signal_event (EV_P_ int signum)
1083{ 1393{
1084 WL w; 1394 WL w;
1085 1395
1396 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397 return;
1398
1399 --signum;
1400
1086#if EV_MULTIPLICITY 1401#if EV_MULTIPLICITY
1087 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1402 /* it is permissible to try to feed a signal to the wrong loop */
1088#endif 1403 /* or, likely more useful, feeding a signal nobody is waiting for */
1089 1404
1090 --signum; 1405 if (expect_false (signals [signum].loop != EV_A))
1091
1092 if (signum < 0 || signum >= signalmax)
1093 return; 1406 return;
1407#endif
1094 1408
1095 signals [signum].gotsig = 0; 1409 signals [signum].pending = 0;
1096 1410
1097 for (w = signals [signum].head; w; w = w->next) 1411 for (w = signals [signum].head; w; w = w->next)
1098 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1099} 1413}
1100 1414
1415#if EV_USE_SIGNALFD
1416static void
1417sigfdcb (EV_P_ ev_io *iow, int revents)
1418{
1419 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1420
1421 for (;;)
1422 {
1423 ssize_t res = read (sigfd, si, sizeof (si));
1424
1425 /* not ISO-C, as res might be -1, but works with SuS */
1426 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1427 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1428
1429 if (res < (ssize_t)sizeof (si))
1430 break;
1431 }
1432}
1433#endif
1434
1435#endif
1436
1101/*****************************************************************************/ 1437/*****************************************************************************/
1102 1438
1439#if EV_CHILD_ENABLE
1103static WL childs [EV_PID_HASHSIZE]; 1440static WL childs [EV_PID_HASHSIZE];
1104
1105#ifndef _WIN32
1106 1441
1107static ev_signal childev; 1442static ev_signal childev;
1108 1443
1109#ifndef WIFCONTINUED 1444#ifndef WIFCONTINUED
1110# define WIFCONTINUED(status) 0 1445# define WIFCONTINUED(status) 0
1111#endif 1446#endif
1112 1447
1113void inline_speed 1448/* handle a single child status event */
1449inline_speed void
1114child_reap (EV_P_ int chain, int pid, int status) 1450child_reap (EV_P_ int chain, int pid, int status)
1115{ 1451{
1116 ev_child *w; 1452 ev_child *w;
1117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1453 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1118 1454
1119 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1455 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1120 { 1456 {
1121 if ((w->pid == pid || !w->pid) 1457 if ((w->pid == pid || !w->pid)
1122 && (!traced || (w->flags & 1))) 1458 && (!traced || (w->flags & 1)))
1123 { 1459 {
1124 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1460 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1131 1467
1132#ifndef WCONTINUED 1468#ifndef WCONTINUED
1133# define WCONTINUED 0 1469# define WCONTINUED 0
1134#endif 1470#endif
1135 1471
1472/* called on sigchld etc., calls waitpid */
1136static void 1473static void
1137childcb (EV_P_ ev_signal *sw, int revents) 1474childcb (EV_P_ ev_signal *sw, int revents)
1138{ 1475{
1139 int pid, status; 1476 int pid, status;
1140 1477
1148 /* make sure we are called again until all children have been reaped */ 1485 /* make sure we are called again until all children have been reaped */
1149 /* we need to do it this way so that the callback gets called before we continue */ 1486 /* we need to do it this way so that the callback gets called before we continue */
1150 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1487 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1151 1488
1152 child_reap (EV_A_ pid, pid, status); 1489 child_reap (EV_A_ pid, pid, status);
1153 if (EV_PID_HASHSIZE > 1) 1490 if ((EV_PID_HASHSIZE) > 1)
1154 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1491 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1155} 1492}
1156 1493
1157#endif 1494#endif
1158 1495
1159/*****************************************************************************/ 1496/*****************************************************************************/
1160 1497
1498#if EV_USE_IOCP
1499# include "ev_iocp.c"
1500#endif
1161#if EV_USE_PORT 1501#if EV_USE_PORT
1162# include "ev_port.c" 1502# include "ev_port.c"
1163#endif 1503#endif
1164#if EV_USE_KQUEUE 1504#if EV_USE_KQUEUE
1165# include "ev_kqueue.c" 1505# include "ev_kqueue.c"
1221 /* kqueue is borked on everything but netbsd apparently */ 1561 /* kqueue is borked on everything but netbsd apparently */
1222 /* it usually doesn't work correctly on anything but sockets and pipes */ 1562 /* it usually doesn't work correctly on anything but sockets and pipes */
1223 flags &= ~EVBACKEND_KQUEUE; 1563 flags &= ~EVBACKEND_KQUEUE;
1224#endif 1564#endif
1225#ifdef __APPLE__ 1565#ifdef __APPLE__
1226 // flags &= ~EVBACKEND_KQUEUE; for documentation 1566 /* only select works correctly on that "unix-certified" platform */
1227 flags &= ~EVBACKEND_POLL; 1567 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569#endif
1570#ifdef __FreeBSD__
1571 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1228#endif 1572#endif
1229 1573
1230 return flags; 1574 return flags;
1231} 1575}
1232 1576
1234ev_embeddable_backends (void) 1578ev_embeddable_backends (void)
1235{ 1579{
1236 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1237 1581
1238 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1239 /* please fix it and tell me how to detect the fix */ 1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1240 flags &= ~EVBACKEND_EPOLL; 1584 flags &= ~EVBACKEND_EPOLL;
1241 1585
1242 return flags; 1586 return flags;
1243} 1587}
1244 1588
1245unsigned int 1589unsigned int
1246ev_backend (EV_P) 1590ev_backend (EV_P)
1247{ 1591{
1248 return backend; 1592 return backend;
1249} 1593}
1250 1594
1595#if EV_FEATURE_API
1251unsigned int 1596unsigned int
1252ev_loop_count (EV_P) 1597ev_iteration (EV_P)
1253{ 1598{
1254 return loop_count; 1599 return loop_count;
1255} 1600}
1256 1601
1602unsigned int
1603ev_depth (EV_P)
1604{
1605 return loop_depth;
1606}
1607
1257void 1608void
1258ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1609ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1259{ 1610{
1260 io_blocktime = interval; 1611 io_blocktime = interval;
1261} 1612}
1264ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1615ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1265{ 1616{
1266 timeout_blocktime = interval; 1617 timeout_blocktime = interval;
1267} 1618}
1268 1619
1620void
1621ev_set_userdata (EV_P_ void *data)
1622{
1623 userdata = data;
1624}
1625
1626void *
1627ev_userdata (EV_P)
1628{
1629 return userdata;
1630}
1631
1632void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633{
1634 invoke_cb = invoke_pending_cb;
1635}
1636
1637void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638{
1639 release_cb = release;
1640 acquire_cb = acquire;
1641}
1642#endif
1643
1644/* initialise a loop structure, must be zero-initialised */
1269static void noinline 1645static void noinline
1270loop_init (EV_P_ unsigned int flags) 1646loop_init (EV_P_ unsigned int flags)
1271{ 1647{
1272 if (!backend) 1648 if (!backend)
1273 { 1649 {
1650#if EV_USE_REALTIME
1651 if (!have_realtime)
1652 {
1653 struct timespec ts;
1654
1655 if (!clock_gettime (CLOCK_REALTIME, &ts))
1656 have_realtime = 1;
1657 }
1658#endif
1659
1274#if EV_USE_MONOTONIC 1660#if EV_USE_MONOTONIC
1661 if (!have_monotonic)
1275 { 1662 {
1276 struct timespec ts; 1663 struct timespec ts;
1664
1277 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1665 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1278 have_monotonic = 1; 1666 have_monotonic = 1;
1279 } 1667 }
1280#endif 1668#endif
1669
1670 /* pid check not overridable via env */
1671#ifndef _WIN32
1672 if (flags & EVFLAG_FORKCHECK)
1673 curpid = getpid ();
1674#endif
1675
1676 if (!(flags & EVFLAG_NOENV)
1677 && !enable_secure ()
1678 && getenv ("LIBEV_FLAGS"))
1679 flags = atoi (getenv ("LIBEV_FLAGS"));
1281 1680
1282 ev_rt_now = ev_time (); 1681 ev_rt_now = ev_time ();
1283 mn_now = get_clock (); 1682 mn_now = get_clock ();
1284 now_floor = mn_now; 1683 now_floor = mn_now;
1285 rtmn_diff = ev_rt_now - mn_now; 1684 rtmn_diff = ev_rt_now - mn_now;
1685#if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending;
1687#endif
1286 1688
1287 io_blocktime = 0.; 1689 io_blocktime = 0.;
1288 timeout_blocktime = 0.; 1690 timeout_blocktime = 0.;
1289 backend = 0; 1691 backend = 0;
1290 backend_fd = -1; 1692 backend_fd = -1;
1291 gotasync = 0; 1693 sig_pending = 0;
1694#if EV_ASYNC_ENABLE
1695 async_pending = 0;
1696#endif
1292#if EV_USE_INOTIFY 1697#if EV_USE_INOTIFY
1293 fs_fd = -2; 1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1294#endif 1699#endif
1295 1700#if EV_USE_SIGNALFD
1296 /* pid check not overridable via env */ 1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1297#ifndef _WIN32
1298 if (flags & EVFLAG_FORKCHECK)
1299 curpid = getpid ();
1300#endif 1702#endif
1301
1302 if (!(flags & EVFLAG_NOENV)
1303 && !enable_secure ()
1304 && getenv ("LIBEV_FLAGS"))
1305 flags = atoi (getenv ("LIBEV_FLAGS"));
1306 1703
1307 if (!(flags & 0x0000ffffU)) 1704 if (!(flags & 0x0000ffffU))
1308 flags |= ev_recommended_backends (); 1705 flags |= ev_recommended_backends ();
1309 1706
1707#if EV_USE_IOCP
1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1709#endif
1310#if EV_USE_PORT 1710#if EV_USE_PORT
1311 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1711 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1312#endif 1712#endif
1313#if EV_USE_KQUEUE 1713#if EV_USE_KQUEUE
1314 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1714 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1321#endif 1721#endif
1322#if EV_USE_SELECT 1722#if EV_USE_SELECT
1323 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1723 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1324#endif 1724#endif
1325 1725
1726 ev_prepare_init (&pending_w, pendingcb);
1727
1728#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1326 ev_init (&pipeev, pipecb); 1729 ev_init (&pipe_w, pipecb);
1327 ev_set_priority (&pipeev, EV_MAXPRI); 1730 ev_set_priority (&pipe_w, EV_MAXPRI);
1731#endif
1328 } 1732 }
1329} 1733}
1330 1734
1331static void noinline 1735/* free up a loop structure */
1736void
1332loop_destroy (EV_P) 1737ev_loop_destroy (EV_P)
1333{ 1738{
1334 int i; 1739 int i;
1335 1740
1741#if EV_MULTIPLICITY
1742 /* mimic free (0) */
1743 if (!EV_A)
1744 return;
1745#endif
1746
1747#if EV_CLEANUP_ENABLE
1748 /* queue cleanup watchers (and execute them) */
1749 if (expect_false (cleanupcnt))
1750 {
1751 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1752 EV_INVOKE_PENDING;
1753 }
1754#endif
1755
1756#if EV_CHILD_ENABLE
1757 if (ev_is_active (&childev))
1758 {
1759 ev_ref (EV_A); /* child watcher */
1760 ev_signal_stop (EV_A_ &childev);
1761 }
1762#endif
1763
1336 if (ev_is_active (&pipeev)) 1764 if (ev_is_active (&pipe_w))
1337 { 1765 {
1338 ev_ref (EV_A); /* signal watcher */ 1766 /*ev_ref (EV_A);*/
1339 ev_io_stop (EV_A_ &pipeev); 1767 /*ev_io_stop (EV_A_ &pipe_w);*/
1340 1768
1341#if EV_USE_EVENTFD 1769#if EV_USE_EVENTFD
1342 if (evfd >= 0) 1770 if (evfd >= 0)
1343 close (evfd); 1771 close (evfd);
1344#endif 1772#endif
1345 1773
1346 if (evpipe [0] >= 0) 1774 if (evpipe [0] >= 0)
1347 { 1775 {
1348 close (evpipe [0]); 1776 EV_WIN32_CLOSE_FD (evpipe [0]);
1349 close (evpipe [1]); 1777 EV_WIN32_CLOSE_FD (evpipe [1]);
1350 } 1778 }
1351 } 1779 }
1780
1781#if EV_USE_SIGNALFD
1782 if (ev_is_active (&sigfd_w))
1783 close (sigfd);
1784#endif
1352 1785
1353#if EV_USE_INOTIFY 1786#if EV_USE_INOTIFY
1354 if (fs_fd >= 0) 1787 if (fs_fd >= 0)
1355 close (fs_fd); 1788 close (fs_fd);
1356#endif 1789#endif
1357 1790
1358 if (backend_fd >= 0) 1791 if (backend_fd >= 0)
1359 close (backend_fd); 1792 close (backend_fd);
1360 1793
1794#if EV_USE_IOCP
1795 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1796#endif
1361#if EV_USE_PORT 1797#if EV_USE_PORT
1362 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1798 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1363#endif 1799#endif
1364#if EV_USE_KQUEUE 1800#if EV_USE_KQUEUE
1365 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1801 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1380#if EV_IDLE_ENABLE 1816#if EV_IDLE_ENABLE
1381 array_free (idle, [i]); 1817 array_free (idle, [i]);
1382#endif 1818#endif
1383 } 1819 }
1384 1820
1385 ev_free (anfds); anfdmax = 0; 1821 ev_free (anfds); anfds = 0; anfdmax = 0;
1386 1822
1387 /* have to use the microsoft-never-gets-it-right macro */ 1823 /* have to use the microsoft-never-gets-it-right macro */
1824 array_free (rfeed, EMPTY);
1388 array_free (fdchange, EMPTY); 1825 array_free (fdchange, EMPTY);
1389 array_free (timer, EMPTY); 1826 array_free (timer, EMPTY);
1390#if EV_PERIODIC_ENABLE 1827#if EV_PERIODIC_ENABLE
1391 array_free (periodic, EMPTY); 1828 array_free (periodic, EMPTY);
1392#endif 1829#endif
1393#if EV_FORK_ENABLE 1830#if EV_FORK_ENABLE
1394 array_free (fork, EMPTY); 1831 array_free (fork, EMPTY);
1395#endif 1832#endif
1833#if EV_CLEANUP_ENABLE
1834 array_free (cleanup, EMPTY);
1835#endif
1396 array_free (prepare, EMPTY); 1836 array_free (prepare, EMPTY);
1397 array_free (check, EMPTY); 1837 array_free (check, EMPTY);
1398#if EV_ASYNC_ENABLE 1838#if EV_ASYNC_ENABLE
1399 array_free (async, EMPTY); 1839 array_free (async, EMPTY);
1400#endif 1840#endif
1401 1841
1402 backend = 0; 1842 backend = 0;
1843
1844#if EV_MULTIPLICITY
1845 if (ev_is_default_loop (EV_A))
1846#endif
1847 ev_default_loop_ptr = 0;
1848#if EV_MULTIPLICITY
1849 else
1850 ev_free (EV_A);
1851#endif
1403} 1852}
1404 1853
1405#if EV_USE_INOTIFY 1854#if EV_USE_INOTIFY
1406void inline_size infy_fork (EV_P); 1855inline_size void infy_fork (EV_P);
1407#endif 1856#endif
1408 1857
1409void inline_size 1858inline_size void
1410loop_fork (EV_P) 1859loop_fork (EV_P)
1411{ 1860{
1412#if EV_USE_PORT 1861#if EV_USE_PORT
1413 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1862 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1414#endif 1863#endif
1420#endif 1869#endif
1421#if EV_USE_INOTIFY 1870#if EV_USE_INOTIFY
1422 infy_fork (EV_A); 1871 infy_fork (EV_A);
1423#endif 1872#endif
1424 1873
1425 if (ev_is_active (&pipeev)) 1874 if (ev_is_active (&pipe_w))
1426 { 1875 {
1427 /* this "locks" the handlers against writing to the pipe */ 1876 /* this "locks" the handlers against writing to the pipe */
1428 /* while we modify the fd vars */ 1877 /* while we modify the fd vars */
1429 gotsig = 1; 1878 sig_pending = 1;
1430#if EV_ASYNC_ENABLE 1879#if EV_ASYNC_ENABLE
1431 gotasync = 1; 1880 async_pending = 1;
1432#endif 1881#endif
1433 1882
1434 ev_ref (EV_A); 1883 ev_ref (EV_A);
1435 ev_io_stop (EV_A_ &pipeev); 1884 ev_io_stop (EV_A_ &pipe_w);
1436 1885
1437#if EV_USE_EVENTFD 1886#if EV_USE_EVENTFD
1438 if (evfd >= 0) 1887 if (evfd >= 0)
1439 close (evfd); 1888 close (evfd);
1440#endif 1889#endif
1441 1890
1442 if (evpipe [0] >= 0) 1891 if (evpipe [0] >= 0)
1443 { 1892 {
1444 close (evpipe [0]); 1893 EV_WIN32_CLOSE_FD (evpipe [0]);
1445 close (evpipe [1]); 1894 EV_WIN32_CLOSE_FD (evpipe [1]);
1446 } 1895 }
1447 1896
1897#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1448 evpipe_init (EV_A); 1898 evpipe_init (EV_A);
1449 /* now iterate over everything, in case we missed something */ 1899 /* now iterate over everything, in case we missed something */
1450 pipecb (EV_A_ &pipeev, EV_READ); 1900 pipecb (EV_A_ &pipe_w, EV_READ);
1901#endif
1451 } 1902 }
1452 1903
1453 postfork = 0; 1904 postfork = 0;
1454} 1905}
1906
1907#if EV_MULTIPLICITY
1908
1909struct ev_loop *
1910ev_loop_new (unsigned int flags)
1911{
1912 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1913
1914 memset (EV_A, 0, sizeof (struct ev_loop));
1915 loop_init (EV_A_ flags);
1916
1917 if (ev_backend (EV_A))
1918 return EV_A;
1919
1920 ev_free (EV_A);
1921 return 0;
1922}
1923
1924#endif /* multiplicity */
1925
1926#if EV_VERIFY
1927static void noinline
1928verify_watcher (EV_P_ W w)
1929{
1930 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1931
1932 if (w->pending)
1933 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1934}
1935
1936static void noinline
1937verify_heap (EV_P_ ANHE *heap, int N)
1938{
1939 int i;
1940
1941 for (i = HEAP0; i < N + HEAP0; ++i)
1942 {
1943 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1944 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1945 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1946
1947 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1948 }
1949}
1950
1951static void noinline
1952array_verify (EV_P_ W *ws, int cnt)
1953{
1954 while (cnt--)
1955 {
1956 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1957 verify_watcher (EV_A_ ws [cnt]);
1958 }
1959}
1960#endif
1961
1962#if EV_FEATURE_API
1963void
1964ev_verify (EV_P)
1965{
1966#if EV_VERIFY
1967 int i;
1968 WL w;
1969
1970 assert (activecnt >= -1);
1971
1972 assert (fdchangemax >= fdchangecnt);
1973 for (i = 0; i < fdchangecnt; ++i)
1974 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1975
1976 assert (anfdmax >= 0);
1977 for (i = 0; i < anfdmax; ++i)
1978 for (w = anfds [i].head; w; w = w->next)
1979 {
1980 verify_watcher (EV_A_ (W)w);
1981 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1982 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1983 }
1984
1985 assert (timermax >= timercnt);
1986 verify_heap (EV_A_ timers, timercnt);
1987
1988#if EV_PERIODIC_ENABLE
1989 assert (periodicmax >= periodiccnt);
1990 verify_heap (EV_A_ periodics, periodiccnt);
1991#endif
1992
1993 for (i = NUMPRI; i--; )
1994 {
1995 assert (pendingmax [i] >= pendingcnt [i]);
1996#if EV_IDLE_ENABLE
1997 assert (idleall >= 0);
1998 assert (idlemax [i] >= idlecnt [i]);
1999 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2000#endif
2001 }
2002
2003#if EV_FORK_ENABLE
2004 assert (forkmax >= forkcnt);
2005 array_verify (EV_A_ (W *)forks, forkcnt);
2006#endif
2007
2008#if EV_CLEANUP_ENABLE
2009 assert (cleanupmax >= cleanupcnt);
2010 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2011#endif
2012
2013#if EV_ASYNC_ENABLE
2014 assert (asyncmax >= asynccnt);
2015 array_verify (EV_A_ (W *)asyncs, asynccnt);
2016#endif
2017
2018#if EV_PREPARE_ENABLE
2019 assert (preparemax >= preparecnt);
2020 array_verify (EV_A_ (W *)prepares, preparecnt);
2021#endif
2022
2023#if EV_CHECK_ENABLE
2024 assert (checkmax >= checkcnt);
2025 array_verify (EV_A_ (W *)checks, checkcnt);
2026#endif
2027
2028# if 0
2029#if EV_CHILD_ENABLE
2030 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2031 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2032#endif
2033# endif
2034#endif
2035}
2036#endif
1455 2037
1456#if EV_MULTIPLICITY 2038#if EV_MULTIPLICITY
1457struct ev_loop * 2039struct ev_loop *
1458ev_loop_new (unsigned int flags)
1459{
1460 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1461
1462 memset (loop, 0, sizeof (struct ev_loop));
1463
1464 loop_init (EV_A_ flags);
1465
1466 if (ev_backend (EV_A))
1467 return loop;
1468
1469 return 0;
1470}
1471
1472void
1473ev_loop_destroy (EV_P)
1474{
1475 loop_destroy (EV_A);
1476 ev_free (loop);
1477}
1478
1479void
1480ev_loop_fork (EV_P)
1481{
1482 postfork = 1; /* must be in line with ev_default_fork */
1483}
1484#endif
1485
1486#if EV_MULTIPLICITY
1487struct ev_loop *
1488ev_default_loop_init (unsigned int flags)
1489#else 2040#else
1490int 2041int
2042#endif
1491ev_default_loop (unsigned int flags) 2043ev_default_loop (unsigned int flags)
1492#endif
1493{ 2044{
1494 if (!ev_default_loop_ptr) 2045 if (!ev_default_loop_ptr)
1495 { 2046 {
1496#if EV_MULTIPLICITY 2047#if EV_MULTIPLICITY
1497 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2048 EV_P = ev_default_loop_ptr = &default_loop_struct;
1498#else 2049#else
1499 ev_default_loop_ptr = 1; 2050 ev_default_loop_ptr = 1;
1500#endif 2051#endif
1501 2052
1502 loop_init (EV_A_ flags); 2053 loop_init (EV_A_ flags);
1503 2054
1504 if (ev_backend (EV_A)) 2055 if (ev_backend (EV_A))
1505 { 2056 {
1506#ifndef _WIN32 2057#if EV_CHILD_ENABLE
1507 ev_signal_init (&childev, childcb, SIGCHLD); 2058 ev_signal_init (&childev, childcb, SIGCHLD);
1508 ev_set_priority (&childev, EV_MAXPRI); 2059 ev_set_priority (&childev, EV_MAXPRI);
1509 ev_signal_start (EV_A_ &childev); 2060 ev_signal_start (EV_A_ &childev);
1510 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2061 ev_unref (EV_A); /* child watcher should not keep loop alive */
1511#endif 2062#endif
1516 2067
1517 return ev_default_loop_ptr; 2068 return ev_default_loop_ptr;
1518} 2069}
1519 2070
1520void 2071void
1521ev_default_destroy (void) 2072ev_loop_fork (EV_P)
1522{ 2073{
1523#if EV_MULTIPLICITY
1524 struct ev_loop *loop = ev_default_loop_ptr;
1525#endif
1526
1527#ifndef _WIN32
1528 ev_ref (EV_A); /* child watcher */
1529 ev_signal_stop (EV_A_ &childev);
1530#endif
1531
1532 loop_destroy (EV_A);
1533}
1534
1535void
1536ev_default_fork (void)
1537{
1538#if EV_MULTIPLICITY
1539 struct ev_loop *loop = ev_default_loop_ptr;
1540#endif
1541
1542 if (backend)
1543 postfork = 1; /* must be in line with ev_loop_fork */ 2074 postfork = 1; /* must be in line with ev_default_fork */
1544} 2075}
1545 2076
1546/*****************************************************************************/ 2077/*****************************************************************************/
1547 2078
1548void 2079void
1549ev_invoke (EV_P_ void *w, int revents) 2080ev_invoke (EV_P_ void *w, int revents)
1550{ 2081{
1551 EV_CB_INVOKE ((W)w, revents); 2082 EV_CB_INVOKE ((W)w, revents);
1552} 2083}
1553 2084
1554void inline_speed 2085unsigned int
1555call_pending (EV_P) 2086ev_pending_count (EV_P)
2087{
2088 int pri;
2089 unsigned int count = 0;
2090
2091 for (pri = NUMPRI; pri--; )
2092 count += pendingcnt [pri];
2093
2094 return count;
2095}
2096
2097void noinline
2098ev_invoke_pending (EV_P)
1556{ 2099{
1557 int pri; 2100 int pri;
1558 2101
1559 for (pri = NUMPRI; pri--; ) 2102 for (pri = NUMPRI; pri--; )
1560 while (pendingcnt [pri]) 2103 while (pendingcnt [pri])
1561 { 2104 {
1562 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2105 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1563 2106
1564 if (expect_true (p->w))
1565 {
1566 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2107 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2108 /* ^ this is no longer true, as pending_w could be here */
1567 2109
1568 p->w->pending = 0; 2110 p->w->pending = 0;
1569 EV_CB_INVOKE (p->w, p->events); 2111 EV_CB_INVOKE (p->w, p->events);
1570 } 2112 EV_FREQUENT_CHECK;
1571 } 2113 }
1572} 2114}
1573 2115
1574#if EV_IDLE_ENABLE 2116#if EV_IDLE_ENABLE
1575void inline_size 2117/* make idle watchers pending. this handles the "call-idle */
2118/* only when higher priorities are idle" logic */
2119inline_size void
1576idle_reify (EV_P) 2120idle_reify (EV_P)
1577{ 2121{
1578 if (expect_false (idleall)) 2122 if (expect_false (idleall))
1579 { 2123 {
1580 int pri; 2124 int pri;
1592 } 2136 }
1593 } 2137 }
1594} 2138}
1595#endif 2139#endif
1596 2140
1597void inline_size 2141/* make timers pending */
2142inline_size void
1598timers_reify (EV_P) 2143timers_reify (EV_P)
1599{ 2144{
2145 EV_FREQUENT_CHECK;
2146
1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now) 2147 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1601 { 2148 {
1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2149 do
1603
1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1605
1606 /* first reschedule or stop timer */
1607 if (w->repeat)
1608 { 2150 {
2151 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2152
2153 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2154
2155 /* first reschedule or stop timer */
2156 if (w->repeat)
2157 {
2158 ev_at (w) += w->repeat;
2159 if (ev_at (w) < mn_now)
2160 ev_at (w) = mn_now;
2161
1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2162 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1610 2163
1611 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now;
1614
1615 ANHE_at_set (timers [HEAP0]); 2164 ANHE_at_cache (timers [HEAP0]);
1616 downheap (timers, timercnt, HEAP0); 2165 downheap (timers, timercnt, HEAP0);
2166 }
2167 else
2168 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2169
2170 EV_FREQUENT_CHECK;
2171 feed_reverse (EV_A_ (W)w);
1617 } 2172 }
1618 else 2173 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1620 2174
1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2175 feed_reverse_done (EV_A_ EV_TIMER);
1622 } 2176 }
1623} 2177}
1624 2178
1625#if EV_PERIODIC_ENABLE 2179#if EV_PERIODIC_ENABLE
1626void inline_size 2180/* make periodics pending */
2181inline_size void
1627periodics_reify (EV_P) 2182periodics_reify (EV_P)
1628{ 2183{
2184 EV_FREQUENT_CHECK;
2185
1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now) 2186 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1630 { 2187 {
1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2188 int feed_count = 0;
1632 2189
1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2190 do
1634
1635 /* first reschedule or stop timer */
1636 if (w->reschedule_cb)
1637 { 2191 {
2192 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2193
2194 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2195
2196 /* first reschedule or stop timer */
2197 if (w->reschedule_cb)
2198 {
1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 2199 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2200
1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 2201 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2202
1640 ANHE_at_set (periodics [HEAP0]); 2203 ANHE_at_cache (periodics [HEAP0]);
1641 downheap (periodics, periodiccnt, HEAP0); 2204 downheap (periodics, periodiccnt, HEAP0);
2205 }
2206 else if (w->interval)
2207 {
2208 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2209 /* if next trigger time is not sufficiently in the future, put it there */
2210 /* this might happen because of floating point inexactness */
2211 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2212 {
2213 ev_at (w) += w->interval;
2214
2215 /* if interval is unreasonably low we might still have a time in the past */
2216 /* so correct this. this will make the periodic very inexact, but the user */
2217 /* has effectively asked to get triggered more often than possible */
2218 if (ev_at (w) < ev_rt_now)
2219 ev_at (w) = ev_rt_now;
2220 }
2221
2222 ANHE_at_cache (periodics [HEAP0]);
2223 downheap (periodics, periodiccnt, HEAP0);
2224 }
2225 else
2226 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2227
2228 EV_FREQUENT_CHECK;
2229 feed_reverse (EV_A_ (W)w);
1642 } 2230 }
1643 else if (w->interval) 2231 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1644 {
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else
1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1653 2232
1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2233 feed_reverse_done (EV_A_ EV_PERIODIC);
1655 } 2234 }
1656} 2235}
1657 2236
2237/* simply recalculate all periodics */
2238/* TODO: maybe ensure that at least one event happens when jumping forward? */
1658static void noinline 2239static void noinline
1659periodics_reschedule (EV_P) 2240periodics_reschedule (EV_P)
1660{ 2241{
1661 int i; 2242 int i;
1662 2243
1668 if (w->reschedule_cb) 2249 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2250 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1670 else if (w->interval) 2251 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1672 2253
1673 ANHE_at_set (periodics [i]); 2254 ANHE_at_cache (periodics [i]);
2255 }
2256
2257 reheap (periodics, periodiccnt);
2258}
2259#endif
2260
2261/* adjust all timers by a given offset */
2262static void noinline
2263timers_reschedule (EV_P_ ev_tstamp adjust)
2264{
2265 int i;
2266
2267 for (i = 0; i < timercnt; ++i)
1674 } 2268 {
1675 2269 ANHE *he = timers + i + HEAP0;
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */ 2270 ANHE_w (*he)->at += adjust;
1677 for (i = periodiccnt >> 1; --i; ) 2271 ANHE_at_cache (*he);
1678 downheap (periodics, periodiccnt, i + HEAP0); 2272 }
1679} 2273}
1680#endif
1681 2274
1682void inline_speed 2275/* fetch new monotonic and realtime times from the kernel */
2276/* also detect if there was a timejump, and act accordingly */
2277inline_speed void
1683time_update (EV_P_ ev_tstamp max_block) 2278time_update (EV_P_ ev_tstamp max_block)
1684{ 2279{
1685 int i;
1686
1687#if EV_USE_MONOTONIC 2280#if EV_USE_MONOTONIC
1688 if (expect_true (have_monotonic)) 2281 if (expect_true (have_monotonic))
1689 { 2282 {
2283 int i;
1690 ev_tstamp odiff = rtmn_diff; 2284 ev_tstamp odiff = rtmn_diff;
1691 2285
1692 mn_now = get_clock (); 2286 mn_now = get_clock ();
1693 2287
1694 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2288 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1720 ev_rt_now = ev_time (); 2314 ev_rt_now = ev_time ();
1721 mn_now = get_clock (); 2315 mn_now = get_clock ();
1722 now_floor = mn_now; 2316 now_floor = mn_now;
1723 } 2317 }
1724 2318
2319 /* no timer adjustment, as the monotonic clock doesn't jump */
2320 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1725# if EV_PERIODIC_ENABLE 2321# if EV_PERIODIC_ENABLE
1726 periodics_reschedule (EV_A); 2322 periodics_reschedule (EV_A);
1727# endif 2323# endif
1728 /* no timer adjustment, as the monotonic clock doesn't jump */
1729 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1730 } 2324 }
1731 else 2325 else
1732#endif 2326#endif
1733 { 2327 {
1734 ev_rt_now = ev_time (); 2328 ev_rt_now = ev_time ();
1735 2329
1736 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2330 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1737 { 2331 {
2332 /* adjust timers. this is easy, as the offset is the same for all of them */
2333 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1738#if EV_PERIODIC_ENABLE 2334#if EV_PERIODIC_ENABLE
1739 periodics_reschedule (EV_A); 2335 periodics_reschedule (EV_A);
1740#endif 2336#endif
1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1742 for (i = 0; i < timercnt; ++i)
1743 {
1744 ANHE *he = timers + i + HEAP0;
1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he);
1747 }
1748 } 2337 }
1749 2338
1750 mn_now = ev_rt_now; 2339 mn_now = ev_rt_now;
1751 } 2340 }
1752} 2341}
1753 2342
1754void 2343void
1755ev_ref (EV_P)
1756{
1757 ++activecnt;
1758}
1759
1760void
1761ev_unref (EV_P)
1762{
1763 --activecnt;
1764}
1765
1766static int loop_done;
1767
1768void
1769ev_loop (EV_P_ int flags) 2344ev_run (EV_P_ int flags)
1770{ 2345{
2346#if EV_FEATURE_API
2347 ++loop_depth;
2348#endif
2349
2350 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2351
1771 loop_done = EVUNLOOP_CANCEL; 2352 loop_done = EVBREAK_CANCEL;
1772 2353
1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2354 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1774 2355
1775 do 2356 do
1776 { 2357 {
2358#if EV_VERIFY >= 2
2359 ev_verify (EV_A);
2360#endif
2361
1777#ifndef _WIN32 2362#ifndef _WIN32
1778 if (expect_false (curpid)) /* penalise the forking check even more */ 2363 if (expect_false (curpid)) /* penalise the forking check even more */
1779 if (expect_false (getpid () != curpid)) 2364 if (expect_false (getpid () != curpid))
1780 { 2365 {
1781 curpid = getpid (); 2366 curpid = getpid ();
1787 /* we might have forked, so queue fork handlers */ 2372 /* we might have forked, so queue fork handlers */
1788 if (expect_false (postfork)) 2373 if (expect_false (postfork))
1789 if (forkcnt) 2374 if (forkcnt)
1790 { 2375 {
1791 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2376 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1792 call_pending (EV_A); 2377 EV_INVOKE_PENDING;
1793 } 2378 }
1794#endif 2379#endif
1795 2380
2381#if EV_PREPARE_ENABLE
1796 /* queue prepare watchers (and execute them) */ 2382 /* queue prepare watchers (and execute them) */
1797 if (expect_false (preparecnt)) 2383 if (expect_false (preparecnt))
1798 { 2384 {
1799 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2385 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1800 call_pending (EV_A); 2386 EV_INVOKE_PENDING;
1801 } 2387 }
2388#endif
1802 2389
1803 if (expect_false (!activecnt)) 2390 if (expect_false (loop_done))
1804 break; 2391 break;
1805 2392
1806 /* we might have forked, so reify kernel state if necessary */ 2393 /* we might have forked, so reify kernel state if necessary */
1807 if (expect_false (postfork)) 2394 if (expect_false (postfork))
1808 loop_fork (EV_A); 2395 loop_fork (EV_A);
1813 /* calculate blocking time */ 2400 /* calculate blocking time */
1814 { 2401 {
1815 ev_tstamp waittime = 0.; 2402 ev_tstamp waittime = 0.;
1816 ev_tstamp sleeptime = 0.; 2403 ev_tstamp sleeptime = 0.;
1817 2404
2405 /* remember old timestamp for io_blocktime calculation */
2406 ev_tstamp prev_mn_now = mn_now;
2407
2408 /* update time to cancel out callback processing overhead */
2409 time_update (EV_A_ 1e100);
2410
1818 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2411 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1819 { 2412 {
1820 /* update time to cancel out callback processing overhead */
1821 time_update (EV_A_ 1e100);
1822
1823 waittime = MAX_BLOCKTIME; 2413 waittime = MAX_BLOCKTIME;
1824 2414
1825 if (timercnt) 2415 if (timercnt)
1826 { 2416 {
1827 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2417 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2424 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1835 if (waittime > to) waittime = to; 2425 if (waittime > to) waittime = to;
1836 } 2426 }
1837#endif 2427#endif
1838 2428
2429 /* don't let timeouts decrease the waittime below timeout_blocktime */
1839 if (expect_false (waittime < timeout_blocktime)) 2430 if (expect_false (waittime < timeout_blocktime))
1840 waittime = timeout_blocktime; 2431 waittime = timeout_blocktime;
1841 2432
1842 sleeptime = waittime - backend_fudge; 2433 /* extra check because io_blocktime is commonly 0 */
1843
1844 if (expect_true (sleeptime > io_blocktime)) 2434 if (expect_false (io_blocktime))
1845 sleeptime = io_blocktime;
1846
1847 if (sleeptime)
1848 { 2435 {
2436 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2437
2438 if (sleeptime > waittime - backend_fudge)
2439 sleeptime = waittime - backend_fudge;
2440
2441 if (expect_true (sleeptime > 0.))
2442 {
1849 ev_sleep (sleeptime); 2443 ev_sleep (sleeptime);
1850 waittime -= sleeptime; 2444 waittime -= sleeptime;
2445 }
1851 } 2446 }
1852 } 2447 }
1853 2448
2449#if EV_FEATURE_API
1854 ++loop_count; 2450 ++loop_count;
2451#endif
2452 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1855 backend_poll (EV_A_ waittime); 2453 backend_poll (EV_A_ waittime);
2454 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1856 2455
1857 /* update ev_rt_now, do magic */ 2456 /* update ev_rt_now, do magic */
1858 time_update (EV_A_ waittime + sleeptime); 2457 time_update (EV_A_ waittime + sleeptime);
1859 } 2458 }
1860 2459
1867#if EV_IDLE_ENABLE 2466#if EV_IDLE_ENABLE
1868 /* queue idle watchers unless other events are pending */ 2467 /* queue idle watchers unless other events are pending */
1869 idle_reify (EV_A); 2468 idle_reify (EV_A);
1870#endif 2469#endif
1871 2470
2471#if EV_CHECK_ENABLE
1872 /* queue check watchers, to be executed first */ 2472 /* queue check watchers, to be executed first */
1873 if (expect_false (checkcnt)) 2473 if (expect_false (checkcnt))
1874 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2474 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2475#endif
1875 2476
1876 call_pending (EV_A); 2477 EV_INVOKE_PENDING;
1877 } 2478 }
1878 while (expect_true ( 2479 while (expect_true (
1879 activecnt 2480 activecnt
1880 && !loop_done 2481 && !loop_done
1881 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2482 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1882 )); 2483 ));
1883 2484
1884 if (loop_done == EVUNLOOP_ONE) 2485 if (loop_done == EVBREAK_ONE)
1885 loop_done = EVUNLOOP_CANCEL; 2486 loop_done = EVBREAK_CANCEL;
1886}
1887 2487
2488#if EV_FEATURE_API
2489 --loop_depth;
2490#endif
2491}
2492
1888void 2493void
1889ev_unloop (EV_P_ int how) 2494ev_break (EV_P_ int how)
1890{ 2495{
1891 loop_done = how; 2496 loop_done = how;
1892} 2497}
1893 2498
2499void
2500ev_ref (EV_P)
2501{
2502 ++activecnt;
2503}
2504
2505void
2506ev_unref (EV_P)
2507{
2508 --activecnt;
2509}
2510
2511void
2512ev_now_update (EV_P)
2513{
2514 time_update (EV_A_ 1e100);
2515}
2516
2517void
2518ev_suspend (EV_P)
2519{
2520 ev_now_update (EV_A);
2521}
2522
2523void
2524ev_resume (EV_P)
2525{
2526 ev_tstamp mn_prev = mn_now;
2527
2528 ev_now_update (EV_A);
2529 timers_reschedule (EV_A_ mn_now - mn_prev);
2530#if EV_PERIODIC_ENABLE
2531 /* TODO: really do this? */
2532 periodics_reschedule (EV_A);
2533#endif
2534}
2535
1894/*****************************************************************************/ 2536/*****************************************************************************/
2537/* singly-linked list management, used when the expected list length is short */
1895 2538
1896void inline_size 2539inline_size void
1897wlist_add (WL *head, WL elem) 2540wlist_add (WL *head, WL elem)
1898{ 2541{
1899 elem->next = *head; 2542 elem->next = *head;
1900 *head = elem; 2543 *head = elem;
1901} 2544}
1902 2545
1903void inline_size 2546inline_size void
1904wlist_del (WL *head, WL elem) 2547wlist_del (WL *head, WL elem)
1905{ 2548{
1906 while (*head) 2549 while (*head)
1907 { 2550 {
1908 if (*head == elem) 2551 if (expect_true (*head == elem))
1909 { 2552 {
1910 *head = elem->next; 2553 *head = elem->next;
1911 return; 2554 break;
1912 } 2555 }
1913 2556
1914 head = &(*head)->next; 2557 head = &(*head)->next;
1915 } 2558 }
1916} 2559}
1917 2560
1918void inline_speed 2561/* internal, faster, version of ev_clear_pending */
2562inline_speed void
1919clear_pending (EV_P_ W w) 2563clear_pending (EV_P_ W w)
1920{ 2564{
1921 if (w->pending) 2565 if (w->pending)
1922 { 2566 {
1923 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2567 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1924 w->pending = 0; 2568 w->pending = 0;
1925 } 2569 }
1926} 2570}
1927 2571
1928int 2572int
1932 int pending = w_->pending; 2576 int pending = w_->pending;
1933 2577
1934 if (expect_true (pending)) 2578 if (expect_true (pending))
1935 { 2579 {
1936 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2580 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2581 p->w = (W)&pending_w;
1937 w_->pending = 0; 2582 w_->pending = 0;
1938 p->w = 0;
1939 return p->events; 2583 return p->events;
1940 } 2584 }
1941 else 2585 else
1942 return 0; 2586 return 0;
1943} 2587}
1944 2588
1945void inline_size 2589inline_size void
1946pri_adjust (EV_P_ W w) 2590pri_adjust (EV_P_ W w)
1947{ 2591{
1948 int pri = w->priority; 2592 int pri = ev_priority (w);
1949 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2593 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1950 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2594 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1951 w->priority = pri; 2595 ev_set_priority (w, pri);
1952} 2596}
1953 2597
1954void inline_speed 2598inline_speed void
1955ev_start (EV_P_ W w, int active) 2599ev_start (EV_P_ W w, int active)
1956{ 2600{
1957 pri_adjust (EV_A_ w); 2601 pri_adjust (EV_A_ w);
1958 w->active = active; 2602 w->active = active;
1959 ev_ref (EV_A); 2603 ev_ref (EV_A);
1960} 2604}
1961 2605
1962void inline_size 2606inline_size void
1963ev_stop (EV_P_ W w) 2607ev_stop (EV_P_ W w)
1964{ 2608{
1965 ev_unref (EV_A); 2609 ev_unref (EV_A);
1966 w->active = 0; 2610 w->active = 0;
1967} 2611}
1974 int fd = w->fd; 2618 int fd = w->fd;
1975 2619
1976 if (expect_false (ev_is_active (w))) 2620 if (expect_false (ev_is_active (w)))
1977 return; 2621 return;
1978 2622
1979 assert (("ev_io_start called with negative fd", fd >= 0)); 2623 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2624 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2625
2626 EV_FREQUENT_CHECK;
1980 2627
1981 ev_start (EV_A_ (W)w, 1); 2628 ev_start (EV_A_ (W)w, 1);
1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2629 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1983 wlist_add (&anfds[fd].head, (WL)w); 2630 wlist_add (&anfds[fd].head, (WL)w);
1984 2631
1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2632 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1986 w->events &= ~EV_IOFDSET; 2633 w->events &= ~EV__IOFDSET;
2634
2635 EV_FREQUENT_CHECK;
1987} 2636}
1988 2637
1989void noinline 2638void noinline
1990ev_io_stop (EV_P_ ev_io *w) 2639ev_io_stop (EV_P_ ev_io *w)
1991{ 2640{
1992 clear_pending (EV_A_ (W)w); 2641 clear_pending (EV_A_ (W)w);
1993 if (expect_false (!ev_is_active (w))) 2642 if (expect_false (!ev_is_active (w)))
1994 return; 2643 return;
1995 2644
1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2645 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2646
2647 EV_FREQUENT_CHECK;
1997 2648
1998 wlist_del (&anfds[w->fd].head, (WL)w); 2649 wlist_del (&anfds[w->fd].head, (WL)w);
1999 ev_stop (EV_A_ (W)w); 2650 ev_stop (EV_A_ (W)w);
2000 2651
2001 fd_change (EV_A_ w->fd, 1); 2652 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2653
2654 EV_FREQUENT_CHECK;
2002} 2655}
2003 2656
2004void noinline 2657void noinline
2005ev_timer_start (EV_P_ ev_timer *w) 2658ev_timer_start (EV_P_ ev_timer *w)
2006{ 2659{
2007 if (expect_false (ev_is_active (w))) 2660 if (expect_false (ev_is_active (w)))
2008 return; 2661 return;
2009 2662
2010 ev_at (w) += mn_now; 2663 ev_at (w) += mn_now;
2011 2664
2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2665 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2013 2666
2667 EV_FREQUENT_CHECK;
2668
2669 ++timercnt;
2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2670 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2671 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2016 ANHE_w (timers [ev_active (w)]) = (WT)w; 2672 ANHE_w (timers [ev_active (w)]) = (WT)w;
2017 ANHE_at_set (timers [ev_active (w)]); 2673 ANHE_at_cache (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w)); 2674 upheap (timers, ev_active (w));
2019 2675
2676 EV_FREQUENT_CHECK;
2677
2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2678 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2021} 2679}
2022 2680
2023void noinline 2681void noinline
2024ev_timer_stop (EV_P_ ev_timer *w) 2682ev_timer_stop (EV_P_ ev_timer *w)
2025{ 2683{
2026 clear_pending (EV_A_ (W)w); 2684 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 2685 if (expect_false (!ev_is_active (w)))
2028 return; 2686 return;
2029 2687
2688 EV_FREQUENT_CHECK;
2689
2030 { 2690 {
2031 int active = ev_active (w); 2691 int active = ev_active (w);
2032 2692
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2693 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034 2694
2695 --timercnt;
2696
2035 if (expect_true (active < timercnt + HEAP0 - 1)) 2697 if (expect_true (active < timercnt + HEAP0))
2036 { 2698 {
2037 timers [active] = timers [timercnt + HEAP0 - 1]; 2699 timers [active] = timers [timercnt + HEAP0];
2038 adjustheap (timers, timercnt, active); 2700 adjustheap (timers, timercnt, active);
2039 } 2701 }
2040
2041 --timercnt;
2042 } 2702 }
2043 2703
2044 ev_at (w) -= mn_now; 2704 ev_at (w) -= mn_now;
2045 2705
2046 ev_stop (EV_A_ (W)w); 2706 ev_stop (EV_A_ (W)w);
2707
2708 EV_FREQUENT_CHECK;
2047} 2709}
2048 2710
2049void noinline 2711void noinline
2050ev_timer_again (EV_P_ ev_timer *w) 2712ev_timer_again (EV_P_ ev_timer *w)
2051{ 2713{
2714 EV_FREQUENT_CHECK;
2715
2052 if (ev_is_active (w)) 2716 if (ev_is_active (w))
2053 { 2717 {
2054 if (w->repeat) 2718 if (w->repeat)
2055 { 2719 {
2056 ev_at (w) = mn_now + w->repeat; 2720 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]); 2721 ANHE_at_cache (timers [ev_active (w)]);
2058 adjustheap (timers, timercnt, ev_active (w)); 2722 adjustheap (timers, timercnt, ev_active (w));
2059 } 2723 }
2060 else 2724 else
2061 ev_timer_stop (EV_A_ w); 2725 ev_timer_stop (EV_A_ w);
2062 } 2726 }
2063 else if (w->repeat) 2727 else if (w->repeat)
2064 { 2728 {
2065 ev_at (w) = w->repeat; 2729 ev_at (w) = w->repeat;
2066 ev_timer_start (EV_A_ w); 2730 ev_timer_start (EV_A_ w);
2067 } 2731 }
2732
2733 EV_FREQUENT_CHECK;
2734}
2735
2736ev_tstamp
2737ev_timer_remaining (EV_P_ ev_timer *w)
2738{
2739 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2068} 2740}
2069 2741
2070#if EV_PERIODIC_ENABLE 2742#if EV_PERIODIC_ENABLE
2071void noinline 2743void noinline
2072ev_periodic_start (EV_P_ ev_periodic *w) 2744ev_periodic_start (EV_P_ ev_periodic *w)
2076 2748
2077 if (w->reschedule_cb) 2749 if (w->reschedule_cb)
2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2750 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2079 else if (w->interval) 2751 else if (w->interval)
2080 { 2752 {
2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2753 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2082 /* this formula differs from the one in periodic_reify because we do not always round up */ 2754 /* this formula differs from the one in periodic_reify because we do not always round up */
2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2755 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2084 } 2756 }
2085 else 2757 else
2086 ev_at (w) = w->offset; 2758 ev_at (w) = w->offset;
2087 2759
2760 EV_FREQUENT_CHECK;
2761
2762 ++periodiccnt;
2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2763 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2764 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2090 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2765 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2766 ANHE_at_cache (periodics [ev_active (w)]);
2091 upheap (periodics, ev_active (w)); 2767 upheap (periodics, ev_active (w));
2092 2768
2769 EV_FREQUENT_CHECK;
2770
2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2771 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2094} 2772}
2095 2773
2096void noinline 2774void noinline
2097ev_periodic_stop (EV_P_ ev_periodic *w) 2775ev_periodic_stop (EV_P_ ev_periodic *w)
2098{ 2776{
2099 clear_pending (EV_A_ (W)w); 2777 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w))) 2778 if (expect_false (!ev_is_active (w)))
2101 return; 2779 return;
2102 2780
2781 EV_FREQUENT_CHECK;
2782
2103 { 2783 {
2104 int active = ev_active (w); 2784 int active = ev_active (w);
2105 2785
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2786 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107 2787
2788 --periodiccnt;
2789
2108 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2790 if (expect_true (active < periodiccnt + HEAP0))
2109 { 2791 {
2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2792 periodics [active] = periodics [periodiccnt + HEAP0];
2111 adjustheap (periodics, periodiccnt, active); 2793 adjustheap (periodics, periodiccnt, active);
2112 } 2794 }
2113
2114 --periodiccnt;
2115 } 2795 }
2116 2796
2117 ev_stop (EV_A_ (W)w); 2797 ev_stop (EV_A_ (W)w);
2798
2799 EV_FREQUENT_CHECK;
2118} 2800}
2119 2801
2120void noinline 2802void noinline
2121ev_periodic_again (EV_P_ ev_periodic *w) 2803ev_periodic_again (EV_P_ ev_periodic *w)
2122{ 2804{
2128 2810
2129#ifndef SA_RESTART 2811#ifndef SA_RESTART
2130# define SA_RESTART 0 2812# define SA_RESTART 0
2131#endif 2813#endif
2132 2814
2815#if EV_SIGNAL_ENABLE
2816
2133void noinline 2817void noinline
2134ev_signal_start (EV_P_ ev_signal *w) 2818ev_signal_start (EV_P_ ev_signal *w)
2135{ 2819{
2136#if EV_MULTIPLICITY
2137 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2138#endif
2139 if (expect_false (ev_is_active (w))) 2820 if (expect_false (ev_is_active (w)))
2140 return; 2821 return;
2141 2822
2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2823 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2143 2824
2144 evpipe_init (EV_A); 2825#if EV_MULTIPLICITY
2826 assert (("libev: a signal must not be attached to two different loops",
2827 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2145 2828
2829 signals [w->signum - 1].loop = EV_A;
2830#endif
2831
2832 EV_FREQUENT_CHECK;
2833
2834#if EV_USE_SIGNALFD
2835 if (sigfd == -2)
2146 { 2836 {
2147#ifndef _WIN32 2837 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2148 sigset_t full, prev; 2838 if (sigfd < 0 && errno == EINVAL)
2149 sigfillset (&full); 2839 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2150 sigprocmask (SIG_SETMASK, &full, &prev);
2151#endif
2152 2840
2153 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2841 if (sigfd >= 0)
2842 {
2843 fd_intern (sigfd); /* doing it twice will not hurt */
2154 2844
2155#ifndef _WIN32 2845 sigemptyset (&sigfd_set);
2156 sigprocmask (SIG_SETMASK, &prev, 0); 2846
2157#endif 2847 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2848 ev_set_priority (&sigfd_w, EV_MAXPRI);
2849 ev_io_start (EV_A_ &sigfd_w);
2850 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2851 }
2158 } 2852 }
2853
2854 if (sigfd >= 0)
2855 {
2856 /* TODO: check .head */
2857 sigaddset (&sigfd_set, w->signum);
2858 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2859
2860 signalfd (sigfd, &sigfd_set, 0);
2861 }
2862#endif
2159 2863
2160 ev_start (EV_A_ (W)w, 1); 2864 ev_start (EV_A_ (W)w, 1);
2161 wlist_add (&signals [w->signum - 1].head, (WL)w); 2865 wlist_add (&signals [w->signum - 1].head, (WL)w);
2162 2866
2163 if (!((WL)w)->next) 2867 if (!((WL)w)->next)
2868# if EV_USE_SIGNALFD
2869 if (sigfd < 0) /*TODO*/
2870# endif
2164 { 2871 {
2165#if _WIN32 2872# ifdef _WIN32
2873 evpipe_init (EV_A);
2874
2166 signal (w->signum, ev_sighandler); 2875 signal (w->signum, ev_sighandler);
2167#else 2876# else
2168 struct sigaction sa; 2877 struct sigaction sa;
2878
2879 evpipe_init (EV_A);
2880
2169 sa.sa_handler = ev_sighandler; 2881 sa.sa_handler = ev_sighandler;
2170 sigfillset (&sa.sa_mask); 2882 sigfillset (&sa.sa_mask);
2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2883 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2172 sigaction (w->signum, &sa, 0); 2884 sigaction (w->signum, &sa, 0);
2885
2886 sigemptyset (&sa.sa_mask);
2887 sigaddset (&sa.sa_mask, w->signum);
2888 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2173#endif 2889#endif
2174 } 2890 }
2891
2892 EV_FREQUENT_CHECK;
2175} 2893}
2176 2894
2177void noinline 2895void noinline
2178ev_signal_stop (EV_P_ ev_signal *w) 2896ev_signal_stop (EV_P_ ev_signal *w)
2179{ 2897{
2180 clear_pending (EV_A_ (W)w); 2898 clear_pending (EV_A_ (W)w);
2181 if (expect_false (!ev_is_active (w))) 2899 if (expect_false (!ev_is_active (w)))
2182 return; 2900 return;
2183 2901
2902 EV_FREQUENT_CHECK;
2903
2184 wlist_del (&signals [w->signum - 1].head, (WL)w); 2904 wlist_del (&signals [w->signum - 1].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 2905 ev_stop (EV_A_ (W)w);
2186 2906
2187 if (!signals [w->signum - 1].head) 2907 if (!signals [w->signum - 1].head)
2908 {
2909#if EV_MULTIPLICITY
2910 signals [w->signum - 1].loop = 0; /* unattach from signal */
2911#endif
2912#if EV_USE_SIGNALFD
2913 if (sigfd >= 0)
2914 {
2915 sigset_t ss;
2916
2917 sigemptyset (&ss);
2918 sigaddset (&ss, w->signum);
2919 sigdelset (&sigfd_set, w->signum);
2920
2921 signalfd (sigfd, &sigfd_set, 0);
2922 sigprocmask (SIG_UNBLOCK, &ss, 0);
2923 }
2924 else
2925#endif
2188 signal (w->signum, SIG_DFL); 2926 signal (w->signum, SIG_DFL);
2927 }
2928
2929 EV_FREQUENT_CHECK;
2189} 2930}
2931
2932#endif
2933
2934#if EV_CHILD_ENABLE
2190 2935
2191void 2936void
2192ev_child_start (EV_P_ ev_child *w) 2937ev_child_start (EV_P_ ev_child *w)
2193{ 2938{
2194#if EV_MULTIPLICITY 2939#if EV_MULTIPLICITY
2195 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2940 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2196#endif 2941#endif
2197 if (expect_false (ev_is_active (w))) 2942 if (expect_false (ev_is_active (w)))
2198 return; 2943 return;
2199 2944
2945 EV_FREQUENT_CHECK;
2946
2200 ev_start (EV_A_ (W)w, 1); 2947 ev_start (EV_A_ (W)w, 1);
2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2948 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2949
2950 EV_FREQUENT_CHECK;
2202} 2951}
2203 2952
2204void 2953void
2205ev_child_stop (EV_P_ ev_child *w) 2954ev_child_stop (EV_P_ ev_child *w)
2206{ 2955{
2207 clear_pending (EV_A_ (W)w); 2956 clear_pending (EV_A_ (W)w);
2208 if (expect_false (!ev_is_active (w))) 2957 if (expect_false (!ev_is_active (w)))
2209 return; 2958 return;
2210 2959
2960 EV_FREQUENT_CHECK;
2961
2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2962 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2212 ev_stop (EV_A_ (W)w); 2963 ev_stop (EV_A_ (W)w);
2964
2965 EV_FREQUENT_CHECK;
2213} 2966}
2967
2968#endif
2214 2969
2215#if EV_STAT_ENABLE 2970#if EV_STAT_ENABLE
2216 2971
2217# ifdef _WIN32 2972# ifdef _WIN32
2218# undef lstat 2973# undef lstat
2219# define lstat(a,b) _stati64 (a,b) 2974# define lstat(a,b) _stati64 (a,b)
2220# endif 2975# endif
2221 2976
2222#define DEF_STAT_INTERVAL 5.0074891 2977#define DEF_STAT_INTERVAL 5.0074891
2978#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2223#define MIN_STAT_INTERVAL 0.1074891 2979#define MIN_STAT_INTERVAL 0.1074891
2224 2980
2225static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2981static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2226 2982
2227#if EV_USE_INOTIFY 2983#if EV_USE_INOTIFY
2228# define EV_INOTIFY_BUFSIZE 8192 2984
2985/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2986# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2229 2987
2230static void noinline 2988static void noinline
2231infy_add (EV_P_ ev_stat *w) 2989infy_add (EV_P_ ev_stat *w)
2232{ 2990{
2233 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2991 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2234 2992
2235 if (w->wd < 0) 2993 if (w->wd >= 0)
2994 {
2995 struct statfs sfs;
2996
2997 /* now local changes will be tracked by inotify, but remote changes won't */
2998 /* unless the filesystem is known to be local, we therefore still poll */
2999 /* also do poll on <2.6.25, but with normal frequency */
3000
3001 if (!fs_2625)
3002 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3003 else if (!statfs (w->path, &sfs)
3004 && (sfs.f_type == 0x1373 /* devfs */
3005 || sfs.f_type == 0xEF53 /* ext2/3 */
3006 || sfs.f_type == 0x3153464a /* jfs */
3007 || sfs.f_type == 0x52654973 /* reiser3 */
3008 || sfs.f_type == 0x01021994 /* tempfs */
3009 || sfs.f_type == 0x58465342 /* xfs */))
3010 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3011 else
3012 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2236 { 3013 }
2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3014 else
3015 {
3016 /* can't use inotify, continue to stat */
3017 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2238 3018
2239 /* monitor some parent directory for speedup hints */ 3019 /* if path is not there, monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3020 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2241 /* but an efficiency issue only */ 3021 /* but an efficiency issue only */
2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3022 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2243 { 3023 {
2244 char path [4096]; 3024 char path [4096];
2245 strcpy (path, w->path); 3025 strcpy (path, w->path);
2249 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3029 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2250 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3030 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2251 3031
2252 char *pend = strrchr (path, '/'); 3032 char *pend = strrchr (path, '/');
2253 3033
2254 if (!pend) 3034 if (!pend || pend == path)
2255 break; /* whoops, no '/', complain to your admin */ 3035 break;
2256 3036
2257 *pend = 0; 3037 *pend = 0;
2258 w->wd = inotify_add_watch (fs_fd, path, mask); 3038 w->wd = inotify_add_watch (fs_fd, path, mask);
2259 } 3039 }
2260 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3040 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2261 } 3041 }
2262 } 3042 }
2263 else
2264 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2265 3043
2266 if (w->wd >= 0) 3044 if (w->wd >= 0)
2267 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3045 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3046
3047 /* now re-arm timer, if required */
3048 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3049 ev_timer_again (EV_A_ &w->timer);
3050 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2268} 3051}
2269 3052
2270static void noinline 3053static void noinline
2271infy_del (EV_P_ ev_stat *w) 3054infy_del (EV_P_ ev_stat *w)
2272{ 3055{
2275 3058
2276 if (wd < 0) 3059 if (wd < 0)
2277 return; 3060 return;
2278 3061
2279 w->wd = -2; 3062 w->wd = -2;
2280 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3063 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2281 wlist_del (&fs_hash [slot].head, (WL)w); 3064 wlist_del (&fs_hash [slot].head, (WL)w);
2282 3065
2283 /* remove this watcher, if others are watching it, they will rearm */ 3066 /* remove this watcher, if others are watching it, they will rearm */
2284 inotify_rm_watch (fs_fd, wd); 3067 inotify_rm_watch (fs_fd, wd);
2285} 3068}
2286 3069
2287static void noinline 3070static void noinline
2288infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3071infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2289{ 3072{
2290 if (slot < 0) 3073 if (slot < 0)
2291 /* overflow, need to check for all hahs slots */ 3074 /* overflow, need to check for all hash slots */
2292 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3075 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2293 infy_wd (EV_A_ slot, wd, ev); 3076 infy_wd (EV_A_ slot, wd, ev);
2294 else 3077 else
2295 { 3078 {
2296 WL w_; 3079 WL w_;
2297 3080
2298 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3081 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2299 { 3082 {
2300 ev_stat *w = (ev_stat *)w_; 3083 ev_stat *w = (ev_stat *)w_;
2301 w_ = w_->next; /* lets us remove this watcher and all before it */ 3084 w_ = w_->next; /* lets us remove this watcher and all before it */
2302 3085
2303 if (w->wd == wd || wd == -1) 3086 if (w->wd == wd || wd == -1)
2304 { 3087 {
2305 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3088 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2306 { 3089 {
3090 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2307 w->wd = -1; 3091 w->wd = -1;
2308 infy_add (EV_A_ w); /* re-add, no matter what */ 3092 infy_add (EV_A_ w); /* re-add, no matter what */
2309 } 3093 }
2310 3094
2311 stat_timer_cb (EV_A_ &w->timer, 0); 3095 stat_timer_cb (EV_A_ &w->timer, 0);
2316 3100
2317static void 3101static void
2318infy_cb (EV_P_ ev_io *w, int revents) 3102infy_cb (EV_P_ ev_io *w, int revents)
2319{ 3103{
2320 char buf [EV_INOTIFY_BUFSIZE]; 3104 char buf [EV_INOTIFY_BUFSIZE];
2321 struct inotify_event *ev = (struct inotify_event *)buf;
2322 int ofs; 3105 int ofs;
2323 int len = read (fs_fd, buf, sizeof (buf)); 3106 int len = read (fs_fd, buf, sizeof (buf));
2324 3107
2325 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3108 for (ofs = 0; ofs < len; )
3109 {
3110 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2326 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3111 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3112 ofs += sizeof (struct inotify_event) + ev->len;
3113 }
2327} 3114}
2328 3115
2329void inline_size 3116inline_size void
3117ev_check_2625 (EV_P)
3118{
3119 /* kernels < 2.6.25 are borked
3120 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3121 */
3122 if (ev_linux_version () < 0x020619)
3123 return;
3124
3125 fs_2625 = 1;
3126}
3127
3128inline_size int
3129infy_newfd (void)
3130{
3131#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3132 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3133 if (fd >= 0)
3134 return fd;
3135#endif
3136 return inotify_init ();
3137}
3138
3139inline_size void
2330infy_init (EV_P) 3140infy_init (EV_P)
2331{ 3141{
2332 if (fs_fd != -2) 3142 if (fs_fd != -2)
2333 return; 3143 return;
2334 3144
3145 fs_fd = -1;
3146
3147 ev_check_2625 (EV_A);
3148
2335 fs_fd = inotify_init (); 3149 fs_fd = infy_newfd ();
2336 3150
2337 if (fs_fd >= 0) 3151 if (fs_fd >= 0)
2338 { 3152 {
3153 fd_intern (fs_fd);
2339 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3154 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2340 ev_set_priority (&fs_w, EV_MAXPRI); 3155 ev_set_priority (&fs_w, EV_MAXPRI);
2341 ev_io_start (EV_A_ &fs_w); 3156 ev_io_start (EV_A_ &fs_w);
3157 ev_unref (EV_A);
2342 } 3158 }
2343} 3159}
2344 3160
2345void inline_size 3161inline_size void
2346infy_fork (EV_P) 3162infy_fork (EV_P)
2347{ 3163{
2348 int slot; 3164 int slot;
2349 3165
2350 if (fs_fd < 0) 3166 if (fs_fd < 0)
2351 return; 3167 return;
2352 3168
3169 ev_ref (EV_A);
3170 ev_io_stop (EV_A_ &fs_w);
2353 close (fs_fd); 3171 close (fs_fd);
2354 fs_fd = inotify_init (); 3172 fs_fd = infy_newfd ();
2355 3173
3174 if (fs_fd >= 0)
3175 {
3176 fd_intern (fs_fd);
3177 ev_io_set (&fs_w, fs_fd, EV_READ);
3178 ev_io_start (EV_A_ &fs_w);
3179 ev_unref (EV_A);
3180 }
3181
2356 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3182 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2357 { 3183 {
2358 WL w_ = fs_hash [slot].head; 3184 WL w_ = fs_hash [slot].head;
2359 fs_hash [slot].head = 0; 3185 fs_hash [slot].head = 0;
2360 3186
2361 while (w_) 3187 while (w_)
2366 w->wd = -1; 3192 w->wd = -1;
2367 3193
2368 if (fs_fd >= 0) 3194 if (fs_fd >= 0)
2369 infy_add (EV_A_ w); /* re-add, no matter what */ 3195 infy_add (EV_A_ w); /* re-add, no matter what */
2370 else 3196 else
3197 {
3198 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3199 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2371 ev_timer_start (EV_A_ &w->timer); 3200 ev_timer_again (EV_A_ &w->timer);
3201 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3202 }
2372 } 3203 }
2373
2374 } 3204 }
2375} 3205}
2376 3206
3207#endif
3208
3209#ifdef _WIN32
3210# define EV_LSTAT(p,b) _stati64 (p, b)
3211#else
3212# define EV_LSTAT(p,b) lstat (p, b)
2377#endif 3213#endif
2378 3214
2379void 3215void
2380ev_stat_stat (EV_P_ ev_stat *w) 3216ev_stat_stat (EV_P_ ev_stat *w)
2381{ 3217{
2388static void noinline 3224static void noinline
2389stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3225stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2390{ 3226{
2391 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3227 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2392 3228
2393 /* we copy this here each the time so that */ 3229 ev_statdata prev = w->attr;
2394 /* prev has the old value when the callback gets invoked */
2395 w->prev = w->attr;
2396 ev_stat_stat (EV_A_ w); 3230 ev_stat_stat (EV_A_ w);
2397 3231
2398 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3232 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2399 if ( 3233 if (
2400 w->prev.st_dev != w->attr.st_dev 3234 prev.st_dev != w->attr.st_dev
2401 || w->prev.st_ino != w->attr.st_ino 3235 || prev.st_ino != w->attr.st_ino
2402 || w->prev.st_mode != w->attr.st_mode 3236 || prev.st_mode != w->attr.st_mode
2403 || w->prev.st_nlink != w->attr.st_nlink 3237 || prev.st_nlink != w->attr.st_nlink
2404 || w->prev.st_uid != w->attr.st_uid 3238 || prev.st_uid != w->attr.st_uid
2405 || w->prev.st_gid != w->attr.st_gid 3239 || prev.st_gid != w->attr.st_gid
2406 || w->prev.st_rdev != w->attr.st_rdev 3240 || prev.st_rdev != w->attr.st_rdev
2407 || w->prev.st_size != w->attr.st_size 3241 || prev.st_size != w->attr.st_size
2408 || w->prev.st_atime != w->attr.st_atime 3242 || prev.st_atime != w->attr.st_atime
2409 || w->prev.st_mtime != w->attr.st_mtime 3243 || prev.st_mtime != w->attr.st_mtime
2410 || w->prev.st_ctime != w->attr.st_ctime 3244 || prev.st_ctime != w->attr.st_ctime
2411 ) { 3245 ) {
3246 /* we only update w->prev on actual differences */
3247 /* in case we test more often than invoke the callback, */
3248 /* to ensure that prev is always different to attr */
3249 w->prev = prev;
3250
2412 #if EV_USE_INOTIFY 3251 #if EV_USE_INOTIFY
3252 if (fs_fd >= 0)
3253 {
2413 infy_del (EV_A_ w); 3254 infy_del (EV_A_ w);
2414 infy_add (EV_A_ w); 3255 infy_add (EV_A_ w);
2415 ev_stat_stat (EV_A_ w); /* avoid race... */ 3256 ev_stat_stat (EV_A_ w); /* avoid race... */
3257 }
2416 #endif 3258 #endif
2417 3259
2418 ev_feed_event (EV_A_ w, EV_STAT); 3260 ev_feed_event (EV_A_ w, EV_STAT);
2419 } 3261 }
2420} 3262}
2423ev_stat_start (EV_P_ ev_stat *w) 3265ev_stat_start (EV_P_ ev_stat *w)
2424{ 3266{
2425 if (expect_false (ev_is_active (w))) 3267 if (expect_false (ev_is_active (w)))
2426 return; 3268 return;
2427 3269
2428 /* since we use memcmp, we need to clear any padding data etc. */
2429 memset (&w->prev, 0, sizeof (ev_statdata));
2430 memset (&w->attr, 0, sizeof (ev_statdata));
2431
2432 ev_stat_stat (EV_A_ w); 3270 ev_stat_stat (EV_A_ w);
2433 3271
3272 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2434 if (w->interval < MIN_STAT_INTERVAL) 3273 w->interval = MIN_STAT_INTERVAL;
2435 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2436 3274
2437 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3275 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2438 ev_set_priority (&w->timer, ev_priority (w)); 3276 ev_set_priority (&w->timer, ev_priority (w));
2439 3277
2440#if EV_USE_INOTIFY 3278#if EV_USE_INOTIFY
2441 infy_init (EV_A); 3279 infy_init (EV_A);
2442 3280
2443 if (fs_fd >= 0) 3281 if (fs_fd >= 0)
2444 infy_add (EV_A_ w); 3282 infy_add (EV_A_ w);
2445 else 3283 else
2446#endif 3284#endif
3285 {
2447 ev_timer_start (EV_A_ &w->timer); 3286 ev_timer_again (EV_A_ &w->timer);
3287 ev_unref (EV_A);
3288 }
2448 3289
2449 ev_start (EV_A_ (W)w, 1); 3290 ev_start (EV_A_ (W)w, 1);
3291
3292 EV_FREQUENT_CHECK;
2450} 3293}
2451 3294
2452void 3295void
2453ev_stat_stop (EV_P_ ev_stat *w) 3296ev_stat_stop (EV_P_ ev_stat *w)
2454{ 3297{
2455 clear_pending (EV_A_ (W)w); 3298 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 3299 if (expect_false (!ev_is_active (w)))
2457 return; 3300 return;
2458 3301
3302 EV_FREQUENT_CHECK;
3303
2459#if EV_USE_INOTIFY 3304#if EV_USE_INOTIFY
2460 infy_del (EV_A_ w); 3305 infy_del (EV_A_ w);
2461#endif 3306#endif
3307
3308 if (ev_is_active (&w->timer))
3309 {
3310 ev_ref (EV_A);
2462 ev_timer_stop (EV_A_ &w->timer); 3311 ev_timer_stop (EV_A_ &w->timer);
3312 }
2463 3313
2464 ev_stop (EV_A_ (W)w); 3314 ev_stop (EV_A_ (W)w);
3315
3316 EV_FREQUENT_CHECK;
2465} 3317}
2466#endif 3318#endif
2467 3319
2468#if EV_IDLE_ENABLE 3320#if EV_IDLE_ENABLE
2469void 3321void
2471{ 3323{
2472 if (expect_false (ev_is_active (w))) 3324 if (expect_false (ev_is_active (w)))
2473 return; 3325 return;
2474 3326
2475 pri_adjust (EV_A_ (W)w); 3327 pri_adjust (EV_A_ (W)w);
3328
3329 EV_FREQUENT_CHECK;
2476 3330
2477 { 3331 {
2478 int active = ++idlecnt [ABSPRI (w)]; 3332 int active = ++idlecnt [ABSPRI (w)];
2479 3333
2480 ++idleall; 3334 ++idleall;
2481 ev_start (EV_A_ (W)w, active); 3335 ev_start (EV_A_ (W)w, active);
2482 3336
2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3337 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2484 idles [ABSPRI (w)][active - 1] = w; 3338 idles [ABSPRI (w)][active - 1] = w;
2485 } 3339 }
3340
3341 EV_FREQUENT_CHECK;
2486} 3342}
2487 3343
2488void 3344void
2489ev_idle_stop (EV_P_ ev_idle *w) 3345ev_idle_stop (EV_P_ ev_idle *w)
2490{ 3346{
2491 clear_pending (EV_A_ (W)w); 3347 clear_pending (EV_A_ (W)w);
2492 if (expect_false (!ev_is_active (w))) 3348 if (expect_false (!ev_is_active (w)))
2493 return; 3349 return;
2494 3350
3351 EV_FREQUENT_CHECK;
3352
2495 { 3353 {
2496 int active = ev_active (w); 3354 int active = ev_active (w);
2497 3355
2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3356 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3357 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500 3358
2501 ev_stop (EV_A_ (W)w); 3359 ev_stop (EV_A_ (W)w);
2502 --idleall; 3360 --idleall;
2503 } 3361 }
2504}
2505#endif
2506 3362
3363 EV_FREQUENT_CHECK;
3364}
3365#endif
3366
3367#if EV_PREPARE_ENABLE
2507void 3368void
2508ev_prepare_start (EV_P_ ev_prepare *w) 3369ev_prepare_start (EV_P_ ev_prepare *w)
2509{ 3370{
2510 if (expect_false (ev_is_active (w))) 3371 if (expect_false (ev_is_active (w)))
2511 return; 3372 return;
3373
3374 EV_FREQUENT_CHECK;
2512 3375
2513 ev_start (EV_A_ (W)w, ++preparecnt); 3376 ev_start (EV_A_ (W)w, ++preparecnt);
2514 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3377 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2515 prepares [preparecnt - 1] = w; 3378 prepares [preparecnt - 1] = w;
3379
3380 EV_FREQUENT_CHECK;
2516} 3381}
2517 3382
2518void 3383void
2519ev_prepare_stop (EV_P_ ev_prepare *w) 3384ev_prepare_stop (EV_P_ ev_prepare *w)
2520{ 3385{
2521 clear_pending (EV_A_ (W)w); 3386 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 3387 if (expect_false (!ev_is_active (w)))
2523 return; 3388 return;
2524 3389
3390 EV_FREQUENT_CHECK;
3391
2525 { 3392 {
2526 int active = ev_active (w); 3393 int active = ev_active (w);
2527 3394
2528 prepares [active - 1] = prepares [--preparecnt]; 3395 prepares [active - 1] = prepares [--preparecnt];
2529 ev_active (prepares [active - 1]) = active; 3396 ev_active (prepares [active - 1]) = active;
2530 } 3397 }
2531 3398
2532 ev_stop (EV_A_ (W)w); 3399 ev_stop (EV_A_ (W)w);
2533}
2534 3400
3401 EV_FREQUENT_CHECK;
3402}
3403#endif
3404
3405#if EV_CHECK_ENABLE
2535void 3406void
2536ev_check_start (EV_P_ ev_check *w) 3407ev_check_start (EV_P_ ev_check *w)
2537{ 3408{
2538 if (expect_false (ev_is_active (w))) 3409 if (expect_false (ev_is_active (w)))
2539 return; 3410 return;
3411
3412 EV_FREQUENT_CHECK;
2540 3413
2541 ev_start (EV_A_ (W)w, ++checkcnt); 3414 ev_start (EV_A_ (W)w, ++checkcnt);
2542 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3415 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2543 checks [checkcnt - 1] = w; 3416 checks [checkcnt - 1] = w;
3417
3418 EV_FREQUENT_CHECK;
2544} 3419}
2545 3420
2546void 3421void
2547ev_check_stop (EV_P_ ev_check *w) 3422ev_check_stop (EV_P_ ev_check *w)
2548{ 3423{
2549 clear_pending (EV_A_ (W)w); 3424 clear_pending (EV_A_ (W)w);
2550 if (expect_false (!ev_is_active (w))) 3425 if (expect_false (!ev_is_active (w)))
2551 return; 3426 return;
2552 3427
3428 EV_FREQUENT_CHECK;
3429
2553 { 3430 {
2554 int active = ev_active (w); 3431 int active = ev_active (w);
2555 3432
2556 checks [active - 1] = checks [--checkcnt]; 3433 checks [active - 1] = checks [--checkcnt];
2557 ev_active (checks [active - 1]) = active; 3434 ev_active (checks [active - 1]) = active;
2558 } 3435 }
2559 3436
2560 ev_stop (EV_A_ (W)w); 3437 ev_stop (EV_A_ (W)w);
3438
3439 EV_FREQUENT_CHECK;
2561} 3440}
3441#endif
2562 3442
2563#if EV_EMBED_ENABLE 3443#if EV_EMBED_ENABLE
2564void noinline 3444void noinline
2565ev_embed_sweep (EV_P_ ev_embed *w) 3445ev_embed_sweep (EV_P_ ev_embed *w)
2566{ 3446{
2567 ev_loop (w->other, EVLOOP_NONBLOCK); 3447 ev_run (w->other, EVRUN_NOWAIT);
2568} 3448}
2569 3449
2570static void 3450static void
2571embed_io_cb (EV_P_ ev_io *io, int revents) 3451embed_io_cb (EV_P_ ev_io *io, int revents)
2572{ 3452{
2573 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3453 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2574 3454
2575 if (ev_cb (w)) 3455 if (ev_cb (w))
2576 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3456 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2577 else 3457 else
2578 ev_loop (w->other, EVLOOP_NONBLOCK); 3458 ev_run (w->other, EVRUN_NOWAIT);
2579} 3459}
2580 3460
2581static void 3461static void
2582embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3462embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2583{ 3463{
2584 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3464 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2585 3465
2586 { 3466 {
2587 struct ev_loop *loop = w->other; 3467 EV_P = w->other;
2588 3468
2589 while (fdchangecnt) 3469 while (fdchangecnt)
2590 { 3470 {
2591 fd_reify (EV_A); 3471 fd_reify (EV_A);
2592 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3472 ev_run (EV_A_ EVRUN_NOWAIT);
2593 } 3473 }
2594 } 3474 }
3475}
3476
3477static void
3478embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3479{
3480 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3481
3482 ev_embed_stop (EV_A_ w);
3483
3484 {
3485 EV_P = w->other;
3486
3487 ev_loop_fork (EV_A);
3488 ev_run (EV_A_ EVRUN_NOWAIT);
3489 }
3490
3491 ev_embed_start (EV_A_ w);
2595} 3492}
2596 3493
2597#if 0 3494#if 0
2598static void 3495static void
2599embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3496embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2607{ 3504{
2608 if (expect_false (ev_is_active (w))) 3505 if (expect_false (ev_is_active (w)))
2609 return; 3506 return;
2610 3507
2611 { 3508 {
2612 struct ev_loop *loop = w->other; 3509 EV_P = w->other;
2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3510 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3511 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2615 } 3512 }
3513
3514 EV_FREQUENT_CHECK;
2616 3515
2617 ev_set_priority (&w->io, ev_priority (w)); 3516 ev_set_priority (&w->io, ev_priority (w));
2618 ev_io_start (EV_A_ &w->io); 3517 ev_io_start (EV_A_ &w->io);
2619 3518
2620 ev_prepare_init (&w->prepare, embed_prepare_cb); 3519 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI); 3520 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare); 3521 ev_prepare_start (EV_A_ &w->prepare);
2623 3522
3523 ev_fork_init (&w->fork, embed_fork_cb);
3524 ev_fork_start (EV_A_ &w->fork);
3525
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3526 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625 3527
2626 ev_start (EV_A_ (W)w, 1); 3528 ev_start (EV_A_ (W)w, 1);
3529
3530 EV_FREQUENT_CHECK;
2627} 3531}
2628 3532
2629void 3533void
2630ev_embed_stop (EV_P_ ev_embed *w) 3534ev_embed_stop (EV_P_ ev_embed *w)
2631{ 3535{
2632 clear_pending (EV_A_ (W)w); 3536 clear_pending (EV_A_ (W)w);
2633 if (expect_false (!ev_is_active (w))) 3537 if (expect_false (!ev_is_active (w)))
2634 return; 3538 return;
2635 3539
3540 EV_FREQUENT_CHECK;
3541
2636 ev_io_stop (EV_A_ &w->io); 3542 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare); 3543 ev_prepare_stop (EV_A_ &w->prepare);
3544 ev_fork_stop (EV_A_ &w->fork);
2638 3545
2639 ev_stop (EV_A_ (W)w); 3546 ev_stop (EV_A_ (W)w);
3547
3548 EV_FREQUENT_CHECK;
2640} 3549}
2641#endif 3550#endif
2642 3551
2643#if EV_FORK_ENABLE 3552#if EV_FORK_ENABLE
2644void 3553void
2645ev_fork_start (EV_P_ ev_fork *w) 3554ev_fork_start (EV_P_ ev_fork *w)
2646{ 3555{
2647 if (expect_false (ev_is_active (w))) 3556 if (expect_false (ev_is_active (w)))
2648 return; 3557 return;
3558
3559 EV_FREQUENT_CHECK;
2649 3560
2650 ev_start (EV_A_ (W)w, ++forkcnt); 3561 ev_start (EV_A_ (W)w, ++forkcnt);
2651 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3562 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2652 forks [forkcnt - 1] = w; 3563 forks [forkcnt - 1] = w;
3564
3565 EV_FREQUENT_CHECK;
2653} 3566}
2654 3567
2655void 3568void
2656ev_fork_stop (EV_P_ ev_fork *w) 3569ev_fork_stop (EV_P_ ev_fork *w)
2657{ 3570{
2658 clear_pending (EV_A_ (W)w); 3571 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w))) 3572 if (expect_false (!ev_is_active (w)))
2660 return; 3573 return;
2661 3574
3575 EV_FREQUENT_CHECK;
3576
2662 { 3577 {
2663 int active = ev_active (w); 3578 int active = ev_active (w);
2664 3579
2665 forks [active - 1] = forks [--forkcnt]; 3580 forks [active - 1] = forks [--forkcnt];
2666 ev_active (forks [active - 1]) = active; 3581 ev_active (forks [active - 1]) = active;
2667 } 3582 }
2668 3583
2669 ev_stop (EV_A_ (W)w); 3584 ev_stop (EV_A_ (W)w);
2670}
2671#endif
2672 3585
3586 EV_FREQUENT_CHECK;
3587}
3588#endif
3589
2673#if EV_ASYNC_ENABLE 3590#if EV_CLEANUP_ENABLE
2674void 3591void
2675ev_async_start (EV_P_ ev_async *w) 3592ev_cleanup_start (EV_P_ ev_cleanup *w)
2676{ 3593{
2677 if (expect_false (ev_is_active (w))) 3594 if (expect_false (ev_is_active (w)))
2678 return; 3595 return;
2679 3596
3597 EV_FREQUENT_CHECK;
3598
3599 ev_start (EV_A_ (W)w, ++cleanupcnt);
3600 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3601 cleanups [cleanupcnt - 1] = w;
3602
3603 /* cleanup watchers should never keep a refcount on the loop */
3604 ev_unref (EV_A);
3605 EV_FREQUENT_CHECK;
3606}
3607
3608void
3609ev_cleanup_stop (EV_P_ ev_cleanup *w)
3610{
3611 clear_pending (EV_A_ (W)w);
3612 if (expect_false (!ev_is_active (w)))
3613 return;
3614
3615 EV_FREQUENT_CHECK;
3616 ev_ref (EV_A);
3617
3618 {
3619 int active = ev_active (w);
3620
3621 cleanups [active - 1] = cleanups [--cleanupcnt];
3622 ev_active (cleanups [active - 1]) = active;
3623 }
3624
3625 ev_stop (EV_A_ (W)w);
3626
3627 EV_FREQUENT_CHECK;
3628}
3629#endif
3630
3631#if EV_ASYNC_ENABLE
3632void
3633ev_async_start (EV_P_ ev_async *w)
3634{
3635 if (expect_false (ev_is_active (w)))
3636 return;
3637
3638 w->sent = 0;
3639
2680 evpipe_init (EV_A); 3640 evpipe_init (EV_A);
3641
3642 EV_FREQUENT_CHECK;
2681 3643
2682 ev_start (EV_A_ (W)w, ++asynccnt); 3644 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3645 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w; 3646 asyncs [asynccnt - 1] = w;
3647
3648 EV_FREQUENT_CHECK;
2685} 3649}
2686 3650
2687void 3651void
2688ev_async_stop (EV_P_ ev_async *w) 3652ev_async_stop (EV_P_ ev_async *w)
2689{ 3653{
2690 clear_pending (EV_A_ (W)w); 3654 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w))) 3655 if (expect_false (!ev_is_active (w)))
2692 return; 3656 return;
2693 3657
3658 EV_FREQUENT_CHECK;
3659
2694 { 3660 {
2695 int active = ev_active (w); 3661 int active = ev_active (w);
2696 3662
2697 asyncs [active - 1] = asyncs [--asynccnt]; 3663 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active; 3664 ev_active (asyncs [active - 1]) = active;
2699 } 3665 }
2700 3666
2701 ev_stop (EV_A_ (W)w); 3667 ev_stop (EV_A_ (W)w);
3668
3669 EV_FREQUENT_CHECK;
2702} 3670}
2703 3671
2704void 3672void
2705ev_async_send (EV_P_ ev_async *w) 3673ev_async_send (EV_P_ ev_async *w)
2706{ 3674{
2707 w->sent = 1; 3675 w->sent = 1;
2708 evpipe_write (EV_A_ &gotasync); 3676 evpipe_write (EV_A_ &async_pending);
2709} 3677}
2710#endif 3678#endif
2711 3679
2712/*****************************************************************************/ 3680/*****************************************************************************/
2713 3681
2723once_cb (EV_P_ struct ev_once *once, int revents) 3691once_cb (EV_P_ struct ev_once *once, int revents)
2724{ 3692{
2725 void (*cb)(int revents, void *arg) = once->cb; 3693 void (*cb)(int revents, void *arg) = once->cb;
2726 void *arg = once->arg; 3694 void *arg = once->arg;
2727 3695
2728 ev_io_stop (EV_A_ &once->io); 3696 ev_io_stop (EV_A_ &once->io);
2729 ev_timer_stop (EV_A_ &once->to); 3697 ev_timer_stop (EV_A_ &once->to);
2730 ev_free (once); 3698 ev_free (once);
2731 3699
2732 cb (revents, arg); 3700 cb (revents, arg);
2733} 3701}
2734 3702
2735static void 3703static void
2736once_cb_io (EV_P_ ev_io *w, int revents) 3704once_cb_io (EV_P_ ev_io *w, int revents)
2737{ 3705{
2738 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3706 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3707
3708 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2739} 3709}
2740 3710
2741static void 3711static void
2742once_cb_to (EV_P_ ev_timer *w, int revents) 3712once_cb_to (EV_P_ ev_timer *w, int revents)
2743{ 3713{
2744 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3714 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3715
3716 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2745} 3717}
2746 3718
2747void 3719void
2748ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3720ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2749{ 3721{
2750 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3722 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2751 3723
2752 if (expect_false (!once)) 3724 if (expect_false (!once))
2753 { 3725 {
2754 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3726 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2755 return; 3727 return;
2756 } 3728 }
2757 3729
2758 once->cb = cb; 3730 once->cb = cb;
2759 once->arg = arg; 3731 once->arg = arg;
2771 ev_timer_set (&once->to, timeout, 0.); 3743 ev_timer_set (&once->to, timeout, 0.);
2772 ev_timer_start (EV_A_ &once->to); 3744 ev_timer_start (EV_A_ &once->to);
2773 } 3745 }
2774} 3746}
2775 3747
3748/*****************************************************************************/
3749
3750#if EV_WALK_ENABLE
3751void
3752ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3753{
3754 int i, j;
3755 ev_watcher_list *wl, *wn;
3756
3757 if (types & (EV_IO | EV_EMBED))
3758 for (i = 0; i < anfdmax; ++i)
3759 for (wl = anfds [i].head; wl; )
3760 {
3761 wn = wl->next;
3762
3763#if EV_EMBED_ENABLE
3764 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3765 {
3766 if (types & EV_EMBED)
3767 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3768 }
3769 else
3770#endif
3771#if EV_USE_INOTIFY
3772 if (ev_cb ((ev_io *)wl) == infy_cb)
3773 ;
3774 else
3775#endif
3776 if ((ev_io *)wl != &pipe_w)
3777 if (types & EV_IO)
3778 cb (EV_A_ EV_IO, wl);
3779
3780 wl = wn;
3781 }
3782
3783 if (types & (EV_TIMER | EV_STAT))
3784 for (i = timercnt + HEAP0; i-- > HEAP0; )
3785#if EV_STAT_ENABLE
3786 /*TODO: timer is not always active*/
3787 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3788 {
3789 if (types & EV_STAT)
3790 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3791 }
3792 else
3793#endif
3794 if (types & EV_TIMER)
3795 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3796
3797#if EV_PERIODIC_ENABLE
3798 if (types & EV_PERIODIC)
3799 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3800 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3801#endif
3802
3803#if EV_IDLE_ENABLE
3804 if (types & EV_IDLE)
3805 for (j = NUMPRI; i--; )
3806 for (i = idlecnt [j]; i--; )
3807 cb (EV_A_ EV_IDLE, idles [j][i]);
3808#endif
3809
3810#if EV_FORK_ENABLE
3811 if (types & EV_FORK)
3812 for (i = forkcnt; i--; )
3813 if (ev_cb (forks [i]) != embed_fork_cb)
3814 cb (EV_A_ EV_FORK, forks [i]);
3815#endif
3816
3817#if EV_ASYNC_ENABLE
3818 if (types & EV_ASYNC)
3819 for (i = asynccnt; i--; )
3820 cb (EV_A_ EV_ASYNC, asyncs [i]);
3821#endif
3822
3823#if EV_PREPARE_ENABLE
3824 if (types & EV_PREPARE)
3825 for (i = preparecnt; i--; )
3826# if EV_EMBED_ENABLE
3827 if (ev_cb (prepares [i]) != embed_prepare_cb)
3828# endif
3829 cb (EV_A_ EV_PREPARE, prepares [i]);
3830#endif
3831
3832#if EV_CHECK_ENABLE
3833 if (types & EV_CHECK)
3834 for (i = checkcnt; i--; )
3835 cb (EV_A_ EV_CHECK, checks [i]);
3836#endif
3837
3838#if EV_SIGNAL_ENABLE
3839 if (types & EV_SIGNAL)
3840 for (i = 0; i < EV_NSIG - 1; ++i)
3841 for (wl = signals [i].head; wl; )
3842 {
3843 wn = wl->next;
3844 cb (EV_A_ EV_SIGNAL, wl);
3845 wl = wn;
3846 }
3847#endif
3848
3849#if EV_CHILD_ENABLE
3850 if (types & EV_CHILD)
3851 for (i = (EV_PID_HASHSIZE); i--; )
3852 for (wl = childs [i]; wl; )
3853 {
3854 wn = wl->next;
3855 cb (EV_A_ EV_CHILD, wl);
3856 wl = wn;
3857 }
3858#endif
3859/* EV_STAT 0x00001000 /* stat data changed */
3860/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3861}
3862#endif
3863
2776#if EV_MULTIPLICITY 3864#if EV_MULTIPLICITY
2777 #include "ev_wrap.h" 3865 #include "ev_wrap.h"
2778#endif 3866#endif
2779 3867
2780#ifdef __cplusplus 3868EV_CPP(})
2781}
2782#endif
2783 3869

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines