ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC vs.
Revision 1.372 by root, Wed Feb 16 08:02:50 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
52# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
55# endif 65# endif
56# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
58# endif 68# endif
59# else 69# else
60# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
62# endif 72# endif
63# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
65# endif 75# endif
66# endif 76# endif
67 77
78# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
71# else 82# else
83# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
74# endif 94# endif
75 95
96# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 99# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 100# else
101# undef EV_USE_POLL
88# define EV_USE_POLL 0 102# define EV_USE_POLL 0
89# endif
90# endif 103# endif
91 104
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
95# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
98# endif 112# endif
99 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
106# endif 121# endif
107 122
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
111# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
114# endif 130# endif
115 131
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
122# endif 139# endif
123 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 142# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 143# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
130# endif 148# endif
131 149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
132#endif 159#endif
133 160
134#include <math.h> 161#include <math.h>
135#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
136#include <fcntl.h> 164#include <fcntl.h>
137#include <stddef.h> 165#include <stddef.h>
138 166
139#include <stdio.h> 167#include <stdio.h>
140 168
141#include <assert.h> 169#include <assert.h>
142#include <errno.h> 170#include <errno.h>
143#include <sys/types.h> 171#include <sys/types.h>
144#include <time.h> 172#include <time.h>
173#include <limits.h>
145 174
146#include <signal.h> 175#include <signal.h>
147 176
148#ifdef EV_H 177#ifdef EV_H
149# include EV_H 178# include EV_H
150#else 179#else
151# include "ev.h" 180# include "ev.h"
152#endif 181#endif
182
183EV_CPP(extern "C" {)
153 184
154#ifndef _WIN32 185#ifndef _WIN32
155# include <sys/time.h> 186# include <sys/time.h>
156# include <sys/wait.h> 187# include <sys/wait.h>
157# include <unistd.h> 188# include <unistd.h>
158#else 189#else
190# include <io.h>
159# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 192# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
163# endif 195# endif
196# undef EV_AVOID_STDIO
164#endif 197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
165 206
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 207/* this block tries to deduce configuration from header-defined symbols and defaults */
167 208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
244
168#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
169# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
170#endif 251#endif
171 252
172#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 255#endif
175 256
176#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
177# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
262# endif
178#endif 263#endif
179 264
180#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 267#endif
183 268
184#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
185# ifdef _WIN32 270# ifdef _WIN32
186# define EV_USE_POLL 0 271# define EV_USE_POLL 0
187# else 272# else
188# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 274# endif
190#endif 275#endif
191 276
192#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 280# else
196# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
197# endif 282# endif
198#endif 283#endif
199 284
205# define EV_USE_PORT 0 290# define EV_USE_PORT 0
206#endif 291#endif
207 292
208#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 295# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 296# else
212# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
213# endif 298# endif
214#endif 299#endif
215 300
216#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 303#endif
223 304
224#ifndef EV_INOTIFY_HASHSIZE 305#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 307#endif
231 308
232#ifndef EV_USE_EVENTFD 309#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 311# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 312# else
236# define EV_USE_EVENTFD 0 313# define EV_USE_EVENTFD 0
237# endif 314# endif
238#endif 315#endif
239 316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
241 364
242#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
245#endif 368#endif
253# undef EV_USE_INOTIFY 376# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 377# define EV_USE_INOTIFY 0
255#endif 378#endif
256 379
257#if !EV_USE_NANOSLEEP 380#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 381/* hp-ux has it in sys/time.h, which we unconditionally include above */
382# if !defined(_WIN32) && !defined(__hpux)
259# include <sys/select.h> 383# include <sys/select.h>
260# endif 384# endif
261#endif 385#endif
262 386
263#if EV_USE_INOTIFY 387#if EV_USE_INOTIFY
388# include <sys/statfs.h>
264# include <sys/inotify.h> 389# include <sys/inotify.h>
390/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
391# ifndef IN_DONT_FOLLOW
392# undef EV_USE_INOTIFY
393# define EV_USE_INOTIFY 0
394# endif
265#endif 395#endif
266 396
267#if EV_SELECT_IS_WINSOCKET 397#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 398# include <winsock.h>
269#endif 399#endif
270 400
271#if EV_USE_EVENTFD 401#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 402/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 403# include <stdint.h>
274# ifdef __cplusplus 404# ifndef EFD_NONBLOCK
275extern "C" { 405# define EFD_NONBLOCK O_NONBLOCK
276# endif 406# endif
277int eventfd (unsigned int initval, int flags); 407# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 408# ifdef O_CLOEXEC
279} 409# define EFD_CLOEXEC O_CLOEXEC
410# else
411# define EFD_CLOEXEC 02000000
412# endif
280# endif 413# endif
414EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
415#endif
416
417#if EV_USE_SIGNALFD
418/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
419# include <stdint.h>
420# ifndef SFD_NONBLOCK
421# define SFD_NONBLOCK O_NONBLOCK
422# endif
423# ifndef SFD_CLOEXEC
424# ifdef O_CLOEXEC
425# define SFD_CLOEXEC O_CLOEXEC
426# else
427# define SFD_CLOEXEC 02000000
428# endif
429# endif
430EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
281#endif 437#endif
282 438
283/**/ 439/**/
440
441#if EV_VERIFY >= 3
442# define EV_FREQUENT_CHECK ev_verify (EV_A)
443#else
444# define EV_FREQUENT_CHECK do { } while (0)
445#endif
284 446
285/* 447/*
286 * This is used to avoid floating point rounding problems. 448 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 449 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 450 * to ensure progress, time-wise, even when rounding
292 */ 454 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 455#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294 456
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 457#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 458#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 459
460#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
461#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
298 462
299#if __GNUC__ >= 4 463#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value)) 464# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 465# define noinline __attribute__ ((noinline))
302#else 466#else
309 473
310#define expect_false(expr) expect ((expr) != 0, 0) 474#define expect_false(expr) expect ((expr) != 0, 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 475#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline 476#define inline_size static inline
313 477
314#if EV_MINIMAL 478#if EV_FEATURE_CODE
479# define inline_speed static inline
480#else
315# define inline_speed static noinline 481# define inline_speed static noinline
482#endif
483
484#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
485
486#if EV_MINPRI == EV_MAXPRI
487# define ABSPRI(w) (((W)w), 0)
316#else 488#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 489# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
490#endif
322 491
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 492#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 493#define EMPTY2(a,b) /* used to suppress some warnings */
325 494
326typedef ev_watcher *W; 495typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 497typedef ev_watcher_time *WT;
329 498
330#define ev_active(w) ((W)(w))->active 499#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 500#define ev_at(w) ((WT)(w))->at
332 501
502#if EV_USE_REALTIME
503/* sig_atomic_t is used to avoid per-thread variables or locking but still */
504/* giving it a reasonably high chance of working on typical architectures */
505static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
506#endif
507
333#if EV_USE_MONOTONIC 508#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 509static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
510#endif
511
512#ifndef EV_FD_TO_WIN32_HANDLE
513# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
514#endif
515#ifndef EV_WIN32_HANDLE_TO_FD
516# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
517#endif
518#ifndef EV_WIN32_CLOSE_FD
519# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 520#endif
338 521
339#ifdef _WIN32 522#ifdef _WIN32
340# include "ev_win32.c" 523# include "ev_win32.c"
341#endif 524#endif
342 525
343/*****************************************************************************/ 526/*****************************************************************************/
344 527
528#ifdef __linux
529# include <sys/utsname.h>
530#endif
531
532static unsigned int noinline
533ev_linux_version (void)
534{
535#ifdef __linux
536 unsigned int v = 0;
537 struct utsname buf;
538 int i;
539 char *p = buf.release;
540
541 if (uname (&buf))
542 return 0;
543
544 for (i = 3+1; --i; )
545 {
546 unsigned int c = 0;
547
548 for (;;)
549 {
550 if (*p >= '0' && *p <= '9')
551 c = c * 10 + *p++ - '0';
552 else
553 {
554 p += *p == '.';
555 break;
556 }
557 }
558
559 v = (v << 8) | c;
560 }
561
562 return v;
563#else
564 return 0;
565#endif
566}
567
568/*****************************************************************************/
569
570#if EV_AVOID_STDIO
571static void noinline
572ev_printerr (const char *msg)
573{
574 write (STDERR_FILENO, msg, strlen (msg));
575}
576#endif
577
345static void (*syserr_cb)(const char *msg); 578static void (*syserr_cb)(const char *msg);
346 579
347void 580void
348ev_set_syserr_cb (void (*cb)(const char *msg)) 581ev_set_syserr_cb (void (*cb)(const char *msg))
349{ 582{
350 syserr_cb = cb; 583 syserr_cb = cb;
351} 584}
352 585
353static void noinline 586static void noinline
354syserr (const char *msg) 587ev_syserr (const char *msg)
355{ 588{
356 if (!msg) 589 if (!msg)
357 msg = "(libev) system error"; 590 msg = "(libev) system error";
358 591
359 if (syserr_cb) 592 if (syserr_cb)
360 syserr_cb (msg); 593 syserr_cb (msg);
361 else 594 else
362 { 595 {
596#if EV_AVOID_STDIO
597 ev_printerr (msg);
598 ev_printerr (": ");
599 ev_printerr (strerror (errno));
600 ev_printerr ("\n");
601#else
363 perror (msg); 602 perror (msg);
603#endif
364 abort (); 604 abort ();
365 } 605 }
366} 606}
367 607
368static void * 608static void *
369ev_realloc_emul (void *ptr, long size) 609ev_realloc_emul (void *ptr, long size)
370{ 610{
611#if __GLIBC__
612 return realloc (ptr, size);
613#else
371 /* some systems, notably openbsd and darwin, fail to properly 614 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 615 * implement realloc (x, 0) (as required by both ansi c-89 and
373 * the single unix specification, so work around them here. 616 * the single unix specification, so work around them here.
374 */ 617 */
375 618
376 if (size) 619 if (size)
377 return realloc (ptr, size); 620 return realloc (ptr, size);
378 621
379 free (ptr); 622 free (ptr);
380 return 0; 623 return 0;
624#endif
381} 625}
382 626
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 627static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384 628
385void 629void
393{ 637{
394 ptr = alloc (ptr, size); 638 ptr = alloc (ptr, size);
395 639
396 if (!ptr && size) 640 if (!ptr && size)
397 { 641 {
642#if EV_AVOID_STDIO
643 ev_printerr ("(libev) memory allocation failed, aborting.\n");
644#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 645 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
646#endif
399 abort (); 647 abort ();
400 } 648 }
401 649
402 return ptr; 650 return ptr;
403} 651}
405#define ev_malloc(size) ev_realloc (0, (size)) 653#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 654#define ev_free(ptr) ev_realloc ((ptr), 0)
407 655
408/*****************************************************************************/ 656/*****************************************************************************/
409 657
658/* set in reify when reification needed */
659#define EV_ANFD_REIFY 1
660
661/* file descriptor info structure */
410typedef struct 662typedef struct
411{ 663{
412 WL head; 664 WL head;
413 unsigned char events; 665 unsigned char events; /* the events watched for */
666 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
667 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 668 unsigned char unused;
669#if EV_USE_EPOLL
670 unsigned int egen; /* generation counter to counter epoll bugs */
671#endif
415#if EV_SELECT_IS_WINSOCKET 672#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
416 SOCKET handle; 673 SOCKET handle;
417#endif 674#endif
675#if EV_USE_IOCP
676 OVERLAPPED or, ow;
677#endif
418} ANFD; 678} ANFD;
419 679
680/* stores the pending event set for a given watcher */
420typedef struct 681typedef struct
421{ 682{
422 W w; 683 W w;
423 int events; 684 int events; /* the pending event set for the given watcher */
424} ANPENDING; 685} ANPENDING;
425 686
426#if EV_USE_INOTIFY 687#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */ 688/* hash table entry per inotify-id */
428typedef struct 689typedef struct
430 WL head; 691 WL head;
431} ANFS; 692} ANFS;
432#endif 693#endif
433 694
434/* Heap Entry */ 695/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT 696#if EV_HEAP_CACHE_AT
697 /* a heap element */
437 typedef struct { 698 typedef struct {
699 ev_tstamp at;
438 WT w; 700 WT w;
439 ev_tstamp at;
440 } ANHE; 701 } ANHE;
441 702
442 #define ANHE_w(he) (he).w /* access watcher, read-write */ 703 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */ 704 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 705 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
445#else 706#else
707 /* a heap element */
446 typedef WT ANHE; 708 typedef WT ANHE;
447 709
448 #define ANHE_w(he) (he) 710 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at 711 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he) 712 #define ANHE_at_cache(he)
451#endif 713#endif
452 714
453#if EV_MULTIPLICITY 715#if EV_MULTIPLICITY
454 716
455 struct ev_loop 717 struct ev_loop
474 736
475 static int ev_default_loop_ptr; 737 static int ev_default_loop_ptr;
476 738
477#endif 739#endif
478 740
741#if EV_FEATURE_API
742# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
743# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
744# define EV_INVOKE_PENDING invoke_cb (EV_A)
745#else
746# define EV_RELEASE_CB (void)0
747# define EV_ACQUIRE_CB (void)0
748# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
749#endif
750
751#define EVBREAK_RECURSE 0x80
752
479/*****************************************************************************/ 753/*****************************************************************************/
480 754
755#ifndef EV_HAVE_EV_TIME
481ev_tstamp 756ev_tstamp
482ev_time (void) 757ev_time (void)
483{ 758{
484#if EV_USE_REALTIME 759#if EV_USE_REALTIME
760 if (expect_true (have_realtime))
761 {
485 struct timespec ts; 762 struct timespec ts;
486 clock_gettime (CLOCK_REALTIME, &ts); 763 clock_gettime (CLOCK_REALTIME, &ts);
487 return ts.tv_sec + ts.tv_nsec * 1e-9; 764 return ts.tv_sec + ts.tv_nsec * 1e-9;
488#else 765 }
766#endif
767
489 struct timeval tv; 768 struct timeval tv;
490 gettimeofday (&tv, 0); 769 gettimeofday (&tv, 0);
491 return tv.tv_sec + tv.tv_usec * 1e-6; 770 return tv.tv_sec + tv.tv_usec * 1e-6;
492#endif
493} 771}
772#endif
494 773
495ev_tstamp inline_size 774inline_size ev_tstamp
496get_clock (void) 775get_clock (void)
497{ 776{
498#if EV_USE_MONOTONIC 777#if EV_USE_MONOTONIC
499 if (expect_true (have_monotonic)) 778 if (expect_true (have_monotonic))
500 { 779 {
521 if (delay > 0.) 800 if (delay > 0.)
522 { 801 {
523#if EV_USE_NANOSLEEP 802#if EV_USE_NANOSLEEP
524 struct timespec ts; 803 struct timespec ts;
525 804
526 ts.tv_sec = (time_t)delay; 805 EV_TS_SET (ts, delay);
527 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
528
529 nanosleep (&ts, 0); 806 nanosleep (&ts, 0);
530#elif defined(_WIN32) 807#elif defined(_WIN32)
531 Sleep ((unsigned long)(delay * 1e3)); 808 Sleep ((unsigned long)(delay * 1e3));
532#else 809#else
533 struct timeval tv; 810 struct timeval tv;
534 811
535 tv.tv_sec = (time_t)delay; 812 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 813 /* something not guaranteed by newer posix versions, but guaranteed */
537 814 /* by older ones */
815 EV_TV_SET (tv, delay);
538 select (0, 0, 0, 0, &tv); 816 select (0, 0, 0, 0, &tv);
539#endif 817#endif
540 } 818 }
541} 819}
542 820
821inline_speed int
822ev_timeout_to_ms (ev_tstamp timeout)
823{
824 int ms = timeout * 1000. + .999999;
825
826 return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
827}
828
543/*****************************************************************************/ 829/*****************************************************************************/
544 830
545#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 831#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
546 832
547int inline_size 833/* find a suitable new size for the given array, */
834/* hopefully by rounding to a nice-to-malloc size */
835inline_size int
548array_nextsize (int elem, int cur, int cnt) 836array_nextsize (int elem, int cur, int cnt)
549{ 837{
550 int ncur = cur + 1; 838 int ncur = cur + 1;
551 839
552 do 840 do
569array_realloc (int elem, void *base, int *cur, int cnt) 857array_realloc (int elem, void *base, int *cur, int cnt)
570{ 858{
571 *cur = array_nextsize (elem, *cur, cnt); 859 *cur = array_nextsize (elem, *cur, cnt);
572 return ev_realloc (base, elem * *cur); 860 return ev_realloc (base, elem * *cur);
573} 861}
862
863#define array_init_zero(base,count) \
864 memset ((void *)(base), 0, sizeof (*(base)) * (count))
574 865
575#define array_needsize(type,base,cur,cnt,init) \ 866#define array_needsize(type,base,cur,cnt,init) \
576 if (expect_false ((cnt) > (cur))) \ 867 if (expect_false ((cnt) > (cur))) \
577 { \ 868 { \
578 int ocur_ = (cur); \ 869 int ocur_ = (cur); \
590 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 881 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
591 } 882 }
592#endif 883#endif
593 884
594#define array_free(stem, idx) \ 885#define array_free(stem, idx) \
595 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 886 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
596 887
597/*****************************************************************************/ 888/*****************************************************************************/
889
890/* dummy callback for pending events */
891static void noinline
892pendingcb (EV_P_ ev_prepare *w, int revents)
893{
894}
598 895
599void noinline 896void noinline
600ev_feed_event (EV_P_ void *w, int revents) 897ev_feed_event (EV_P_ void *w, int revents)
601{ 898{
602 W w_ = (W)w; 899 W w_ = (W)w;
611 pendings [pri][w_->pending - 1].w = w_; 908 pendings [pri][w_->pending - 1].w = w_;
612 pendings [pri][w_->pending - 1].events = revents; 909 pendings [pri][w_->pending - 1].events = revents;
613 } 910 }
614} 911}
615 912
616void inline_speed 913inline_speed void
914feed_reverse (EV_P_ W w)
915{
916 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
917 rfeeds [rfeedcnt++] = w;
918}
919
920inline_size void
921feed_reverse_done (EV_P_ int revents)
922{
923 do
924 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
925 while (rfeedcnt);
926}
927
928inline_speed void
617queue_events (EV_P_ W *events, int eventcnt, int type) 929queue_events (EV_P_ W *events, int eventcnt, int type)
618{ 930{
619 int i; 931 int i;
620 932
621 for (i = 0; i < eventcnt; ++i) 933 for (i = 0; i < eventcnt; ++i)
622 ev_feed_event (EV_A_ events [i], type); 934 ev_feed_event (EV_A_ events [i], type);
623} 935}
624 936
625/*****************************************************************************/ 937/*****************************************************************************/
626 938
627void inline_size 939inline_speed void
628anfds_init (ANFD *base, int count)
629{
630 while (count--)
631 {
632 base->head = 0;
633 base->events = EV_NONE;
634 base->reify = 0;
635
636 ++base;
637 }
638}
639
640void inline_speed
641fd_event (EV_P_ int fd, int revents) 940fd_event_nocheck (EV_P_ int fd, int revents)
642{ 941{
643 ANFD *anfd = anfds + fd; 942 ANFD *anfd = anfds + fd;
644 ev_io *w; 943 ev_io *w;
645 944
646 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 945 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
650 if (ev) 949 if (ev)
651 ev_feed_event (EV_A_ (W)w, ev); 950 ev_feed_event (EV_A_ (W)w, ev);
652 } 951 }
653} 952}
654 953
954/* do not submit kernel events for fds that have reify set */
955/* because that means they changed while we were polling for new events */
956inline_speed void
957fd_event (EV_P_ int fd, int revents)
958{
959 ANFD *anfd = anfds + fd;
960
961 if (expect_true (!anfd->reify))
962 fd_event_nocheck (EV_A_ fd, revents);
963}
964
655void 965void
656ev_feed_fd_event (EV_P_ int fd, int revents) 966ev_feed_fd_event (EV_P_ int fd, int revents)
657{ 967{
658 if (fd >= 0 && fd < anfdmax) 968 if (fd >= 0 && fd < anfdmax)
659 fd_event (EV_A_ fd, revents); 969 fd_event_nocheck (EV_A_ fd, revents);
660} 970}
661 971
662void inline_size 972/* make sure the external fd watch events are in-sync */
973/* with the kernel/libev internal state */
974inline_size void
663fd_reify (EV_P) 975fd_reify (EV_P)
664{ 976{
665 int i; 977 int i;
978
979#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
980 for (i = 0; i < fdchangecnt; ++i)
981 {
982 int fd = fdchanges [i];
983 ANFD *anfd = anfds + fd;
984
985 if (anfd->reify & EV__IOFDSET)
986 {
987 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
988
989 if (handle != anfd->handle)
990 {
991 unsigned long arg;
992
993 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
994
995 /* handle changed, but fd didn't - we need to do it in two steps */
996 backend_modify (EV_A_ fd, anfd->events, 0);
997 anfd->events = 0;
998 anfd->handle = handle;
999 }
1000 }
1001 }
1002#endif
666 1003
667 for (i = 0; i < fdchangecnt; ++i) 1004 for (i = 0; i < fdchangecnt; ++i)
668 { 1005 {
669 int fd = fdchanges [i]; 1006 int fd = fdchanges [i];
670 ANFD *anfd = anfds + fd; 1007 ANFD *anfd = anfds + fd;
671 ev_io *w; 1008 ev_io *w;
672 1009
673 unsigned char events = 0; 1010 unsigned char o_events = anfd->events;
1011 unsigned char o_reify = anfd->reify;
674 1012
675 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1013 anfd->reify = 0;
676 events |= (unsigned char)w->events;
677 1014
678#if EV_SELECT_IS_WINSOCKET 1015 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
679 if (events)
680 { 1016 {
681 unsigned long argp; 1017 anfd->events = 0;
682 #ifdef EV_FD_TO_WIN32_HANDLE 1018
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1019 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
684 #else 1020 anfd->events |= (unsigned char)w->events;
685 anfd->handle = _get_osfhandle (fd); 1021
686 #endif 1022 if (o_events != anfd->events)
687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1023 o_reify = EV__IOFDSET; /* actually |= */
688 } 1024 }
689#endif
690 1025
691 { 1026 if (o_reify & EV__IOFDSET)
692 unsigned char o_events = anfd->events;
693 unsigned char o_reify = anfd->reify;
694
695 anfd->reify = 0;
696 anfd->events = events;
697
698 if (o_events != events || o_reify & EV_IOFDSET)
699 backend_modify (EV_A_ fd, o_events, events); 1027 backend_modify (EV_A_ fd, o_events, anfd->events);
700 }
701 } 1028 }
702 1029
703 fdchangecnt = 0; 1030 fdchangecnt = 0;
704} 1031}
705 1032
706void inline_size 1033/* something about the given fd changed */
1034inline_size void
707fd_change (EV_P_ int fd, int flags) 1035fd_change (EV_P_ int fd, int flags)
708{ 1036{
709 unsigned char reify = anfds [fd].reify; 1037 unsigned char reify = anfds [fd].reify;
710 anfds [fd].reify |= flags; 1038 anfds [fd].reify |= flags;
711 1039
715 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1043 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
716 fdchanges [fdchangecnt - 1] = fd; 1044 fdchanges [fdchangecnt - 1] = fd;
717 } 1045 }
718} 1046}
719 1047
720void inline_speed 1048/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1049inline_speed void
721fd_kill (EV_P_ int fd) 1050fd_kill (EV_P_ int fd)
722{ 1051{
723 ev_io *w; 1052 ev_io *w;
724 1053
725 while ((w = (ev_io *)anfds [fd].head)) 1054 while ((w = (ev_io *)anfds [fd].head))
727 ev_io_stop (EV_A_ w); 1056 ev_io_stop (EV_A_ w);
728 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1057 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
729 } 1058 }
730} 1059}
731 1060
732int inline_size 1061/* check whether the given fd is actually valid, for error recovery */
1062inline_size int
733fd_valid (int fd) 1063fd_valid (int fd)
734{ 1064{
735#ifdef _WIN32 1065#ifdef _WIN32
736 return _get_osfhandle (fd) != -1; 1066 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
737#else 1067#else
738 return fcntl (fd, F_GETFD) != -1; 1068 return fcntl (fd, F_GETFD) != -1;
739#endif 1069#endif
740} 1070}
741 1071
745{ 1075{
746 int fd; 1076 int fd;
747 1077
748 for (fd = 0; fd < anfdmax; ++fd) 1078 for (fd = 0; fd < anfdmax; ++fd)
749 if (anfds [fd].events) 1079 if (anfds [fd].events)
750 if (!fd_valid (fd) == -1 && errno == EBADF) 1080 if (!fd_valid (fd) && errno == EBADF)
751 fd_kill (EV_A_ fd); 1081 fd_kill (EV_A_ fd);
752} 1082}
753 1083
754/* called on ENOMEM in select/poll to kill some fds and retry */ 1084/* called on ENOMEM in select/poll to kill some fds and retry */
755static void noinline 1085static void noinline
759 1089
760 for (fd = anfdmax; fd--; ) 1090 for (fd = anfdmax; fd--; )
761 if (anfds [fd].events) 1091 if (anfds [fd].events)
762 { 1092 {
763 fd_kill (EV_A_ fd); 1093 fd_kill (EV_A_ fd);
764 return; 1094 break;
765 } 1095 }
766} 1096}
767 1097
768/* usually called after fork if backend needs to re-arm all fds from scratch */ 1098/* usually called after fork if backend needs to re-arm all fds from scratch */
769static void noinline 1099static void noinline
773 1103
774 for (fd = 0; fd < anfdmax; ++fd) 1104 for (fd = 0; fd < anfdmax; ++fd)
775 if (anfds [fd].events) 1105 if (anfds [fd].events)
776 { 1106 {
777 anfds [fd].events = 0; 1107 anfds [fd].events = 0;
1108 anfds [fd].emask = 0;
778 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1109 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
779 } 1110 }
780} 1111}
781 1112
1113/* used to prepare libev internal fd's */
1114/* this is not fork-safe */
1115inline_speed void
1116fd_intern (int fd)
1117{
1118#ifdef _WIN32
1119 unsigned long arg = 1;
1120 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1121#else
1122 fcntl (fd, F_SETFD, FD_CLOEXEC);
1123 fcntl (fd, F_SETFL, O_NONBLOCK);
1124#endif
1125}
1126
782/*****************************************************************************/ 1127/*****************************************************************************/
783 1128
784/* 1129/*
785 * the heap functions want a real array index. array index 0 uis guaranteed to not 1130 * the heap functions want a real array index. array index 0 is guaranteed to not
786 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1131 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
787 * the branching factor of the d-tree. 1132 * the branching factor of the d-tree.
788 */ 1133 */
789 1134
790/* 1135/*
791 * at the moment we allow libev the luxury of two heaps, 1136 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 1137 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient. 1138 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers. 1139 * the difference is about 5% with 50000+ watchers.
795 */ 1140 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP 1141#if EV_USE_4HEAP
798 1142
799#define DHEAP 4 1143#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1144#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801 1145#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
802/* towards the root */ 1146#define UPHEAP_DONE(p,k) ((p) == (k))
803void inline_speed
804upheap (ANHE *heap, int k)
805{
806 ANHE he = heap [k];
807
808 for (;;)
809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
815 heap [k] = heap [p];
816 ev_active (ANHE_w (heap [k])) = k;
817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823 1147
824/* away from the root */ 1148/* away from the root */
825void inline_speed 1149inline_speed void
826downheap (ANHE *heap, int N, int k) 1150downheap (ANHE *heap, int N, int k)
827{ 1151{
828 ANHE he = heap [k]; 1152 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0; 1153 ANHE *E = heap + N + HEAP0;
830 1154
831 for (;;) 1155 for (;;)
832 { 1156 {
833 ev_tstamp minat; 1157 ev_tstamp minat;
834 ANHE *minpos; 1158 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1159 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
836 1160
837 // find minimum child 1161 /* find minimum child */
838 if (expect_true (pos + DHEAP - 1 < E)) 1162 if (expect_true (pos + DHEAP - 1 < E))
839 { 1163 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1164 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1165 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1166 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 1167 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 } 1168 }
845 else if (pos < E) 1169 else if (pos < E)
846 { 1170 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1171 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1172 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
853 break; 1177 break;
854 1178
855 if (ANHE_at (he) <= minat) 1179 if (ANHE_at (he) <= minat)
856 break; 1180 break;
857 1181
1182 heap [k] = *minpos;
858 ev_active (ANHE_w (*minpos)) = k; 1183 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860 1184
861 k = minpos - heap; 1185 k = minpos - heap;
862 } 1186 }
863 1187
1188 heap [k] = he;
864 ev_active (ANHE_w (he)) = k; 1189 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866} 1190}
867 1191
868#else // 4HEAP 1192#else /* 4HEAP */
869 1193
870#define HEAP0 1 1194#define HEAP0 1
1195#define HPARENT(k) ((k) >> 1)
1196#define UPHEAP_DONE(p,k) (!(p))
871 1197
872/* towards the root */ 1198/* away from the root */
873void inline_speed 1199inline_speed void
874upheap (ANHE *heap, int k) 1200downheap (ANHE *heap, int N, int k)
875{ 1201{
876 ANHE he = heap [k]; 1202 ANHE he = heap [k];
877 1203
878 for (;;) 1204 for (;;)
879 { 1205 {
880 int p = k >> 1; 1206 int c = k << 1;
881 1207
882 /* maybe we could use a dummy element at heap [0]? */ 1208 if (c >= N + HEAP0)
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break; 1209 break;
885 1210
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
889 }
890
891 heap [k] = w;
892 ev_active (ANHE_w (heap [k])) = k;
893}
894
895/* away from the root */
896void inline_speed
897downheap (ANHE *heap, int N, int k)
898{
899 ANHE he = heap [k];
900
901 for (;;)
902 {
903 int c = k << 1;
904
905 if (c > N)
906 break;
907
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1211 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0; 1212 ? 1 : 0;
910 1213
911 if (w->at <= ANHE_at (heap [c])) 1214 if (ANHE_at (he) <= ANHE_at (heap [c]))
912 break; 1215 break;
913 1216
914 heap [k] = heap [c]; 1217 heap [k] = heap [c];
915 ev_active (ANHE_w (heap [k])) = k; 1218 ev_active (ANHE_w (heap [k])) = k;
916 1219
920 heap [k] = he; 1223 heap [k] = he;
921 ev_active (ANHE_w (he)) = k; 1224 ev_active (ANHE_w (he)) = k;
922} 1225}
923#endif 1226#endif
924 1227
925void inline_size 1228/* towards the root */
1229inline_speed void
1230upheap (ANHE *heap, int k)
1231{
1232 ANHE he = heap [k];
1233
1234 for (;;)
1235 {
1236 int p = HPARENT (k);
1237
1238 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1239 break;
1240
1241 heap [k] = heap [p];
1242 ev_active (ANHE_w (heap [k])) = k;
1243 k = p;
1244 }
1245
1246 heap [k] = he;
1247 ev_active (ANHE_w (he)) = k;
1248}
1249
1250/* move an element suitably so it is in a correct place */
1251inline_size void
926adjustheap (ANHE *heap, int N, int k) 1252adjustheap (ANHE *heap, int N, int k)
927{ 1253{
1254 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
928 upheap (heap, k); 1255 upheap (heap, k);
1256 else
929 downheap (heap, N, k); 1257 downheap (heap, N, k);
1258}
1259
1260/* rebuild the heap: this function is used only once and executed rarely */
1261inline_size void
1262reheap (ANHE *heap, int N)
1263{
1264 int i;
1265
1266 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1267 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1268 for (i = 0; i < N; ++i)
1269 upheap (heap, i + HEAP0);
930} 1270}
931 1271
932/*****************************************************************************/ 1272/*****************************************************************************/
933 1273
1274/* associate signal watchers to a signal signal */
934typedef struct 1275typedef struct
935{ 1276{
1277 EV_ATOMIC_T pending;
1278#if EV_MULTIPLICITY
1279 EV_P;
1280#endif
936 WL head; 1281 WL head;
937 EV_ATOMIC_T gotsig;
938} ANSIG; 1282} ANSIG;
939 1283
940static ANSIG *signals; 1284static ANSIG signals [EV_NSIG - 1];
941static int signalmax;
942
943static EV_ATOMIC_T gotsig;
944
945void inline_size
946signals_init (ANSIG *base, int count)
947{
948 while (count--)
949 {
950 base->head = 0;
951 base->gotsig = 0;
952
953 ++base;
954 }
955}
956 1285
957/*****************************************************************************/ 1286/*****************************************************************************/
958 1287
959void inline_speed 1288#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
960fd_intern (int fd)
961{
962#ifdef _WIN32
963 int arg = 1;
964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
965#else
966 fcntl (fd, F_SETFD, FD_CLOEXEC);
967 fcntl (fd, F_SETFL, O_NONBLOCK);
968#endif
969}
970 1289
971static void noinline 1290static void noinline
972evpipe_init (EV_P) 1291evpipe_init (EV_P)
973{ 1292{
974 if (!ev_is_active (&pipeev)) 1293 if (!ev_is_active (&pipe_w))
975 { 1294 {
976#if EV_USE_EVENTFD 1295# if EV_USE_EVENTFD
1296 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1297 if (evfd < 0 && errno == EINVAL)
977 if ((evfd = eventfd (0, 0)) >= 0) 1298 evfd = eventfd (0, 0);
1299
1300 if (evfd >= 0)
978 { 1301 {
979 evpipe [0] = -1; 1302 evpipe [0] = -1;
980 fd_intern (evfd); 1303 fd_intern (evfd); /* doing it twice doesn't hurt */
981 ev_io_set (&pipeev, evfd, EV_READ); 1304 ev_io_set (&pipe_w, evfd, EV_READ);
982 } 1305 }
983 else 1306 else
984#endif 1307# endif
985 { 1308 {
986 while (pipe (evpipe)) 1309 while (pipe (evpipe))
987 syserr ("(libev) error creating signal/async pipe"); 1310 ev_syserr ("(libev) error creating signal/async pipe");
988 1311
989 fd_intern (evpipe [0]); 1312 fd_intern (evpipe [0]);
990 fd_intern (evpipe [1]); 1313 fd_intern (evpipe [1]);
991 ev_io_set (&pipeev, evpipe [0], EV_READ); 1314 ev_io_set (&pipe_w, evpipe [0], EV_READ);
992 } 1315 }
993 1316
994 ev_io_start (EV_A_ &pipeev); 1317 ev_io_start (EV_A_ &pipe_w);
995 ev_unref (EV_A); /* watcher should not keep loop alive */ 1318 ev_unref (EV_A); /* watcher should not keep loop alive */
996 } 1319 }
997} 1320}
998 1321
999void inline_size 1322inline_size void
1000evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1323evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1001{ 1324{
1002 if (!*flag) 1325 if (!*flag)
1003 { 1326 {
1004 int old_errno = errno; /* save errno because write might clobber it */ 1327 int old_errno = errno; /* save errno because write might clobber it */
1328 char dummy;
1005 1329
1006 *flag = 1; 1330 *flag = 1;
1007 1331
1008#if EV_USE_EVENTFD 1332#if EV_USE_EVENTFD
1009 if (evfd >= 0) 1333 if (evfd >= 0)
1011 uint64_t counter = 1; 1335 uint64_t counter = 1;
1012 write (evfd, &counter, sizeof (uint64_t)); 1336 write (evfd, &counter, sizeof (uint64_t));
1013 } 1337 }
1014 else 1338 else
1015#endif 1339#endif
1340 /* win32 people keep sending patches that change this write() to send() */
1341 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1342 /* so when you think this write should be a send instead, please find out */
1343 /* where your send() is from - it's definitely not the microsoft send, and */
1344 /* tell me. thank you. */
1016 write (evpipe [1], &old_errno, 1); 1345 write (evpipe [1], &dummy, 1);
1017 1346
1018 errno = old_errno; 1347 errno = old_errno;
1019 } 1348 }
1020} 1349}
1021 1350
1351/* called whenever the libev signal pipe */
1352/* got some events (signal, async) */
1022static void 1353static void
1023pipecb (EV_P_ ev_io *iow, int revents) 1354pipecb (EV_P_ ev_io *iow, int revents)
1024{ 1355{
1356 int i;
1357
1025#if EV_USE_EVENTFD 1358#if EV_USE_EVENTFD
1026 if (evfd >= 0) 1359 if (evfd >= 0)
1027 { 1360 {
1028 uint64_t counter; 1361 uint64_t counter;
1029 read (evfd, &counter, sizeof (uint64_t)); 1362 read (evfd, &counter, sizeof (uint64_t));
1030 } 1363 }
1031 else 1364 else
1032#endif 1365#endif
1033 { 1366 {
1034 char dummy; 1367 char dummy;
1368 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1035 read (evpipe [0], &dummy, 1); 1369 read (evpipe [0], &dummy, 1);
1036 } 1370 }
1037 1371
1038 if (gotsig && ev_is_default_loop (EV_A)) 1372#if EV_SIGNAL_ENABLE
1039 { 1373 if (sig_pending)
1040 int signum; 1374 {
1041 gotsig = 0; 1375 sig_pending = 0;
1042 1376
1043 for (signum = signalmax; signum--; ) 1377 for (i = EV_NSIG - 1; i--; )
1044 if (signals [signum].gotsig) 1378 if (expect_false (signals [i].pending))
1045 ev_feed_signal_event (EV_A_ signum + 1); 1379 ev_feed_signal_event (EV_A_ i + 1);
1046 } 1380 }
1381#endif
1047 1382
1048#if EV_ASYNC_ENABLE 1383#if EV_ASYNC_ENABLE
1049 if (gotasync) 1384 if (async_pending)
1050 { 1385 {
1051 int i; 1386 async_pending = 0;
1052 gotasync = 0;
1053 1387
1054 for (i = asynccnt; i--; ) 1388 for (i = asynccnt; i--; )
1055 if (asyncs [i]->sent) 1389 if (asyncs [i]->sent)
1056 { 1390 {
1057 asyncs [i]->sent = 0; 1391 asyncs [i]->sent = 0;
1061#endif 1395#endif
1062} 1396}
1063 1397
1064/*****************************************************************************/ 1398/*****************************************************************************/
1065 1399
1400void
1401ev_feed_signal (int signum)
1402{
1403#if EV_MULTIPLICITY
1404 EV_P = signals [signum - 1].loop;
1405
1406 if (!EV_A)
1407 return;
1408#endif
1409
1410 signals [signum - 1].pending = 1;
1411 evpipe_write (EV_A_ &sig_pending);
1412}
1413
1066static void 1414static void
1067ev_sighandler (int signum) 1415ev_sighandler (int signum)
1068{ 1416{
1069#if EV_MULTIPLICITY
1070 struct ev_loop *loop = &default_loop_struct;
1071#endif
1072
1073#if _WIN32 1417#ifdef _WIN32
1074 signal (signum, ev_sighandler); 1418 signal (signum, ev_sighandler);
1075#endif 1419#endif
1076 1420
1077 signals [signum - 1].gotsig = 1; 1421 ev_feed_signal (signum);
1078 evpipe_write (EV_A_ &gotsig);
1079} 1422}
1080 1423
1081void noinline 1424void noinline
1082ev_feed_signal_event (EV_P_ int signum) 1425ev_feed_signal_event (EV_P_ int signum)
1083{ 1426{
1084 WL w; 1427 WL w;
1085 1428
1429 if (expect_false (signum <= 0 || signum > EV_NSIG))
1430 return;
1431
1432 --signum;
1433
1086#if EV_MULTIPLICITY 1434#if EV_MULTIPLICITY
1087 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1435 /* it is permissible to try to feed a signal to the wrong loop */
1088#endif 1436 /* or, likely more useful, feeding a signal nobody is waiting for */
1089 1437
1090 --signum; 1438 if (expect_false (signals [signum].loop != EV_A))
1091
1092 if (signum < 0 || signum >= signalmax)
1093 return; 1439 return;
1440#endif
1094 1441
1095 signals [signum].gotsig = 0; 1442 signals [signum].pending = 0;
1096 1443
1097 for (w = signals [signum].head; w; w = w->next) 1444 for (w = signals [signum].head; w; w = w->next)
1098 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1445 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1099} 1446}
1100 1447
1448#if EV_USE_SIGNALFD
1449static void
1450sigfdcb (EV_P_ ev_io *iow, int revents)
1451{
1452 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1453
1454 for (;;)
1455 {
1456 ssize_t res = read (sigfd, si, sizeof (si));
1457
1458 /* not ISO-C, as res might be -1, but works with SuS */
1459 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1460 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1461
1462 if (res < (ssize_t)sizeof (si))
1463 break;
1464 }
1465}
1466#endif
1467
1468#endif
1469
1101/*****************************************************************************/ 1470/*****************************************************************************/
1102 1471
1472#if EV_CHILD_ENABLE
1103static WL childs [EV_PID_HASHSIZE]; 1473static WL childs [EV_PID_HASHSIZE];
1104
1105#ifndef _WIN32
1106 1474
1107static ev_signal childev; 1475static ev_signal childev;
1108 1476
1109#ifndef WIFCONTINUED 1477#ifndef WIFCONTINUED
1110# define WIFCONTINUED(status) 0 1478# define WIFCONTINUED(status) 0
1111#endif 1479#endif
1112 1480
1113void inline_speed 1481/* handle a single child status event */
1482inline_speed void
1114child_reap (EV_P_ int chain, int pid, int status) 1483child_reap (EV_P_ int chain, int pid, int status)
1115{ 1484{
1116 ev_child *w; 1485 ev_child *w;
1117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1486 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1118 1487
1119 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1488 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1120 { 1489 {
1121 if ((w->pid == pid || !w->pid) 1490 if ((w->pid == pid || !w->pid)
1122 && (!traced || (w->flags & 1))) 1491 && (!traced || (w->flags & 1)))
1123 { 1492 {
1124 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1493 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1131 1500
1132#ifndef WCONTINUED 1501#ifndef WCONTINUED
1133# define WCONTINUED 0 1502# define WCONTINUED 0
1134#endif 1503#endif
1135 1504
1505/* called on sigchld etc., calls waitpid */
1136static void 1506static void
1137childcb (EV_P_ ev_signal *sw, int revents) 1507childcb (EV_P_ ev_signal *sw, int revents)
1138{ 1508{
1139 int pid, status; 1509 int pid, status;
1140 1510
1148 /* make sure we are called again until all children have been reaped */ 1518 /* make sure we are called again until all children have been reaped */
1149 /* we need to do it this way so that the callback gets called before we continue */ 1519 /* we need to do it this way so that the callback gets called before we continue */
1150 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1520 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1151 1521
1152 child_reap (EV_A_ pid, pid, status); 1522 child_reap (EV_A_ pid, pid, status);
1153 if (EV_PID_HASHSIZE > 1) 1523 if ((EV_PID_HASHSIZE) > 1)
1154 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1524 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1155} 1525}
1156 1526
1157#endif 1527#endif
1158 1528
1159/*****************************************************************************/ 1529/*****************************************************************************/
1160 1530
1531#if EV_USE_IOCP
1532# include "ev_iocp.c"
1533#endif
1161#if EV_USE_PORT 1534#if EV_USE_PORT
1162# include "ev_port.c" 1535# include "ev_port.c"
1163#endif 1536#endif
1164#if EV_USE_KQUEUE 1537#if EV_USE_KQUEUE
1165# include "ev_kqueue.c" 1538# include "ev_kqueue.c"
1221 /* kqueue is borked on everything but netbsd apparently */ 1594 /* kqueue is borked on everything but netbsd apparently */
1222 /* it usually doesn't work correctly on anything but sockets and pipes */ 1595 /* it usually doesn't work correctly on anything but sockets and pipes */
1223 flags &= ~EVBACKEND_KQUEUE; 1596 flags &= ~EVBACKEND_KQUEUE;
1224#endif 1597#endif
1225#ifdef __APPLE__ 1598#ifdef __APPLE__
1226 // flags &= ~EVBACKEND_KQUEUE; for documentation 1599 /* only select works correctly on that "unix-certified" platform */
1227 flags &= ~EVBACKEND_POLL; 1600 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1601 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1602#endif
1603#ifdef __FreeBSD__
1604 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1228#endif 1605#endif
1229 1606
1230 return flags; 1607 return flags;
1231} 1608}
1232 1609
1234ev_embeddable_backends (void) 1611ev_embeddable_backends (void)
1235{ 1612{
1236 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1613 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1237 1614
1238 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1615 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1239 /* please fix it and tell me how to detect the fix */ 1616 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1240 flags &= ~EVBACKEND_EPOLL; 1617 flags &= ~EVBACKEND_EPOLL;
1241 1618
1242 return flags; 1619 return flags;
1243} 1620}
1244 1621
1245unsigned int 1622unsigned int
1246ev_backend (EV_P) 1623ev_backend (EV_P)
1247{ 1624{
1248 return backend; 1625 return backend;
1249} 1626}
1250 1627
1628#if EV_FEATURE_API
1251unsigned int 1629unsigned int
1252ev_loop_count (EV_P) 1630ev_iteration (EV_P)
1253{ 1631{
1254 return loop_count; 1632 return loop_count;
1255} 1633}
1256 1634
1635unsigned int
1636ev_depth (EV_P)
1637{
1638 return loop_depth;
1639}
1640
1257void 1641void
1258ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1642ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1259{ 1643{
1260 io_blocktime = interval; 1644 io_blocktime = interval;
1261} 1645}
1264ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1648ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1265{ 1649{
1266 timeout_blocktime = interval; 1650 timeout_blocktime = interval;
1267} 1651}
1268 1652
1653void
1654ev_set_userdata (EV_P_ void *data)
1655{
1656 userdata = data;
1657}
1658
1659void *
1660ev_userdata (EV_P)
1661{
1662 return userdata;
1663}
1664
1665void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1666{
1667 invoke_cb = invoke_pending_cb;
1668}
1669
1670void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1671{
1672 release_cb = release;
1673 acquire_cb = acquire;
1674}
1675#endif
1676
1677/* initialise a loop structure, must be zero-initialised */
1269static void noinline 1678static void noinline
1270loop_init (EV_P_ unsigned int flags) 1679loop_init (EV_P_ unsigned int flags)
1271{ 1680{
1272 if (!backend) 1681 if (!backend)
1273 { 1682 {
1683 origflags = flags;
1684
1685#if EV_USE_REALTIME
1686 if (!have_realtime)
1687 {
1688 struct timespec ts;
1689
1690 if (!clock_gettime (CLOCK_REALTIME, &ts))
1691 have_realtime = 1;
1692 }
1693#endif
1694
1274#if EV_USE_MONOTONIC 1695#if EV_USE_MONOTONIC
1696 if (!have_monotonic)
1275 { 1697 {
1276 struct timespec ts; 1698 struct timespec ts;
1699
1277 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1700 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1278 have_monotonic = 1; 1701 have_monotonic = 1;
1279 } 1702 }
1280#endif 1703#endif
1704
1705 /* pid check not overridable via env */
1706#ifndef _WIN32
1707 if (flags & EVFLAG_FORKCHECK)
1708 curpid = getpid ();
1709#endif
1710
1711 if (!(flags & EVFLAG_NOENV)
1712 && !enable_secure ()
1713 && getenv ("LIBEV_FLAGS"))
1714 flags = atoi (getenv ("LIBEV_FLAGS"));
1281 1715
1282 ev_rt_now = ev_time (); 1716 ev_rt_now = ev_time ();
1283 mn_now = get_clock (); 1717 mn_now = get_clock ();
1284 now_floor = mn_now; 1718 now_floor = mn_now;
1285 rtmn_diff = ev_rt_now - mn_now; 1719 rtmn_diff = ev_rt_now - mn_now;
1720#if EV_FEATURE_API
1721 invoke_cb = ev_invoke_pending;
1722#endif
1286 1723
1287 io_blocktime = 0.; 1724 io_blocktime = 0.;
1288 timeout_blocktime = 0.; 1725 timeout_blocktime = 0.;
1289 backend = 0; 1726 backend = 0;
1290 backend_fd = -1; 1727 backend_fd = -1;
1291 gotasync = 0; 1728 sig_pending = 0;
1729#if EV_ASYNC_ENABLE
1730 async_pending = 0;
1731#endif
1292#if EV_USE_INOTIFY 1732#if EV_USE_INOTIFY
1293 fs_fd = -2; 1733 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1294#endif 1734#endif
1295 1735#if EV_USE_SIGNALFD
1296 /* pid check not overridable via env */ 1736 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1297#ifndef _WIN32
1298 if (flags & EVFLAG_FORKCHECK)
1299 curpid = getpid ();
1300#endif 1737#endif
1301 1738
1302 if (!(flags & EVFLAG_NOENV) 1739 if (!(flags & EVBACKEND_MASK))
1303 && !enable_secure ()
1304 && getenv ("LIBEV_FLAGS"))
1305 flags = atoi (getenv ("LIBEV_FLAGS"));
1306
1307 if (!(flags & 0x0000ffffU))
1308 flags |= ev_recommended_backends (); 1740 flags |= ev_recommended_backends ();
1309 1741
1742#if EV_USE_IOCP
1743 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1744#endif
1310#if EV_USE_PORT 1745#if EV_USE_PORT
1311 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1746 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1312#endif 1747#endif
1313#if EV_USE_KQUEUE 1748#if EV_USE_KQUEUE
1314 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1749 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1321#endif 1756#endif
1322#if EV_USE_SELECT 1757#if EV_USE_SELECT
1323 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1758 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1324#endif 1759#endif
1325 1760
1761 ev_prepare_init (&pending_w, pendingcb);
1762
1763#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1326 ev_init (&pipeev, pipecb); 1764 ev_init (&pipe_w, pipecb);
1327 ev_set_priority (&pipeev, EV_MAXPRI); 1765 ev_set_priority (&pipe_w, EV_MAXPRI);
1766#endif
1328 } 1767 }
1329} 1768}
1330 1769
1331static void noinline 1770/* free up a loop structure */
1771void
1332loop_destroy (EV_P) 1772ev_loop_destroy (EV_P)
1333{ 1773{
1334 int i; 1774 int i;
1335 1775
1776#if EV_MULTIPLICITY
1777 /* mimic free (0) */
1778 if (!EV_A)
1779 return;
1780#endif
1781
1782#if EV_CLEANUP_ENABLE
1783 /* queue cleanup watchers (and execute them) */
1784 if (expect_false (cleanupcnt))
1785 {
1786 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1787 EV_INVOKE_PENDING;
1788 }
1789#endif
1790
1791#if EV_CHILD_ENABLE
1792 if (ev_is_active (&childev))
1793 {
1794 ev_ref (EV_A); /* child watcher */
1795 ev_signal_stop (EV_A_ &childev);
1796 }
1797#endif
1798
1336 if (ev_is_active (&pipeev)) 1799 if (ev_is_active (&pipe_w))
1337 { 1800 {
1338 ev_ref (EV_A); /* signal watcher */ 1801 /*ev_ref (EV_A);*/
1339 ev_io_stop (EV_A_ &pipeev); 1802 /*ev_io_stop (EV_A_ &pipe_w);*/
1340 1803
1341#if EV_USE_EVENTFD 1804#if EV_USE_EVENTFD
1342 if (evfd >= 0) 1805 if (evfd >= 0)
1343 close (evfd); 1806 close (evfd);
1344#endif 1807#endif
1345 1808
1346 if (evpipe [0] >= 0) 1809 if (evpipe [0] >= 0)
1347 { 1810 {
1348 close (evpipe [0]); 1811 EV_WIN32_CLOSE_FD (evpipe [0]);
1349 close (evpipe [1]); 1812 EV_WIN32_CLOSE_FD (evpipe [1]);
1350 } 1813 }
1351 } 1814 }
1815
1816#if EV_USE_SIGNALFD
1817 if (ev_is_active (&sigfd_w))
1818 close (sigfd);
1819#endif
1352 1820
1353#if EV_USE_INOTIFY 1821#if EV_USE_INOTIFY
1354 if (fs_fd >= 0) 1822 if (fs_fd >= 0)
1355 close (fs_fd); 1823 close (fs_fd);
1356#endif 1824#endif
1357 1825
1358 if (backend_fd >= 0) 1826 if (backend_fd >= 0)
1359 close (backend_fd); 1827 close (backend_fd);
1360 1828
1829#if EV_USE_IOCP
1830 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1831#endif
1361#if EV_USE_PORT 1832#if EV_USE_PORT
1362 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1833 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1363#endif 1834#endif
1364#if EV_USE_KQUEUE 1835#if EV_USE_KQUEUE
1365 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1836 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1380#if EV_IDLE_ENABLE 1851#if EV_IDLE_ENABLE
1381 array_free (idle, [i]); 1852 array_free (idle, [i]);
1382#endif 1853#endif
1383 } 1854 }
1384 1855
1385 ev_free (anfds); anfdmax = 0; 1856 ev_free (anfds); anfds = 0; anfdmax = 0;
1386 1857
1387 /* have to use the microsoft-never-gets-it-right macro */ 1858 /* have to use the microsoft-never-gets-it-right macro */
1859 array_free (rfeed, EMPTY);
1388 array_free (fdchange, EMPTY); 1860 array_free (fdchange, EMPTY);
1389 array_free (timer, EMPTY); 1861 array_free (timer, EMPTY);
1390#if EV_PERIODIC_ENABLE 1862#if EV_PERIODIC_ENABLE
1391 array_free (periodic, EMPTY); 1863 array_free (periodic, EMPTY);
1392#endif 1864#endif
1393#if EV_FORK_ENABLE 1865#if EV_FORK_ENABLE
1394 array_free (fork, EMPTY); 1866 array_free (fork, EMPTY);
1395#endif 1867#endif
1868#if EV_CLEANUP_ENABLE
1869 array_free (cleanup, EMPTY);
1870#endif
1396 array_free (prepare, EMPTY); 1871 array_free (prepare, EMPTY);
1397 array_free (check, EMPTY); 1872 array_free (check, EMPTY);
1398#if EV_ASYNC_ENABLE 1873#if EV_ASYNC_ENABLE
1399 array_free (async, EMPTY); 1874 array_free (async, EMPTY);
1400#endif 1875#endif
1401 1876
1402 backend = 0; 1877 backend = 0;
1878
1879#if EV_MULTIPLICITY
1880 if (ev_is_default_loop (EV_A))
1881#endif
1882 ev_default_loop_ptr = 0;
1883#if EV_MULTIPLICITY
1884 else
1885 ev_free (EV_A);
1886#endif
1403} 1887}
1404 1888
1405#if EV_USE_INOTIFY 1889#if EV_USE_INOTIFY
1406void inline_size infy_fork (EV_P); 1890inline_size void infy_fork (EV_P);
1407#endif 1891#endif
1408 1892
1409void inline_size 1893inline_size void
1410loop_fork (EV_P) 1894loop_fork (EV_P)
1411{ 1895{
1412#if EV_USE_PORT 1896#if EV_USE_PORT
1413 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1897 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1414#endif 1898#endif
1420#endif 1904#endif
1421#if EV_USE_INOTIFY 1905#if EV_USE_INOTIFY
1422 infy_fork (EV_A); 1906 infy_fork (EV_A);
1423#endif 1907#endif
1424 1908
1425 if (ev_is_active (&pipeev)) 1909 if (ev_is_active (&pipe_w))
1426 { 1910 {
1427 /* this "locks" the handlers against writing to the pipe */ 1911 /* this "locks" the handlers against writing to the pipe */
1428 /* while we modify the fd vars */ 1912 /* while we modify the fd vars */
1429 gotsig = 1; 1913 sig_pending = 1;
1430#if EV_ASYNC_ENABLE 1914#if EV_ASYNC_ENABLE
1431 gotasync = 1; 1915 async_pending = 1;
1432#endif 1916#endif
1433 1917
1434 ev_ref (EV_A); 1918 ev_ref (EV_A);
1435 ev_io_stop (EV_A_ &pipeev); 1919 ev_io_stop (EV_A_ &pipe_w);
1436 1920
1437#if EV_USE_EVENTFD 1921#if EV_USE_EVENTFD
1438 if (evfd >= 0) 1922 if (evfd >= 0)
1439 close (evfd); 1923 close (evfd);
1440#endif 1924#endif
1441 1925
1442 if (evpipe [0] >= 0) 1926 if (evpipe [0] >= 0)
1443 { 1927 {
1444 close (evpipe [0]); 1928 EV_WIN32_CLOSE_FD (evpipe [0]);
1445 close (evpipe [1]); 1929 EV_WIN32_CLOSE_FD (evpipe [1]);
1446 } 1930 }
1447 1931
1932#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1448 evpipe_init (EV_A); 1933 evpipe_init (EV_A);
1449 /* now iterate over everything, in case we missed something */ 1934 /* now iterate over everything, in case we missed something */
1450 pipecb (EV_A_ &pipeev, EV_READ); 1935 pipecb (EV_A_ &pipe_w, EV_READ);
1936#endif
1451 } 1937 }
1452 1938
1453 postfork = 0; 1939 postfork = 0;
1454} 1940}
1941
1942#if EV_MULTIPLICITY
1943
1944struct ev_loop *
1945ev_loop_new (unsigned int flags)
1946{
1947 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1948
1949 memset (EV_A, 0, sizeof (struct ev_loop));
1950 loop_init (EV_A_ flags);
1951
1952 if (ev_backend (EV_A))
1953 return EV_A;
1954
1955 ev_free (EV_A);
1956 return 0;
1957}
1958
1959#endif /* multiplicity */
1960
1961#if EV_VERIFY
1962static void noinline
1963verify_watcher (EV_P_ W w)
1964{
1965 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1966
1967 if (w->pending)
1968 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1969}
1970
1971static void noinline
1972verify_heap (EV_P_ ANHE *heap, int N)
1973{
1974 int i;
1975
1976 for (i = HEAP0; i < N + HEAP0; ++i)
1977 {
1978 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1979 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1980 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1981
1982 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1983 }
1984}
1985
1986static void noinline
1987array_verify (EV_P_ W *ws, int cnt)
1988{
1989 while (cnt--)
1990 {
1991 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1992 verify_watcher (EV_A_ ws [cnt]);
1993 }
1994}
1995#endif
1996
1997#if EV_FEATURE_API
1998void
1999ev_verify (EV_P)
2000{
2001#if EV_VERIFY
2002 int i;
2003 WL w;
2004
2005 assert (activecnt >= -1);
2006
2007 assert (fdchangemax >= fdchangecnt);
2008 for (i = 0; i < fdchangecnt; ++i)
2009 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2010
2011 assert (anfdmax >= 0);
2012 for (i = 0; i < anfdmax; ++i)
2013 for (w = anfds [i].head; w; w = w->next)
2014 {
2015 verify_watcher (EV_A_ (W)w);
2016 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2017 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2018 }
2019
2020 assert (timermax >= timercnt);
2021 verify_heap (EV_A_ timers, timercnt);
2022
2023#if EV_PERIODIC_ENABLE
2024 assert (periodicmax >= periodiccnt);
2025 verify_heap (EV_A_ periodics, periodiccnt);
2026#endif
2027
2028 for (i = NUMPRI; i--; )
2029 {
2030 assert (pendingmax [i] >= pendingcnt [i]);
2031#if EV_IDLE_ENABLE
2032 assert (idleall >= 0);
2033 assert (idlemax [i] >= idlecnt [i]);
2034 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2035#endif
2036 }
2037
2038#if EV_FORK_ENABLE
2039 assert (forkmax >= forkcnt);
2040 array_verify (EV_A_ (W *)forks, forkcnt);
2041#endif
2042
2043#if EV_CLEANUP_ENABLE
2044 assert (cleanupmax >= cleanupcnt);
2045 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2046#endif
2047
2048#if EV_ASYNC_ENABLE
2049 assert (asyncmax >= asynccnt);
2050 array_verify (EV_A_ (W *)asyncs, asynccnt);
2051#endif
2052
2053#if EV_PREPARE_ENABLE
2054 assert (preparemax >= preparecnt);
2055 array_verify (EV_A_ (W *)prepares, preparecnt);
2056#endif
2057
2058#if EV_CHECK_ENABLE
2059 assert (checkmax >= checkcnt);
2060 array_verify (EV_A_ (W *)checks, checkcnt);
2061#endif
2062
2063# if 0
2064#if EV_CHILD_ENABLE
2065 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2066 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2067#endif
2068# endif
2069#endif
2070}
2071#endif
1455 2072
1456#if EV_MULTIPLICITY 2073#if EV_MULTIPLICITY
1457struct ev_loop * 2074struct ev_loop *
1458ev_loop_new (unsigned int flags)
1459{
1460 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1461
1462 memset (loop, 0, sizeof (struct ev_loop));
1463
1464 loop_init (EV_A_ flags);
1465
1466 if (ev_backend (EV_A))
1467 return loop;
1468
1469 return 0;
1470}
1471
1472void
1473ev_loop_destroy (EV_P)
1474{
1475 loop_destroy (EV_A);
1476 ev_free (loop);
1477}
1478
1479void
1480ev_loop_fork (EV_P)
1481{
1482 postfork = 1; /* must be in line with ev_default_fork */
1483}
1484#endif
1485
1486#if EV_MULTIPLICITY
1487struct ev_loop *
1488ev_default_loop_init (unsigned int flags)
1489#else 2075#else
1490int 2076int
2077#endif
1491ev_default_loop (unsigned int flags) 2078ev_default_loop (unsigned int flags)
1492#endif
1493{ 2079{
1494 if (!ev_default_loop_ptr) 2080 if (!ev_default_loop_ptr)
1495 { 2081 {
1496#if EV_MULTIPLICITY 2082#if EV_MULTIPLICITY
1497 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2083 EV_P = ev_default_loop_ptr = &default_loop_struct;
1498#else 2084#else
1499 ev_default_loop_ptr = 1; 2085 ev_default_loop_ptr = 1;
1500#endif 2086#endif
1501 2087
1502 loop_init (EV_A_ flags); 2088 loop_init (EV_A_ flags);
1503 2089
1504 if (ev_backend (EV_A)) 2090 if (ev_backend (EV_A))
1505 { 2091 {
1506#ifndef _WIN32 2092#if EV_CHILD_ENABLE
1507 ev_signal_init (&childev, childcb, SIGCHLD); 2093 ev_signal_init (&childev, childcb, SIGCHLD);
1508 ev_set_priority (&childev, EV_MAXPRI); 2094 ev_set_priority (&childev, EV_MAXPRI);
1509 ev_signal_start (EV_A_ &childev); 2095 ev_signal_start (EV_A_ &childev);
1510 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2096 ev_unref (EV_A); /* child watcher should not keep loop alive */
1511#endif 2097#endif
1516 2102
1517 return ev_default_loop_ptr; 2103 return ev_default_loop_ptr;
1518} 2104}
1519 2105
1520void 2106void
1521ev_default_destroy (void) 2107ev_loop_fork (EV_P)
1522{ 2108{
1523#if EV_MULTIPLICITY
1524 struct ev_loop *loop = ev_default_loop_ptr;
1525#endif
1526
1527#ifndef _WIN32
1528 ev_ref (EV_A); /* child watcher */
1529 ev_signal_stop (EV_A_ &childev);
1530#endif
1531
1532 loop_destroy (EV_A);
1533}
1534
1535void
1536ev_default_fork (void)
1537{
1538#if EV_MULTIPLICITY
1539 struct ev_loop *loop = ev_default_loop_ptr;
1540#endif
1541
1542 if (backend)
1543 postfork = 1; /* must be in line with ev_loop_fork */ 2109 postfork = 1; /* must be in line with ev_default_fork */
1544} 2110}
1545 2111
1546/*****************************************************************************/ 2112/*****************************************************************************/
1547 2113
1548void 2114void
1549ev_invoke (EV_P_ void *w, int revents) 2115ev_invoke (EV_P_ void *w, int revents)
1550{ 2116{
1551 EV_CB_INVOKE ((W)w, revents); 2117 EV_CB_INVOKE ((W)w, revents);
1552} 2118}
1553 2119
1554void inline_speed 2120unsigned int
1555call_pending (EV_P) 2121ev_pending_count (EV_P)
2122{
2123 int pri;
2124 unsigned int count = 0;
2125
2126 for (pri = NUMPRI; pri--; )
2127 count += pendingcnt [pri];
2128
2129 return count;
2130}
2131
2132void noinline
2133ev_invoke_pending (EV_P)
1556{ 2134{
1557 int pri; 2135 int pri;
1558 2136
1559 for (pri = NUMPRI; pri--; ) 2137 for (pri = NUMPRI; pri--; )
1560 while (pendingcnt [pri]) 2138 while (pendingcnt [pri])
1561 { 2139 {
1562 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2140 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1563 2141
1564 if (expect_true (p->w))
1565 {
1566 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1567
1568 p->w->pending = 0; 2142 p->w->pending = 0;
1569 EV_CB_INVOKE (p->w, p->events); 2143 EV_CB_INVOKE (p->w, p->events);
1570 } 2144 EV_FREQUENT_CHECK;
1571 } 2145 }
1572} 2146}
1573 2147
1574#if EV_IDLE_ENABLE 2148#if EV_IDLE_ENABLE
1575void inline_size 2149/* make idle watchers pending. this handles the "call-idle */
2150/* only when higher priorities are idle" logic */
2151inline_size void
1576idle_reify (EV_P) 2152idle_reify (EV_P)
1577{ 2153{
1578 if (expect_false (idleall)) 2154 if (expect_false (idleall))
1579 { 2155 {
1580 int pri; 2156 int pri;
1592 } 2168 }
1593 } 2169 }
1594} 2170}
1595#endif 2171#endif
1596 2172
1597void inline_size 2173/* make timers pending */
2174inline_size void
1598timers_reify (EV_P) 2175timers_reify (EV_P)
1599{ 2176{
2177 EV_FREQUENT_CHECK;
2178
1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now) 2179 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1601 { 2180 {
1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2181 do
1603
1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1605
1606 /* first reschedule or stop timer */
1607 if (w->repeat)
1608 { 2182 {
2183 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2184
2185 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2186
2187 /* first reschedule or stop timer */
2188 if (w->repeat)
2189 {
2190 ev_at (w) += w->repeat;
2191 if (ev_at (w) < mn_now)
2192 ev_at (w) = mn_now;
2193
1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2194 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1610 2195
1611 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now;
1614
1615 ANHE_at_set (timers [HEAP0]); 2196 ANHE_at_cache (timers [HEAP0]);
1616 downheap (timers, timercnt, HEAP0); 2197 downheap (timers, timercnt, HEAP0);
2198 }
2199 else
2200 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2201
2202 EV_FREQUENT_CHECK;
2203 feed_reverse (EV_A_ (W)w);
1617 } 2204 }
1618 else 2205 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1620 2206
1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2207 feed_reverse_done (EV_A_ EV_TIMER);
1622 } 2208 }
1623} 2209}
1624 2210
1625#if EV_PERIODIC_ENABLE 2211#if EV_PERIODIC_ENABLE
1626void inline_size 2212
2213inline_speed void
2214periodic_recalc (EV_P_ ev_periodic *w)
2215{
2216 /* TODO: use slow but potentially more correct incremental algo, */
2217 /* also do not rely on ceil */
2218 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2219}
2220
2221/* make periodics pending */
2222inline_size void
1627periodics_reify (EV_P) 2223periodics_reify (EV_P)
1628{ 2224{
2225 EV_FREQUENT_CHECK;
2226
1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now) 2227 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1630 { 2228 {
1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2229 int feed_count = 0;
1632 2230
1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2231 do
1634
1635 /* first reschedule or stop timer */
1636 if (w->reschedule_cb)
1637 { 2232 {
2233 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2234
2235 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2236
2237 /* first reschedule or stop timer */
2238 if (w->reschedule_cb)
2239 {
1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 2240 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2241
1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 2242 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2243
1640 ANHE_at_set (periodics [HEAP0]); 2244 ANHE_at_cache (periodics [HEAP0]);
1641 downheap (periodics, periodiccnt, HEAP0); 2245 downheap (periodics, periodiccnt, HEAP0);
2246 }
2247 else if (w->interval)
2248 {
2249 periodic_recalc (EV_A_ w);
2250
2251 /* if next trigger time is not sufficiently in the future, put it there */
2252 /* this might happen because of floating point inexactness */
2253 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2254 {
2255 ev_at (w) += w->interval;
2256
2257 /* if interval is unreasonably low we might still have a time in the past */
2258 /* so correct this. this will make the periodic very inexact, but the user */
2259 /* has effectively asked to get triggered more often than possible */
2260 if (ev_at (w) < ev_rt_now)
2261 ev_at (w) = ev_rt_now;
2262 }
2263
2264 ANHE_at_cache (periodics [HEAP0]);
2265 downheap (periodics, periodiccnt, HEAP0);
2266 }
2267 else
2268 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2269
2270 EV_FREQUENT_CHECK;
2271 feed_reverse (EV_A_ (W)w);
1642 } 2272 }
1643 else if (w->interval) 2273 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1644 {
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else
1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1653 2274
1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2275 feed_reverse_done (EV_A_ EV_PERIODIC);
1655 } 2276 }
1656} 2277}
1657 2278
2279/* simply recalculate all periodics */
2280/* TODO: maybe ensure that at least one event happens when jumping forward? */
1658static void noinline 2281static void noinline
1659periodics_reschedule (EV_P) 2282periodics_reschedule (EV_P)
1660{ 2283{
1661 int i; 2284 int i;
1662 2285
1666 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 2289 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1667 2290
1668 if (w->reschedule_cb) 2291 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2292 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1670 else if (w->interval) 2293 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2294 periodic_recalc (EV_A_ w);
1672 2295
1673 ANHE_at_set (periodics [i]); 2296 ANHE_at_cache (periodics [i]);
2297 }
2298
2299 reheap (periodics, periodiccnt);
2300}
2301#endif
2302
2303/* adjust all timers by a given offset */
2304static void noinline
2305timers_reschedule (EV_P_ ev_tstamp adjust)
2306{
2307 int i;
2308
2309 for (i = 0; i < timercnt; ++i)
1674 } 2310 {
1675 2311 ANHE *he = timers + i + HEAP0;
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */ 2312 ANHE_w (*he)->at += adjust;
1677 for (i = periodiccnt >> 1; --i; ) 2313 ANHE_at_cache (*he);
1678 downheap (periodics, periodiccnt, i + HEAP0); 2314 }
1679} 2315}
1680#endif
1681 2316
1682void inline_speed 2317/* fetch new monotonic and realtime times from the kernel */
2318/* also detect if there was a timejump, and act accordingly */
2319inline_speed void
1683time_update (EV_P_ ev_tstamp max_block) 2320time_update (EV_P_ ev_tstamp max_block)
1684{ 2321{
1685 int i;
1686
1687#if EV_USE_MONOTONIC 2322#if EV_USE_MONOTONIC
1688 if (expect_true (have_monotonic)) 2323 if (expect_true (have_monotonic))
1689 { 2324 {
2325 int i;
1690 ev_tstamp odiff = rtmn_diff; 2326 ev_tstamp odiff = rtmn_diff;
1691 2327
1692 mn_now = get_clock (); 2328 mn_now = get_clock ();
1693 2329
1694 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2330 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1720 ev_rt_now = ev_time (); 2356 ev_rt_now = ev_time ();
1721 mn_now = get_clock (); 2357 mn_now = get_clock ();
1722 now_floor = mn_now; 2358 now_floor = mn_now;
1723 } 2359 }
1724 2360
2361 /* no timer adjustment, as the monotonic clock doesn't jump */
2362 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1725# if EV_PERIODIC_ENABLE 2363# if EV_PERIODIC_ENABLE
1726 periodics_reschedule (EV_A); 2364 periodics_reschedule (EV_A);
1727# endif 2365# endif
1728 /* no timer adjustment, as the monotonic clock doesn't jump */
1729 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1730 } 2366 }
1731 else 2367 else
1732#endif 2368#endif
1733 { 2369 {
1734 ev_rt_now = ev_time (); 2370 ev_rt_now = ev_time ();
1735 2371
1736 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1737 { 2373 {
2374 /* adjust timers. this is easy, as the offset is the same for all of them */
2375 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1738#if EV_PERIODIC_ENABLE 2376#if EV_PERIODIC_ENABLE
1739 periodics_reschedule (EV_A); 2377 periodics_reschedule (EV_A);
1740#endif 2378#endif
1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1742 for (i = 0; i < timercnt; ++i)
1743 {
1744 ANHE *he = timers + i + HEAP0;
1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he);
1747 }
1748 } 2379 }
1749 2380
1750 mn_now = ev_rt_now; 2381 mn_now = ev_rt_now;
1751 } 2382 }
1752} 2383}
1753 2384
1754void 2385void
1755ev_ref (EV_P)
1756{
1757 ++activecnt;
1758}
1759
1760void
1761ev_unref (EV_P)
1762{
1763 --activecnt;
1764}
1765
1766static int loop_done;
1767
1768void
1769ev_loop (EV_P_ int flags) 2386ev_run (EV_P_ int flags)
1770{ 2387{
2388#if EV_FEATURE_API
2389 ++loop_depth;
2390#endif
2391
2392 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2393
1771 loop_done = EVUNLOOP_CANCEL; 2394 loop_done = EVBREAK_CANCEL;
1772 2395
1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2396 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1774 2397
1775 do 2398 do
1776 { 2399 {
2400#if EV_VERIFY >= 2
2401 ev_verify (EV_A);
2402#endif
2403
1777#ifndef _WIN32 2404#ifndef _WIN32
1778 if (expect_false (curpid)) /* penalise the forking check even more */ 2405 if (expect_false (curpid)) /* penalise the forking check even more */
1779 if (expect_false (getpid () != curpid)) 2406 if (expect_false (getpid () != curpid))
1780 { 2407 {
1781 curpid = getpid (); 2408 curpid = getpid ();
1787 /* we might have forked, so queue fork handlers */ 2414 /* we might have forked, so queue fork handlers */
1788 if (expect_false (postfork)) 2415 if (expect_false (postfork))
1789 if (forkcnt) 2416 if (forkcnt)
1790 { 2417 {
1791 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2418 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1792 call_pending (EV_A); 2419 EV_INVOKE_PENDING;
1793 } 2420 }
1794#endif 2421#endif
1795 2422
2423#if EV_PREPARE_ENABLE
1796 /* queue prepare watchers (and execute them) */ 2424 /* queue prepare watchers (and execute them) */
1797 if (expect_false (preparecnt)) 2425 if (expect_false (preparecnt))
1798 { 2426 {
1799 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2427 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1800 call_pending (EV_A); 2428 EV_INVOKE_PENDING;
1801 } 2429 }
2430#endif
1802 2431
1803 if (expect_false (!activecnt)) 2432 if (expect_false (loop_done))
1804 break; 2433 break;
1805 2434
1806 /* we might have forked, so reify kernel state if necessary */ 2435 /* we might have forked, so reify kernel state if necessary */
1807 if (expect_false (postfork)) 2436 if (expect_false (postfork))
1808 loop_fork (EV_A); 2437 loop_fork (EV_A);
1813 /* calculate blocking time */ 2442 /* calculate blocking time */
1814 { 2443 {
1815 ev_tstamp waittime = 0.; 2444 ev_tstamp waittime = 0.;
1816 ev_tstamp sleeptime = 0.; 2445 ev_tstamp sleeptime = 0.;
1817 2446
2447 /* remember old timestamp for io_blocktime calculation */
2448 ev_tstamp prev_mn_now = mn_now;
2449
2450 /* update time to cancel out callback processing overhead */
2451 time_update (EV_A_ 1e100);
2452
1818 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2453 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1819 { 2454 {
1820 /* update time to cancel out callback processing overhead */
1821 time_update (EV_A_ 1e100);
1822
1823 waittime = MAX_BLOCKTIME; 2455 waittime = MAX_BLOCKTIME;
1824 2456
1825 if (timercnt) 2457 if (timercnt)
1826 { 2458 {
1827 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2459 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2466 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1835 if (waittime > to) waittime = to; 2467 if (waittime > to) waittime = to;
1836 } 2468 }
1837#endif 2469#endif
1838 2470
2471 /* don't let timeouts decrease the waittime below timeout_blocktime */
1839 if (expect_false (waittime < timeout_blocktime)) 2472 if (expect_false (waittime < timeout_blocktime))
1840 waittime = timeout_blocktime; 2473 waittime = timeout_blocktime;
1841 2474
1842 sleeptime = waittime - backend_fudge; 2475 /* extra check because io_blocktime is commonly 0 */
1843
1844 if (expect_true (sleeptime > io_blocktime)) 2476 if (expect_false (io_blocktime))
1845 sleeptime = io_blocktime;
1846
1847 if (sleeptime)
1848 { 2477 {
2478 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2479
2480 if (sleeptime > waittime - backend_fudge)
2481 sleeptime = waittime - backend_fudge;
2482
2483 if (expect_true (sleeptime > 0.))
2484 {
1849 ev_sleep (sleeptime); 2485 ev_sleep (sleeptime);
1850 waittime -= sleeptime; 2486 waittime -= sleeptime;
2487 }
1851 } 2488 }
1852 } 2489 }
1853 2490
2491#if EV_FEATURE_API
1854 ++loop_count; 2492 ++loop_count;
2493#endif
2494 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1855 backend_poll (EV_A_ waittime); 2495 backend_poll (EV_A_ waittime);
2496 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1856 2497
1857 /* update ev_rt_now, do magic */ 2498 /* update ev_rt_now, do magic */
1858 time_update (EV_A_ waittime + sleeptime); 2499 time_update (EV_A_ waittime + sleeptime);
1859 } 2500 }
1860 2501
1867#if EV_IDLE_ENABLE 2508#if EV_IDLE_ENABLE
1868 /* queue idle watchers unless other events are pending */ 2509 /* queue idle watchers unless other events are pending */
1869 idle_reify (EV_A); 2510 idle_reify (EV_A);
1870#endif 2511#endif
1871 2512
2513#if EV_CHECK_ENABLE
1872 /* queue check watchers, to be executed first */ 2514 /* queue check watchers, to be executed first */
1873 if (expect_false (checkcnt)) 2515 if (expect_false (checkcnt))
1874 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2516 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2517#endif
1875 2518
1876 call_pending (EV_A); 2519 EV_INVOKE_PENDING;
1877 } 2520 }
1878 while (expect_true ( 2521 while (expect_true (
1879 activecnt 2522 activecnt
1880 && !loop_done 2523 && !loop_done
1881 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2524 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1882 )); 2525 ));
1883 2526
1884 if (loop_done == EVUNLOOP_ONE) 2527 if (loop_done == EVBREAK_ONE)
1885 loop_done = EVUNLOOP_CANCEL; 2528 loop_done = EVBREAK_CANCEL;
1886}
1887 2529
2530#if EV_FEATURE_API
2531 --loop_depth;
2532#endif
2533}
2534
1888void 2535void
1889ev_unloop (EV_P_ int how) 2536ev_break (EV_P_ int how)
1890{ 2537{
1891 loop_done = how; 2538 loop_done = how;
1892} 2539}
1893 2540
2541void
2542ev_ref (EV_P)
2543{
2544 ++activecnt;
2545}
2546
2547void
2548ev_unref (EV_P)
2549{
2550 --activecnt;
2551}
2552
2553void
2554ev_now_update (EV_P)
2555{
2556 time_update (EV_A_ 1e100);
2557}
2558
2559void
2560ev_suspend (EV_P)
2561{
2562 ev_now_update (EV_A);
2563}
2564
2565void
2566ev_resume (EV_P)
2567{
2568 ev_tstamp mn_prev = mn_now;
2569
2570 ev_now_update (EV_A);
2571 timers_reschedule (EV_A_ mn_now - mn_prev);
2572#if EV_PERIODIC_ENABLE
2573 /* TODO: really do this? */
2574 periodics_reschedule (EV_A);
2575#endif
2576}
2577
1894/*****************************************************************************/ 2578/*****************************************************************************/
2579/* singly-linked list management, used when the expected list length is short */
1895 2580
1896void inline_size 2581inline_size void
1897wlist_add (WL *head, WL elem) 2582wlist_add (WL *head, WL elem)
1898{ 2583{
1899 elem->next = *head; 2584 elem->next = *head;
1900 *head = elem; 2585 *head = elem;
1901} 2586}
1902 2587
1903void inline_size 2588inline_size void
1904wlist_del (WL *head, WL elem) 2589wlist_del (WL *head, WL elem)
1905{ 2590{
1906 while (*head) 2591 while (*head)
1907 { 2592 {
1908 if (*head == elem) 2593 if (expect_true (*head == elem))
1909 { 2594 {
1910 *head = elem->next; 2595 *head = elem->next;
1911 return; 2596 break;
1912 } 2597 }
1913 2598
1914 head = &(*head)->next; 2599 head = &(*head)->next;
1915 } 2600 }
1916} 2601}
1917 2602
1918void inline_speed 2603/* internal, faster, version of ev_clear_pending */
2604inline_speed void
1919clear_pending (EV_P_ W w) 2605clear_pending (EV_P_ W w)
1920{ 2606{
1921 if (w->pending) 2607 if (w->pending)
1922 { 2608 {
1923 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2609 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1924 w->pending = 0; 2610 w->pending = 0;
1925 } 2611 }
1926} 2612}
1927 2613
1928int 2614int
1932 int pending = w_->pending; 2618 int pending = w_->pending;
1933 2619
1934 if (expect_true (pending)) 2620 if (expect_true (pending))
1935 { 2621 {
1936 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2622 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2623 p->w = (W)&pending_w;
1937 w_->pending = 0; 2624 w_->pending = 0;
1938 p->w = 0;
1939 return p->events; 2625 return p->events;
1940 } 2626 }
1941 else 2627 else
1942 return 0; 2628 return 0;
1943} 2629}
1944 2630
1945void inline_size 2631inline_size void
1946pri_adjust (EV_P_ W w) 2632pri_adjust (EV_P_ W w)
1947{ 2633{
1948 int pri = w->priority; 2634 int pri = ev_priority (w);
1949 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2635 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1950 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2636 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1951 w->priority = pri; 2637 ev_set_priority (w, pri);
1952} 2638}
1953 2639
1954void inline_speed 2640inline_speed void
1955ev_start (EV_P_ W w, int active) 2641ev_start (EV_P_ W w, int active)
1956{ 2642{
1957 pri_adjust (EV_A_ w); 2643 pri_adjust (EV_A_ w);
1958 w->active = active; 2644 w->active = active;
1959 ev_ref (EV_A); 2645 ev_ref (EV_A);
1960} 2646}
1961 2647
1962void inline_size 2648inline_size void
1963ev_stop (EV_P_ W w) 2649ev_stop (EV_P_ W w)
1964{ 2650{
1965 ev_unref (EV_A); 2651 ev_unref (EV_A);
1966 w->active = 0; 2652 w->active = 0;
1967} 2653}
1974 int fd = w->fd; 2660 int fd = w->fd;
1975 2661
1976 if (expect_false (ev_is_active (w))) 2662 if (expect_false (ev_is_active (w)))
1977 return; 2663 return;
1978 2664
1979 assert (("ev_io_start called with negative fd", fd >= 0)); 2665 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2666 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2667
2668 EV_FREQUENT_CHECK;
1980 2669
1981 ev_start (EV_A_ (W)w, 1); 2670 ev_start (EV_A_ (W)w, 1);
1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2671 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1983 wlist_add (&anfds[fd].head, (WL)w); 2672 wlist_add (&anfds[fd].head, (WL)w);
1984 2673
1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2674 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1986 w->events &= ~EV_IOFDSET; 2675 w->events &= ~EV__IOFDSET;
2676
2677 EV_FREQUENT_CHECK;
1987} 2678}
1988 2679
1989void noinline 2680void noinline
1990ev_io_stop (EV_P_ ev_io *w) 2681ev_io_stop (EV_P_ ev_io *w)
1991{ 2682{
1992 clear_pending (EV_A_ (W)w); 2683 clear_pending (EV_A_ (W)w);
1993 if (expect_false (!ev_is_active (w))) 2684 if (expect_false (!ev_is_active (w)))
1994 return; 2685 return;
1995 2686
1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2687 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2688
2689 EV_FREQUENT_CHECK;
1997 2690
1998 wlist_del (&anfds[w->fd].head, (WL)w); 2691 wlist_del (&anfds[w->fd].head, (WL)w);
1999 ev_stop (EV_A_ (W)w); 2692 ev_stop (EV_A_ (W)w);
2000 2693
2001 fd_change (EV_A_ w->fd, 1); 2694 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2695
2696 EV_FREQUENT_CHECK;
2002} 2697}
2003 2698
2004void noinline 2699void noinline
2005ev_timer_start (EV_P_ ev_timer *w) 2700ev_timer_start (EV_P_ ev_timer *w)
2006{ 2701{
2007 if (expect_false (ev_is_active (w))) 2702 if (expect_false (ev_is_active (w)))
2008 return; 2703 return;
2009 2704
2010 ev_at (w) += mn_now; 2705 ev_at (w) += mn_now;
2011 2706
2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2707 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2013 2708
2709 EV_FREQUENT_CHECK;
2710
2711 ++timercnt;
2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2712 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2713 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2016 ANHE_w (timers [ev_active (w)]) = (WT)w; 2714 ANHE_w (timers [ev_active (w)]) = (WT)w;
2017 ANHE_at_set (timers [ev_active (w)]); 2715 ANHE_at_cache (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w)); 2716 upheap (timers, ev_active (w));
2019 2717
2718 EV_FREQUENT_CHECK;
2719
2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2720 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2021} 2721}
2022 2722
2023void noinline 2723void noinline
2024ev_timer_stop (EV_P_ ev_timer *w) 2724ev_timer_stop (EV_P_ ev_timer *w)
2025{ 2725{
2026 clear_pending (EV_A_ (W)w); 2726 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 2727 if (expect_false (!ev_is_active (w)))
2028 return; 2728 return;
2029 2729
2730 EV_FREQUENT_CHECK;
2731
2030 { 2732 {
2031 int active = ev_active (w); 2733 int active = ev_active (w);
2032 2734
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2735 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034 2736
2737 --timercnt;
2738
2035 if (expect_true (active < timercnt + HEAP0 - 1)) 2739 if (expect_true (active < timercnt + HEAP0))
2036 { 2740 {
2037 timers [active] = timers [timercnt + HEAP0 - 1]; 2741 timers [active] = timers [timercnt + HEAP0];
2038 adjustheap (timers, timercnt, active); 2742 adjustheap (timers, timercnt, active);
2039 } 2743 }
2040
2041 --timercnt;
2042 } 2744 }
2043 2745
2044 ev_at (w) -= mn_now; 2746 ev_at (w) -= mn_now;
2045 2747
2046 ev_stop (EV_A_ (W)w); 2748 ev_stop (EV_A_ (W)w);
2749
2750 EV_FREQUENT_CHECK;
2047} 2751}
2048 2752
2049void noinline 2753void noinline
2050ev_timer_again (EV_P_ ev_timer *w) 2754ev_timer_again (EV_P_ ev_timer *w)
2051{ 2755{
2756 EV_FREQUENT_CHECK;
2757
2052 if (ev_is_active (w)) 2758 if (ev_is_active (w))
2053 { 2759 {
2054 if (w->repeat) 2760 if (w->repeat)
2055 { 2761 {
2056 ev_at (w) = mn_now + w->repeat; 2762 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]); 2763 ANHE_at_cache (timers [ev_active (w)]);
2058 adjustheap (timers, timercnt, ev_active (w)); 2764 adjustheap (timers, timercnt, ev_active (w));
2059 } 2765 }
2060 else 2766 else
2061 ev_timer_stop (EV_A_ w); 2767 ev_timer_stop (EV_A_ w);
2062 } 2768 }
2063 else if (w->repeat) 2769 else if (w->repeat)
2064 { 2770 {
2065 ev_at (w) = w->repeat; 2771 ev_at (w) = w->repeat;
2066 ev_timer_start (EV_A_ w); 2772 ev_timer_start (EV_A_ w);
2067 } 2773 }
2774
2775 EV_FREQUENT_CHECK;
2776}
2777
2778ev_tstamp
2779ev_timer_remaining (EV_P_ ev_timer *w)
2780{
2781 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2068} 2782}
2069 2783
2070#if EV_PERIODIC_ENABLE 2784#if EV_PERIODIC_ENABLE
2071void noinline 2785void noinline
2072ev_periodic_start (EV_P_ ev_periodic *w) 2786ev_periodic_start (EV_P_ ev_periodic *w)
2076 2790
2077 if (w->reschedule_cb) 2791 if (w->reschedule_cb)
2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2792 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2079 else if (w->interval) 2793 else if (w->interval)
2080 { 2794 {
2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2795 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2082 /* this formula differs from the one in periodic_reify because we do not always round up */ 2796 periodic_recalc (EV_A_ w);
2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2084 } 2797 }
2085 else 2798 else
2086 ev_at (w) = w->offset; 2799 ev_at (w) = w->offset;
2087 2800
2801 EV_FREQUENT_CHECK;
2802
2803 ++periodiccnt;
2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2804 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2805 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2090 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2806 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2807 ANHE_at_cache (periodics [ev_active (w)]);
2091 upheap (periodics, ev_active (w)); 2808 upheap (periodics, ev_active (w));
2092 2809
2810 EV_FREQUENT_CHECK;
2811
2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2812 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2094} 2813}
2095 2814
2096void noinline 2815void noinline
2097ev_periodic_stop (EV_P_ ev_periodic *w) 2816ev_periodic_stop (EV_P_ ev_periodic *w)
2098{ 2817{
2099 clear_pending (EV_A_ (W)w); 2818 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w))) 2819 if (expect_false (!ev_is_active (w)))
2101 return; 2820 return;
2102 2821
2822 EV_FREQUENT_CHECK;
2823
2103 { 2824 {
2104 int active = ev_active (w); 2825 int active = ev_active (w);
2105 2826
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2827 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107 2828
2829 --periodiccnt;
2830
2108 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2831 if (expect_true (active < periodiccnt + HEAP0))
2109 { 2832 {
2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2833 periodics [active] = periodics [periodiccnt + HEAP0];
2111 adjustheap (periodics, periodiccnt, active); 2834 adjustheap (periodics, periodiccnt, active);
2112 } 2835 }
2113
2114 --periodiccnt;
2115 } 2836 }
2116 2837
2117 ev_stop (EV_A_ (W)w); 2838 ev_stop (EV_A_ (W)w);
2839
2840 EV_FREQUENT_CHECK;
2118} 2841}
2119 2842
2120void noinline 2843void noinline
2121ev_periodic_again (EV_P_ ev_periodic *w) 2844ev_periodic_again (EV_P_ ev_periodic *w)
2122{ 2845{
2128 2851
2129#ifndef SA_RESTART 2852#ifndef SA_RESTART
2130# define SA_RESTART 0 2853# define SA_RESTART 0
2131#endif 2854#endif
2132 2855
2856#if EV_SIGNAL_ENABLE
2857
2133void noinline 2858void noinline
2134ev_signal_start (EV_P_ ev_signal *w) 2859ev_signal_start (EV_P_ ev_signal *w)
2135{ 2860{
2136#if EV_MULTIPLICITY
2137 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2138#endif
2139 if (expect_false (ev_is_active (w))) 2861 if (expect_false (ev_is_active (w)))
2140 return; 2862 return;
2141 2863
2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2864 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2143 2865
2144 evpipe_init (EV_A); 2866#if EV_MULTIPLICITY
2867 assert (("libev: a signal must not be attached to two different loops",
2868 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2145 2869
2870 signals [w->signum - 1].loop = EV_A;
2871#endif
2872
2873 EV_FREQUENT_CHECK;
2874
2875#if EV_USE_SIGNALFD
2876 if (sigfd == -2)
2146 { 2877 {
2147#ifndef _WIN32 2878 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2148 sigset_t full, prev; 2879 if (sigfd < 0 && errno == EINVAL)
2149 sigfillset (&full); 2880 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2150 sigprocmask (SIG_SETMASK, &full, &prev);
2151#endif
2152 2881
2153 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2882 if (sigfd >= 0)
2883 {
2884 fd_intern (sigfd); /* doing it twice will not hurt */
2154 2885
2155#ifndef _WIN32 2886 sigemptyset (&sigfd_set);
2156 sigprocmask (SIG_SETMASK, &prev, 0); 2887
2157#endif 2888 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2889 ev_set_priority (&sigfd_w, EV_MAXPRI);
2890 ev_io_start (EV_A_ &sigfd_w);
2891 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2892 }
2158 } 2893 }
2894
2895 if (sigfd >= 0)
2896 {
2897 /* TODO: check .head */
2898 sigaddset (&sigfd_set, w->signum);
2899 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2900
2901 signalfd (sigfd, &sigfd_set, 0);
2902 }
2903#endif
2159 2904
2160 ev_start (EV_A_ (W)w, 1); 2905 ev_start (EV_A_ (W)w, 1);
2161 wlist_add (&signals [w->signum - 1].head, (WL)w); 2906 wlist_add (&signals [w->signum - 1].head, (WL)w);
2162 2907
2163 if (!((WL)w)->next) 2908 if (!((WL)w)->next)
2909# if EV_USE_SIGNALFD
2910 if (sigfd < 0) /*TODO*/
2911# endif
2164 { 2912 {
2165#if _WIN32 2913# ifdef _WIN32
2914 evpipe_init (EV_A);
2915
2166 signal (w->signum, ev_sighandler); 2916 signal (w->signum, ev_sighandler);
2167#else 2917# else
2168 struct sigaction sa; 2918 struct sigaction sa;
2919
2920 evpipe_init (EV_A);
2921
2169 sa.sa_handler = ev_sighandler; 2922 sa.sa_handler = ev_sighandler;
2170 sigfillset (&sa.sa_mask); 2923 sigfillset (&sa.sa_mask);
2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2924 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2172 sigaction (w->signum, &sa, 0); 2925 sigaction (w->signum, &sa, 0);
2926
2927 if (origflags & EVFLAG_NOSIGMASK)
2928 {
2929 sigemptyset (&sa.sa_mask);
2930 sigaddset (&sa.sa_mask, w->signum);
2931 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2932 }
2173#endif 2933#endif
2174 } 2934 }
2935
2936 EV_FREQUENT_CHECK;
2175} 2937}
2176 2938
2177void noinline 2939void noinline
2178ev_signal_stop (EV_P_ ev_signal *w) 2940ev_signal_stop (EV_P_ ev_signal *w)
2179{ 2941{
2180 clear_pending (EV_A_ (W)w); 2942 clear_pending (EV_A_ (W)w);
2181 if (expect_false (!ev_is_active (w))) 2943 if (expect_false (!ev_is_active (w)))
2182 return; 2944 return;
2183 2945
2946 EV_FREQUENT_CHECK;
2947
2184 wlist_del (&signals [w->signum - 1].head, (WL)w); 2948 wlist_del (&signals [w->signum - 1].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 2949 ev_stop (EV_A_ (W)w);
2186 2950
2187 if (!signals [w->signum - 1].head) 2951 if (!signals [w->signum - 1].head)
2952 {
2953#if EV_MULTIPLICITY
2954 signals [w->signum - 1].loop = 0; /* unattach from signal */
2955#endif
2956#if EV_USE_SIGNALFD
2957 if (sigfd >= 0)
2958 {
2959 sigset_t ss;
2960
2961 sigemptyset (&ss);
2962 sigaddset (&ss, w->signum);
2963 sigdelset (&sigfd_set, w->signum);
2964
2965 signalfd (sigfd, &sigfd_set, 0);
2966 sigprocmask (SIG_UNBLOCK, &ss, 0);
2967 }
2968 else
2969#endif
2188 signal (w->signum, SIG_DFL); 2970 signal (w->signum, SIG_DFL);
2971 }
2972
2973 EV_FREQUENT_CHECK;
2189} 2974}
2975
2976#endif
2977
2978#if EV_CHILD_ENABLE
2190 2979
2191void 2980void
2192ev_child_start (EV_P_ ev_child *w) 2981ev_child_start (EV_P_ ev_child *w)
2193{ 2982{
2194#if EV_MULTIPLICITY 2983#if EV_MULTIPLICITY
2195 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2984 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2196#endif 2985#endif
2197 if (expect_false (ev_is_active (w))) 2986 if (expect_false (ev_is_active (w)))
2198 return; 2987 return;
2199 2988
2989 EV_FREQUENT_CHECK;
2990
2200 ev_start (EV_A_ (W)w, 1); 2991 ev_start (EV_A_ (W)w, 1);
2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2992 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2993
2994 EV_FREQUENT_CHECK;
2202} 2995}
2203 2996
2204void 2997void
2205ev_child_stop (EV_P_ ev_child *w) 2998ev_child_stop (EV_P_ ev_child *w)
2206{ 2999{
2207 clear_pending (EV_A_ (W)w); 3000 clear_pending (EV_A_ (W)w);
2208 if (expect_false (!ev_is_active (w))) 3001 if (expect_false (!ev_is_active (w)))
2209 return; 3002 return;
2210 3003
3004 EV_FREQUENT_CHECK;
3005
2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3006 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2212 ev_stop (EV_A_ (W)w); 3007 ev_stop (EV_A_ (W)w);
3008
3009 EV_FREQUENT_CHECK;
2213} 3010}
3011
3012#endif
2214 3013
2215#if EV_STAT_ENABLE 3014#if EV_STAT_ENABLE
2216 3015
2217# ifdef _WIN32 3016# ifdef _WIN32
2218# undef lstat 3017# undef lstat
2219# define lstat(a,b) _stati64 (a,b) 3018# define lstat(a,b) _stati64 (a,b)
2220# endif 3019# endif
2221 3020
2222#define DEF_STAT_INTERVAL 5.0074891 3021#define DEF_STAT_INTERVAL 5.0074891
3022#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2223#define MIN_STAT_INTERVAL 0.1074891 3023#define MIN_STAT_INTERVAL 0.1074891
2224 3024
2225static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3025static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2226 3026
2227#if EV_USE_INOTIFY 3027#if EV_USE_INOTIFY
2228# define EV_INOTIFY_BUFSIZE 8192 3028
3029/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3030# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2229 3031
2230static void noinline 3032static void noinline
2231infy_add (EV_P_ ev_stat *w) 3033infy_add (EV_P_ ev_stat *w)
2232{ 3034{
2233 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3035 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2234 3036
2235 if (w->wd < 0) 3037 if (w->wd >= 0)
3038 {
3039 struct statfs sfs;
3040
3041 /* now local changes will be tracked by inotify, but remote changes won't */
3042 /* unless the filesystem is known to be local, we therefore still poll */
3043 /* also do poll on <2.6.25, but with normal frequency */
3044
3045 if (!fs_2625)
3046 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3047 else if (!statfs (w->path, &sfs)
3048 && (sfs.f_type == 0x1373 /* devfs */
3049 || sfs.f_type == 0xEF53 /* ext2/3 */
3050 || sfs.f_type == 0x3153464a /* jfs */
3051 || sfs.f_type == 0x52654973 /* reiser3 */
3052 || sfs.f_type == 0x01021994 /* tempfs */
3053 || sfs.f_type == 0x58465342 /* xfs */))
3054 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3055 else
3056 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2236 { 3057 }
2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3058 else
3059 {
3060 /* can't use inotify, continue to stat */
3061 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2238 3062
2239 /* monitor some parent directory for speedup hints */ 3063 /* if path is not there, monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3064 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2241 /* but an efficiency issue only */ 3065 /* but an efficiency issue only */
2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3066 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2243 { 3067 {
2244 char path [4096]; 3068 char path [4096];
2245 strcpy (path, w->path); 3069 strcpy (path, w->path);
2249 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3073 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2250 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3074 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2251 3075
2252 char *pend = strrchr (path, '/'); 3076 char *pend = strrchr (path, '/');
2253 3077
2254 if (!pend) 3078 if (!pend || pend == path)
2255 break; /* whoops, no '/', complain to your admin */ 3079 break;
2256 3080
2257 *pend = 0; 3081 *pend = 0;
2258 w->wd = inotify_add_watch (fs_fd, path, mask); 3082 w->wd = inotify_add_watch (fs_fd, path, mask);
2259 } 3083 }
2260 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3084 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2261 } 3085 }
2262 } 3086 }
2263 else
2264 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2265 3087
2266 if (w->wd >= 0) 3088 if (w->wd >= 0)
2267 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3089 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3090
3091 /* now re-arm timer, if required */
3092 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3093 ev_timer_again (EV_A_ &w->timer);
3094 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2268} 3095}
2269 3096
2270static void noinline 3097static void noinline
2271infy_del (EV_P_ ev_stat *w) 3098infy_del (EV_P_ ev_stat *w)
2272{ 3099{
2275 3102
2276 if (wd < 0) 3103 if (wd < 0)
2277 return; 3104 return;
2278 3105
2279 w->wd = -2; 3106 w->wd = -2;
2280 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3107 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2281 wlist_del (&fs_hash [slot].head, (WL)w); 3108 wlist_del (&fs_hash [slot].head, (WL)w);
2282 3109
2283 /* remove this watcher, if others are watching it, they will rearm */ 3110 /* remove this watcher, if others are watching it, they will rearm */
2284 inotify_rm_watch (fs_fd, wd); 3111 inotify_rm_watch (fs_fd, wd);
2285} 3112}
2286 3113
2287static void noinline 3114static void noinline
2288infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3115infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2289{ 3116{
2290 if (slot < 0) 3117 if (slot < 0)
2291 /* overflow, need to check for all hahs slots */ 3118 /* overflow, need to check for all hash slots */
2292 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3119 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2293 infy_wd (EV_A_ slot, wd, ev); 3120 infy_wd (EV_A_ slot, wd, ev);
2294 else 3121 else
2295 { 3122 {
2296 WL w_; 3123 WL w_;
2297 3124
2298 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3125 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2299 { 3126 {
2300 ev_stat *w = (ev_stat *)w_; 3127 ev_stat *w = (ev_stat *)w_;
2301 w_ = w_->next; /* lets us remove this watcher and all before it */ 3128 w_ = w_->next; /* lets us remove this watcher and all before it */
2302 3129
2303 if (w->wd == wd || wd == -1) 3130 if (w->wd == wd || wd == -1)
2304 { 3131 {
2305 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3132 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2306 { 3133 {
3134 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2307 w->wd = -1; 3135 w->wd = -1;
2308 infy_add (EV_A_ w); /* re-add, no matter what */ 3136 infy_add (EV_A_ w); /* re-add, no matter what */
2309 } 3137 }
2310 3138
2311 stat_timer_cb (EV_A_ &w->timer, 0); 3139 stat_timer_cb (EV_A_ &w->timer, 0);
2316 3144
2317static void 3145static void
2318infy_cb (EV_P_ ev_io *w, int revents) 3146infy_cb (EV_P_ ev_io *w, int revents)
2319{ 3147{
2320 char buf [EV_INOTIFY_BUFSIZE]; 3148 char buf [EV_INOTIFY_BUFSIZE];
2321 struct inotify_event *ev = (struct inotify_event *)buf;
2322 int ofs; 3149 int ofs;
2323 int len = read (fs_fd, buf, sizeof (buf)); 3150 int len = read (fs_fd, buf, sizeof (buf));
2324 3151
2325 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3152 for (ofs = 0; ofs < len; )
3153 {
3154 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2326 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3155 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3156 ofs += sizeof (struct inotify_event) + ev->len;
3157 }
2327} 3158}
2328 3159
2329void inline_size 3160inline_size void
3161ev_check_2625 (EV_P)
3162{
3163 /* kernels < 2.6.25 are borked
3164 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3165 */
3166 if (ev_linux_version () < 0x020619)
3167 return;
3168
3169 fs_2625 = 1;
3170}
3171
3172inline_size int
3173infy_newfd (void)
3174{
3175#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3176 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3177 if (fd >= 0)
3178 return fd;
3179#endif
3180 return inotify_init ();
3181}
3182
3183inline_size void
2330infy_init (EV_P) 3184infy_init (EV_P)
2331{ 3185{
2332 if (fs_fd != -2) 3186 if (fs_fd != -2)
2333 return; 3187 return;
2334 3188
3189 fs_fd = -1;
3190
3191 ev_check_2625 (EV_A);
3192
2335 fs_fd = inotify_init (); 3193 fs_fd = infy_newfd ();
2336 3194
2337 if (fs_fd >= 0) 3195 if (fs_fd >= 0)
2338 { 3196 {
3197 fd_intern (fs_fd);
2339 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3198 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2340 ev_set_priority (&fs_w, EV_MAXPRI); 3199 ev_set_priority (&fs_w, EV_MAXPRI);
2341 ev_io_start (EV_A_ &fs_w); 3200 ev_io_start (EV_A_ &fs_w);
3201 ev_unref (EV_A);
2342 } 3202 }
2343} 3203}
2344 3204
2345void inline_size 3205inline_size void
2346infy_fork (EV_P) 3206infy_fork (EV_P)
2347{ 3207{
2348 int slot; 3208 int slot;
2349 3209
2350 if (fs_fd < 0) 3210 if (fs_fd < 0)
2351 return; 3211 return;
2352 3212
3213 ev_ref (EV_A);
3214 ev_io_stop (EV_A_ &fs_w);
2353 close (fs_fd); 3215 close (fs_fd);
2354 fs_fd = inotify_init (); 3216 fs_fd = infy_newfd ();
2355 3217
3218 if (fs_fd >= 0)
3219 {
3220 fd_intern (fs_fd);
3221 ev_io_set (&fs_w, fs_fd, EV_READ);
3222 ev_io_start (EV_A_ &fs_w);
3223 ev_unref (EV_A);
3224 }
3225
2356 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3226 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2357 { 3227 {
2358 WL w_ = fs_hash [slot].head; 3228 WL w_ = fs_hash [slot].head;
2359 fs_hash [slot].head = 0; 3229 fs_hash [slot].head = 0;
2360 3230
2361 while (w_) 3231 while (w_)
2366 w->wd = -1; 3236 w->wd = -1;
2367 3237
2368 if (fs_fd >= 0) 3238 if (fs_fd >= 0)
2369 infy_add (EV_A_ w); /* re-add, no matter what */ 3239 infy_add (EV_A_ w); /* re-add, no matter what */
2370 else 3240 else
3241 {
3242 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3243 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2371 ev_timer_start (EV_A_ &w->timer); 3244 ev_timer_again (EV_A_ &w->timer);
3245 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3246 }
2372 } 3247 }
2373
2374 } 3248 }
2375} 3249}
2376 3250
3251#endif
3252
3253#ifdef _WIN32
3254# define EV_LSTAT(p,b) _stati64 (p, b)
3255#else
3256# define EV_LSTAT(p,b) lstat (p, b)
2377#endif 3257#endif
2378 3258
2379void 3259void
2380ev_stat_stat (EV_P_ ev_stat *w) 3260ev_stat_stat (EV_P_ ev_stat *w)
2381{ 3261{
2388static void noinline 3268static void noinline
2389stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3269stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2390{ 3270{
2391 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3271 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2392 3272
2393 /* we copy this here each the time so that */ 3273 ev_statdata prev = w->attr;
2394 /* prev has the old value when the callback gets invoked */
2395 w->prev = w->attr;
2396 ev_stat_stat (EV_A_ w); 3274 ev_stat_stat (EV_A_ w);
2397 3275
2398 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3276 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2399 if ( 3277 if (
2400 w->prev.st_dev != w->attr.st_dev 3278 prev.st_dev != w->attr.st_dev
2401 || w->prev.st_ino != w->attr.st_ino 3279 || prev.st_ino != w->attr.st_ino
2402 || w->prev.st_mode != w->attr.st_mode 3280 || prev.st_mode != w->attr.st_mode
2403 || w->prev.st_nlink != w->attr.st_nlink 3281 || prev.st_nlink != w->attr.st_nlink
2404 || w->prev.st_uid != w->attr.st_uid 3282 || prev.st_uid != w->attr.st_uid
2405 || w->prev.st_gid != w->attr.st_gid 3283 || prev.st_gid != w->attr.st_gid
2406 || w->prev.st_rdev != w->attr.st_rdev 3284 || prev.st_rdev != w->attr.st_rdev
2407 || w->prev.st_size != w->attr.st_size 3285 || prev.st_size != w->attr.st_size
2408 || w->prev.st_atime != w->attr.st_atime 3286 || prev.st_atime != w->attr.st_atime
2409 || w->prev.st_mtime != w->attr.st_mtime 3287 || prev.st_mtime != w->attr.st_mtime
2410 || w->prev.st_ctime != w->attr.st_ctime 3288 || prev.st_ctime != w->attr.st_ctime
2411 ) { 3289 ) {
3290 /* we only update w->prev on actual differences */
3291 /* in case we test more often than invoke the callback, */
3292 /* to ensure that prev is always different to attr */
3293 w->prev = prev;
3294
2412 #if EV_USE_INOTIFY 3295 #if EV_USE_INOTIFY
3296 if (fs_fd >= 0)
3297 {
2413 infy_del (EV_A_ w); 3298 infy_del (EV_A_ w);
2414 infy_add (EV_A_ w); 3299 infy_add (EV_A_ w);
2415 ev_stat_stat (EV_A_ w); /* avoid race... */ 3300 ev_stat_stat (EV_A_ w); /* avoid race... */
3301 }
2416 #endif 3302 #endif
2417 3303
2418 ev_feed_event (EV_A_ w, EV_STAT); 3304 ev_feed_event (EV_A_ w, EV_STAT);
2419 } 3305 }
2420} 3306}
2423ev_stat_start (EV_P_ ev_stat *w) 3309ev_stat_start (EV_P_ ev_stat *w)
2424{ 3310{
2425 if (expect_false (ev_is_active (w))) 3311 if (expect_false (ev_is_active (w)))
2426 return; 3312 return;
2427 3313
2428 /* since we use memcmp, we need to clear any padding data etc. */
2429 memset (&w->prev, 0, sizeof (ev_statdata));
2430 memset (&w->attr, 0, sizeof (ev_statdata));
2431
2432 ev_stat_stat (EV_A_ w); 3314 ev_stat_stat (EV_A_ w);
2433 3315
3316 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2434 if (w->interval < MIN_STAT_INTERVAL) 3317 w->interval = MIN_STAT_INTERVAL;
2435 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2436 3318
2437 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3319 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2438 ev_set_priority (&w->timer, ev_priority (w)); 3320 ev_set_priority (&w->timer, ev_priority (w));
2439 3321
2440#if EV_USE_INOTIFY 3322#if EV_USE_INOTIFY
2441 infy_init (EV_A); 3323 infy_init (EV_A);
2442 3324
2443 if (fs_fd >= 0) 3325 if (fs_fd >= 0)
2444 infy_add (EV_A_ w); 3326 infy_add (EV_A_ w);
2445 else 3327 else
2446#endif 3328#endif
3329 {
2447 ev_timer_start (EV_A_ &w->timer); 3330 ev_timer_again (EV_A_ &w->timer);
3331 ev_unref (EV_A);
3332 }
2448 3333
2449 ev_start (EV_A_ (W)w, 1); 3334 ev_start (EV_A_ (W)w, 1);
3335
3336 EV_FREQUENT_CHECK;
2450} 3337}
2451 3338
2452void 3339void
2453ev_stat_stop (EV_P_ ev_stat *w) 3340ev_stat_stop (EV_P_ ev_stat *w)
2454{ 3341{
2455 clear_pending (EV_A_ (W)w); 3342 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 3343 if (expect_false (!ev_is_active (w)))
2457 return; 3344 return;
2458 3345
3346 EV_FREQUENT_CHECK;
3347
2459#if EV_USE_INOTIFY 3348#if EV_USE_INOTIFY
2460 infy_del (EV_A_ w); 3349 infy_del (EV_A_ w);
2461#endif 3350#endif
3351
3352 if (ev_is_active (&w->timer))
3353 {
3354 ev_ref (EV_A);
2462 ev_timer_stop (EV_A_ &w->timer); 3355 ev_timer_stop (EV_A_ &w->timer);
3356 }
2463 3357
2464 ev_stop (EV_A_ (W)w); 3358 ev_stop (EV_A_ (W)w);
3359
3360 EV_FREQUENT_CHECK;
2465} 3361}
2466#endif 3362#endif
2467 3363
2468#if EV_IDLE_ENABLE 3364#if EV_IDLE_ENABLE
2469void 3365void
2471{ 3367{
2472 if (expect_false (ev_is_active (w))) 3368 if (expect_false (ev_is_active (w)))
2473 return; 3369 return;
2474 3370
2475 pri_adjust (EV_A_ (W)w); 3371 pri_adjust (EV_A_ (W)w);
3372
3373 EV_FREQUENT_CHECK;
2476 3374
2477 { 3375 {
2478 int active = ++idlecnt [ABSPRI (w)]; 3376 int active = ++idlecnt [ABSPRI (w)];
2479 3377
2480 ++idleall; 3378 ++idleall;
2481 ev_start (EV_A_ (W)w, active); 3379 ev_start (EV_A_ (W)w, active);
2482 3380
2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3381 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2484 idles [ABSPRI (w)][active - 1] = w; 3382 idles [ABSPRI (w)][active - 1] = w;
2485 } 3383 }
3384
3385 EV_FREQUENT_CHECK;
2486} 3386}
2487 3387
2488void 3388void
2489ev_idle_stop (EV_P_ ev_idle *w) 3389ev_idle_stop (EV_P_ ev_idle *w)
2490{ 3390{
2491 clear_pending (EV_A_ (W)w); 3391 clear_pending (EV_A_ (W)w);
2492 if (expect_false (!ev_is_active (w))) 3392 if (expect_false (!ev_is_active (w)))
2493 return; 3393 return;
2494 3394
3395 EV_FREQUENT_CHECK;
3396
2495 { 3397 {
2496 int active = ev_active (w); 3398 int active = ev_active (w);
2497 3399
2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3400 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3401 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500 3402
2501 ev_stop (EV_A_ (W)w); 3403 ev_stop (EV_A_ (W)w);
2502 --idleall; 3404 --idleall;
2503 } 3405 }
2504}
2505#endif
2506 3406
3407 EV_FREQUENT_CHECK;
3408}
3409#endif
3410
3411#if EV_PREPARE_ENABLE
2507void 3412void
2508ev_prepare_start (EV_P_ ev_prepare *w) 3413ev_prepare_start (EV_P_ ev_prepare *w)
2509{ 3414{
2510 if (expect_false (ev_is_active (w))) 3415 if (expect_false (ev_is_active (w)))
2511 return; 3416 return;
3417
3418 EV_FREQUENT_CHECK;
2512 3419
2513 ev_start (EV_A_ (W)w, ++preparecnt); 3420 ev_start (EV_A_ (W)w, ++preparecnt);
2514 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3421 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2515 prepares [preparecnt - 1] = w; 3422 prepares [preparecnt - 1] = w;
3423
3424 EV_FREQUENT_CHECK;
2516} 3425}
2517 3426
2518void 3427void
2519ev_prepare_stop (EV_P_ ev_prepare *w) 3428ev_prepare_stop (EV_P_ ev_prepare *w)
2520{ 3429{
2521 clear_pending (EV_A_ (W)w); 3430 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 3431 if (expect_false (!ev_is_active (w)))
2523 return; 3432 return;
2524 3433
3434 EV_FREQUENT_CHECK;
3435
2525 { 3436 {
2526 int active = ev_active (w); 3437 int active = ev_active (w);
2527 3438
2528 prepares [active - 1] = prepares [--preparecnt]; 3439 prepares [active - 1] = prepares [--preparecnt];
2529 ev_active (prepares [active - 1]) = active; 3440 ev_active (prepares [active - 1]) = active;
2530 } 3441 }
2531 3442
2532 ev_stop (EV_A_ (W)w); 3443 ev_stop (EV_A_ (W)w);
2533}
2534 3444
3445 EV_FREQUENT_CHECK;
3446}
3447#endif
3448
3449#if EV_CHECK_ENABLE
2535void 3450void
2536ev_check_start (EV_P_ ev_check *w) 3451ev_check_start (EV_P_ ev_check *w)
2537{ 3452{
2538 if (expect_false (ev_is_active (w))) 3453 if (expect_false (ev_is_active (w)))
2539 return; 3454 return;
3455
3456 EV_FREQUENT_CHECK;
2540 3457
2541 ev_start (EV_A_ (W)w, ++checkcnt); 3458 ev_start (EV_A_ (W)w, ++checkcnt);
2542 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3459 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2543 checks [checkcnt - 1] = w; 3460 checks [checkcnt - 1] = w;
3461
3462 EV_FREQUENT_CHECK;
2544} 3463}
2545 3464
2546void 3465void
2547ev_check_stop (EV_P_ ev_check *w) 3466ev_check_stop (EV_P_ ev_check *w)
2548{ 3467{
2549 clear_pending (EV_A_ (W)w); 3468 clear_pending (EV_A_ (W)w);
2550 if (expect_false (!ev_is_active (w))) 3469 if (expect_false (!ev_is_active (w)))
2551 return; 3470 return;
2552 3471
3472 EV_FREQUENT_CHECK;
3473
2553 { 3474 {
2554 int active = ev_active (w); 3475 int active = ev_active (w);
2555 3476
2556 checks [active - 1] = checks [--checkcnt]; 3477 checks [active - 1] = checks [--checkcnt];
2557 ev_active (checks [active - 1]) = active; 3478 ev_active (checks [active - 1]) = active;
2558 } 3479 }
2559 3480
2560 ev_stop (EV_A_ (W)w); 3481 ev_stop (EV_A_ (W)w);
3482
3483 EV_FREQUENT_CHECK;
2561} 3484}
3485#endif
2562 3486
2563#if EV_EMBED_ENABLE 3487#if EV_EMBED_ENABLE
2564void noinline 3488void noinline
2565ev_embed_sweep (EV_P_ ev_embed *w) 3489ev_embed_sweep (EV_P_ ev_embed *w)
2566{ 3490{
2567 ev_loop (w->other, EVLOOP_NONBLOCK); 3491 ev_run (w->other, EVRUN_NOWAIT);
2568} 3492}
2569 3493
2570static void 3494static void
2571embed_io_cb (EV_P_ ev_io *io, int revents) 3495embed_io_cb (EV_P_ ev_io *io, int revents)
2572{ 3496{
2573 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3497 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2574 3498
2575 if (ev_cb (w)) 3499 if (ev_cb (w))
2576 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3500 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2577 else 3501 else
2578 ev_loop (w->other, EVLOOP_NONBLOCK); 3502 ev_run (w->other, EVRUN_NOWAIT);
2579} 3503}
2580 3504
2581static void 3505static void
2582embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3506embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2583{ 3507{
2584 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3508 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2585 3509
2586 { 3510 {
2587 struct ev_loop *loop = w->other; 3511 EV_P = w->other;
2588 3512
2589 while (fdchangecnt) 3513 while (fdchangecnt)
2590 { 3514 {
2591 fd_reify (EV_A); 3515 fd_reify (EV_A);
2592 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3516 ev_run (EV_A_ EVRUN_NOWAIT);
2593 } 3517 }
2594 } 3518 }
3519}
3520
3521static void
3522embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3523{
3524 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3525
3526 ev_embed_stop (EV_A_ w);
3527
3528 {
3529 EV_P = w->other;
3530
3531 ev_loop_fork (EV_A);
3532 ev_run (EV_A_ EVRUN_NOWAIT);
3533 }
3534
3535 ev_embed_start (EV_A_ w);
2595} 3536}
2596 3537
2597#if 0 3538#if 0
2598static void 3539static void
2599embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3540embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2607{ 3548{
2608 if (expect_false (ev_is_active (w))) 3549 if (expect_false (ev_is_active (w)))
2609 return; 3550 return;
2610 3551
2611 { 3552 {
2612 struct ev_loop *loop = w->other; 3553 EV_P = w->other;
2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3554 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3555 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2615 } 3556 }
3557
3558 EV_FREQUENT_CHECK;
2616 3559
2617 ev_set_priority (&w->io, ev_priority (w)); 3560 ev_set_priority (&w->io, ev_priority (w));
2618 ev_io_start (EV_A_ &w->io); 3561 ev_io_start (EV_A_ &w->io);
2619 3562
2620 ev_prepare_init (&w->prepare, embed_prepare_cb); 3563 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI); 3564 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare); 3565 ev_prepare_start (EV_A_ &w->prepare);
2623 3566
3567 ev_fork_init (&w->fork, embed_fork_cb);
3568 ev_fork_start (EV_A_ &w->fork);
3569
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3570 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625 3571
2626 ev_start (EV_A_ (W)w, 1); 3572 ev_start (EV_A_ (W)w, 1);
3573
3574 EV_FREQUENT_CHECK;
2627} 3575}
2628 3576
2629void 3577void
2630ev_embed_stop (EV_P_ ev_embed *w) 3578ev_embed_stop (EV_P_ ev_embed *w)
2631{ 3579{
2632 clear_pending (EV_A_ (W)w); 3580 clear_pending (EV_A_ (W)w);
2633 if (expect_false (!ev_is_active (w))) 3581 if (expect_false (!ev_is_active (w)))
2634 return; 3582 return;
2635 3583
3584 EV_FREQUENT_CHECK;
3585
2636 ev_io_stop (EV_A_ &w->io); 3586 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare); 3587 ev_prepare_stop (EV_A_ &w->prepare);
3588 ev_fork_stop (EV_A_ &w->fork);
2638 3589
2639 ev_stop (EV_A_ (W)w); 3590 ev_stop (EV_A_ (W)w);
3591
3592 EV_FREQUENT_CHECK;
2640} 3593}
2641#endif 3594#endif
2642 3595
2643#if EV_FORK_ENABLE 3596#if EV_FORK_ENABLE
2644void 3597void
2645ev_fork_start (EV_P_ ev_fork *w) 3598ev_fork_start (EV_P_ ev_fork *w)
2646{ 3599{
2647 if (expect_false (ev_is_active (w))) 3600 if (expect_false (ev_is_active (w)))
2648 return; 3601 return;
3602
3603 EV_FREQUENT_CHECK;
2649 3604
2650 ev_start (EV_A_ (W)w, ++forkcnt); 3605 ev_start (EV_A_ (W)w, ++forkcnt);
2651 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3606 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2652 forks [forkcnt - 1] = w; 3607 forks [forkcnt - 1] = w;
3608
3609 EV_FREQUENT_CHECK;
2653} 3610}
2654 3611
2655void 3612void
2656ev_fork_stop (EV_P_ ev_fork *w) 3613ev_fork_stop (EV_P_ ev_fork *w)
2657{ 3614{
2658 clear_pending (EV_A_ (W)w); 3615 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w))) 3616 if (expect_false (!ev_is_active (w)))
2660 return; 3617 return;
2661 3618
3619 EV_FREQUENT_CHECK;
3620
2662 { 3621 {
2663 int active = ev_active (w); 3622 int active = ev_active (w);
2664 3623
2665 forks [active - 1] = forks [--forkcnt]; 3624 forks [active - 1] = forks [--forkcnt];
2666 ev_active (forks [active - 1]) = active; 3625 ev_active (forks [active - 1]) = active;
2667 } 3626 }
2668 3627
2669 ev_stop (EV_A_ (W)w); 3628 ev_stop (EV_A_ (W)w);
2670}
2671#endif
2672 3629
3630 EV_FREQUENT_CHECK;
3631}
3632#endif
3633
2673#if EV_ASYNC_ENABLE 3634#if EV_CLEANUP_ENABLE
2674void 3635void
2675ev_async_start (EV_P_ ev_async *w) 3636ev_cleanup_start (EV_P_ ev_cleanup *w)
2676{ 3637{
2677 if (expect_false (ev_is_active (w))) 3638 if (expect_false (ev_is_active (w)))
2678 return; 3639 return;
2679 3640
3641 EV_FREQUENT_CHECK;
3642
3643 ev_start (EV_A_ (W)w, ++cleanupcnt);
3644 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3645 cleanups [cleanupcnt - 1] = w;
3646
3647 /* cleanup watchers should never keep a refcount on the loop */
3648 ev_unref (EV_A);
3649 EV_FREQUENT_CHECK;
3650}
3651
3652void
3653ev_cleanup_stop (EV_P_ ev_cleanup *w)
3654{
3655 clear_pending (EV_A_ (W)w);
3656 if (expect_false (!ev_is_active (w)))
3657 return;
3658
3659 EV_FREQUENT_CHECK;
3660 ev_ref (EV_A);
3661
3662 {
3663 int active = ev_active (w);
3664
3665 cleanups [active - 1] = cleanups [--cleanupcnt];
3666 ev_active (cleanups [active - 1]) = active;
3667 }
3668
3669 ev_stop (EV_A_ (W)w);
3670
3671 EV_FREQUENT_CHECK;
3672}
3673#endif
3674
3675#if EV_ASYNC_ENABLE
3676void
3677ev_async_start (EV_P_ ev_async *w)
3678{
3679 if (expect_false (ev_is_active (w)))
3680 return;
3681
3682 w->sent = 0;
3683
2680 evpipe_init (EV_A); 3684 evpipe_init (EV_A);
3685
3686 EV_FREQUENT_CHECK;
2681 3687
2682 ev_start (EV_A_ (W)w, ++asynccnt); 3688 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3689 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w; 3690 asyncs [asynccnt - 1] = w;
3691
3692 EV_FREQUENT_CHECK;
2685} 3693}
2686 3694
2687void 3695void
2688ev_async_stop (EV_P_ ev_async *w) 3696ev_async_stop (EV_P_ ev_async *w)
2689{ 3697{
2690 clear_pending (EV_A_ (W)w); 3698 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w))) 3699 if (expect_false (!ev_is_active (w)))
2692 return; 3700 return;
2693 3701
3702 EV_FREQUENT_CHECK;
3703
2694 { 3704 {
2695 int active = ev_active (w); 3705 int active = ev_active (w);
2696 3706
2697 asyncs [active - 1] = asyncs [--asynccnt]; 3707 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active; 3708 ev_active (asyncs [active - 1]) = active;
2699 } 3709 }
2700 3710
2701 ev_stop (EV_A_ (W)w); 3711 ev_stop (EV_A_ (W)w);
3712
3713 EV_FREQUENT_CHECK;
2702} 3714}
2703 3715
2704void 3716void
2705ev_async_send (EV_P_ ev_async *w) 3717ev_async_send (EV_P_ ev_async *w)
2706{ 3718{
2707 w->sent = 1; 3719 w->sent = 1;
2708 evpipe_write (EV_A_ &gotasync); 3720 evpipe_write (EV_A_ &async_pending);
2709} 3721}
2710#endif 3722#endif
2711 3723
2712/*****************************************************************************/ 3724/*****************************************************************************/
2713 3725
2723once_cb (EV_P_ struct ev_once *once, int revents) 3735once_cb (EV_P_ struct ev_once *once, int revents)
2724{ 3736{
2725 void (*cb)(int revents, void *arg) = once->cb; 3737 void (*cb)(int revents, void *arg) = once->cb;
2726 void *arg = once->arg; 3738 void *arg = once->arg;
2727 3739
2728 ev_io_stop (EV_A_ &once->io); 3740 ev_io_stop (EV_A_ &once->io);
2729 ev_timer_stop (EV_A_ &once->to); 3741 ev_timer_stop (EV_A_ &once->to);
2730 ev_free (once); 3742 ev_free (once);
2731 3743
2732 cb (revents, arg); 3744 cb (revents, arg);
2733} 3745}
2734 3746
2735static void 3747static void
2736once_cb_io (EV_P_ ev_io *w, int revents) 3748once_cb_io (EV_P_ ev_io *w, int revents)
2737{ 3749{
2738 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3750 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3751
3752 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2739} 3753}
2740 3754
2741static void 3755static void
2742once_cb_to (EV_P_ ev_timer *w, int revents) 3756once_cb_to (EV_P_ ev_timer *w, int revents)
2743{ 3757{
2744 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3758 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3759
3760 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2745} 3761}
2746 3762
2747void 3763void
2748ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3764ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2749{ 3765{
2750 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3766 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2751 3767
2752 if (expect_false (!once)) 3768 if (expect_false (!once))
2753 { 3769 {
2754 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3770 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2755 return; 3771 return;
2756 } 3772 }
2757 3773
2758 once->cb = cb; 3774 once->cb = cb;
2759 once->arg = arg; 3775 once->arg = arg;
2771 ev_timer_set (&once->to, timeout, 0.); 3787 ev_timer_set (&once->to, timeout, 0.);
2772 ev_timer_start (EV_A_ &once->to); 3788 ev_timer_start (EV_A_ &once->to);
2773 } 3789 }
2774} 3790}
2775 3791
3792/*****************************************************************************/
3793
3794#if EV_WALK_ENABLE
3795void
3796ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3797{
3798 int i, j;
3799 ev_watcher_list *wl, *wn;
3800
3801 if (types & (EV_IO | EV_EMBED))
3802 for (i = 0; i < anfdmax; ++i)
3803 for (wl = anfds [i].head; wl; )
3804 {
3805 wn = wl->next;
3806
3807#if EV_EMBED_ENABLE
3808 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3809 {
3810 if (types & EV_EMBED)
3811 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3812 }
3813 else
3814#endif
3815#if EV_USE_INOTIFY
3816 if (ev_cb ((ev_io *)wl) == infy_cb)
3817 ;
3818 else
3819#endif
3820 if ((ev_io *)wl != &pipe_w)
3821 if (types & EV_IO)
3822 cb (EV_A_ EV_IO, wl);
3823
3824 wl = wn;
3825 }
3826
3827 if (types & (EV_TIMER | EV_STAT))
3828 for (i = timercnt + HEAP0; i-- > HEAP0; )
3829#if EV_STAT_ENABLE
3830 /*TODO: timer is not always active*/
3831 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3832 {
3833 if (types & EV_STAT)
3834 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3835 }
3836 else
3837#endif
3838 if (types & EV_TIMER)
3839 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3840
3841#if EV_PERIODIC_ENABLE
3842 if (types & EV_PERIODIC)
3843 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3844 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3845#endif
3846
3847#if EV_IDLE_ENABLE
3848 if (types & EV_IDLE)
3849 for (j = NUMPRI; i--; )
3850 for (i = idlecnt [j]; i--; )
3851 cb (EV_A_ EV_IDLE, idles [j][i]);
3852#endif
3853
3854#if EV_FORK_ENABLE
3855 if (types & EV_FORK)
3856 for (i = forkcnt; i--; )
3857 if (ev_cb (forks [i]) != embed_fork_cb)
3858 cb (EV_A_ EV_FORK, forks [i]);
3859#endif
3860
3861#if EV_ASYNC_ENABLE
3862 if (types & EV_ASYNC)
3863 for (i = asynccnt; i--; )
3864 cb (EV_A_ EV_ASYNC, asyncs [i]);
3865#endif
3866
3867#if EV_PREPARE_ENABLE
3868 if (types & EV_PREPARE)
3869 for (i = preparecnt; i--; )
3870# if EV_EMBED_ENABLE
3871 if (ev_cb (prepares [i]) != embed_prepare_cb)
3872# endif
3873 cb (EV_A_ EV_PREPARE, prepares [i]);
3874#endif
3875
3876#if EV_CHECK_ENABLE
3877 if (types & EV_CHECK)
3878 for (i = checkcnt; i--; )
3879 cb (EV_A_ EV_CHECK, checks [i]);
3880#endif
3881
3882#if EV_SIGNAL_ENABLE
3883 if (types & EV_SIGNAL)
3884 for (i = 0; i < EV_NSIG - 1; ++i)
3885 for (wl = signals [i].head; wl; )
3886 {
3887 wn = wl->next;
3888 cb (EV_A_ EV_SIGNAL, wl);
3889 wl = wn;
3890 }
3891#endif
3892
3893#if EV_CHILD_ENABLE
3894 if (types & EV_CHILD)
3895 for (i = (EV_PID_HASHSIZE); i--; )
3896 for (wl = childs [i]; wl; )
3897 {
3898 wn = wl->next;
3899 cb (EV_A_ EV_CHILD, wl);
3900 wl = wn;
3901 }
3902#endif
3903/* EV_STAT 0x00001000 /* stat data changed */
3904/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3905}
3906#endif
3907
2776#if EV_MULTIPLICITY 3908#if EV_MULTIPLICITY
2777 #include "ev_wrap.h" 3909 #include "ev_wrap.h"
2778#endif 3910#endif
2779 3911
2780#ifdef __cplusplus 3912EV_CPP(})
2781}
2782#endif
2783 3913

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines