ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC vs.
Revision 1.407 by root, Wed Jan 25 01:32:12 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
154#ifndef _WIN32 188#ifndef _WIN32
155# include <sys/time.h> 189# include <sys/time.h>
156# include <sys/wait.h> 190# include <sys/wait.h>
157# include <unistd.h> 191# include <unistd.h>
158#else 192#else
193# include <io.h>
159# define WIN32_LEAN_AND_MEAN 194# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 195# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 196# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 197# define EV_SELECT_IS_WINSOCKET 1
163# endif 198# endif
199# undef EV_AVOID_STDIO
164#endif 200#endif
201
202/* OS X, in its infinite idiocy, actually HARDCODES
203 * a limit of 1024 into their select. Where people have brains,
204 * OS X engineers apparently have a vacuum. Or maybe they were
205 * ordered to have a vacuum, or they do anything for money.
206 * This might help. Or not.
207 */
208#define _DARWIN_UNLIMITED_SELECT 1
165 209
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 210/* this block tries to deduce configuration from header-defined symbols and defaults */
167 211
212/* try to deduce the maximum number of signals on this platform */
213#if defined (EV_NSIG)
214/* use what's provided */
215#elif defined (NSIG)
216# define EV_NSIG (NSIG)
217#elif defined(_NSIG)
218# define EV_NSIG (_NSIG)
219#elif defined (SIGMAX)
220# define EV_NSIG (SIGMAX+1)
221#elif defined (SIG_MAX)
222# define EV_NSIG (SIG_MAX+1)
223#elif defined (_SIG_MAX)
224# define EV_NSIG (_SIG_MAX+1)
225#elif defined (MAXSIG)
226# define EV_NSIG (MAXSIG+1)
227#elif defined (MAX_SIG)
228# define EV_NSIG (MAX_SIG+1)
229#elif defined (SIGARRAYSIZE)
230# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
231#elif defined (_sys_nsig)
232# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
233#else
234# error "unable to find value for NSIG, please report"
235/* to make it compile regardless, just remove the above line, */
236/* but consider reporting it, too! :) */
237# define EV_NSIG 65
238#endif
239
240#ifndef EV_USE_FLOOR
241# define EV_USE_FLOOR 0
242#endif
243
244#ifndef EV_USE_CLOCK_SYSCALL
245# if __linux && __GLIBC__ >= 2
246# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
247# else
248# define EV_USE_CLOCK_SYSCALL 0
249# endif
250#endif
251
168#ifndef EV_USE_MONOTONIC 252#ifndef EV_USE_MONOTONIC
253# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
254# define EV_USE_MONOTONIC EV_FEATURE_OS
255# else
169# define EV_USE_MONOTONIC 0 256# define EV_USE_MONOTONIC 0
257# endif
170#endif 258#endif
171 259
172#ifndef EV_USE_REALTIME 260#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 261# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 262#endif
175 263
176#ifndef EV_USE_NANOSLEEP 264#ifndef EV_USE_NANOSLEEP
265# if _POSIX_C_SOURCE >= 199309L
266# define EV_USE_NANOSLEEP EV_FEATURE_OS
267# else
177# define EV_USE_NANOSLEEP 0 268# define EV_USE_NANOSLEEP 0
269# endif
178#endif 270#endif
179 271
180#ifndef EV_USE_SELECT 272#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 273# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 274#endif
183 275
184#ifndef EV_USE_POLL 276#ifndef EV_USE_POLL
185# ifdef _WIN32 277# ifdef _WIN32
186# define EV_USE_POLL 0 278# define EV_USE_POLL 0
187# else 279# else
188# define EV_USE_POLL 1 280# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 281# endif
190#endif 282#endif
191 283
192#ifndef EV_USE_EPOLL 284#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 285# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 286# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 287# else
196# define EV_USE_EPOLL 0 288# define EV_USE_EPOLL 0
197# endif 289# endif
198#endif 290#endif
199 291
205# define EV_USE_PORT 0 297# define EV_USE_PORT 0
206#endif 298#endif
207 299
208#ifndef EV_USE_INOTIFY 300#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 301# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 302# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 303# else
212# define EV_USE_INOTIFY 0 304# define EV_USE_INOTIFY 0
213# endif 305# endif
214#endif 306#endif
215 307
216#ifndef EV_PID_HASHSIZE 308#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 309# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 310#endif
223 311
224#ifndef EV_INOTIFY_HASHSIZE 312#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 313# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 314#endif
231 315
232#ifndef EV_USE_EVENTFD 316#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 317# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 318# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 319# else
236# define EV_USE_EVENTFD 0 320# define EV_USE_EVENTFD 0
237# endif 321# endif
238#endif 322#endif
239 323
324#ifndef EV_USE_SIGNALFD
325# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
326# define EV_USE_SIGNALFD EV_FEATURE_OS
327# else
328# define EV_USE_SIGNALFD 0
329# endif
330#endif
331
332#if 0 /* debugging */
333# define EV_VERIFY 3
334# define EV_USE_4HEAP 1
335# define EV_HEAP_CACHE_AT 1
336#endif
337
338#ifndef EV_VERIFY
339# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
340#endif
341
342#ifndef EV_USE_4HEAP
343# define EV_USE_4HEAP EV_FEATURE_DATA
344#endif
345
346#ifndef EV_HEAP_CACHE_AT
347# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
348#endif
349
350/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
351/* which makes programs even slower. might work on other unices, too. */
352#if EV_USE_CLOCK_SYSCALL
353# include <syscall.h>
354# ifdef SYS_clock_gettime
355# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
356# undef EV_USE_MONOTONIC
357# define EV_USE_MONOTONIC 1
358# else
359# undef EV_USE_CLOCK_SYSCALL
360# define EV_USE_CLOCK_SYSCALL 0
361# endif
362#endif
363
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 364/* this block fixes any misconfiguration where we know we run into trouble otherwise */
365
366#ifdef _AIX
367/* AIX has a completely broken poll.h header */
368# undef EV_USE_POLL
369# define EV_USE_POLL 0
370#endif
241 371
242#ifndef CLOCK_MONOTONIC 372#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 373# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 374# define EV_USE_MONOTONIC 0
245#endif 375#endif
253# undef EV_USE_INOTIFY 383# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 384# define EV_USE_INOTIFY 0
255#endif 385#endif
256 386
257#if !EV_USE_NANOSLEEP 387#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 388/* hp-ux has it in sys/time.h, which we unconditionally include above */
389# if !defined(_WIN32) && !defined(__hpux)
259# include <sys/select.h> 390# include <sys/select.h>
260# endif 391# endif
261#endif 392#endif
262 393
263#if EV_USE_INOTIFY 394#if EV_USE_INOTIFY
395# include <sys/statfs.h>
264# include <sys/inotify.h> 396# include <sys/inotify.h>
397/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
398# ifndef IN_DONT_FOLLOW
399# undef EV_USE_INOTIFY
400# define EV_USE_INOTIFY 0
401# endif
265#endif 402#endif
266 403
267#if EV_SELECT_IS_WINSOCKET 404#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 405# include <winsock.h>
269#endif 406#endif
270 407
271#if EV_USE_EVENTFD 408#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 409/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 410# include <stdint.h>
274# ifdef __cplusplus 411# ifndef EFD_NONBLOCK
275extern "C" { 412# define EFD_NONBLOCK O_NONBLOCK
276# endif 413# endif
277int eventfd (unsigned int initval, int flags); 414# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 415# ifdef O_CLOEXEC
279} 416# define EFD_CLOEXEC O_CLOEXEC
417# else
418# define EFD_CLOEXEC 02000000
419# endif
280# endif 420# endif
421EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
422#endif
423
424#if EV_USE_SIGNALFD
425/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
426# include <stdint.h>
427# ifndef SFD_NONBLOCK
428# define SFD_NONBLOCK O_NONBLOCK
429# endif
430# ifndef SFD_CLOEXEC
431# ifdef O_CLOEXEC
432# define SFD_CLOEXEC O_CLOEXEC
433# else
434# define SFD_CLOEXEC 02000000
435# endif
436# endif
437EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
438
439struct signalfd_siginfo
440{
441 uint32_t ssi_signo;
442 char pad[128 - sizeof (uint32_t)];
443};
281#endif 444#endif
282 445
283/**/ 446/**/
284 447
448#if EV_VERIFY >= 3
449# define EV_FREQUENT_CHECK ev_verify (EV_A)
450#else
451# define EV_FREQUENT_CHECK do { } while (0)
452#endif
453
285/* 454/*
286 * This is used to avoid floating point rounding problems. 455 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 456 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 457 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 458#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
459/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 460
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 463
464#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
465#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
466
467/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
468/* ECB.H BEGIN */
469/*
470 * libecb - http://software.schmorp.de/pkg/libecb
471 *
472 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
473 * Copyright (©) 2011 Emanuele Giaquinta
474 * All rights reserved.
475 *
476 * Redistribution and use in source and binary forms, with or without modifica-
477 * tion, are permitted provided that the following conditions are met:
478 *
479 * 1. Redistributions of source code must retain the above copyright notice,
480 * this list of conditions and the following disclaimer.
481 *
482 * 2. Redistributions in binary form must reproduce the above copyright
483 * notice, this list of conditions and the following disclaimer in the
484 * documentation and/or other materials provided with the distribution.
485 *
486 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
487 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
488 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
489 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
490 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
491 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
492 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
493 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
494 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
495 * OF THE POSSIBILITY OF SUCH DAMAGE.
496 */
497
498#ifndef ECB_H
499#define ECB_H
500
501#ifdef _WIN32
502 typedef signed char int8_t;
503 typedef unsigned char uint8_t;
504 typedef signed short int16_t;
505 typedef unsigned short uint16_t;
506 typedef signed int int32_t;
507 typedef unsigned int uint32_t;
299#if __GNUC__ >= 4 508 #if __GNUC__
300# define expect(expr,value) __builtin_expect ((expr),(value)) 509 typedef signed long long int64_t;
301# define noinline __attribute__ ((noinline)) 510 typedef unsigned long long uint64_t;
511 #else /* _MSC_VER || __BORLANDC__ */
512 typedef signed __int64 int64_t;
513 typedef unsigned __int64 uint64_t;
514 #endif
302#else 515#else
303# define expect(expr,value) (expr) 516 #include <inttypes.h>
304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif 517#endif
518
519/* many compilers define _GNUC_ to some versions but then only implement
520 * what their idiot authors think are the "more important" extensions,
521 * causing enormous grief in return for some better fake benchmark numbers.
522 * or so.
523 * we try to detect these and simply assume they are not gcc - if they have
524 * an issue with that they should have done it right in the first place.
525 */
526#ifndef ECB_GCC_VERSION
527 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
528 #define ECB_GCC_VERSION(major,minor) 0
529 #else
530 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
308#endif 531 #endif
532#endif
309 533
534/*****************************************************************************/
535
536/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
537/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
538
539#if ECB_NO_THREADS || ECB_NO_SMP
540 #define ECB_MEMORY_FENCE do { } while (0)
541#endif
542
543#ifndef ECB_MEMORY_FENCE
544 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || defined(__clang__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
545 #if __i386 || __i386__
546 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
547 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
548 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
549 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
550 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
551 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
552 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
553 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
554 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
555 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
556 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
557 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
558 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
559 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
560 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
561 #elif __sparc || __sparc__
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
564 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
565 #endif
566 #endif
567#endif
568
569#ifndef ECB_MEMORY_FENCE
570 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
571 #define ECB_MEMORY_FENCE __sync_synchronize ()
572 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
573 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
574 #elif _MSC_VER >= 1400 /* VC++ 2005 */
575 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
576 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
577 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
578 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
579 #elif defined(_WIN32)
580 #include <WinNT.h>
581 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
582 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
583 #include <mbarrier.h>
584 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
585 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
586 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
587 #endif
588#endif
589
590#ifndef ECB_MEMORY_FENCE
591 #if !ECB_AVOID_PTHREADS
592 /*
593 * if you get undefined symbol references to pthread_mutex_lock,
594 * or failure to find pthread.h, then you should implement
595 * the ECB_MEMORY_FENCE operations for your cpu/compiler
596 * OR provide pthread.h and link against the posix thread library
597 * of your system.
598 */
599 #include <pthread.h>
600 #define ECB_NEEDS_PTHREADS 1
601 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
602
603 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
604 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
605 #endif
606#endif
607
608#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
609 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
610#endif
611
612#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
613 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
614#endif
615
616/*****************************************************************************/
617
618#define ECB_C99 (__STDC_VERSION__ >= 199901L)
619
620#if __cplusplus
621 #define ecb_inline static inline
622#elif ECB_GCC_VERSION(2,5)
623 #define ecb_inline static __inline__
624#elif ECB_C99
625 #define ecb_inline static inline
626#else
627 #define ecb_inline static
628#endif
629
630#if ECB_GCC_VERSION(3,3)
631 #define ecb_restrict __restrict__
632#elif ECB_C99
633 #define ecb_restrict restrict
634#else
635 #define ecb_restrict
636#endif
637
638typedef int ecb_bool;
639
640#define ECB_CONCAT_(a, b) a ## b
641#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
642#define ECB_STRINGIFY_(a) # a
643#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
644
645#define ecb_function_ ecb_inline
646
647#if ECB_GCC_VERSION(3,1)
648 #define ecb_attribute(attrlist) __attribute__(attrlist)
649 #define ecb_is_constant(expr) __builtin_constant_p (expr)
650 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
651 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
652#else
653 #define ecb_attribute(attrlist)
654 #define ecb_is_constant(expr) 0
655 #define ecb_expect(expr,value) (expr)
656 #define ecb_prefetch(addr,rw,locality)
657#endif
658
659/* no emulation for ecb_decltype */
660#if ECB_GCC_VERSION(4,5)
661 #define ecb_decltype(x) __decltype(x)
662#elif ECB_GCC_VERSION(3,0)
663 #define ecb_decltype(x) __typeof(x)
664#endif
665
666#define ecb_noinline ecb_attribute ((__noinline__))
667#define ecb_noreturn ecb_attribute ((__noreturn__))
668#define ecb_unused ecb_attribute ((__unused__))
669#define ecb_const ecb_attribute ((__const__))
670#define ecb_pure ecb_attribute ((__pure__))
671
672#if ECB_GCC_VERSION(4,3)
673 #define ecb_artificial ecb_attribute ((__artificial__))
674 #define ecb_hot ecb_attribute ((__hot__))
675 #define ecb_cold ecb_attribute ((__cold__))
676#else
677 #define ecb_artificial
678 #define ecb_hot
679 #define ecb_cold
680#endif
681
682/* put around conditional expressions if you are very sure that the */
683/* expression is mostly true or mostly false. note that these return */
684/* booleans, not the expression. */
310#define expect_false(expr) expect ((expr) != 0, 0) 685#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 686#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
687/* for compatibility to the rest of the world */
688#define ecb_likely(expr) ecb_expect_true (expr)
689#define ecb_unlikely(expr) ecb_expect_false (expr)
690
691/* count trailing zero bits and count # of one bits */
692#if ECB_GCC_VERSION(3,4)
693 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
694 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
695 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
696 #define ecb_ctz32(x) __builtin_ctz (x)
697 #define ecb_ctz64(x) __builtin_ctzll (x)
698 #define ecb_popcount32(x) __builtin_popcount (x)
699 /* no popcountll */
700#else
701 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
702 ecb_function_ int
703 ecb_ctz32 (uint32_t x)
704 {
705 int r = 0;
706
707 x &= ~x + 1; /* this isolates the lowest bit */
708
709#if ECB_branchless_on_i386
710 r += !!(x & 0xaaaaaaaa) << 0;
711 r += !!(x & 0xcccccccc) << 1;
712 r += !!(x & 0xf0f0f0f0) << 2;
713 r += !!(x & 0xff00ff00) << 3;
714 r += !!(x & 0xffff0000) << 4;
715#else
716 if (x & 0xaaaaaaaa) r += 1;
717 if (x & 0xcccccccc) r += 2;
718 if (x & 0xf0f0f0f0) r += 4;
719 if (x & 0xff00ff00) r += 8;
720 if (x & 0xffff0000) r += 16;
721#endif
722
723 return r;
724 }
725
726 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
727 ecb_function_ int
728 ecb_ctz64 (uint64_t x)
729 {
730 int shift = x & 0xffffffffU ? 0 : 32;
731 return ecb_ctz32 (x >> shift) + shift;
732 }
733
734 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
735 ecb_function_ int
736 ecb_popcount32 (uint32_t x)
737 {
738 x -= (x >> 1) & 0x55555555;
739 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
740 x = ((x >> 4) + x) & 0x0f0f0f0f;
741 x *= 0x01010101;
742
743 return x >> 24;
744 }
745
746 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
747 ecb_function_ int ecb_ld32 (uint32_t x)
748 {
749 int r = 0;
750
751 if (x >> 16) { x >>= 16; r += 16; }
752 if (x >> 8) { x >>= 8; r += 8; }
753 if (x >> 4) { x >>= 4; r += 4; }
754 if (x >> 2) { x >>= 2; r += 2; }
755 if (x >> 1) { r += 1; }
756
757 return r;
758 }
759
760 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
761 ecb_function_ int ecb_ld64 (uint64_t x)
762 {
763 int r = 0;
764
765 if (x >> 32) { x >>= 32; r += 32; }
766
767 return r + ecb_ld32 (x);
768 }
769#endif
770
771ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
772ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
773{
774 return ( (x * 0x0802U & 0x22110U)
775 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
776}
777
778ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
779ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
780{
781 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
782 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
783 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
784 x = ( x >> 8 ) | ( x << 8);
785
786 return x;
787}
788
789ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
790ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
791{
792 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
793 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
794 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
795 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
796 x = ( x >> 16 ) | ( x << 16);
797
798 return x;
799}
800
801/* popcount64 is only available on 64 bit cpus as gcc builtin */
802/* so for this version we are lazy */
803ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
804ecb_function_ int
805ecb_popcount64 (uint64_t x)
806{
807 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
808}
809
810ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
811ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
812ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
813ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
814ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
815ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
816ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
817ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
818
819ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
820ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
821ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
822ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
823ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
824ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
825ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
826ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
827
828#if ECB_GCC_VERSION(4,3)
829 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
830 #define ecb_bswap32(x) __builtin_bswap32 (x)
831 #define ecb_bswap64(x) __builtin_bswap64 (x)
832#else
833 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
834 ecb_function_ uint16_t
835 ecb_bswap16 (uint16_t x)
836 {
837 return ecb_rotl16 (x, 8);
838 }
839
840 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
841 ecb_function_ uint32_t
842 ecb_bswap32 (uint32_t x)
843 {
844 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
845 }
846
847 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
848 ecb_function_ uint64_t
849 ecb_bswap64 (uint64_t x)
850 {
851 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
852 }
853#endif
854
855#if ECB_GCC_VERSION(4,5)
856 #define ecb_unreachable() __builtin_unreachable ()
857#else
858 /* this seems to work fine, but gcc always emits a warning for it :/ */
859 ecb_function_ void ecb_unreachable (void) ecb_noreturn;
860 ecb_function_ void ecb_unreachable (void) { }
861#endif
862
863/* try to tell the compiler that some condition is definitely true */
864#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
865
866ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
867ecb_function_ unsigned char
868ecb_byteorder_helper (void)
869{
870 const uint32_t u = 0x11223344;
871 return *(unsigned char *)&u;
872}
873
874ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
875ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
876ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
877ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
878
879#if ECB_GCC_VERSION(3,0) || ECB_C99
880 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
881#else
882 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
883#endif
884
885#if __cplusplus
886 template<typename T>
887 static inline T ecb_div_rd (T val, T div)
888 {
889 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
890 }
891 template<typename T>
892 static inline T ecb_div_ru (T val, T div)
893 {
894 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
895 }
896#else
897 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
898 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
899#endif
900
901#if ecb_cplusplus_does_not_suck
902 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
903 template<typename T, int N>
904 static inline int ecb_array_length (const T (&arr)[N])
905 {
906 return N;
907 }
908#else
909 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
910#endif
911
912#endif
913
914/* ECB.H END */
915
916#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
917/* if your architecture doesn't need memory fences, e.g. because it is
918 * single-cpu/core, or if you use libev in a project that doesn't use libev
919 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
920 * libev, in which cases the memory fences become nops.
921 * alternatively, you can remove this #error and link against libpthread,
922 * which will then provide the memory fences.
923 */
924# error "memory fences not defined for your architecture, please report"
925#endif
926
927#ifndef ECB_MEMORY_FENCE
928# define ECB_MEMORY_FENCE do { } while (0)
929# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
930# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
931#endif
932
933#define expect_false(cond) ecb_expect_false (cond)
934#define expect_true(cond) ecb_expect_true (cond)
935#define noinline ecb_noinline
936
312#define inline_size static inline 937#define inline_size ecb_inline
313 938
314#if EV_MINIMAL 939#if EV_FEATURE_CODE
940# define inline_speed ecb_inline
941#else
315# define inline_speed static noinline 942# define inline_speed static noinline
943#endif
944
945#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
946
947#if EV_MINPRI == EV_MAXPRI
948# define ABSPRI(w) (((W)w), 0)
316#else 949#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 950# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
951#endif
322 952
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 953#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 954#define EMPTY2(a,b) /* used to suppress some warnings */
325 955
326typedef ev_watcher *W; 956typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 958typedef ev_watcher_time *WT;
329 959
330#define ev_active(w) ((W)(w))->active 960#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 961#define ev_at(w) ((WT)(w))->at
332 962
963#if EV_USE_REALTIME
964/* sig_atomic_t is used to avoid per-thread variables or locking but still */
965/* giving it a reasonably high chance of working on typical architectures */
966static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
967#endif
968
333#if EV_USE_MONOTONIC 969#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 970static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
971#endif
972
973#ifndef EV_FD_TO_WIN32_HANDLE
974# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
975#endif
976#ifndef EV_WIN32_HANDLE_TO_FD
977# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
978#endif
979#ifndef EV_WIN32_CLOSE_FD
980# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 981#endif
338 982
339#ifdef _WIN32 983#ifdef _WIN32
340# include "ev_win32.c" 984# include "ev_win32.c"
341#endif 985#endif
342 986
343/*****************************************************************************/ 987/*****************************************************************************/
344 988
989/* define a suitable floor function (only used by periodics atm) */
990
991#if EV_USE_FLOOR
992# include <math.h>
993# define ev_floor(v) floor (v)
994#else
995
996#include <float.h>
997
998/* a floor() replacement function, should be independent of ev_tstamp type */
999static ev_tstamp noinline
1000ev_floor (ev_tstamp v)
1001{
1002 /* the choice of shift factor is not terribly important */
1003#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1004 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1005#else
1006 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1007#endif
1008
1009 /* argument too large for an unsigned long? */
1010 if (expect_false (v >= shift))
1011 {
1012 ev_tstamp f;
1013
1014 if (v == v - 1.)
1015 return v; /* very large number */
1016
1017 f = shift * ev_floor (v * (1. / shift));
1018 return f + ev_floor (v - f);
1019 }
1020
1021 /* special treatment for negative args? */
1022 if (expect_false (v < 0.))
1023 {
1024 ev_tstamp f = -ev_floor (-v);
1025
1026 return f - (f == v ? 0 : 1);
1027 }
1028
1029 /* fits into an unsigned long */
1030 return (unsigned long)v;
1031}
1032
1033#endif
1034
1035/*****************************************************************************/
1036
1037#ifdef __linux
1038# include <sys/utsname.h>
1039#endif
1040
1041static unsigned int noinline ecb_cold
1042ev_linux_version (void)
1043{
1044#ifdef __linux
1045 unsigned int v = 0;
1046 struct utsname buf;
1047 int i;
1048 char *p = buf.release;
1049
1050 if (uname (&buf))
1051 return 0;
1052
1053 for (i = 3+1; --i; )
1054 {
1055 unsigned int c = 0;
1056
1057 for (;;)
1058 {
1059 if (*p >= '0' && *p <= '9')
1060 c = c * 10 + *p++ - '0';
1061 else
1062 {
1063 p += *p == '.';
1064 break;
1065 }
1066 }
1067
1068 v = (v << 8) | c;
1069 }
1070
1071 return v;
1072#else
1073 return 0;
1074#endif
1075}
1076
1077/*****************************************************************************/
1078
1079#if EV_AVOID_STDIO
1080static void noinline ecb_cold
1081ev_printerr (const char *msg)
1082{
1083 write (STDERR_FILENO, msg, strlen (msg));
1084}
1085#endif
1086
345static void (*syserr_cb)(const char *msg); 1087static void (*syserr_cb)(const char *msg);
346 1088
347void 1089void ecb_cold
348ev_set_syserr_cb (void (*cb)(const char *msg)) 1090ev_set_syserr_cb (void (*cb)(const char *msg))
349{ 1091{
350 syserr_cb = cb; 1092 syserr_cb = cb;
351} 1093}
352 1094
353static void noinline 1095static void noinline ecb_cold
354syserr (const char *msg) 1096ev_syserr (const char *msg)
355{ 1097{
356 if (!msg) 1098 if (!msg)
357 msg = "(libev) system error"; 1099 msg = "(libev) system error";
358 1100
359 if (syserr_cb) 1101 if (syserr_cb)
360 syserr_cb (msg); 1102 syserr_cb (msg);
361 else 1103 else
362 { 1104 {
1105#if EV_AVOID_STDIO
1106 ev_printerr (msg);
1107 ev_printerr (": ");
1108 ev_printerr (strerror (errno));
1109 ev_printerr ("\n");
1110#else
363 perror (msg); 1111 perror (msg);
1112#endif
364 abort (); 1113 abort ();
365 } 1114 }
366} 1115}
367 1116
368static void * 1117static void *
369ev_realloc_emul (void *ptr, long size) 1118ev_realloc_emul (void *ptr, long size)
370{ 1119{
1120#if __GLIBC__
1121 return realloc (ptr, size);
1122#else
371 /* some systems, notably openbsd and darwin, fail to properly 1123 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 1124 * implement realloc (x, 0) (as required by both ansi c-89 and
373 * the single unix specification, so work around them here. 1125 * the single unix specification, so work around them here.
374 */ 1126 */
375 1127
376 if (size) 1128 if (size)
377 return realloc (ptr, size); 1129 return realloc (ptr, size);
378 1130
379 free (ptr); 1131 free (ptr);
380 return 0; 1132 return 0;
1133#endif
381} 1134}
382 1135
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1136static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384 1137
385void 1138void ecb_cold
386ev_set_allocator (void *(*cb)(void *ptr, long size)) 1139ev_set_allocator (void *(*cb)(void *ptr, long size))
387{ 1140{
388 alloc = cb; 1141 alloc = cb;
389} 1142}
390 1143
393{ 1146{
394 ptr = alloc (ptr, size); 1147 ptr = alloc (ptr, size);
395 1148
396 if (!ptr && size) 1149 if (!ptr && size)
397 { 1150 {
1151#if EV_AVOID_STDIO
1152 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1153#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1154 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1155#endif
399 abort (); 1156 abort ();
400 } 1157 }
401 1158
402 return ptr; 1159 return ptr;
403} 1160}
405#define ev_malloc(size) ev_realloc (0, (size)) 1162#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 1163#define ev_free(ptr) ev_realloc ((ptr), 0)
407 1164
408/*****************************************************************************/ 1165/*****************************************************************************/
409 1166
1167/* set in reify when reification needed */
1168#define EV_ANFD_REIFY 1
1169
1170/* file descriptor info structure */
410typedef struct 1171typedef struct
411{ 1172{
412 WL head; 1173 WL head;
413 unsigned char events; 1174 unsigned char events; /* the events watched for */
1175 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1176 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 1177 unsigned char unused;
1178#if EV_USE_EPOLL
1179 unsigned int egen; /* generation counter to counter epoll bugs */
1180#endif
415#if EV_SELECT_IS_WINSOCKET 1181#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
416 SOCKET handle; 1182 SOCKET handle;
417#endif 1183#endif
1184#if EV_USE_IOCP
1185 OVERLAPPED or, ow;
1186#endif
418} ANFD; 1187} ANFD;
419 1188
1189/* stores the pending event set for a given watcher */
420typedef struct 1190typedef struct
421{ 1191{
422 W w; 1192 W w;
423 int events; 1193 int events; /* the pending event set for the given watcher */
424} ANPENDING; 1194} ANPENDING;
425 1195
426#if EV_USE_INOTIFY 1196#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */ 1197/* hash table entry per inotify-id */
428typedef struct 1198typedef struct
430 WL head; 1200 WL head;
431} ANFS; 1201} ANFS;
432#endif 1202#endif
433 1203
434/* Heap Entry */ 1204/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT 1205#if EV_HEAP_CACHE_AT
1206 /* a heap element */
437 typedef struct { 1207 typedef struct {
1208 ev_tstamp at;
438 WT w; 1209 WT w;
439 ev_tstamp at;
440 } ANHE; 1210 } ANHE;
441 1211
442 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1212 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1213 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 1214 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
445#else 1215#else
1216 /* a heap element */
446 typedef WT ANHE; 1217 typedef WT ANHE;
447 1218
448 #define ANHE_w(he) (he) 1219 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at 1220 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he) 1221 #define ANHE_at_cache(he)
451#endif 1222#endif
452 1223
453#if EV_MULTIPLICITY 1224#if EV_MULTIPLICITY
454 1225
455 struct ev_loop 1226 struct ev_loop
461 #undef VAR 1232 #undef VAR
462 }; 1233 };
463 #include "ev_wrap.h" 1234 #include "ev_wrap.h"
464 1235
465 static struct ev_loop default_loop_struct; 1236 static struct ev_loop default_loop_struct;
466 struct ev_loop *ev_default_loop_ptr; 1237 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
467 1238
468#else 1239#else
469 1240
470 ev_tstamp ev_rt_now; 1241 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
471 #define VAR(name,decl) static decl; 1242 #define VAR(name,decl) static decl;
472 #include "ev_vars.h" 1243 #include "ev_vars.h"
473 #undef VAR 1244 #undef VAR
474 1245
475 static int ev_default_loop_ptr; 1246 static int ev_default_loop_ptr;
476 1247
477#endif 1248#endif
478 1249
1250#if EV_FEATURE_API
1251# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1252# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1253# define EV_INVOKE_PENDING invoke_cb (EV_A)
1254#else
1255# define EV_RELEASE_CB (void)0
1256# define EV_ACQUIRE_CB (void)0
1257# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1258#endif
1259
1260#define EVBREAK_RECURSE 0x80
1261
479/*****************************************************************************/ 1262/*****************************************************************************/
480 1263
1264#ifndef EV_HAVE_EV_TIME
481ev_tstamp 1265ev_tstamp
482ev_time (void) 1266ev_time (void)
483{ 1267{
484#if EV_USE_REALTIME 1268#if EV_USE_REALTIME
1269 if (expect_true (have_realtime))
1270 {
485 struct timespec ts; 1271 struct timespec ts;
486 clock_gettime (CLOCK_REALTIME, &ts); 1272 clock_gettime (CLOCK_REALTIME, &ts);
487 return ts.tv_sec + ts.tv_nsec * 1e-9; 1273 return ts.tv_sec + ts.tv_nsec * 1e-9;
488#else 1274 }
1275#endif
1276
489 struct timeval tv; 1277 struct timeval tv;
490 gettimeofday (&tv, 0); 1278 gettimeofday (&tv, 0);
491 return tv.tv_sec + tv.tv_usec * 1e-6; 1279 return tv.tv_sec + tv.tv_usec * 1e-6;
492#endif
493} 1280}
1281#endif
494 1282
495ev_tstamp inline_size 1283inline_size ev_tstamp
496get_clock (void) 1284get_clock (void)
497{ 1285{
498#if EV_USE_MONOTONIC 1286#if EV_USE_MONOTONIC
499 if (expect_true (have_monotonic)) 1287 if (expect_true (have_monotonic))
500 { 1288 {
521 if (delay > 0.) 1309 if (delay > 0.)
522 { 1310 {
523#if EV_USE_NANOSLEEP 1311#if EV_USE_NANOSLEEP
524 struct timespec ts; 1312 struct timespec ts;
525 1313
526 ts.tv_sec = (time_t)delay; 1314 EV_TS_SET (ts, delay);
527 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
528
529 nanosleep (&ts, 0); 1315 nanosleep (&ts, 0);
530#elif defined(_WIN32) 1316#elif defined(_WIN32)
531 Sleep ((unsigned long)(delay * 1e3)); 1317 Sleep ((unsigned long)(delay * 1e3));
532#else 1318#else
533 struct timeval tv; 1319 struct timeval tv;
534 1320
535 tv.tv_sec = (time_t)delay; 1321 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1322 /* something not guaranteed by newer posix versions, but guaranteed */
537 1323 /* by older ones */
1324 EV_TV_SET (tv, delay);
538 select (0, 0, 0, 0, &tv); 1325 select (0, 0, 0, 0, &tv);
539#endif 1326#endif
540 } 1327 }
541} 1328}
542 1329
543/*****************************************************************************/ 1330/*****************************************************************************/
544 1331
545#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1332#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
546 1333
547int inline_size 1334/* find a suitable new size for the given array, */
1335/* hopefully by rounding to a nice-to-malloc size */
1336inline_size int
548array_nextsize (int elem, int cur, int cnt) 1337array_nextsize (int elem, int cur, int cnt)
549{ 1338{
550 int ncur = cur + 1; 1339 int ncur = cur + 1;
551 1340
552 do 1341 do
553 ncur <<= 1; 1342 ncur <<= 1;
554 while (cnt > ncur); 1343 while (cnt > ncur);
555 1344
556 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1345 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
557 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1346 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
558 { 1347 {
559 ncur *= elem; 1348 ncur *= elem;
560 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1349 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
561 ncur = ncur - sizeof (void *) * 4; 1350 ncur = ncur - sizeof (void *) * 4;
563 } 1352 }
564 1353
565 return ncur; 1354 return ncur;
566} 1355}
567 1356
568static noinline void * 1357static void * noinline ecb_cold
569array_realloc (int elem, void *base, int *cur, int cnt) 1358array_realloc (int elem, void *base, int *cur, int cnt)
570{ 1359{
571 *cur = array_nextsize (elem, *cur, cnt); 1360 *cur = array_nextsize (elem, *cur, cnt);
572 return ev_realloc (base, elem * *cur); 1361 return ev_realloc (base, elem * *cur);
573} 1362}
1363
1364#define array_init_zero(base,count) \
1365 memset ((void *)(base), 0, sizeof (*(base)) * (count))
574 1366
575#define array_needsize(type,base,cur,cnt,init) \ 1367#define array_needsize(type,base,cur,cnt,init) \
576 if (expect_false ((cnt) > (cur))) \ 1368 if (expect_false ((cnt) > (cur))) \
577 { \ 1369 { \
578 int ocur_ = (cur); \ 1370 int ecb_unused ocur_ = (cur); \
579 (base) = (type *)array_realloc \ 1371 (base) = (type *)array_realloc \
580 (sizeof (type), (base), &(cur), (cnt)); \ 1372 (sizeof (type), (base), &(cur), (cnt)); \
581 init ((base) + (ocur_), (cur) - ocur_); \ 1373 init ((base) + (ocur_), (cur) - ocur_); \
582 } 1374 }
583 1375
590 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1382 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
591 } 1383 }
592#endif 1384#endif
593 1385
594#define array_free(stem, idx) \ 1386#define array_free(stem, idx) \
595 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1387 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
596 1388
597/*****************************************************************************/ 1389/*****************************************************************************/
1390
1391/* dummy callback for pending events */
1392static void noinline
1393pendingcb (EV_P_ ev_prepare *w, int revents)
1394{
1395}
598 1396
599void noinline 1397void noinline
600ev_feed_event (EV_P_ void *w, int revents) 1398ev_feed_event (EV_P_ void *w, int revents)
601{ 1399{
602 W w_ = (W)w; 1400 W w_ = (W)w;
611 pendings [pri][w_->pending - 1].w = w_; 1409 pendings [pri][w_->pending - 1].w = w_;
612 pendings [pri][w_->pending - 1].events = revents; 1410 pendings [pri][w_->pending - 1].events = revents;
613 } 1411 }
614} 1412}
615 1413
616void inline_speed 1414inline_speed void
1415feed_reverse (EV_P_ W w)
1416{
1417 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1418 rfeeds [rfeedcnt++] = w;
1419}
1420
1421inline_size void
1422feed_reverse_done (EV_P_ int revents)
1423{
1424 do
1425 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1426 while (rfeedcnt);
1427}
1428
1429inline_speed void
617queue_events (EV_P_ W *events, int eventcnt, int type) 1430queue_events (EV_P_ W *events, int eventcnt, int type)
618{ 1431{
619 int i; 1432 int i;
620 1433
621 for (i = 0; i < eventcnt; ++i) 1434 for (i = 0; i < eventcnt; ++i)
622 ev_feed_event (EV_A_ events [i], type); 1435 ev_feed_event (EV_A_ events [i], type);
623} 1436}
624 1437
625/*****************************************************************************/ 1438/*****************************************************************************/
626 1439
627void inline_size 1440inline_speed void
628anfds_init (ANFD *base, int count)
629{
630 while (count--)
631 {
632 base->head = 0;
633 base->events = EV_NONE;
634 base->reify = 0;
635
636 ++base;
637 }
638}
639
640void inline_speed
641fd_event (EV_P_ int fd, int revents) 1441fd_event_nocheck (EV_P_ int fd, int revents)
642{ 1442{
643 ANFD *anfd = anfds + fd; 1443 ANFD *anfd = anfds + fd;
644 ev_io *w; 1444 ev_io *w;
645 1445
646 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1446 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
650 if (ev) 1450 if (ev)
651 ev_feed_event (EV_A_ (W)w, ev); 1451 ev_feed_event (EV_A_ (W)w, ev);
652 } 1452 }
653} 1453}
654 1454
1455/* do not submit kernel events for fds that have reify set */
1456/* because that means they changed while we were polling for new events */
1457inline_speed void
1458fd_event (EV_P_ int fd, int revents)
1459{
1460 ANFD *anfd = anfds + fd;
1461
1462 if (expect_true (!anfd->reify))
1463 fd_event_nocheck (EV_A_ fd, revents);
1464}
1465
655void 1466void
656ev_feed_fd_event (EV_P_ int fd, int revents) 1467ev_feed_fd_event (EV_P_ int fd, int revents)
657{ 1468{
658 if (fd >= 0 && fd < anfdmax) 1469 if (fd >= 0 && fd < anfdmax)
659 fd_event (EV_A_ fd, revents); 1470 fd_event_nocheck (EV_A_ fd, revents);
660} 1471}
661 1472
662void inline_size 1473/* make sure the external fd watch events are in-sync */
1474/* with the kernel/libev internal state */
1475inline_size void
663fd_reify (EV_P) 1476fd_reify (EV_P)
664{ 1477{
665 int i; 1478 int i;
1479
1480#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1481 for (i = 0; i < fdchangecnt; ++i)
1482 {
1483 int fd = fdchanges [i];
1484 ANFD *anfd = anfds + fd;
1485
1486 if (anfd->reify & EV__IOFDSET && anfd->head)
1487 {
1488 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1489
1490 if (handle != anfd->handle)
1491 {
1492 unsigned long arg;
1493
1494 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1495
1496 /* handle changed, but fd didn't - we need to do it in two steps */
1497 backend_modify (EV_A_ fd, anfd->events, 0);
1498 anfd->events = 0;
1499 anfd->handle = handle;
1500 }
1501 }
1502 }
1503#endif
666 1504
667 for (i = 0; i < fdchangecnt; ++i) 1505 for (i = 0; i < fdchangecnt; ++i)
668 { 1506 {
669 int fd = fdchanges [i]; 1507 int fd = fdchanges [i];
670 ANFD *anfd = anfds + fd; 1508 ANFD *anfd = anfds + fd;
671 ev_io *w; 1509 ev_io *w;
672 1510
673 unsigned char events = 0; 1511 unsigned char o_events = anfd->events;
1512 unsigned char o_reify = anfd->reify;
674 1513
675 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1514 anfd->reify = 0;
676 events |= (unsigned char)w->events;
677 1515
678#if EV_SELECT_IS_WINSOCKET 1516 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
679 if (events)
680 { 1517 {
681 unsigned long argp; 1518 anfd->events = 0;
682 #ifdef EV_FD_TO_WIN32_HANDLE 1519
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1520 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
684 #else 1521 anfd->events |= (unsigned char)w->events;
685 anfd->handle = _get_osfhandle (fd); 1522
686 #endif 1523 if (o_events != anfd->events)
687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1524 o_reify = EV__IOFDSET; /* actually |= */
688 } 1525 }
689#endif
690 1526
691 { 1527 if (o_reify & EV__IOFDSET)
692 unsigned char o_events = anfd->events;
693 unsigned char o_reify = anfd->reify;
694
695 anfd->reify = 0;
696 anfd->events = events;
697
698 if (o_events != events || o_reify & EV_IOFDSET)
699 backend_modify (EV_A_ fd, o_events, events); 1528 backend_modify (EV_A_ fd, o_events, anfd->events);
700 }
701 } 1529 }
702 1530
703 fdchangecnt = 0; 1531 fdchangecnt = 0;
704} 1532}
705 1533
706void inline_size 1534/* something about the given fd changed */
1535inline_size void
707fd_change (EV_P_ int fd, int flags) 1536fd_change (EV_P_ int fd, int flags)
708{ 1537{
709 unsigned char reify = anfds [fd].reify; 1538 unsigned char reify = anfds [fd].reify;
710 anfds [fd].reify |= flags; 1539 anfds [fd].reify |= flags;
711 1540
715 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1544 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
716 fdchanges [fdchangecnt - 1] = fd; 1545 fdchanges [fdchangecnt - 1] = fd;
717 } 1546 }
718} 1547}
719 1548
720void inline_speed 1549/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1550inline_speed void ecb_cold
721fd_kill (EV_P_ int fd) 1551fd_kill (EV_P_ int fd)
722{ 1552{
723 ev_io *w; 1553 ev_io *w;
724 1554
725 while ((w = (ev_io *)anfds [fd].head)) 1555 while ((w = (ev_io *)anfds [fd].head))
727 ev_io_stop (EV_A_ w); 1557 ev_io_stop (EV_A_ w);
728 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1558 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
729 } 1559 }
730} 1560}
731 1561
732int inline_size 1562/* check whether the given fd is actually valid, for error recovery */
1563inline_size int ecb_cold
733fd_valid (int fd) 1564fd_valid (int fd)
734{ 1565{
735#ifdef _WIN32 1566#ifdef _WIN32
736 return _get_osfhandle (fd) != -1; 1567 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
737#else 1568#else
738 return fcntl (fd, F_GETFD) != -1; 1569 return fcntl (fd, F_GETFD) != -1;
739#endif 1570#endif
740} 1571}
741 1572
742/* called on EBADF to verify fds */ 1573/* called on EBADF to verify fds */
743static void noinline 1574static void noinline ecb_cold
744fd_ebadf (EV_P) 1575fd_ebadf (EV_P)
745{ 1576{
746 int fd; 1577 int fd;
747 1578
748 for (fd = 0; fd < anfdmax; ++fd) 1579 for (fd = 0; fd < anfdmax; ++fd)
749 if (anfds [fd].events) 1580 if (anfds [fd].events)
750 if (!fd_valid (fd) == -1 && errno == EBADF) 1581 if (!fd_valid (fd) && errno == EBADF)
751 fd_kill (EV_A_ fd); 1582 fd_kill (EV_A_ fd);
752} 1583}
753 1584
754/* called on ENOMEM in select/poll to kill some fds and retry */ 1585/* called on ENOMEM in select/poll to kill some fds and retry */
755static void noinline 1586static void noinline ecb_cold
756fd_enomem (EV_P) 1587fd_enomem (EV_P)
757{ 1588{
758 int fd; 1589 int fd;
759 1590
760 for (fd = anfdmax; fd--; ) 1591 for (fd = anfdmax; fd--; )
761 if (anfds [fd].events) 1592 if (anfds [fd].events)
762 { 1593 {
763 fd_kill (EV_A_ fd); 1594 fd_kill (EV_A_ fd);
764 return; 1595 break;
765 } 1596 }
766} 1597}
767 1598
768/* usually called after fork if backend needs to re-arm all fds from scratch */ 1599/* usually called after fork if backend needs to re-arm all fds from scratch */
769static void noinline 1600static void noinline
773 1604
774 for (fd = 0; fd < anfdmax; ++fd) 1605 for (fd = 0; fd < anfdmax; ++fd)
775 if (anfds [fd].events) 1606 if (anfds [fd].events)
776 { 1607 {
777 anfds [fd].events = 0; 1608 anfds [fd].events = 0;
1609 anfds [fd].emask = 0;
778 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1610 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
779 } 1611 }
780} 1612}
781 1613
1614/* used to prepare libev internal fd's */
1615/* this is not fork-safe */
1616inline_speed void
1617fd_intern (int fd)
1618{
1619#ifdef _WIN32
1620 unsigned long arg = 1;
1621 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1622#else
1623 fcntl (fd, F_SETFD, FD_CLOEXEC);
1624 fcntl (fd, F_SETFL, O_NONBLOCK);
1625#endif
1626}
1627
782/*****************************************************************************/ 1628/*****************************************************************************/
783 1629
784/* 1630/*
785 * the heap functions want a real array index. array index 0 uis guaranteed to not 1631 * the heap functions want a real array index. array index 0 is guaranteed to not
786 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1632 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
787 * the branching factor of the d-tree. 1633 * the branching factor of the d-tree.
788 */ 1634 */
789 1635
790/* 1636/*
791 * at the moment we allow libev the luxury of two heaps, 1637 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 1638 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient. 1639 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers. 1640 * the difference is about 5% with 50000+ watchers.
795 */ 1641 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP 1642#if EV_USE_4HEAP
798 1643
799#define DHEAP 4 1644#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1645#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801 1646#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
802/* towards the root */ 1647#define UPHEAP_DONE(p,k) ((p) == (k))
803void inline_speed
804upheap (ANHE *heap, int k)
805{
806 ANHE he = heap [k];
807
808 for (;;)
809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
815 heap [k] = heap [p];
816 ev_active (ANHE_w (heap [k])) = k;
817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823 1648
824/* away from the root */ 1649/* away from the root */
825void inline_speed 1650inline_speed void
826downheap (ANHE *heap, int N, int k) 1651downheap (ANHE *heap, int N, int k)
827{ 1652{
828 ANHE he = heap [k]; 1653 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0; 1654 ANHE *E = heap + N + HEAP0;
830 1655
831 for (;;) 1656 for (;;)
832 { 1657 {
833 ev_tstamp minat; 1658 ev_tstamp minat;
834 ANHE *minpos; 1659 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1660 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
836 1661
837 // find minimum child 1662 /* find minimum child */
838 if (expect_true (pos + DHEAP - 1 < E)) 1663 if (expect_true (pos + DHEAP - 1 < E))
839 { 1664 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1665 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1666 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1667 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 1668 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 } 1669 }
845 else if (pos < E) 1670 else if (pos < E)
846 { 1671 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1672 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1673 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
853 break; 1678 break;
854 1679
855 if (ANHE_at (he) <= minat) 1680 if (ANHE_at (he) <= minat)
856 break; 1681 break;
857 1682
1683 heap [k] = *minpos;
858 ev_active (ANHE_w (*minpos)) = k; 1684 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860 1685
861 k = minpos - heap; 1686 k = minpos - heap;
862 } 1687 }
863 1688
1689 heap [k] = he;
864 ev_active (ANHE_w (he)) = k; 1690 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866} 1691}
867 1692
868#else // 4HEAP 1693#else /* 4HEAP */
869 1694
870#define HEAP0 1 1695#define HEAP0 1
1696#define HPARENT(k) ((k) >> 1)
1697#define UPHEAP_DONE(p,k) (!(p))
871 1698
872/* towards the root */ 1699/* away from the root */
873void inline_speed 1700inline_speed void
874upheap (ANHE *heap, int k) 1701downheap (ANHE *heap, int N, int k)
875{ 1702{
876 ANHE he = heap [k]; 1703 ANHE he = heap [k];
877 1704
878 for (;;) 1705 for (;;)
879 { 1706 {
880 int p = k >> 1; 1707 int c = k << 1;
881 1708
882 /* maybe we could use a dummy element at heap [0]? */ 1709 if (c >= N + HEAP0)
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break; 1710 break;
885 1711
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
889 }
890
891 heap [k] = w;
892 ev_active (ANHE_w (heap [k])) = k;
893}
894
895/* away from the root */
896void inline_speed
897downheap (ANHE *heap, int N, int k)
898{
899 ANHE he = heap [k];
900
901 for (;;)
902 {
903 int c = k << 1;
904
905 if (c > N)
906 break;
907
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1712 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0; 1713 ? 1 : 0;
910 1714
911 if (w->at <= ANHE_at (heap [c])) 1715 if (ANHE_at (he) <= ANHE_at (heap [c]))
912 break; 1716 break;
913 1717
914 heap [k] = heap [c]; 1718 heap [k] = heap [c];
915 ev_active (ANHE_w (heap [k])) = k; 1719 ev_active (ANHE_w (heap [k])) = k;
916 1720
920 heap [k] = he; 1724 heap [k] = he;
921 ev_active (ANHE_w (he)) = k; 1725 ev_active (ANHE_w (he)) = k;
922} 1726}
923#endif 1727#endif
924 1728
925void inline_size 1729/* towards the root */
1730inline_speed void
1731upheap (ANHE *heap, int k)
1732{
1733 ANHE he = heap [k];
1734
1735 for (;;)
1736 {
1737 int p = HPARENT (k);
1738
1739 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1740 break;
1741
1742 heap [k] = heap [p];
1743 ev_active (ANHE_w (heap [k])) = k;
1744 k = p;
1745 }
1746
1747 heap [k] = he;
1748 ev_active (ANHE_w (he)) = k;
1749}
1750
1751/* move an element suitably so it is in a correct place */
1752inline_size void
926adjustheap (ANHE *heap, int N, int k) 1753adjustheap (ANHE *heap, int N, int k)
927{ 1754{
1755 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
928 upheap (heap, k); 1756 upheap (heap, k);
1757 else
929 downheap (heap, N, k); 1758 downheap (heap, N, k);
1759}
1760
1761/* rebuild the heap: this function is used only once and executed rarely */
1762inline_size void
1763reheap (ANHE *heap, int N)
1764{
1765 int i;
1766
1767 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1768 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1769 for (i = 0; i < N; ++i)
1770 upheap (heap, i + HEAP0);
930} 1771}
931 1772
932/*****************************************************************************/ 1773/*****************************************************************************/
933 1774
1775/* associate signal watchers to a signal signal */
934typedef struct 1776typedef struct
935{ 1777{
1778 EV_ATOMIC_T pending;
1779#if EV_MULTIPLICITY
1780 EV_P;
1781#endif
936 WL head; 1782 WL head;
937 EV_ATOMIC_T gotsig;
938} ANSIG; 1783} ANSIG;
939 1784
940static ANSIG *signals; 1785static ANSIG signals [EV_NSIG - 1];
941static int signalmax;
942
943static EV_ATOMIC_T gotsig;
944
945void inline_size
946signals_init (ANSIG *base, int count)
947{
948 while (count--)
949 {
950 base->head = 0;
951 base->gotsig = 0;
952
953 ++base;
954 }
955}
956 1786
957/*****************************************************************************/ 1787/*****************************************************************************/
958 1788
959void inline_speed 1789#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
960fd_intern (int fd)
961{
962#ifdef _WIN32
963 int arg = 1;
964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
965#else
966 fcntl (fd, F_SETFD, FD_CLOEXEC);
967 fcntl (fd, F_SETFL, O_NONBLOCK);
968#endif
969}
970 1790
971static void noinline 1791static void noinline ecb_cold
972evpipe_init (EV_P) 1792evpipe_init (EV_P)
973{ 1793{
974 if (!ev_is_active (&pipeev)) 1794 if (!ev_is_active (&pipe_w))
975 { 1795 {
976#if EV_USE_EVENTFD 1796# if EV_USE_EVENTFD
1797 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1798 if (evfd < 0 && errno == EINVAL)
977 if ((evfd = eventfd (0, 0)) >= 0) 1799 evfd = eventfd (0, 0);
1800
1801 if (evfd >= 0)
978 { 1802 {
979 evpipe [0] = -1; 1803 evpipe [0] = -1;
980 fd_intern (evfd); 1804 fd_intern (evfd); /* doing it twice doesn't hurt */
981 ev_io_set (&pipeev, evfd, EV_READ); 1805 ev_io_set (&pipe_w, evfd, EV_READ);
982 } 1806 }
983 else 1807 else
984#endif 1808# endif
985 { 1809 {
986 while (pipe (evpipe)) 1810 while (pipe (evpipe))
987 syserr ("(libev) error creating signal/async pipe"); 1811 ev_syserr ("(libev) error creating signal/async pipe");
988 1812
989 fd_intern (evpipe [0]); 1813 fd_intern (evpipe [0]);
990 fd_intern (evpipe [1]); 1814 fd_intern (evpipe [1]);
991 ev_io_set (&pipeev, evpipe [0], EV_READ); 1815 ev_io_set (&pipe_w, evpipe [0], EV_READ);
992 } 1816 }
993 1817
994 ev_io_start (EV_A_ &pipeev); 1818 ev_io_start (EV_A_ &pipe_w);
995 ev_unref (EV_A); /* watcher should not keep loop alive */ 1819 ev_unref (EV_A); /* watcher should not keep loop alive */
996 } 1820 }
997} 1821}
998 1822
999void inline_size 1823inline_speed void
1000evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1824evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1001{ 1825{
1002 if (!*flag) 1826 if (expect_true (*flag))
1827 return;
1828
1829 *flag = 1;
1830
1831 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1832
1833 pipe_write_skipped = 1;
1834
1835 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1836
1837 if (pipe_write_wanted)
1003 { 1838 {
1839 int old_errno;
1840
1841 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1842
1004 int old_errno = errno; /* save errno because write might clobber it */ 1843 old_errno = errno; /* save errno because write will clobber it */
1005
1006 *flag = 1;
1007 1844
1008#if EV_USE_EVENTFD 1845#if EV_USE_EVENTFD
1009 if (evfd >= 0) 1846 if (evfd >= 0)
1010 { 1847 {
1011 uint64_t counter = 1; 1848 uint64_t counter = 1;
1012 write (evfd, &counter, sizeof (uint64_t)); 1849 write (evfd, &counter, sizeof (uint64_t));
1013 } 1850 }
1014 else 1851 else
1015#endif 1852#endif
1853 {
1854 /* win32 people keep sending patches that change this write() to send() */
1855 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1856 /* so when you think this write should be a send instead, please find out */
1857 /* where your send() is from - it's definitely not the microsoft send, and */
1858 /* tell me. thank you. */
1016 write (evpipe [1], &old_errno, 1); 1859 write (evpipe [1], &(evpipe [1]), 1);
1860 }
1017 1861
1018 errno = old_errno; 1862 errno = old_errno;
1019 } 1863 }
1020} 1864}
1021 1865
1866/* called whenever the libev signal pipe */
1867/* got some events (signal, async) */
1022static void 1868static void
1023pipecb (EV_P_ ev_io *iow, int revents) 1869pipecb (EV_P_ ev_io *iow, int revents)
1024{ 1870{
1871 int i;
1872
1873 if (revents & EV_READ)
1874 {
1025#if EV_USE_EVENTFD 1875#if EV_USE_EVENTFD
1026 if (evfd >= 0) 1876 if (evfd >= 0)
1027 { 1877 {
1028 uint64_t counter; 1878 uint64_t counter;
1029 read (evfd, &counter, sizeof (uint64_t)); 1879 read (evfd, &counter, sizeof (uint64_t));
1030 } 1880 }
1031 else 1881 else
1032#endif 1882#endif
1033 { 1883 {
1034 char dummy; 1884 char dummy;
1885 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1035 read (evpipe [0], &dummy, 1); 1886 read (evpipe [0], &dummy, 1);
1887 }
1888 }
1889
1890 pipe_write_skipped = 0;
1891
1892#if EV_SIGNAL_ENABLE
1893 if (sig_pending)
1036 } 1894 {
1895 sig_pending = 0;
1037 1896
1038 if (gotsig && ev_is_default_loop (EV_A)) 1897 for (i = EV_NSIG - 1; i--; )
1039 { 1898 if (expect_false (signals [i].pending))
1040 int signum;
1041 gotsig = 0;
1042
1043 for (signum = signalmax; signum--; )
1044 if (signals [signum].gotsig)
1045 ev_feed_signal_event (EV_A_ signum + 1); 1899 ev_feed_signal_event (EV_A_ i + 1);
1046 } 1900 }
1901#endif
1047 1902
1048#if EV_ASYNC_ENABLE 1903#if EV_ASYNC_ENABLE
1049 if (gotasync) 1904 if (async_pending)
1050 { 1905 {
1051 int i; 1906 async_pending = 0;
1052 gotasync = 0;
1053 1907
1054 for (i = asynccnt; i--; ) 1908 for (i = asynccnt; i--; )
1055 if (asyncs [i]->sent) 1909 if (asyncs [i]->sent)
1056 { 1910 {
1057 asyncs [i]->sent = 0; 1911 asyncs [i]->sent = 0;
1061#endif 1915#endif
1062} 1916}
1063 1917
1064/*****************************************************************************/ 1918/*****************************************************************************/
1065 1919
1920void
1921ev_feed_signal (int signum)
1922{
1923#if EV_MULTIPLICITY
1924 EV_P = signals [signum - 1].loop;
1925
1926 if (!EV_A)
1927 return;
1928#endif
1929
1930 if (!ev_active (&pipe_w))
1931 return;
1932
1933 signals [signum - 1].pending = 1;
1934 evpipe_write (EV_A_ &sig_pending);
1935}
1936
1066static void 1937static void
1067ev_sighandler (int signum) 1938ev_sighandler (int signum)
1068{ 1939{
1069#if EV_MULTIPLICITY
1070 struct ev_loop *loop = &default_loop_struct;
1071#endif
1072
1073#if _WIN32 1940#ifdef _WIN32
1074 signal (signum, ev_sighandler); 1941 signal (signum, ev_sighandler);
1075#endif 1942#endif
1076 1943
1077 signals [signum - 1].gotsig = 1; 1944 ev_feed_signal (signum);
1078 evpipe_write (EV_A_ &gotsig);
1079} 1945}
1080 1946
1081void noinline 1947void noinline
1082ev_feed_signal_event (EV_P_ int signum) 1948ev_feed_signal_event (EV_P_ int signum)
1083{ 1949{
1084 WL w; 1950 WL w;
1085 1951
1952 if (expect_false (signum <= 0 || signum > EV_NSIG))
1953 return;
1954
1955 --signum;
1956
1086#if EV_MULTIPLICITY 1957#if EV_MULTIPLICITY
1087 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1958 /* it is permissible to try to feed a signal to the wrong loop */
1088#endif 1959 /* or, likely more useful, feeding a signal nobody is waiting for */
1089 1960
1090 --signum; 1961 if (expect_false (signals [signum].loop != EV_A))
1091
1092 if (signum < 0 || signum >= signalmax)
1093 return; 1962 return;
1963#endif
1094 1964
1095 signals [signum].gotsig = 0; 1965 signals [signum].pending = 0;
1096 1966
1097 for (w = signals [signum].head; w; w = w->next) 1967 for (w = signals [signum].head; w; w = w->next)
1098 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1968 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1099} 1969}
1100 1970
1971#if EV_USE_SIGNALFD
1972static void
1973sigfdcb (EV_P_ ev_io *iow, int revents)
1974{
1975 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1976
1977 for (;;)
1978 {
1979 ssize_t res = read (sigfd, si, sizeof (si));
1980
1981 /* not ISO-C, as res might be -1, but works with SuS */
1982 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1983 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1984
1985 if (res < (ssize_t)sizeof (si))
1986 break;
1987 }
1988}
1989#endif
1990
1991#endif
1992
1101/*****************************************************************************/ 1993/*****************************************************************************/
1102 1994
1995#if EV_CHILD_ENABLE
1103static WL childs [EV_PID_HASHSIZE]; 1996static WL childs [EV_PID_HASHSIZE];
1104
1105#ifndef _WIN32
1106 1997
1107static ev_signal childev; 1998static ev_signal childev;
1108 1999
1109#ifndef WIFCONTINUED 2000#ifndef WIFCONTINUED
1110# define WIFCONTINUED(status) 0 2001# define WIFCONTINUED(status) 0
1111#endif 2002#endif
1112 2003
1113void inline_speed 2004/* handle a single child status event */
2005inline_speed void
1114child_reap (EV_P_ int chain, int pid, int status) 2006child_reap (EV_P_ int chain, int pid, int status)
1115{ 2007{
1116 ev_child *w; 2008 ev_child *w;
1117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2009 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1118 2010
1119 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2011 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1120 { 2012 {
1121 if ((w->pid == pid || !w->pid) 2013 if ((w->pid == pid || !w->pid)
1122 && (!traced || (w->flags & 1))) 2014 && (!traced || (w->flags & 1)))
1123 { 2015 {
1124 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2016 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1131 2023
1132#ifndef WCONTINUED 2024#ifndef WCONTINUED
1133# define WCONTINUED 0 2025# define WCONTINUED 0
1134#endif 2026#endif
1135 2027
2028/* called on sigchld etc., calls waitpid */
1136static void 2029static void
1137childcb (EV_P_ ev_signal *sw, int revents) 2030childcb (EV_P_ ev_signal *sw, int revents)
1138{ 2031{
1139 int pid, status; 2032 int pid, status;
1140 2033
1148 /* make sure we are called again until all children have been reaped */ 2041 /* make sure we are called again until all children have been reaped */
1149 /* we need to do it this way so that the callback gets called before we continue */ 2042 /* we need to do it this way so that the callback gets called before we continue */
1150 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2043 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1151 2044
1152 child_reap (EV_A_ pid, pid, status); 2045 child_reap (EV_A_ pid, pid, status);
1153 if (EV_PID_HASHSIZE > 1) 2046 if ((EV_PID_HASHSIZE) > 1)
1154 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2047 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1155} 2048}
1156 2049
1157#endif 2050#endif
1158 2051
1159/*****************************************************************************/ 2052/*****************************************************************************/
1160 2053
2054#if EV_USE_IOCP
2055# include "ev_iocp.c"
2056#endif
1161#if EV_USE_PORT 2057#if EV_USE_PORT
1162# include "ev_port.c" 2058# include "ev_port.c"
1163#endif 2059#endif
1164#if EV_USE_KQUEUE 2060#if EV_USE_KQUEUE
1165# include "ev_kqueue.c" 2061# include "ev_kqueue.c"
1172#endif 2068#endif
1173#if EV_USE_SELECT 2069#if EV_USE_SELECT
1174# include "ev_select.c" 2070# include "ev_select.c"
1175#endif 2071#endif
1176 2072
1177int 2073int ecb_cold
1178ev_version_major (void) 2074ev_version_major (void)
1179{ 2075{
1180 return EV_VERSION_MAJOR; 2076 return EV_VERSION_MAJOR;
1181} 2077}
1182 2078
1183int 2079int ecb_cold
1184ev_version_minor (void) 2080ev_version_minor (void)
1185{ 2081{
1186 return EV_VERSION_MINOR; 2082 return EV_VERSION_MINOR;
1187} 2083}
1188 2084
1189/* return true if we are running with elevated privileges and should ignore env variables */ 2085/* return true if we are running with elevated privileges and should ignore env variables */
1190int inline_size 2086int inline_size ecb_cold
1191enable_secure (void) 2087enable_secure (void)
1192{ 2088{
1193#ifdef _WIN32 2089#ifdef _WIN32
1194 return 0; 2090 return 0;
1195#else 2091#else
1196 return getuid () != geteuid () 2092 return getuid () != geteuid ()
1197 || getgid () != getegid (); 2093 || getgid () != getegid ();
1198#endif 2094#endif
1199} 2095}
1200 2096
1201unsigned int 2097unsigned int ecb_cold
1202ev_supported_backends (void) 2098ev_supported_backends (void)
1203{ 2099{
1204 unsigned int flags = 0; 2100 unsigned int flags = 0;
1205 2101
1206 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2102 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1210 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2106 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1211 2107
1212 return flags; 2108 return flags;
1213} 2109}
1214 2110
1215unsigned int 2111unsigned int ecb_cold
1216ev_recommended_backends (void) 2112ev_recommended_backends (void)
1217{ 2113{
1218 unsigned int flags = ev_supported_backends (); 2114 unsigned int flags = ev_supported_backends ();
1219 2115
1220#ifndef __NetBSD__ 2116#ifndef __NetBSD__
1221 /* kqueue is borked on everything but netbsd apparently */ 2117 /* kqueue is borked on everything but netbsd apparently */
1222 /* it usually doesn't work correctly on anything but sockets and pipes */ 2118 /* it usually doesn't work correctly on anything but sockets and pipes */
1223 flags &= ~EVBACKEND_KQUEUE; 2119 flags &= ~EVBACKEND_KQUEUE;
1224#endif 2120#endif
1225#ifdef __APPLE__ 2121#ifdef __APPLE__
1226 // flags &= ~EVBACKEND_KQUEUE; for documentation 2122 /* only select works correctly on that "unix-certified" platform */
1227 flags &= ~EVBACKEND_POLL; 2123 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2124 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2125#endif
2126#ifdef __FreeBSD__
2127 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1228#endif 2128#endif
1229 2129
1230 return flags; 2130 return flags;
1231} 2131}
1232 2132
1233unsigned int 2133unsigned int ecb_cold
1234ev_embeddable_backends (void) 2134ev_embeddable_backends (void)
1235{ 2135{
1236 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2136 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1237 2137
1238 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2138 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1239 /* please fix it and tell me how to detect the fix */ 2139 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1240 flags &= ~EVBACKEND_EPOLL; 2140 flags &= ~EVBACKEND_EPOLL;
1241 2141
1242 return flags; 2142 return flags;
1243} 2143}
1244 2144
1245unsigned int 2145unsigned int
1246ev_backend (EV_P) 2146ev_backend (EV_P)
1247{ 2147{
1248 return backend; 2148 return backend;
1249} 2149}
1250 2150
2151#if EV_FEATURE_API
1251unsigned int 2152unsigned int
1252ev_loop_count (EV_P) 2153ev_iteration (EV_P)
1253{ 2154{
1254 return loop_count; 2155 return loop_count;
2156}
2157
2158unsigned int
2159ev_depth (EV_P)
2160{
2161 return loop_depth;
1255} 2162}
1256 2163
1257void 2164void
1258ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2165ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1259{ 2166{
1264ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2171ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1265{ 2172{
1266 timeout_blocktime = interval; 2173 timeout_blocktime = interval;
1267} 2174}
1268 2175
2176void
2177ev_set_userdata (EV_P_ void *data)
2178{
2179 userdata = data;
2180}
2181
2182void *
2183ev_userdata (EV_P)
2184{
2185 return userdata;
2186}
2187
2188void
2189ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2190{
2191 invoke_cb = invoke_pending_cb;
2192}
2193
2194void
2195ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2196{
2197 release_cb = release;
2198 acquire_cb = acquire;
2199}
2200#endif
2201
2202/* initialise a loop structure, must be zero-initialised */
1269static void noinline 2203static void noinline ecb_cold
1270loop_init (EV_P_ unsigned int flags) 2204loop_init (EV_P_ unsigned int flags)
1271{ 2205{
1272 if (!backend) 2206 if (!backend)
1273 { 2207 {
2208 origflags = flags;
2209
2210#if EV_USE_REALTIME
2211 if (!have_realtime)
2212 {
2213 struct timespec ts;
2214
2215 if (!clock_gettime (CLOCK_REALTIME, &ts))
2216 have_realtime = 1;
2217 }
2218#endif
2219
1274#if EV_USE_MONOTONIC 2220#if EV_USE_MONOTONIC
2221 if (!have_monotonic)
1275 { 2222 {
1276 struct timespec ts; 2223 struct timespec ts;
2224
1277 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2225 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1278 have_monotonic = 1; 2226 have_monotonic = 1;
1279 } 2227 }
1280#endif
1281
1282 ev_rt_now = ev_time ();
1283 mn_now = get_clock ();
1284 now_floor = mn_now;
1285 rtmn_diff = ev_rt_now - mn_now;
1286
1287 io_blocktime = 0.;
1288 timeout_blocktime = 0.;
1289 backend = 0;
1290 backend_fd = -1;
1291 gotasync = 0;
1292#if EV_USE_INOTIFY
1293 fs_fd = -2;
1294#endif 2228#endif
1295 2229
1296 /* pid check not overridable via env */ 2230 /* pid check not overridable via env */
1297#ifndef _WIN32 2231#ifndef _WIN32
1298 if (flags & EVFLAG_FORKCHECK) 2232 if (flags & EVFLAG_FORKCHECK)
1302 if (!(flags & EVFLAG_NOENV) 2236 if (!(flags & EVFLAG_NOENV)
1303 && !enable_secure () 2237 && !enable_secure ()
1304 && getenv ("LIBEV_FLAGS")) 2238 && getenv ("LIBEV_FLAGS"))
1305 flags = atoi (getenv ("LIBEV_FLAGS")); 2239 flags = atoi (getenv ("LIBEV_FLAGS"));
1306 2240
1307 if (!(flags & 0x0000ffffU)) 2241 ev_rt_now = ev_time ();
2242 mn_now = get_clock ();
2243 now_floor = mn_now;
2244 rtmn_diff = ev_rt_now - mn_now;
2245#if EV_FEATURE_API
2246 invoke_cb = ev_invoke_pending;
2247#endif
2248
2249 io_blocktime = 0.;
2250 timeout_blocktime = 0.;
2251 backend = 0;
2252 backend_fd = -1;
2253 sig_pending = 0;
2254#if EV_ASYNC_ENABLE
2255 async_pending = 0;
2256#endif
2257 pipe_write_skipped = 0;
2258 pipe_write_wanted = 0;
2259#if EV_USE_INOTIFY
2260 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2261#endif
2262#if EV_USE_SIGNALFD
2263 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2264#endif
2265
2266 if (!(flags & EVBACKEND_MASK))
1308 flags |= ev_recommended_backends (); 2267 flags |= ev_recommended_backends ();
1309 2268
2269#if EV_USE_IOCP
2270 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2271#endif
1310#if EV_USE_PORT 2272#if EV_USE_PORT
1311 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2273 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1312#endif 2274#endif
1313#if EV_USE_KQUEUE 2275#if EV_USE_KQUEUE
1314 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2276 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1321#endif 2283#endif
1322#if EV_USE_SELECT 2284#if EV_USE_SELECT
1323 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2285 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1324#endif 2286#endif
1325 2287
2288 ev_prepare_init (&pending_w, pendingcb);
2289
2290#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1326 ev_init (&pipeev, pipecb); 2291 ev_init (&pipe_w, pipecb);
1327 ev_set_priority (&pipeev, EV_MAXPRI); 2292 ev_set_priority (&pipe_w, EV_MAXPRI);
2293#endif
1328 } 2294 }
1329} 2295}
1330 2296
1331static void noinline 2297/* free up a loop structure */
2298void ecb_cold
1332loop_destroy (EV_P) 2299ev_loop_destroy (EV_P)
1333{ 2300{
1334 int i; 2301 int i;
1335 2302
2303#if EV_MULTIPLICITY
2304 /* mimic free (0) */
2305 if (!EV_A)
2306 return;
2307#endif
2308
2309#if EV_CLEANUP_ENABLE
2310 /* queue cleanup watchers (and execute them) */
2311 if (expect_false (cleanupcnt))
2312 {
2313 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2314 EV_INVOKE_PENDING;
2315 }
2316#endif
2317
2318#if EV_CHILD_ENABLE
2319 if (ev_is_active (&childev))
2320 {
2321 ev_ref (EV_A); /* child watcher */
2322 ev_signal_stop (EV_A_ &childev);
2323 }
2324#endif
2325
1336 if (ev_is_active (&pipeev)) 2326 if (ev_is_active (&pipe_w))
1337 { 2327 {
1338 ev_ref (EV_A); /* signal watcher */ 2328 /*ev_ref (EV_A);*/
1339 ev_io_stop (EV_A_ &pipeev); 2329 /*ev_io_stop (EV_A_ &pipe_w);*/
1340 2330
1341#if EV_USE_EVENTFD 2331#if EV_USE_EVENTFD
1342 if (evfd >= 0) 2332 if (evfd >= 0)
1343 close (evfd); 2333 close (evfd);
1344#endif 2334#endif
1345 2335
1346 if (evpipe [0] >= 0) 2336 if (evpipe [0] >= 0)
1347 { 2337 {
1348 close (evpipe [0]); 2338 EV_WIN32_CLOSE_FD (evpipe [0]);
1349 close (evpipe [1]); 2339 EV_WIN32_CLOSE_FD (evpipe [1]);
1350 } 2340 }
1351 } 2341 }
2342
2343#if EV_USE_SIGNALFD
2344 if (ev_is_active (&sigfd_w))
2345 close (sigfd);
2346#endif
1352 2347
1353#if EV_USE_INOTIFY 2348#if EV_USE_INOTIFY
1354 if (fs_fd >= 0) 2349 if (fs_fd >= 0)
1355 close (fs_fd); 2350 close (fs_fd);
1356#endif 2351#endif
1357 2352
1358 if (backend_fd >= 0) 2353 if (backend_fd >= 0)
1359 close (backend_fd); 2354 close (backend_fd);
1360 2355
2356#if EV_USE_IOCP
2357 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2358#endif
1361#if EV_USE_PORT 2359#if EV_USE_PORT
1362 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2360 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1363#endif 2361#endif
1364#if EV_USE_KQUEUE 2362#if EV_USE_KQUEUE
1365 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2363 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1380#if EV_IDLE_ENABLE 2378#if EV_IDLE_ENABLE
1381 array_free (idle, [i]); 2379 array_free (idle, [i]);
1382#endif 2380#endif
1383 } 2381 }
1384 2382
1385 ev_free (anfds); anfdmax = 0; 2383 ev_free (anfds); anfds = 0; anfdmax = 0;
1386 2384
1387 /* have to use the microsoft-never-gets-it-right macro */ 2385 /* have to use the microsoft-never-gets-it-right macro */
2386 array_free (rfeed, EMPTY);
1388 array_free (fdchange, EMPTY); 2387 array_free (fdchange, EMPTY);
1389 array_free (timer, EMPTY); 2388 array_free (timer, EMPTY);
1390#if EV_PERIODIC_ENABLE 2389#if EV_PERIODIC_ENABLE
1391 array_free (periodic, EMPTY); 2390 array_free (periodic, EMPTY);
1392#endif 2391#endif
1393#if EV_FORK_ENABLE 2392#if EV_FORK_ENABLE
1394 array_free (fork, EMPTY); 2393 array_free (fork, EMPTY);
1395#endif 2394#endif
2395#if EV_CLEANUP_ENABLE
2396 array_free (cleanup, EMPTY);
2397#endif
1396 array_free (prepare, EMPTY); 2398 array_free (prepare, EMPTY);
1397 array_free (check, EMPTY); 2399 array_free (check, EMPTY);
1398#if EV_ASYNC_ENABLE 2400#if EV_ASYNC_ENABLE
1399 array_free (async, EMPTY); 2401 array_free (async, EMPTY);
1400#endif 2402#endif
1401 2403
1402 backend = 0; 2404 backend = 0;
2405
2406#if EV_MULTIPLICITY
2407 if (ev_is_default_loop (EV_A))
2408#endif
2409 ev_default_loop_ptr = 0;
2410#if EV_MULTIPLICITY
2411 else
2412 ev_free (EV_A);
2413#endif
1403} 2414}
1404 2415
1405#if EV_USE_INOTIFY 2416#if EV_USE_INOTIFY
1406void inline_size infy_fork (EV_P); 2417inline_size void infy_fork (EV_P);
1407#endif 2418#endif
1408 2419
1409void inline_size 2420inline_size void
1410loop_fork (EV_P) 2421loop_fork (EV_P)
1411{ 2422{
1412#if EV_USE_PORT 2423#if EV_USE_PORT
1413 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2424 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1414#endif 2425#endif
1420#endif 2431#endif
1421#if EV_USE_INOTIFY 2432#if EV_USE_INOTIFY
1422 infy_fork (EV_A); 2433 infy_fork (EV_A);
1423#endif 2434#endif
1424 2435
1425 if (ev_is_active (&pipeev)) 2436 if (ev_is_active (&pipe_w))
1426 { 2437 {
1427 /* this "locks" the handlers against writing to the pipe */ 2438 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1428 /* while we modify the fd vars */
1429 gotsig = 1;
1430#if EV_ASYNC_ENABLE
1431 gotasync = 1;
1432#endif
1433 2439
1434 ev_ref (EV_A); 2440 ev_ref (EV_A);
1435 ev_io_stop (EV_A_ &pipeev); 2441 ev_io_stop (EV_A_ &pipe_w);
1436 2442
1437#if EV_USE_EVENTFD 2443#if EV_USE_EVENTFD
1438 if (evfd >= 0) 2444 if (evfd >= 0)
1439 close (evfd); 2445 close (evfd);
1440#endif 2446#endif
1441 2447
1442 if (evpipe [0] >= 0) 2448 if (evpipe [0] >= 0)
1443 { 2449 {
1444 close (evpipe [0]); 2450 EV_WIN32_CLOSE_FD (evpipe [0]);
1445 close (evpipe [1]); 2451 EV_WIN32_CLOSE_FD (evpipe [1]);
1446 } 2452 }
1447 2453
2454#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1448 evpipe_init (EV_A); 2455 evpipe_init (EV_A);
1449 /* now iterate over everything, in case we missed something */ 2456 /* now iterate over everything, in case we missed something */
1450 pipecb (EV_A_ &pipeev, EV_READ); 2457 pipecb (EV_A_ &pipe_w, EV_READ);
2458#endif
1451 } 2459 }
1452 2460
1453 postfork = 0; 2461 postfork = 0;
1454} 2462}
1455 2463
1456#if EV_MULTIPLICITY 2464#if EV_MULTIPLICITY
2465
1457struct ev_loop * 2466struct ev_loop * ecb_cold
1458ev_loop_new (unsigned int flags) 2467ev_loop_new (unsigned int flags)
1459{ 2468{
1460 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2469 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1461 2470
1462 memset (loop, 0, sizeof (struct ev_loop)); 2471 memset (EV_A, 0, sizeof (struct ev_loop));
1463
1464 loop_init (EV_A_ flags); 2472 loop_init (EV_A_ flags);
1465 2473
1466 if (ev_backend (EV_A)) 2474 if (ev_backend (EV_A))
1467 return loop; 2475 return EV_A;
1468 2476
2477 ev_free (EV_A);
1469 return 0; 2478 return 0;
1470} 2479}
1471 2480
1472void 2481#endif /* multiplicity */
1473ev_loop_destroy (EV_P)
1474{
1475 loop_destroy (EV_A);
1476 ev_free (loop);
1477}
1478 2482
1479void 2483#if EV_VERIFY
1480ev_loop_fork (EV_P) 2484static void noinline ecb_cold
2485verify_watcher (EV_P_ W w)
1481{ 2486{
1482 postfork = 1; /* must be in line with ev_default_fork */ 2487 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2488
2489 if (w->pending)
2490 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2491}
2492
2493static void noinline ecb_cold
2494verify_heap (EV_P_ ANHE *heap, int N)
2495{
2496 int i;
2497
2498 for (i = HEAP0; i < N + HEAP0; ++i)
2499 {
2500 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2501 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2502 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2503
2504 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2505 }
2506}
2507
2508static void noinline ecb_cold
2509array_verify (EV_P_ W *ws, int cnt)
2510{
2511 while (cnt--)
2512 {
2513 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2514 verify_watcher (EV_A_ ws [cnt]);
2515 }
2516}
2517#endif
2518
2519#if EV_FEATURE_API
2520void ecb_cold
2521ev_verify (EV_P)
2522{
2523#if EV_VERIFY
2524 int i;
2525 WL w;
2526
2527 assert (activecnt >= -1);
2528
2529 assert (fdchangemax >= fdchangecnt);
2530 for (i = 0; i < fdchangecnt; ++i)
2531 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2532
2533 assert (anfdmax >= 0);
2534 for (i = 0; i < anfdmax; ++i)
2535 for (w = anfds [i].head; w; w = w->next)
2536 {
2537 verify_watcher (EV_A_ (W)w);
2538 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2539 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2540 }
2541
2542 assert (timermax >= timercnt);
2543 verify_heap (EV_A_ timers, timercnt);
2544
2545#if EV_PERIODIC_ENABLE
2546 assert (periodicmax >= periodiccnt);
2547 verify_heap (EV_A_ periodics, periodiccnt);
2548#endif
2549
2550 for (i = NUMPRI; i--; )
2551 {
2552 assert (pendingmax [i] >= pendingcnt [i]);
2553#if EV_IDLE_ENABLE
2554 assert (idleall >= 0);
2555 assert (idlemax [i] >= idlecnt [i]);
2556 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2557#endif
2558 }
2559
2560#if EV_FORK_ENABLE
2561 assert (forkmax >= forkcnt);
2562 array_verify (EV_A_ (W *)forks, forkcnt);
2563#endif
2564
2565#if EV_CLEANUP_ENABLE
2566 assert (cleanupmax >= cleanupcnt);
2567 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2568#endif
2569
2570#if EV_ASYNC_ENABLE
2571 assert (asyncmax >= asynccnt);
2572 array_verify (EV_A_ (W *)asyncs, asynccnt);
2573#endif
2574
2575#if EV_PREPARE_ENABLE
2576 assert (preparemax >= preparecnt);
2577 array_verify (EV_A_ (W *)prepares, preparecnt);
2578#endif
2579
2580#if EV_CHECK_ENABLE
2581 assert (checkmax >= checkcnt);
2582 array_verify (EV_A_ (W *)checks, checkcnt);
2583#endif
2584
2585# if 0
2586#if EV_CHILD_ENABLE
2587 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2588 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2589#endif
2590# endif
2591#endif
1483} 2592}
1484#endif 2593#endif
1485 2594
1486#if EV_MULTIPLICITY 2595#if EV_MULTIPLICITY
1487struct ev_loop * 2596struct ev_loop * ecb_cold
1488ev_default_loop_init (unsigned int flags)
1489#else 2597#else
1490int 2598int
2599#endif
1491ev_default_loop (unsigned int flags) 2600ev_default_loop (unsigned int flags)
1492#endif
1493{ 2601{
1494 if (!ev_default_loop_ptr) 2602 if (!ev_default_loop_ptr)
1495 { 2603 {
1496#if EV_MULTIPLICITY 2604#if EV_MULTIPLICITY
1497 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2605 EV_P = ev_default_loop_ptr = &default_loop_struct;
1498#else 2606#else
1499 ev_default_loop_ptr = 1; 2607 ev_default_loop_ptr = 1;
1500#endif 2608#endif
1501 2609
1502 loop_init (EV_A_ flags); 2610 loop_init (EV_A_ flags);
1503 2611
1504 if (ev_backend (EV_A)) 2612 if (ev_backend (EV_A))
1505 { 2613 {
1506#ifndef _WIN32 2614#if EV_CHILD_ENABLE
1507 ev_signal_init (&childev, childcb, SIGCHLD); 2615 ev_signal_init (&childev, childcb, SIGCHLD);
1508 ev_set_priority (&childev, EV_MAXPRI); 2616 ev_set_priority (&childev, EV_MAXPRI);
1509 ev_signal_start (EV_A_ &childev); 2617 ev_signal_start (EV_A_ &childev);
1510 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2618 ev_unref (EV_A); /* child watcher should not keep loop alive */
1511#endif 2619#endif
1516 2624
1517 return ev_default_loop_ptr; 2625 return ev_default_loop_ptr;
1518} 2626}
1519 2627
1520void 2628void
1521ev_default_destroy (void) 2629ev_loop_fork (EV_P)
1522{ 2630{
1523#if EV_MULTIPLICITY
1524 struct ev_loop *loop = ev_default_loop_ptr;
1525#endif
1526
1527#ifndef _WIN32
1528 ev_ref (EV_A); /* child watcher */
1529 ev_signal_stop (EV_A_ &childev);
1530#endif
1531
1532 loop_destroy (EV_A);
1533}
1534
1535void
1536ev_default_fork (void)
1537{
1538#if EV_MULTIPLICITY
1539 struct ev_loop *loop = ev_default_loop_ptr;
1540#endif
1541
1542 if (backend)
1543 postfork = 1; /* must be in line with ev_loop_fork */ 2631 postfork = 1; /* must be in line with ev_default_fork */
1544} 2632}
1545 2633
1546/*****************************************************************************/ 2634/*****************************************************************************/
1547 2635
1548void 2636void
1549ev_invoke (EV_P_ void *w, int revents) 2637ev_invoke (EV_P_ void *w, int revents)
1550{ 2638{
1551 EV_CB_INVOKE ((W)w, revents); 2639 EV_CB_INVOKE ((W)w, revents);
1552} 2640}
1553 2641
1554void inline_speed 2642unsigned int
1555call_pending (EV_P) 2643ev_pending_count (EV_P)
2644{
2645 int pri;
2646 unsigned int count = 0;
2647
2648 for (pri = NUMPRI; pri--; )
2649 count += pendingcnt [pri];
2650
2651 return count;
2652}
2653
2654void noinline
2655ev_invoke_pending (EV_P)
1556{ 2656{
1557 int pri; 2657 int pri;
1558 2658
1559 for (pri = NUMPRI; pri--; ) 2659 for (pri = NUMPRI; pri--; )
1560 while (pendingcnt [pri]) 2660 while (pendingcnt [pri])
1561 { 2661 {
1562 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2662 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1563 2663
1564 if (expect_true (p->w))
1565 {
1566 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1567
1568 p->w->pending = 0; 2664 p->w->pending = 0;
1569 EV_CB_INVOKE (p->w, p->events); 2665 EV_CB_INVOKE (p->w, p->events);
1570 } 2666 EV_FREQUENT_CHECK;
1571 } 2667 }
1572} 2668}
1573 2669
1574#if EV_IDLE_ENABLE 2670#if EV_IDLE_ENABLE
1575void inline_size 2671/* make idle watchers pending. this handles the "call-idle */
2672/* only when higher priorities are idle" logic */
2673inline_size void
1576idle_reify (EV_P) 2674idle_reify (EV_P)
1577{ 2675{
1578 if (expect_false (idleall)) 2676 if (expect_false (idleall))
1579 { 2677 {
1580 int pri; 2678 int pri;
1592 } 2690 }
1593 } 2691 }
1594} 2692}
1595#endif 2693#endif
1596 2694
1597void inline_size 2695/* make timers pending */
2696inline_size void
1598timers_reify (EV_P) 2697timers_reify (EV_P)
1599{ 2698{
2699 EV_FREQUENT_CHECK;
2700
1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now) 2701 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1601 { 2702 {
1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2703 do
1603
1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1605
1606 /* first reschedule or stop timer */
1607 if (w->repeat)
1608 { 2704 {
2705 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2706
2707 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2708
2709 /* first reschedule or stop timer */
2710 if (w->repeat)
2711 {
2712 ev_at (w) += w->repeat;
2713 if (ev_at (w) < mn_now)
2714 ev_at (w) = mn_now;
2715
1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2716 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1610 2717
1611 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now;
1614
1615 ANHE_at_set (timers [HEAP0]); 2718 ANHE_at_cache (timers [HEAP0]);
1616 downheap (timers, timercnt, HEAP0); 2719 downheap (timers, timercnt, HEAP0);
2720 }
2721 else
2722 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2723
2724 EV_FREQUENT_CHECK;
2725 feed_reverse (EV_A_ (W)w);
1617 } 2726 }
1618 else 2727 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1620 2728
1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2729 feed_reverse_done (EV_A_ EV_TIMER);
1622 } 2730 }
1623} 2731}
1624 2732
1625#if EV_PERIODIC_ENABLE 2733#if EV_PERIODIC_ENABLE
1626void inline_size 2734
2735static void noinline
2736periodic_recalc (EV_P_ ev_periodic *w)
2737{
2738 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2739 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2740
2741 /* the above almost always errs on the low side */
2742 while (at <= ev_rt_now)
2743 {
2744 ev_tstamp nat = at + w->interval;
2745
2746 /* when resolution fails us, we use ev_rt_now */
2747 if (expect_false (nat == at))
2748 {
2749 at = ev_rt_now;
2750 break;
2751 }
2752
2753 at = nat;
2754 }
2755
2756 ev_at (w) = at;
2757}
2758
2759/* make periodics pending */
2760inline_size void
1627periodics_reify (EV_P) 2761periodics_reify (EV_P)
1628{ 2762{
2763 EV_FREQUENT_CHECK;
2764
1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now) 2765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1630 { 2766 {
1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2767 int feed_count = 0;
1632 2768
1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2769 do
1634
1635 /* first reschedule or stop timer */
1636 if (w->reschedule_cb)
1637 { 2770 {
2771 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2772
2773 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2774
2775 /* first reschedule or stop timer */
2776 if (w->reschedule_cb)
2777 {
1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 2778 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2779
1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 2780 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2781
1640 ANHE_at_set (periodics [HEAP0]); 2782 ANHE_at_cache (periodics [HEAP0]);
1641 downheap (periodics, periodiccnt, HEAP0); 2783 downheap (periodics, periodiccnt, HEAP0);
2784 }
2785 else if (w->interval)
2786 {
2787 periodic_recalc (EV_A_ w);
2788 ANHE_at_cache (periodics [HEAP0]);
2789 downheap (periodics, periodiccnt, HEAP0);
2790 }
2791 else
2792 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2793
2794 EV_FREQUENT_CHECK;
2795 feed_reverse (EV_A_ (W)w);
1642 } 2796 }
1643 else if (w->interval) 2797 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1644 {
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else
1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1653 2798
1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2799 feed_reverse_done (EV_A_ EV_PERIODIC);
1655 } 2800 }
1656} 2801}
1657 2802
2803/* simply recalculate all periodics */
2804/* TODO: maybe ensure that at least one event happens when jumping forward? */
1658static void noinline 2805static void noinline ecb_cold
1659periodics_reschedule (EV_P) 2806periodics_reschedule (EV_P)
1660{ 2807{
1661 int i; 2808 int i;
1662 2809
1663 /* adjust periodics after time jump */ 2810 /* adjust periodics after time jump */
1666 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 2813 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1667 2814
1668 if (w->reschedule_cb) 2815 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2816 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1670 else if (w->interval) 2817 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2818 periodic_recalc (EV_A_ w);
1672 2819
1673 ANHE_at_set (periodics [i]); 2820 ANHE_at_cache (periodics [i]);
2821 }
2822
2823 reheap (periodics, periodiccnt);
2824}
2825#endif
2826
2827/* adjust all timers by a given offset */
2828static void noinline ecb_cold
2829timers_reschedule (EV_P_ ev_tstamp adjust)
2830{
2831 int i;
2832
2833 for (i = 0; i < timercnt; ++i)
1674 } 2834 {
1675 2835 ANHE *he = timers + i + HEAP0;
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */ 2836 ANHE_w (*he)->at += adjust;
1677 for (i = periodiccnt >> 1; --i; ) 2837 ANHE_at_cache (*he);
1678 downheap (periodics, periodiccnt, i + HEAP0); 2838 }
1679} 2839}
1680#endif
1681 2840
1682void inline_speed 2841/* fetch new monotonic and realtime times from the kernel */
2842/* also detect if there was a timejump, and act accordingly */
2843inline_speed void
1683time_update (EV_P_ ev_tstamp max_block) 2844time_update (EV_P_ ev_tstamp max_block)
1684{ 2845{
1685 int i;
1686
1687#if EV_USE_MONOTONIC 2846#if EV_USE_MONOTONIC
1688 if (expect_true (have_monotonic)) 2847 if (expect_true (have_monotonic))
1689 { 2848 {
2849 int i;
1690 ev_tstamp odiff = rtmn_diff; 2850 ev_tstamp odiff = rtmn_diff;
1691 2851
1692 mn_now = get_clock (); 2852 mn_now = get_clock ();
1693 2853
1694 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2854 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1710 * doesn't hurt either as we only do this on time-jumps or 2870 * doesn't hurt either as we only do this on time-jumps or
1711 * in the unlikely event of having been preempted here. 2871 * in the unlikely event of having been preempted here.
1712 */ 2872 */
1713 for (i = 4; --i; ) 2873 for (i = 4; --i; )
1714 { 2874 {
2875 ev_tstamp diff;
1715 rtmn_diff = ev_rt_now - mn_now; 2876 rtmn_diff = ev_rt_now - mn_now;
1716 2877
2878 diff = odiff - rtmn_diff;
2879
1717 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2880 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1718 return; /* all is well */ 2881 return; /* all is well */
1719 2882
1720 ev_rt_now = ev_time (); 2883 ev_rt_now = ev_time ();
1721 mn_now = get_clock (); 2884 mn_now = get_clock ();
1722 now_floor = mn_now; 2885 now_floor = mn_now;
1723 } 2886 }
1724 2887
2888 /* no timer adjustment, as the monotonic clock doesn't jump */
2889 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1725# if EV_PERIODIC_ENABLE 2890# if EV_PERIODIC_ENABLE
1726 periodics_reschedule (EV_A); 2891 periodics_reschedule (EV_A);
1727# endif 2892# endif
1728 /* no timer adjustment, as the monotonic clock doesn't jump */
1729 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1730 } 2893 }
1731 else 2894 else
1732#endif 2895#endif
1733 { 2896 {
1734 ev_rt_now = ev_time (); 2897 ev_rt_now = ev_time ();
1735 2898
1736 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2899 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1737 { 2900 {
2901 /* adjust timers. this is easy, as the offset is the same for all of them */
2902 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1738#if EV_PERIODIC_ENABLE 2903#if EV_PERIODIC_ENABLE
1739 periodics_reschedule (EV_A); 2904 periodics_reschedule (EV_A);
1740#endif 2905#endif
1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1742 for (i = 0; i < timercnt; ++i)
1743 {
1744 ANHE *he = timers + i + HEAP0;
1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he);
1747 }
1748 } 2906 }
1749 2907
1750 mn_now = ev_rt_now; 2908 mn_now = ev_rt_now;
1751 } 2909 }
1752} 2910}
1753 2911
1754void 2912void
1755ev_ref (EV_P)
1756{
1757 ++activecnt;
1758}
1759
1760void
1761ev_unref (EV_P)
1762{
1763 --activecnt;
1764}
1765
1766static int loop_done;
1767
1768void
1769ev_loop (EV_P_ int flags) 2913ev_run (EV_P_ int flags)
1770{ 2914{
2915#if EV_FEATURE_API
2916 ++loop_depth;
2917#endif
2918
2919 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2920
1771 loop_done = EVUNLOOP_CANCEL; 2921 loop_done = EVBREAK_CANCEL;
1772 2922
1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2923 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1774 2924
1775 do 2925 do
1776 { 2926 {
2927#if EV_VERIFY >= 2
2928 ev_verify (EV_A);
2929#endif
2930
1777#ifndef _WIN32 2931#ifndef _WIN32
1778 if (expect_false (curpid)) /* penalise the forking check even more */ 2932 if (expect_false (curpid)) /* penalise the forking check even more */
1779 if (expect_false (getpid () != curpid)) 2933 if (expect_false (getpid () != curpid))
1780 { 2934 {
1781 curpid = getpid (); 2935 curpid = getpid ();
1787 /* we might have forked, so queue fork handlers */ 2941 /* we might have forked, so queue fork handlers */
1788 if (expect_false (postfork)) 2942 if (expect_false (postfork))
1789 if (forkcnt) 2943 if (forkcnt)
1790 { 2944 {
1791 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2945 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1792 call_pending (EV_A); 2946 EV_INVOKE_PENDING;
1793 } 2947 }
1794#endif 2948#endif
1795 2949
2950#if EV_PREPARE_ENABLE
1796 /* queue prepare watchers (and execute them) */ 2951 /* queue prepare watchers (and execute them) */
1797 if (expect_false (preparecnt)) 2952 if (expect_false (preparecnt))
1798 { 2953 {
1799 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2954 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1800 call_pending (EV_A); 2955 EV_INVOKE_PENDING;
1801 } 2956 }
2957#endif
1802 2958
1803 if (expect_false (!activecnt)) 2959 if (expect_false (loop_done))
1804 break; 2960 break;
1805 2961
1806 /* we might have forked, so reify kernel state if necessary */ 2962 /* we might have forked, so reify kernel state if necessary */
1807 if (expect_false (postfork)) 2963 if (expect_false (postfork))
1808 loop_fork (EV_A); 2964 loop_fork (EV_A);
1813 /* calculate blocking time */ 2969 /* calculate blocking time */
1814 { 2970 {
1815 ev_tstamp waittime = 0.; 2971 ev_tstamp waittime = 0.;
1816 ev_tstamp sleeptime = 0.; 2972 ev_tstamp sleeptime = 0.;
1817 2973
2974 /* remember old timestamp for io_blocktime calculation */
2975 ev_tstamp prev_mn_now = mn_now;
2976
2977 /* update time to cancel out callback processing overhead */
2978 time_update (EV_A_ 1e100);
2979
2980 /* from now on, we want a pipe-wake-up */
2981 pipe_write_wanted = 1;
2982
2983 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2984
1818 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2985 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1819 { 2986 {
1820 /* update time to cancel out callback processing overhead */
1821 time_update (EV_A_ 1e100);
1822
1823 waittime = MAX_BLOCKTIME; 2987 waittime = MAX_BLOCKTIME;
1824 2988
1825 if (timercnt) 2989 if (timercnt)
1826 { 2990 {
1827 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2991 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1828 if (waittime > to) waittime = to; 2992 if (waittime > to) waittime = to;
1829 } 2993 }
1830 2994
1831#if EV_PERIODIC_ENABLE 2995#if EV_PERIODIC_ENABLE
1832 if (periodiccnt) 2996 if (periodiccnt)
1833 { 2997 {
1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2998 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1835 if (waittime > to) waittime = to; 2999 if (waittime > to) waittime = to;
1836 } 3000 }
1837#endif 3001#endif
1838 3002
3003 /* don't let timeouts decrease the waittime below timeout_blocktime */
1839 if (expect_false (waittime < timeout_blocktime)) 3004 if (expect_false (waittime < timeout_blocktime))
1840 waittime = timeout_blocktime; 3005 waittime = timeout_blocktime;
1841 3006
1842 sleeptime = waittime - backend_fudge; 3007 /* at this point, we NEED to wait, so we have to ensure */
3008 /* to pass a minimum nonzero value to the backend */
3009 if (expect_false (waittime < backend_mintime))
3010 waittime = backend_mintime;
1843 3011
3012 /* extra check because io_blocktime is commonly 0 */
1844 if (expect_true (sleeptime > io_blocktime)) 3013 if (expect_false (io_blocktime))
1845 sleeptime = io_blocktime;
1846
1847 if (sleeptime)
1848 { 3014 {
3015 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3016
3017 if (sleeptime > waittime - backend_mintime)
3018 sleeptime = waittime - backend_mintime;
3019
3020 if (expect_true (sleeptime > 0.))
3021 {
1849 ev_sleep (sleeptime); 3022 ev_sleep (sleeptime);
1850 waittime -= sleeptime; 3023 waittime -= sleeptime;
3024 }
1851 } 3025 }
1852 } 3026 }
1853 3027
3028#if EV_FEATURE_API
1854 ++loop_count; 3029 ++loop_count;
3030#endif
3031 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1855 backend_poll (EV_A_ waittime); 3032 backend_poll (EV_A_ waittime);
3033 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3034
3035 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3036
3037 if (pipe_write_skipped)
3038 {
3039 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3040 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3041 }
3042
1856 3043
1857 /* update ev_rt_now, do magic */ 3044 /* update ev_rt_now, do magic */
1858 time_update (EV_A_ waittime + sleeptime); 3045 time_update (EV_A_ waittime + sleeptime);
1859 } 3046 }
1860 3047
1867#if EV_IDLE_ENABLE 3054#if EV_IDLE_ENABLE
1868 /* queue idle watchers unless other events are pending */ 3055 /* queue idle watchers unless other events are pending */
1869 idle_reify (EV_A); 3056 idle_reify (EV_A);
1870#endif 3057#endif
1871 3058
3059#if EV_CHECK_ENABLE
1872 /* queue check watchers, to be executed first */ 3060 /* queue check watchers, to be executed first */
1873 if (expect_false (checkcnt)) 3061 if (expect_false (checkcnt))
1874 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3062 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3063#endif
1875 3064
1876 call_pending (EV_A); 3065 EV_INVOKE_PENDING;
1877 } 3066 }
1878 while (expect_true ( 3067 while (expect_true (
1879 activecnt 3068 activecnt
1880 && !loop_done 3069 && !loop_done
1881 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3070 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1882 )); 3071 ));
1883 3072
1884 if (loop_done == EVUNLOOP_ONE) 3073 if (loop_done == EVBREAK_ONE)
1885 loop_done = EVUNLOOP_CANCEL; 3074 loop_done = EVBREAK_CANCEL;
3075
3076#if EV_FEATURE_API
3077 --loop_depth;
3078#endif
1886} 3079}
1887 3080
1888void 3081void
1889ev_unloop (EV_P_ int how) 3082ev_break (EV_P_ int how)
1890{ 3083{
1891 loop_done = how; 3084 loop_done = how;
1892} 3085}
1893 3086
3087void
3088ev_ref (EV_P)
3089{
3090 ++activecnt;
3091}
3092
3093void
3094ev_unref (EV_P)
3095{
3096 --activecnt;
3097}
3098
3099void
3100ev_now_update (EV_P)
3101{
3102 time_update (EV_A_ 1e100);
3103}
3104
3105void
3106ev_suspend (EV_P)
3107{
3108 ev_now_update (EV_A);
3109}
3110
3111void
3112ev_resume (EV_P)
3113{
3114 ev_tstamp mn_prev = mn_now;
3115
3116 ev_now_update (EV_A);
3117 timers_reschedule (EV_A_ mn_now - mn_prev);
3118#if EV_PERIODIC_ENABLE
3119 /* TODO: really do this? */
3120 periodics_reschedule (EV_A);
3121#endif
3122}
3123
1894/*****************************************************************************/ 3124/*****************************************************************************/
3125/* singly-linked list management, used when the expected list length is short */
1895 3126
1896void inline_size 3127inline_size void
1897wlist_add (WL *head, WL elem) 3128wlist_add (WL *head, WL elem)
1898{ 3129{
1899 elem->next = *head; 3130 elem->next = *head;
1900 *head = elem; 3131 *head = elem;
1901} 3132}
1902 3133
1903void inline_size 3134inline_size void
1904wlist_del (WL *head, WL elem) 3135wlist_del (WL *head, WL elem)
1905{ 3136{
1906 while (*head) 3137 while (*head)
1907 { 3138 {
1908 if (*head == elem) 3139 if (expect_true (*head == elem))
1909 { 3140 {
1910 *head = elem->next; 3141 *head = elem->next;
1911 return; 3142 break;
1912 } 3143 }
1913 3144
1914 head = &(*head)->next; 3145 head = &(*head)->next;
1915 } 3146 }
1916} 3147}
1917 3148
1918void inline_speed 3149/* internal, faster, version of ev_clear_pending */
3150inline_speed void
1919clear_pending (EV_P_ W w) 3151clear_pending (EV_P_ W w)
1920{ 3152{
1921 if (w->pending) 3153 if (w->pending)
1922 { 3154 {
1923 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3155 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1924 w->pending = 0; 3156 w->pending = 0;
1925 } 3157 }
1926} 3158}
1927 3159
1928int 3160int
1932 int pending = w_->pending; 3164 int pending = w_->pending;
1933 3165
1934 if (expect_true (pending)) 3166 if (expect_true (pending))
1935 { 3167 {
1936 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3168 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3169 p->w = (W)&pending_w;
1937 w_->pending = 0; 3170 w_->pending = 0;
1938 p->w = 0;
1939 return p->events; 3171 return p->events;
1940 } 3172 }
1941 else 3173 else
1942 return 0; 3174 return 0;
1943} 3175}
1944 3176
1945void inline_size 3177inline_size void
1946pri_adjust (EV_P_ W w) 3178pri_adjust (EV_P_ W w)
1947{ 3179{
1948 int pri = w->priority; 3180 int pri = ev_priority (w);
1949 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3181 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1950 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3182 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1951 w->priority = pri; 3183 ev_set_priority (w, pri);
1952} 3184}
1953 3185
1954void inline_speed 3186inline_speed void
1955ev_start (EV_P_ W w, int active) 3187ev_start (EV_P_ W w, int active)
1956{ 3188{
1957 pri_adjust (EV_A_ w); 3189 pri_adjust (EV_A_ w);
1958 w->active = active; 3190 w->active = active;
1959 ev_ref (EV_A); 3191 ev_ref (EV_A);
1960} 3192}
1961 3193
1962void inline_size 3194inline_size void
1963ev_stop (EV_P_ W w) 3195ev_stop (EV_P_ W w)
1964{ 3196{
1965 ev_unref (EV_A); 3197 ev_unref (EV_A);
1966 w->active = 0; 3198 w->active = 0;
1967} 3199}
1974 int fd = w->fd; 3206 int fd = w->fd;
1975 3207
1976 if (expect_false (ev_is_active (w))) 3208 if (expect_false (ev_is_active (w)))
1977 return; 3209 return;
1978 3210
1979 assert (("ev_io_start called with negative fd", fd >= 0)); 3211 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3212 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3213
3214 EV_FREQUENT_CHECK;
1980 3215
1981 ev_start (EV_A_ (W)w, 1); 3216 ev_start (EV_A_ (W)w, 1);
1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3217 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1983 wlist_add (&anfds[fd].head, (WL)w); 3218 wlist_add (&anfds[fd].head, (WL)w);
1984 3219
1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3220 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1986 w->events &= ~EV_IOFDSET; 3221 w->events &= ~EV__IOFDSET;
3222
3223 EV_FREQUENT_CHECK;
1987} 3224}
1988 3225
1989void noinline 3226void noinline
1990ev_io_stop (EV_P_ ev_io *w) 3227ev_io_stop (EV_P_ ev_io *w)
1991{ 3228{
1992 clear_pending (EV_A_ (W)w); 3229 clear_pending (EV_A_ (W)w);
1993 if (expect_false (!ev_is_active (w))) 3230 if (expect_false (!ev_is_active (w)))
1994 return; 3231 return;
1995 3232
1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3233 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3234
3235 EV_FREQUENT_CHECK;
1997 3236
1998 wlist_del (&anfds[w->fd].head, (WL)w); 3237 wlist_del (&anfds[w->fd].head, (WL)w);
1999 ev_stop (EV_A_ (W)w); 3238 ev_stop (EV_A_ (W)w);
2000 3239
2001 fd_change (EV_A_ w->fd, 1); 3240 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3241
3242 EV_FREQUENT_CHECK;
2002} 3243}
2003 3244
2004void noinline 3245void noinline
2005ev_timer_start (EV_P_ ev_timer *w) 3246ev_timer_start (EV_P_ ev_timer *w)
2006{ 3247{
2007 if (expect_false (ev_is_active (w))) 3248 if (expect_false (ev_is_active (w)))
2008 return; 3249 return;
2009 3250
2010 ev_at (w) += mn_now; 3251 ev_at (w) += mn_now;
2011 3252
2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3253 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2013 3254
3255 EV_FREQUENT_CHECK;
3256
3257 ++timercnt;
2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 3258 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 3259 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2016 ANHE_w (timers [ev_active (w)]) = (WT)w; 3260 ANHE_w (timers [ev_active (w)]) = (WT)w;
2017 ANHE_at_set (timers [ev_active (w)]); 3261 ANHE_at_cache (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w)); 3262 upheap (timers, ev_active (w));
2019 3263
3264 EV_FREQUENT_CHECK;
3265
2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3266 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2021} 3267}
2022 3268
2023void noinline 3269void noinline
2024ev_timer_stop (EV_P_ ev_timer *w) 3270ev_timer_stop (EV_P_ ev_timer *w)
2025{ 3271{
2026 clear_pending (EV_A_ (W)w); 3272 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 3273 if (expect_false (!ev_is_active (w)))
2028 return; 3274 return;
2029 3275
3276 EV_FREQUENT_CHECK;
3277
2030 { 3278 {
2031 int active = ev_active (w); 3279 int active = ev_active (w);
2032 3280
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3281 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034 3282
3283 --timercnt;
3284
2035 if (expect_true (active < timercnt + HEAP0 - 1)) 3285 if (expect_true (active < timercnt + HEAP0))
2036 { 3286 {
2037 timers [active] = timers [timercnt + HEAP0 - 1]; 3287 timers [active] = timers [timercnt + HEAP0];
2038 adjustheap (timers, timercnt, active); 3288 adjustheap (timers, timercnt, active);
2039 } 3289 }
2040
2041 --timercnt;
2042 } 3290 }
2043 3291
2044 ev_at (w) -= mn_now; 3292 ev_at (w) -= mn_now;
2045 3293
2046 ev_stop (EV_A_ (W)w); 3294 ev_stop (EV_A_ (W)w);
3295
3296 EV_FREQUENT_CHECK;
2047} 3297}
2048 3298
2049void noinline 3299void noinline
2050ev_timer_again (EV_P_ ev_timer *w) 3300ev_timer_again (EV_P_ ev_timer *w)
2051{ 3301{
3302 EV_FREQUENT_CHECK;
3303
3304 clear_pending (EV_A_ (W)w);
3305
2052 if (ev_is_active (w)) 3306 if (ev_is_active (w))
2053 { 3307 {
2054 if (w->repeat) 3308 if (w->repeat)
2055 { 3309 {
2056 ev_at (w) = mn_now + w->repeat; 3310 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]); 3311 ANHE_at_cache (timers [ev_active (w)]);
2058 adjustheap (timers, timercnt, ev_active (w)); 3312 adjustheap (timers, timercnt, ev_active (w));
2059 } 3313 }
2060 else 3314 else
2061 ev_timer_stop (EV_A_ w); 3315 ev_timer_stop (EV_A_ w);
2062 } 3316 }
2063 else if (w->repeat) 3317 else if (w->repeat)
2064 { 3318 {
2065 ev_at (w) = w->repeat; 3319 ev_at (w) = w->repeat;
2066 ev_timer_start (EV_A_ w); 3320 ev_timer_start (EV_A_ w);
2067 } 3321 }
3322
3323 EV_FREQUENT_CHECK;
3324}
3325
3326ev_tstamp
3327ev_timer_remaining (EV_P_ ev_timer *w)
3328{
3329 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2068} 3330}
2069 3331
2070#if EV_PERIODIC_ENABLE 3332#if EV_PERIODIC_ENABLE
2071void noinline 3333void noinline
2072ev_periodic_start (EV_P_ ev_periodic *w) 3334ev_periodic_start (EV_P_ ev_periodic *w)
2076 3338
2077 if (w->reschedule_cb) 3339 if (w->reschedule_cb)
2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3340 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2079 else if (w->interval) 3341 else if (w->interval)
2080 { 3342 {
2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3343 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2082 /* this formula differs from the one in periodic_reify because we do not always round up */ 3344 periodic_recalc (EV_A_ w);
2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2084 } 3345 }
2085 else 3346 else
2086 ev_at (w) = w->offset; 3347 ev_at (w) = w->offset;
2087 3348
3349 EV_FREQUENT_CHECK;
3350
3351 ++periodiccnt;
2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 3352 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 3353 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2090 ANHE_w (periodics [ev_active (w)]) = (WT)w; 3354 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3355 ANHE_at_cache (periodics [ev_active (w)]);
2091 upheap (periodics, ev_active (w)); 3356 upheap (periodics, ev_active (w));
2092 3357
3358 EV_FREQUENT_CHECK;
3359
2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3360 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2094} 3361}
2095 3362
2096void noinline 3363void noinline
2097ev_periodic_stop (EV_P_ ev_periodic *w) 3364ev_periodic_stop (EV_P_ ev_periodic *w)
2098{ 3365{
2099 clear_pending (EV_A_ (W)w); 3366 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w))) 3367 if (expect_false (!ev_is_active (w)))
2101 return; 3368 return;
2102 3369
3370 EV_FREQUENT_CHECK;
3371
2103 { 3372 {
2104 int active = ev_active (w); 3373 int active = ev_active (w);
2105 3374
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3375 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107 3376
3377 --periodiccnt;
3378
2108 if (expect_true (active < periodiccnt + HEAP0 - 1)) 3379 if (expect_true (active < periodiccnt + HEAP0))
2109 { 3380 {
2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 3381 periodics [active] = periodics [periodiccnt + HEAP0];
2111 adjustheap (periodics, periodiccnt, active); 3382 adjustheap (periodics, periodiccnt, active);
2112 } 3383 }
2113
2114 --periodiccnt;
2115 } 3384 }
2116 3385
2117 ev_stop (EV_A_ (W)w); 3386 ev_stop (EV_A_ (W)w);
3387
3388 EV_FREQUENT_CHECK;
2118} 3389}
2119 3390
2120void noinline 3391void noinline
2121ev_periodic_again (EV_P_ ev_periodic *w) 3392ev_periodic_again (EV_P_ ev_periodic *w)
2122{ 3393{
2128 3399
2129#ifndef SA_RESTART 3400#ifndef SA_RESTART
2130# define SA_RESTART 0 3401# define SA_RESTART 0
2131#endif 3402#endif
2132 3403
3404#if EV_SIGNAL_ENABLE
3405
2133void noinline 3406void noinline
2134ev_signal_start (EV_P_ ev_signal *w) 3407ev_signal_start (EV_P_ ev_signal *w)
2135{ 3408{
2136#if EV_MULTIPLICITY
2137 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2138#endif
2139 if (expect_false (ev_is_active (w))) 3409 if (expect_false (ev_is_active (w)))
2140 return; 3410 return;
2141 3411
2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3412 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2143 3413
2144 evpipe_init (EV_A); 3414#if EV_MULTIPLICITY
3415 assert (("libev: a signal must not be attached to two different loops",
3416 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2145 3417
3418 signals [w->signum - 1].loop = EV_A;
3419#endif
3420
3421 EV_FREQUENT_CHECK;
3422
3423#if EV_USE_SIGNALFD
3424 if (sigfd == -2)
2146 { 3425 {
2147#ifndef _WIN32 3426 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2148 sigset_t full, prev; 3427 if (sigfd < 0 && errno == EINVAL)
2149 sigfillset (&full); 3428 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2150 sigprocmask (SIG_SETMASK, &full, &prev);
2151#endif
2152 3429
2153 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3430 if (sigfd >= 0)
3431 {
3432 fd_intern (sigfd); /* doing it twice will not hurt */
2154 3433
2155#ifndef _WIN32 3434 sigemptyset (&sigfd_set);
2156 sigprocmask (SIG_SETMASK, &prev, 0); 3435
2157#endif 3436 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3437 ev_set_priority (&sigfd_w, EV_MAXPRI);
3438 ev_io_start (EV_A_ &sigfd_w);
3439 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3440 }
2158 } 3441 }
3442
3443 if (sigfd >= 0)
3444 {
3445 /* TODO: check .head */
3446 sigaddset (&sigfd_set, w->signum);
3447 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3448
3449 signalfd (sigfd, &sigfd_set, 0);
3450 }
3451#endif
2159 3452
2160 ev_start (EV_A_ (W)w, 1); 3453 ev_start (EV_A_ (W)w, 1);
2161 wlist_add (&signals [w->signum - 1].head, (WL)w); 3454 wlist_add (&signals [w->signum - 1].head, (WL)w);
2162 3455
2163 if (!((WL)w)->next) 3456 if (!((WL)w)->next)
3457# if EV_USE_SIGNALFD
3458 if (sigfd < 0) /*TODO*/
3459# endif
2164 { 3460 {
2165#if _WIN32 3461# ifdef _WIN32
3462 evpipe_init (EV_A);
3463
2166 signal (w->signum, ev_sighandler); 3464 signal (w->signum, ev_sighandler);
2167#else 3465# else
2168 struct sigaction sa; 3466 struct sigaction sa;
3467
3468 evpipe_init (EV_A);
3469
2169 sa.sa_handler = ev_sighandler; 3470 sa.sa_handler = ev_sighandler;
2170 sigfillset (&sa.sa_mask); 3471 sigfillset (&sa.sa_mask);
2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3472 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2172 sigaction (w->signum, &sa, 0); 3473 sigaction (w->signum, &sa, 0);
3474
3475 if (origflags & EVFLAG_NOSIGMASK)
3476 {
3477 sigemptyset (&sa.sa_mask);
3478 sigaddset (&sa.sa_mask, w->signum);
3479 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3480 }
2173#endif 3481#endif
2174 } 3482 }
3483
3484 EV_FREQUENT_CHECK;
2175} 3485}
2176 3486
2177void noinline 3487void noinline
2178ev_signal_stop (EV_P_ ev_signal *w) 3488ev_signal_stop (EV_P_ ev_signal *w)
2179{ 3489{
2180 clear_pending (EV_A_ (W)w); 3490 clear_pending (EV_A_ (W)w);
2181 if (expect_false (!ev_is_active (w))) 3491 if (expect_false (!ev_is_active (w)))
2182 return; 3492 return;
2183 3493
3494 EV_FREQUENT_CHECK;
3495
2184 wlist_del (&signals [w->signum - 1].head, (WL)w); 3496 wlist_del (&signals [w->signum - 1].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 3497 ev_stop (EV_A_ (W)w);
2186 3498
2187 if (!signals [w->signum - 1].head) 3499 if (!signals [w->signum - 1].head)
3500 {
3501#if EV_MULTIPLICITY
3502 signals [w->signum - 1].loop = 0; /* unattach from signal */
3503#endif
3504#if EV_USE_SIGNALFD
3505 if (sigfd >= 0)
3506 {
3507 sigset_t ss;
3508
3509 sigemptyset (&ss);
3510 sigaddset (&ss, w->signum);
3511 sigdelset (&sigfd_set, w->signum);
3512
3513 signalfd (sigfd, &sigfd_set, 0);
3514 sigprocmask (SIG_UNBLOCK, &ss, 0);
3515 }
3516 else
3517#endif
2188 signal (w->signum, SIG_DFL); 3518 signal (w->signum, SIG_DFL);
3519 }
3520
3521 EV_FREQUENT_CHECK;
2189} 3522}
3523
3524#endif
3525
3526#if EV_CHILD_ENABLE
2190 3527
2191void 3528void
2192ev_child_start (EV_P_ ev_child *w) 3529ev_child_start (EV_P_ ev_child *w)
2193{ 3530{
2194#if EV_MULTIPLICITY 3531#if EV_MULTIPLICITY
2195 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3532 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2196#endif 3533#endif
2197 if (expect_false (ev_is_active (w))) 3534 if (expect_false (ev_is_active (w)))
2198 return; 3535 return;
2199 3536
3537 EV_FREQUENT_CHECK;
3538
2200 ev_start (EV_A_ (W)w, 1); 3539 ev_start (EV_A_ (W)w, 1);
2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3540 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3541
3542 EV_FREQUENT_CHECK;
2202} 3543}
2203 3544
2204void 3545void
2205ev_child_stop (EV_P_ ev_child *w) 3546ev_child_stop (EV_P_ ev_child *w)
2206{ 3547{
2207 clear_pending (EV_A_ (W)w); 3548 clear_pending (EV_A_ (W)w);
2208 if (expect_false (!ev_is_active (w))) 3549 if (expect_false (!ev_is_active (w)))
2209 return; 3550 return;
2210 3551
3552 EV_FREQUENT_CHECK;
3553
2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3554 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2212 ev_stop (EV_A_ (W)w); 3555 ev_stop (EV_A_ (W)w);
3556
3557 EV_FREQUENT_CHECK;
2213} 3558}
3559
3560#endif
2214 3561
2215#if EV_STAT_ENABLE 3562#if EV_STAT_ENABLE
2216 3563
2217# ifdef _WIN32 3564# ifdef _WIN32
2218# undef lstat 3565# undef lstat
2219# define lstat(a,b) _stati64 (a,b) 3566# define lstat(a,b) _stati64 (a,b)
2220# endif 3567# endif
2221 3568
2222#define DEF_STAT_INTERVAL 5.0074891 3569#define DEF_STAT_INTERVAL 5.0074891
3570#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2223#define MIN_STAT_INTERVAL 0.1074891 3571#define MIN_STAT_INTERVAL 0.1074891
2224 3572
2225static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3573static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2226 3574
2227#if EV_USE_INOTIFY 3575#if EV_USE_INOTIFY
2228# define EV_INOTIFY_BUFSIZE 8192 3576
3577/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3578# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2229 3579
2230static void noinline 3580static void noinline
2231infy_add (EV_P_ ev_stat *w) 3581infy_add (EV_P_ ev_stat *w)
2232{ 3582{
2233 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3583 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2234 3584
2235 if (w->wd < 0) 3585 if (w->wd >= 0)
3586 {
3587 struct statfs sfs;
3588
3589 /* now local changes will be tracked by inotify, but remote changes won't */
3590 /* unless the filesystem is known to be local, we therefore still poll */
3591 /* also do poll on <2.6.25, but with normal frequency */
3592
3593 if (!fs_2625)
3594 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3595 else if (!statfs (w->path, &sfs)
3596 && (sfs.f_type == 0x1373 /* devfs */
3597 || sfs.f_type == 0xEF53 /* ext2/3 */
3598 || sfs.f_type == 0x3153464a /* jfs */
3599 || sfs.f_type == 0x52654973 /* reiser3 */
3600 || sfs.f_type == 0x01021994 /* tempfs */
3601 || sfs.f_type == 0x58465342 /* xfs */))
3602 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3603 else
3604 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2236 { 3605 }
2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3606 else
3607 {
3608 /* can't use inotify, continue to stat */
3609 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2238 3610
2239 /* monitor some parent directory for speedup hints */ 3611 /* if path is not there, monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3612 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2241 /* but an efficiency issue only */ 3613 /* but an efficiency issue only */
2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3614 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2243 { 3615 {
2244 char path [4096]; 3616 char path [4096];
2245 strcpy (path, w->path); 3617 strcpy (path, w->path);
2249 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3621 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2250 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3622 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2251 3623
2252 char *pend = strrchr (path, '/'); 3624 char *pend = strrchr (path, '/');
2253 3625
2254 if (!pend) 3626 if (!pend || pend == path)
2255 break; /* whoops, no '/', complain to your admin */ 3627 break;
2256 3628
2257 *pend = 0; 3629 *pend = 0;
2258 w->wd = inotify_add_watch (fs_fd, path, mask); 3630 w->wd = inotify_add_watch (fs_fd, path, mask);
2259 } 3631 }
2260 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3632 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2261 } 3633 }
2262 } 3634 }
2263 else
2264 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2265 3635
2266 if (w->wd >= 0) 3636 if (w->wd >= 0)
2267 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3637 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3638
3639 /* now re-arm timer, if required */
3640 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3641 ev_timer_again (EV_A_ &w->timer);
3642 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2268} 3643}
2269 3644
2270static void noinline 3645static void noinline
2271infy_del (EV_P_ ev_stat *w) 3646infy_del (EV_P_ ev_stat *w)
2272{ 3647{
2275 3650
2276 if (wd < 0) 3651 if (wd < 0)
2277 return; 3652 return;
2278 3653
2279 w->wd = -2; 3654 w->wd = -2;
2280 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3655 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2281 wlist_del (&fs_hash [slot].head, (WL)w); 3656 wlist_del (&fs_hash [slot].head, (WL)w);
2282 3657
2283 /* remove this watcher, if others are watching it, they will rearm */ 3658 /* remove this watcher, if others are watching it, they will rearm */
2284 inotify_rm_watch (fs_fd, wd); 3659 inotify_rm_watch (fs_fd, wd);
2285} 3660}
2286 3661
2287static void noinline 3662static void noinline
2288infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3663infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2289{ 3664{
2290 if (slot < 0) 3665 if (slot < 0)
2291 /* overflow, need to check for all hahs slots */ 3666 /* overflow, need to check for all hash slots */
2292 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3667 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2293 infy_wd (EV_A_ slot, wd, ev); 3668 infy_wd (EV_A_ slot, wd, ev);
2294 else 3669 else
2295 { 3670 {
2296 WL w_; 3671 WL w_;
2297 3672
2298 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3673 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2299 { 3674 {
2300 ev_stat *w = (ev_stat *)w_; 3675 ev_stat *w = (ev_stat *)w_;
2301 w_ = w_->next; /* lets us remove this watcher and all before it */ 3676 w_ = w_->next; /* lets us remove this watcher and all before it */
2302 3677
2303 if (w->wd == wd || wd == -1) 3678 if (w->wd == wd || wd == -1)
2304 { 3679 {
2305 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3680 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2306 { 3681 {
3682 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2307 w->wd = -1; 3683 w->wd = -1;
2308 infy_add (EV_A_ w); /* re-add, no matter what */ 3684 infy_add (EV_A_ w); /* re-add, no matter what */
2309 } 3685 }
2310 3686
2311 stat_timer_cb (EV_A_ &w->timer, 0); 3687 stat_timer_cb (EV_A_ &w->timer, 0);
2316 3692
2317static void 3693static void
2318infy_cb (EV_P_ ev_io *w, int revents) 3694infy_cb (EV_P_ ev_io *w, int revents)
2319{ 3695{
2320 char buf [EV_INOTIFY_BUFSIZE]; 3696 char buf [EV_INOTIFY_BUFSIZE];
2321 struct inotify_event *ev = (struct inotify_event *)buf;
2322 int ofs; 3697 int ofs;
2323 int len = read (fs_fd, buf, sizeof (buf)); 3698 int len = read (fs_fd, buf, sizeof (buf));
2324 3699
2325 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3700 for (ofs = 0; ofs < len; )
3701 {
3702 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2326 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3703 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3704 ofs += sizeof (struct inotify_event) + ev->len;
3705 }
2327} 3706}
2328 3707
2329void inline_size 3708inline_size void ecb_cold
3709ev_check_2625 (EV_P)
3710{
3711 /* kernels < 2.6.25 are borked
3712 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3713 */
3714 if (ev_linux_version () < 0x020619)
3715 return;
3716
3717 fs_2625 = 1;
3718}
3719
3720inline_size int
3721infy_newfd (void)
3722{
3723#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3724 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3725 if (fd >= 0)
3726 return fd;
3727#endif
3728 return inotify_init ();
3729}
3730
3731inline_size void
2330infy_init (EV_P) 3732infy_init (EV_P)
2331{ 3733{
2332 if (fs_fd != -2) 3734 if (fs_fd != -2)
2333 return; 3735 return;
2334 3736
3737 fs_fd = -1;
3738
3739 ev_check_2625 (EV_A);
3740
2335 fs_fd = inotify_init (); 3741 fs_fd = infy_newfd ();
2336 3742
2337 if (fs_fd >= 0) 3743 if (fs_fd >= 0)
2338 { 3744 {
3745 fd_intern (fs_fd);
2339 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3746 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2340 ev_set_priority (&fs_w, EV_MAXPRI); 3747 ev_set_priority (&fs_w, EV_MAXPRI);
2341 ev_io_start (EV_A_ &fs_w); 3748 ev_io_start (EV_A_ &fs_w);
3749 ev_unref (EV_A);
2342 } 3750 }
2343} 3751}
2344 3752
2345void inline_size 3753inline_size void
2346infy_fork (EV_P) 3754infy_fork (EV_P)
2347{ 3755{
2348 int slot; 3756 int slot;
2349 3757
2350 if (fs_fd < 0) 3758 if (fs_fd < 0)
2351 return; 3759 return;
2352 3760
3761 ev_ref (EV_A);
3762 ev_io_stop (EV_A_ &fs_w);
2353 close (fs_fd); 3763 close (fs_fd);
2354 fs_fd = inotify_init (); 3764 fs_fd = infy_newfd ();
2355 3765
3766 if (fs_fd >= 0)
3767 {
3768 fd_intern (fs_fd);
3769 ev_io_set (&fs_w, fs_fd, EV_READ);
3770 ev_io_start (EV_A_ &fs_w);
3771 ev_unref (EV_A);
3772 }
3773
2356 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3774 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2357 { 3775 {
2358 WL w_ = fs_hash [slot].head; 3776 WL w_ = fs_hash [slot].head;
2359 fs_hash [slot].head = 0; 3777 fs_hash [slot].head = 0;
2360 3778
2361 while (w_) 3779 while (w_)
2366 w->wd = -1; 3784 w->wd = -1;
2367 3785
2368 if (fs_fd >= 0) 3786 if (fs_fd >= 0)
2369 infy_add (EV_A_ w); /* re-add, no matter what */ 3787 infy_add (EV_A_ w); /* re-add, no matter what */
2370 else 3788 else
3789 {
3790 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3791 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2371 ev_timer_start (EV_A_ &w->timer); 3792 ev_timer_again (EV_A_ &w->timer);
3793 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3794 }
2372 } 3795 }
2373
2374 } 3796 }
2375} 3797}
2376 3798
3799#endif
3800
3801#ifdef _WIN32
3802# define EV_LSTAT(p,b) _stati64 (p, b)
3803#else
3804# define EV_LSTAT(p,b) lstat (p, b)
2377#endif 3805#endif
2378 3806
2379void 3807void
2380ev_stat_stat (EV_P_ ev_stat *w) 3808ev_stat_stat (EV_P_ ev_stat *w)
2381{ 3809{
2388static void noinline 3816static void noinline
2389stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3817stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2390{ 3818{
2391 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3819 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2392 3820
2393 /* we copy this here each the time so that */ 3821 ev_statdata prev = w->attr;
2394 /* prev has the old value when the callback gets invoked */
2395 w->prev = w->attr;
2396 ev_stat_stat (EV_A_ w); 3822 ev_stat_stat (EV_A_ w);
2397 3823
2398 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3824 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2399 if ( 3825 if (
2400 w->prev.st_dev != w->attr.st_dev 3826 prev.st_dev != w->attr.st_dev
2401 || w->prev.st_ino != w->attr.st_ino 3827 || prev.st_ino != w->attr.st_ino
2402 || w->prev.st_mode != w->attr.st_mode 3828 || prev.st_mode != w->attr.st_mode
2403 || w->prev.st_nlink != w->attr.st_nlink 3829 || prev.st_nlink != w->attr.st_nlink
2404 || w->prev.st_uid != w->attr.st_uid 3830 || prev.st_uid != w->attr.st_uid
2405 || w->prev.st_gid != w->attr.st_gid 3831 || prev.st_gid != w->attr.st_gid
2406 || w->prev.st_rdev != w->attr.st_rdev 3832 || prev.st_rdev != w->attr.st_rdev
2407 || w->prev.st_size != w->attr.st_size 3833 || prev.st_size != w->attr.st_size
2408 || w->prev.st_atime != w->attr.st_atime 3834 || prev.st_atime != w->attr.st_atime
2409 || w->prev.st_mtime != w->attr.st_mtime 3835 || prev.st_mtime != w->attr.st_mtime
2410 || w->prev.st_ctime != w->attr.st_ctime 3836 || prev.st_ctime != w->attr.st_ctime
2411 ) { 3837 ) {
3838 /* we only update w->prev on actual differences */
3839 /* in case we test more often than invoke the callback, */
3840 /* to ensure that prev is always different to attr */
3841 w->prev = prev;
3842
2412 #if EV_USE_INOTIFY 3843 #if EV_USE_INOTIFY
3844 if (fs_fd >= 0)
3845 {
2413 infy_del (EV_A_ w); 3846 infy_del (EV_A_ w);
2414 infy_add (EV_A_ w); 3847 infy_add (EV_A_ w);
2415 ev_stat_stat (EV_A_ w); /* avoid race... */ 3848 ev_stat_stat (EV_A_ w); /* avoid race... */
3849 }
2416 #endif 3850 #endif
2417 3851
2418 ev_feed_event (EV_A_ w, EV_STAT); 3852 ev_feed_event (EV_A_ w, EV_STAT);
2419 } 3853 }
2420} 3854}
2423ev_stat_start (EV_P_ ev_stat *w) 3857ev_stat_start (EV_P_ ev_stat *w)
2424{ 3858{
2425 if (expect_false (ev_is_active (w))) 3859 if (expect_false (ev_is_active (w)))
2426 return; 3860 return;
2427 3861
2428 /* since we use memcmp, we need to clear any padding data etc. */
2429 memset (&w->prev, 0, sizeof (ev_statdata));
2430 memset (&w->attr, 0, sizeof (ev_statdata));
2431
2432 ev_stat_stat (EV_A_ w); 3862 ev_stat_stat (EV_A_ w);
2433 3863
3864 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2434 if (w->interval < MIN_STAT_INTERVAL) 3865 w->interval = MIN_STAT_INTERVAL;
2435 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2436 3866
2437 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3867 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2438 ev_set_priority (&w->timer, ev_priority (w)); 3868 ev_set_priority (&w->timer, ev_priority (w));
2439 3869
2440#if EV_USE_INOTIFY 3870#if EV_USE_INOTIFY
2441 infy_init (EV_A); 3871 infy_init (EV_A);
2442 3872
2443 if (fs_fd >= 0) 3873 if (fs_fd >= 0)
2444 infy_add (EV_A_ w); 3874 infy_add (EV_A_ w);
2445 else 3875 else
2446#endif 3876#endif
3877 {
2447 ev_timer_start (EV_A_ &w->timer); 3878 ev_timer_again (EV_A_ &w->timer);
3879 ev_unref (EV_A);
3880 }
2448 3881
2449 ev_start (EV_A_ (W)w, 1); 3882 ev_start (EV_A_ (W)w, 1);
3883
3884 EV_FREQUENT_CHECK;
2450} 3885}
2451 3886
2452void 3887void
2453ev_stat_stop (EV_P_ ev_stat *w) 3888ev_stat_stop (EV_P_ ev_stat *w)
2454{ 3889{
2455 clear_pending (EV_A_ (W)w); 3890 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 3891 if (expect_false (!ev_is_active (w)))
2457 return; 3892 return;
2458 3893
3894 EV_FREQUENT_CHECK;
3895
2459#if EV_USE_INOTIFY 3896#if EV_USE_INOTIFY
2460 infy_del (EV_A_ w); 3897 infy_del (EV_A_ w);
2461#endif 3898#endif
3899
3900 if (ev_is_active (&w->timer))
3901 {
3902 ev_ref (EV_A);
2462 ev_timer_stop (EV_A_ &w->timer); 3903 ev_timer_stop (EV_A_ &w->timer);
3904 }
2463 3905
2464 ev_stop (EV_A_ (W)w); 3906 ev_stop (EV_A_ (W)w);
3907
3908 EV_FREQUENT_CHECK;
2465} 3909}
2466#endif 3910#endif
2467 3911
2468#if EV_IDLE_ENABLE 3912#if EV_IDLE_ENABLE
2469void 3913void
2472 if (expect_false (ev_is_active (w))) 3916 if (expect_false (ev_is_active (w)))
2473 return; 3917 return;
2474 3918
2475 pri_adjust (EV_A_ (W)w); 3919 pri_adjust (EV_A_ (W)w);
2476 3920
3921 EV_FREQUENT_CHECK;
3922
2477 { 3923 {
2478 int active = ++idlecnt [ABSPRI (w)]; 3924 int active = ++idlecnt [ABSPRI (w)];
2479 3925
2480 ++idleall; 3926 ++idleall;
2481 ev_start (EV_A_ (W)w, active); 3927 ev_start (EV_A_ (W)w, active);
2482 3928
2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3929 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2484 idles [ABSPRI (w)][active - 1] = w; 3930 idles [ABSPRI (w)][active - 1] = w;
2485 } 3931 }
3932
3933 EV_FREQUENT_CHECK;
2486} 3934}
2487 3935
2488void 3936void
2489ev_idle_stop (EV_P_ ev_idle *w) 3937ev_idle_stop (EV_P_ ev_idle *w)
2490{ 3938{
2491 clear_pending (EV_A_ (W)w); 3939 clear_pending (EV_A_ (W)w);
2492 if (expect_false (!ev_is_active (w))) 3940 if (expect_false (!ev_is_active (w)))
2493 return; 3941 return;
2494 3942
3943 EV_FREQUENT_CHECK;
3944
2495 { 3945 {
2496 int active = ev_active (w); 3946 int active = ev_active (w);
2497 3947
2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3948 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3949 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500 3950
2501 ev_stop (EV_A_ (W)w); 3951 ev_stop (EV_A_ (W)w);
2502 --idleall; 3952 --idleall;
2503 } 3953 }
2504}
2505#endif
2506 3954
3955 EV_FREQUENT_CHECK;
3956}
3957#endif
3958
3959#if EV_PREPARE_ENABLE
2507void 3960void
2508ev_prepare_start (EV_P_ ev_prepare *w) 3961ev_prepare_start (EV_P_ ev_prepare *w)
2509{ 3962{
2510 if (expect_false (ev_is_active (w))) 3963 if (expect_false (ev_is_active (w)))
2511 return; 3964 return;
3965
3966 EV_FREQUENT_CHECK;
2512 3967
2513 ev_start (EV_A_ (W)w, ++preparecnt); 3968 ev_start (EV_A_ (W)w, ++preparecnt);
2514 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3969 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2515 prepares [preparecnt - 1] = w; 3970 prepares [preparecnt - 1] = w;
3971
3972 EV_FREQUENT_CHECK;
2516} 3973}
2517 3974
2518void 3975void
2519ev_prepare_stop (EV_P_ ev_prepare *w) 3976ev_prepare_stop (EV_P_ ev_prepare *w)
2520{ 3977{
2521 clear_pending (EV_A_ (W)w); 3978 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 3979 if (expect_false (!ev_is_active (w)))
2523 return; 3980 return;
2524 3981
3982 EV_FREQUENT_CHECK;
3983
2525 { 3984 {
2526 int active = ev_active (w); 3985 int active = ev_active (w);
2527 3986
2528 prepares [active - 1] = prepares [--preparecnt]; 3987 prepares [active - 1] = prepares [--preparecnt];
2529 ev_active (prepares [active - 1]) = active; 3988 ev_active (prepares [active - 1]) = active;
2530 } 3989 }
2531 3990
2532 ev_stop (EV_A_ (W)w); 3991 ev_stop (EV_A_ (W)w);
2533}
2534 3992
3993 EV_FREQUENT_CHECK;
3994}
3995#endif
3996
3997#if EV_CHECK_ENABLE
2535void 3998void
2536ev_check_start (EV_P_ ev_check *w) 3999ev_check_start (EV_P_ ev_check *w)
2537{ 4000{
2538 if (expect_false (ev_is_active (w))) 4001 if (expect_false (ev_is_active (w)))
2539 return; 4002 return;
4003
4004 EV_FREQUENT_CHECK;
2540 4005
2541 ev_start (EV_A_ (W)w, ++checkcnt); 4006 ev_start (EV_A_ (W)w, ++checkcnt);
2542 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4007 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2543 checks [checkcnt - 1] = w; 4008 checks [checkcnt - 1] = w;
4009
4010 EV_FREQUENT_CHECK;
2544} 4011}
2545 4012
2546void 4013void
2547ev_check_stop (EV_P_ ev_check *w) 4014ev_check_stop (EV_P_ ev_check *w)
2548{ 4015{
2549 clear_pending (EV_A_ (W)w); 4016 clear_pending (EV_A_ (W)w);
2550 if (expect_false (!ev_is_active (w))) 4017 if (expect_false (!ev_is_active (w)))
2551 return; 4018 return;
2552 4019
4020 EV_FREQUENT_CHECK;
4021
2553 { 4022 {
2554 int active = ev_active (w); 4023 int active = ev_active (w);
2555 4024
2556 checks [active - 1] = checks [--checkcnt]; 4025 checks [active - 1] = checks [--checkcnt];
2557 ev_active (checks [active - 1]) = active; 4026 ev_active (checks [active - 1]) = active;
2558 } 4027 }
2559 4028
2560 ev_stop (EV_A_ (W)w); 4029 ev_stop (EV_A_ (W)w);
4030
4031 EV_FREQUENT_CHECK;
2561} 4032}
4033#endif
2562 4034
2563#if EV_EMBED_ENABLE 4035#if EV_EMBED_ENABLE
2564void noinline 4036void noinline
2565ev_embed_sweep (EV_P_ ev_embed *w) 4037ev_embed_sweep (EV_P_ ev_embed *w)
2566{ 4038{
2567 ev_loop (w->other, EVLOOP_NONBLOCK); 4039 ev_run (w->other, EVRUN_NOWAIT);
2568} 4040}
2569 4041
2570static void 4042static void
2571embed_io_cb (EV_P_ ev_io *io, int revents) 4043embed_io_cb (EV_P_ ev_io *io, int revents)
2572{ 4044{
2573 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4045 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2574 4046
2575 if (ev_cb (w)) 4047 if (ev_cb (w))
2576 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4048 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2577 else 4049 else
2578 ev_loop (w->other, EVLOOP_NONBLOCK); 4050 ev_run (w->other, EVRUN_NOWAIT);
2579} 4051}
2580 4052
2581static void 4053static void
2582embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4054embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2583{ 4055{
2584 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4056 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2585 4057
2586 { 4058 {
2587 struct ev_loop *loop = w->other; 4059 EV_P = w->other;
2588 4060
2589 while (fdchangecnt) 4061 while (fdchangecnt)
2590 { 4062 {
2591 fd_reify (EV_A); 4063 fd_reify (EV_A);
2592 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4064 ev_run (EV_A_ EVRUN_NOWAIT);
2593 } 4065 }
2594 } 4066 }
4067}
4068
4069static void
4070embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4071{
4072 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4073
4074 ev_embed_stop (EV_A_ w);
4075
4076 {
4077 EV_P = w->other;
4078
4079 ev_loop_fork (EV_A);
4080 ev_run (EV_A_ EVRUN_NOWAIT);
4081 }
4082
4083 ev_embed_start (EV_A_ w);
2595} 4084}
2596 4085
2597#if 0 4086#if 0
2598static void 4087static void
2599embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4088embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2607{ 4096{
2608 if (expect_false (ev_is_active (w))) 4097 if (expect_false (ev_is_active (w)))
2609 return; 4098 return;
2610 4099
2611 { 4100 {
2612 struct ev_loop *loop = w->other; 4101 EV_P = w->other;
2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4102 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4103 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2615 } 4104 }
4105
4106 EV_FREQUENT_CHECK;
2616 4107
2617 ev_set_priority (&w->io, ev_priority (w)); 4108 ev_set_priority (&w->io, ev_priority (w));
2618 ev_io_start (EV_A_ &w->io); 4109 ev_io_start (EV_A_ &w->io);
2619 4110
2620 ev_prepare_init (&w->prepare, embed_prepare_cb); 4111 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI); 4112 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare); 4113 ev_prepare_start (EV_A_ &w->prepare);
2623 4114
4115 ev_fork_init (&w->fork, embed_fork_cb);
4116 ev_fork_start (EV_A_ &w->fork);
4117
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4118 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625 4119
2626 ev_start (EV_A_ (W)w, 1); 4120 ev_start (EV_A_ (W)w, 1);
4121
4122 EV_FREQUENT_CHECK;
2627} 4123}
2628 4124
2629void 4125void
2630ev_embed_stop (EV_P_ ev_embed *w) 4126ev_embed_stop (EV_P_ ev_embed *w)
2631{ 4127{
2632 clear_pending (EV_A_ (W)w); 4128 clear_pending (EV_A_ (W)w);
2633 if (expect_false (!ev_is_active (w))) 4129 if (expect_false (!ev_is_active (w)))
2634 return; 4130 return;
2635 4131
4132 EV_FREQUENT_CHECK;
4133
2636 ev_io_stop (EV_A_ &w->io); 4134 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare); 4135 ev_prepare_stop (EV_A_ &w->prepare);
4136 ev_fork_stop (EV_A_ &w->fork);
2638 4137
2639 ev_stop (EV_A_ (W)w); 4138 ev_stop (EV_A_ (W)w);
4139
4140 EV_FREQUENT_CHECK;
2640} 4141}
2641#endif 4142#endif
2642 4143
2643#if EV_FORK_ENABLE 4144#if EV_FORK_ENABLE
2644void 4145void
2645ev_fork_start (EV_P_ ev_fork *w) 4146ev_fork_start (EV_P_ ev_fork *w)
2646{ 4147{
2647 if (expect_false (ev_is_active (w))) 4148 if (expect_false (ev_is_active (w)))
2648 return; 4149 return;
2649 4150
4151 EV_FREQUENT_CHECK;
4152
2650 ev_start (EV_A_ (W)w, ++forkcnt); 4153 ev_start (EV_A_ (W)w, ++forkcnt);
2651 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4154 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2652 forks [forkcnt - 1] = w; 4155 forks [forkcnt - 1] = w;
4156
4157 EV_FREQUENT_CHECK;
2653} 4158}
2654 4159
2655void 4160void
2656ev_fork_stop (EV_P_ ev_fork *w) 4161ev_fork_stop (EV_P_ ev_fork *w)
2657{ 4162{
2658 clear_pending (EV_A_ (W)w); 4163 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w))) 4164 if (expect_false (!ev_is_active (w)))
2660 return; 4165 return;
2661 4166
4167 EV_FREQUENT_CHECK;
4168
2662 { 4169 {
2663 int active = ev_active (w); 4170 int active = ev_active (w);
2664 4171
2665 forks [active - 1] = forks [--forkcnt]; 4172 forks [active - 1] = forks [--forkcnt];
2666 ev_active (forks [active - 1]) = active; 4173 ev_active (forks [active - 1]) = active;
2667 } 4174 }
2668 4175
2669 ev_stop (EV_A_ (W)w); 4176 ev_stop (EV_A_ (W)w);
4177
4178 EV_FREQUENT_CHECK;
4179}
4180#endif
4181
4182#if EV_CLEANUP_ENABLE
4183void
4184ev_cleanup_start (EV_P_ ev_cleanup *w)
4185{
4186 if (expect_false (ev_is_active (w)))
4187 return;
4188
4189 EV_FREQUENT_CHECK;
4190
4191 ev_start (EV_A_ (W)w, ++cleanupcnt);
4192 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4193 cleanups [cleanupcnt - 1] = w;
4194
4195 /* cleanup watchers should never keep a refcount on the loop */
4196 ev_unref (EV_A);
4197 EV_FREQUENT_CHECK;
4198}
4199
4200void
4201ev_cleanup_stop (EV_P_ ev_cleanup *w)
4202{
4203 clear_pending (EV_A_ (W)w);
4204 if (expect_false (!ev_is_active (w)))
4205 return;
4206
4207 EV_FREQUENT_CHECK;
4208 ev_ref (EV_A);
4209
4210 {
4211 int active = ev_active (w);
4212
4213 cleanups [active - 1] = cleanups [--cleanupcnt];
4214 ev_active (cleanups [active - 1]) = active;
4215 }
4216
4217 ev_stop (EV_A_ (W)w);
4218
4219 EV_FREQUENT_CHECK;
2670} 4220}
2671#endif 4221#endif
2672 4222
2673#if EV_ASYNC_ENABLE 4223#if EV_ASYNC_ENABLE
2674void 4224void
2675ev_async_start (EV_P_ ev_async *w) 4225ev_async_start (EV_P_ ev_async *w)
2676{ 4226{
2677 if (expect_false (ev_is_active (w))) 4227 if (expect_false (ev_is_active (w)))
2678 return; 4228 return;
2679 4229
4230 w->sent = 0;
4231
2680 evpipe_init (EV_A); 4232 evpipe_init (EV_A);
4233
4234 EV_FREQUENT_CHECK;
2681 4235
2682 ev_start (EV_A_ (W)w, ++asynccnt); 4236 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4237 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w; 4238 asyncs [asynccnt - 1] = w;
4239
4240 EV_FREQUENT_CHECK;
2685} 4241}
2686 4242
2687void 4243void
2688ev_async_stop (EV_P_ ev_async *w) 4244ev_async_stop (EV_P_ ev_async *w)
2689{ 4245{
2690 clear_pending (EV_A_ (W)w); 4246 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w))) 4247 if (expect_false (!ev_is_active (w)))
2692 return; 4248 return;
2693 4249
4250 EV_FREQUENT_CHECK;
4251
2694 { 4252 {
2695 int active = ev_active (w); 4253 int active = ev_active (w);
2696 4254
2697 asyncs [active - 1] = asyncs [--asynccnt]; 4255 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active; 4256 ev_active (asyncs [active - 1]) = active;
2699 } 4257 }
2700 4258
2701 ev_stop (EV_A_ (W)w); 4259 ev_stop (EV_A_ (W)w);
4260
4261 EV_FREQUENT_CHECK;
2702} 4262}
2703 4263
2704void 4264void
2705ev_async_send (EV_P_ ev_async *w) 4265ev_async_send (EV_P_ ev_async *w)
2706{ 4266{
2707 w->sent = 1; 4267 w->sent = 1;
2708 evpipe_write (EV_A_ &gotasync); 4268 evpipe_write (EV_A_ &async_pending);
2709} 4269}
2710#endif 4270#endif
2711 4271
2712/*****************************************************************************/ 4272/*****************************************************************************/
2713 4273
2723once_cb (EV_P_ struct ev_once *once, int revents) 4283once_cb (EV_P_ struct ev_once *once, int revents)
2724{ 4284{
2725 void (*cb)(int revents, void *arg) = once->cb; 4285 void (*cb)(int revents, void *arg) = once->cb;
2726 void *arg = once->arg; 4286 void *arg = once->arg;
2727 4287
2728 ev_io_stop (EV_A_ &once->io); 4288 ev_io_stop (EV_A_ &once->io);
2729 ev_timer_stop (EV_A_ &once->to); 4289 ev_timer_stop (EV_A_ &once->to);
2730 ev_free (once); 4290 ev_free (once);
2731 4291
2732 cb (revents, arg); 4292 cb (revents, arg);
2733} 4293}
2734 4294
2735static void 4295static void
2736once_cb_io (EV_P_ ev_io *w, int revents) 4296once_cb_io (EV_P_ ev_io *w, int revents)
2737{ 4297{
2738 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4298 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4299
4300 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2739} 4301}
2740 4302
2741static void 4303static void
2742once_cb_to (EV_P_ ev_timer *w, int revents) 4304once_cb_to (EV_P_ ev_timer *w, int revents)
2743{ 4305{
2744 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4306 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4307
4308 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2745} 4309}
2746 4310
2747void 4311void
2748ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4312ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2749{ 4313{
2750 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4314 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2751 4315
2752 if (expect_false (!once)) 4316 if (expect_false (!once))
2753 { 4317 {
2754 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4318 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2755 return; 4319 return;
2756 } 4320 }
2757 4321
2758 once->cb = cb; 4322 once->cb = cb;
2759 once->arg = arg; 4323 once->arg = arg;
2771 ev_timer_set (&once->to, timeout, 0.); 4335 ev_timer_set (&once->to, timeout, 0.);
2772 ev_timer_start (EV_A_ &once->to); 4336 ev_timer_start (EV_A_ &once->to);
2773 } 4337 }
2774} 4338}
2775 4339
4340/*****************************************************************************/
4341
4342#if EV_WALK_ENABLE
4343void ecb_cold
4344ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4345{
4346 int i, j;
4347 ev_watcher_list *wl, *wn;
4348
4349 if (types & (EV_IO | EV_EMBED))
4350 for (i = 0; i < anfdmax; ++i)
4351 for (wl = anfds [i].head; wl; )
4352 {
4353 wn = wl->next;
4354
4355#if EV_EMBED_ENABLE
4356 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4357 {
4358 if (types & EV_EMBED)
4359 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4360 }
4361 else
4362#endif
4363#if EV_USE_INOTIFY
4364 if (ev_cb ((ev_io *)wl) == infy_cb)
4365 ;
4366 else
4367#endif
4368 if ((ev_io *)wl != &pipe_w)
4369 if (types & EV_IO)
4370 cb (EV_A_ EV_IO, wl);
4371
4372 wl = wn;
4373 }
4374
4375 if (types & (EV_TIMER | EV_STAT))
4376 for (i = timercnt + HEAP0; i-- > HEAP0; )
4377#if EV_STAT_ENABLE
4378 /*TODO: timer is not always active*/
4379 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4380 {
4381 if (types & EV_STAT)
4382 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4383 }
4384 else
4385#endif
4386 if (types & EV_TIMER)
4387 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4388
4389#if EV_PERIODIC_ENABLE
4390 if (types & EV_PERIODIC)
4391 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4392 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4393#endif
4394
4395#if EV_IDLE_ENABLE
4396 if (types & EV_IDLE)
4397 for (j = NUMPRI; j--; )
4398 for (i = idlecnt [j]; i--; )
4399 cb (EV_A_ EV_IDLE, idles [j][i]);
4400#endif
4401
4402#if EV_FORK_ENABLE
4403 if (types & EV_FORK)
4404 for (i = forkcnt; i--; )
4405 if (ev_cb (forks [i]) != embed_fork_cb)
4406 cb (EV_A_ EV_FORK, forks [i]);
4407#endif
4408
4409#if EV_ASYNC_ENABLE
4410 if (types & EV_ASYNC)
4411 for (i = asynccnt; i--; )
4412 cb (EV_A_ EV_ASYNC, asyncs [i]);
4413#endif
4414
4415#if EV_PREPARE_ENABLE
4416 if (types & EV_PREPARE)
4417 for (i = preparecnt; i--; )
4418# if EV_EMBED_ENABLE
4419 if (ev_cb (prepares [i]) != embed_prepare_cb)
4420# endif
4421 cb (EV_A_ EV_PREPARE, prepares [i]);
4422#endif
4423
4424#if EV_CHECK_ENABLE
4425 if (types & EV_CHECK)
4426 for (i = checkcnt; i--; )
4427 cb (EV_A_ EV_CHECK, checks [i]);
4428#endif
4429
4430#if EV_SIGNAL_ENABLE
4431 if (types & EV_SIGNAL)
4432 for (i = 0; i < EV_NSIG - 1; ++i)
4433 for (wl = signals [i].head; wl; )
4434 {
4435 wn = wl->next;
4436 cb (EV_A_ EV_SIGNAL, wl);
4437 wl = wn;
4438 }
4439#endif
4440
4441#if EV_CHILD_ENABLE
4442 if (types & EV_CHILD)
4443 for (i = (EV_PID_HASHSIZE); i--; )
4444 for (wl = childs [i]; wl; )
4445 {
4446 wn = wl->next;
4447 cb (EV_A_ EV_CHILD, wl);
4448 wl = wn;
4449 }
4450#endif
4451/* EV_STAT 0x00001000 /* stat data changed */
4452/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4453}
4454#endif
4455
2776#if EV_MULTIPLICITY 4456#if EV_MULTIPLICITY
2777 #include "ev_wrap.h" 4457 #include "ev_wrap.h"
2778#endif 4458#endif
2779 4459
2780#ifdef __cplusplus
2781}
2782#endif
2783

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines