ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC vs.
Revision 1.395 by root, Wed Aug 24 16:08:17 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
152#endif 186#endif
187
188EV_CPP(extern "C" {)
153 189
154#ifndef _WIN32 190#ifndef _WIN32
155# include <sys/time.h> 191# include <sys/time.h>
156# include <sys/wait.h> 192# include <sys/wait.h>
157# include <unistd.h> 193# include <unistd.h>
158#else 194#else
195# include <io.h>
159# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 197# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
163# endif 200# endif
201# undef EV_AVOID_STDIO
164#endif 202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
165 211
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 212/* this block tries to deduce configuration from header-defined symbols and defaults */
167 213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
251# endif
252#endif
253
168#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
169# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
170#endif 260#endif
171 261
172#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 264#endif
175 265
176#ifndef EV_USE_NANOSLEEP 266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
177# define EV_USE_NANOSLEEP 0 270# define EV_USE_NANOSLEEP 0
271# endif
178#endif 272#endif
179 273
180#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 276#endif
183 277
184#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
185# ifdef _WIN32 279# ifdef _WIN32
186# define EV_USE_POLL 0 280# define EV_USE_POLL 0
187# else 281# else
188# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 283# endif
190#endif 284#endif
191 285
192#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 289# else
196# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
197# endif 291# endif
198#endif 292#endif
199 293
205# define EV_USE_PORT 0 299# define EV_USE_PORT 0
206#endif 300#endif
207 301
208#ifndef EV_USE_INOTIFY 302#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 304# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 305# else
212# define EV_USE_INOTIFY 0 306# define EV_USE_INOTIFY 0
213# endif 307# endif
214#endif 308#endif
215 309
216#ifndef EV_PID_HASHSIZE 310#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 312#endif
223 313
224#ifndef EV_INOTIFY_HASHSIZE 314#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 316#endif
231 317
232#ifndef EV_USE_EVENTFD 318#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 320# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 321# else
236# define EV_USE_EVENTFD 0 322# define EV_USE_EVENTFD 0
237# endif 323# endif
238#endif 324#endif
239 325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
241 373
242#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
245#endif 377#endif
253# undef EV_USE_INOTIFY 385# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 386# define EV_USE_INOTIFY 0
255#endif 387#endif
256 388
257#if !EV_USE_NANOSLEEP 389#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
259# include <sys/select.h> 392# include <sys/select.h>
260# endif 393# endif
261#endif 394#endif
262 395
263#if EV_USE_INOTIFY 396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
264# include <sys/inotify.h> 398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
265#endif 404#endif
266 405
267#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 407# include <winsock.h>
269#endif 408#endif
270 409
271#if EV_USE_EVENTFD 410#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 412# include <stdint.h>
274# ifdef __cplusplus 413# ifndef EFD_NONBLOCK
275extern "C" { 414# define EFD_NONBLOCK O_NONBLOCK
276# endif 415# endif
277int eventfd (unsigned int initval, int flags); 416# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 417# ifdef O_CLOEXEC
279} 418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
280# endif 422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
281#endif 446#endif
282 447
283/**/ 448/**/
284 449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
285/* 456/*
286 * This is used to avoid floating point rounding problems. 457 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 458 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 459 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 462
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 465
466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468
469/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
470/* ECB.H BEGIN */
471/*
472 * libecb - http://software.schmorp.de/pkg/libecb
473 *
474 * Copyright (©) 2009-2011 Marc Alexander Lehmann <libecb@schmorp.de>
475 * Copyright (©) 2011 Emanuele Giaquinta
476 * All rights reserved.
477 *
478 * Redistribution and use in source and binary forms, with or without modifica-
479 * tion, are permitted provided that the following conditions are met:
480 *
481 * 1. Redistributions of source code must retain the above copyright notice,
482 * this list of conditions and the following disclaimer.
483 *
484 * 2. Redistributions in binary form must reproduce the above copyright
485 * notice, this list of conditions and the following disclaimer in the
486 * documentation and/or other materials provided with the distribution.
487 *
488 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
489 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
490 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
491 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
492 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
493 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
494 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
495 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
496 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
497 * OF THE POSSIBILITY OF SUCH DAMAGE.
498 */
499
500#ifndef ECB_H
501#define ECB_H
502
503#ifdef _WIN32
504 typedef signed char int8_t;
505 typedef unsigned char uint8_t;
506 typedef signed short int16_t;
507 typedef unsigned short uint16_t;
508 typedef signed int int32_t;
509 typedef unsigned int uint32_t;
299#if __GNUC__ >= 4 510 #if __GNUC__
300# define expect(expr,value) __builtin_expect ((expr),(value)) 511 typedef signed long long int64_t;
301# define noinline __attribute__ ((noinline)) 512 typedef unsigned long long uint64_t;
513 #else /* _MSC_VER || __BORLANDC__ */
514 typedef signed __int64 int64_t;
515 typedef unsigned __int64 uint64_t;
516 #endif
302#else 517#else
303# define expect(expr,value) (expr) 518 #include <inttypes.h>
304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif 519#endif
520
521/* many compilers define _GNUC_ to some versions but then only implement
522 * what their idiot authors think are the "more important" extensions,
523 * causing enormous grief in return for some better fake benchmark numbers.
524 * or so.
525 * we try to detect these and simply assume they are not gcc - if they have
526 * an issue with that they should have done it right in the first place.
527 */
528#ifndef ECB_GCC_VERSION
529 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
530 #define ECB_GCC_VERSION(major,minor) 0
531 #else
532 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
308#endif 533 #endif
534#endif
309 535
536/*****************************************************************************/
537
538/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
539/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
540
541#if ECB_NO_THREADS || ECB_NO_SMP
542 #define ECB_MEMORY_FENCE do { } while (0)
543#endif
544
545#ifndef ECB_MEMORY_FENCE
546 #if ECB_GCC_VERSION(2,5)
547 #if __i386__
548 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
549 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
550 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
551 #elif __amd64
552 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
553 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
554 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
555 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
556 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
557 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
558 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
559 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
560 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
561 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
563 #endif
564 #endif
565#endif
566
567#ifndef ECB_MEMORY_FENCE
568 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER)
569 #define ECB_MEMORY_FENCE __sync_synchronize ()
570 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
571 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
572 #elif _MSC_VER >= 1400 /* VC++ 2005 */
573 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
574 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
575 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
576 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
577 #elif defined(_WIN32)
578 #include <WinNT.h>
579 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
580 #endif
581#endif
582
583#ifndef ECB_MEMORY_FENCE
584 #if !ECB_AVOID_PTHREADS
585 /*
586 * if you get undefined symbol references to pthread_mutex_lock,
587 * or failure to find pthread.h, then you should implement
588 * the ECB_MEMORY_FENCE operations for your cpu/compiler
589 * OR provide pthread.h and link against the posix thread library
590 * of your system.
591 */
592 #include <pthread.h>
593 #define ECB_NEEDS_PTHREADS 1
594 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
595
596 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
597 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
598 #endif
599#endif
600
601#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
602 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
603#endif
604
605#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
606 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
607#endif
608
609/*****************************************************************************/
610
611#define ECB_C99 (__STDC_VERSION__ >= 199901L)
612
613#if __cplusplus
614 #define ecb_inline static inline
615#elif ECB_GCC_VERSION(2,5)
616 #define ecb_inline static __inline__
617#elif ECB_C99
618 #define ecb_inline static inline
619#else
620 #define ecb_inline static
621#endif
622
623#if ECB_GCC_VERSION(3,3)
624 #define ecb_restrict __restrict__
625#elif ECB_C99
626 #define ecb_restrict restrict
627#else
628 #define ecb_restrict
629#endif
630
631typedef int ecb_bool;
632
633#define ECB_CONCAT_(a, b) a ## b
634#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
635#define ECB_STRINGIFY_(a) # a
636#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
637
638#define ecb_function_ ecb_inline
639
640#if ECB_GCC_VERSION(3,1)
641 #define ecb_attribute(attrlist) __attribute__(attrlist)
642 #define ecb_is_constant(expr) __builtin_constant_p (expr)
643 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
644 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
645#else
646 #define ecb_attribute(attrlist)
647 #define ecb_is_constant(expr) 0
648 #define ecb_expect(expr,value) (expr)
649 #define ecb_prefetch(addr,rw,locality)
650#endif
651
652/* no emulation for ecb_decltype */
653#if ECB_GCC_VERSION(4,5)
654 #define ecb_decltype(x) __decltype(x)
655#elif ECB_GCC_VERSION(3,0)
656 #define ecb_decltype(x) __typeof(x)
657#endif
658
659#define ecb_noinline ecb_attribute ((__noinline__))
660#define ecb_noreturn ecb_attribute ((__noreturn__))
661#define ecb_unused ecb_attribute ((__unused__))
662#define ecb_const ecb_attribute ((__const__))
663#define ecb_pure ecb_attribute ((__pure__))
664
665#if ECB_GCC_VERSION(4,3)
666 #define ecb_artificial ecb_attribute ((__artificial__))
667 #define ecb_hot ecb_attribute ((__hot__))
668 #define ecb_cold ecb_attribute ((__cold__))
669#else
670 #define ecb_artificial
671 #define ecb_hot
672 #define ecb_cold
673#endif
674
675/* put around conditional expressions if you are very sure that the */
676/* expression is mostly true or mostly false. note that these return */
677/* booleans, not the expression. */
310#define expect_false(expr) expect ((expr) != 0, 0) 678#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 679#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
680/* for compatibility to the rest of the world */
681#define ecb_likely(expr) ecb_expect_true (expr)
682#define ecb_unlikely(expr) ecb_expect_false (expr)
683
684/* count trailing zero bits and count # of one bits */
685#if ECB_GCC_VERSION(3,4)
686 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
687 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
688 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
689 #define ecb_ctz32(x) __builtin_ctz (x)
690 #define ecb_ctz64(x) __builtin_ctzll (x)
691 #define ecb_popcount32(x) __builtin_popcount (x)
692 /* no popcountll */
693#else
694 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
695 ecb_function_ int
696 ecb_ctz32 (uint32_t x)
697 {
698 int r = 0;
699
700 x &= ~x + 1; /* this isolates the lowest bit */
701
702#if ECB_branchless_on_i386
703 r += !!(x & 0xaaaaaaaa) << 0;
704 r += !!(x & 0xcccccccc) << 1;
705 r += !!(x & 0xf0f0f0f0) << 2;
706 r += !!(x & 0xff00ff00) << 3;
707 r += !!(x & 0xffff0000) << 4;
708#else
709 if (x & 0xaaaaaaaa) r += 1;
710 if (x & 0xcccccccc) r += 2;
711 if (x & 0xf0f0f0f0) r += 4;
712 if (x & 0xff00ff00) r += 8;
713 if (x & 0xffff0000) r += 16;
714#endif
715
716 return r;
717 }
718
719 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
720 ecb_function_ int
721 ecb_ctz64 (uint64_t x)
722 {
723 int shift = x & 0xffffffffU ? 0 : 32;
724 return ecb_ctz32 (x >> shift) + shift;
725 }
726
727 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
728 ecb_function_ int
729 ecb_popcount32 (uint32_t x)
730 {
731 x -= (x >> 1) & 0x55555555;
732 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
733 x = ((x >> 4) + x) & 0x0f0f0f0f;
734 x *= 0x01010101;
735
736 return x >> 24;
737 }
738
739 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
740 ecb_function_ int ecb_ld32 (uint32_t x)
741 {
742 int r = 0;
743
744 if (x >> 16) { x >>= 16; r += 16; }
745 if (x >> 8) { x >>= 8; r += 8; }
746 if (x >> 4) { x >>= 4; r += 4; }
747 if (x >> 2) { x >>= 2; r += 2; }
748 if (x >> 1) { r += 1; }
749
750 return r;
751 }
752
753 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
754 ecb_function_ int ecb_ld64 (uint64_t x)
755 {
756 int r = 0;
757
758 if (x >> 32) { x >>= 32; r += 32; }
759
760 return r + ecb_ld32 (x);
761 }
762#endif
763
764/* popcount64 is only available on 64 bit cpus as gcc builtin */
765/* so for this version we are lazy */
766ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
767ecb_function_ int
768ecb_popcount64 (uint64_t x)
769{
770 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
771}
772
773ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
774ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
775ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
776ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
777ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
778ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
779ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
780ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
781
782ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
783ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
784ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
785ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
786ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
787ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
788ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
789ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
790
791#if ECB_GCC_VERSION(4,3)
792 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
793 #define ecb_bswap32(x) __builtin_bswap32 (x)
794 #define ecb_bswap64(x) __builtin_bswap64 (x)
795#else
796 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
797 ecb_function_ uint16_t
798 ecb_bswap16 (uint16_t x)
799 {
800 return ecb_rotl16 (x, 8);
801 }
802
803 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
804 ecb_function_ uint32_t
805 ecb_bswap32 (uint32_t x)
806 {
807 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
808 }
809
810 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
811 ecb_function_ uint64_t
812 ecb_bswap64 (uint64_t x)
813 {
814 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
815 }
816#endif
817
818#if ECB_GCC_VERSION(4,5)
819 #define ecb_unreachable() __builtin_unreachable ()
820#else
821 /* this seems to work fine, but gcc always emits a warning for it :/ */
822 ecb_function_ void ecb_unreachable (void) ecb_noreturn;
823 ecb_function_ void ecb_unreachable (void) { }
824#endif
825
826/* try to tell the compiler that some condition is definitely true */
827#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
828
829ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
830ecb_function_ unsigned char
831ecb_byteorder_helper (void)
832{
833 const uint32_t u = 0x11223344;
834 return *(unsigned char *)&u;
835}
836
837ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
838ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
839ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
840ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
841
842#if ECB_GCC_VERSION(3,0) || ECB_C99
843 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
844#else
845 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
846#endif
847
848#if ecb_cplusplus_does_not_suck
849 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
850 template<typename T, int N>
851 static inline int ecb_array_length (const T (&arr)[N])
852 {
853 return N;
854 }
855#else
856 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
857#endif
858
859#endif
860
861/* ECB.H END */
862
863#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
864# undef ECB_MEMORY_FENCE
865# undef ECB_MEMORY_FENCE_ACQUIRE
866# undef ECB_MEMORY_FENCE_RELEASE
867#endif
868
869#define expect_false(cond) ecb_expect_false (cond)
870#define expect_true(cond) ecb_expect_true (cond)
871#define noinline ecb_noinline
872
312#define inline_size static inline 873#define inline_size ecb_inline
313 874
314#if EV_MINIMAL 875#if EV_FEATURE_CODE
876# define inline_speed ecb_inline
877#else
315# define inline_speed static noinline 878# define inline_speed static noinline
879#endif
880
881#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
882
883#if EV_MINPRI == EV_MAXPRI
884# define ABSPRI(w) (((W)w), 0)
316#else 885#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 886# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
887#endif
322 888
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 889#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 890#define EMPTY2(a,b) /* used to suppress some warnings */
325 891
326typedef ev_watcher *W; 892typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 894typedef ev_watcher_time *WT;
329 895
330#define ev_active(w) ((W)(w))->active 896#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 897#define ev_at(w) ((WT)(w))->at
332 898
899#if EV_USE_REALTIME
900/* sig_atomic_t is used to avoid per-thread variables or locking but still */
901/* giving it a reasonably high chance of working on typical architectures */
902static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
903#endif
904
333#if EV_USE_MONOTONIC 905#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 906static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
907#endif
908
909#ifndef EV_FD_TO_WIN32_HANDLE
910# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
911#endif
912#ifndef EV_WIN32_HANDLE_TO_FD
913# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
914#endif
915#ifndef EV_WIN32_CLOSE_FD
916# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 917#endif
338 918
339#ifdef _WIN32 919#ifdef _WIN32
340# include "ev_win32.c" 920# include "ev_win32.c"
341#endif 921#endif
342 922
343/*****************************************************************************/ 923/*****************************************************************************/
344 924
925/* define a suitable floor function (only used by periodics atm) */
926
927#if EV_USE_FLOOR
928# include <math.h>
929# define ev_floor(v) floor (v)
930#else
931
932#include <float.h>
933
934/* a floor() replacement function, should be independent of ev_tstamp type */
935static ev_tstamp noinline
936ev_floor (ev_tstamp v)
937{
938 /* the choice of shift factor is not terribly important */
939#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
940 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
941#else
942 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
943#endif
944
945 /* argument too large for an unsigned long? */
946 if (expect_false (v >= shift))
947 {
948 ev_tstamp f;
949
950 if (v == v - 1.)
951 return v; /* very large number */
952
953 f = shift * ev_floor (v * (1. / shift));
954 return f + ev_floor (v - f);
955 }
956
957 /* special treatment for negative args? */
958 if (expect_false (v < 0.))
959 {
960 ev_tstamp f = -ev_floor (-v);
961
962 return f - (f == v ? 0 : 1);
963 }
964
965 /* fits into an unsigned long */
966 return (unsigned long)v;
967}
968
969#endif
970
971/*****************************************************************************/
972
973#ifdef __linux
974# include <sys/utsname.h>
975#endif
976
977static unsigned int noinline ecb_cold
978ev_linux_version (void)
979{
980#ifdef __linux
981 unsigned int v = 0;
982 struct utsname buf;
983 int i;
984 char *p = buf.release;
985
986 if (uname (&buf))
987 return 0;
988
989 for (i = 3+1; --i; )
990 {
991 unsigned int c = 0;
992
993 for (;;)
994 {
995 if (*p >= '0' && *p <= '9')
996 c = c * 10 + *p++ - '0';
997 else
998 {
999 p += *p == '.';
1000 break;
1001 }
1002 }
1003
1004 v = (v << 8) | c;
1005 }
1006
1007 return v;
1008#else
1009 return 0;
1010#endif
1011}
1012
1013/*****************************************************************************/
1014
1015#if EV_AVOID_STDIO
1016static void noinline ecb_cold
1017ev_printerr (const char *msg)
1018{
1019 write (STDERR_FILENO, msg, strlen (msg));
1020}
1021#endif
1022
345static void (*syserr_cb)(const char *msg); 1023static void (*syserr_cb)(const char *msg);
346 1024
347void 1025void ecb_cold
348ev_set_syserr_cb (void (*cb)(const char *msg)) 1026ev_set_syserr_cb (void (*cb)(const char *msg))
349{ 1027{
350 syserr_cb = cb; 1028 syserr_cb = cb;
351} 1029}
352 1030
353static void noinline 1031static void noinline ecb_cold
354syserr (const char *msg) 1032ev_syserr (const char *msg)
355{ 1033{
356 if (!msg) 1034 if (!msg)
357 msg = "(libev) system error"; 1035 msg = "(libev) system error";
358 1036
359 if (syserr_cb) 1037 if (syserr_cb)
360 syserr_cb (msg); 1038 syserr_cb (msg);
361 else 1039 else
362 { 1040 {
1041#if EV_AVOID_STDIO
1042 ev_printerr (msg);
1043 ev_printerr (": ");
1044 ev_printerr (strerror (errno));
1045 ev_printerr ("\n");
1046#else
363 perror (msg); 1047 perror (msg);
1048#endif
364 abort (); 1049 abort ();
365 } 1050 }
366} 1051}
367 1052
368static void * 1053static void *
369ev_realloc_emul (void *ptr, long size) 1054ev_realloc_emul (void *ptr, long size)
370{ 1055{
1056#if __GLIBC__
1057 return realloc (ptr, size);
1058#else
371 /* some systems, notably openbsd and darwin, fail to properly 1059 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 1060 * implement realloc (x, 0) (as required by both ansi c-89 and
373 * the single unix specification, so work around them here. 1061 * the single unix specification, so work around them here.
374 */ 1062 */
375 1063
376 if (size) 1064 if (size)
377 return realloc (ptr, size); 1065 return realloc (ptr, size);
378 1066
379 free (ptr); 1067 free (ptr);
380 return 0; 1068 return 0;
1069#endif
381} 1070}
382 1071
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1072static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384 1073
385void 1074void ecb_cold
386ev_set_allocator (void *(*cb)(void *ptr, long size)) 1075ev_set_allocator (void *(*cb)(void *ptr, long size))
387{ 1076{
388 alloc = cb; 1077 alloc = cb;
389} 1078}
390 1079
393{ 1082{
394 ptr = alloc (ptr, size); 1083 ptr = alloc (ptr, size);
395 1084
396 if (!ptr && size) 1085 if (!ptr && size)
397 { 1086 {
1087#if EV_AVOID_STDIO
1088 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1089#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1090 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1091#endif
399 abort (); 1092 abort ();
400 } 1093 }
401 1094
402 return ptr; 1095 return ptr;
403} 1096}
405#define ev_malloc(size) ev_realloc (0, (size)) 1098#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 1099#define ev_free(ptr) ev_realloc ((ptr), 0)
407 1100
408/*****************************************************************************/ 1101/*****************************************************************************/
409 1102
1103/* set in reify when reification needed */
1104#define EV_ANFD_REIFY 1
1105
1106/* file descriptor info structure */
410typedef struct 1107typedef struct
411{ 1108{
412 WL head; 1109 WL head;
413 unsigned char events; 1110 unsigned char events; /* the events watched for */
1111 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1112 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 1113 unsigned char unused;
1114#if EV_USE_EPOLL
1115 unsigned int egen; /* generation counter to counter epoll bugs */
1116#endif
415#if EV_SELECT_IS_WINSOCKET 1117#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
416 SOCKET handle; 1118 SOCKET handle;
417#endif 1119#endif
1120#if EV_USE_IOCP
1121 OVERLAPPED or, ow;
1122#endif
418} ANFD; 1123} ANFD;
419 1124
1125/* stores the pending event set for a given watcher */
420typedef struct 1126typedef struct
421{ 1127{
422 W w; 1128 W w;
423 int events; 1129 int events; /* the pending event set for the given watcher */
424} ANPENDING; 1130} ANPENDING;
425 1131
426#if EV_USE_INOTIFY 1132#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */ 1133/* hash table entry per inotify-id */
428typedef struct 1134typedef struct
430 WL head; 1136 WL head;
431} ANFS; 1137} ANFS;
432#endif 1138#endif
433 1139
434/* Heap Entry */ 1140/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT 1141#if EV_HEAP_CACHE_AT
1142 /* a heap element */
437 typedef struct { 1143 typedef struct {
1144 ev_tstamp at;
438 WT w; 1145 WT w;
439 ev_tstamp at;
440 } ANHE; 1146 } ANHE;
441 1147
442 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1148 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1149 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 1150 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
445#else 1151#else
1152 /* a heap element */
446 typedef WT ANHE; 1153 typedef WT ANHE;
447 1154
448 #define ANHE_w(he) (he) 1155 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at 1156 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he) 1157 #define ANHE_at_cache(he)
451#endif 1158#endif
452 1159
453#if EV_MULTIPLICITY 1160#if EV_MULTIPLICITY
454 1161
455 struct ev_loop 1162 struct ev_loop
474 1181
475 static int ev_default_loop_ptr; 1182 static int ev_default_loop_ptr;
476 1183
477#endif 1184#endif
478 1185
1186#if EV_FEATURE_API
1187# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1188# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1189# define EV_INVOKE_PENDING invoke_cb (EV_A)
1190#else
1191# define EV_RELEASE_CB (void)0
1192# define EV_ACQUIRE_CB (void)0
1193# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1194#endif
1195
1196#define EVBREAK_RECURSE 0x80
1197
479/*****************************************************************************/ 1198/*****************************************************************************/
480 1199
1200#ifndef EV_HAVE_EV_TIME
481ev_tstamp 1201ev_tstamp
482ev_time (void) 1202ev_time (void)
483{ 1203{
484#if EV_USE_REALTIME 1204#if EV_USE_REALTIME
1205 if (expect_true (have_realtime))
1206 {
485 struct timespec ts; 1207 struct timespec ts;
486 clock_gettime (CLOCK_REALTIME, &ts); 1208 clock_gettime (CLOCK_REALTIME, &ts);
487 return ts.tv_sec + ts.tv_nsec * 1e-9; 1209 return ts.tv_sec + ts.tv_nsec * 1e-9;
488#else 1210 }
1211#endif
1212
489 struct timeval tv; 1213 struct timeval tv;
490 gettimeofday (&tv, 0); 1214 gettimeofday (&tv, 0);
491 return tv.tv_sec + tv.tv_usec * 1e-6; 1215 return tv.tv_sec + tv.tv_usec * 1e-6;
492#endif
493} 1216}
1217#endif
494 1218
495ev_tstamp inline_size 1219inline_size ev_tstamp
496get_clock (void) 1220get_clock (void)
497{ 1221{
498#if EV_USE_MONOTONIC 1222#if EV_USE_MONOTONIC
499 if (expect_true (have_monotonic)) 1223 if (expect_true (have_monotonic))
500 { 1224 {
521 if (delay > 0.) 1245 if (delay > 0.)
522 { 1246 {
523#if EV_USE_NANOSLEEP 1247#if EV_USE_NANOSLEEP
524 struct timespec ts; 1248 struct timespec ts;
525 1249
526 ts.tv_sec = (time_t)delay; 1250 EV_TS_SET (ts, delay);
527 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
528
529 nanosleep (&ts, 0); 1251 nanosleep (&ts, 0);
530#elif defined(_WIN32) 1252#elif defined(_WIN32)
531 Sleep ((unsigned long)(delay * 1e3)); 1253 Sleep ((unsigned long)(delay * 1e3));
532#else 1254#else
533 struct timeval tv; 1255 struct timeval tv;
534 1256
535 tv.tv_sec = (time_t)delay; 1257 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1258 /* something not guaranteed by newer posix versions, but guaranteed */
537 1259 /* by older ones */
1260 EV_TV_SET (tv, delay);
538 select (0, 0, 0, 0, &tv); 1261 select (0, 0, 0, 0, &tv);
539#endif 1262#endif
540 } 1263 }
541} 1264}
542 1265
543/*****************************************************************************/ 1266/*****************************************************************************/
544 1267
545#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1268#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
546 1269
547int inline_size 1270/* find a suitable new size for the given array, */
1271/* hopefully by rounding to a nice-to-malloc size */
1272inline_size int
548array_nextsize (int elem, int cur, int cnt) 1273array_nextsize (int elem, int cur, int cnt)
549{ 1274{
550 int ncur = cur + 1; 1275 int ncur = cur + 1;
551 1276
552 do 1277 do
563 } 1288 }
564 1289
565 return ncur; 1290 return ncur;
566} 1291}
567 1292
568static noinline void * 1293static void * noinline ecb_cold
569array_realloc (int elem, void *base, int *cur, int cnt) 1294array_realloc (int elem, void *base, int *cur, int cnt)
570{ 1295{
571 *cur = array_nextsize (elem, *cur, cnt); 1296 *cur = array_nextsize (elem, *cur, cnt);
572 return ev_realloc (base, elem * *cur); 1297 return ev_realloc (base, elem * *cur);
573} 1298}
1299
1300#define array_init_zero(base,count) \
1301 memset ((void *)(base), 0, sizeof (*(base)) * (count))
574 1302
575#define array_needsize(type,base,cur,cnt,init) \ 1303#define array_needsize(type,base,cur,cnt,init) \
576 if (expect_false ((cnt) > (cur))) \ 1304 if (expect_false ((cnt) > (cur))) \
577 { \ 1305 { \
578 int ocur_ = (cur); \ 1306 int ecb_unused ocur_ = (cur); \
579 (base) = (type *)array_realloc \ 1307 (base) = (type *)array_realloc \
580 (sizeof (type), (base), &(cur), (cnt)); \ 1308 (sizeof (type), (base), &(cur), (cnt)); \
581 init ((base) + (ocur_), (cur) - ocur_); \ 1309 init ((base) + (ocur_), (cur) - ocur_); \
582 } 1310 }
583 1311
590 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1318 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
591 } 1319 }
592#endif 1320#endif
593 1321
594#define array_free(stem, idx) \ 1322#define array_free(stem, idx) \
595 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1323 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
596 1324
597/*****************************************************************************/ 1325/*****************************************************************************/
1326
1327/* dummy callback for pending events */
1328static void noinline
1329pendingcb (EV_P_ ev_prepare *w, int revents)
1330{
1331}
598 1332
599void noinline 1333void noinline
600ev_feed_event (EV_P_ void *w, int revents) 1334ev_feed_event (EV_P_ void *w, int revents)
601{ 1335{
602 W w_ = (W)w; 1336 W w_ = (W)w;
611 pendings [pri][w_->pending - 1].w = w_; 1345 pendings [pri][w_->pending - 1].w = w_;
612 pendings [pri][w_->pending - 1].events = revents; 1346 pendings [pri][w_->pending - 1].events = revents;
613 } 1347 }
614} 1348}
615 1349
616void inline_speed 1350inline_speed void
1351feed_reverse (EV_P_ W w)
1352{
1353 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1354 rfeeds [rfeedcnt++] = w;
1355}
1356
1357inline_size void
1358feed_reverse_done (EV_P_ int revents)
1359{
1360 do
1361 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1362 while (rfeedcnt);
1363}
1364
1365inline_speed void
617queue_events (EV_P_ W *events, int eventcnt, int type) 1366queue_events (EV_P_ W *events, int eventcnt, int type)
618{ 1367{
619 int i; 1368 int i;
620 1369
621 for (i = 0; i < eventcnt; ++i) 1370 for (i = 0; i < eventcnt; ++i)
622 ev_feed_event (EV_A_ events [i], type); 1371 ev_feed_event (EV_A_ events [i], type);
623} 1372}
624 1373
625/*****************************************************************************/ 1374/*****************************************************************************/
626 1375
627void inline_size 1376inline_speed void
628anfds_init (ANFD *base, int count)
629{
630 while (count--)
631 {
632 base->head = 0;
633 base->events = EV_NONE;
634 base->reify = 0;
635
636 ++base;
637 }
638}
639
640void inline_speed
641fd_event (EV_P_ int fd, int revents) 1377fd_event_nocheck (EV_P_ int fd, int revents)
642{ 1378{
643 ANFD *anfd = anfds + fd; 1379 ANFD *anfd = anfds + fd;
644 ev_io *w; 1380 ev_io *w;
645 1381
646 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1382 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
650 if (ev) 1386 if (ev)
651 ev_feed_event (EV_A_ (W)w, ev); 1387 ev_feed_event (EV_A_ (W)w, ev);
652 } 1388 }
653} 1389}
654 1390
1391/* do not submit kernel events for fds that have reify set */
1392/* because that means they changed while we were polling for new events */
1393inline_speed void
1394fd_event (EV_P_ int fd, int revents)
1395{
1396 ANFD *anfd = anfds + fd;
1397
1398 if (expect_true (!anfd->reify))
1399 fd_event_nocheck (EV_A_ fd, revents);
1400}
1401
655void 1402void
656ev_feed_fd_event (EV_P_ int fd, int revents) 1403ev_feed_fd_event (EV_P_ int fd, int revents)
657{ 1404{
658 if (fd >= 0 && fd < anfdmax) 1405 if (fd >= 0 && fd < anfdmax)
659 fd_event (EV_A_ fd, revents); 1406 fd_event_nocheck (EV_A_ fd, revents);
660} 1407}
661 1408
662void inline_size 1409/* make sure the external fd watch events are in-sync */
1410/* with the kernel/libev internal state */
1411inline_size void
663fd_reify (EV_P) 1412fd_reify (EV_P)
664{ 1413{
665 int i; 1414 int i;
1415
1416#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1417 for (i = 0; i < fdchangecnt; ++i)
1418 {
1419 int fd = fdchanges [i];
1420 ANFD *anfd = anfds + fd;
1421
1422 if (anfd->reify & EV__IOFDSET && anfd->head)
1423 {
1424 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1425
1426 if (handle != anfd->handle)
1427 {
1428 unsigned long arg;
1429
1430 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1431
1432 /* handle changed, but fd didn't - we need to do it in two steps */
1433 backend_modify (EV_A_ fd, anfd->events, 0);
1434 anfd->events = 0;
1435 anfd->handle = handle;
1436 }
1437 }
1438 }
1439#endif
666 1440
667 for (i = 0; i < fdchangecnt; ++i) 1441 for (i = 0; i < fdchangecnt; ++i)
668 { 1442 {
669 int fd = fdchanges [i]; 1443 int fd = fdchanges [i];
670 ANFD *anfd = anfds + fd; 1444 ANFD *anfd = anfds + fd;
671 ev_io *w; 1445 ev_io *w;
672 1446
673 unsigned char events = 0; 1447 unsigned char o_events = anfd->events;
1448 unsigned char o_reify = anfd->reify;
674 1449
675 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1450 anfd->reify = 0;
676 events |= (unsigned char)w->events;
677 1451
678#if EV_SELECT_IS_WINSOCKET 1452 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
679 if (events)
680 { 1453 {
681 unsigned long argp; 1454 anfd->events = 0;
682 #ifdef EV_FD_TO_WIN32_HANDLE 1455
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1456 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
684 #else 1457 anfd->events |= (unsigned char)w->events;
685 anfd->handle = _get_osfhandle (fd); 1458
686 #endif 1459 if (o_events != anfd->events)
687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1460 o_reify = EV__IOFDSET; /* actually |= */
688 } 1461 }
689#endif
690 1462
691 { 1463 if (o_reify & EV__IOFDSET)
692 unsigned char o_events = anfd->events;
693 unsigned char o_reify = anfd->reify;
694
695 anfd->reify = 0;
696 anfd->events = events;
697
698 if (o_events != events || o_reify & EV_IOFDSET)
699 backend_modify (EV_A_ fd, o_events, events); 1464 backend_modify (EV_A_ fd, o_events, anfd->events);
700 }
701 } 1465 }
702 1466
703 fdchangecnt = 0; 1467 fdchangecnt = 0;
704} 1468}
705 1469
706void inline_size 1470/* something about the given fd changed */
1471inline_size void
707fd_change (EV_P_ int fd, int flags) 1472fd_change (EV_P_ int fd, int flags)
708{ 1473{
709 unsigned char reify = anfds [fd].reify; 1474 unsigned char reify = anfds [fd].reify;
710 anfds [fd].reify |= flags; 1475 anfds [fd].reify |= flags;
711 1476
715 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1480 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
716 fdchanges [fdchangecnt - 1] = fd; 1481 fdchanges [fdchangecnt - 1] = fd;
717 } 1482 }
718} 1483}
719 1484
720void inline_speed 1485/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1486inline_speed void ecb_cold
721fd_kill (EV_P_ int fd) 1487fd_kill (EV_P_ int fd)
722{ 1488{
723 ev_io *w; 1489 ev_io *w;
724 1490
725 while ((w = (ev_io *)anfds [fd].head)) 1491 while ((w = (ev_io *)anfds [fd].head))
727 ev_io_stop (EV_A_ w); 1493 ev_io_stop (EV_A_ w);
728 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1494 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
729 } 1495 }
730} 1496}
731 1497
732int inline_size 1498/* check whether the given fd is actually valid, for error recovery */
1499inline_size int ecb_cold
733fd_valid (int fd) 1500fd_valid (int fd)
734{ 1501{
735#ifdef _WIN32 1502#ifdef _WIN32
736 return _get_osfhandle (fd) != -1; 1503 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
737#else 1504#else
738 return fcntl (fd, F_GETFD) != -1; 1505 return fcntl (fd, F_GETFD) != -1;
739#endif 1506#endif
740} 1507}
741 1508
742/* called on EBADF to verify fds */ 1509/* called on EBADF to verify fds */
743static void noinline 1510static void noinline ecb_cold
744fd_ebadf (EV_P) 1511fd_ebadf (EV_P)
745{ 1512{
746 int fd; 1513 int fd;
747 1514
748 for (fd = 0; fd < anfdmax; ++fd) 1515 for (fd = 0; fd < anfdmax; ++fd)
749 if (anfds [fd].events) 1516 if (anfds [fd].events)
750 if (!fd_valid (fd) == -1 && errno == EBADF) 1517 if (!fd_valid (fd) && errno == EBADF)
751 fd_kill (EV_A_ fd); 1518 fd_kill (EV_A_ fd);
752} 1519}
753 1520
754/* called on ENOMEM in select/poll to kill some fds and retry */ 1521/* called on ENOMEM in select/poll to kill some fds and retry */
755static void noinline 1522static void noinline ecb_cold
756fd_enomem (EV_P) 1523fd_enomem (EV_P)
757{ 1524{
758 int fd; 1525 int fd;
759 1526
760 for (fd = anfdmax; fd--; ) 1527 for (fd = anfdmax; fd--; )
761 if (anfds [fd].events) 1528 if (anfds [fd].events)
762 { 1529 {
763 fd_kill (EV_A_ fd); 1530 fd_kill (EV_A_ fd);
764 return; 1531 break;
765 } 1532 }
766} 1533}
767 1534
768/* usually called after fork if backend needs to re-arm all fds from scratch */ 1535/* usually called after fork if backend needs to re-arm all fds from scratch */
769static void noinline 1536static void noinline
773 1540
774 for (fd = 0; fd < anfdmax; ++fd) 1541 for (fd = 0; fd < anfdmax; ++fd)
775 if (anfds [fd].events) 1542 if (anfds [fd].events)
776 { 1543 {
777 anfds [fd].events = 0; 1544 anfds [fd].events = 0;
1545 anfds [fd].emask = 0;
778 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1546 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
779 } 1547 }
780} 1548}
781 1549
1550/* used to prepare libev internal fd's */
1551/* this is not fork-safe */
1552inline_speed void
1553fd_intern (int fd)
1554{
1555#ifdef _WIN32
1556 unsigned long arg = 1;
1557 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1558#else
1559 fcntl (fd, F_SETFD, FD_CLOEXEC);
1560 fcntl (fd, F_SETFL, O_NONBLOCK);
1561#endif
1562}
1563
782/*****************************************************************************/ 1564/*****************************************************************************/
783 1565
784/* 1566/*
785 * the heap functions want a real array index. array index 0 uis guaranteed to not 1567 * the heap functions want a real array index. array index 0 is guaranteed to not
786 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1568 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
787 * the branching factor of the d-tree. 1569 * the branching factor of the d-tree.
788 */ 1570 */
789 1571
790/* 1572/*
791 * at the moment we allow libev the luxury of two heaps, 1573 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 1574 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient. 1575 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers. 1576 * the difference is about 5% with 50000+ watchers.
795 */ 1577 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP 1578#if EV_USE_4HEAP
798 1579
799#define DHEAP 4 1580#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1581#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801 1582#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
802/* towards the root */ 1583#define UPHEAP_DONE(p,k) ((p) == (k))
803void inline_speed
804upheap (ANHE *heap, int k)
805{
806 ANHE he = heap [k];
807
808 for (;;)
809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
815 heap [k] = heap [p];
816 ev_active (ANHE_w (heap [k])) = k;
817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823 1584
824/* away from the root */ 1585/* away from the root */
825void inline_speed 1586inline_speed void
826downheap (ANHE *heap, int N, int k) 1587downheap (ANHE *heap, int N, int k)
827{ 1588{
828 ANHE he = heap [k]; 1589 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0; 1590 ANHE *E = heap + N + HEAP0;
830 1591
831 for (;;) 1592 for (;;)
832 { 1593 {
833 ev_tstamp minat; 1594 ev_tstamp minat;
834 ANHE *minpos; 1595 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1596 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
836 1597
837 // find minimum child 1598 /* find minimum child */
838 if (expect_true (pos + DHEAP - 1 < E)) 1599 if (expect_true (pos + DHEAP - 1 < E))
839 { 1600 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1601 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1602 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1603 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 1604 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 } 1605 }
845 else if (pos < E) 1606 else if (pos < E)
846 { 1607 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1608 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1609 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
853 break; 1614 break;
854 1615
855 if (ANHE_at (he) <= minat) 1616 if (ANHE_at (he) <= minat)
856 break; 1617 break;
857 1618
1619 heap [k] = *minpos;
858 ev_active (ANHE_w (*minpos)) = k; 1620 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860 1621
861 k = minpos - heap; 1622 k = minpos - heap;
862 } 1623 }
863 1624
1625 heap [k] = he;
864 ev_active (ANHE_w (he)) = k; 1626 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866} 1627}
867 1628
868#else // 4HEAP 1629#else /* 4HEAP */
869 1630
870#define HEAP0 1 1631#define HEAP0 1
1632#define HPARENT(k) ((k) >> 1)
1633#define UPHEAP_DONE(p,k) (!(p))
871 1634
872/* towards the root */ 1635/* away from the root */
873void inline_speed 1636inline_speed void
874upheap (ANHE *heap, int k) 1637downheap (ANHE *heap, int N, int k)
875{ 1638{
876 ANHE he = heap [k]; 1639 ANHE he = heap [k];
877 1640
878 for (;;) 1641 for (;;)
879 { 1642 {
880 int p = k >> 1; 1643 int c = k << 1;
881 1644
882 /* maybe we could use a dummy element at heap [0]? */ 1645 if (c >= N + HEAP0)
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break; 1646 break;
885 1647
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
889 }
890
891 heap [k] = w;
892 ev_active (ANHE_w (heap [k])) = k;
893}
894
895/* away from the root */
896void inline_speed
897downheap (ANHE *heap, int N, int k)
898{
899 ANHE he = heap [k];
900
901 for (;;)
902 {
903 int c = k << 1;
904
905 if (c > N)
906 break;
907
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1648 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0; 1649 ? 1 : 0;
910 1650
911 if (w->at <= ANHE_at (heap [c])) 1651 if (ANHE_at (he) <= ANHE_at (heap [c]))
912 break; 1652 break;
913 1653
914 heap [k] = heap [c]; 1654 heap [k] = heap [c];
915 ev_active (ANHE_w (heap [k])) = k; 1655 ev_active (ANHE_w (heap [k])) = k;
916 1656
920 heap [k] = he; 1660 heap [k] = he;
921 ev_active (ANHE_w (he)) = k; 1661 ev_active (ANHE_w (he)) = k;
922} 1662}
923#endif 1663#endif
924 1664
925void inline_size 1665/* towards the root */
1666inline_speed void
1667upheap (ANHE *heap, int k)
1668{
1669 ANHE he = heap [k];
1670
1671 for (;;)
1672 {
1673 int p = HPARENT (k);
1674
1675 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1676 break;
1677
1678 heap [k] = heap [p];
1679 ev_active (ANHE_w (heap [k])) = k;
1680 k = p;
1681 }
1682
1683 heap [k] = he;
1684 ev_active (ANHE_w (he)) = k;
1685}
1686
1687/* move an element suitably so it is in a correct place */
1688inline_size void
926adjustheap (ANHE *heap, int N, int k) 1689adjustheap (ANHE *heap, int N, int k)
927{ 1690{
1691 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
928 upheap (heap, k); 1692 upheap (heap, k);
1693 else
929 downheap (heap, N, k); 1694 downheap (heap, N, k);
1695}
1696
1697/* rebuild the heap: this function is used only once and executed rarely */
1698inline_size void
1699reheap (ANHE *heap, int N)
1700{
1701 int i;
1702
1703 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1704 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1705 for (i = 0; i < N; ++i)
1706 upheap (heap, i + HEAP0);
930} 1707}
931 1708
932/*****************************************************************************/ 1709/*****************************************************************************/
933 1710
1711/* associate signal watchers to a signal signal */
934typedef struct 1712typedef struct
935{ 1713{
1714 EV_ATOMIC_T pending;
1715#if EV_MULTIPLICITY
1716 EV_P;
1717#endif
936 WL head; 1718 WL head;
937 EV_ATOMIC_T gotsig;
938} ANSIG; 1719} ANSIG;
939 1720
940static ANSIG *signals; 1721static ANSIG signals [EV_NSIG - 1];
941static int signalmax;
942
943static EV_ATOMIC_T gotsig;
944
945void inline_size
946signals_init (ANSIG *base, int count)
947{
948 while (count--)
949 {
950 base->head = 0;
951 base->gotsig = 0;
952
953 ++base;
954 }
955}
956 1722
957/*****************************************************************************/ 1723/*****************************************************************************/
958 1724
959void inline_speed 1725#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
960fd_intern (int fd)
961{
962#ifdef _WIN32
963 int arg = 1;
964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
965#else
966 fcntl (fd, F_SETFD, FD_CLOEXEC);
967 fcntl (fd, F_SETFL, O_NONBLOCK);
968#endif
969}
970 1726
971static void noinline 1727static void noinline ecb_cold
972evpipe_init (EV_P) 1728evpipe_init (EV_P)
973{ 1729{
974 if (!ev_is_active (&pipeev)) 1730 if (!ev_is_active (&pipe_w))
975 { 1731 {
976#if EV_USE_EVENTFD 1732# if EV_USE_EVENTFD
1733 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1734 if (evfd < 0 && errno == EINVAL)
977 if ((evfd = eventfd (0, 0)) >= 0) 1735 evfd = eventfd (0, 0);
1736
1737 if (evfd >= 0)
978 { 1738 {
979 evpipe [0] = -1; 1739 evpipe [0] = -1;
980 fd_intern (evfd); 1740 fd_intern (evfd); /* doing it twice doesn't hurt */
981 ev_io_set (&pipeev, evfd, EV_READ); 1741 ev_io_set (&pipe_w, evfd, EV_READ);
982 } 1742 }
983 else 1743 else
984#endif 1744# endif
985 { 1745 {
986 while (pipe (evpipe)) 1746 while (pipe (evpipe))
987 syserr ("(libev) error creating signal/async pipe"); 1747 ev_syserr ("(libev) error creating signal/async pipe");
988 1748
989 fd_intern (evpipe [0]); 1749 fd_intern (evpipe [0]);
990 fd_intern (evpipe [1]); 1750 fd_intern (evpipe [1]);
991 ev_io_set (&pipeev, evpipe [0], EV_READ); 1751 ev_io_set (&pipe_w, evpipe [0], EV_READ);
992 } 1752 }
993 1753
994 ev_io_start (EV_A_ &pipeev); 1754 ev_io_start (EV_A_ &pipe_w);
995 ev_unref (EV_A); /* watcher should not keep loop alive */ 1755 ev_unref (EV_A); /* watcher should not keep loop alive */
996 } 1756 }
997} 1757}
998 1758
999void inline_size 1759inline_speed void
1000evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1760evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1001{ 1761{
1002 if (!*flag) 1762 if (expect_true (*flag))
1763 return;
1764
1765 *flag = 1;
1766
1767 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1768
1769 pipe_write_skipped = 1;
1770
1771 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1772
1773 if (pipe_write_wanted)
1003 { 1774 {
1775 int old_errno;
1776
1777 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1778
1004 int old_errno = errno; /* save errno because write might clobber it */ 1779 old_errno = errno; /* save errno because write will clobber it */
1005
1006 *flag = 1;
1007 1780
1008#if EV_USE_EVENTFD 1781#if EV_USE_EVENTFD
1009 if (evfd >= 0) 1782 if (evfd >= 0)
1010 { 1783 {
1011 uint64_t counter = 1; 1784 uint64_t counter = 1;
1012 write (evfd, &counter, sizeof (uint64_t)); 1785 write (evfd, &counter, sizeof (uint64_t));
1013 } 1786 }
1014 else 1787 else
1015#endif 1788#endif
1789 {
1790 /* win32 people keep sending patches that change this write() to send() */
1791 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1792 /* so when you think this write should be a send instead, please find out */
1793 /* where your send() is from - it's definitely not the microsoft send, and */
1794 /* tell me. thank you. */
1016 write (evpipe [1], &old_errno, 1); 1795 write (evpipe [1], &(evpipe [1]), 1);
1796 }
1017 1797
1018 errno = old_errno; 1798 errno = old_errno;
1019 } 1799 }
1020} 1800}
1021 1801
1802/* called whenever the libev signal pipe */
1803/* got some events (signal, async) */
1022static void 1804static void
1023pipecb (EV_P_ ev_io *iow, int revents) 1805pipecb (EV_P_ ev_io *iow, int revents)
1024{ 1806{
1807 int i;
1808
1809 if (revents & EV_READ)
1810 {
1025#if EV_USE_EVENTFD 1811#if EV_USE_EVENTFD
1026 if (evfd >= 0) 1812 if (evfd >= 0)
1027 { 1813 {
1028 uint64_t counter; 1814 uint64_t counter;
1029 read (evfd, &counter, sizeof (uint64_t)); 1815 read (evfd, &counter, sizeof (uint64_t));
1030 } 1816 }
1031 else 1817 else
1032#endif 1818#endif
1033 { 1819 {
1034 char dummy; 1820 char dummy;
1821 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1035 read (evpipe [0], &dummy, 1); 1822 read (evpipe [0], &dummy, 1);
1823 }
1824 }
1825
1826 pipe_write_skipped = 0;
1827
1828#if EV_SIGNAL_ENABLE
1829 if (sig_pending)
1036 } 1830 {
1831 sig_pending = 0;
1037 1832
1038 if (gotsig && ev_is_default_loop (EV_A)) 1833 for (i = EV_NSIG - 1; i--; )
1039 { 1834 if (expect_false (signals [i].pending))
1040 int signum;
1041 gotsig = 0;
1042
1043 for (signum = signalmax; signum--; )
1044 if (signals [signum].gotsig)
1045 ev_feed_signal_event (EV_A_ signum + 1); 1835 ev_feed_signal_event (EV_A_ i + 1);
1046 } 1836 }
1837#endif
1047 1838
1048#if EV_ASYNC_ENABLE 1839#if EV_ASYNC_ENABLE
1049 if (gotasync) 1840 if (async_pending)
1050 { 1841 {
1051 int i; 1842 async_pending = 0;
1052 gotasync = 0;
1053 1843
1054 for (i = asynccnt; i--; ) 1844 for (i = asynccnt; i--; )
1055 if (asyncs [i]->sent) 1845 if (asyncs [i]->sent)
1056 { 1846 {
1057 asyncs [i]->sent = 0; 1847 asyncs [i]->sent = 0;
1061#endif 1851#endif
1062} 1852}
1063 1853
1064/*****************************************************************************/ 1854/*****************************************************************************/
1065 1855
1856void
1857ev_feed_signal (int signum)
1858{
1859#if EV_MULTIPLICITY
1860 EV_P = signals [signum - 1].loop;
1861
1862 if (!EV_A)
1863 return;
1864#endif
1865
1866 if (!ev_active (&pipe_w))
1867 return;
1868
1869 signals [signum - 1].pending = 1;
1870 evpipe_write (EV_A_ &sig_pending);
1871}
1872
1066static void 1873static void
1067ev_sighandler (int signum) 1874ev_sighandler (int signum)
1068{ 1875{
1069#if EV_MULTIPLICITY
1070 struct ev_loop *loop = &default_loop_struct;
1071#endif
1072
1073#if _WIN32 1876#ifdef _WIN32
1074 signal (signum, ev_sighandler); 1877 signal (signum, ev_sighandler);
1075#endif 1878#endif
1076 1879
1077 signals [signum - 1].gotsig = 1; 1880 ev_feed_signal (signum);
1078 evpipe_write (EV_A_ &gotsig);
1079} 1881}
1080 1882
1081void noinline 1883void noinline
1082ev_feed_signal_event (EV_P_ int signum) 1884ev_feed_signal_event (EV_P_ int signum)
1083{ 1885{
1084 WL w; 1886 WL w;
1085 1887
1888 if (expect_false (signum <= 0 || signum > EV_NSIG))
1889 return;
1890
1891 --signum;
1892
1086#if EV_MULTIPLICITY 1893#if EV_MULTIPLICITY
1087 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1894 /* it is permissible to try to feed a signal to the wrong loop */
1088#endif 1895 /* or, likely more useful, feeding a signal nobody is waiting for */
1089 1896
1090 --signum; 1897 if (expect_false (signals [signum].loop != EV_A))
1091
1092 if (signum < 0 || signum >= signalmax)
1093 return; 1898 return;
1899#endif
1094 1900
1095 signals [signum].gotsig = 0; 1901 signals [signum].pending = 0;
1096 1902
1097 for (w = signals [signum].head; w; w = w->next) 1903 for (w = signals [signum].head; w; w = w->next)
1098 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1904 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1099} 1905}
1100 1906
1907#if EV_USE_SIGNALFD
1908static void
1909sigfdcb (EV_P_ ev_io *iow, int revents)
1910{
1911 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1912
1913 for (;;)
1914 {
1915 ssize_t res = read (sigfd, si, sizeof (si));
1916
1917 /* not ISO-C, as res might be -1, but works with SuS */
1918 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1919 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1920
1921 if (res < (ssize_t)sizeof (si))
1922 break;
1923 }
1924}
1925#endif
1926
1927#endif
1928
1101/*****************************************************************************/ 1929/*****************************************************************************/
1102 1930
1931#if EV_CHILD_ENABLE
1103static WL childs [EV_PID_HASHSIZE]; 1932static WL childs [EV_PID_HASHSIZE];
1104
1105#ifndef _WIN32
1106 1933
1107static ev_signal childev; 1934static ev_signal childev;
1108 1935
1109#ifndef WIFCONTINUED 1936#ifndef WIFCONTINUED
1110# define WIFCONTINUED(status) 0 1937# define WIFCONTINUED(status) 0
1111#endif 1938#endif
1112 1939
1113void inline_speed 1940/* handle a single child status event */
1941inline_speed void
1114child_reap (EV_P_ int chain, int pid, int status) 1942child_reap (EV_P_ int chain, int pid, int status)
1115{ 1943{
1116 ev_child *w; 1944 ev_child *w;
1117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1945 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1118 1946
1119 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1947 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1120 { 1948 {
1121 if ((w->pid == pid || !w->pid) 1949 if ((w->pid == pid || !w->pid)
1122 && (!traced || (w->flags & 1))) 1950 && (!traced || (w->flags & 1)))
1123 { 1951 {
1124 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1952 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1131 1959
1132#ifndef WCONTINUED 1960#ifndef WCONTINUED
1133# define WCONTINUED 0 1961# define WCONTINUED 0
1134#endif 1962#endif
1135 1963
1964/* called on sigchld etc., calls waitpid */
1136static void 1965static void
1137childcb (EV_P_ ev_signal *sw, int revents) 1966childcb (EV_P_ ev_signal *sw, int revents)
1138{ 1967{
1139 int pid, status; 1968 int pid, status;
1140 1969
1148 /* make sure we are called again until all children have been reaped */ 1977 /* make sure we are called again until all children have been reaped */
1149 /* we need to do it this way so that the callback gets called before we continue */ 1978 /* we need to do it this way so that the callback gets called before we continue */
1150 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1979 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1151 1980
1152 child_reap (EV_A_ pid, pid, status); 1981 child_reap (EV_A_ pid, pid, status);
1153 if (EV_PID_HASHSIZE > 1) 1982 if ((EV_PID_HASHSIZE) > 1)
1154 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1983 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1155} 1984}
1156 1985
1157#endif 1986#endif
1158 1987
1159/*****************************************************************************/ 1988/*****************************************************************************/
1160 1989
1990#if EV_USE_IOCP
1991# include "ev_iocp.c"
1992#endif
1161#if EV_USE_PORT 1993#if EV_USE_PORT
1162# include "ev_port.c" 1994# include "ev_port.c"
1163#endif 1995#endif
1164#if EV_USE_KQUEUE 1996#if EV_USE_KQUEUE
1165# include "ev_kqueue.c" 1997# include "ev_kqueue.c"
1172#endif 2004#endif
1173#if EV_USE_SELECT 2005#if EV_USE_SELECT
1174# include "ev_select.c" 2006# include "ev_select.c"
1175#endif 2007#endif
1176 2008
1177int 2009int ecb_cold
1178ev_version_major (void) 2010ev_version_major (void)
1179{ 2011{
1180 return EV_VERSION_MAJOR; 2012 return EV_VERSION_MAJOR;
1181} 2013}
1182 2014
1183int 2015int ecb_cold
1184ev_version_minor (void) 2016ev_version_minor (void)
1185{ 2017{
1186 return EV_VERSION_MINOR; 2018 return EV_VERSION_MINOR;
1187} 2019}
1188 2020
1189/* return true if we are running with elevated privileges and should ignore env variables */ 2021/* return true if we are running with elevated privileges and should ignore env variables */
1190int inline_size 2022int inline_size ecb_cold
1191enable_secure (void) 2023enable_secure (void)
1192{ 2024{
1193#ifdef _WIN32 2025#ifdef _WIN32
1194 return 0; 2026 return 0;
1195#else 2027#else
1196 return getuid () != geteuid () 2028 return getuid () != geteuid ()
1197 || getgid () != getegid (); 2029 || getgid () != getegid ();
1198#endif 2030#endif
1199} 2031}
1200 2032
1201unsigned int 2033unsigned int ecb_cold
1202ev_supported_backends (void) 2034ev_supported_backends (void)
1203{ 2035{
1204 unsigned int flags = 0; 2036 unsigned int flags = 0;
1205 2037
1206 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2038 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1210 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2042 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1211 2043
1212 return flags; 2044 return flags;
1213} 2045}
1214 2046
1215unsigned int 2047unsigned int ecb_cold
1216ev_recommended_backends (void) 2048ev_recommended_backends (void)
1217{ 2049{
1218 unsigned int flags = ev_supported_backends (); 2050 unsigned int flags = ev_supported_backends ();
1219 2051
1220#ifndef __NetBSD__ 2052#ifndef __NetBSD__
1221 /* kqueue is borked on everything but netbsd apparently */ 2053 /* kqueue is borked on everything but netbsd apparently */
1222 /* it usually doesn't work correctly on anything but sockets and pipes */ 2054 /* it usually doesn't work correctly on anything but sockets and pipes */
1223 flags &= ~EVBACKEND_KQUEUE; 2055 flags &= ~EVBACKEND_KQUEUE;
1224#endif 2056#endif
1225#ifdef __APPLE__ 2057#ifdef __APPLE__
1226 // flags &= ~EVBACKEND_KQUEUE; for documentation 2058 /* only select works correctly on that "unix-certified" platform */
1227 flags &= ~EVBACKEND_POLL; 2059 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2060 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2061#endif
2062#ifdef __FreeBSD__
2063 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1228#endif 2064#endif
1229 2065
1230 return flags; 2066 return flags;
1231} 2067}
1232 2068
1233unsigned int 2069unsigned int ecb_cold
1234ev_embeddable_backends (void) 2070ev_embeddable_backends (void)
1235{ 2071{
1236 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2072 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1237 2073
1238 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2074 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1239 /* please fix it and tell me how to detect the fix */ 2075 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1240 flags &= ~EVBACKEND_EPOLL; 2076 flags &= ~EVBACKEND_EPOLL;
1241 2077
1242 return flags; 2078 return flags;
1243} 2079}
1244 2080
1245unsigned int 2081unsigned int
1246ev_backend (EV_P) 2082ev_backend (EV_P)
1247{ 2083{
1248 return backend; 2084 return backend;
1249} 2085}
1250 2086
2087#if EV_FEATURE_API
1251unsigned int 2088unsigned int
1252ev_loop_count (EV_P) 2089ev_iteration (EV_P)
1253{ 2090{
1254 return loop_count; 2091 return loop_count;
2092}
2093
2094unsigned int
2095ev_depth (EV_P)
2096{
2097 return loop_depth;
1255} 2098}
1256 2099
1257void 2100void
1258ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2101ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1259{ 2102{
1264ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2107ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1265{ 2108{
1266 timeout_blocktime = interval; 2109 timeout_blocktime = interval;
1267} 2110}
1268 2111
2112void
2113ev_set_userdata (EV_P_ void *data)
2114{
2115 userdata = data;
2116}
2117
2118void *
2119ev_userdata (EV_P)
2120{
2121 return userdata;
2122}
2123
2124void
2125ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2126{
2127 invoke_cb = invoke_pending_cb;
2128}
2129
2130void
2131ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2132{
2133 release_cb = release;
2134 acquire_cb = acquire;
2135}
2136#endif
2137
2138/* initialise a loop structure, must be zero-initialised */
1269static void noinline 2139static void noinline ecb_cold
1270loop_init (EV_P_ unsigned int flags) 2140loop_init (EV_P_ unsigned int flags)
1271{ 2141{
1272 if (!backend) 2142 if (!backend)
1273 { 2143 {
2144 origflags = flags;
2145
2146#if EV_USE_REALTIME
2147 if (!have_realtime)
2148 {
2149 struct timespec ts;
2150
2151 if (!clock_gettime (CLOCK_REALTIME, &ts))
2152 have_realtime = 1;
2153 }
2154#endif
2155
1274#if EV_USE_MONOTONIC 2156#if EV_USE_MONOTONIC
2157 if (!have_monotonic)
1275 { 2158 {
1276 struct timespec ts; 2159 struct timespec ts;
2160
1277 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2161 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1278 have_monotonic = 1; 2162 have_monotonic = 1;
1279 } 2163 }
1280#endif
1281
1282 ev_rt_now = ev_time ();
1283 mn_now = get_clock ();
1284 now_floor = mn_now;
1285 rtmn_diff = ev_rt_now - mn_now;
1286
1287 io_blocktime = 0.;
1288 timeout_blocktime = 0.;
1289 backend = 0;
1290 backend_fd = -1;
1291 gotasync = 0;
1292#if EV_USE_INOTIFY
1293 fs_fd = -2;
1294#endif 2164#endif
1295 2165
1296 /* pid check not overridable via env */ 2166 /* pid check not overridable via env */
1297#ifndef _WIN32 2167#ifndef _WIN32
1298 if (flags & EVFLAG_FORKCHECK) 2168 if (flags & EVFLAG_FORKCHECK)
1302 if (!(flags & EVFLAG_NOENV) 2172 if (!(flags & EVFLAG_NOENV)
1303 && !enable_secure () 2173 && !enable_secure ()
1304 && getenv ("LIBEV_FLAGS")) 2174 && getenv ("LIBEV_FLAGS"))
1305 flags = atoi (getenv ("LIBEV_FLAGS")); 2175 flags = atoi (getenv ("LIBEV_FLAGS"));
1306 2176
1307 if (!(flags & 0x0000ffffU)) 2177 ev_rt_now = ev_time ();
2178 mn_now = get_clock ();
2179 now_floor = mn_now;
2180 rtmn_diff = ev_rt_now - mn_now;
2181#if EV_FEATURE_API
2182 invoke_cb = ev_invoke_pending;
2183#endif
2184
2185 io_blocktime = 0.;
2186 timeout_blocktime = 0.;
2187 backend = 0;
2188 backend_fd = -1;
2189 sig_pending = 0;
2190#if EV_ASYNC_ENABLE
2191 async_pending = 0;
2192#endif
2193 pipe_write_skipped = 0;
2194 pipe_write_wanted = 0;
2195#if EV_USE_INOTIFY
2196 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2197#endif
2198#if EV_USE_SIGNALFD
2199 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2200#endif
2201
2202 if (!(flags & EVBACKEND_MASK))
1308 flags |= ev_recommended_backends (); 2203 flags |= ev_recommended_backends ();
1309 2204
2205#if EV_USE_IOCP
2206 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2207#endif
1310#if EV_USE_PORT 2208#if EV_USE_PORT
1311 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2209 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1312#endif 2210#endif
1313#if EV_USE_KQUEUE 2211#if EV_USE_KQUEUE
1314 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2212 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1321#endif 2219#endif
1322#if EV_USE_SELECT 2220#if EV_USE_SELECT
1323 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2221 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1324#endif 2222#endif
1325 2223
2224 ev_prepare_init (&pending_w, pendingcb);
2225
2226#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1326 ev_init (&pipeev, pipecb); 2227 ev_init (&pipe_w, pipecb);
1327 ev_set_priority (&pipeev, EV_MAXPRI); 2228 ev_set_priority (&pipe_w, EV_MAXPRI);
2229#endif
1328 } 2230 }
1329} 2231}
1330 2232
1331static void noinline 2233/* free up a loop structure */
2234void ecb_cold
1332loop_destroy (EV_P) 2235ev_loop_destroy (EV_P)
1333{ 2236{
1334 int i; 2237 int i;
1335 2238
2239#if EV_MULTIPLICITY
2240 /* mimic free (0) */
2241 if (!EV_A)
2242 return;
2243#endif
2244
2245#if EV_CLEANUP_ENABLE
2246 /* queue cleanup watchers (and execute them) */
2247 if (expect_false (cleanupcnt))
2248 {
2249 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2250 EV_INVOKE_PENDING;
2251 }
2252#endif
2253
2254#if EV_CHILD_ENABLE
2255 if (ev_is_active (&childev))
2256 {
2257 ev_ref (EV_A); /* child watcher */
2258 ev_signal_stop (EV_A_ &childev);
2259 }
2260#endif
2261
1336 if (ev_is_active (&pipeev)) 2262 if (ev_is_active (&pipe_w))
1337 { 2263 {
1338 ev_ref (EV_A); /* signal watcher */ 2264 /*ev_ref (EV_A);*/
1339 ev_io_stop (EV_A_ &pipeev); 2265 /*ev_io_stop (EV_A_ &pipe_w);*/
1340 2266
1341#if EV_USE_EVENTFD 2267#if EV_USE_EVENTFD
1342 if (evfd >= 0) 2268 if (evfd >= 0)
1343 close (evfd); 2269 close (evfd);
1344#endif 2270#endif
1345 2271
1346 if (evpipe [0] >= 0) 2272 if (evpipe [0] >= 0)
1347 { 2273 {
1348 close (evpipe [0]); 2274 EV_WIN32_CLOSE_FD (evpipe [0]);
1349 close (evpipe [1]); 2275 EV_WIN32_CLOSE_FD (evpipe [1]);
1350 } 2276 }
1351 } 2277 }
2278
2279#if EV_USE_SIGNALFD
2280 if (ev_is_active (&sigfd_w))
2281 close (sigfd);
2282#endif
1352 2283
1353#if EV_USE_INOTIFY 2284#if EV_USE_INOTIFY
1354 if (fs_fd >= 0) 2285 if (fs_fd >= 0)
1355 close (fs_fd); 2286 close (fs_fd);
1356#endif 2287#endif
1357 2288
1358 if (backend_fd >= 0) 2289 if (backend_fd >= 0)
1359 close (backend_fd); 2290 close (backend_fd);
1360 2291
2292#if EV_USE_IOCP
2293 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2294#endif
1361#if EV_USE_PORT 2295#if EV_USE_PORT
1362 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2296 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1363#endif 2297#endif
1364#if EV_USE_KQUEUE 2298#if EV_USE_KQUEUE
1365 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2299 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1380#if EV_IDLE_ENABLE 2314#if EV_IDLE_ENABLE
1381 array_free (idle, [i]); 2315 array_free (idle, [i]);
1382#endif 2316#endif
1383 } 2317 }
1384 2318
1385 ev_free (anfds); anfdmax = 0; 2319 ev_free (anfds); anfds = 0; anfdmax = 0;
1386 2320
1387 /* have to use the microsoft-never-gets-it-right macro */ 2321 /* have to use the microsoft-never-gets-it-right macro */
2322 array_free (rfeed, EMPTY);
1388 array_free (fdchange, EMPTY); 2323 array_free (fdchange, EMPTY);
1389 array_free (timer, EMPTY); 2324 array_free (timer, EMPTY);
1390#if EV_PERIODIC_ENABLE 2325#if EV_PERIODIC_ENABLE
1391 array_free (periodic, EMPTY); 2326 array_free (periodic, EMPTY);
1392#endif 2327#endif
1393#if EV_FORK_ENABLE 2328#if EV_FORK_ENABLE
1394 array_free (fork, EMPTY); 2329 array_free (fork, EMPTY);
1395#endif 2330#endif
2331#if EV_CLEANUP_ENABLE
2332 array_free (cleanup, EMPTY);
2333#endif
1396 array_free (prepare, EMPTY); 2334 array_free (prepare, EMPTY);
1397 array_free (check, EMPTY); 2335 array_free (check, EMPTY);
1398#if EV_ASYNC_ENABLE 2336#if EV_ASYNC_ENABLE
1399 array_free (async, EMPTY); 2337 array_free (async, EMPTY);
1400#endif 2338#endif
1401 2339
1402 backend = 0; 2340 backend = 0;
2341
2342#if EV_MULTIPLICITY
2343 if (ev_is_default_loop (EV_A))
2344#endif
2345 ev_default_loop_ptr = 0;
2346#if EV_MULTIPLICITY
2347 else
2348 ev_free (EV_A);
2349#endif
1403} 2350}
1404 2351
1405#if EV_USE_INOTIFY 2352#if EV_USE_INOTIFY
1406void inline_size infy_fork (EV_P); 2353inline_size void infy_fork (EV_P);
1407#endif 2354#endif
1408 2355
1409void inline_size 2356inline_size void
1410loop_fork (EV_P) 2357loop_fork (EV_P)
1411{ 2358{
1412#if EV_USE_PORT 2359#if EV_USE_PORT
1413 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2360 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1414#endif 2361#endif
1420#endif 2367#endif
1421#if EV_USE_INOTIFY 2368#if EV_USE_INOTIFY
1422 infy_fork (EV_A); 2369 infy_fork (EV_A);
1423#endif 2370#endif
1424 2371
1425 if (ev_is_active (&pipeev)) 2372 if (ev_is_active (&pipe_w))
1426 { 2373 {
1427 /* this "locks" the handlers against writing to the pipe */ 2374 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1428 /* while we modify the fd vars */
1429 gotsig = 1;
1430#if EV_ASYNC_ENABLE
1431 gotasync = 1;
1432#endif
1433 2375
1434 ev_ref (EV_A); 2376 ev_ref (EV_A);
1435 ev_io_stop (EV_A_ &pipeev); 2377 ev_io_stop (EV_A_ &pipe_w);
1436 2378
1437#if EV_USE_EVENTFD 2379#if EV_USE_EVENTFD
1438 if (evfd >= 0) 2380 if (evfd >= 0)
1439 close (evfd); 2381 close (evfd);
1440#endif 2382#endif
1441 2383
1442 if (evpipe [0] >= 0) 2384 if (evpipe [0] >= 0)
1443 { 2385 {
1444 close (evpipe [0]); 2386 EV_WIN32_CLOSE_FD (evpipe [0]);
1445 close (evpipe [1]); 2387 EV_WIN32_CLOSE_FD (evpipe [1]);
1446 } 2388 }
1447 2389
2390#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1448 evpipe_init (EV_A); 2391 evpipe_init (EV_A);
1449 /* now iterate over everything, in case we missed something */ 2392 /* now iterate over everything, in case we missed something */
1450 pipecb (EV_A_ &pipeev, EV_READ); 2393 pipecb (EV_A_ &pipe_w, EV_READ);
2394#endif
1451 } 2395 }
1452 2396
1453 postfork = 0; 2397 postfork = 0;
1454} 2398}
1455 2399
1456#if EV_MULTIPLICITY 2400#if EV_MULTIPLICITY
2401
1457struct ev_loop * 2402struct ev_loop * ecb_cold
1458ev_loop_new (unsigned int flags) 2403ev_loop_new (unsigned int flags)
1459{ 2404{
1460 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2405 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1461 2406
1462 memset (loop, 0, sizeof (struct ev_loop)); 2407 memset (EV_A, 0, sizeof (struct ev_loop));
1463
1464 loop_init (EV_A_ flags); 2408 loop_init (EV_A_ flags);
1465 2409
1466 if (ev_backend (EV_A)) 2410 if (ev_backend (EV_A))
1467 return loop; 2411 return EV_A;
1468 2412
2413 ev_free (EV_A);
1469 return 0; 2414 return 0;
1470} 2415}
1471 2416
1472void 2417#endif /* multiplicity */
1473ev_loop_destroy (EV_P)
1474{
1475 loop_destroy (EV_A);
1476 ev_free (loop);
1477}
1478 2418
1479void 2419#if EV_VERIFY
1480ev_loop_fork (EV_P) 2420static void noinline ecb_cold
2421verify_watcher (EV_P_ W w)
1481{ 2422{
1482 postfork = 1; /* must be in line with ev_default_fork */ 2423 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2424
2425 if (w->pending)
2426 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2427}
2428
2429static void noinline ecb_cold
2430verify_heap (EV_P_ ANHE *heap, int N)
2431{
2432 int i;
2433
2434 for (i = HEAP0; i < N + HEAP0; ++i)
2435 {
2436 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2437 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2438 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2439
2440 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2441 }
2442}
2443
2444static void noinline ecb_cold
2445array_verify (EV_P_ W *ws, int cnt)
2446{
2447 while (cnt--)
2448 {
2449 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2450 verify_watcher (EV_A_ ws [cnt]);
2451 }
2452}
2453#endif
2454
2455#if EV_FEATURE_API
2456void ecb_cold
2457ev_verify (EV_P)
2458{
2459#if EV_VERIFY
2460 int i;
2461 WL w;
2462
2463 assert (activecnt >= -1);
2464
2465 assert (fdchangemax >= fdchangecnt);
2466 for (i = 0; i < fdchangecnt; ++i)
2467 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2468
2469 assert (anfdmax >= 0);
2470 for (i = 0; i < anfdmax; ++i)
2471 for (w = anfds [i].head; w; w = w->next)
2472 {
2473 verify_watcher (EV_A_ (W)w);
2474 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2475 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2476 }
2477
2478 assert (timermax >= timercnt);
2479 verify_heap (EV_A_ timers, timercnt);
2480
2481#if EV_PERIODIC_ENABLE
2482 assert (periodicmax >= periodiccnt);
2483 verify_heap (EV_A_ periodics, periodiccnt);
2484#endif
2485
2486 for (i = NUMPRI; i--; )
2487 {
2488 assert (pendingmax [i] >= pendingcnt [i]);
2489#if EV_IDLE_ENABLE
2490 assert (idleall >= 0);
2491 assert (idlemax [i] >= idlecnt [i]);
2492 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2493#endif
2494 }
2495
2496#if EV_FORK_ENABLE
2497 assert (forkmax >= forkcnt);
2498 array_verify (EV_A_ (W *)forks, forkcnt);
2499#endif
2500
2501#if EV_CLEANUP_ENABLE
2502 assert (cleanupmax >= cleanupcnt);
2503 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2504#endif
2505
2506#if EV_ASYNC_ENABLE
2507 assert (asyncmax >= asynccnt);
2508 array_verify (EV_A_ (W *)asyncs, asynccnt);
2509#endif
2510
2511#if EV_PREPARE_ENABLE
2512 assert (preparemax >= preparecnt);
2513 array_verify (EV_A_ (W *)prepares, preparecnt);
2514#endif
2515
2516#if EV_CHECK_ENABLE
2517 assert (checkmax >= checkcnt);
2518 array_verify (EV_A_ (W *)checks, checkcnt);
2519#endif
2520
2521# if 0
2522#if EV_CHILD_ENABLE
2523 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2524 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2525#endif
2526# endif
2527#endif
1483} 2528}
1484#endif 2529#endif
1485 2530
1486#if EV_MULTIPLICITY 2531#if EV_MULTIPLICITY
1487struct ev_loop * 2532struct ev_loop * ecb_cold
1488ev_default_loop_init (unsigned int flags)
1489#else 2533#else
1490int 2534int
2535#endif
1491ev_default_loop (unsigned int flags) 2536ev_default_loop (unsigned int flags)
1492#endif
1493{ 2537{
1494 if (!ev_default_loop_ptr) 2538 if (!ev_default_loop_ptr)
1495 { 2539 {
1496#if EV_MULTIPLICITY 2540#if EV_MULTIPLICITY
1497 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2541 EV_P = ev_default_loop_ptr = &default_loop_struct;
1498#else 2542#else
1499 ev_default_loop_ptr = 1; 2543 ev_default_loop_ptr = 1;
1500#endif 2544#endif
1501 2545
1502 loop_init (EV_A_ flags); 2546 loop_init (EV_A_ flags);
1503 2547
1504 if (ev_backend (EV_A)) 2548 if (ev_backend (EV_A))
1505 { 2549 {
1506#ifndef _WIN32 2550#if EV_CHILD_ENABLE
1507 ev_signal_init (&childev, childcb, SIGCHLD); 2551 ev_signal_init (&childev, childcb, SIGCHLD);
1508 ev_set_priority (&childev, EV_MAXPRI); 2552 ev_set_priority (&childev, EV_MAXPRI);
1509 ev_signal_start (EV_A_ &childev); 2553 ev_signal_start (EV_A_ &childev);
1510 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2554 ev_unref (EV_A); /* child watcher should not keep loop alive */
1511#endif 2555#endif
1516 2560
1517 return ev_default_loop_ptr; 2561 return ev_default_loop_ptr;
1518} 2562}
1519 2563
1520void 2564void
1521ev_default_destroy (void) 2565ev_loop_fork (EV_P)
1522{ 2566{
1523#if EV_MULTIPLICITY
1524 struct ev_loop *loop = ev_default_loop_ptr;
1525#endif
1526
1527#ifndef _WIN32
1528 ev_ref (EV_A); /* child watcher */
1529 ev_signal_stop (EV_A_ &childev);
1530#endif
1531
1532 loop_destroy (EV_A);
1533}
1534
1535void
1536ev_default_fork (void)
1537{
1538#if EV_MULTIPLICITY
1539 struct ev_loop *loop = ev_default_loop_ptr;
1540#endif
1541
1542 if (backend)
1543 postfork = 1; /* must be in line with ev_loop_fork */ 2567 postfork = 1; /* must be in line with ev_default_fork */
1544} 2568}
1545 2569
1546/*****************************************************************************/ 2570/*****************************************************************************/
1547 2571
1548void 2572void
1549ev_invoke (EV_P_ void *w, int revents) 2573ev_invoke (EV_P_ void *w, int revents)
1550{ 2574{
1551 EV_CB_INVOKE ((W)w, revents); 2575 EV_CB_INVOKE ((W)w, revents);
1552} 2576}
1553 2577
1554void inline_speed 2578unsigned int
1555call_pending (EV_P) 2579ev_pending_count (EV_P)
2580{
2581 int pri;
2582 unsigned int count = 0;
2583
2584 for (pri = NUMPRI; pri--; )
2585 count += pendingcnt [pri];
2586
2587 return count;
2588}
2589
2590void noinline
2591ev_invoke_pending (EV_P)
1556{ 2592{
1557 int pri; 2593 int pri;
1558 2594
1559 for (pri = NUMPRI; pri--; ) 2595 for (pri = NUMPRI; pri--; )
1560 while (pendingcnt [pri]) 2596 while (pendingcnt [pri])
1561 { 2597 {
1562 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2598 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1563 2599
1564 if (expect_true (p->w))
1565 {
1566 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1567
1568 p->w->pending = 0; 2600 p->w->pending = 0;
1569 EV_CB_INVOKE (p->w, p->events); 2601 EV_CB_INVOKE (p->w, p->events);
1570 } 2602 EV_FREQUENT_CHECK;
1571 } 2603 }
1572} 2604}
1573 2605
1574#if EV_IDLE_ENABLE 2606#if EV_IDLE_ENABLE
1575void inline_size 2607/* make idle watchers pending. this handles the "call-idle */
2608/* only when higher priorities are idle" logic */
2609inline_size void
1576idle_reify (EV_P) 2610idle_reify (EV_P)
1577{ 2611{
1578 if (expect_false (idleall)) 2612 if (expect_false (idleall))
1579 { 2613 {
1580 int pri; 2614 int pri;
1592 } 2626 }
1593 } 2627 }
1594} 2628}
1595#endif 2629#endif
1596 2630
1597void inline_size 2631/* make timers pending */
2632inline_size void
1598timers_reify (EV_P) 2633timers_reify (EV_P)
1599{ 2634{
2635 EV_FREQUENT_CHECK;
2636
1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now) 2637 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1601 { 2638 {
1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2639 do
1603
1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1605
1606 /* first reschedule or stop timer */
1607 if (w->repeat)
1608 { 2640 {
2641 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2642
2643 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2644
2645 /* first reschedule or stop timer */
2646 if (w->repeat)
2647 {
2648 ev_at (w) += w->repeat;
2649 if (ev_at (w) < mn_now)
2650 ev_at (w) = mn_now;
2651
1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2652 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1610 2653
1611 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now;
1614
1615 ANHE_at_set (timers [HEAP0]); 2654 ANHE_at_cache (timers [HEAP0]);
1616 downheap (timers, timercnt, HEAP0); 2655 downheap (timers, timercnt, HEAP0);
2656 }
2657 else
2658 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2659
2660 EV_FREQUENT_CHECK;
2661 feed_reverse (EV_A_ (W)w);
1617 } 2662 }
1618 else 2663 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1620 2664
1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2665 feed_reverse_done (EV_A_ EV_TIMER);
1622 } 2666 }
1623} 2667}
1624 2668
1625#if EV_PERIODIC_ENABLE 2669#if EV_PERIODIC_ENABLE
1626void inline_size 2670
2671static void noinline
2672periodic_recalc (EV_P_ ev_periodic *w)
2673{
2674 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2675 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2676
2677 /* the above almost always errs on the low side */
2678 while (at <= ev_rt_now)
2679 {
2680 ev_tstamp nat = at + w->interval;
2681
2682 /* when resolution fails us, we use ev_rt_now */
2683 if (expect_false (nat == at))
2684 {
2685 at = ev_rt_now;
2686 break;
2687 }
2688
2689 at = nat;
2690 }
2691
2692 ev_at (w) = at;
2693}
2694
2695/* make periodics pending */
2696inline_size void
1627periodics_reify (EV_P) 2697periodics_reify (EV_P)
1628{ 2698{
2699 EV_FREQUENT_CHECK;
2700
1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now) 2701 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1630 { 2702 {
1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2703 int feed_count = 0;
1632 2704
1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2705 do
1634
1635 /* first reschedule or stop timer */
1636 if (w->reschedule_cb)
1637 { 2706 {
2707 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2708
2709 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2710
2711 /* first reschedule or stop timer */
2712 if (w->reschedule_cb)
2713 {
1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 2714 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2715
1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 2716 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2717
1640 ANHE_at_set (periodics [HEAP0]); 2718 ANHE_at_cache (periodics [HEAP0]);
1641 downheap (periodics, periodiccnt, HEAP0); 2719 downheap (periodics, periodiccnt, HEAP0);
2720 }
2721 else if (w->interval)
2722 {
2723 periodic_recalc (EV_A_ w);
2724 ANHE_at_cache (periodics [HEAP0]);
2725 downheap (periodics, periodiccnt, HEAP0);
2726 }
2727 else
2728 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2729
2730 EV_FREQUENT_CHECK;
2731 feed_reverse (EV_A_ (W)w);
1642 } 2732 }
1643 else if (w->interval) 2733 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1644 {
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else
1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1653 2734
1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2735 feed_reverse_done (EV_A_ EV_PERIODIC);
1655 } 2736 }
1656} 2737}
1657 2738
2739/* simply recalculate all periodics */
2740/* TODO: maybe ensure that at least one event happens when jumping forward? */
1658static void noinline 2741static void noinline ecb_cold
1659periodics_reschedule (EV_P) 2742periodics_reschedule (EV_P)
1660{ 2743{
1661 int i; 2744 int i;
1662 2745
1663 /* adjust periodics after time jump */ 2746 /* adjust periodics after time jump */
1666 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 2749 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1667 2750
1668 if (w->reschedule_cb) 2751 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2752 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1670 else if (w->interval) 2753 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2754 periodic_recalc (EV_A_ w);
1672 2755
1673 ANHE_at_set (periodics [i]); 2756 ANHE_at_cache (periodics [i]);
2757 }
2758
2759 reheap (periodics, periodiccnt);
2760}
2761#endif
2762
2763/* adjust all timers by a given offset */
2764static void noinline ecb_cold
2765timers_reschedule (EV_P_ ev_tstamp adjust)
2766{
2767 int i;
2768
2769 for (i = 0; i < timercnt; ++i)
1674 } 2770 {
1675 2771 ANHE *he = timers + i + HEAP0;
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */ 2772 ANHE_w (*he)->at += adjust;
1677 for (i = periodiccnt >> 1; --i; ) 2773 ANHE_at_cache (*he);
1678 downheap (periodics, periodiccnt, i + HEAP0); 2774 }
1679} 2775}
1680#endif
1681 2776
1682void inline_speed 2777/* fetch new monotonic and realtime times from the kernel */
2778/* also detect if there was a timejump, and act accordingly */
2779inline_speed void
1683time_update (EV_P_ ev_tstamp max_block) 2780time_update (EV_P_ ev_tstamp max_block)
1684{ 2781{
1685 int i;
1686
1687#if EV_USE_MONOTONIC 2782#if EV_USE_MONOTONIC
1688 if (expect_true (have_monotonic)) 2783 if (expect_true (have_monotonic))
1689 { 2784 {
2785 int i;
1690 ev_tstamp odiff = rtmn_diff; 2786 ev_tstamp odiff = rtmn_diff;
1691 2787
1692 mn_now = get_clock (); 2788 mn_now = get_clock ();
1693 2789
1694 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2790 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1710 * doesn't hurt either as we only do this on time-jumps or 2806 * doesn't hurt either as we only do this on time-jumps or
1711 * in the unlikely event of having been preempted here. 2807 * in the unlikely event of having been preempted here.
1712 */ 2808 */
1713 for (i = 4; --i; ) 2809 for (i = 4; --i; )
1714 { 2810 {
2811 ev_tstamp diff;
1715 rtmn_diff = ev_rt_now - mn_now; 2812 rtmn_diff = ev_rt_now - mn_now;
1716 2813
2814 diff = odiff - rtmn_diff;
2815
1717 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2816 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1718 return; /* all is well */ 2817 return; /* all is well */
1719 2818
1720 ev_rt_now = ev_time (); 2819 ev_rt_now = ev_time ();
1721 mn_now = get_clock (); 2820 mn_now = get_clock ();
1722 now_floor = mn_now; 2821 now_floor = mn_now;
1723 } 2822 }
1724 2823
2824 /* no timer adjustment, as the monotonic clock doesn't jump */
2825 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1725# if EV_PERIODIC_ENABLE 2826# if EV_PERIODIC_ENABLE
1726 periodics_reschedule (EV_A); 2827 periodics_reschedule (EV_A);
1727# endif 2828# endif
1728 /* no timer adjustment, as the monotonic clock doesn't jump */
1729 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1730 } 2829 }
1731 else 2830 else
1732#endif 2831#endif
1733 { 2832 {
1734 ev_rt_now = ev_time (); 2833 ev_rt_now = ev_time ();
1735 2834
1736 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2835 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1737 { 2836 {
2837 /* adjust timers. this is easy, as the offset is the same for all of them */
2838 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1738#if EV_PERIODIC_ENABLE 2839#if EV_PERIODIC_ENABLE
1739 periodics_reschedule (EV_A); 2840 periodics_reschedule (EV_A);
1740#endif 2841#endif
1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1742 for (i = 0; i < timercnt; ++i)
1743 {
1744 ANHE *he = timers + i + HEAP0;
1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he);
1747 }
1748 } 2842 }
1749 2843
1750 mn_now = ev_rt_now; 2844 mn_now = ev_rt_now;
1751 } 2845 }
1752} 2846}
1753 2847
1754void 2848void
1755ev_ref (EV_P)
1756{
1757 ++activecnt;
1758}
1759
1760void
1761ev_unref (EV_P)
1762{
1763 --activecnt;
1764}
1765
1766static int loop_done;
1767
1768void
1769ev_loop (EV_P_ int flags) 2849ev_run (EV_P_ int flags)
1770{ 2850{
2851#if EV_FEATURE_API
2852 ++loop_depth;
2853#endif
2854
2855 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2856
1771 loop_done = EVUNLOOP_CANCEL; 2857 loop_done = EVBREAK_CANCEL;
1772 2858
1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2859 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1774 2860
1775 do 2861 do
1776 { 2862 {
2863#if EV_VERIFY >= 2
2864 ev_verify (EV_A);
2865#endif
2866
1777#ifndef _WIN32 2867#ifndef _WIN32
1778 if (expect_false (curpid)) /* penalise the forking check even more */ 2868 if (expect_false (curpid)) /* penalise the forking check even more */
1779 if (expect_false (getpid () != curpid)) 2869 if (expect_false (getpid () != curpid))
1780 { 2870 {
1781 curpid = getpid (); 2871 curpid = getpid ();
1787 /* we might have forked, so queue fork handlers */ 2877 /* we might have forked, so queue fork handlers */
1788 if (expect_false (postfork)) 2878 if (expect_false (postfork))
1789 if (forkcnt) 2879 if (forkcnt)
1790 { 2880 {
1791 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2881 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1792 call_pending (EV_A); 2882 EV_INVOKE_PENDING;
1793 } 2883 }
1794#endif 2884#endif
1795 2885
2886#if EV_PREPARE_ENABLE
1796 /* queue prepare watchers (and execute them) */ 2887 /* queue prepare watchers (and execute them) */
1797 if (expect_false (preparecnt)) 2888 if (expect_false (preparecnt))
1798 { 2889 {
1799 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2890 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1800 call_pending (EV_A); 2891 EV_INVOKE_PENDING;
1801 } 2892 }
2893#endif
1802 2894
1803 if (expect_false (!activecnt)) 2895 if (expect_false (loop_done))
1804 break; 2896 break;
1805 2897
1806 /* we might have forked, so reify kernel state if necessary */ 2898 /* we might have forked, so reify kernel state if necessary */
1807 if (expect_false (postfork)) 2899 if (expect_false (postfork))
1808 loop_fork (EV_A); 2900 loop_fork (EV_A);
1813 /* calculate blocking time */ 2905 /* calculate blocking time */
1814 { 2906 {
1815 ev_tstamp waittime = 0.; 2907 ev_tstamp waittime = 0.;
1816 ev_tstamp sleeptime = 0.; 2908 ev_tstamp sleeptime = 0.;
1817 2909
2910 /* remember old timestamp for io_blocktime calculation */
2911 ev_tstamp prev_mn_now = mn_now;
2912
2913 /* update time to cancel out callback processing overhead */
2914 time_update (EV_A_ 1e100);
2915
2916 /* from now on, we want a pipe-wake-up */
2917 pipe_write_wanted = 1;
2918
2919 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2920
1818 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2921 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1819 { 2922 {
1820 /* update time to cancel out callback processing overhead */
1821 time_update (EV_A_ 1e100);
1822
1823 waittime = MAX_BLOCKTIME; 2923 waittime = MAX_BLOCKTIME;
1824 2924
1825 if (timercnt) 2925 if (timercnt)
1826 { 2926 {
1827 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2927 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1828 if (waittime > to) waittime = to; 2928 if (waittime > to) waittime = to;
1829 } 2929 }
1830 2930
1831#if EV_PERIODIC_ENABLE 2931#if EV_PERIODIC_ENABLE
1832 if (periodiccnt) 2932 if (periodiccnt)
1833 { 2933 {
1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2934 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1835 if (waittime > to) waittime = to; 2935 if (waittime > to) waittime = to;
1836 } 2936 }
1837#endif 2937#endif
1838 2938
2939 /* don't let timeouts decrease the waittime below timeout_blocktime */
1839 if (expect_false (waittime < timeout_blocktime)) 2940 if (expect_false (waittime < timeout_blocktime))
1840 waittime = timeout_blocktime; 2941 waittime = timeout_blocktime;
1841 2942
1842 sleeptime = waittime - backend_fudge; 2943 /* at this point, we NEED to wait, so we have to ensure */
2944 /* to pass a minimum nonzero value to the backend */
2945 if (expect_false (waittime < backend_mintime))
2946 waittime = backend_mintime;
1843 2947
2948 /* extra check because io_blocktime is commonly 0 */
1844 if (expect_true (sleeptime > io_blocktime)) 2949 if (expect_false (io_blocktime))
1845 sleeptime = io_blocktime;
1846
1847 if (sleeptime)
1848 { 2950 {
2951 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2952
2953 if (sleeptime > waittime - backend_mintime)
2954 sleeptime = waittime - backend_mintime;
2955
2956 if (expect_true (sleeptime > 0.))
2957 {
1849 ev_sleep (sleeptime); 2958 ev_sleep (sleeptime);
1850 waittime -= sleeptime; 2959 waittime -= sleeptime;
2960 }
1851 } 2961 }
1852 } 2962 }
1853 2963
2964#if EV_FEATURE_API
1854 ++loop_count; 2965 ++loop_count;
2966#endif
2967 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1855 backend_poll (EV_A_ waittime); 2968 backend_poll (EV_A_ waittime);
2969 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2970
2971 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2972
2973 if (pipe_write_skipped)
2974 {
2975 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2976 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2977 }
2978
1856 2979
1857 /* update ev_rt_now, do magic */ 2980 /* update ev_rt_now, do magic */
1858 time_update (EV_A_ waittime + sleeptime); 2981 time_update (EV_A_ waittime + sleeptime);
1859 } 2982 }
1860 2983
1867#if EV_IDLE_ENABLE 2990#if EV_IDLE_ENABLE
1868 /* queue idle watchers unless other events are pending */ 2991 /* queue idle watchers unless other events are pending */
1869 idle_reify (EV_A); 2992 idle_reify (EV_A);
1870#endif 2993#endif
1871 2994
2995#if EV_CHECK_ENABLE
1872 /* queue check watchers, to be executed first */ 2996 /* queue check watchers, to be executed first */
1873 if (expect_false (checkcnt)) 2997 if (expect_false (checkcnt))
1874 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2998 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2999#endif
1875 3000
1876 call_pending (EV_A); 3001 EV_INVOKE_PENDING;
1877 } 3002 }
1878 while (expect_true ( 3003 while (expect_true (
1879 activecnt 3004 activecnt
1880 && !loop_done 3005 && !loop_done
1881 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3006 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1882 )); 3007 ));
1883 3008
1884 if (loop_done == EVUNLOOP_ONE) 3009 if (loop_done == EVBREAK_ONE)
1885 loop_done = EVUNLOOP_CANCEL; 3010 loop_done = EVBREAK_CANCEL;
3011
3012#if EV_FEATURE_API
3013 --loop_depth;
3014#endif
1886} 3015}
1887 3016
1888void 3017void
1889ev_unloop (EV_P_ int how) 3018ev_break (EV_P_ int how)
1890{ 3019{
1891 loop_done = how; 3020 loop_done = how;
1892} 3021}
1893 3022
3023void
3024ev_ref (EV_P)
3025{
3026 ++activecnt;
3027}
3028
3029void
3030ev_unref (EV_P)
3031{
3032 --activecnt;
3033}
3034
3035void
3036ev_now_update (EV_P)
3037{
3038 time_update (EV_A_ 1e100);
3039}
3040
3041void
3042ev_suspend (EV_P)
3043{
3044 ev_now_update (EV_A);
3045}
3046
3047void
3048ev_resume (EV_P)
3049{
3050 ev_tstamp mn_prev = mn_now;
3051
3052 ev_now_update (EV_A);
3053 timers_reschedule (EV_A_ mn_now - mn_prev);
3054#if EV_PERIODIC_ENABLE
3055 /* TODO: really do this? */
3056 periodics_reschedule (EV_A);
3057#endif
3058}
3059
1894/*****************************************************************************/ 3060/*****************************************************************************/
3061/* singly-linked list management, used when the expected list length is short */
1895 3062
1896void inline_size 3063inline_size void
1897wlist_add (WL *head, WL elem) 3064wlist_add (WL *head, WL elem)
1898{ 3065{
1899 elem->next = *head; 3066 elem->next = *head;
1900 *head = elem; 3067 *head = elem;
1901} 3068}
1902 3069
1903void inline_size 3070inline_size void
1904wlist_del (WL *head, WL elem) 3071wlist_del (WL *head, WL elem)
1905{ 3072{
1906 while (*head) 3073 while (*head)
1907 { 3074 {
1908 if (*head == elem) 3075 if (expect_true (*head == elem))
1909 { 3076 {
1910 *head = elem->next; 3077 *head = elem->next;
1911 return; 3078 break;
1912 } 3079 }
1913 3080
1914 head = &(*head)->next; 3081 head = &(*head)->next;
1915 } 3082 }
1916} 3083}
1917 3084
1918void inline_speed 3085/* internal, faster, version of ev_clear_pending */
3086inline_speed void
1919clear_pending (EV_P_ W w) 3087clear_pending (EV_P_ W w)
1920{ 3088{
1921 if (w->pending) 3089 if (w->pending)
1922 { 3090 {
1923 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3091 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1924 w->pending = 0; 3092 w->pending = 0;
1925 } 3093 }
1926} 3094}
1927 3095
1928int 3096int
1932 int pending = w_->pending; 3100 int pending = w_->pending;
1933 3101
1934 if (expect_true (pending)) 3102 if (expect_true (pending))
1935 { 3103 {
1936 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3104 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3105 p->w = (W)&pending_w;
1937 w_->pending = 0; 3106 w_->pending = 0;
1938 p->w = 0;
1939 return p->events; 3107 return p->events;
1940 } 3108 }
1941 else 3109 else
1942 return 0; 3110 return 0;
1943} 3111}
1944 3112
1945void inline_size 3113inline_size void
1946pri_adjust (EV_P_ W w) 3114pri_adjust (EV_P_ W w)
1947{ 3115{
1948 int pri = w->priority; 3116 int pri = ev_priority (w);
1949 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3117 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1950 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3118 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1951 w->priority = pri; 3119 ev_set_priority (w, pri);
1952} 3120}
1953 3121
1954void inline_speed 3122inline_speed void
1955ev_start (EV_P_ W w, int active) 3123ev_start (EV_P_ W w, int active)
1956{ 3124{
1957 pri_adjust (EV_A_ w); 3125 pri_adjust (EV_A_ w);
1958 w->active = active; 3126 w->active = active;
1959 ev_ref (EV_A); 3127 ev_ref (EV_A);
1960} 3128}
1961 3129
1962void inline_size 3130inline_size void
1963ev_stop (EV_P_ W w) 3131ev_stop (EV_P_ W w)
1964{ 3132{
1965 ev_unref (EV_A); 3133 ev_unref (EV_A);
1966 w->active = 0; 3134 w->active = 0;
1967} 3135}
1974 int fd = w->fd; 3142 int fd = w->fd;
1975 3143
1976 if (expect_false (ev_is_active (w))) 3144 if (expect_false (ev_is_active (w)))
1977 return; 3145 return;
1978 3146
1979 assert (("ev_io_start called with negative fd", fd >= 0)); 3147 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3148 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3149
3150 EV_FREQUENT_CHECK;
1980 3151
1981 ev_start (EV_A_ (W)w, 1); 3152 ev_start (EV_A_ (W)w, 1);
1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3153 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1983 wlist_add (&anfds[fd].head, (WL)w); 3154 wlist_add (&anfds[fd].head, (WL)w);
1984 3155
1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3156 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1986 w->events &= ~EV_IOFDSET; 3157 w->events &= ~EV__IOFDSET;
3158
3159 EV_FREQUENT_CHECK;
1987} 3160}
1988 3161
1989void noinline 3162void noinline
1990ev_io_stop (EV_P_ ev_io *w) 3163ev_io_stop (EV_P_ ev_io *w)
1991{ 3164{
1992 clear_pending (EV_A_ (W)w); 3165 clear_pending (EV_A_ (W)w);
1993 if (expect_false (!ev_is_active (w))) 3166 if (expect_false (!ev_is_active (w)))
1994 return; 3167 return;
1995 3168
1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3169 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3170
3171 EV_FREQUENT_CHECK;
1997 3172
1998 wlist_del (&anfds[w->fd].head, (WL)w); 3173 wlist_del (&anfds[w->fd].head, (WL)w);
1999 ev_stop (EV_A_ (W)w); 3174 ev_stop (EV_A_ (W)w);
2000 3175
2001 fd_change (EV_A_ w->fd, 1); 3176 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3177
3178 EV_FREQUENT_CHECK;
2002} 3179}
2003 3180
2004void noinline 3181void noinline
2005ev_timer_start (EV_P_ ev_timer *w) 3182ev_timer_start (EV_P_ ev_timer *w)
2006{ 3183{
2007 if (expect_false (ev_is_active (w))) 3184 if (expect_false (ev_is_active (w)))
2008 return; 3185 return;
2009 3186
2010 ev_at (w) += mn_now; 3187 ev_at (w) += mn_now;
2011 3188
2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3189 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2013 3190
3191 EV_FREQUENT_CHECK;
3192
3193 ++timercnt;
2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 3194 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 3195 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2016 ANHE_w (timers [ev_active (w)]) = (WT)w; 3196 ANHE_w (timers [ev_active (w)]) = (WT)w;
2017 ANHE_at_set (timers [ev_active (w)]); 3197 ANHE_at_cache (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w)); 3198 upheap (timers, ev_active (w));
2019 3199
3200 EV_FREQUENT_CHECK;
3201
2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3202 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2021} 3203}
2022 3204
2023void noinline 3205void noinline
2024ev_timer_stop (EV_P_ ev_timer *w) 3206ev_timer_stop (EV_P_ ev_timer *w)
2025{ 3207{
2026 clear_pending (EV_A_ (W)w); 3208 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 3209 if (expect_false (!ev_is_active (w)))
2028 return; 3210 return;
2029 3211
3212 EV_FREQUENT_CHECK;
3213
2030 { 3214 {
2031 int active = ev_active (w); 3215 int active = ev_active (w);
2032 3216
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3217 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034 3218
3219 --timercnt;
3220
2035 if (expect_true (active < timercnt + HEAP0 - 1)) 3221 if (expect_true (active < timercnt + HEAP0))
2036 { 3222 {
2037 timers [active] = timers [timercnt + HEAP0 - 1]; 3223 timers [active] = timers [timercnt + HEAP0];
2038 adjustheap (timers, timercnt, active); 3224 adjustheap (timers, timercnt, active);
2039 } 3225 }
2040
2041 --timercnt;
2042 } 3226 }
2043 3227
2044 ev_at (w) -= mn_now; 3228 ev_at (w) -= mn_now;
2045 3229
2046 ev_stop (EV_A_ (W)w); 3230 ev_stop (EV_A_ (W)w);
3231
3232 EV_FREQUENT_CHECK;
2047} 3233}
2048 3234
2049void noinline 3235void noinline
2050ev_timer_again (EV_P_ ev_timer *w) 3236ev_timer_again (EV_P_ ev_timer *w)
2051{ 3237{
3238 EV_FREQUENT_CHECK;
3239
2052 if (ev_is_active (w)) 3240 if (ev_is_active (w))
2053 { 3241 {
2054 if (w->repeat) 3242 if (w->repeat)
2055 { 3243 {
2056 ev_at (w) = mn_now + w->repeat; 3244 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]); 3245 ANHE_at_cache (timers [ev_active (w)]);
2058 adjustheap (timers, timercnt, ev_active (w)); 3246 adjustheap (timers, timercnt, ev_active (w));
2059 } 3247 }
2060 else 3248 else
2061 ev_timer_stop (EV_A_ w); 3249 ev_timer_stop (EV_A_ w);
2062 } 3250 }
2063 else if (w->repeat) 3251 else if (w->repeat)
2064 { 3252 {
2065 ev_at (w) = w->repeat; 3253 ev_at (w) = w->repeat;
2066 ev_timer_start (EV_A_ w); 3254 ev_timer_start (EV_A_ w);
2067 } 3255 }
3256
3257 EV_FREQUENT_CHECK;
3258}
3259
3260ev_tstamp
3261ev_timer_remaining (EV_P_ ev_timer *w)
3262{
3263 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2068} 3264}
2069 3265
2070#if EV_PERIODIC_ENABLE 3266#if EV_PERIODIC_ENABLE
2071void noinline 3267void noinline
2072ev_periodic_start (EV_P_ ev_periodic *w) 3268ev_periodic_start (EV_P_ ev_periodic *w)
2076 3272
2077 if (w->reschedule_cb) 3273 if (w->reschedule_cb)
2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3274 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2079 else if (w->interval) 3275 else if (w->interval)
2080 { 3276 {
2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3277 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2082 /* this formula differs from the one in periodic_reify because we do not always round up */ 3278 periodic_recalc (EV_A_ w);
2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2084 } 3279 }
2085 else 3280 else
2086 ev_at (w) = w->offset; 3281 ev_at (w) = w->offset;
2087 3282
3283 EV_FREQUENT_CHECK;
3284
3285 ++periodiccnt;
2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 3286 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 3287 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2090 ANHE_w (periodics [ev_active (w)]) = (WT)w; 3288 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3289 ANHE_at_cache (periodics [ev_active (w)]);
2091 upheap (periodics, ev_active (w)); 3290 upheap (periodics, ev_active (w));
2092 3291
3292 EV_FREQUENT_CHECK;
3293
2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3294 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2094} 3295}
2095 3296
2096void noinline 3297void noinline
2097ev_periodic_stop (EV_P_ ev_periodic *w) 3298ev_periodic_stop (EV_P_ ev_periodic *w)
2098{ 3299{
2099 clear_pending (EV_A_ (W)w); 3300 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w))) 3301 if (expect_false (!ev_is_active (w)))
2101 return; 3302 return;
2102 3303
3304 EV_FREQUENT_CHECK;
3305
2103 { 3306 {
2104 int active = ev_active (w); 3307 int active = ev_active (w);
2105 3308
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3309 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107 3310
3311 --periodiccnt;
3312
2108 if (expect_true (active < periodiccnt + HEAP0 - 1)) 3313 if (expect_true (active < periodiccnt + HEAP0))
2109 { 3314 {
2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 3315 periodics [active] = periodics [periodiccnt + HEAP0];
2111 adjustheap (periodics, periodiccnt, active); 3316 adjustheap (periodics, periodiccnt, active);
2112 } 3317 }
2113
2114 --periodiccnt;
2115 } 3318 }
2116 3319
2117 ev_stop (EV_A_ (W)w); 3320 ev_stop (EV_A_ (W)w);
3321
3322 EV_FREQUENT_CHECK;
2118} 3323}
2119 3324
2120void noinline 3325void noinline
2121ev_periodic_again (EV_P_ ev_periodic *w) 3326ev_periodic_again (EV_P_ ev_periodic *w)
2122{ 3327{
2128 3333
2129#ifndef SA_RESTART 3334#ifndef SA_RESTART
2130# define SA_RESTART 0 3335# define SA_RESTART 0
2131#endif 3336#endif
2132 3337
3338#if EV_SIGNAL_ENABLE
3339
2133void noinline 3340void noinline
2134ev_signal_start (EV_P_ ev_signal *w) 3341ev_signal_start (EV_P_ ev_signal *w)
2135{ 3342{
2136#if EV_MULTIPLICITY
2137 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2138#endif
2139 if (expect_false (ev_is_active (w))) 3343 if (expect_false (ev_is_active (w)))
2140 return; 3344 return;
2141 3345
2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3346 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2143 3347
2144 evpipe_init (EV_A); 3348#if EV_MULTIPLICITY
3349 assert (("libev: a signal must not be attached to two different loops",
3350 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2145 3351
3352 signals [w->signum - 1].loop = EV_A;
3353#endif
3354
3355 EV_FREQUENT_CHECK;
3356
3357#if EV_USE_SIGNALFD
3358 if (sigfd == -2)
2146 { 3359 {
2147#ifndef _WIN32 3360 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2148 sigset_t full, prev; 3361 if (sigfd < 0 && errno == EINVAL)
2149 sigfillset (&full); 3362 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2150 sigprocmask (SIG_SETMASK, &full, &prev);
2151#endif
2152 3363
2153 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3364 if (sigfd >= 0)
3365 {
3366 fd_intern (sigfd); /* doing it twice will not hurt */
2154 3367
2155#ifndef _WIN32 3368 sigemptyset (&sigfd_set);
2156 sigprocmask (SIG_SETMASK, &prev, 0); 3369
2157#endif 3370 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3371 ev_set_priority (&sigfd_w, EV_MAXPRI);
3372 ev_io_start (EV_A_ &sigfd_w);
3373 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3374 }
2158 } 3375 }
3376
3377 if (sigfd >= 0)
3378 {
3379 /* TODO: check .head */
3380 sigaddset (&sigfd_set, w->signum);
3381 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3382
3383 signalfd (sigfd, &sigfd_set, 0);
3384 }
3385#endif
2159 3386
2160 ev_start (EV_A_ (W)w, 1); 3387 ev_start (EV_A_ (W)w, 1);
2161 wlist_add (&signals [w->signum - 1].head, (WL)w); 3388 wlist_add (&signals [w->signum - 1].head, (WL)w);
2162 3389
2163 if (!((WL)w)->next) 3390 if (!((WL)w)->next)
3391# if EV_USE_SIGNALFD
3392 if (sigfd < 0) /*TODO*/
3393# endif
2164 { 3394 {
2165#if _WIN32 3395# ifdef _WIN32
3396 evpipe_init (EV_A);
3397
2166 signal (w->signum, ev_sighandler); 3398 signal (w->signum, ev_sighandler);
2167#else 3399# else
2168 struct sigaction sa; 3400 struct sigaction sa;
3401
3402 evpipe_init (EV_A);
3403
2169 sa.sa_handler = ev_sighandler; 3404 sa.sa_handler = ev_sighandler;
2170 sigfillset (&sa.sa_mask); 3405 sigfillset (&sa.sa_mask);
2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3406 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2172 sigaction (w->signum, &sa, 0); 3407 sigaction (w->signum, &sa, 0);
3408
3409 if (origflags & EVFLAG_NOSIGMASK)
3410 {
3411 sigemptyset (&sa.sa_mask);
3412 sigaddset (&sa.sa_mask, w->signum);
3413 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3414 }
2173#endif 3415#endif
2174 } 3416 }
3417
3418 EV_FREQUENT_CHECK;
2175} 3419}
2176 3420
2177void noinline 3421void noinline
2178ev_signal_stop (EV_P_ ev_signal *w) 3422ev_signal_stop (EV_P_ ev_signal *w)
2179{ 3423{
2180 clear_pending (EV_A_ (W)w); 3424 clear_pending (EV_A_ (W)w);
2181 if (expect_false (!ev_is_active (w))) 3425 if (expect_false (!ev_is_active (w)))
2182 return; 3426 return;
2183 3427
3428 EV_FREQUENT_CHECK;
3429
2184 wlist_del (&signals [w->signum - 1].head, (WL)w); 3430 wlist_del (&signals [w->signum - 1].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 3431 ev_stop (EV_A_ (W)w);
2186 3432
2187 if (!signals [w->signum - 1].head) 3433 if (!signals [w->signum - 1].head)
3434 {
3435#if EV_MULTIPLICITY
3436 signals [w->signum - 1].loop = 0; /* unattach from signal */
3437#endif
3438#if EV_USE_SIGNALFD
3439 if (sigfd >= 0)
3440 {
3441 sigset_t ss;
3442
3443 sigemptyset (&ss);
3444 sigaddset (&ss, w->signum);
3445 sigdelset (&sigfd_set, w->signum);
3446
3447 signalfd (sigfd, &sigfd_set, 0);
3448 sigprocmask (SIG_UNBLOCK, &ss, 0);
3449 }
3450 else
3451#endif
2188 signal (w->signum, SIG_DFL); 3452 signal (w->signum, SIG_DFL);
3453 }
3454
3455 EV_FREQUENT_CHECK;
2189} 3456}
3457
3458#endif
3459
3460#if EV_CHILD_ENABLE
2190 3461
2191void 3462void
2192ev_child_start (EV_P_ ev_child *w) 3463ev_child_start (EV_P_ ev_child *w)
2193{ 3464{
2194#if EV_MULTIPLICITY 3465#if EV_MULTIPLICITY
2195 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3466 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2196#endif 3467#endif
2197 if (expect_false (ev_is_active (w))) 3468 if (expect_false (ev_is_active (w)))
2198 return; 3469 return;
2199 3470
3471 EV_FREQUENT_CHECK;
3472
2200 ev_start (EV_A_ (W)w, 1); 3473 ev_start (EV_A_ (W)w, 1);
2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3474 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3475
3476 EV_FREQUENT_CHECK;
2202} 3477}
2203 3478
2204void 3479void
2205ev_child_stop (EV_P_ ev_child *w) 3480ev_child_stop (EV_P_ ev_child *w)
2206{ 3481{
2207 clear_pending (EV_A_ (W)w); 3482 clear_pending (EV_A_ (W)w);
2208 if (expect_false (!ev_is_active (w))) 3483 if (expect_false (!ev_is_active (w)))
2209 return; 3484 return;
2210 3485
3486 EV_FREQUENT_CHECK;
3487
2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3488 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2212 ev_stop (EV_A_ (W)w); 3489 ev_stop (EV_A_ (W)w);
3490
3491 EV_FREQUENT_CHECK;
2213} 3492}
3493
3494#endif
2214 3495
2215#if EV_STAT_ENABLE 3496#if EV_STAT_ENABLE
2216 3497
2217# ifdef _WIN32 3498# ifdef _WIN32
2218# undef lstat 3499# undef lstat
2219# define lstat(a,b) _stati64 (a,b) 3500# define lstat(a,b) _stati64 (a,b)
2220# endif 3501# endif
2221 3502
2222#define DEF_STAT_INTERVAL 5.0074891 3503#define DEF_STAT_INTERVAL 5.0074891
3504#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2223#define MIN_STAT_INTERVAL 0.1074891 3505#define MIN_STAT_INTERVAL 0.1074891
2224 3506
2225static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3507static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2226 3508
2227#if EV_USE_INOTIFY 3509#if EV_USE_INOTIFY
2228# define EV_INOTIFY_BUFSIZE 8192 3510
3511/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3512# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2229 3513
2230static void noinline 3514static void noinline
2231infy_add (EV_P_ ev_stat *w) 3515infy_add (EV_P_ ev_stat *w)
2232{ 3516{
2233 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3517 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2234 3518
2235 if (w->wd < 0) 3519 if (w->wd >= 0)
3520 {
3521 struct statfs sfs;
3522
3523 /* now local changes will be tracked by inotify, but remote changes won't */
3524 /* unless the filesystem is known to be local, we therefore still poll */
3525 /* also do poll on <2.6.25, but with normal frequency */
3526
3527 if (!fs_2625)
3528 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3529 else if (!statfs (w->path, &sfs)
3530 && (sfs.f_type == 0x1373 /* devfs */
3531 || sfs.f_type == 0xEF53 /* ext2/3 */
3532 || sfs.f_type == 0x3153464a /* jfs */
3533 || sfs.f_type == 0x52654973 /* reiser3 */
3534 || sfs.f_type == 0x01021994 /* tempfs */
3535 || sfs.f_type == 0x58465342 /* xfs */))
3536 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3537 else
3538 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2236 { 3539 }
2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3540 else
3541 {
3542 /* can't use inotify, continue to stat */
3543 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2238 3544
2239 /* monitor some parent directory for speedup hints */ 3545 /* if path is not there, monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3546 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2241 /* but an efficiency issue only */ 3547 /* but an efficiency issue only */
2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3548 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2243 { 3549 {
2244 char path [4096]; 3550 char path [4096];
2245 strcpy (path, w->path); 3551 strcpy (path, w->path);
2249 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3555 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2250 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3556 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2251 3557
2252 char *pend = strrchr (path, '/'); 3558 char *pend = strrchr (path, '/');
2253 3559
2254 if (!pend) 3560 if (!pend || pend == path)
2255 break; /* whoops, no '/', complain to your admin */ 3561 break;
2256 3562
2257 *pend = 0; 3563 *pend = 0;
2258 w->wd = inotify_add_watch (fs_fd, path, mask); 3564 w->wd = inotify_add_watch (fs_fd, path, mask);
2259 } 3565 }
2260 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3566 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2261 } 3567 }
2262 } 3568 }
2263 else
2264 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2265 3569
2266 if (w->wd >= 0) 3570 if (w->wd >= 0)
2267 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3571 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3572
3573 /* now re-arm timer, if required */
3574 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3575 ev_timer_again (EV_A_ &w->timer);
3576 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2268} 3577}
2269 3578
2270static void noinline 3579static void noinline
2271infy_del (EV_P_ ev_stat *w) 3580infy_del (EV_P_ ev_stat *w)
2272{ 3581{
2275 3584
2276 if (wd < 0) 3585 if (wd < 0)
2277 return; 3586 return;
2278 3587
2279 w->wd = -2; 3588 w->wd = -2;
2280 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3589 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2281 wlist_del (&fs_hash [slot].head, (WL)w); 3590 wlist_del (&fs_hash [slot].head, (WL)w);
2282 3591
2283 /* remove this watcher, if others are watching it, they will rearm */ 3592 /* remove this watcher, if others are watching it, they will rearm */
2284 inotify_rm_watch (fs_fd, wd); 3593 inotify_rm_watch (fs_fd, wd);
2285} 3594}
2286 3595
2287static void noinline 3596static void noinline
2288infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3597infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2289{ 3598{
2290 if (slot < 0) 3599 if (slot < 0)
2291 /* overflow, need to check for all hahs slots */ 3600 /* overflow, need to check for all hash slots */
2292 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3601 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2293 infy_wd (EV_A_ slot, wd, ev); 3602 infy_wd (EV_A_ slot, wd, ev);
2294 else 3603 else
2295 { 3604 {
2296 WL w_; 3605 WL w_;
2297 3606
2298 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3607 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2299 { 3608 {
2300 ev_stat *w = (ev_stat *)w_; 3609 ev_stat *w = (ev_stat *)w_;
2301 w_ = w_->next; /* lets us remove this watcher and all before it */ 3610 w_ = w_->next; /* lets us remove this watcher and all before it */
2302 3611
2303 if (w->wd == wd || wd == -1) 3612 if (w->wd == wd || wd == -1)
2304 { 3613 {
2305 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3614 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2306 { 3615 {
3616 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2307 w->wd = -1; 3617 w->wd = -1;
2308 infy_add (EV_A_ w); /* re-add, no matter what */ 3618 infy_add (EV_A_ w); /* re-add, no matter what */
2309 } 3619 }
2310 3620
2311 stat_timer_cb (EV_A_ &w->timer, 0); 3621 stat_timer_cb (EV_A_ &w->timer, 0);
2316 3626
2317static void 3627static void
2318infy_cb (EV_P_ ev_io *w, int revents) 3628infy_cb (EV_P_ ev_io *w, int revents)
2319{ 3629{
2320 char buf [EV_INOTIFY_BUFSIZE]; 3630 char buf [EV_INOTIFY_BUFSIZE];
2321 struct inotify_event *ev = (struct inotify_event *)buf;
2322 int ofs; 3631 int ofs;
2323 int len = read (fs_fd, buf, sizeof (buf)); 3632 int len = read (fs_fd, buf, sizeof (buf));
2324 3633
2325 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3634 for (ofs = 0; ofs < len; )
3635 {
3636 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2326 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3637 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3638 ofs += sizeof (struct inotify_event) + ev->len;
3639 }
2327} 3640}
2328 3641
2329void inline_size 3642inline_size void ecb_cold
3643ev_check_2625 (EV_P)
3644{
3645 /* kernels < 2.6.25 are borked
3646 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3647 */
3648 if (ev_linux_version () < 0x020619)
3649 return;
3650
3651 fs_2625 = 1;
3652}
3653
3654inline_size int
3655infy_newfd (void)
3656{
3657#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3658 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3659 if (fd >= 0)
3660 return fd;
3661#endif
3662 return inotify_init ();
3663}
3664
3665inline_size void
2330infy_init (EV_P) 3666infy_init (EV_P)
2331{ 3667{
2332 if (fs_fd != -2) 3668 if (fs_fd != -2)
2333 return; 3669 return;
2334 3670
3671 fs_fd = -1;
3672
3673 ev_check_2625 (EV_A);
3674
2335 fs_fd = inotify_init (); 3675 fs_fd = infy_newfd ();
2336 3676
2337 if (fs_fd >= 0) 3677 if (fs_fd >= 0)
2338 { 3678 {
3679 fd_intern (fs_fd);
2339 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3680 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2340 ev_set_priority (&fs_w, EV_MAXPRI); 3681 ev_set_priority (&fs_w, EV_MAXPRI);
2341 ev_io_start (EV_A_ &fs_w); 3682 ev_io_start (EV_A_ &fs_w);
3683 ev_unref (EV_A);
2342 } 3684 }
2343} 3685}
2344 3686
2345void inline_size 3687inline_size void
2346infy_fork (EV_P) 3688infy_fork (EV_P)
2347{ 3689{
2348 int slot; 3690 int slot;
2349 3691
2350 if (fs_fd < 0) 3692 if (fs_fd < 0)
2351 return; 3693 return;
2352 3694
3695 ev_ref (EV_A);
3696 ev_io_stop (EV_A_ &fs_w);
2353 close (fs_fd); 3697 close (fs_fd);
2354 fs_fd = inotify_init (); 3698 fs_fd = infy_newfd ();
2355 3699
3700 if (fs_fd >= 0)
3701 {
3702 fd_intern (fs_fd);
3703 ev_io_set (&fs_w, fs_fd, EV_READ);
3704 ev_io_start (EV_A_ &fs_w);
3705 ev_unref (EV_A);
3706 }
3707
2356 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3708 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2357 { 3709 {
2358 WL w_ = fs_hash [slot].head; 3710 WL w_ = fs_hash [slot].head;
2359 fs_hash [slot].head = 0; 3711 fs_hash [slot].head = 0;
2360 3712
2361 while (w_) 3713 while (w_)
2366 w->wd = -1; 3718 w->wd = -1;
2367 3719
2368 if (fs_fd >= 0) 3720 if (fs_fd >= 0)
2369 infy_add (EV_A_ w); /* re-add, no matter what */ 3721 infy_add (EV_A_ w); /* re-add, no matter what */
2370 else 3722 else
3723 {
3724 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3725 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2371 ev_timer_start (EV_A_ &w->timer); 3726 ev_timer_again (EV_A_ &w->timer);
3727 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3728 }
2372 } 3729 }
2373
2374 } 3730 }
2375} 3731}
2376 3732
3733#endif
3734
3735#ifdef _WIN32
3736# define EV_LSTAT(p,b) _stati64 (p, b)
3737#else
3738# define EV_LSTAT(p,b) lstat (p, b)
2377#endif 3739#endif
2378 3740
2379void 3741void
2380ev_stat_stat (EV_P_ ev_stat *w) 3742ev_stat_stat (EV_P_ ev_stat *w)
2381{ 3743{
2388static void noinline 3750static void noinline
2389stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3751stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2390{ 3752{
2391 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3753 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2392 3754
2393 /* we copy this here each the time so that */ 3755 ev_statdata prev = w->attr;
2394 /* prev has the old value when the callback gets invoked */
2395 w->prev = w->attr;
2396 ev_stat_stat (EV_A_ w); 3756 ev_stat_stat (EV_A_ w);
2397 3757
2398 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3758 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2399 if ( 3759 if (
2400 w->prev.st_dev != w->attr.st_dev 3760 prev.st_dev != w->attr.st_dev
2401 || w->prev.st_ino != w->attr.st_ino 3761 || prev.st_ino != w->attr.st_ino
2402 || w->prev.st_mode != w->attr.st_mode 3762 || prev.st_mode != w->attr.st_mode
2403 || w->prev.st_nlink != w->attr.st_nlink 3763 || prev.st_nlink != w->attr.st_nlink
2404 || w->prev.st_uid != w->attr.st_uid 3764 || prev.st_uid != w->attr.st_uid
2405 || w->prev.st_gid != w->attr.st_gid 3765 || prev.st_gid != w->attr.st_gid
2406 || w->prev.st_rdev != w->attr.st_rdev 3766 || prev.st_rdev != w->attr.st_rdev
2407 || w->prev.st_size != w->attr.st_size 3767 || prev.st_size != w->attr.st_size
2408 || w->prev.st_atime != w->attr.st_atime 3768 || prev.st_atime != w->attr.st_atime
2409 || w->prev.st_mtime != w->attr.st_mtime 3769 || prev.st_mtime != w->attr.st_mtime
2410 || w->prev.st_ctime != w->attr.st_ctime 3770 || prev.st_ctime != w->attr.st_ctime
2411 ) { 3771 ) {
3772 /* we only update w->prev on actual differences */
3773 /* in case we test more often than invoke the callback, */
3774 /* to ensure that prev is always different to attr */
3775 w->prev = prev;
3776
2412 #if EV_USE_INOTIFY 3777 #if EV_USE_INOTIFY
3778 if (fs_fd >= 0)
3779 {
2413 infy_del (EV_A_ w); 3780 infy_del (EV_A_ w);
2414 infy_add (EV_A_ w); 3781 infy_add (EV_A_ w);
2415 ev_stat_stat (EV_A_ w); /* avoid race... */ 3782 ev_stat_stat (EV_A_ w); /* avoid race... */
3783 }
2416 #endif 3784 #endif
2417 3785
2418 ev_feed_event (EV_A_ w, EV_STAT); 3786 ev_feed_event (EV_A_ w, EV_STAT);
2419 } 3787 }
2420} 3788}
2423ev_stat_start (EV_P_ ev_stat *w) 3791ev_stat_start (EV_P_ ev_stat *w)
2424{ 3792{
2425 if (expect_false (ev_is_active (w))) 3793 if (expect_false (ev_is_active (w)))
2426 return; 3794 return;
2427 3795
2428 /* since we use memcmp, we need to clear any padding data etc. */
2429 memset (&w->prev, 0, sizeof (ev_statdata));
2430 memset (&w->attr, 0, sizeof (ev_statdata));
2431
2432 ev_stat_stat (EV_A_ w); 3796 ev_stat_stat (EV_A_ w);
2433 3797
3798 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2434 if (w->interval < MIN_STAT_INTERVAL) 3799 w->interval = MIN_STAT_INTERVAL;
2435 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2436 3800
2437 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3801 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2438 ev_set_priority (&w->timer, ev_priority (w)); 3802 ev_set_priority (&w->timer, ev_priority (w));
2439 3803
2440#if EV_USE_INOTIFY 3804#if EV_USE_INOTIFY
2441 infy_init (EV_A); 3805 infy_init (EV_A);
2442 3806
2443 if (fs_fd >= 0) 3807 if (fs_fd >= 0)
2444 infy_add (EV_A_ w); 3808 infy_add (EV_A_ w);
2445 else 3809 else
2446#endif 3810#endif
3811 {
2447 ev_timer_start (EV_A_ &w->timer); 3812 ev_timer_again (EV_A_ &w->timer);
3813 ev_unref (EV_A);
3814 }
2448 3815
2449 ev_start (EV_A_ (W)w, 1); 3816 ev_start (EV_A_ (W)w, 1);
3817
3818 EV_FREQUENT_CHECK;
2450} 3819}
2451 3820
2452void 3821void
2453ev_stat_stop (EV_P_ ev_stat *w) 3822ev_stat_stop (EV_P_ ev_stat *w)
2454{ 3823{
2455 clear_pending (EV_A_ (W)w); 3824 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 3825 if (expect_false (!ev_is_active (w)))
2457 return; 3826 return;
2458 3827
3828 EV_FREQUENT_CHECK;
3829
2459#if EV_USE_INOTIFY 3830#if EV_USE_INOTIFY
2460 infy_del (EV_A_ w); 3831 infy_del (EV_A_ w);
2461#endif 3832#endif
3833
3834 if (ev_is_active (&w->timer))
3835 {
3836 ev_ref (EV_A);
2462 ev_timer_stop (EV_A_ &w->timer); 3837 ev_timer_stop (EV_A_ &w->timer);
3838 }
2463 3839
2464 ev_stop (EV_A_ (W)w); 3840 ev_stop (EV_A_ (W)w);
3841
3842 EV_FREQUENT_CHECK;
2465} 3843}
2466#endif 3844#endif
2467 3845
2468#if EV_IDLE_ENABLE 3846#if EV_IDLE_ENABLE
2469void 3847void
2472 if (expect_false (ev_is_active (w))) 3850 if (expect_false (ev_is_active (w)))
2473 return; 3851 return;
2474 3852
2475 pri_adjust (EV_A_ (W)w); 3853 pri_adjust (EV_A_ (W)w);
2476 3854
3855 EV_FREQUENT_CHECK;
3856
2477 { 3857 {
2478 int active = ++idlecnt [ABSPRI (w)]; 3858 int active = ++idlecnt [ABSPRI (w)];
2479 3859
2480 ++idleall; 3860 ++idleall;
2481 ev_start (EV_A_ (W)w, active); 3861 ev_start (EV_A_ (W)w, active);
2482 3862
2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3863 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2484 idles [ABSPRI (w)][active - 1] = w; 3864 idles [ABSPRI (w)][active - 1] = w;
2485 } 3865 }
3866
3867 EV_FREQUENT_CHECK;
2486} 3868}
2487 3869
2488void 3870void
2489ev_idle_stop (EV_P_ ev_idle *w) 3871ev_idle_stop (EV_P_ ev_idle *w)
2490{ 3872{
2491 clear_pending (EV_A_ (W)w); 3873 clear_pending (EV_A_ (W)w);
2492 if (expect_false (!ev_is_active (w))) 3874 if (expect_false (!ev_is_active (w)))
2493 return; 3875 return;
2494 3876
3877 EV_FREQUENT_CHECK;
3878
2495 { 3879 {
2496 int active = ev_active (w); 3880 int active = ev_active (w);
2497 3881
2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3882 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3883 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500 3884
2501 ev_stop (EV_A_ (W)w); 3885 ev_stop (EV_A_ (W)w);
2502 --idleall; 3886 --idleall;
2503 } 3887 }
2504}
2505#endif
2506 3888
3889 EV_FREQUENT_CHECK;
3890}
3891#endif
3892
3893#if EV_PREPARE_ENABLE
2507void 3894void
2508ev_prepare_start (EV_P_ ev_prepare *w) 3895ev_prepare_start (EV_P_ ev_prepare *w)
2509{ 3896{
2510 if (expect_false (ev_is_active (w))) 3897 if (expect_false (ev_is_active (w)))
2511 return; 3898 return;
3899
3900 EV_FREQUENT_CHECK;
2512 3901
2513 ev_start (EV_A_ (W)w, ++preparecnt); 3902 ev_start (EV_A_ (W)w, ++preparecnt);
2514 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3903 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2515 prepares [preparecnt - 1] = w; 3904 prepares [preparecnt - 1] = w;
3905
3906 EV_FREQUENT_CHECK;
2516} 3907}
2517 3908
2518void 3909void
2519ev_prepare_stop (EV_P_ ev_prepare *w) 3910ev_prepare_stop (EV_P_ ev_prepare *w)
2520{ 3911{
2521 clear_pending (EV_A_ (W)w); 3912 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 3913 if (expect_false (!ev_is_active (w)))
2523 return; 3914 return;
2524 3915
3916 EV_FREQUENT_CHECK;
3917
2525 { 3918 {
2526 int active = ev_active (w); 3919 int active = ev_active (w);
2527 3920
2528 prepares [active - 1] = prepares [--preparecnt]; 3921 prepares [active - 1] = prepares [--preparecnt];
2529 ev_active (prepares [active - 1]) = active; 3922 ev_active (prepares [active - 1]) = active;
2530 } 3923 }
2531 3924
2532 ev_stop (EV_A_ (W)w); 3925 ev_stop (EV_A_ (W)w);
2533}
2534 3926
3927 EV_FREQUENT_CHECK;
3928}
3929#endif
3930
3931#if EV_CHECK_ENABLE
2535void 3932void
2536ev_check_start (EV_P_ ev_check *w) 3933ev_check_start (EV_P_ ev_check *w)
2537{ 3934{
2538 if (expect_false (ev_is_active (w))) 3935 if (expect_false (ev_is_active (w)))
2539 return; 3936 return;
3937
3938 EV_FREQUENT_CHECK;
2540 3939
2541 ev_start (EV_A_ (W)w, ++checkcnt); 3940 ev_start (EV_A_ (W)w, ++checkcnt);
2542 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3941 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2543 checks [checkcnt - 1] = w; 3942 checks [checkcnt - 1] = w;
3943
3944 EV_FREQUENT_CHECK;
2544} 3945}
2545 3946
2546void 3947void
2547ev_check_stop (EV_P_ ev_check *w) 3948ev_check_stop (EV_P_ ev_check *w)
2548{ 3949{
2549 clear_pending (EV_A_ (W)w); 3950 clear_pending (EV_A_ (W)w);
2550 if (expect_false (!ev_is_active (w))) 3951 if (expect_false (!ev_is_active (w)))
2551 return; 3952 return;
2552 3953
3954 EV_FREQUENT_CHECK;
3955
2553 { 3956 {
2554 int active = ev_active (w); 3957 int active = ev_active (w);
2555 3958
2556 checks [active - 1] = checks [--checkcnt]; 3959 checks [active - 1] = checks [--checkcnt];
2557 ev_active (checks [active - 1]) = active; 3960 ev_active (checks [active - 1]) = active;
2558 } 3961 }
2559 3962
2560 ev_stop (EV_A_ (W)w); 3963 ev_stop (EV_A_ (W)w);
3964
3965 EV_FREQUENT_CHECK;
2561} 3966}
3967#endif
2562 3968
2563#if EV_EMBED_ENABLE 3969#if EV_EMBED_ENABLE
2564void noinline 3970void noinline
2565ev_embed_sweep (EV_P_ ev_embed *w) 3971ev_embed_sweep (EV_P_ ev_embed *w)
2566{ 3972{
2567 ev_loop (w->other, EVLOOP_NONBLOCK); 3973 ev_run (w->other, EVRUN_NOWAIT);
2568} 3974}
2569 3975
2570static void 3976static void
2571embed_io_cb (EV_P_ ev_io *io, int revents) 3977embed_io_cb (EV_P_ ev_io *io, int revents)
2572{ 3978{
2573 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3979 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2574 3980
2575 if (ev_cb (w)) 3981 if (ev_cb (w))
2576 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3982 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2577 else 3983 else
2578 ev_loop (w->other, EVLOOP_NONBLOCK); 3984 ev_run (w->other, EVRUN_NOWAIT);
2579} 3985}
2580 3986
2581static void 3987static void
2582embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3988embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2583{ 3989{
2584 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3990 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2585 3991
2586 { 3992 {
2587 struct ev_loop *loop = w->other; 3993 EV_P = w->other;
2588 3994
2589 while (fdchangecnt) 3995 while (fdchangecnt)
2590 { 3996 {
2591 fd_reify (EV_A); 3997 fd_reify (EV_A);
2592 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3998 ev_run (EV_A_ EVRUN_NOWAIT);
2593 } 3999 }
2594 } 4000 }
4001}
4002
4003static void
4004embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4005{
4006 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4007
4008 ev_embed_stop (EV_A_ w);
4009
4010 {
4011 EV_P = w->other;
4012
4013 ev_loop_fork (EV_A);
4014 ev_run (EV_A_ EVRUN_NOWAIT);
4015 }
4016
4017 ev_embed_start (EV_A_ w);
2595} 4018}
2596 4019
2597#if 0 4020#if 0
2598static void 4021static void
2599embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4022embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2607{ 4030{
2608 if (expect_false (ev_is_active (w))) 4031 if (expect_false (ev_is_active (w)))
2609 return; 4032 return;
2610 4033
2611 { 4034 {
2612 struct ev_loop *loop = w->other; 4035 EV_P = w->other;
2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4036 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4037 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2615 } 4038 }
4039
4040 EV_FREQUENT_CHECK;
2616 4041
2617 ev_set_priority (&w->io, ev_priority (w)); 4042 ev_set_priority (&w->io, ev_priority (w));
2618 ev_io_start (EV_A_ &w->io); 4043 ev_io_start (EV_A_ &w->io);
2619 4044
2620 ev_prepare_init (&w->prepare, embed_prepare_cb); 4045 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI); 4046 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare); 4047 ev_prepare_start (EV_A_ &w->prepare);
2623 4048
4049 ev_fork_init (&w->fork, embed_fork_cb);
4050 ev_fork_start (EV_A_ &w->fork);
4051
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4052 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625 4053
2626 ev_start (EV_A_ (W)w, 1); 4054 ev_start (EV_A_ (W)w, 1);
4055
4056 EV_FREQUENT_CHECK;
2627} 4057}
2628 4058
2629void 4059void
2630ev_embed_stop (EV_P_ ev_embed *w) 4060ev_embed_stop (EV_P_ ev_embed *w)
2631{ 4061{
2632 clear_pending (EV_A_ (W)w); 4062 clear_pending (EV_A_ (W)w);
2633 if (expect_false (!ev_is_active (w))) 4063 if (expect_false (!ev_is_active (w)))
2634 return; 4064 return;
2635 4065
4066 EV_FREQUENT_CHECK;
4067
2636 ev_io_stop (EV_A_ &w->io); 4068 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare); 4069 ev_prepare_stop (EV_A_ &w->prepare);
4070 ev_fork_stop (EV_A_ &w->fork);
2638 4071
2639 ev_stop (EV_A_ (W)w); 4072 ev_stop (EV_A_ (W)w);
4073
4074 EV_FREQUENT_CHECK;
2640} 4075}
2641#endif 4076#endif
2642 4077
2643#if EV_FORK_ENABLE 4078#if EV_FORK_ENABLE
2644void 4079void
2645ev_fork_start (EV_P_ ev_fork *w) 4080ev_fork_start (EV_P_ ev_fork *w)
2646{ 4081{
2647 if (expect_false (ev_is_active (w))) 4082 if (expect_false (ev_is_active (w)))
2648 return; 4083 return;
2649 4084
4085 EV_FREQUENT_CHECK;
4086
2650 ev_start (EV_A_ (W)w, ++forkcnt); 4087 ev_start (EV_A_ (W)w, ++forkcnt);
2651 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4088 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2652 forks [forkcnt - 1] = w; 4089 forks [forkcnt - 1] = w;
4090
4091 EV_FREQUENT_CHECK;
2653} 4092}
2654 4093
2655void 4094void
2656ev_fork_stop (EV_P_ ev_fork *w) 4095ev_fork_stop (EV_P_ ev_fork *w)
2657{ 4096{
2658 clear_pending (EV_A_ (W)w); 4097 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w))) 4098 if (expect_false (!ev_is_active (w)))
2660 return; 4099 return;
2661 4100
4101 EV_FREQUENT_CHECK;
4102
2662 { 4103 {
2663 int active = ev_active (w); 4104 int active = ev_active (w);
2664 4105
2665 forks [active - 1] = forks [--forkcnt]; 4106 forks [active - 1] = forks [--forkcnt];
2666 ev_active (forks [active - 1]) = active; 4107 ev_active (forks [active - 1]) = active;
2667 } 4108 }
2668 4109
2669 ev_stop (EV_A_ (W)w); 4110 ev_stop (EV_A_ (W)w);
4111
4112 EV_FREQUENT_CHECK;
4113}
4114#endif
4115
4116#if EV_CLEANUP_ENABLE
4117void
4118ev_cleanup_start (EV_P_ ev_cleanup *w)
4119{
4120 if (expect_false (ev_is_active (w)))
4121 return;
4122
4123 EV_FREQUENT_CHECK;
4124
4125 ev_start (EV_A_ (W)w, ++cleanupcnt);
4126 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4127 cleanups [cleanupcnt - 1] = w;
4128
4129 /* cleanup watchers should never keep a refcount on the loop */
4130 ev_unref (EV_A);
4131 EV_FREQUENT_CHECK;
4132}
4133
4134void
4135ev_cleanup_stop (EV_P_ ev_cleanup *w)
4136{
4137 clear_pending (EV_A_ (W)w);
4138 if (expect_false (!ev_is_active (w)))
4139 return;
4140
4141 EV_FREQUENT_CHECK;
4142 ev_ref (EV_A);
4143
4144 {
4145 int active = ev_active (w);
4146
4147 cleanups [active - 1] = cleanups [--cleanupcnt];
4148 ev_active (cleanups [active - 1]) = active;
4149 }
4150
4151 ev_stop (EV_A_ (W)w);
4152
4153 EV_FREQUENT_CHECK;
2670} 4154}
2671#endif 4155#endif
2672 4156
2673#if EV_ASYNC_ENABLE 4157#if EV_ASYNC_ENABLE
2674void 4158void
2675ev_async_start (EV_P_ ev_async *w) 4159ev_async_start (EV_P_ ev_async *w)
2676{ 4160{
2677 if (expect_false (ev_is_active (w))) 4161 if (expect_false (ev_is_active (w)))
2678 return; 4162 return;
2679 4163
4164 w->sent = 0;
4165
2680 evpipe_init (EV_A); 4166 evpipe_init (EV_A);
4167
4168 EV_FREQUENT_CHECK;
2681 4169
2682 ev_start (EV_A_ (W)w, ++asynccnt); 4170 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4171 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w; 4172 asyncs [asynccnt - 1] = w;
4173
4174 EV_FREQUENT_CHECK;
2685} 4175}
2686 4176
2687void 4177void
2688ev_async_stop (EV_P_ ev_async *w) 4178ev_async_stop (EV_P_ ev_async *w)
2689{ 4179{
2690 clear_pending (EV_A_ (W)w); 4180 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w))) 4181 if (expect_false (!ev_is_active (w)))
2692 return; 4182 return;
2693 4183
4184 EV_FREQUENT_CHECK;
4185
2694 { 4186 {
2695 int active = ev_active (w); 4187 int active = ev_active (w);
2696 4188
2697 asyncs [active - 1] = asyncs [--asynccnt]; 4189 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active; 4190 ev_active (asyncs [active - 1]) = active;
2699 } 4191 }
2700 4192
2701 ev_stop (EV_A_ (W)w); 4193 ev_stop (EV_A_ (W)w);
4194
4195 EV_FREQUENT_CHECK;
2702} 4196}
2703 4197
2704void 4198void
2705ev_async_send (EV_P_ ev_async *w) 4199ev_async_send (EV_P_ ev_async *w)
2706{ 4200{
2707 w->sent = 1; 4201 w->sent = 1;
2708 evpipe_write (EV_A_ &gotasync); 4202 evpipe_write (EV_A_ &async_pending);
2709} 4203}
2710#endif 4204#endif
2711 4205
2712/*****************************************************************************/ 4206/*****************************************************************************/
2713 4207
2723once_cb (EV_P_ struct ev_once *once, int revents) 4217once_cb (EV_P_ struct ev_once *once, int revents)
2724{ 4218{
2725 void (*cb)(int revents, void *arg) = once->cb; 4219 void (*cb)(int revents, void *arg) = once->cb;
2726 void *arg = once->arg; 4220 void *arg = once->arg;
2727 4221
2728 ev_io_stop (EV_A_ &once->io); 4222 ev_io_stop (EV_A_ &once->io);
2729 ev_timer_stop (EV_A_ &once->to); 4223 ev_timer_stop (EV_A_ &once->to);
2730 ev_free (once); 4224 ev_free (once);
2731 4225
2732 cb (revents, arg); 4226 cb (revents, arg);
2733} 4227}
2734 4228
2735static void 4229static void
2736once_cb_io (EV_P_ ev_io *w, int revents) 4230once_cb_io (EV_P_ ev_io *w, int revents)
2737{ 4231{
2738 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4232 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4233
4234 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2739} 4235}
2740 4236
2741static void 4237static void
2742once_cb_to (EV_P_ ev_timer *w, int revents) 4238once_cb_to (EV_P_ ev_timer *w, int revents)
2743{ 4239{
2744 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4240 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4241
4242 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2745} 4243}
2746 4244
2747void 4245void
2748ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4246ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2749{ 4247{
2750 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4248 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2751 4249
2752 if (expect_false (!once)) 4250 if (expect_false (!once))
2753 { 4251 {
2754 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4252 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2755 return; 4253 return;
2756 } 4254 }
2757 4255
2758 once->cb = cb; 4256 once->cb = cb;
2759 once->arg = arg; 4257 once->arg = arg;
2771 ev_timer_set (&once->to, timeout, 0.); 4269 ev_timer_set (&once->to, timeout, 0.);
2772 ev_timer_start (EV_A_ &once->to); 4270 ev_timer_start (EV_A_ &once->to);
2773 } 4271 }
2774} 4272}
2775 4273
4274/*****************************************************************************/
4275
4276#if EV_WALK_ENABLE
4277void ecb_cold
4278ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4279{
4280 int i, j;
4281 ev_watcher_list *wl, *wn;
4282
4283 if (types & (EV_IO | EV_EMBED))
4284 for (i = 0; i < anfdmax; ++i)
4285 for (wl = anfds [i].head; wl; )
4286 {
4287 wn = wl->next;
4288
4289#if EV_EMBED_ENABLE
4290 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4291 {
4292 if (types & EV_EMBED)
4293 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4294 }
4295 else
4296#endif
4297#if EV_USE_INOTIFY
4298 if (ev_cb ((ev_io *)wl) == infy_cb)
4299 ;
4300 else
4301#endif
4302 if ((ev_io *)wl != &pipe_w)
4303 if (types & EV_IO)
4304 cb (EV_A_ EV_IO, wl);
4305
4306 wl = wn;
4307 }
4308
4309 if (types & (EV_TIMER | EV_STAT))
4310 for (i = timercnt + HEAP0; i-- > HEAP0; )
4311#if EV_STAT_ENABLE
4312 /*TODO: timer is not always active*/
4313 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4314 {
4315 if (types & EV_STAT)
4316 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4317 }
4318 else
4319#endif
4320 if (types & EV_TIMER)
4321 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4322
4323#if EV_PERIODIC_ENABLE
4324 if (types & EV_PERIODIC)
4325 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4326 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4327#endif
4328
4329#if EV_IDLE_ENABLE
4330 if (types & EV_IDLE)
4331 for (j = NUMPRI; j--; )
4332 for (i = idlecnt [j]; i--; )
4333 cb (EV_A_ EV_IDLE, idles [j][i]);
4334#endif
4335
4336#if EV_FORK_ENABLE
4337 if (types & EV_FORK)
4338 for (i = forkcnt; i--; )
4339 if (ev_cb (forks [i]) != embed_fork_cb)
4340 cb (EV_A_ EV_FORK, forks [i]);
4341#endif
4342
4343#if EV_ASYNC_ENABLE
4344 if (types & EV_ASYNC)
4345 for (i = asynccnt; i--; )
4346 cb (EV_A_ EV_ASYNC, asyncs [i]);
4347#endif
4348
4349#if EV_PREPARE_ENABLE
4350 if (types & EV_PREPARE)
4351 for (i = preparecnt; i--; )
4352# if EV_EMBED_ENABLE
4353 if (ev_cb (prepares [i]) != embed_prepare_cb)
4354# endif
4355 cb (EV_A_ EV_PREPARE, prepares [i]);
4356#endif
4357
4358#if EV_CHECK_ENABLE
4359 if (types & EV_CHECK)
4360 for (i = checkcnt; i--; )
4361 cb (EV_A_ EV_CHECK, checks [i]);
4362#endif
4363
4364#if EV_SIGNAL_ENABLE
4365 if (types & EV_SIGNAL)
4366 for (i = 0; i < EV_NSIG - 1; ++i)
4367 for (wl = signals [i].head; wl; )
4368 {
4369 wn = wl->next;
4370 cb (EV_A_ EV_SIGNAL, wl);
4371 wl = wn;
4372 }
4373#endif
4374
4375#if EV_CHILD_ENABLE
4376 if (types & EV_CHILD)
4377 for (i = (EV_PID_HASHSIZE); i--; )
4378 for (wl = childs [i]; wl; )
4379 {
4380 wn = wl->next;
4381 cb (EV_A_ EV_CHILD, wl);
4382 wl = wn;
4383 }
4384#endif
4385/* EV_STAT 0x00001000 /* stat data changed */
4386/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4387}
4388#endif
4389
2776#if EV_MULTIPLICITY 4390#if EV_MULTIPLICITY
2777 #include "ev_wrap.h" 4391 #include "ev_wrap.h"
2778#endif 4392#endif
2779 4393
2780#ifdef __cplusplus 4394EV_CPP(})
2781}
2782#endif
2783 4395

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines