ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.40 by root, Fri Nov 2 11:02:23 2007 UTC vs.
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
31#if EV_USE_CONFIG_H 46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
74# endif
75
76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
90# endif
91
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
33#endif 132#endif
34 133
35#include <math.h> 134#include <math.h>
36#include <stdlib.h> 135#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 136#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 137#include <stddef.h>
41 138
42#include <stdio.h> 139#include <stdio.h>
43 140
44#include <assert.h> 141#include <assert.h>
45#include <errno.h> 142#include <errno.h>
46#include <sys/types.h> 143#include <sys/types.h>
47#include <sys/wait.h>
48#include <sys/time.h>
49#include <time.h> 144#include <time.h>
50 145
51/**/ 146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
154#ifndef _WIN32
155# include <sys/time.h>
156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
163# endif
164#endif
165
166/* this block tries to deduce configuration from header-defined symbols and defaults */
52 167
53#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
55#endif 178#endif
56 179
57#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
59#endif 182#endif
60 183
184#ifndef EV_USE_POLL
185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
190#endif
191
61#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
62# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
63#endif 197# endif
198#endif
64 199
200#ifndef EV_USE_KQUEUE
201# define EV_USE_KQUEUE 0
202#endif
203
65#ifndef EV_USE_REALTIME 204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
66# define EV_USE_REALTIME 1 210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
67#endif 213# endif
214#endif
68 215
69/**/ 216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
70 241
71#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
72# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
74#endif 245#endif
76#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
77# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
78# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
79#endif 250#endif
80 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
81/**/ 283/**/
82 284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294
83#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
84#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
85#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
86/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
87 298
88#include "ev.h"
89
90#if __GNUC__ >= 3 299#if __GNUC__ >= 4
91# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
92# define inline inline 301# define noinline __attribute__ ((noinline))
93#else 302#else
94# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
95# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
96#endif 308#endif
97 309
98#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
99#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
100 313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
322
323#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */
325
101typedef struct ev_watcher *W; 326typedef ev_watcher *W;
102typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
103typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
104 329
105static ev_tstamp now_floor, now, diff; /* monotonic clock */ 330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
338
339#ifdef _WIN32
340# include "ev_win32.c"
341#endif
342
343/*****************************************************************************/
344
345static void (*syserr_cb)(const char *msg);
346
347void
348ev_set_syserr_cb (void (*cb)(const char *msg))
349{
350 syserr_cb = cb;
351}
352
353static void noinline
354syserr (const char *msg)
355{
356 if (!msg)
357 msg = "(libev) system error";
358
359 if (syserr_cb)
360 syserr_cb (msg);
361 else
362 {
363 perror (msg);
364 abort ();
365 }
366}
367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384
385void
386ev_set_allocator (void *(*cb)(void *ptr, long size))
387{
388 alloc = cb;
389}
390
391inline_speed void *
392ev_realloc (void *ptr, long size)
393{
394 ptr = alloc (ptr, size);
395
396 if (!ptr && size)
397 {
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
399 abort ();
400 }
401
402 return ptr;
403}
404
405#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0)
407
408/*****************************************************************************/
409
410typedef struct
411{
412 WL head;
413 unsigned char events;
414 unsigned char reify;
415#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle;
417#endif
418} ANFD;
419
420typedef struct
421{
422 W w;
423 int events;
424} ANPENDING;
425
426#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */
428typedef struct
429{
430 WL head;
431} ANFS;
432#endif
433
434/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT
437 typedef struct {
438 WT w;
439 ev_tstamp at;
440 } ANHE;
441
442 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
445#else
446 typedef WT ANHE;
447
448 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he)
451#endif
452
453#if EV_MULTIPLICITY
454
455 struct ev_loop
456 {
457 ev_tstamp ev_rt_now;
458 #define ev_rt_now ((loop)->ev_rt_now)
459 #define VAR(name,decl) decl;
460 #include "ev_vars.h"
461 #undef VAR
462 };
463 #include "ev_wrap.h"
464
465 static struct ev_loop default_loop_struct;
466 struct ev_loop *ev_default_loop_ptr;
467
468#else
469
106ev_tstamp ev_now; 470 ev_tstamp ev_rt_now;
107int ev_method; 471 #define VAR(name,decl) static decl;
472 #include "ev_vars.h"
473 #undef VAR
108 474
109static int have_monotonic; /* runtime */ 475 static int ev_default_loop_ptr;
110 476
111static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 477#endif
112static void (*method_modify)(int fd, int oev, int nev);
113static void (*method_poll)(ev_tstamp timeout);
114 478
115/*****************************************************************************/ 479/*****************************************************************************/
116 480
117ev_tstamp 481ev_tstamp
118ev_time (void) 482ev_time (void)
126 gettimeofday (&tv, 0); 490 gettimeofday (&tv, 0);
127 return tv.tv_sec + tv.tv_usec * 1e-6; 491 return tv.tv_sec + tv.tv_usec * 1e-6;
128#endif 492#endif
129} 493}
130 494
131static ev_tstamp 495ev_tstamp inline_size
132get_clock (void) 496get_clock (void)
133{ 497{
134#if EV_USE_MONOTONIC 498#if EV_USE_MONOTONIC
135 if (expect_true (have_monotonic)) 499 if (expect_true (have_monotonic))
136 { 500 {
141#endif 505#endif
142 506
143 return ev_time (); 507 return ev_time ();
144} 508}
145 509
146#define array_roundsize(base,n) ((n) | 4 & ~3) 510#if EV_MULTIPLICITY
511ev_tstamp
512ev_now (EV_P)
513{
514 return ev_rt_now;
515}
516#endif
147 517
148#define array_needsize(base,cur,cnt,init) \ 518void
149 if (expect_false ((cnt) > cur)) \ 519ev_sleep (ev_tstamp delay)
150 { \ 520{
151 int newcnt = cur; \ 521 if (delay > 0.)
152 do \
153 { \
154 newcnt = array_roundsize (base, newcnt << 1); \
155 } \
156 while ((cnt) > newcnt); \
157 \
158 base = realloc (base, sizeof (*base) * (newcnt)); \
159 init (base + cur, newcnt - cur); \
160 cur = newcnt; \
161 } 522 {
523#if EV_USE_NANOSLEEP
524 struct timespec ts;
525
526 ts.tv_sec = (time_t)delay;
527 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
528
529 nanosleep (&ts, 0);
530#elif defined(_WIN32)
531 Sleep ((unsigned long)(delay * 1e3));
532#else
533 struct timeval tv;
534
535 tv.tv_sec = (time_t)delay;
536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
537
538 select (0, 0, 0, 0, &tv);
539#endif
540 }
541}
162 542
163/*****************************************************************************/ 543/*****************************************************************************/
164 544
165typedef struct 545#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
166{
167 struct ev_io *head;
168 unsigned char events;
169 unsigned char reify;
170} ANFD;
171 546
172static ANFD *anfds; 547int inline_size
173static int anfdmax; 548array_nextsize (int elem, int cur, int cnt)
549{
550 int ncur = cur + 1;
174 551
175static void 552 do
553 ncur <<= 1;
554 while (cnt > ncur);
555
556 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
557 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
558 {
559 ncur *= elem;
560 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
561 ncur = ncur - sizeof (void *) * 4;
562 ncur /= elem;
563 }
564
565 return ncur;
566}
567
568static noinline void *
569array_realloc (int elem, void *base, int *cur, int cnt)
570{
571 *cur = array_nextsize (elem, *cur, cnt);
572 return ev_realloc (base, elem * *cur);
573}
574
575#define array_needsize(type,base,cur,cnt,init) \
576 if (expect_false ((cnt) > (cur))) \
577 { \
578 int ocur_ = (cur); \
579 (base) = (type *)array_realloc \
580 (sizeof (type), (base), &(cur), (cnt)); \
581 init ((base) + (ocur_), (cur) - ocur_); \
582 }
583
584#if 0
585#define array_slim(type,stem) \
586 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
587 { \
588 stem ## max = array_roundsize (stem ## cnt >> 1); \
589 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
590 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
591 }
592#endif
593
594#define array_free(stem, idx) \
595 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
596
597/*****************************************************************************/
598
599void noinline
600ev_feed_event (EV_P_ void *w, int revents)
601{
602 W w_ = (W)w;
603 int pri = ABSPRI (w_);
604
605 if (expect_false (w_->pending))
606 pendings [pri][w_->pending - 1].events |= revents;
607 else
608 {
609 w_->pending = ++pendingcnt [pri];
610 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
611 pendings [pri][w_->pending - 1].w = w_;
612 pendings [pri][w_->pending - 1].events = revents;
613 }
614}
615
616void inline_speed
617queue_events (EV_P_ W *events, int eventcnt, int type)
618{
619 int i;
620
621 for (i = 0; i < eventcnt; ++i)
622 ev_feed_event (EV_A_ events [i], type);
623}
624
625/*****************************************************************************/
626
627void inline_size
176anfds_init (ANFD *base, int count) 628anfds_init (ANFD *base, int count)
177{ 629{
178 while (count--) 630 while (count--)
179 { 631 {
180 base->head = 0; 632 base->head = 0;
183 635
184 ++base; 636 ++base;
185 } 637 }
186} 638}
187 639
188typedef struct 640void inline_speed
189{
190 W w;
191 int events;
192} ANPENDING;
193
194static ANPENDING *pendings;
195static int pendingmax, pendingcnt;
196
197static void
198event (W w, int events)
199{
200 if (w->pending)
201 {
202 pendings [w->pending - 1].events |= events;
203 return;
204 }
205
206 w->pending = ++pendingcnt;
207 array_needsize (pendings, pendingmax, pendingcnt, );
208 pendings [pendingcnt - 1].w = w;
209 pendings [pendingcnt - 1].events = events;
210}
211
212static void
213queue_events (W *events, int eventcnt, int type)
214{
215 int i;
216
217 for (i = 0; i < eventcnt; ++i)
218 event (events [i], type);
219}
220
221static void
222fd_event (int fd, int events) 641fd_event (EV_P_ int fd, int revents)
223{ 642{
224 ANFD *anfd = anfds + fd; 643 ANFD *anfd = anfds + fd;
225 struct ev_io *w; 644 ev_io *w;
226 645
227 for (w = anfd->head; w; w = w->next) 646 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
228 { 647 {
229 int ev = w->events & events; 648 int ev = w->events & revents;
230 649
231 if (ev) 650 if (ev)
232 event ((W)w, ev); 651 ev_feed_event (EV_A_ (W)w, ev);
233 } 652 }
234} 653}
235 654
236/*****************************************************************************/ 655void
656ev_feed_fd_event (EV_P_ int fd, int revents)
657{
658 if (fd >= 0 && fd < anfdmax)
659 fd_event (EV_A_ fd, revents);
660}
237 661
238static int *fdchanges; 662void inline_size
239static int fdchangemax, fdchangecnt; 663fd_reify (EV_P)
240
241static void
242fd_reify (void)
243{ 664{
244 int i; 665 int i;
245 666
246 for (i = 0; i < fdchangecnt; ++i) 667 for (i = 0; i < fdchangecnt; ++i)
247 { 668 {
248 int fd = fdchanges [i]; 669 int fd = fdchanges [i];
249 ANFD *anfd = anfds + fd; 670 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 671 ev_io *w;
251 672
252 int events = 0; 673 unsigned char events = 0;
253 674
254 for (w = anfd->head; w; w = w->next) 675 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
255 events |= w->events; 676 events |= (unsigned char)w->events;
256 677
257 anfd->reify = 0; 678#if EV_SELECT_IS_WINSOCKET
258 679 if (events)
259 if (anfd->events != events)
260 { 680 {
261 method_modify (fd, anfd->events, events); 681 unsigned long argp;
262 anfd->events = events; 682 #ifdef EV_FD_TO_WIN32_HANDLE
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
684 #else
685 anfd->handle = _get_osfhandle (fd);
686 #endif
687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
263 } 688 }
689#endif
690
691 {
692 unsigned char o_events = anfd->events;
693 unsigned char o_reify = anfd->reify;
694
695 anfd->reify = 0;
696 anfd->events = events;
697
698 if (o_events != events || o_reify & EV_IOFDSET)
699 backend_modify (EV_A_ fd, o_events, events);
700 }
264 } 701 }
265 702
266 fdchangecnt = 0; 703 fdchangecnt = 0;
267} 704}
268 705
269static void 706void inline_size
270fd_change (int fd) 707fd_change (EV_P_ int fd, int flags)
271{ 708{
272 if (anfds [fd].reify || fdchangecnt < 0) 709 unsigned char reify = anfds [fd].reify;
273 return;
274
275 anfds [fd].reify = 1; 710 anfds [fd].reify |= flags;
276 711
712 if (expect_true (!reify))
713 {
277 ++fdchangecnt; 714 ++fdchangecnt;
278 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 715 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
279 fdchanges [fdchangecnt - 1] = fd; 716 fdchanges [fdchangecnt - 1] = fd;
717 }
718}
719
720void inline_speed
721fd_kill (EV_P_ int fd)
722{
723 ev_io *w;
724
725 while ((w = (ev_io *)anfds [fd].head))
726 {
727 ev_io_stop (EV_A_ w);
728 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
729 }
730}
731
732int inline_size
733fd_valid (int fd)
734{
735#ifdef _WIN32
736 return _get_osfhandle (fd) != -1;
737#else
738 return fcntl (fd, F_GETFD) != -1;
739#endif
280} 740}
281 741
282/* called on EBADF to verify fds */ 742/* called on EBADF to verify fds */
283static void 743static void noinline
284fd_recheck (void) 744fd_ebadf (EV_P)
285{ 745{
286 int fd; 746 int fd;
287 747
288 for (fd = 0; fd < anfdmax; ++fd) 748 for (fd = 0; fd < anfdmax; ++fd)
289 if (anfds [fd].events) 749 if (anfds [fd].events)
290 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 750 if (!fd_valid (fd) == -1 && errno == EBADF)
291 while (anfds [fd].head) 751 fd_kill (EV_A_ fd);
752}
753
754/* called on ENOMEM in select/poll to kill some fds and retry */
755static void noinline
756fd_enomem (EV_P)
757{
758 int fd;
759
760 for (fd = anfdmax; fd--; )
761 if (anfds [fd].events)
292 { 762 {
293 ev_io_stop (anfds [fd].head); 763 fd_kill (EV_A_ fd);
294 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 764 return;
295 } 765 }
766}
767
768/* usually called after fork if backend needs to re-arm all fds from scratch */
769static void noinline
770fd_rearm_all (EV_P)
771{
772 int fd;
773
774 for (fd = 0; fd < anfdmax; ++fd)
775 if (anfds [fd].events)
776 {
777 anfds [fd].events = 0;
778 fd_change (EV_A_ fd, EV_IOFDSET | 1);
779 }
296} 780}
297 781
298/*****************************************************************************/ 782/*****************************************************************************/
299 783
300static struct ev_timer **timers; 784/*
301static int timermax, timercnt; 785 * the heap functions want a real array index. array index 0 uis guaranteed to not
786 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
787 * the branching factor of the d-tree.
788 */
302 789
303static struct ev_periodic **periodics; 790/*
304static int periodicmax, periodiccnt; 791 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers.
795 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP
305 798
306static void 799#define DHEAP 4
307upheap (WT *timers, int k) 800#define HEAP0 (DHEAP - 1) /* index of first element in heap */
308{
309 WT w = timers [k];
310 801
311 while (k && timers [k >> 1]->at > w->at) 802/* towards the root */
312 { 803void inline_speed
313 timers [k] = timers [k >> 1]; 804upheap (ANHE *heap, int k)
314 timers [k]->active = k + 1; 805{
315 k >>= 1; 806 ANHE he = heap [k];
807
808 for (;;)
316 } 809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
317 811
318 timers [k] = w; 812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
319 timers [k]->active = k + 1;
320
321}
322
323static void
324downheap (WT *timers, int N, int k)
325{
326 WT w = timers [k];
327
328 while (k < (N >> 1))
329 {
330 int j = k << 1;
331
332 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
333 ++j;
334
335 if (w->at <= timers [j]->at)
336 break; 813 break;
337 814
338 timers [k] = timers [j]; 815 heap [k] = heap [p];
339 timers [k]->active = k + 1; 816 ev_active (ANHE_w (heap [k])) = k;
340 k = j; 817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823
824/* away from the root */
825void inline_speed
826downheap (ANHE *heap, int N, int k)
827{
828 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0;
830
831 for (;;)
341 } 832 {
833 ev_tstamp minat;
834 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
342 836
837 // find minimum child
838 if (expect_true (pos + DHEAP - 1 < E))
839 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 }
845 else if (pos < E)
846 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else
853 break;
854
855 if (ANHE_at (he) <= minat)
856 break;
857
858 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860
861 k = minpos - heap;
862 }
863
864 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866}
867
868#else // 4HEAP
869
870#define HEAP0 1
871
872/* towards the root */
873void inline_speed
874upheap (ANHE *heap, int k)
875{
876 ANHE he = heap [k];
877
878 for (;;)
879 {
880 int p = k >> 1;
881
882 /* maybe we could use a dummy element at heap [0]? */
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break;
885
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
889 }
890
343 timers [k] = w; 891 heap [k] = w;
344 timers [k]->active = k + 1; 892 ev_active (ANHE_w (heap [k])) = k;
893}
894
895/* away from the root */
896void inline_speed
897downheap (ANHE *heap, int N, int k)
898{
899 ANHE he = heap [k];
900
901 for (;;)
902 {
903 int c = k << 1;
904
905 if (c > N)
906 break;
907
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0;
910
911 if (w->at <= ANHE_at (heap [c]))
912 break;
913
914 heap [k] = heap [c];
915 ev_active (ANHE_w (heap [k])) = k;
916
917 k = c;
918 }
919
920 heap [k] = he;
921 ev_active (ANHE_w (he)) = k;
922}
923#endif
924
925void inline_size
926adjustheap (ANHE *heap, int N, int k)
927{
928 upheap (heap, k);
929 downheap (heap, N, k);
345} 930}
346 931
347/*****************************************************************************/ 932/*****************************************************************************/
348 933
349typedef struct 934typedef struct
350{ 935{
351 struct ev_signal *head; 936 WL head;
352 sig_atomic_t volatile gotsig; 937 EV_ATOMIC_T gotsig;
353} ANSIG; 938} ANSIG;
354 939
355static ANSIG *signals; 940static ANSIG *signals;
356static int signalmax; 941static int signalmax;
357 942
358static int sigpipe [2]; 943static EV_ATOMIC_T gotsig;
359static sig_atomic_t volatile gotsig;
360static struct ev_io sigev;
361 944
362static void 945void inline_size
363signals_init (ANSIG *base, int count) 946signals_init (ANSIG *base, int count)
364{ 947{
365 while (count--) 948 while (count--)
366 { 949 {
367 base->head = 0; 950 base->head = 0;
369 952
370 ++base; 953 ++base;
371 } 954 }
372} 955}
373 956
957/*****************************************************************************/
958
959void inline_speed
960fd_intern (int fd)
961{
962#ifdef _WIN32
963 int arg = 1;
964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
965#else
966 fcntl (fd, F_SETFD, FD_CLOEXEC);
967 fcntl (fd, F_SETFL, O_NONBLOCK);
968#endif
969}
970
971static void noinline
972evpipe_init (EV_P)
973{
974 if (!ev_is_active (&pipeev))
975 {
976#if EV_USE_EVENTFD
977 if ((evfd = eventfd (0, 0)) >= 0)
978 {
979 evpipe [0] = -1;
980 fd_intern (evfd);
981 ev_io_set (&pipeev, evfd, EV_READ);
982 }
983 else
984#endif
985 {
986 while (pipe (evpipe))
987 syserr ("(libev) error creating signal/async pipe");
988
989 fd_intern (evpipe [0]);
990 fd_intern (evpipe [1]);
991 ev_io_set (&pipeev, evpipe [0], EV_READ);
992 }
993
994 ev_io_start (EV_A_ &pipeev);
995 ev_unref (EV_A); /* watcher should not keep loop alive */
996 }
997}
998
999void inline_size
1000evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1001{
1002 if (!*flag)
1003 {
1004 int old_errno = errno; /* save errno because write might clobber it */
1005
1006 *flag = 1;
1007
1008#if EV_USE_EVENTFD
1009 if (evfd >= 0)
1010 {
1011 uint64_t counter = 1;
1012 write (evfd, &counter, sizeof (uint64_t));
1013 }
1014 else
1015#endif
1016 write (evpipe [1], &old_errno, 1);
1017
1018 errno = old_errno;
1019 }
1020}
1021
374static void 1022static void
1023pipecb (EV_P_ ev_io *iow, int revents)
1024{
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter;
1029 read (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 {
1034 char dummy;
1035 read (evpipe [0], &dummy, 1);
1036 }
1037
1038 if (gotsig && ev_is_default_loop (EV_A))
1039 {
1040 int signum;
1041 gotsig = 0;
1042
1043 for (signum = signalmax; signum--; )
1044 if (signals [signum].gotsig)
1045 ev_feed_signal_event (EV_A_ signum + 1);
1046 }
1047
1048#if EV_ASYNC_ENABLE
1049 if (gotasync)
1050 {
1051 int i;
1052 gotasync = 0;
1053
1054 for (i = asynccnt; i--; )
1055 if (asyncs [i]->sent)
1056 {
1057 asyncs [i]->sent = 0;
1058 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1059 }
1060 }
1061#endif
1062}
1063
1064/*****************************************************************************/
1065
1066static void
375sighandler (int signum) 1067ev_sighandler (int signum)
376{ 1068{
1069#if EV_MULTIPLICITY
1070 struct ev_loop *loop = &default_loop_struct;
1071#endif
1072
1073#if _WIN32
1074 signal (signum, ev_sighandler);
1075#endif
1076
377 signals [signum - 1].gotsig = 1; 1077 signals [signum - 1].gotsig = 1;
378 1078 evpipe_write (EV_A_ &gotsig);
379 if (!gotsig)
380 {
381 gotsig = 1;
382 write (sigpipe [1], &signum, 1);
383 }
384} 1079}
385 1080
386static void 1081void noinline
387sigcb (struct ev_io *iow, int revents) 1082ev_feed_signal_event (EV_P_ int signum)
388{ 1083{
389 struct ev_signal *w; 1084 WL w;
1085
1086#if EV_MULTIPLICITY
1087 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1088#endif
1089
390 int signum; 1090 --signum;
391 1091
392 read (sigpipe [0], &revents, 1); 1092 if (signum < 0 || signum >= signalmax)
393 gotsig = 0; 1093 return;
394 1094
395 for (signum = signalmax; signum--; )
396 if (signals [signum].gotsig)
397 {
398 signals [signum].gotsig = 0; 1095 signals [signum].gotsig = 0;
399 1096
400 for (w = signals [signum].head; w; w = w->next) 1097 for (w = signals [signum].head; w; w = w->next)
401 event ((W)w, EV_SIGNAL); 1098 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
402 }
403}
404
405static void
406siginit (void)
407{
408 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
409 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
410
411 /* rather than sort out wether we really need nb, set it */
412 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
413 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
414
415 ev_io_set (&sigev, sigpipe [0], EV_READ);
416 ev_io_start (&sigev);
417} 1099}
418 1100
419/*****************************************************************************/ 1101/*****************************************************************************/
420 1102
421static struct ev_idle **idles; 1103static WL childs [EV_PID_HASHSIZE];
422static int idlemax, idlecnt;
423 1104
424static struct ev_prepare **prepares; 1105#ifndef _WIN32
425static int preparemax, preparecnt;
426 1106
427static struct ev_check **checks;
428static int checkmax, checkcnt;
429
430/*****************************************************************************/
431
432static struct ev_child *childs [PID_HASHSIZE];
433static struct ev_signal childev; 1107static ev_signal childev;
1108
1109#ifndef WIFCONTINUED
1110# define WIFCONTINUED(status) 0
1111#endif
1112
1113void inline_speed
1114child_reap (EV_P_ int chain, int pid, int status)
1115{
1116 ev_child *w;
1117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1118
1119 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1120 {
1121 if ((w->pid == pid || !w->pid)
1122 && (!traced || (w->flags & 1)))
1123 {
1124 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1125 w->rpid = pid;
1126 w->rstatus = status;
1127 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1128 }
1129 }
1130}
434 1131
435#ifndef WCONTINUED 1132#ifndef WCONTINUED
436# define WCONTINUED 0 1133# define WCONTINUED 0
437#endif 1134#endif
438 1135
439static void 1136static void
440childcb (struct ev_signal *sw, int revents) 1137childcb (EV_P_ ev_signal *sw, int revents)
441{ 1138{
442 struct ev_child *w;
443 int pid, status; 1139 int pid, status;
444 1140
1141 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
445 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 1142 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
446 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 1143 if (!WCONTINUED
447 if (w->pid == pid || !w->pid) 1144 || errno != EINVAL
448 { 1145 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
449 w->status = status; 1146 return;
450 event ((W)w, EV_CHILD); 1147
451 } 1148 /* make sure we are called again until all children have been reaped */
1149 /* we need to do it this way so that the callback gets called before we continue */
1150 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1151
1152 child_reap (EV_A_ pid, pid, status);
1153 if (EV_PID_HASHSIZE > 1)
1154 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
452} 1155}
1156
1157#endif
453 1158
454/*****************************************************************************/ 1159/*****************************************************************************/
455 1160
1161#if EV_USE_PORT
1162# include "ev_port.c"
1163#endif
1164#if EV_USE_KQUEUE
1165# include "ev_kqueue.c"
1166#endif
456#if EV_USE_EPOLL 1167#if EV_USE_EPOLL
457# include "ev_epoll.c" 1168# include "ev_epoll.c"
458#endif 1169#endif
1170#if EV_USE_POLL
1171# include "ev_poll.c"
1172#endif
459#if EV_USE_SELECT 1173#if EV_USE_SELECT
460# include "ev_select.c" 1174# include "ev_select.c"
461#endif 1175#endif
462 1176
463int 1177int
470ev_version_minor (void) 1184ev_version_minor (void)
471{ 1185{
472 return EV_VERSION_MINOR; 1186 return EV_VERSION_MINOR;
473} 1187}
474 1188
475int ev_init (int flags) 1189/* return true if we are running with elevated privileges and should ignore env variables */
1190int inline_size
1191enable_secure (void)
476{ 1192{
477 if (!ev_method) 1193#ifdef _WIN32
1194 return 0;
1195#else
1196 return getuid () != geteuid ()
1197 || getgid () != getegid ();
1198#endif
1199}
1200
1201unsigned int
1202ev_supported_backends (void)
1203{
1204 unsigned int flags = 0;
1205
1206 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1207 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1208 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1209 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1210 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1211
1212 return flags;
1213}
1214
1215unsigned int
1216ev_recommended_backends (void)
1217{
1218 unsigned int flags = ev_supported_backends ();
1219
1220#ifndef __NetBSD__
1221 /* kqueue is borked on everything but netbsd apparently */
1222 /* it usually doesn't work correctly on anything but sockets and pipes */
1223 flags &= ~EVBACKEND_KQUEUE;
1224#endif
1225#ifdef __APPLE__
1226 // flags &= ~EVBACKEND_KQUEUE; for documentation
1227 flags &= ~EVBACKEND_POLL;
1228#endif
1229
1230 return flags;
1231}
1232
1233unsigned int
1234ev_embeddable_backends (void)
1235{
1236 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1237
1238 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1239 /* please fix it and tell me how to detect the fix */
1240 flags &= ~EVBACKEND_EPOLL;
1241
1242 return flags;
1243}
1244
1245unsigned int
1246ev_backend (EV_P)
1247{
1248 return backend;
1249}
1250
1251unsigned int
1252ev_loop_count (EV_P)
1253{
1254 return loop_count;
1255}
1256
1257void
1258ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1259{
1260 io_blocktime = interval;
1261}
1262
1263void
1264ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1265{
1266 timeout_blocktime = interval;
1267}
1268
1269static void noinline
1270loop_init (EV_P_ unsigned int flags)
1271{
1272 if (!backend)
478 { 1273 {
479#if EV_USE_MONOTONIC 1274#if EV_USE_MONOTONIC
480 { 1275 {
481 struct timespec ts; 1276 struct timespec ts;
482 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1277 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
483 have_monotonic = 1; 1278 have_monotonic = 1;
484 } 1279 }
485#endif 1280#endif
486 1281
487 ev_now = ev_time (); 1282 ev_rt_now = ev_time ();
488 now = get_clock (); 1283 mn_now = get_clock ();
489 now_floor = now; 1284 now_floor = mn_now;
490 diff = ev_now - now; 1285 rtmn_diff = ev_rt_now - mn_now;
491 1286
492 if (pipe (sigpipe)) 1287 io_blocktime = 0.;
493 return 0; 1288 timeout_blocktime = 0.;
1289 backend = 0;
1290 backend_fd = -1;
1291 gotasync = 0;
1292#if EV_USE_INOTIFY
1293 fs_fd = -2;
1294#endif
494 1295
495 ev_method = EVMETHOD_NONE; 1296 /* pid check not overridable via env */
1297#ifndef _WIN32
1298 if (flags & EVFLAG_FORKCHECK)
1299 curpid = getpid ();
1300#endif
1301
1302 if (!(flags & EVFLAG_NOENV)
1303 && !enable_secure ()
1304 && getenv ("LIBEV_FLAGS"))
1305 flags = atoi (getenv ("LIBEV_FLAGS"));
1306
1307 if (!(flags & 0x0000ffffU))
1308 flags |= ev_recommended_backends ();
1309
1310#if EV_USE_PORT
1311 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1312#endif
1313#if EV_USE_KQUEUE
1314 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1315#endif
496#if EV_USE_EPOLL 1316#if EV_USE_EPOLL
497 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 1317 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1318#endif
1319#if EV_USE_POLL
1320 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
498#endif 1321#endif
499#if EV_USE_SELECT 1322#if EV_USE_SELECT
500 if (ev_method == EVMETHOD_NONE) select_init (flags); 1323 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
501#endif 1324#endif
502 1325
503 if (ev_method) 1326 ev_init (&pipeev, pipecb);
1327 ev_set_priority (&pipeev, EV_MAXPRI);
1328 }
1329}
1330
1331static void noinline
1332loop_destroy (EV_P)
1333{
1334 int i;
1335
1336 if (ev_is_active (&pipeev))
1337 {
1338 ev_ref (EV_A); /* signal watcher */
1339 ev_io_stop (EV_A_ &pipeev);
1340
1341#if EV_USE_EVENTFD
1342 if (evfd >= 0)
1343 close (evfd);
1344#endif
1345
1346 if (evpipe [0] >= 0)
504 { 1347 {
505 ev_watcher_init (&sigev, sigcb); 1348 close (evpipe [0]);
506 siginit (); 1349 close (evpipe [1]);
1350 }
1351 }
507 1352
1353#if EV_USE_INOTIFY
1354 if (fs_fd >= 0)
1355 close (fs_fd);
1356#endif
1357
1358 if (backend_fd >= 0)
1359 close (backend_fd);
1360
1361#if EV_USE_PORT
1362 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1363#endif
1364#if EV_USE_KQUEUE
1365 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1366#endif
1367#if EV_USE_EPOLL
1368 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1369#endif
1370#if EV_USE_POLL
1371 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1372#endif
1373#if EV_USE_SELECT
1374 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1375#endif
1376
1377 for (i = NUMPRI; i--; )
1378 {
1379 array_free (pending, [i]);
1380#if EV_IDLE_ENABLE
1381 array_free (idle, [i]);
1382#endif
1383 }
1384
1385 ev_free (anfds); anfdmax = 0;
1386
1387 /* have to use the microsoft-never-gets-it-right macro */
1388 array_free (fdchange, EMPTY);
1389 array_free (timer, EMPTY);
1390#if EV_PERIODIC_ENABLE
1391 array_free (periodic, EMPTY);
1392#endif
1393#if EV_FORK_ENABLE
1394 array_free (fork, EMPTY);
1395#endif
1396 array_free (prepare, EMPTY);
1397 array_free (check, EMPTY);
1398#if EV_ASYNC_ENABLE
1399 array_free (async, EMPTY);
1400#endif
1401
1402 backend = 0;
1403}
1404
1405#if EV_USE_INOTIFY
1406void inline_size infy_fork (EV_P);
1407#endif
1408
1409void inline_size
1410loop_fork (EV_P)
1411{
1412#if EV_USE_PORT
1413 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1414#endif
1415#if EV_USE_KQUEUE
1416 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1417#endif
1418#if EV_USE_EPOLL
1419 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1420#endif
1421#if EV_USE_INOTIFY
1422 infy_fork (EV_A);
1423#endif
1424
1425 if (ev_is_active (&pipeev))
1426 {
1427 /* this "locks" the handlers against writing to the pipe */
1428 /* while we modify the fd vars */
1429 gotsig = 1;
1430#if EV_ASYNC_ENABLE
1431 gotasync = 1;
1432#endif
1433
1434 ev_ref (EV_A);
1435 ev_io_stop (EV_A_ &pipeev);
1436
1437#if EV_USE_EVENTFD
1438 if (evfd >= 0)
1439 close (evfd);
1440#endif
1441
1442 if (evpipe [0] >= 0)
1443 {
1444 close (evpipe [0]);
1445 close (evpipe [1]);
1446 }
1447
1448 evpipe_init (EV_A);
1449 /* now iterate over everything, in case we missed something */
1450 pipecb (EV_A_ &pipeev, EV_READ);
1451 }
1452
1453 postfork = 0;
1454}
1455
1456#if EV_MULTIPLICITY
1457struct ev_loop *
1458ev_loop_new (unsigned int flags)
1459{
1460 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1461
1462 memset (loop, 0, sizeof (struct ev_loop));
1463
1464 loop_init (EV_A_ flags);
1465
1466 if (ev_backend (EV_A))
1467 return loop;
1468
1469 return 0;
1470}
1471
1472void
1473ev_loop_destroy (EV_P)
1474{
1475 loop_destroy (EV_A);
1476 ev_free (loop);
1477}
1478
1479void
1480ev_loop_fork (EV_P)
1481{
1482 postfork = 1; /* must be in line with ev_default_fork */
1483}
1484#endif
1485
1486#if EV_MULTIPLICITY
1487struct ev_loop *
1488ev_default_loop_init (unsigned int flags)
1489#else
1490int
1491ev_default_loop (unsigned int flags)
1492#endif
1493{
1494 if (!ev_default_loop_ptr)
1495 {
1496#if EV_MULTIPLICITY
1497 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1498#else
1499 ev_default_loop_ptr = 1;
1500#endif
1501
1502 loop_init (EV_A_ flags);
1503
1504 if (ev_backend (EV_A))
1505 {
1506#ifndef _WIN32
508 ev_signal_init (&childev, childcb, SIGCHLD); 1507 ev_signal_init (&childev, childcb, SIGCHLD);
1508 ev_set_priority (&childev, EV_MAXPRI);
509 ev_signal_start (&childev); 1509 ev_signal_start (EV_A_ &childev);
1510 ev_unref (EV_A); /* child watcher should not keep loop alive */
1511#endif
510 } 1512 }
1513 else
1514 ev_default_loop_ptr = 0;
511 } 1515 }
512 1516
513 return ev_method; 1517 return ev_default_loop_ptr;
1518}
1519
1520void
1521ev_default_destroy (void)
1522{
1523#if EV_MULTIPLICITY
1524 struct ev_loop *loop = ev_default_loop_ptr;
1525#endif
1526
1527#ifndef _WIN32
1528 ev_ref (EV_A); /* child watcher */
1529 ev_signal_stop (EV_A_ &childev);
1530#endif
1531
1532 loop_destroy (EV_A);
1533}
1534
1535void
1536ev_default_fork (void)
1537{
1538#if EV_MULTIPLICITY
1539 struct ev_loop *loop = ev_default_loop_ptr;
1540#endif
1541
1542 if (backend)
1543 postfork = 1; /* must be in line with ev_loop_fork */
514} 1544}
515 1545
516/*****************************************************************************/ 1546/*****************************************************************************/
517 1547
518void 1548void
519ev_fork_prepare (void) 1549ev_invoke (EV_P_ void *w, int revents)
520{ 1550{
521 /* nop */ 1551 EV_CB_INVOKE ((W)w, revents);
522} 1552}
523 1553
524void 1554void inline_speed
525ev_fork_parent (void)
526{
527 /* nop */
528}
529
530void
531ev_fork_child (void)
532{
533#if EV_USE_EPOLL
534 if (ev_method == EVMETHOD_EPOLL)
535 epoll_postfork_child ();
536#endif
537
538 ev_io_stop (&sigev);
539 close (sigpipe [0]);
540 close (sigpipe [1]);
541 pipe (sigpipe);
542 siginit ();
543}
544
545/*****************************************************************************/
546
547static void
548call_pending (void) 1555call_pending (EV_P)
549{ 1556{
1557 int pri;
1558
1559 for (pri = NUMPRI; pri--; )
550 while (pendingcnt) 1560 while (pendingcnt [pri])
551 { 1561 {
552 ANPENDING *p = pendings + --pendingcnt; 1562 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
553 1563
554 if (p->w) 1564 if (expect_true (p->w))
1565 {
1566 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1567
1568 p->w->pending = 0;
1569 EV_CB_INVOKE (p->w, p->events);
1570 }
1571 }
1572}
1573
1574#if EV_IDLE_ENABLE
1575void inline_size
1576idle_reify (EV_P)
1577{
1578 if (expect_false (idleall))
1579 {
1580 int pri;
1581
1582 for (pri = NUMPRI; pri--; )
555 { 1583 {
556 p->w->pending = 0; 1584 if (pendingcnt [pri])
557 p->w->cb (p->w, p->events); 1585 break;
1586
1587 if (idlecnt [pri])
1588 {
1589 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1590 break;
1591 }
558 } 1592 }
559 } 1593 }
560} 1594}
1595#endif
561 1596
562static void 1597void inline_size
563timers_reify (void) 1598timers_reify (EV_P)
564{ 1599{
565 while (timercnt && timers [0]->at <= now) 1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now)
566 { 1601 {
567 struct ev_timer *w = timers [0]; 1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1603
1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
568 1605
569 /* first reschedule or stop timer */ 1606 /* first reschedule or stop timer */
570 if (w->repeat) 1607 if (w->repeat)
571 { 1608 {
572 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
573 w->at = now + w->repeat; 1610
1611 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now;
1614
1615 ANHE_at_set (timers [HEAP0]);
574 downheap ((WT *)timers, timercnt, 0); 1616 downheap (timers, timercnt, HEAP0);
575 } 1617 }
576 else 1618 else
577 ev_timer_stop (w); /* nonrepeating: stop timer */ 1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
578 1620
579 event ((W)w, EV_TIMEOUT); 1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
580 } 1622 }
581} 1623}
582 1624
583static void 1625#if EV_PERIODIC_ENABLE
1626void inline_size
584periodics_reify (void) 1627periodics_reify (EV_P)
585{ 1628{
586 while (periodiccnt && periodics [0]->at <= ev_now) 1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now)
587 { 1630 {
588 struct ev_periodic *w = periodics [0]; 1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1632
1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
589 1634
590 /* first reschedule or stop timer */ 1635 /* first reschedule or stop timer */
591 if (w->interval) 1636 if (w->reschedule_cb)
592 { 1637 {
1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1640 ANHE_at_set (periodics [HEAP0]);
1641 downheap (periodics, periodiccnt, HEAP0);
1642 }
1643 else if (w->interval)
1644 {
593 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
594 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
595 downheap ((WT *)periodics, periodiccnt, 0); 1649 downheap (periodics, periodiccnt, HEAP0);
596 } 1650 }
597 else 1651 else
598 ev_periodic_stop (w); /* nonrepeating: stop timer */ 1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
599 1653
600 event ((W)w, EV_PERIODIC); 1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
601 } 1655 }
602} 1656}
603 1657
604static void 1658static void noinline
605periodics_reschedule (ev_tstamp diff) 1659periodics_reschedule (EV_P)
606{ 1660{
607 int i; 1661 int i;
608 1662
609 /* adjust periodics after time jump */ 1663 /* adjust periodics after time jump */
610 for (i = 0; i < periodiccnt; ++i) 1664 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
611 { 1665 {
612 struct ev_periodic *w = periodics [i]; 1666 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
613 1667
1668 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
614 if (w->interval) 1670 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1672
1673 ANHE_at_set (periodics [i]);
1674 }
1675
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */
1677 for (i = periodiccnt >> 1; --i; )
1678 downheap (periodics, periodiccnt, i + HEAP0);
1679}
1680#endif
1681
1682void inline_speed
1683time_update (EV_P_ ev_tstamp max_block)
1684{
1685 int i;
1686
1687#if EV_USE_MONOTONIC
1688 if (expect_true (have_monotonic))
1689 {
1690 ev_tstamp odiff = rtmn_diff;
1691
1692 mn_now = get_clock ();
1693
1694 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1695 /* interpolate in the meantime */
1696 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
615 { 1697 {
616 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1698 ev_rt_now = rtmn_diff + mn_now;
1699 return;
1700 }
617 1701
618 if (fabs (diff) >= 1e-4) 1702 now_floor = mn_now;
1703 ev_rt_now = ev_time ();
1704
1705 /* loop a few times, before making important decisions.
1706 * on the choice of "4": one iteration isn't enough,
1707 * in case we get preempted during the calls to
1708 * ev_time and get_clock. a second call is almost guaranteed
1709 * to succeed in that case, though. and looping a few more times
1710 * doesn't hurt either as we only do this on time-jumps or
1711 * in the unlikely event of having been preempted here.
1712 */
1713 for (i = 4; --i; )
1714 {
1715 rtmn_diff = ev_rt_now - mn_now;
1716
1717 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1718 return; /* all is well */
1719
1720 ev_rt_now = ev_time ();
1721 mn_now = get_clock ();
1722 now_floor = mn_now;
1723 }
1724
1725# if EV_PERIODIC_ENABLE
1726 periodics_reschedule (EV_A);
1727# endif
1728 /* no timer adjustment, as the monotonic clock doesn't jump */
1729 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1730 }
1731 else
1732#endif
1733 {
1734 ev_rt_now = ev_time ();
1735
1736 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1737 {
1738#if EV_PERIODIC_ENABLE
1739 periodics_reschedule (EV_A);
1740#endif
1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1742 for (i = 0; i < timercnt; ++i)
619 { 1743 {
620 ev_periodic_stop (w); 1744 ANHE *he = timers + i + HEAP0;
621 ev_periodic_start (w); 1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
622 1746 ANHE_at_set (*he);
623 i = 0; /* restart loop, inefficient, but time jumps should be rare */
624 } 1747 }
625 } 1748 }
626 }
627}
628 1749
629static int
630time_update_monotonic (void)
631{
632 now = get_clock ();
633
634 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5))
635 {
636 ev_now = now + diff;
637 return 0;
638 }
639 else
640 {
641 now_floor = now;
642 ev_now = ev_time ();
643 return 1;
644 }
645}
646
647static void
648time_update (void)
649{
650 int i;
651
652#if EV_USE_MONOTONIC
653 if (expect_true (have_monotonic))
654 {
655 if (time_update_monotonic ())
656 {
657 ev_tstamp odiff = diff;
658
659 for (i = 4; --i; ) /* loop a few times, before making important decisions */
660 {
661 diff = ev_now - now;
662
663 if (fabs (odiff - diff) < MIN_TIMEJUMP)
664 return; /* all is well */
665
666 ev_now = ev_time ();
667 now = get_clock ();
668 now_floor = now;
669 }
670
671 periodics_reschedule (diff - odiff);
672 /* no timer adjustment, as the monotonic clock doesn't jump */
673 }
674 }
675 else
676#endif
677 {
678 ev_now = ev_time ();
679
680 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
681 {
682 periodics_reschedule (ev_now - now);
683
684 /* adjust timers. this is easy, as the offset is the same for all */
685 for (i = 0; i < timercnt; ++i)
686 timers [i]->at += diff;
687 }
688
689 now = ev_now; 1750 mn_now = ev_rt_now;
690 } 1751 }
691} 1752}
692 1753
693int ev_loop_done; 1754void
1755ev_ref (EV_P)
1756{
1757 ++activecnt;
1758}
694 1759
1760void
1761ev_unref (EV_P)
1762{
1763 --activecnt;
1764}
1765
1766static int loop_done;
1767
1768void
695void ev_loop (int flags) 1769ev_loop (EV_P_ int flags)
696{ 1770{
697 double block; 1771 loop_done = EVUNLOOP_CANCEL;
698 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1772
1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
699 1774
700 do 1775 do
701 { 1776 {
1777#ifndef _WIN32
1778 if (expect_false (curpid)) /* penalise the forking check even more */
1779 if (expect_false (getpid () != curpid))
1780 {
1781 curpid = getpid ();
1782 postfork = 1;
1783 }
1784#endif
1785
1786#if EV_FORK_ENABLE
1787 /* we might have forked, so queue fork handlers */
1788 if (expect_false (postfork))
1789 if (forkcnt)
1790 {
1791 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1792 call_pending (EV_A);
1793 }
1794#endif
1795
702 /* queue check watchers (and execute them) */ 1796 /* queue prepare watchers (and execute them) */
703 if (expect_false (preparecnt)) 1797 if (expect_false (preparecnt))
704 { 1798 {
705 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1799 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
706 call_pending (); 1800 call_pending (EV_A);
707 } 1801 }
708 1802
1803 if (expect_false (!activecnt))
1804 break;
1805
1806 /* we might have forked, so reify kernel state if necessary */
1807 if (expect_false (postfork))
1808 loop_fork (EV_A);
1809
709 /* update fd-related kernel structures */ 1810 /* update fd-related kernel structures */
710 fd_reify (); 1811 fd_reify (EV_A);
711 1812
712 /* calculate blocking time */ 1813 /* calculate blocking time */
1814 {
1815 ev_tstamp waittime = 0.;
1816 ev_tstamp sleeptime = 0.;
713 1817
714 /* we only need this for !monotonic clockor timers, but as we basically 1818 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
715 always have timers, we just calculate it always */
716#if EV_USE_MONOTONIC
717 if (expect_true (have_monotonic))
718 time_update_monotonic ();
719 else
720#endif
721 { 1819 {
722 ev_now = ev_time (); 1820 /* update time to cancel out callback processing overhead */
723 now = ev_now; 1821 time_update (EV_A_ 1e100);
724 }
725 1822
726 if (flags & EVLOOP_NONBLOCK || idlecnt)
727 block = 0.;
728 else
729 {
730 block = MAX_BLOCKTIME; 1823 waittime = MAX_BLOCKTIME;
731 1824
732 if (timercnt) 1825 if (timercnt)
733 { 1826 {
734 ev_tstamp to = timers [0]->at - now + method_fudge; 1827 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
735 if (block > to) block = to; 1828 if (waittime > to) waittime = to;
736 } 1829 }
737 1830
1831#if EV_PERIODIC_ENABLE
738 if (periodiccnt) 1832 if (periodiccnt)
739 { 1833 {
740 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
741 if (block > to) block = to; 1835 if (waittime > to) waittime = to;
742 } 1836 }
1837#endif
743 1838
744 if (block < 0.) block = 0.; 1839 if (expect_false (waittime < timeout_blocktime))
1840 waittime = timeout_blocktime;
1841
1842 sleeptime = waittime - backend_fudge;
1843
1844 if (expect_true (sleeptime > io_blocktime))
1845 sleeptime = io_blocktime;
1846
1847 if (sleeptime)
1848 {
1849 ev_sleep (sleeptime);
1850 waittime -= sleeptime;
1851 }
745 } 1852 }
746 1853
747 method_poll (block); 1854 ++loop_count;
1855 backend_poll (EV_A_ waittime);
748 1856
749 /* update ev_now, do magic */ 1857 /* update ev_rt_now, do magic */
750 time_update (); 1858 time_update (EV_A_ waittime + sleeptime);
1859 }
751 1860
752 /* queue pending timers and reschedule them */ 1861 /* queue pending timers and reschedule them */
753 timers_reify (); /* relative timers called last */ 1862 timers_reify (EV_A); /* relative timers called last */
1863#if EV_PERIODIC_ENABLE
754 periodics_reify (); /* absolute timers called first */ 1864 periodics_reify (EV_A); /* absolute timers called first */
1865#endif
755 1866
1867#if EV_IDLE_ENABLE
756 /* queue idle watchers unless io or timers are pending */ 1868 /* queue idle watchers unless other events are pending */
757 if (!pendingcnt) 1869 idle_reify (EV_A);
758 queue_events ((W *)idles, idlecnt, EV_IDLE); 1870#endif
759 1871
760 /* queue check watchers, to be executed first */ 1872 /* queue check watchers, to be executed first */
761 if (checkcnt) 1873 if (expect_false (checkcnt))
762 queue_events ((W *)checks, checkcnt, EV_CHECK); 1874 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
763 1875
764 call_pending (); 1876 call_pending (EV_A);
765 } 1877 }
766 while (!ev_loop_done); 1878 while (expect_true (
1879 activecnt
1880 && !loop_done
1881 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1882 ));
767 1883
768 if (ev_loop_done != 2) 1884 if (loop_done == EVUNLOOP_ONE)
1885 loop_done = EVUNLOOP_CANCEL;
1886}
1887
1888void
1889ev_unloop (EV_P_ int how)
1890{
769 ev_loop_done = 0; 1891 loop_done = how;
770} 1892}
771 1893
772/*****************************************************************************/ 1894/*****************************************************************************/
773 1895
774static void 1896void inline_size
775wlist_add (WL *head, WL elem) 1897wlist_add (WL *head, WL elem)
776{ 1898{
777 elem->next = *head; 1899 elem->next = *head;
778 *head = elem; 1900 *head = elem;
779} 1901}
780 1902
781static void 1903void inline_size
782wlist_del (WL *head, WL elem) 1904wlist_del (WL *head, WL elem)
783{ 1905{
784 while (*head) 1906 while (*head)
785 { 1907 {
786 if (*head == elem) 1908 if (*head == elem)
791 1913
792 head = &(*head)->next; 1914 head = &(*head)->next;
793 } 1915 }
794} 1916}
795 1917
796static void 1918void inline_speed
797ev_clear_pending (W w) 1919clear_pending (EV_P_ W w)
798{ 1920{
799 if (w->pending) 1921 if (w->pending)
800 { 1922 {
801 pendings [w->pending - 1].w = 0; 1923 pendings [ABSPRI (w)][w->pending - 1].w = 0;
802 w->pending = 0; 1924 w->pending = 0;
803 } 1925 }
804} 1926}
805 1927
806static void 1928int
1929ev_clear_pending (EV_P_ void *w)
1930{
1931 W w_ = (W)w;
1932 int pending = w_->pending;
1933
1934 if (expect_true (pending))
1935 {
1936 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1937 w_->pending = 0;
1938 p->w = 0;
1939 return p->events;
1940 }
1941 else
1942 return 0;
1943}
1944
1945void inline_size
1946pri_adjust (EV_P_ W w)
1947{
1948 int pri = w->priority;
1949 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1950 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1951 w->priority = pri;
1952}
1953
1954void inline_speed
807ev_start (W w, int active) 1955ev_start (EV_P_ W w, int active)
808{ 1956{
1957 pri_adjust (EV_A_ w);
809 w->active = active; 1958 w->active = active;
1959 ev_ref (EV_A);
810} 1960}
811 1961
812static void 1962void inline_size
813ev_stop (W w) 1963ev_stop (EV_P_ W w)
814{ 1964{
1965 ev_unref (EV_A);
815 w->active = 0; 1966 w->active = 0;
816} 1967}
817 1968
818/*****************************************************************************/ 1969/*****************************************************************************/
819 1970
820void 1971void noinline
821ev_io_start (struct ev_io *w) 1972ev_io_start (EV_P_ ev_io *w)
822{ 1973{
823 int fd = w->fd; 1974 int fd = w->fd;
824 1975
825 if (ev_is_active (w)) 1976 if (expect_false (ev_is_active (w)))
826 return; 1977 return;
827 1978
828 assert (("ev_io_start called with negative fd", fd >= 0)); 1979 assert (("ev_io_start called with negative fd", fd >= 0));
829 1980
830 ev_start ((W)w, 1); 1981 ev_start (EV_A_ (W)w, 1);
831 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
832 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1983 wlist_add (&anfds[fd].head, (WL)w);
833 1984
834 fd_change (fd); 1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1986 w->events &= ~EV_IOFDSET;
835} 1987}
836 1988
837void 1989void noinline
838ev_io_stop (struct ev_io *w) 1990ev_io_stop (EV_P_ ev_io *w)
839{ 1991{
840 ev_clear_pending ((W)w); 1992 clear_pending (EV_A_ (W)w);
841 if (!ev_is_active (w)) 1993 if (expect_false (!ev_is_active (w)))
842 return; 1994 return;
843 1995
1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1997
844 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1998 wlist_del (&anfds[w->fd].head, (WL)w);
845 ev_stop ((W)w); 1999 ev_stop (EV_A_ (W)w);
846 2000
847 fd_change (w->fd); 2001 fd_change (EV_A_ w->fd, 1);
848} 2002}
849 2003
850void 2004void noinline
851ev_timer_start (struct ev_timer *w) 2005ev_timer_start (EV_P_ ev_timer *w)
852{ 2006{
853 if (ev_is_active (w)) 2007 if (expect_false (ev_is_active (w)))
854 return; 2008 return;
855 2009
856 w->at += now; 2010 ev_at (w) += mn_now;
857 2011
858 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
859 2013
860 ev_start ((W)w, ++timercnt); 2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
861 array_needsize (timers, timermax, timercnt, ); 2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
862 timers [timercnt - 1] = w; 2016 ANHE_w (timers [ev_active (w)]) = (WT)w;
863 upheap ((WT *)timers, timercnt - 1); 2017 ANHE_at_set (timers [ev_active (w)]);
864} 2018 upheap (timers, ev_active (w));
865 2019
866void 2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2021}
2022
2023void noinline
867ev_timer_stop (struct ev_timer *w) 2024ev_timer_stop (EV_P_ ev_timer *w)
868{ 2025{
869 ev_clear_pending ((W)w); 2026 clear_pending (EV_A_ (W)w);
870 if (!ev_is_active (w)) 2027 if (expect_false (!ev_is_active (w)))
871 return; 2028 return;
872 2029
873 if (w->active < timercnt--) 2030 {
2031 int active = ev_active (w);
2032
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034
2035 if (expect_true (active < timercnt + HEAP0 - 1))
874 { 2036 {
875 timers [w->active - 1] = timers [timercnt]; 2037 timers [active] = timers [timercnt + HEAP0 - 1];
876 downheap ((WT *)timers, timercnt, w->active - 1); 2038 adjustheap (timers, timercnt, active);
877 } 2039 }
878 2040
879 w->at = w->repeat; 2041 --timercnt;
2042 }
880 2043
2044 ev_at (w) -= mn_now;
2045
881 ev_stop ((W)w); 2046 ev_stop (EV_A_ (W)w);
882} 2047}
883 2048
884void 2049void noinline
885ev_timer_again (struct ev_timer *w) 2050ev_timer_again (EV_P_ ev_timer *w)
886{ 2051{
887 if (ev_is_active (w)) 2052 if (ev_is_active (w))
888 { 2053 {
889 if (w->repeat) 2054 if (w->repeat)
890 { 2055 {
891 w->at = now + w->repeat; 2056 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]);
892 downheap ((WT *)timers, timercnt, w->active - 1); 2058 adjustheap (timers, timercnt, ev_active (w));
893 } 2059 }
894 else 2060 else
895 ev_timer_stop (w); 2061 ev_timer_stop (EV_A_ w);
896 } 2062 }
897 else if (w->repeat) 2063 else if (w->repeat)
2064 {
2065 ev_at (w) = w->repeat;
898 ev_timer_start (w); 2066 ev_timer_start (EV_A_ w);
2067 }
899} 2068}
900 2069
901void 2070#if EV_PERIODIC_ENABLE
2071void noinline
902ev_periodic_start (struct ev_periodic *w) 2072ev_periodic_start (EV_P_ ev_periodic *w)
903{ 2073{
904 if (ev_is_active (w)) 2074 if (expect_false (ev_is_active (w)))
905 return; 2075 return;
906 2076
2077 if (w->reschedule_cb)
2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2079 else if (w->interval)
2080 {
907 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
908
909 /* this formula differs from the one in periodic_reify because we do not always round up */ 2082 /* this formula differs from the one in periodic_reify because we do not always round up */
910 if (w->interval)
911 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2084 }
2085 else
2086 ev_at (w) = w->offset;
912 2087
913 ev_start ((W)w, ++periodiccnt); 2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
914 array_needsize (periodics, periodicmax, periodiccnt, ); 2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
915 periodics [periodiccnt - 1] = w; 2090 ANHE_w (periodics [ev_active (w)]) = (WT)w;
916 upheap ((WT *)periodics, periodiccnt - 1); 2091 upheap (periodics, ev_active (w));
917}
918 2092
919void 2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2094}
2095
2096void noinline
920ev_periodic_stop (struct ev_periodic *w) 2097ev_periodic_stop (EV_P_ ev_periodic *w)
921{ 2098{
922 ev_clear_pending ((W)w); 2099 clear_pending (EV_A_ (W)w);
923 if (!ev_is_active (w)) 2100 if (expect_false (!ev_is_active (w)))
924 return; 2101 return;
925 2102
926 if (w->active < periodiccnt--) 2103 {
2104 int active = ev_active (w);
2105
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107
2108 if (expect_true (active < periodiccnt + HEAP0 - 1))
927 { 2109 {
928 periodics [w->active - 1] = periodics [periodiccnt]; 2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
929 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2111 adjustheap (periodics, periodiccnt, active);
930 } 2112 }
931 2113
2114 --periodiccnt;
2115 }
2116
932 ev_stop ((W)w); 2117 ev_stop (EV_A_ (W)w);
933} 2118}
934 2119
935void 2120void noinline
2121ev_periodic_again (EV_P_ ev_periodic *w)
2122{
2123 /* TODO: use adjustheap and recalculation */
2124 ev_periodic_stop (EV_A_ w);
2125 ev_periodic_start (EV_A_ w);
2126}
2127#endif
2128
2129#ifndef SA_RESTART
2130# define SA_RESTART 0
2131#endif
2132
2133void noinline
936ev_signal_start (struct ev_signal *w) 2134ev_signal_start (EV_P_ ev_signal *w)
937{ 2135{
2136#if EV_MULTIPLICITY
2137 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2138#endif
938 if (ev_is_active (w)) 2139 if (expect_false (ev_is_active (w)))
939 return; 2140 return;
940 2141
941 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
942 2143
943 ev_start ((W)w, 1); 2144 evpipe_init (EV_A);
2145
2146 {
2147#ifndef _WIN32
2148 sigset_t full, prev;
2149 sigfillset (&full);
2150 sigprocmask (SIG_SETMASK, &full, &prev);
2151#endif
2152
944 array_needsize (signals, signalmax, w->signum, signals_init); 2153 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2154
2155#ifndef _WIN32
2156 sigprocmask (SIG_SETMASK, &prev, 0);
2157#endif
2158 }
2159
2160 ev_start (EV_A_ (W)w, 1);
945 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2161 wlist_add (&signals [w->signum - 1].head, (WL)w);
946 2162
947 if (!w->next) 2163 if (!((WL)w)->next)
948 { 2164 {
2165#if _WIN32
2166 signal (w->signum, ev_sighandler);
2167#else
949 struct sigaction sa; 2168 struct sigaction sa;
950 sa.sa_handler = sighandler; 2169 sa.sa_handler = ev_sighandler;
951 sigfillset (&sa.sa_mask); 2170 sigfillset (&sa.sa_mask);
952 sa.sa_flags = 0; 2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
953 sigaction (w->signum, &sa, 0); 2172 sigaction (w->signum, &sa, 0);
2173#endif
954 } 2174 }
955} 2175}
956 2176
957void 2177void noinline
958ev_signal_stop (struct ev_signal *w) 2178ev_signal_stop (EV_P_ ev_signal *w)
959{ 2179{
960 ev_clear_pending ((W)w); 2180 clear_pending (EV_A_ (W)w);
961 if (!ev_is_active (w)) 2181 if (expect_false (!ev_is_active (w)))
962 return; 2182 return;
963 2183
964 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2184 wlist_del (&signals [w->signum - 1].head, (WL)w);
965 ev_stop ((W)w); 2185 ev_stop (EV_A_ (W)w);
966 2186
967 if (!signals [w->signum - 1].head) 2187 if (!signals [w->signum - 1].head)
968 signal (w->signum, SIG_DFL); 2188 signal (w->signum, SIG_DFL);
969} 2189}
970 2190
971void 2191void
972ev_idle_start (struct ev_idle *w) 2192ev_child_start (EV_P_ ev_child *w)
973{ 2193{
2194#if EV_MULTIPLICITY
2195 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2196#endif
974 if (ev_is_active (w)) 2197 if (expect_false (ev_is_active (w)))
975 return; 2198 return;
976 2199
977 ev_start ((W)w, ++idlecnt); 2200 ev_start (EV_A_ (W)w, 1);
978 array_needsize (idles, idlemax, idlecnt, ); 2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
979 idles [idlecnt - 1] = w;
980} 2202}
981 2203
982void 2204void
983ev_idle_stop (struct ev_idle *w) 2205ev_child_stop (EV_P_ ev_child *w)
984{ 2206{
985 ev_clear_pending ((W)w); 2207 clear_pending (EV_A_ (W)w);
986 if (ev_is_active (w)) 2208 if (expect_false (!ev_is_active (w)))
987 return; 2209 return;
988 2210
989 idles [w->active - 1] = idles [--idlecnt]; 2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
990 ev_stop ((W)w); 2212 ev_stop (EV_A_ (W)w);
991} 2213}
992 2214
993void 2215#if EV_STAT_ENABLE
994ev_prepare_start (struct ev_prepare *w) 2216
2217# ifdef _WIN32
2218# undef lstat
2219# define lstat(a,b) _stati64 (a,b)
2220# endif
2221
2222#define DEF_STAT_INTERVAL 5.0074891
2223#define MIN_STAT_INTERVAL 0.1074891
2224
2225static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2226
2227#if EV_USE_INOTIFY
2228# define EV_INOTIFY_BUFSIZE 8192
2229
2230static void noinline
2231infy_add (EV_P_ ev_stat *w)
995{ 2232{
996 if (ev_is_active (w)) 2233 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2234
2235 if (w->wd < 0)
2236 {
2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2238
2239 /* monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */
2241 /* but an efficiency issue only */
2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2243 {
2244 char path [4096];
2245 strcpy (path, w->path);
2246
2247 do
2248 {
2249 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2250 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2251
2252 char *pend = strrchr (path, '/');
2253
2254 if (!pend)
2255 break; /* whoops, no '/', complain to your admin */
2256
2257 *pend = 0;
2258 w->wd = inotify_add_watch (fs_fd, path, mask);
2259 }
2260 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2261 }
2262 }
2263 else
2264 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2265
2266 if (w->wd >= 0)
2267 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2268}
2269
2270static void noinline
2271infy_del (EV_P_ ev_stat *w)
2272{
2273 int slot;
2274 int wd = w->wd;
2275
2276 if (wd < 0)
997 return; 2277 return;
998 2278
2279 w->wd = -2;
2280 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2281 wlist_del (&fs_hash [slot].head, (WL)w);
2282
2283 /* remove this watcher, if others are watching it, they will rearm */
2284 inotify_rm_watch (fs_fd, wd);
2285}
2286
2287static void noinline
2288infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2289{
2290 if (slot < 0)
2291 /* overflow, need to check for all hahs slots */
2292 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2293 infy_wd (EV_A_ slot, wd, ev);
2294 else
2295 {
2296 WL w_;
2297
2298 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2299 {
2300 ev_stat *w = (ev_stat *)w_;
2301 w_ = w_->next; /* lets us remove this watcher and all before it */
2302
2303 if (w->wd == wd || wd == -1)
2304 {
2305 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2306 {
2307 w->wd = -1;
2308 infy_add (EV_A_ w); /* re-add, no matter what */
2309 }
2310
2311 stat_timer_cb (EV_A_ &w->timer, 0);
2312 }
2313 }
2314 }
2315}
2316
2317static void
2318infy_cb (EV_P_ ev_io *w, int revents)
2319{
2320 char buf [EV_INOTIFY_BUFSIZE];
2321 struct inotify_event *ev = (struct inotify_event *)buf;
2322 int ofs;
2323 int len = read (fs_fd, buf, sizeof (buf));
2324
2325 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2326 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2327}
2328
2329void inline_size
2330infy_init (EV_P)
2331{
2332 if (fs_fd != -2)
2333 return;
2334
2335 fs_fd = inotify_init ();
2336
2337 if (fs_fd >= 0)
2338 {
2339 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2340 ev_set_priority (&fs_w, EV_MAXPRI);
2341 ev_io_start (EV_A_ &fs_w);
2342 }
2343}
2344
2345void inline_size
2346infy_fork (EV_P)
2347{
2348 int slot;
2349
2350 if (fs_fd < 0)
2351 return;
2352
2353 close (fs_fd);
2354 fs_fd = inotify_init ();
2355
2356 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2357 {
2358 WL w_ = fs_hash [slot].head;
2359 fs_hash [slot].head = 0;
2360
2361 while (w_)
2362 {
2363 ev_stat *w = (ev_stat *)w_;
2364 w_ = w_->next; /* lets us add this watcher */
2365
2366 w->wd = -1;
2367
2368 if (fs_fd >= 0)
2369 infy_add (EV_A_ w); /* re-add, no matter what */
2370 else
2371 ev_timer_start (EV_A_ &w->timer);
2372 }
2373
2374 }
2375}
2376
2377#endif
2378
2379void
2380ev_stat_stat (EV_P_ ev_stat *w)
2381{
2382 if (lstat (w->path, &w->attr) < 0)
2383 w->attr.st_nlink = 0;
2384 else if (!w->attr.st_nlink)
2385 w->attr.st_nlink = 1;
2386}
2387
2388static void noinline
2389stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2390{
2391 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2392
2393 /* we copy this here each the time so that */
2394 /* prev has the old value when the callback gets invoked */
2395 w->prev = w->attr;
2396 ev_stat_stat (EV_A_ w);
2397
2398 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2399 if (
2400 w->prev.st_dev != w->attr.st_dev
2401 || w->prev.st_ino != w->attr.st_ino
2402 || w->prev.st_mode != w->attr.st_mode
2403 || w->prev.st_nlink != w->attr.st_nlink
2404 || w->prev.st_uid != w->attr.st_uid
2405 || w->prev.st_gid != w->attr.st_gid
2406 || w->prev.st_rdev != w->attr.st_rdev
2407 || w->prev.st_size != w->attr.st_size
2408 || w->prev.st_atime != w->attr.st_atime
2409 || w->prev.st_mtime != w->attr.st_mtime
2410 || w->prev.st_ctime != w->attr.st_ctime
2411 ) {
2412 #if EV_USE_INOTIFY
2413 infy_del (EV_A_ w);
2414 infy_add (EV_A_ w);
2415 ev_stat_stat (EV_A_ w); /* avoid race... */
2416 #endif
2417
2418 ev_feed_event (EV_A_ w, EV_STAT);
2419 }
2420}
2421
2422void
2423ev_stat_start (EV_P_ ev_stat *w)
2424{
2425 if (expect_false (ev_is_active (w)))
2426 return;
2427
2428 /* since we use memcmp, we need to clear any padding data etc. */
2429 memset (&w->prev, 0, sizeof (ev_statdata));
2430 memset (&w->attr, 0, sizeof (ev_statdata));
2431
2432 ev_stat_stat (EV_A_ w);
2433
2434 if (w->interval < MIN_STAT_INTERVAL)
2435 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2436
2437 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2438 ev_set_priority (&w->timer, ev_priority (w));
2439
2440#if EV_USE_INOTIFY
2441 infy_init (EV_A);
2442
2443 if (fs_fd >= 0)
2444 infy_add (EV_A_ w);
2445 else
2446#endif
2447 ev_timer_start (EV_A_ &w->timer);
2448
2449 ev_start (EV_A_ (W)w, 1);
2450}
2451
2452void
2453ev_stat_stop (EV_P_ ev_stat *w)
2454{
2455 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w)))
2457 return;
2458
2459#if EV_USE_INOTIFY
2460 infy_del (EV_A_ w);
2461#endif
2462 ev_timer_stop (EV_A_ &w->timer);
2463
2464 ev_stop (EV_A_ (W)w);
2465}
2466#endif
2467
2468#if EV_IDLE_ENABLE
2469void
2470ev_idle_start (EV_P_ ev_idle *w)
2471{
2472 if (expect_false (ev_is_active (w)))
2473 return;
2474
2475 pri_adjust (EV_A_ (W)w);
2476
2477 {
2478 int active = ++idlecnt [ABSPRI (w)];
2479
2480 ++idleall;
2481 ev_start (EV_A_ (W)w, active);
2482
2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2484 idles [ABSPRI (w)][active - 1] = w;
2485 }
2486}
2487
2488void
2489ev_idle_stop (EV_P_ ev_idle *w)
2490{
2491 clear_pending (EV_A_ (W)w);
2492 if (expect_false (!ev_is_active (w)))
2493 return;
2494
2495 {
2496 int active = ev_active (w);
2497
2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500
2501 ev_stop (EV_A_ (W)w);
2502 --idleall;
2503 }
2504}
2505#endif
2506
2507void
2508ev_prepare_start (EV_P_ ev_prepare *w)
2509{
2510 if (expect_false (ev_is_active (w)))
2511 return;
2512
999 ev_start ((W)w, ++preparecnt); 2513 ev_start (EV_A_ (W)w, ++preparecnt);
1000 array_needsize (prepares, preparemax, preparecnt, ); 2514 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1001 prepares [preparecnt - 1] = w; 2515 prepares [preparecnt - 1] = w;
1002} 2516}
1003 2517
1004void 2518void
1005ev_prepare_stop (struct ev_prepare *w) 2519ev_prepare_stop (EV_P_ ev_prepare *w)
1006{ 2520{
1007 ev_clear_pending ((W)w); 2521 clear_pending (EV_A_ (W)w);
1008 if (ev_is_active (w)) 2522 if (expect_false (!ev_is_active (w)))
1009 return; 2523 return;
1010 2524
2525 {
2526 int active = ev_active (w);
2527
1011 prepares [w->active - 1] = prepares [--preparecnt]; 2528 prepares [active - 1] = prepares [--preparecnt];
2529 ev_active (prepares [active - 1]) = active;
2530 }
2531
1012 ev_stop ((W)w); 2532 ev_stop (EV_A_ (W)w);
1013} 2533}
1014 2534
1015void 2535void
1016ev_check_start (struct ev_check *w) 2536ev_check_start (EV_P_ ev_check *w)
1017{ 2537{
1018 if (ev_is_active (w)) 2538 if (expect_false (ev_is_active (w)))
1019 return; 2539 return;
1020 2540
1021 ev_start ((W)w, ++checkcnt); 2541 ev_start (EV_A_ (W)w, ++checkcnt);
1022 array_needsize (checks, checkmax, checkcnt, ); 2542 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1023 checks [checkcnt - 1] = w; 2543 checks [checkcnt - 1] = w;
1024} 2544}
1025 2545
1026void 2546void
1027ev_check_stop (struct ev_check *w) 2547ev_check_stop (EV_P_ ev_check *w)
1028{ 2548{
1029 ev_clear_pending ((W)w); 2549 clear_pending (EV_A_ (W)w);
1030 if (ev_is_active (w)) 2550 if (expect_false (!ev_is_active (w)))
1031 return; 2551 return;
1032 2552
2553 {
2554 int active = ev_active (w);
2555
1033 checks [w->active - 1] = checks [--checkcnt]; 2556 checks [active - 1] = checks [--checkcnt];
2557 ev_active (checks [active - 1]) = active;
2558 }
2559
1034 ev_stop ((W)w); 2560 ev_stop (EV_A_ (W)w);
1035} 2561}
1036 2562
1037void 2563#if EV_EMBED_ENABLE
1038ev_child_start (struct ev_child *w) 2564void noinline
2565ev_embed_sweep (EV_P_ ev_embed *w)
1039{ 2566{
2567 ev_loop (w->other, EVLOOP_NONBLOCK);
2568}
2569
2570static void
2571embed_io_cb (EV_P_ ev_io *io, int revents)
2572{
2573 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2574
1040 if (ev_is_active (w)) 2575 if (ev_cb (w))
2576 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2577 else
2578 ev_loop (w->other, EVLOOP_NONBLOCK);
2579}
2580
2581static void
2582embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2583{
2584 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2585
2586 {
2587 struct ev_loop *loop = w->other;
2588
2589 while (fdchangecnt)
2590 {
2591 fd_reify (EV_A);
2592 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2593 }
2594 }
2595}
2596
2597#if 0
2598static void
2599embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2600{
2601 ev_idle_stop (EV_A_ idle);
2602}
2603#endif
2604
2605void
2606ev_embed_start (EV_P_ ev_embed *w)
2607{
2608 if (expect_false (ev_is_active (w)))
1041 return; 2609 return;
1042 2610
2611 {
2612 struct ev_loop *loop = w->other;
2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2615 }
2616
2617 ev_set_priority (&w->io, ev_priority (w));
2618 ev_io_start (EV_A_ &w->io);
2619
2620 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare);
2623
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625
1043 ev_start ((W)w, 1); 2626 ev_start (EV_A_ (W)w, 1);
1044 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1045} 2627}
1046 2628
1047void 2629void
1048ev_child_stop (struct ev_child *w) 2630ev_embed_stop (EV_P_ ev_embed *w)
1049{ 2631{
1050 ev_clear_pending ((W)w); 2632 clear_pending (EV_A_ (W)w);
1051 if (ev_is_active (w)) 2633 if (expect_false (!ev_is_active (w)))
1052 return; 2634 return;
1053 2635
1054 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2636 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare);
2638
1055 ev_stop ((W)w); 2639 ev_stop (EV_A_ (W)w);
1056} 2640}
2641#endif
2642
2643#if EV_FORK_ENABLE
2644void
2645ev_fork_start (EV_P_ ev_fork *w)
2646{
2647 if (expect_false (ev_is_active (w)))
2648 return;
2649
2650 ev_start (EV_A_ (W)w, ++forkcnt);
2651 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2652 forks [forkcnt - 1] = w;
2653}
2654
2655void
2656ev_fork_stop (EV_P_ ev_fork *w)
2657{
2658 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w)))
2660 return;
2661
2662 {
2663 int active = ev_active (w);
2664
2665 forks [active - 1] = forks [--forkcnt];
2666 ev_active (forks [active - 1]) = active;
2667 }
2668
2669 ev_stop (EV_A_ (W)w);
2670}
2671#endif
2672
2673#if EV_ASYNC_ENABLE
2674void
2675ev_async_start (EV_P_ ev_async *w)
2676{
2677 if (expect_false (ev_is_active (w)))
2678 return;
2679
2680 evpipe_init (EV_A);
2681
2682 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w;
2685}
2686
2687void
2688ev_async_stop (EV_P_ ev_async *w)
2689{
2690 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w)))
2692 return;
2693
2694 {
2695 int active = ev_active (w);
2696
2697 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active;
2699 }
2700
2701 ev_stop (EV_A_ (W)w);
2702}
2703
2704void
2705ev_async_send (EV_P_ ev_async *w)
2706{
2707 w->sent = 1;
2708 evpipe_write (EV_A_ &gotasync);
2709}
2710#endif
1057 2711
1058/*****************************************************************************/ 2712/*****************************************************************************/
1059 2713
1060struct ev_once 2714struct ev_once
1061{ 2715{
1062 struct ev_io io; 2716 ev_io io;
1063 struct ev_timer to; 2717 ev_timer to;
1064 void (*cb)(int revents, void *arg); 2718 void (*cb)(int revents, void *arg);
1065 void *arg; 2719 void *arg;
1066}; 2720};
1067 2721
1068static void 2722static void
1069once_cb (struct ev_once *once, int revents) 2723once_cb (EV_P_ struct ev_once *once, int revents)
1070{ 2724{
1071 void (*cb)(int revents, void *arg) = once->cb; 2725 void (*cb)(int revents, void *arg) = once->cb;
1072 void *arg = once->arg; 2726 void *arg = once->arg;
1073 2727
1074 ev_io_stop (&once->io); 2728 ev_io_stop (EV_A_ &once->io);
1075 ev_timer_stop (&once->to); 2729 ev_timer_stop (EV_A_ &once->to);
1076 free (once); 2730 ev_free (once);
1077 2731
1078 cb (revents, arg); 2732 cb (revents, arg);
1079} 2733}
1080 2734
1081static void 2735static void
1082once_cb_io (struct ev_io *w, int revents) 2736once_cb_io (EV_P_ ev_io *w, int revents)
1083{ 2737{
1084 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2738 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1085} 2739}
1086 2740
1087static void 2741static void
1088once_cb_to (struct ev_timer *w, int revents) 2742once_cb_to (EV_P_ ev_timer *w, int revents)
1089{ 2743{
1090 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2744 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1091} 2745}
1092 2746
1093void 2747void
1094ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2748ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1095{ 2749{
1096 struct ev_once *once = malloc (sizeof (struct ev_once)); 2750 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1097 2751
1098 if (!once) 2752 if (expect_false (!once))
2753 {
1099 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2754 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1100 else 2755 return;
1101 { 2756 }
2757
1102 once->cb = cb; 2758 once->cb = cb;
1103 once->arg = arg; 2759 once->arg = arg;
1104 2760
1105 ev_watcher_init (&once->io, once_cb_io); 2761 ev_init (&once->io, once_cb_io);
1106 if (fd >= 0) 2762 if (fd >= 0)
1107 { 2763 {
1108 ev_io_set (&once->io, fd, events); 2764 ev_io_set (&once->io, fd, events);
1109 ev_io_start (&once->io); 2765 ev_io_start (EV_A_ &once->io);
1110 } 2766 }
1111 2767
1112 ev_watcher_init (&once->to, once_cb_to); 2768 ev_init (&once->to, once_cb_to);
1113 if (timeout >= 0.) 2769 if (timeout >= 0.)
1114 { 2770 {
1115 ev_timer_set (&once->to, timeout, 0.); 2771 ev_timer_set (&once->to, timeout, 0.);
1116 ev_timer_start (&once->to); 2772 ev_timer_start (EV_A_ &once->to);
1117 }
1118 }
1119}
1120
1121/*****************************************************************************/
1122
1123#if 0
1124
1125struct ev_io wio;
1126
1127static void
1128sin_cb (struct ev_io *w, int revents)
1129{
1130 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1131}
1132
1133static void
1134ocb (struct ev_timer *w, int revents)
1135{
1136 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1137 ev_timer_stop (w);
1138 ev_timer_start (w);
1139}
1140
1141static void
1142scb (struct ev_signal *w, int revents)
1143{
1144 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1145 ev_io_stop (&wio);
1146 ev_io_start (&wio);
1147}
1148
1149static void
1150gcb (struct ev_signal *w, int revents)
1151{
1152 fprintf (stderr, "generic %x\n", revents);
1153
1154}
1155
1156int main (void)
1157{
1158 ev_init (0);
1159
1160 ev_io_init (&wio, sin_cb, 0, EV_READ);
1161 ev_io_start (&wio);
1162
1163 struct ev_timer t[10000];
1164
1165#if 0
1166 int i;
1167 for (i = 0; i < 10000; ++i)
1168 { 2773 }
1169 struct ev_timer *w = t + i;
1170 ev_watcher_init (w, ocb, i);
1171 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1172 ev_timer_start (w);
1173 if (drand48 () < 0.5)
1174 ev_timer_stop (w);
1175 }
1176#endif
1177
1178 struct ev_timer t1;
1179 ev_timer_init (&t1, ocb, 5, 10);
1180 ev_timer_start (&t1);
1181
1182 struct ev_signal sig;
1183 ev_signal_init (&sig, scb, SIGQUIT);
1184 ev_signal_start (&sig);
1185
1186 struct ev_check cw;
1187 ev_check_init (&cw, gcb);
1188 ev_check_start (&cw);
1189
1190 struct ev_idle iw;
1191 ev_idle_init (&iw, gcb);
1192 ev_idle_start (&iw);
1193
1194 ev_loop (0);
1195
1196 return 0;
1197} 2774}
1198 2775
2776#if EV_MULTIPLICITY
2777 #include "ev_wrap.h"
1199#endif 2778#endif
1200 2779
2780#ifdef __cplusplus
2781}
2782#endif
1201 2783
1202
1203

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines