ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC vs.
Revision 1.469 by root, Fri Sep 5 16:21:19 2014 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
160# include <windows.h> 207# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
163# endif 210# endif
211# undef EV_AVOID_STDIO
164#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
165 221
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
167 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
258# endif
259#endif
260
168#ifndef EV_USE_MONOTONIC 261#ifndef EV_USE_MONOTONIC
262# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
263# define EV_USE_MONOTONIC EV_FEATURE_OS
264# else
169# define EV_USE_MONOTONIC 0 265# define EV_USE_MONOTONIC 0
266# endif
170#endif 267#endif
171 268
172#ifndef EV_USE_REALTIME 269#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 270# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 271#endif
175 272
176#ifndef EV_USE_NANOSLEEP 273#ifndef EV_USE_NANOSLEEP
274# if _POSIX_C_SOURCE >= 199309L
275# define EV_USE_NANOSLEEP EV_FEATURE_OS
276# else
177# define EV_USE_NANOSLEEP 0 277# define EV_USE_NANOSLEEP 0
278# endif
178#endif 279#endif
179 280
180#ifndef EV_USE_SELECT 281#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 282# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 283#endif
183 284
184#ifndef EV_USE_POLL 285#ifndef EV_USE_POLL
185# ifdef _WIN32 286# ifdef _WIN32
186# define EV_USE_POLL 0 287# define EV_USE_POLL 0
187# else 288# else
188# define EV_USE_POLL 1 289# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 290# endif
190#endif 291#endif
191 292
192#ifndef EV_USE_EPOLL 293#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 295# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 296# else
196# define EV_USE_EPOLL 0 297# define EV_USE_EPOLL 0
197# endif 298# endif
198#endif 299#endif
199 300
205# define EV_USE_PORT 0 306# define EV_USE_PORT 0
206#endif 307#endif
207 308
208#ifndef EV_USE_INOTIFY 309#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 311# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 312# else
212# define EV_USE_INOTIFY 0 313# define EV_USE_INOTIFY 0
213# endif 314# endif
214#endif 315#endif
215 316
216#ifndef EV_PID_HASHSIZE 317#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 318# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 319#endif
223 320
224#ifndef EV_INOTIFY_HASHSIZE 321#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 322# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 323#endif
231 324
232#ifndef EV_USE_EVENTFD 325#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 326# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 327# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 328# else
236# define EV_USE_EVENTFD 0 329# define EV_USE_EVENTFD 0
237# endif 330# endif
238#endif 331#endif
239 332
333#ifndef EV_USE_SIGNALFD
334# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
335# define EV_USE_SIGNALFD EV_FEATURE_OS
336# else
337# define EV_USE_SIGNALFD 0
338# endif
339#endif
340
341#if 0 /* debugging */
342# define EV_VERIFY 3
343# define EV_USE_4HEAP 1
344# define EV_HEAP_CACHE_AT 1
345#endif
346
347#ifndef EV_VERIFY
348# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
349#endif
350
351#ifndef EV_USE_4HEAP
352# define EV_USE_4HEAP EV_FEATURE_DATA
353#endif
354
355#ifndef EV_HEAP_CACHE_AT
356# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357#endif
358
359#ifdef ANDROID
360/* supposedly, android doesn't typedef fd_mask */
361# undef EV_USE_SELECT
362# define EV_USE_SELECT 0
363/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364# undef EV_USE_CLOCK_SYSCALL
365# define EV_USE_CLOCK_SYSCALL 0
366#endif
367
368/* aix's poll.h seems to cause lots of trouble */
369#ifdef _AIX
370/* AIX has a completely broken poll.h header */
371# undef EV_USE_POLL
372# define EV_USE_POLL 0
373#endif
374
375/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376/* which makes programs even slower. might work on other unices, too. */
377#if EV_USE_CLOCK_SYSCALL
378# include <sys/syscall.h>
379# ifdef SYS_clock_gettime
380# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381# undef EV_USE_MONOTONIC
382# define EV_USE_MONOTONIC 1
383# else
384# undef EV_USE_CLOCK_SYSCALL
385# define EV_USE_CLOCK_SYSCALL 0
386# endif
387#endif
388
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 389/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 390
242#ifndef CLOCK_MONOTONIC 391#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 392# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 393# define EV_USE_MONOTONIC 0
253# undef EV_USE_INOTIFY 402# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 403# define EV_USE_INOTIFY 0
255#endif 404#endif
256 405
257#if !EV_USE_NANOSLEEP 406#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 407/* hp-ux has it in sys/time.h, which we unconditionally include above */
408# if !defined _WIN32 && !defined __hpux
259# include <sys/select.h> 409# include <sys/select.h>
260# endif 410# endif
261#endif 411#endif
262 412
263#if EV_USE_INOTIFY 413#if EV_USE_INOTIFY
414# include <sys/statfs.h>
264# include <sys/inotify.h> 415# include <sys/inotify.h>
416/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
417# ifndef IN_DONT_FOLLOW
418# undef EV_USE_INOTIFY
419# define EV_USE_INOTIFY 0
265#endif 420# endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif 421#endif
270 422
271#if EV_USE_EVENTFD 423#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 424/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 425# include <stdint.h>
274# ifdef __cplusplus 426# ifndef EFD_NONBLOCK
275extern "C" { 427# define EFD_NONBLOCK O_NONBLOCK
276# endif 428# endif
277int eventfd (unsigned int initval, int flags); 429# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 430# ifdef O_CLOEXEC
279} 431# define EFD_CLOEXEC O_CLOEXEC
432# else
433# define EFD_CLOEXEC 02000000
434# endif
280# endif 435# endif
436EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437#endif
438
439#if EV_USE_SIGNALFD
440/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441# include <stdint.h>
442# ifndef SFD_NONBLOCK
443# define SFD_NONBLOCK O_NONBLOCK
444# endif
445# ifndef SFD_CLOEXEC
446# ifdef O_CLOEXEC
447# define SFD_CLOEXEC O_CLOEXEC
448# else
449# define SFD_CLOEXEC 02000000
450# endif
451# endif
452EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453
454struct signalfd_siginfo
455{
456 uint32_t ssi_signo;
457 char pad[128 - sizeof (uint32_t)];
458};
281#endif 459#endif
282 460
283/**/ 461/**/
284 462
463#if EV_VERIFY >= 3
464# define EV_FREQUENT_CHECK ev_verify (EV_A)
465#else
466# define EV_FREQUENT_CHECK do { } while (0)
467#endif
468
285/* 469/*
286 * This is used to avoid floating point rounding problems. 470 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 471 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 472 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 473#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 475
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 476#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 477#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 478
479#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481
482/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483/* ECB.H BEGIN */
484/*
485 * libecb - http://software.schmorp.de/pkg/libecb
486 *
487 * Copyright (©) 2009-2014 Marc Alexander Lehmann <libecb@schmorp.de>
488 * Copyright (©) 2011 Emanuele Giaquinta
489 * All rights reserved.
490 *
491 * Redistribution and use in source and binary forms, with or without modifica-
492 * tion, are permitted provided that the following conditions are met:
493 *
494 * 1. Redistributions of source code must retain the above copyright notice,
495 * this list of conditions and the following disclaimer.
496 *
497 * 2. Redistributions in binary form must reproduce the above copyright
498 * notice, this list of conditions and the following disclaimer in the
499 * documentation and/or other materials provided with the distribution.
500 *
501 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510 * OF THE POSSIBILITY OF SUCH DAMAGE.
511 *
512 * Alternatively, the contents of this file may be used under the terms of
513 * the GNU General Public License ("GPL") version 2 or any later version,
514 * in which case the provisions of the GPL are applicable instead of
515 * the above. If you wish to allow the use of your version of this file
516 * only under the terms of the GPL and not to allow others to use your
517 * version of this file under the BSD license, indicate your decision
518 * by deleting the provisions above and replace them with the notice
519 * and other provisions required by the GPL. If you do not delete the
520 * provisions above, a recipient may use your version of this file under
521 * either the BSD or the GPL.
522 */
523
524#ifndef ECB_H
525#define ECB_H
526
527/* 16 bits major, 16 bits minor */
528#define ECB_VERSION 0x00010003
529
530#ifdef _WIN32
531 typedef signed char int8_t;
532 typedef unsigned char uint8_t;
533 typedef signed short int16_t;
534 typedef unsigned short uint16_t;
535 typedef signed int int32_t;
536 typedef unsigned int uint32_t;
299#if __GNUC__ >= 4 537 #if __GNUC__
300# define expect(expr,value) __builtin_expect ((expr),(value)) 538 typedef signed long long int64_t;
301# define noinline __attribute__ ((noinline)) 539 typedef unsigned long long uint64_t;
540 #else /* _MSC_VER || __BORLANDC__ */
541 typedef signed __int64 int64_t;
542 typedef unsigned __int64 uint64_t;
543 #endif
544 #ifdef _WIN64
545 #define ECB_PTRSIZE 8
546 typedef uint64_t uintptr_t;
547 typedef int64_t intptr_t;
548 #else
549 #define ECB_PTRSIZE 4
550 typedef uint32_t uintptr_t;
551 typedef int32_t intptr_t;
552 #endif
302#else 553#else
303# define expect(expr,value) (expr) 554 #include <inttypes.h>
304# define noinline 555 #if UINTMAX_MAX > 0xffffffffU
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 556 #define ECB_PTRSIZE 8
306# define inline 557 #else
558 #define ECB_PTRSIZE 4
559 #endif
307# endif 560#endif
561
562/* work around x32 idiocy by defining proper macros */
563#if __amd64 || __x86_64 || _M_AMD64 || _M_X64
564 #if _ILP32
565 #define ECB_AMD64_X32 1
566 #else
567 #define ECB_AMD64 1
308#endif 568 #endif
569#endif
309 570
571/* many compilers define _GNUC_ to some versions but then only implement
572 * what their idiot authors think are the "more important" extensions,
573 * causing enormous grief in return for some better fake benchmark numbers.
574 * or so.
575 * we try to detect these and simply assume they are not gcc - if they have
576 * an issue with that they should have done it right in the first place.
577 */
578#ifndef ECB_GCC_VERSION
579 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
580 #define ECB_GCC_VERSION(major,minor) 0
581 #else
582 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
583 #endif
584#endif
585
586#define ECB_CPP (__cplusplus+0)
587#define ECB_CPP11 (__cplusplus >= 201103L)
588
589#if ECB_CPP
590 #define ECB_C 0
591 #define ECB_STDC_VERSION 0
592#else
593 #define ECB_C 1
594 #define ECB_STDC_VERSION __STDC_VERSION__
595#endif
596
597#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
598#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
599
600#if ECB_CPP
601 #define ECB_EXTERN_C extern "C"
602 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
603 #define ECB_EXTERN_C_END }
604#else
605 #define ECB_EXTERN_C extern
606 #define ECB_EXTERN_C_BEG
607 #define ECB_EXTERN_C_END
608#endif
609
610/*****************************************************************************/
611
612/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
613/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
614
615#if ECB_NO_THREADS
616 #define ECB_NO_SMP 1
617#endif
618
619#if ECB_NO_SMP
620 #define ECB_MEMORY_FENCE do { } while (0)
621#endif
622
623#ifndef ECB_MEMORY_FENCE
624 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
625 #if __i386 || __i386__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
627 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
629 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
631 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
632 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
633 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
634 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
635 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
636 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
637 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
638 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
639 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
640 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
641 #elif __aarch64__
642 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
643 #elif (__sparc || __sparc__) && !__sparcv8
644 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
645 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
646 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
647 #elif defined __s390__ || defined __s390x__
648 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
649 #elif defined __mips__
650 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
651 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
652 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
653 #elif defined __alpha__
654 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
655 #elif defined __hppa__
656 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
657 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
658 #elif defined __ia64__
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
660 #elif defined __m68k__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
662 #elif defined __m88k__
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
664 #elif defined __sh__
665 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
666 #endif
667 #endif
668#endif
669
670#ifndef ECB_MEMORY_FENCE
671 #if ECB_GCC_VERSION(4,7)
672 /* see comment below (stdatomic.h) about the C11 memory model. */
673 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
674 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
675 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
676
677 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
678 * without risking compile time errors with other compilers. We *could*
679 * define our own ecb_clang_has_feature, but I just can't be bothered to work
680 * around this shit time and again.
681 * #elif defined __clang && __has_feature (cxx_atomic)
682 * // see comment below (stdatomic.h) about the C11 memory model.
683 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
684 * #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
685 * #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
686 */
687
688 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
689 #define ECB_MEMORY_FENCE __sync_synchronize ()
690 #elif _MSC_VER >= 1500 /* VC++ 2008 */
691 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
692 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
693 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
694 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
695 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
696 #elif _MSC_VER >= 1400 /* VC++ 2005 */
697 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
698 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
699 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
700 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
701 #elif defined _WIN32
702 #include <WinNT.h>
703 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
704 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
705 #include <mbarrier.h>
706 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
707 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
708 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
709 #elif __xlC__
710 #define ECB_MEMORY_FENCE __sync ()
711 #endif
712#endif
713
714#ifndef ECB_MEMORY_FENCE
715 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
716 /* we assume that these memory fences work on all variables/all memory accesses, */
717 /* not just C11 atomics and atomic accesses */
718 #include <stdatomic.h>
719 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
720 /* any fence other than seq_cst, which isn't very efficient for us. */
721 /* Why that is, we don't know - either the C11 memory model is quite useless */
722 /* for most usages, or gcc and clang have a bug */
723 /* I *currently* lean towards the latter, and inefficiently implement */
724 /* all three of ecb's fences as a seq_cst fence */
725 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
726 /* for all __atomic_thread_fence's except seq_cst */
727 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
728 #endif
729#endif
730
731#ifndef ECB_MEMORY_FENCE
732 #if !ECB_AVOID_PTHREADS
733 /*
734 * if you get undefined symbol references to pthread_mutex_lock,
735 * or failure to find pthread.h, then you should implement
736 * the ECB_MEMORY_FENCE operations for your cpu/compiler
737 * OR provide pthread.h and link against the posix thread library
738 * of your system.
739 */
740 #include <pthread.h>
741 #define ECB_NEEDS_PTHREADS 1
742 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
743
744 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
745 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
746 #endif
747#endif
748
749#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
750 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
751#endif
752
753#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
754 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
755#endif
756
757/*****************************************************************************/
758
759#if __cplusplus
760 #define ecb_inline static inline
761#elif ECB_GCC_VERSION(2,5)
762 #define ecb_inline static __inline__
763#elif ECB_C99
764 #define ecb_inline static inline
765#else
766 #define ecb_inline static
767#endif
768
769#if ECB_GCC_VERSION(3,3)
770 #define ecb_restrict __restrict__
771#elif ECB_C99
772 #define ecb_restrict restrict
773#else
774 #define ecb_restrict
775#endif
776
777typedef int ecb_bool;
778
779#define ECB_CONCAT_(a, b) a ## b
780#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
781#define ECB_STRINGIFY_(a) # a
782#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
783
784#define ecb_function_ ecb_inline
785
786#if ECB_GCC_VERSION(3,1)
787 #define ecb_attribute(attrlist) __attribute__(attrlist)
788 #define ecb_is_constant(expr) __builtin_constant_p (expr)
789 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
790 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
791#else
792 #define ecb_attribute(attrlist)
793
794 /* possible C11 impl for integral types
795 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
796 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
797
798 #define ecb_is_constant(expr) 0
799 #define ecb_expect(expr,value) (expr)
800 #define ecb_prefetch(addr,rw,locality)
801#endif
802
803/* no emulation for ecb_decltype */
804#if ECB_GCC_VERSION(4,5)
805 #define ecb_decltype(x) __decltype(x)
806#elif ECB_GCC_VERSION(3,0)
807 #define ecb_decltype(x) __typeof(x)
808#endif
809
810#if _MSC_VER >= 1300
811 #define ecb_deprecated __declspec(deprecated)
812#else
813 #define ecb_deprecated ecb_attribute ((__deprecated__))
814#endif
815
816#define ecb_noinline ecb_attribute ((__noinline__))
817#define ecb_unused ecb_attribute ((__unused__))
818#define ecb_const ecb_attribute ((__const__))
819#define ecb_pure ecb_attribute ((__pure__))
820
821/* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx __declspec(noreturn) */
822#if ECB_C11
823 #define ecb_noreturn _Noreturn
824#else
825 #define ecb_noreturn ecb_attribute ((__noreturn__))
826#endif
827
828#if ECB_GCC_VERSION(4,3)
829 #define ecb_artificial ecb_attribute ((__artificial__))
830 #define ecb_hot ecb_attribute ((__hot__))
831 #define ecb_cold ecb_attribute ((__cold__))
832#else
833 #define ecb_artificial
834 #define ecb_hot
835 #define ecb_cold
836#endif
837
838/* put around conditional expressions if you are very sure that the */
839/* expression is mostly true or mostly false. note that these return */
840/* booleans, not the expression. */
310#define expect_false(expr) expect ((expr) != 0, 0) 841#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 842#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
843/* for compatibility to the rest of the world */
844#define ecb_likely(expr) ecb_expect_true (expr)
845#define ecb_unlikely(expr) ecb_expect_false (expr)
846
847/* count trailing zero bits and count # of one bits */
848#if ECB_GCC_VERSION(3,4)
849 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
850 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
851 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
852 #define ecb_ctz32(x) __builtin_ctz (x)
853 #define ecb_ctz64(x) __builtin_ctzll (x)
854 #define ecb_popcount32(x) __builtin_popcount (x)
855 /* no popcountll */
856#else
857 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
858 ecb_function_ int
859 ecb_ctz32 (uint32_t x)
860 {
861 int r = 0;
862
863 x &= ~x + 1; /* this isolates the lowest bit */
864
865#if ECB_branchless_on_i386
866 r += !!(x & 0xaaaaaaaa) << 0;
867 r += !!(x & 0xcccccccc) << 1;
868 r += !!(x & 0xf0f0f0f0) << 2;
869 r += !!(x & 0xff00ff00) << 3;
870 r += !!(x & 0xffff0000) << 4;
871#else
872 if (x & 0xaaaaaaaa) r += 1;
873 if (x & 0xcccccccc) r += 2;
874 if (x & 0xf0f0f0f0) r += 4;
875 if (x & 0xff00ff00) r += 8;
876 if (x & 0xffff0000) r += 16;
877#endif
878
879 return r;
880 }
881
882 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
883 ecb_function_ int
884 ecb_ctz64 (uint64_t x)
885 {
886 int shift = x & 0xffffffffU ? 0 : 32;
887 return ecb_ctz32 (x >> shift) + shift;
888 }
889
890 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
891 ecb_function_ int
892 ecb_popcount32 (uint32_t x)
893 {
894 x -= (x >> 1) & 0x55555555;
895 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
896 x = ((x >> 4) + x) & 0x0f0f0f0f;
897 x *= 0x01010101;
898
899 return x >> 24;
900 }
901
902 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
903 ecb_function_ int ecb_ld32 (uint32_t x)
904 {
905 int r = 0;
906
907 if (x >> 16) { x >>= 16; r += 16; }
908 if (x >> 8) { x >>= 8; r += 8; }
909 if (x >> 4) { x >>= 4; r += 4; }
910 if (x >> 2) { x >>= 2; r += 2; }
911 if (x >> 1) { r += 1; }
912
913 return r;
914 }
915
916 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
917 ecb_function_ int ecb_ld64 (uint64_t x)
918 {
919 int r = 0;
920
921 if (x >> 32) { x >>= 32; r += 32; }
922
923 return r + ecb_ld32 (x);
924 }
925#endif
926
927ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
928ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
929ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
930ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
931
932ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
933ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
934{
935 return ( (x * 0x0802U & 0x22110U)
936 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
937}
938
939ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
940ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
941{
942 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
943 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
944 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
945 x = ( x >> 8 ) | ( x << 8);
946
947 return x;
948}
949
950ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
951ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
952{
953 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
954 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
955 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
956 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
957 x = ( x >> 16 ) | ( x << 16);
958
959 return x;
960}
961
962/* popcount64 is only available on 64 bit cpus as gcc builtin */
963/* so for this version we are lazy */
964ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
965ecb_function_ int
966ecb_popcount64 (uint64_t x)
967{
968 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
969}
970
971ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
972ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
973ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
974ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
975ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
976ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
977ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
978ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
979
980ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
981ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
982ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
983ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
984ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
985ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
986ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
987ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
988
989#if ECB_GCC_VERSION(4,3)
990 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
991 #define ecb_bswap32(x) __builtin_bswap32 (x)
992 #define ecb_bswap64(x) __builtin_bswap64 (x)
993#else
994 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
995 ecb_function_ uint16_t
996 ecb_bswap16 (uint16_t x)
997 {
998 return ecb_rotl16 (x, 8);
999 }
1000
1001 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
1002 ecb_function_ uint32_t
1003 ecb_bswap32 (uint32_t x)
1004 {
1005 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1006 }
1007
1008 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
1009 ecb_function_ uint64_t
1010 ecb_bswap64 (uint64_t x)
1011 {
1012 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1013 }
1014#endif
1015
1016#if ECB_GCC_VERSION(4,5)
1017 #define ecb_unreachable() __builtin_unreachable ()
1018#else
1019 /* this seems to work fine, but gcc always emits a warning for it :/ */
1020 ecb_inline void ecb_unreachable (void) ecb_noreturn;
1021 ecb_inline void ecb_unreachable (void) { }
1022#endif
1023
1024/* try to tell the compiler that some condition is definitely true */
1025#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1026
1027ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
1028ecb_inline unsigned char
1029ecb_byteorder_helper (void)
1030{
1031 /* the union code still generates code under pressure in gcc, */
1032 /* but less than using pointers, and always seems to */
1033 /* successfully return a constant. */
1034 /* the reason why we have this horrible preprocessor mess */
1035 /* is to avoid it in all cases, at least on common architectures */
1036 /* or when using a recent enough gcc version (>= 4.6) */
1037#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1038 return 0x44;
1039#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1040 return 0x44;
1041#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1042 return 0x11;
1043#else
1044 union
1045 {
1046 uint32_t i;
1047 uint8_t c;
1048 } u = { 0x11223344 };
1049 return u.c;
1050#endif
1051}
1052
1053ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1054ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1055ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1056ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1057
1058#if ECB_GCC_VERSION(3,0) || ECB_C99
1059 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1060#else
1061 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1062#endif
1063
1064#if __cplusplus
1065 template<typename T>
1066 static inline T ecb_div_rd (T val, T div)
1067 {
1068 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1069 }
1070 template<typename T>
1071 static inline T ecb_div_ru (T val, T div)
1072 {
1073 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1074 }
1075#else
1076 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1077 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1078#endif
1079
1080#if ecb_cplusplus_does_not_suck
1081 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1082 template<typename T, int N>
1083 static inline int ecb_array_length (const T (&arr)[N])
1084 {
1085 return N;
1086 }
1087#else
1088 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1089#endif
1090
1091/*******************************************************************************/
1092/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1093
1094/* basically, everything uses "ieee pure-endian" floating point numbers */
1095/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1096#if 0 \
1097 || __i386 || __i386__ \
1098 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1099 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1100 || defined __s390__ || defined __s390x__ \
1101 || defined __mips__ \
1102 || defined __alpha__ \
1103 || defined __hppa__ \
1104 || defined __ia64__ \
1105 || defined __m68k__ \
1106 || defined __m88k__ \
1107 || defined __sh__ \
1108 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1109 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1110 || defined __aarch64__
1111 #define ECB_STDFP 1
1112 #include <string.h> /* for memcpy */
1113#else
1114 #define ECB_STDFP 0
1115#endif
1116
1117#ifndef ECB_NO_LIBM
1118
1119 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1120
1121 /* only the oldest of old doesn't have this one. solaris. */
1122 #ifdef INFINITY
1123 #define ECB_INFINITY INFINITY
1124 #else
1125 #define ECB_INFINITY HUGE_VAL
1126 #endif
1127
1128 #ifdef NAN
1129 #define ECB_NAN NAN
1130 #else
1131 #define ECB_NAN ECB_INFINITY
1132 #endif
1133
1134 /* converts an ieee half/binary16 to a float */
1135 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1136 ecb_function_ float
1137 ecb_binary16_to_float (uint16_t x)
1138 {
1139 int e = (x >> 10) & 0x1f;
1140 int m = x & 0x3ff;
1141 float r;
1142
1143 if (!e ) r = ldexpf (m , -24);
1144 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1145 else if (m ) r = ECB_NAN;
1146 else r = ECB_INFINITY;
1147
1148 return x & 0x8000 ? -r : r;
1149 }
1150
1151 /* convert a float to ieee single/binary32 */
1152 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1153 ecb_function_ uint32_t
1154 ecb_float_to_binary32 (float x)
1155 {
1156 uint32_t r;
1157
1158 #if ECB_STDFP
1159 memcpy (&r, &x, 4);
1160 #else
1161 /* slow emulation, works for anything but -0 */
1162 uint32_t m;
1163 int e;
1164
1165 if (x == 0e0f ) return 0x00000000U;
1166 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1167 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1168 if (x != x ) return 0x7fbfffffU;
1169
1170 m = frexpf (x, &e) * 0x1000000U;
1171
1172 r = m & 0x80000000U;
1173
1174 if (r)
1175 m = -m;
1176
1177 if (e <= -126)
1178 {
1179 m &= 0xffffffU;
1180 m >>= (-125 - e);
1181 e = -126;
1182 }
1183
1184 r |= (e + 126) << 23;
1185 r |= m & 0x7fffffU;
1186 #endif
1187
1188 return r;
1189 }
1190
1191 /* converts an ieee single/binary32 to a float */
1192 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1193 ecb_function_ float
1194 ecb_binary32_to_float (uint32_t x)
1195 {
1196 float r;
1197
1198 #if ECB_STDFP
1199 memcpy (&r, &x, 4);
1200 #else
1201 /* emulation, only works for normals and subnormals and +0 */
1202 int neg = x >> 31;
1203 int e = (x >> 23) & 0xffU;
1204
1205 x &= 0x7fffffU;
1206
1207 if (e)
1208 x |= 0x800000U;
1209 else
1210 e = 1;
1211
1212 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1213 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1214
1215 r = neg ? -r : r;
1216 #endif
1217
1218 return r;
1219 }
1220
1221 /* convert a double to ieee double/binary64 */
1222 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1223 ecb_function_ uint64_t
1224 ecb_double_to_binary64 (double x)
1225 {
1226 uint64_t r;
1227
1228 #if ECB_STDFP
1229 memcpy (&r, &x, 8);
1230 #else
1231 /* slow emulation, works for anything but -0 */
1232 uint64_t m;
1233 int e;
1234
1235 if (x == 0e0 ) return 0x0000000000000000U;
1236 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1237 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1238 if (x != x ) return 0X7ff7ffffffffffffU;
1239
1240 m = frexp (x, &e) * 0x20000000000000U;
1241
1242 r = m & 0x8000000000000000;;
1243
1244 if (r)
1245 m = -m;
1246
1247 if (e <= -1022)
1248 {
1249 m &= 0x1fffffffffffffU;
1250 m >>= (-1021 - e);
1251 e = -1022;
1252 }
1253
1254 r |= ((uint64_t)(e + 1022)) << 52;
1255 r |= m & 0xfffffffffffffU;
1256 #endif
1257
1258 return r;
1259 }
1260
1261 /* converts an ieee double/binary64 to a double */
1262 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1263 ecb_function_ double
1264 ecb_binary64_to_double (uint64_t x)
1265 {
1266 double r;
1267
1268 #if ECB_STDFP
1269 memcpy (&r, &x, 8);
1270 #else
1271 /* emulation, only works for normals and subnormals and +0 */
1272 int neg = x >> 63;
1273 int e = (x >> 52) & 0x7ffU;
1274
1275 x &= 0xfffffffffffffU;
1276
1277 if (e)
1278 x |= 0x10000000000000U;
1279 else
1280 e = 1;
1281
1282 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1283 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1284
1285 r = neg ? -r : r;
1286 #endif
1287
1288 return r;
1289 }
1290
1291#endif
1292
1293#endif
1294
1295/* ECB.H END */
1296
1297#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1298/* if your architecture doesn't need memory fences, e.g. because it is
1299 * single-cpu/core, or if you use libev in a project that doesn't use libev
1300 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1301 * libev, in which cases the memory fences become nops.
1302 * alternatively, you can remove this #error and link against libpthread,
1303 * which will then provide the memory fences.
1304 */
1305# error "memory fences not defined for your architecture, please report"
1306#endif
1307
1308#ifndef ECB_MEMORY_FENCE
1309# define ECB_MEMORY_FENCE do { } while (0)
1310# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1311# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1312#endif
1313
1314#define expect_false(cond) ecb_expect_false (cond)
1315#define expect_true(cond) ecb_expect_true (cond)
1316#define noinline ecb_noinline
1317
312#define inline_size static inline 1318#define inline_size ecb_inline
313 1319
314#if EV_MINIMAL 1320#if EV_FEATURE_CODE
1321# define inline_speed ecb_inline
1322#else
315# define inline_speed static noinline 1323# define inline_speed static noinline
1324#endif
1325
1326#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1327
1328#if EV_MINPRI == EV_MAXPRI
1329# define ABSPRI(w) (((W)w), 0)
316#else 1330#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1331# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1332#endif
322 1333
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1334#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 1335#define EMPTY2(a,b) /* used to suppress some warnings */
325 1336
326typedef ev_watcher *W; 1337typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 1339typedef ev_watcher_time *WT;
329 1340
330#define ev_active(w) ((W)(w))->active 1341#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 1342#define ev_at(w) ((WT)(w))->at
332 1343
1344#if EV_USE_REALTIME
1345/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1346/* giving it a reasonably high chance of working on typical architectures */
1347static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1348#endif
1349
333#if EV_USE_MONOTONIC 1350#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1351static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1352#endif
1353
1354#ifndef EV_FD_TO_WIN32_HANDLE
1355# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1356#endif
1357#ifndef EV_WIN32_HANDLE_TO_FD
1358# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1359#endif
1360#ifndef EV_WIN32_CLOSE_FD
1361# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 1362#endif
338 1363
339#ifdef _WIN32 1364#ifdef _WIN32
340# include "ev_win32.c" 1365# include "ev_win32.c"
341#endif 1366#endif
342 1367
343/*****************************************************************************/ 1368/*****************************************************************************/
344 1369
1370/* define a suitable floor function (only used by periodics atm) */
1371
1372#if EV_USE_FLOOR
1373# include <math.h>
1374# define ev_floor(v) floor (v)
1375#else
1376
1377#include <float.h>
1378
1379/* a floor() replacement function, should be independent of ev_tstamp type */
1380static ev_tstamp noinline
1381ev_floor (ev_tstamp v)
1382{
1383 /* the choice of shift factor is not terribly important */
1384#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1385 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1386#else
1387 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1388#endif
1389
1390 /* argument too large for an unsigned long? */
1391 if (expect_false (v >= shift))
1392 {
1393 ev_tstamp f;
1394
1395 if (v == v - 1.)
1396 return v; /* very large number */
1397
1398 f = shift * ev_floor (v * (1. / shift));
1399 return f + ev_floor (v - f);
1400 }
1401
1402 /* special treatment for negative args? */
1403 if (expect_false (v < 0.))
1404 {
1405 ev_tstamp f = -ev_floor (-v);
1406
1407 return f - (f == v ? 0 : 1);
1408 }
1409
1410 /* fits into an unsigned long */
1411 return (unsigned long)v;
1412}
1413
1414#endif
1415
1416/*****************************************************************************/
1417
1418#ifdef __linux
1419# include <sys/utsname.h>
1420#endif
1421
1422static unsigned int noinline ecb_cold
1423ev_linux_version (void)
1424{
1425#ifdef __linux
1426 unsigned int v = 0;
1427 struct utsname buf;
1428 int i;
1429 char *p = buf.release;
1430
1431 if (uname (&buf))
1432 return 0;
1433
1434 for (i = 3+1; --i; )
1435 {
1436 unsigned int c = 0;
1437
1438 for (;;)
1439 {
1440 if (*p >= '0' && *p <= '9')
1441 c = c * 10 + *p++ - '0';
1442 else
1443 {
1444 p += *p == '.';
1445 break;
1446 }
1447 }
1448
1449 v = (v << 8) | c;
1450 }
1451
1452 return v;
1453#else
1454 return 0;
1455#endif
1456}
1457
1458/*****************************************************************************/
1459
1460#if EV_AVOID_STDIO
1461static void noinline ecb_cold
1462ev_printerr (const char *msg)
1463{
1464 write (STDERR_FILENO, msg, strlen (msg));
1465}
1466#endif
1467
345static void (*syserr_cb)(const char *msg); 1468static void (*syserr_cb)(const char *msg) EV_THROW;
346 1469
347void 1470void ecb_cold
348ev_set_syserr_cb (void (*cb)(const char *msg)) 1471ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
349{ 1472{
350 syserr_cb = cb; 1473 syserr_cb = cb;
351} 1474}
352 1475
353static void noinline 1476static void noinline ecb_cold
354syserr (const char *msg) 1477ev_syserr (const char *msg)
355{ 1478{
356 if (!msg) 1479 if (!msg)
357 msg = "(libev) system error"; 1480 msg = "(libev) system error";
358 1481
359 if (syserr_cb) 1482 if (syserr_cb)
360 syserr_cb (msg); 1483 syserr_cb (msg);
361 else 1484 else
362 { 1485 {
1486#if EV_AVOID_STDIO
1487 ev_printerr (msg);
1488 ev_printerr (": ");
1489 ev_printerr (strerror (errno));
1490 ev_printerr ("\n");
1491#else
363 perror (msg); 1492 perror (msg);
1493#endif
364 abort (); 1494 abort ();
365 } 1495 }
366} 1496}
367 1497
368static void * 1498static void *
369ev_realloc_emul (void *ptr, long size) 1499ev_realloc_emul (void *ptr, long size) EV_THROW
370{ 1500{
371 /* some systems, notably openbsd and darwin, fail to properly 1501 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 1502 * implement realloc (x, 0) (as required by both ansi c-89 and
373 * the single unix specification, so work around them here. 1503 * the single unix specification, so work around them here.
1504 * recently, also (at least) fedora and debian started breaking it,
1505 * despite documenting it otherwise.
374 */ 1506 */
375 1507
376 if (size) 1508 if (size)
377 return realloc (ptr, size); 1509 return realloc (ptr, size);
378 1510
379 free (ptr); 1511 free (ptr);
380 return 0; 1512 return 0;
381} 1513}
382 1514
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1515static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
384 1516
385void 1517void ecb_cold
386ev_set_allocator (void *(*cb)(void *ptr, long size)) 1518ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
387{ 1519{
388 alloc = cb; 1520 alloc = cb;
389} 1521}
390 1522
391inline_speed void * 1523inline_speed void *
393{ 1525{
394 ptr = alloc (ptr, size); 1526 ptr = alloc (ptr, size);
395 1527
396 if (!ptr && size) 1528 if (!ptr && size)
397 { 1529 {
1530#if EV_AVOID_STDIO
1531 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1532#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1533 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1534#endif
399 abort (); 1535 abort ();
400 } 1536 }
401 1537
402 return ptr; 1538 return ptr;
403} 1539}
405#define ev_malloc(size) ev_realloc (0, (size)) 1541#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 1542#define ev_free(ptr) ev_realloc ((ptr), 0)
407 1543
408/*****************************************************************************/ 1544/*****************************************************************************/
409 1545
1546/* set in reify when reification needed */
1547#define EV_ANFD_REIFY 1
1548
1549/* file descriptor info structure */
410typedef struct 1550typedef struct
411{ 1551{
412 WL head; 1552 WL head;
413 unsigned char events; 1553 unsigned char events; /* the events watched for */
1554 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1555 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 1556 unsigned char unused;
1557#if EV_USE_EPOLL
1558 unsigned int egen; /* generation counter to counter epoll bugs */
1559#endif
415#if EV_SELECT_IS_WINSOCKET 1560#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
416 SOCKET handle; 1561 SOCKET handle;
417#endif 1562#endif
1563#if EV_USE_IOCP
1564 OVERLAPPED or, ow;
1565#endif
418} ANFD; 1566} ANFD;
419 1567
1568/* stores the pending event set for a given watcher */
420typedef struct 1569typedef struct
421{ 1570{
422 W w; 1571 W w;
423 int events; 1572 int events; /* the pending event set for the given watcher */
424} ANPENDING; 1573} ANPENDING;
425 1574
426#if EV_USE_INOTIFY 1575#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */ 1576/* hash table entry per inotify-id */
428typedef struct 1577typedef struct
430 WL head; 1579 WL head;
431} ANFS; 1580} ANFS;
432#endif 1581#endif
433 1582
434/* Heap Entry */ 1583/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT 1584#if EV_HEAP_CACHE_AT
1585 /* a heap element */
437 typedef struct { 1586 typedef struct {
1587 ev_tstamp at;
438 WT w; 1588 WT w;
439 ev_tstamp at;
440 } ANHE; 1589 } ANHE;
441 1590
442 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1591 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1592 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 1593 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
445#else 1594#else
1595 /* a heap element */
446 typedef WT ANHE; 1596 typedef WT ANHE;
447 1597
448 #define ANHE_w(he) (he) 1598 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at 1599 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he) 1600 #define ANHE_at_cache(he)
451#endif 1601#endif
452 1602
453#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
454 1604
455 struct ev_loop 1605 struct ev_loop
461 #undef VAR 1611 #undef VAR
462 }; 1612 };
463 #include "ev_wrap.h" 1613 #include "ev_wrap.h"
464 1614
465 static struct ev_loop default_loop_struct; 1615 static struct ev_loop default_loop_struct;
466 struct ev_loop *ev_default_loop_ptr; 1616 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
467 1617
468#else 1618#else
469 1619
470 ev_tstamp ev_rt_now; 1620 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
471 #define VAR(name,decl) static decl; 1621 #define VAR(name,decl) static decl;
472 #include "ev_vars.h" 1622 #include "ev_vars.h"
473 #undef VAR 1623 #undef VAR
474 1624
475 static int ev_default_loop_ptr; 1625 static int ev_default_loop_ptr;
476 1626
477#endif 1627#endif
478 1628
1629#if EV_FEATURE_API
1630# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1631# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1632# define EV_INVOKE_PENDING invoke_cb (EV_A)
1633#else
1634# define EV_RELEASE_CB (void)0
1635# define EV_ACQUIRE_CB (void)0
1636# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1637#endif
1638
1639#define EVBREAK_RECURSE 0x80
1640
479/*****************************************************************************/ 1641/*****************************************************************************/
480 1642
1643#ifndef EV_HAVE_EV_TIME
481ev_tstamp 1644ev_tstamp
482ev_time (void) 1645ev_time (void) EV_THROW
483{ 1646{
484#if EV_USE_REALTIME 1647#if EV_USE_REALTIME
1648 if (expect_true (have_realtime))
1649 {
485 struct timespec ts; 1650 struct timespec ts;
486 clock_gettime (CLOCK_REALTIME, &ts); 1651 clock_gettime (CLOCK_REALTIME, &ts);
487 return ts.tv_sec + ts.tv_nsec * 1e-9; 1652 return ts.tv_sec + ts.tv_nsec * 1e-9;
488#else 1653 }
1654#endif
1655
489 struct timeval tv; 1656 struct timeval tv;
490 gettimeofday (&tv, 0); 1657 gettimeofday (&tv, 0);
491 return tv.tv_sec + tv.tv_usec * 1e-6; 1658 return tv.tv_sec + tv.tv_usec * 1e-6;
492#endif
493} 1659}
1660#endif
494 1661
495ev_tstamp inline_size 1662inline_size ev_tstamp
496get_clock (void) 1663get_clock (void)
497{ 1664{
498#if EV_USE_MONOTONIC 1665#if EV_USE_MONOTONIC
499 if (expect_true (have_monotonic)) 1666 if (expect_true (have_monotonic))
500 { 1667 {
507 return ev_time (); 1674 return ev_time ();
508} 1675}
509 1676
510#if EV_MULTIPLICITY 1677#if EV_MULTIPLICITY
511ev_tstamp 1678ev_tstamp
512ev_now (EV_P) 1679ev_now (EV_P) EV_THROW
513{ 1680{
514 return ev_rt_now; 1681 return ev_rt_now;
515} 1682}
516#endif 1683#endif
517 1684
518void 1685void
519ev_sleep (ev_tstamp delay) 1686ev_sleep (ev_tstamp delay) EV_THROW
520{ 1687{
521 if (delay > 0.) 1688 if (delay > 0.)
522 { 1689 {
523#if EV_USE_NANOSLEEP 1690#if EV_USE_NANOSLEEP
524 struct timespec ts; 1691 struct timespec ts;
525 1692
526 ts.tv_sec = (time_t)delay; 1693 EV_TS_SET (ts, delay);
527 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
528
529 nanosleep (&ts, 0); 1694 nanosleep (&ts, 0);
530#elif defined(_WIN32) 1695#elif defined _WIN32
531 Sleep ((unsigned long)(delay * 1e3)); 1696 Sleep ((unsigned long)(delay * 1e3));
532#else 1697#else
533 struct timeval tv; 1698 struct timeval tv;
534 1699
535 tv.tv_sec = (time_t)delay; 1700 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1701 /* something not guaranteed by newer posix versions, but guaranteed */
537 1702 /* by older ones */
1703 EV_TV_SET (tv, delay);
538 select (0, 0, 0, 0, &tv); 1704 select (0, 0, 0, 0, &tv);
539#endif 1705#endif
540 } 1706 }
541} 1707}
542 1708
543/*****************************************************************************/ 1709/*****************************************************************************/
544 1710
545#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1711#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
546 1712
547int inline_size 1713/* find a suitable new size for the given array, */
1714/* hopefully by rounding to a nice-to-malloc size */
1715inline_size int
548array_nextsize (int elem, int cur, int cnt) 1716array_nextsize (int elem, int cur, int cnt)
549{ 1717{
550 int ncur = cur + 1; 1718 int ncur = cur + 1;
551 1719
552 do 1720 do
553 ncur <<= 1; 1721 ncur <<= 1;
554 while (cnt > ncur); 1722 while (cnt > ncur);
555 1723
556 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1724 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
557 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1725 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
558 { 1726 {
559 ncur *= elem; 1727 ncur *= elem;
560 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1728 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
561 ncur = ncur - sizeof (void *) * 4; 1729 ncur = ncur - sizeof (void *) * 4;
563 } 1731 }
564 1732
565 return ncur; 1733 return ncur;
566} 1734}
567 1735
568static noinline void * 1736static void * noinline ecb_cold
569array_realloc (int elem, void *base, int *cur, int cnt) 1737array_realloc (int elem, void *base, int *cur, int cnt)
570{ 1738{
571 *cur = array_nextsize (elem, *cur, cnt); 1739 *cur = array_nextsize (elem, *cur, cnt);
572 return ev_realloc (base, elem * *cur); 1740 return ev_realloc (base, elem * *cur);
573} 1741}
1742
1743#define array_init_zero(base,count) \
1744 memset ((void *)(base), 0, sizeof (*(base)) * (count))
574 1745
575#define array_needsize(type,base,cur,cnt,init) \ 1746#define array_needsize(type,base,cur,cnt,init) \
576 if (expect_false ((cnt) > (cur))) \ 1747 if (expect_false ((cnt) > (cur))) \
577 { \ 1748 { \
578 int ocur_ = (cur); \ 1749 int ecb_unused ocur_ = (cur); \
579 (base) = (type *)array_realloc \ 1750 (base) = (type *)array_realloc \
580 (sizeof (type), (base), &(cur), (cnt)); \ 1751 (sizeof (type), (base), &(cur), (cnt)); \
581 init ((base) + (ocur_), (cur) - ocur_); \ 1752 init ((base) + (ocur_), (cur) - ocur_); \
582 } 1753 }
583 1754
590 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1761 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
591 } 1762 }
592#endif 1763#endif
593 1764
594#define array_free(stem, idx) \ 1765#define array_free(stem, idx) \
595 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1766 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
596 1767
597/*****************************************************************************/ 1768/*****************************************************************************/
598 1769
1770/* dummy callback for pending events */
1771static void noinline
1772pendingcb (EV_P_ ev_prepare *w, int revents)
1773{
1774}
1775
599void noinline 1776void noinline
600ev_feed_event (EV_P_ void *w, int revents) 1777ev_feed_event (EV_P_ void *w, int revents) EV_THROW
601{ 1778{
602 W w_ = (W)w; 1779 W w_ = (W)w;
603 int pri = ABSPRI (w_); 1780 int pri = ABSPRI (w_);
604 1781
605 if (expect_false (w_->pending)) 1782 if (expect_false (w_->pending))
609 w_->pending = ++pendingcnt [pri]; 1786 w_->pending = ++pendingcnt [pri];
610 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1787 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
611 pendings [pri][w_->pending - 1].w = w_; 1788 pendings [pri][w_->pending - 1].w = w_;
612 pendings [pri][w_->pending - 1].events = revents; 1789 pendings [pri][w_->pending - 1].events = revents;
613 } 1790 }
614}
615 1791
616void inline_speed 1792 pendingpri = NUMPRI - 1;
1793}
1794
1795inline_speed void
1796feed_reverse (EV_P_ W w)
1797{
1798 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1799 rfeeds [rfeedcnt++] = w;
1800}
1801
1802inline_size void
1803feed_reverse_done (EV_P_ int revents)
1804{
1805 do
1806 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1807 while (rfeedcnt);
1808}
1809
1810inline_speed void
617queue_events (EV_P_ W *events, int eventcnt, int type) 1811queue_events (EV_P_ W *events, int eventcnt, int type)
618{ 1812{
619 int i; 1813 int i;
620 1814
621 for (i = 0; i < eventcnt; ++i) 1815 for (i = 0; i < eventcnt; ++i)
622 ev_feed_event (EV_A_ events [i], type); 1816 ev_feed_event (EV_A_ events [i], type);
623} 1817}
624 1818
625/*****************************************************************************/ 1819/*****************************************************************************/
626 1820
627void inline_size 1821inline_speed void
628anfds_init (ANFD *base, int count)
629{
630 while (count--)
631 {
632 base->head = 0;
633 base->events = EV_NONE;
634 base->reify = 0;
635
636 ++base;
637 }
638}
639
640void inline_speed
641fd_event (EV_P_ int fd, int revents) 1822fd_event_nocheck (EV_P_ int fd, int revents)
642{ 1823{
643 ANFD *anfd = anfds + fd; 1824 ANFD *anfd = anfds + fd;
644 ev_io *w; 1825 ev_io *w;
645 1826
646 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1827 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
650 if (ev) 1831 if (ev)
651 ev_feed_event (EV_A_ (W)w, ev); 1832 ev_feed_event (EV_A_ (W)w, ev);
652 } 1833 }
653} 1834}
654 1835
1836/* do not submit kernel events for fds that have reify set */
1837/* because that means they changed while we were polling for new events */
1838inline_speed void
1839fd_event (EV_P_ int fd, int revents)
1840{
1841 ANFD *anfd = anfds + fd;
1842
1843 if (expect_true (!anfd->reify))
1844 fd_event_nocheck (EV_A_ fd, revents);
1845}
1846
655void 1847void
656ev_feed_fd_event (EV_P_ int fd, int revents) 1848ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
657{ 1849{
658 if (fd >= 0 && fd < anfdmax) 1850 if (fd >= 0 && fd < anfdmax)
659 fd_event (EV_A_ fd, revents); 1851 fd_event_nocheck (EV_A_ fd, revents);
660} 1852}
661 1853
662void inline_size 1854/* make sure the external fd watch events are in-sync */
1855/* with the kernel/libev internal state */
1856inline_size void
663fd_reify (EV_P) 1857fd_reify (EV_P)
664{ 1858{
665 int i; 1859 int i;
1860
1861#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1862 for (i = 0; i < fdchangecnt; ++i)
1863 {
1864 int fd = fdchanges [i];
1865 ANFD *anfd = anfds + fd;
1866
1867 if (anfd->reify & EV__IOFDSET && anfd->head)
1868 {
1869 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1870
1871 if (handle != anfd->handle)
1872 {
1873 unsigned long arg;
1874
1875 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1876
1877 /* handle changed, but fd didn't - we need to do it in two steps */
1878 backend_modify (EV_A_ fd, anfd->events, 0);
1879 anfd->events = 0;
1880 anfd->handle = handle;
1881 }
1882 }
1883 }
1884#endif
666 1885
667 for (i = 0; i < fdchangecnt; ++i) 1886 for (i = 0; i < fdchangecnt; ++i)
668 { 1887 {
669 int fd = fdchanges [i]; 1888 int fd = fdchanges [i];
670 ANFD *anfd = anfds + fd; 1889 ANFD *anfd = anfds + fd;
671 ev_io *w; 1890 ev_io *w;
672 1891
673 unsigned char events = 0; 1892 unsigned char o_events = anfd->events;
1893 unsigned char o_reify = anfd->reify;
674 1894
675 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1895 anfd->reify = 0;
676 events |= (unsigned char)w->events;
677 1896
678#if EV_SELECT_IS_WINSOCKET 1897 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
679 if (events)
680 { 1898 {
681 unsigned long argp; 1899 anfd->events = 0;
682 #ifdef EV_FD_TO_WIN32_HANDLE 1900
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1901 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
684 #else 1902 anfd->events |= (unsigned char)w->events;
685 anfd->handle = _get_osfhandle (fd); 1903
686 #endif 1904 if (o_events != anfd->events)
687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1905 o_reify = EV__IOFDSET; /* actually |= */
688 } 1906 }
689#endif
690 1907
691 { 1908 if (o_reify & EV__IOFDSET)
692 unsigned char o_events = anfd->events;
693 unsigned char o_reify = anfd->reify;
694
695 anfd->reify = 0;
696 anfd->events = events;
697
698 if (o_events != events || o_reify & EV_IOFDSET)
699 backend_modify (EV_A_ fd, o_events, events); 1909 backend_modify (EV_A_ fd, o_events, anfd->events);
700 }
701 } 1910 }
702 1911
703 fdchangecnt = 0; 1912 fdchangecnt = 0;
704} 1913}
705 1914
706void inline_size 1915/* something about the given fd changed */
1916inline_size void
707fd_change (EV_P_ int fd, int flags) 1917fd_change (EV_P_ int fd, int flags)
708{ 1918{
709 unsigned char reify = anfds [fd].reify; 1919 unsigned char reify = anfds [fd].reify;
710 anfds [fd].reify |= flags; 1920 anfds [fd].reify |= flags;
711 1921
715 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1925 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
716 fdchanges [fdchangecnt - 1] = fd; 1926 fdchanges [fdchangecnt - 1] = fd;
717 } 1927 }
718} 1928}
719 1929
720void inline_speed 1930/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1931inline_speed void ecb_cold
721fd_kill (EV_P_ int fd) 1932fd_kill (EV_P_ int fd)
722{ 1933{
723 ev_io *w; 1934 ev_io *w;
724 1935
725 while ((w = (ev_io *)anfds [fd].head)) 1936 while ((w = (ev_io *)anfds [fd].head))
727 ev_io_stop (EV_A_ w); 1938 ev_io_stop (EV_A_ w);
728 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1939 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
729 } 1940 }
730} 1941}
731 1942
732int inline_size 1943/* check whether the given fd is actually valid, for error recovery */
1944inline_size int ecb_cold
733fd_valid (int fd) 1945fd_valid (int fd)
734{ 1946{
735#ifdef _WIN32 1947#ifdef _WIN32
736 return _get_osfhandle (fd) != -1; 1948 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
737#else 1949#else
738 return fcntl (fd, F_GETFD) != -1; 1950 return fcntl (fd, F_GETFD) != -1;
739#endif 1951#endif
740} 1952}
741 1953
742/* called on EBADF to verify fds */ 1954/* called on EBADF to verify fds */
743static void noinline 1955static void noinline ecb_cold
744fd_ebadf (EV_P) 1956fd_ebadf (EV_P)
745{ 1957{
746 int fd; 1958 int fd;
747 1959
748 for (fd = 0; fd < anfdmax; ++fd) 1960 for (fd = 0; fd < anfdmax; ++fd)
749 if (anfds [fd].events) 1961 if (anfds [fd].events)
750 if (!fd_valid (fd) == -1 && errno == EBADF) 1962 if (!fd_valid (fd) && errno == EBADF)
751 fd_kill (EV_A_ fd); 1963 fd_kill (EV_A_ fd);
752} 1964}
753 1965
754/* called on ENOMEM in select/poll to kill some fds and retry */ 1966/* called on ENOMEM in select/poll to kill some fds and retry */
755static void noinline 1967static void noinline ecb_cold
756fd_enomem (EV_P) 1968fd_enomem (EV_P)
757{ 1969{
758 int fd; 1970 int fd;
759 1971
760 for (fd = anfdmax; fd--; ) 1972 for (fd = anfdmax; fd--; )
761 if (anfds [fd].events) 1973 if (anfds [fd].events)
762 { 1974 {
763 fd_kill (EV_A_ fd); 1975 fd_kill (EV_A_ fd);
764 return; 1976 break;
765 } 1977 }
766} 1978}
767 1979
768/* usually called after fork if backend needs to re-arm all fds from scratch */ 1980/* usually called after fork if backend needs to re-arm all fds from scratch */
769static void noinline 1981static void noinline
773 1985
774 for (fd = 0; fd < anfdmax; ++fd) 1986 for (fd = 0; fd < anfdmax; ++fd)
775 if (anfds [fd].events) 1987 if (anfds [fd].events)
776 { 1988 {
777 anfds [fd].events = 0; 1989 anfds [fd].events = 0;
1990 anfds [fd].emask = 0;
778 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1991 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
779 } 1992 }
780} 1993}
781 1994
1995/* used to prepare libev internal fd's */
1996/* this is not fork-safe */
1997inline_speed void
1998fd_intern (int fd)
1999{
2000#ifdef _WIN32
2001 unsigned long arg = 1;
2002 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2003#else
2004 fcntl (fd, F_SETFD, FD_CLOEXEC);
2005 fcntl (fd, F_SETFL, O_NONBLOCK);
2006#endif
2007}
2008
782/*****************************************************************************/ 2009/*****************************************************************************/
783 2010
784/* 2011/*
785 * the heap functions want a real array index. array index 0 uis guaranteed to not 2012 * the heap functions want a real array index. array index 0 is guaranteed to not
786 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2013 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
787 * the branching factor of the d-tree. 2014 * the branching factor of the d-tree.
788 */ 2015 */
789 2016
790/* 2017/*
791 * at the moment we allow libev the luxury of two heaps, 2018 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 2019 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient. 2020 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers. 2021 * the difference is about 5% with 50000+ watchers.
795 */ 2022 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP 2023#if EV_USE_4HEAP
798 2024
799#define DHEAP 4 2025#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2026#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801 2027#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
802/* towards the root */ 2028#define UPHEAP_DONE(p,k) ((p) == (k))
803void inline_speed
804upheap (ANHE *heap, int k)
805{
806 ANHE he = heap [k];
807
808 for (;;)
809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
815 heap [k] = heap [p];
816 ev_active (ANHE_w (heap [k])) = k;
817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823 2029
824/* away from the root */ 2030/* away from the root */
825void inline_speed 2031inline_speed void
826downheap (ANHE *heap, int N, int k) 2032downheap (ANHE *heap, int N, int k)
827{ 2033{
828 ANHE he = heap [k]; 2034 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0; 2035 ANHE *E = heap + N + HEAP0;
830 2036
831 for (;;) 2037 for (;;)
832 { 2038 {
833 ev_tstamp minat; 2039 ev_tstamp minat;
834 ANHE *minpos; 2040 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 2041 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
836 2042
837 // find minimum child 2043 /* find minimum child */
838 if (expect_true (pos + DHEAP - 1 < E)) 2044 if (expect_true (pos + DHEAP - 1 < E))
839 { 2045 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2046 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2047 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2048 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2049 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 } 2050 }
845 else if (pos < E) 2051 else if (pos < E)
846 { 2052 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2053 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2054 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
853 break; 2059 break;
854 2060
855 if (ANHE_at (he) <= minat) 2061 if (ANHE_at (he) <= minat)
856 break; 2062 break;
857 2063
2064 heap [k] = *minpos;
858 ev_active (ANHE_w (*minpos)) = k; 2065 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860 2066
861 k = minpos - heap; 2067 k = minpos - heap;
862 } 2068 }
863 2069
2070 heap [k] = he;
864 ev_active (ANHE_w (he)) = k; 2071 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866} 2072}
867 2073
868#else // 4HEAP 2074#else /* 4HEAP */
869 2075
870#define HEAP0 1 2076#define HEAP0 1
2077#define HPARENT(k) ((k) >> 1)
2078#define UPHEAP_DONE(p,k) (!(p))
871 2079
872/* towards the root */ 2080/* away from the root */
873void inline_speed 2081inline_speed void
874upheap (ANHE *heap, int k) 2082downheap (ANHE *heap, int N, int k)
875{ 2083{
876 ANHE he = heap [k]; 2084 ANHE he = heap [k];
877 2085
878 for (;;) 2086 for (;;)
879 { 2087 {
880 int p = k >> 1; 2088 int c = k << 1;
881 2089
882 /* maybe we could use a dummy element at heap [0]? */ 2090 if (c >= N + HEAP0)
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break; 2091 break;
885 2092
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
889 }
890
891 heap [k] = w;
892 ev_active (ANHE_w (heap [k])) = k;
893}
894
895/* away from the root */
896void inline_speed
897downheap (ANHE *heap, int N, int k)
898{
899 ANHE he = heap [k];
900
901 for (;;)
902 {
903 int c = k << 1;
904
905 if (c > N)
906 break;
907
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2093 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0; 2094 ? 1 : 0;
910 2095
911 if (w->at <= ANHE_at (heap [c])) 2096 if (ANHE_at (he) <= ANHE_at (heap [c]))
912 break; 2097 break;
913 2098
914 heap [k] = heap [c]; 2099 heap [k] = heap [c];
915 ev_active (ANHE_w (heap [k])) = k; 2100 ev_active (ANHE_w (heap [k])) = k;
916 2101
920 heap [k] = he; 2105 heap [k] = he;
921 ev_active (ANHE_w (he)) = k; 2106 ev_active (ANHE_w (he)) = k;
922} 2107}
923#endif 2108#endif
924 2109
925void inline_size 2110/* towards the root */
2111inline_speed void
2112upheap (ANHE *heap, int k)
2113{
2114 ANHE he = heap [k];
2115
2116 for (;;)
2117 {
2118 int p = HPARENT (k);
2119
2120 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2121 break;
2122
2123 heap [k] = heap [p];
2124 ev_active (ANHE_w (heap [k])) = k;
2125 k = p;
2126 }
2127
2128 heap [k] = he;
2129 ev_active (ANHE_w (he)) = k;
2130}
2131
2132/* move an element suitably so it is in a correct place */
2133inline_size void
926adjustheap (ANHE *heap, int N, int k) 2134adjustheap (ANHE *heap, int N, int k)
927{ 2135{
2136 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
928 upheap (heap, k); 2137 upheap (heap, k);
2138 else
929 downheap (heap, N, k); 2139 downheap (heap, N, k);
2140}
2141
2142/* rebuild the heap: this function is used only once and executed rarely */
2143inline_size void
2144reheap (ANHE *heap, int N)
2145{
2146 int i;
2147
2148 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2149 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2150 for (i = 0; i < N; ++i)
2151 upheap (heap, i + HEAP0);
930} 2152}
931 2153
932/*****************************************************************************/ 2154/*****************************************************************************/
933 2155
2156/* associate signal watchers to a signal signal */
934typedef struct 2157typedef struct
935{ 2158{
2159 EV_ATOMIC_T pending;
2160#if EV_MULTIPLICITY
2161 EV_P;
2162#endif
936 WL head; 2163 WL head;
937 EV_ATOMIC_T gotsig;
938} ANSIG; 2164} ANSIG;
939 2165
940static ANSIG *signals; 2166static ANSIG signals [EV_NSIG - 1];
941static int signalmax;
942
943static EV_ATOMIC_T gotsig;
944
945void inline_size
946signals_init (ANSIG *base, int count)
947{
948 while (count--)
949 {
950 base->head = 0;
951 base->gotsig = 0;
952
953 ++base;
954 }
955}
956 2167
957/*****************************************************************************/ 2168/*****************************************************************************/
958 2169
959void inline_speed 2170#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
960fd_intern (int fd)
961{
962#ifdef _WIN32
963 int arg = 1;
964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
965#else
966 fcntl (fd, F_SETFD, FD_CLOEXEC);
967 fcntl (fd, F_SETFL, O_NONBLOCK);
968#endif
969}
970 2171
971static void noinline 2172static void noinline ecb_cold
972evpipe_init (EV_P) 2173evpipe_init (EV_P)
973{ 2174{
974 if (!ev_is_active (&pipeev)) 2175 if (!ev_is_active (&pipe_w))
2176 {
2177 int fds [2];
2178
2179# if EV_USE_EVENTFD
2180 fds [0] = -1;
2181 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2182 if (fds [1] < 0 && errno == EINVAL)
2183 fds [1] = eventfd (0, 0);
2184
2185 if (fds [1] < 0)
2186# endif
2187 {
2188 while (pipe (fds))
2189 ev_syserr ("(libev) error creating signal/async pipe");
2190
2191 fd_intern (fds [0]);
2192 }
2193
2194 evpipe [0] = fds [0];
2195
2196 if (evpipe [1] < 0)
2197 evpipe [1] = fds [1]; /* first call, set write fd */
2198 else
2199 {
2200 /* on subsequent calls, do not change evpipe [1] */
2201 /* so that evpipe_write can always rely on its value. */
2202 /* this branch does not do anything sensible on windows, */
2203 /* so must not be executed on windows */
2204
2205 dup2 (fds [1], evpipe [1]);
2206 close (fds [1]);
2207 }
2208
2209 fd_intern (evpipe [1]);
2210
2211 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2212 ev_io_start (EV_A_ &pipe_w);
2213 ev_unref (EV_A); /* watcher should not keep loop alive */
975 { 2214 }
2215}
2216
2217inline_speed void
2218evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2219{
2220 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2221
2222 if (expect_true (*flag))
2223 return;
2224
2225 *flag = 1;
2226 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2227
2228 pipe_write_skipped = 1;
2229
2230 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2231
2232 if (pipe_write_wanted)
2233 {
2234 int old_errno;
2235
2236 pipe_write_skipped = 0;
2237 ECB_MEMORY_FENCE_RELEASE;
2238
2239 old_errno = errno; /* save errno because write will clobber it */
2240
976#if EV_USE_EVENTFD 2241#if EV_USE_EVENTFD
977 if ((evfd = eventfd (0, 0)) >= 0) 2242 if (evpipe [0] < 0)
978 { 2243 {
979 evpipe [0] = -1; 2244 uint64_t counter = 1;
980 fd_intern (evfd); 2245 write (evpipe [1], &counter, sizeof (uint64_t));
981 ev_io_set (&pipeev, evfd, EV_READ);
982 } 2246 }
983 else 2247 else
984#endif 2248#endif
985 { 2249 {
986 while (pipe (evpipe)) 2250#ifdef _WIN32
987 syserr ("(libev) error creating signal/async pipe"); 2251 WSABUF buf;
988 2252 DWORD sent;
989 fd_intern (evpipe [0]); 2253 buf.buf = &buf;
990 fd_intern (evpipe [1]); 2254 buf.len = 1;
991 ev_io_set (&pipeev, evpipe [0], EV_READ); 2255 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2256#else
2257 write (evpipe [1], &(evpipe [1]), 1);
2258#endif
992 } 2259 }
993 2260
994 ev_io_start (EV_A_ &pipeev); 2261 errno = old_errno;
995 ev_unref (EV_A); /* watcher should not keep loop alive */
996 }
997}
998
999void inline_size
1000evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1001{
1002 if (!*flag)
1003 { 2262 }
1004 int old_errno = errno; /* save errno because write might clobber it */ 2263}
1005 2264
1006 *flag = 1; 2265/* called whenever the libev signal pipe */
2266/* got some events (signal, async) */
2267static void
2268pipecb (EV_P_ ev_io *iow, int revents)
2269{
2270 int i;
1007 2271
2272 if (revents & EV_READ)
2273 {
1008#if EV_USE_EVENTFD 2274#if EV_USE_EVENTFD
1009 if (evfd >= 0) 2275 if (evpipe [0] < 0)
1010 { 2276 {
1011 uint64_t counter = 1; 2277 uint64_t counter;
1012 write (evfd, &counter, sizeof (uint64_t)); 2278 read (evpipe [1], &counter, sizeof (uint64_t));
1013 } 2279 }
1014 else 2280 else
1015#endif 2281#endif
1016 write (evpipe [1], &old_errno, 1); 2282 {
1017
1018 errno = old_errno;
1019 }
1020}
1021
1022static void
1023pipecb (EV_P_ ev_io *iow, int revents)
1024{
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter;
1029 read (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 {
1034 char dummy; 2283 char dummy[4];
2284#ifdef _WIN32
2285 WSABUF buf;
2286 DWORD recvd;
2287 DWORD flags = 0;
2288 buf.buf = dummy;
2289 buf.len = sizeof (dummy);
2290 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2291#else
1035 read (evpipe [0], &dummy, 1); 2292 read (evpipe [0], &dummy, sizeof (dummy));
2293#endif
2294 }
2295 }
2296
2297 pipe_write_skipped = 0;
2298
2299 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2300
2301#if EV_SIGNAL_ENABLE
2302 if (sig_pending)
1036 } 2303 {
2304 sig_pending = 0;
1037 2305
1038 if (gotsig && ev_is_default_loop (EV_A)) 2306 ECB_MEMORY_FENCE;
1039 {
1040 int signum;
1041 gotsig = 0;
1042 2307
1043 for (signum = signalmax; signum--; ) 2308 for (i = EV_NSIG - 1; i--; )
1044 if (signals [signum].gotsig) 2309 if (expect_false (signals [i].pending))
1045 ev_feed_signal_event (EV_A_ signum + 1); 2310 ev_feed_signal_event (EV_A_ i + 1);
1046 } 2311 }
2312#endif
1047 2313
1048#if EV_ASYNC_ENABLE 2314#if EV_ASYNC_ENABLE
1049 if (gotasync) 2315 if (async_pending)
1050 { 2316 {
1051 int i; 2317 async_pending = 0;
1052 gotasync = 0; 2318
2319 ECB_MEMORY_FENCE;
1053 2320
1054 for (i = asynccnt; i--; ) 2321 for (i = asynccnt; i--; )
1055 if (asyncs [i]->sent) 2322 if (asyncs [i]->sent)
1056 { 2323 {
1057 asyncs [i]->sent = 0; 2324 asyncs [i]->sent = 0;
2325 ECB_MEMORY_FENCE_RELEASE;
1058 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2326 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1059 } 2327 }
1060 } 2328 }
1061#endif 2329#endif
1062} 2330}
1063 2331
1064/*****************************************************************************/ 2332/*****************************************************************************/
1065 2333
2334void
2335ev_feed_signal (int signum) EV_THROW
2336{
2337#if EV_MULTIPLICITY
2338 EV_P;
2339 ECB_MEMORY_FENCE_ACQUIRE;
2340 EV_A = signals [signum - 1].loop;
2341
2342 if (!EV_A)
2343 return;
2344#endif
2345
2346 signals [signum - 1].pending = 1;
2347 evpipe_write (EV_A_ &sig_pending);
2348}
2349
1066static void 2350static void
1067ev_sighandler (int signum) 2351ev_sighandler (int signum)
1068{ 2352{
2353#ifdef _WIN32
2354 signal (signum, ev_sighandler);
2355#endif
2356
2357 ev_feed_signal (signum);
2358}
2359
2360void noinline
2361ev_feed_signal_event (EV_P_ int signum) EV_THROW
2362{
2363 WL w;
2364
2365 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2366 return;
2367
2368 --signum;
2369
1069#if EV_MULTIPLICITY 2370#if EV_MULTIPLICITY
1070 struct ev_loop *loop = &default_loop_struct; 2371 /* it is permissible to try to feed a signal to the wrong loop */
1071#endif 2372 /* or, likely more useful, feeding a signal nobody is waiting for */
1072 2373
1073#if _WIN32 2374 if (expect_false (signals [signum].loop != EV_A))
1074 signal (signum, ev_sighandler);
1075#endif
1076
1077 signals [signum - 1].gotsig = 1;
1078 evpipe_write (EV_A_ &gotsig);
1079}
1080
1081void noinline
1082ev_feed_signal_event (EV_P_ int signum)
1083{
1084 WL w;
1085
1086#if EV_MULTIPLICITY
1087 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1088#endif
1089
1090 --signum;
1091
1092 if (signum < 0 || signum >= signalmax)
1093 return; 2375 return;
2376#endif
1094 2377
1095 signals [signum].gotsig = 0; 2378 signals [signum].pending = 0;
2379 ECB_MEMORY_FENCE_RELEASE;
1096 2380
1097 for (w = signals [signum].head; w; w = w->next) 2381 for (w = signals [signum].head; w; w = w->next)
1098 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2382 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1099} 2383}
1100 2384
2385#if EV_USE_SIGNALFD
2386static void
2387sigfdcb (EV_P_ ev_io *iow, int revents)
2388{
2389 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2390
2391 for (;;)
2392 {
2393 ssize_t res = read (sigfd, si, sizeof (si));
2394
2395 /* not ISO-C, as res might be -1, but works with SuS */
2396 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2397 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2398
2399 if (res < (ssize_t)sizeof (si))
2400 break;
2401 }
2402}
2403#endif
2404
2405#endif
2406
1101/*****************************************************************************/ 2407/*****************************************************************************/
1102 2408
2409#if EV_CHILD_ENABLE
1103static WL childs [EV_PID_HASHSIZE]; 2410static WL childs [EV_PID_HASHSIZE];
1104
1105#ifndef _WIN32
1106 2411
1107static ev_signal childev; 2412static ev_signal childev;
1108 2413
1109#ifndef WIFCONTINUED 2414#ifndef WIFCONTINUED
1110# define WIFCONTINUED(status) 0 2415# define WIFCONTINUED(status) 0
1111#endif 2416#endif
1112 2417
1113void inline_speed 2418/* handle a single child status event */
2419inline_speed void
1114child_reap (EV_P_ int chain, int pid, int status) 2420child_reap (EV_P_ int chain, int pid, int status)
1115{ 2421{
1116 ev_child *w; 2422 ev_child *w;
1117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2423 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1118 2424
1119 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2425 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1120 { 2426 {
1121 if ((w->pid == pid || !w->pid) 2427 if ((w->pid == pid || !w->pid)
1122 && (!traced || (w->flags & 1))) 2428 && (!traced || (w->flags & 1)))
1123 { 2429 {
1124 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2430 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1131 2437
1132#ifndef WCONTINUED 2438#ifndef WCONTINUED
1133# define WCONTINUED 0 2439# define WCONTINUED 0
1134#endif 2440#endif
1135 2441
2442/* called on sigchld etc., calls waitpid */
1136static void 2443static void
1137childcb (EV_P_ ev_signal *sw, int revents) 2444childcb (EV_P_ ev_signal *sw, int revents)
1138{ 2445{
1139 int pid, status; 2446 int pid, status;
1140 2447
1148 /* make sure we are called again until all children have been reaped */ 2455 /* make sure we are called again until all children have been reaped */
1149 /* we need to do it this way so that the callback gets called before we continue */ 2456 /* we need to do it this way so that the callback gets called before we continue */
1150 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2457 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1151 2458
1152 child_reap (EV_A_ pid, pid, status); 2459 child_reap (EV_A_ pid, pid, status);
1153 if (EV_PID_HASHSIZE > 1) 2460 if ((EV_PID_HASHSIZE) > 1)
1154 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2461 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1155} 2462}
1156 2463
1157#endif 2464#endif
1158 2465
1159/*****************************************************************************/ 2466/*****************************************************************************/
1160 2467
2468#if EV_USE_IOCP
2469# include "ev_iocp.c"
2470#endif
1161#if EV_USE_PORT 2471#if EV_USE_PORT
1162# include "ev_port.c" 2472# include "ev_port.c"
1163#endif 2473#endif
1164#if EV_USE_KQUEUE 2474#if EV_USE_KQUEUE
1165# include "ev_kqueue.c" 2475# include "ev_kqueue.c"
1172#endif 2482#endif
1173#if EV_USE_SELECT 2483#if EV_USE_SELECT
1174# include "ev_select.c" 2484# include "ev_select.c"
1175#endif 2485#endif
1176 2486
1177int 2487int ecb_cold
1178ev_version_major (void) 2488ev_version_major (void) EV_THROW
1179{ 2489{
1180 return EV_VERSION_MAJOR; 2490 return EV_VERSION_MAJOR;
1181} 2491}
1182 2492
1183int 2493int ecb_cold
1184ev_version_minor (void) 2494ev_version_minor (void) EV_THROW
1185{ 2495{
1186 return EV_VERSION_MINOR; 2496 return EV_VERSION_MINOR;
1187} 2497}
1188 2498
1189/* return true if we are running with elevated privileges and should ignore env variables */ 2499/* return true if we are running with elevated privileges and should ignore env variables */
1190int inline_size 2500int inline_size ecb_cold
1191enable_secure (void) 2501enable_secure (void)
1192{ 2502{
1193#ifdef _WIN32 2503#ifdef _WIN32
1194 return 0; 2504 return 0;
1195#else 2505#else
1196 return getuid () != geteuid () 2506 return getuid () != geteuid ()
1197 || getgid () != getegid (); 2507 || getgid () != getegid ();
1198#endif 2508#endif
1199} 2509}
1200 2510
1201unsigned int 2511unsigned int ecb_cold
1202ev_supported_backends (void) 2512ev_supported_backends (void) EV_THROW
1203{ 2513{
1204 unsigned int flags = 0; 2514 unsigned int flags = 0;
1205 2515
1206 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2516 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1207 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2517 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1210 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2520 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1211 2521
1212 return flags; 2522 return flags;
1213} 2523}
1214 2524
1215unsigned int 2525unsigned int ecb_cold
1216ev_recommended_backends (void) 2526ev_recommended_backends (void) EV_THROW
1217{ 2527{
1218 unsigned int flags = ev_supported_backends (); 2528 unsigned int flags = ev_supported_backends ();
1219 2529
1220#ifndef __NetBSD__ 2530#ifndef __NetBSD__
1221 /* kqueue is borked on everything but netbsd apparently */ 2531 /* kqueue is borked on everything but netbsd apparently */
1222 /* it usually doesn't work correctly on anything but sockets and pipes */ 2532 /* it usually doesn't work correctly on anything but sockets and pipes */
1223 flags &= ~EVBACKEND_KQUEUE; 2533 flags &= ~EVBACKEND_KQUEUE;
1224#endif 2534#endif
1225#ifdef __APPLE__ 2535#ifdef __APPLE__
1226 // flags &= ~EVBACKEND_KQUEUE; for documentation 2536 /* only select works correctly on that "unix-certified" platform */
1227 flags &= ~EVBACKEND_POLL; 2537 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2538 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2539#endif
2540#ifdef __FreeBSD__
2541 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1228#endif 2542#endif
1229 2543
1230 return flags; 2544 return flags;
1231} 2545}
1232 2546
2547unsigned int ecb_cold
2548ev_embeddable_backends (void) EV_THROW
2549{
2550 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2551
2552 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2553 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2554 flags &= ~EVBACKEND_EPOLL;
2555
2556 return flags;
2557}
2558
1233unsigned int 2559unsigned int
1234ev_embeddable_backends (void) 2560ev_backend (EV_P) EV_THROW
1235{ 2561{
1236 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2562 return backend;
1237
1238 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1239 /* please fix it and tell me how to detect the fix */
1240 flags &= ~EVBACKEND_EPOLL;
1241
1242 return flags;
1243} 2563}
1244 2564
2565#if EV_FEATURE_API
1245unsigned int 2566unsigned int
1246ev_backend (EV_P) 2567ev_iteration (EV_P) EV_THROW
1247{ 2568{
1248 return backend; 2569 return loop_count;
1249} 2570}
1250 2571
1251unsigned int 2572unsigned int
1252ev_loop_count (EV_P) 2573ev_depth (EV_P) EV_THROW
1253{ 2574{
1254 return loop_count; 2575 return loop_depth;
1255} 2576}
1256 2577
1257void 2578void
1258ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2579ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1259{ 2580{
1260 io_blocktime = interval; 2581 io_blocktime = interval;
1261} 2582}
1262 2583
1263void 2584void
1264ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2585ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1265{ 2586{
1266 timeout_blocktime = interval; 2587 timeout_blocktime = interval;
1267} 2588}
1268 2589
2590void
2591ev_set_userdata (EV_P_ void *data) EV_THROW
2592{
2593 userdata = data;
2594}
2595
2596void *
2597ev_userdata (EV_P) EV_THROW
2598{
2599 return userdata;
2600}
2601
2602void
2603ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2604{
2605 invoke_cb = invoke_pending_cb;
2606}
2607
2608void
2609ev_set_loop_release_cb (EV_P_ ev_loop_callback_nothrow release, ev_loop_callback_nothrow acquire) EV_THROW
2610{
2611 release_cb = release;
2612 acquire_cb = acquire;
2613}
2614#endif
2615
2616/* initialise a loop structure, must be zero-initialised */
1269static void noinline 2617static void noinline ecb_cold
1270loop_init (EV_P_ unsigned int flags) 2618loop_init (EV_P_ unsigned int flags) EV_THROW
1271{ 2619{
1272 if (!backend) 2620 if (!backend)
1273 { 2621 {
2622 origflags = flags;
2623
2624#if EV_USE_REALTIME
2625 if (!have_realtime)
2626 {
2627 struct timespec ts;
2628
2629 if (!clock_gettime (CLOCK_REALTIME, &ts))
2630 have_realtime = 1;
2631 }
2632#endif
2633
1274#if EV_USE_MONOTONIC 2634#if EV_USE_MONOTONIC
2635 if (!have_monotonic)
1275 { 2636 {
1276 struct timespec ts; 2637 struct timespec ts;
2638
1277 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2639 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1278 have_monotonic = 1; 2640 have_monotonic = 1;
1279 } 2641 }
1280#endif
1281
1282 ev_rt_now = ev_time ();
1283 mn_now = get_clock ();
1284 now_floor = mn_now;
1285 rtmn_diff = ev_rt_now - mn_now;
1286
1287 io_blocktime = 0.;
1288 timeout_blocktime = 0.;
1289 backend = 0;
1290 backend_fd = -1;
1291 gotasync = 0;
1292#if EV_USE_INOTIFY
1293 fs_fd = -2;
1294#endif 2642#endif
1295 2643
1296 /* pid check not overridable via env */ 2644 /* pid check not overridable via env */
1297#ifndef _WIN32 2645#ifndef _WIN32
1298 if (flags & EVFLAG_FORKCHECK) 2646 if (flags & EVFLAG_FORKCHECK)
1302 if (!(flags & EVFLAG_NOENV) 2650 if (!(flags & EVFLAG_NOENV)
1303 && !enable_secure () 2651 && !enable_secure ()
1304 && getenv ("LIBEV_FLAGS")) 2652 && getenv ("LIBEV_FLAGS"))
1305 flags = atoi (getenv ("LIBEV_FLAGS")); 2653 flags = atoi (getenv ("LIBEV_FLAGS"));
1306 2654
1307 if (!(flags & 0x0000ffffU)) 2655 ev_rt_now = ev_time ();
2656 mn_now = get_clock ();
2657 now_floor = mn_now;
2658 rtmn_diff = ev_rt_now - mn_now;
2659#if EV_FEATURE_API
2660 invoke_cb = ev_invoke_pending;
2661#endif
2662
2663 io_blocktime = 0.;
2664 timeout_blocktime = 0.;
2665 backend = 0;
2666 backend_fd = -1;
2667 sig_pending = 0;
2668#if EV_ASYNC_ENABLE
2669 async_pending = 0;
2670#endif
2671 pipe_write_skipped = 0;
2672 pipe_write_wanted = 0;
2673 evpipe [0] = -1;
2674 evpipe [1] = -1;
2675#if EV_USE_INOTIFY
2676 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2677#endif
2678#if EV_USE_SIGNALFD
2679 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2680#endif
2681
2682 if (!(flags & EVBACKEND_MASK))
1308 flags |= ev_recommended_backends (); 2683 flags |= ev_recommended_backends ();
1309 2684
2685#if EV_USE_IOCP
2686 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2687#endif
1310#if EV_USE_PORT 2688#if EV_USE_PORT
1311 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2689 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1312#endif 2690#endif
1313#if EV_USE_KQUEUE 2691#if EV_USE_KQUEUE
1314 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2692 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1321#endif 2699#endif
1322#if EV_USE_SELECT 2700#if EV_USE_SELECT
1323 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2701 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1324#endif 2702#endif
1325 2703
2704 ev_prepare_init (&pending_w, pendingcb);
2705
2706#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1326 ev_init (&pipeev, pipecb); 2707 ev_init (&pipe_w, pipecb);
1327 ev_set_priority (&pipeev, EV_MAXPRI); 2708 ev_set_priority (&pipe_w, EV_MAXPRI);
2709#endif
1328 } 2710 }
1329} 2711}
1330 2712
1331static void noinline 2713/* free up a loop structure */
2714void ecb_cold
1332loop_destroy (EV_P) 2715ev_loop_destroy (EV_P)
1333{ 2716{
1334 int i; 2717 int i;
1335 2718
2719#if EV_MULTIPLICITY
2720 /* mimic free (0) */
2721 if (!EV_A)
2722 return;
2723#endif
2724
2725#if EV_CLEANUP_ENABLE
2726 /* queue cleanup watchers (and execute them) */
2727 if (expect_false (cleanupcnt))
2728 {
2729 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2730 EV_INVOKE_PENDING;
2731 }
2732#endif
2733
2734#if EV_CHILD_ENABLE
2735 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2736 {
2737 ev_ref (EV_A); /* child watcher */
2738 ev_signal_stop (EV_A_ &childev);
2739 }
2740#endif
2741
1336 if (ev_is_active (&pipeev)) 2742 if (ev_is_active (&pipe_w))
1337 { 2743 {
1338 ev_ref (EV_A); /* signal watcher */ 2744 /*ev_ref (EV_A);*/
1339 ev_io_stop (EV_A_ &pipeev); 2745 /*ev_io_stop (EV_A_ &pipe_w);*/
1340 2746
2747 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2748 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2749 }
2750
1341#if EV_USE_EVENTFD 2751#if EV_USE_SIGNALFD
1342 if (evfd >= 0) 2752 if (ev_is_active (&sigfd_w))
1343 close (evfd); 2753 close (sigfd);
1344#endif 2754#endif
1345
1346 if (evpipe [0] >= 0)
1347 {
1348 close (evpipe [0]);
1349 close (evpipe [1]);
1350 }
1351 }
1352 2755
1353#if EV_USE_INOTIFY 2756#if EV_USE_INOTIFY
1354 if (fs_fd >= 0) 2757 if (fs_fd >= 0)
1355 close (fs_fd); 2758 close (fs_fd);
1356#endif 2759#endif
1357 2760
1358 if (backend_fd >= 0) 2761 if (backend_fd >= 0)
1359 close (backend_fd); 2762 close (backend_fd);
1360 2763
2764#if EV_USE_IOCP
2765 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2766#endif
1361#if EV_USE_PORT 2767#if EV_USE_PORT
1362 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2768 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1363#endif 2769#endif
1364#if EV_USE_KQUEUE 2770#if EV_USE_KQUEUE
1365 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2771 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1380#if EV_IDLE_ENABLE 2786#if EV_IDLE_ENABLE
1381 array_free (idle, [i]); 2787 array_free (idle, [i]);
1382#endif 2788#endif
1383 } 2789 }
1384 2790
1385 ev_free (anfds); anfdmax = 0; 2791 ev_free (anfds); anfds = 0; anfdmax = 0;
1386 2792
1387 /* have to use the microsoft-never-gets-it-right macro */ 2793 /* have to use the microsoft-never-gets-it-right macro */
2794 array_free (rfeed, EMPTY);
1388 array_free (fdchange, EMPTY); 2795 array_free (fdchange, EMPTY);
1389 array_free (timer, EMPTY); 2796 array_free (timer, EMPTY);
1390#if EV_PERIODIC_ENABLE 2797#if EV_PERIODIC_ENABLE
1391 array_free (periodic, EMPTY); 2798 array_free (periodic, EMPTY);
1392#endif 2799#endif
1393#if EV_FORK_ENABLE 2800#if EV_FORK_ENABLE
1394 array_free (fork, EMPTY); 2801 array_free (fork, EMPTY);
1395#endif 2802#endif
2803#if EV_CLEANUP_ENABLE
2804 array_free (cleanup, EMPTY);
2805#endif
1396 array_free (prepare, EMPTY); 2806 array_free (prepare, EMPTY);
1397 array_free (check, EMPTY); 2807 array_free (check, EMPTY);
1398#if EV_ASYNC_ENABLE 2808#if EV_ASYNC_ENABLE
1399 array_free (async, EMPTY); 2809 array_free (async, EMPTY);
1400#endif 2810#endif
1401 2811
1402 backend = 0; 2812 backend = 0;
2813
2814#if EV_MULTIPLICITY
2815 if (ev_is_default_loop (EV_A))
2816#endif
2817 ev_default_loop_ptr = 0;
2818#if EV_MULTIPLICITY
2819 else
2820 ev_free (EV_A);
2821#endif
1403} 2822}
1404 2823
1405#if EV_USE_INOTIFY 2824#if EV_USE_INOTIFY
1406void inline_size infy_fork (EV_P); 2825inline_size void infy_fork (EV_P);
1407#endif 2826#endif
1408 2827
1409void inline_size 2828inline_size void
1410loop_fork (EV_P) 2829loop_fork (EV_P)
1411{ 2830{
1412#if EV_USE_PORT 2831#if EV_USE_PORT
1413 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2832 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1414#endif 2833#endif
1420#endif 2839#endif
1421#if EV_USE_INOTIFY 2840#if EV_USE_INOTIFY
1422 infy_fork (EV_A); 2841 infy_fork (EV_A);
1423#endif 2842#endif
1424 2843
2844#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1425 if (ev_is_active (&pipeev)) 2845 if (ev_is_active (&pipe_w))
2846 {
2847 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2848
2849 ev_ref (EV_A);
2850 ev_io_stop (EV_A_ &pipe_w);
2851
2852 if (evpipe [0] >= 0)
2853 EV_WIN32_CLOSE_FD (evpipe [0]);
2854
2855 evpipe_init (EV_A);
2856 /* iterate over everything, in case we missed something before */
2857 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1426 { 2858 }
1427 /* this "locks" the handlers against writing to the pipe */ 2859#endif
1428 /* while we modify the fd vars */ 2860
1429 gotsig = 1; 2861 postfork = 0;
2862}
2863
2864#if EV_MULTIPLICITY
2865
2866struct ev_loop * ecb_cold
2867ev_loop_new (unsigned int flags) EV_THROW
2868{
2869 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2870
2871 memset (EV_A, 0, sizeof (struct ev_loop));
2872 loop_init (EV_A_ flags);
2873
2874 if (ev_backend (EV_A))
2875 return EV_A;
2876
2877 ev_free (EV_A);
2878 return 0;
2879}
2880
2881#endif /* multiplicity */
2882
2883#if EV_VERIFY
2884static void noinline ecb_cold
2885verify_watcher (EV_P_ W w)
2886{
2887 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2888
2889 if (w->pending)
2890 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2891}
2892
2893static void noinline ecb_cold
2894verify_heap (EV_P_ ANHE *heap, int N)
2895{
2896 int i;
2897
2898 for (i = HEAP0; i < N + HEAP0; ++i)
2899 {
2900 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2901 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2902 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2903
2904 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2905 }
2906}
2907
2908static void noinline ecb_cold
2909array_verify (EV_P_ W *ws, int cnt)
2910{
2911 while (cnt--)
2912 {
2913 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2914 verify_watcher (EV_A_ ws [cnt]);
2915 }
2916}
2917#endif
2918
2919#if EV_FEATURE_API
2920void ecb_cold
2921ev_verify (EV_P) EV_THROW
2922{
2923#if EV_VERIFY
2924 int i;
2925 WL w, w2;
2926
2927 assert (activecnt >= -1);
2928
2929 assert (fdchangemax >= fdchangecnt);
2930 for (i = 0; i < fdchangecnt; ++i)
2931 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2932
2933 assert (anfdmax >= 0);
2934 for (i = 0; i < anfdmax; ++i)
2935 {
2936 int j = 0;
2937
2938 for (w = w2 = anfds [i].head; w; w = w->next)
2939 {
2940 verify_watcher (EV_A_ (W)w);
2941
2942 if (j++ & 1)
2943 {
2944 assert (("libev: io watcher list contains a loop", w != w2));
2945 w2 = w2->next;
2946 }
2947
2948 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2949 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2950 }
2951 }
2952
2953 assert (timermax >= timercnt);
2954 verify_heap (EV_A_ timers, timercnt);
2955
2956#if EV_PERIODIC_ENABLE
2957 assert (periodicmax >= periodiccnt);
2958 verify_heap (EV_A_ periodics, periodiccnt);
2959#endif
2960
2961 for (i = NUMPRI; i--; )
2962 {
2963 assert (pendingmax [i] >= pendingcnt [i]);
2964#if EV_IDLE_ENABLE
2965 assert (idleall >= 0);
2966 assert (idlemax [i] >= idlecnt [i]);
2967 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2968#endif
2969 }
2970
2971#if EV_FORK_ENABLE
2972 assert (forkmax >= forkcnt);
2973 array_verify (EV_A_ (W *)forks, forkcnt);
2974#endif
2975
2976#if EV_CLEANUP_ENABLE
2977 assert (cleanupmax >= cleanupcnt);
2978 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2979#endif
2980
1430#if EV_ASYNC_ENABLE 2981#if EV_ASYNC_ENABLE
1431 gotasync = 1; 2982 assert (asyncmax >= asynccnt);
2983 array_verify (EV_A_ (W *)asyncs, asynccnt);
2984#endif
2985
2986#if EV_PREPARE_ENABLE
2987 assert (preparemax >= preparecnt);
2988 array_verify (EV_A_ (W *)prepares, preparecnt);
2989#endif
2990
2991#if EV_CHECK_ENABLE
2992 assert (checkmax >= checkcnt);
2993 array_verify (EV_A_ (W *)checks, checkcnt);
2994#endif
2995
2996# if 0
2997#if EV_CHILD_ENABLE
2998 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2999 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3000#endif
1432#endif 3001# endif
1433
1434 ev_ref (EV_A);
1435 ev_io_stop (EV_A_ &pipeev);
1436
1437#if EV_USE_EVENTFD
1438 if (evfd >= 0)
1439 close (evfd);
1440#endif 3002#endif
1441
1442 if (evpipe [0] >= 0)
1443 {
1444 close (evpipe [0]);
1445 close (evpipe [1]);
1446 }
1447
1448 evpipe_init (EV_A);
1449 /* now iterate over everything, in case we missed something */
1450 pipecb (EV_A_ &pipeev, EV_READ);
1451 }
1452
1453 postfork = 0;
1454} 3003}
3004#endif
1455 3005
1456#if EV_MULTIPLICITY 3006#if EV_MULTIPLICITY
1457struct ev_loop * 3007struct ev_loop * ecb_cold
1458ev_loop_new (unsigned int flags)
1459{
1460 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1461
1462 memset (loop, 0, sizeof (struct ev_loop));
1463
1464 loop_init (EV_A_ flags);
1465
1466 if (ev_backend (EV_A))
1467 return loop;
1468
1469 return 0;
1470}
1471
1472void
1473ev_loop_destroy (EV_P)
1474{
1475 loop_destroy (EV_A);
1476 ev_free (loop);
1477}
1478
1479void
1480ev_loop_fork (EV_P)
1481{
1482 postfork = 1; /* must be in line with ev_default_fork */
1483}
1484#endif
1485
1486#if EV_MULTIPLICITY
1487struct ev_loop *
1488ev_default_loop_init (unsigned int flags)
1489#else 3008#else
1490int 3009int
3010#endif
1491ev_default_loop (unsigned int flags) 3011ev_default_loop (unsigned int flags) EV_THROW
1492#endif
1493{ 3012{
1494 if (!ev_default_loop_ptr) 3013 if (!ev_default_loop_ptr)
1495 { 3014 {
1496#if EV_MULTIPLICITY 3015#if EV_MULTIPLICITY
1497 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3016 EV_P = ev_default_loop_ptr = &default_loop_struct;
1498#else 3017#else
1499 ev_default_loop_ptr = 1; 3018 ev_default_loop_ptr = 1;
1500#endif 3019#endif
1501 3020
1502 loop_init (EV_A_ flags); 3021 loop_init (EV_A_ flags);
1503 3022
1504 if (ev_backend (EV_A)) 3023 if (ev_backend (EV_A))
1505 { 3024 {
1506#ifndef _WIN32 3025#if EV_CHILD_ENABLE
1507 ev_signal_init (&childev, childcb, SIGCHLD); 3026 ev_signal_init (&childev, childcb, SIGCHLD);
1508 ev_set_priority (&childev, EV_MAXPRI); 3027 ev_set_priority (&childev, EV_MAXPRI);
1509 ev_signal_start (EV_A_ &childev); 3028 ev_signal_start (EV_A_ &childev);
1510 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3029 ev_unref (EV_A); /* child watcher should not keep loop alive */
1511#endif 3030#endif
1516 3035
1517 return ev_default_loop_ptr; 3036 return ev_default_loop_ptr;
1518} 3037}
1519 3038
1520void 3039void
1521ev_default_destroy (void) 3040ev_loop_fork (EV_P) EV_THROW
1522{ 3041{
1523#if EV_MULTIPLICITY 3042 postfork = 1;
1524 struct ev_loop *loop = ev_default_loop_ptr;
1525#endif
1526
1527#ifndef _WIN32
1528 ev_ref (EV_A); /* child watcher */
1529 ev_signal_stop (EV_A_ &childev);
1530#endif
1531
1532 loop_destroy (EV_A);
1533}
1534
1535void
1536ev_default_fork (void)
1537{
1538#if EV_MULTIPLICITY
1539 struct ev_loop *loop = ev_default_loop_ptr;
1540#endif
1541
1542 if (backend)
1543 postfork = 1; /* must be in line with ev_loop_fork */
1544} 3043}
1545 3044
1546/*****************************************************************************/ 3045/*****************************************************************************/
1547 3046
1548void 3047void
1549ev_invoke (EV_P_ void *w, int revents) 3048ev_invoke (EV_P_ void *w, int revents)
1550{ 3049{
1551 EV_CB_INVOKE ((W)w, revents); 3050 EV_CB_INVOKE ((W)w, revents);
1552} 3051}
1553 3052
1554void inline_speed 3053unsigned int
1555call_pending (EV_P) 3054ev_pending_count (EV_P) EV_THROW
1556{ 3055{
1557 int pri; 3056 int pri;
3057 unsigned int count = 0;
1558 3058
1559 for (pri = NUMPRI; pri--; ) 3059 for (pri = NUMPRI; pri--; )
3060 count += pendingcnt [pri];
3061
3062 return count;
3063}
3064
3065void noinline
3066ev_invoke_pending (EV_P)
3067{
3068 pendingpri = NUMPRI;
3069
3070 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3071 {
3072 --pendingpri;
3073
1560 while (pendingcnt [pri]) 3074 while (pendingcnt [pendingpri])
1561 {
1562 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1563
1564 if (expect_true (p->w))
1565 { 3075 {
1566 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3076 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1567 3077
1568 p->w->pending = 0; 3078 p->w->pending = 0;
1569 EV_CB_INVOKE (p->w, p->events); 3079 EV_CB_INVOKE (p->w, p->events);
3080 EV_FREQUENT_CHECK;
1570 } 3081 }
1571 } 3082 }
1572} 3083}
1573 3084
1574#if EV_IDLE_ENABLE 3085#if EV_IDLE_ENABLE
1575void inline_size 3086/* make idle watchers pending. this handles the "call-idle */
3087/* only when higher priorities are idle" logic */
3088inline_size void
1576idle_reify (EV_P) 3089idle_reify (EV_P)
1577{ 3090{
1578 if (expect_false (idleall)) 3091 if (expect_false (idleall))
1579 { 3092 {
1580 int pri; 3093 int pri;
1592 } 3105 }
1593 } 3106 }
1594} 3107}
1595#endif 3108#endif
1596 3109
1597void inline_size 3110/* make timers pending */
3111inline_size void
1598timers_reify (EV_P) 3112timers_reify (EV_P)
1599{ 3113{
3114 EV_FREQUENT_CHECK;
3115
1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now) 3116 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1601 { 3117 {
1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3118 do
1603
1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1605
1606 /* first reschedule or stop timer */
1607 if (w->repeat)
1608 { 3119 {
3120 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3121
3122 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3123
3124 /* first reschedule or stop timer */
3125 if (w->repeat)
3126 {
3127 ev_at (w) += w->repeat;
3128 if (ev_at (w) < mn_now)
3129 ev_at (w) = mn_now;
3130
1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3131 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1610 3132
1611 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now;
1614
1615 ANHE_at_set (timers [HEAP0]); 3133 ANHE_at_cache (timers [HEAP0]);
1616 downheap (timers, timercnt, HEAP0); 3134 downheap (timers, timercnt, HEAP0);
3135 }
3136 else
3137 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3138
3139 EV_FREQUENT_CHECK;
3140 feed_reverse (EV_A_ (W)w);
1617 } 3141 }
1618 else 3142 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1620 3143
1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3144 feed_reverse_done (EV_A_ EV_TIMER);
1622 } 3145 }
1623} 3146}
1624 3147
1625#if EV_PERIODIC_ENABLE 3148#if EV_PERIODIC_ENABLE
1626void inline_size 3149
3150static void noinline
3151periodic_recalc (EV_P_ ev_periodic *w)
3152{
3153 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3154 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3155
3156 /* the above almost always errs on the low side */
3157 while (at <= ev_rt_now)
3158 {
3159 ev_tstamp nat = at + w->interval;
3160
3161 /* when resolution fails us, we use ev_rt_now */
3162 if (expect_false (nat == at))
3163 {
3164 at = ev_rt_now;
3165 break;
3166 }
3167
3168 at = nat;
3169 }
3170
3171 ev_at (w) = at;
3172}
3173
3174/* make periodics pending */
3175inline_size void
1627periodics_reify (EV_P) 3176periodics_reify (EV_P)
1628{ 3177{
3178 EV_FREQUENT_CHECK;
3179
1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now) 3180 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1630 { 3181 {
1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3182 do
1632
1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1634
1635 /* first reschedule or stop timer */
1636 if (w->reschedule_cb)
1637 { 3183 {
3184 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3185
3186 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3187
3188 /* first reschedule or stop timer */
3189 if (w->reschedule_cb)
3190 {
1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 3191 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3192
1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 3193 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3194
1640 ANHE_at_set (periodics [HEAP0]); 3195 ANHE_at_cache (periodics [HEAP0]);
1641 downheap (periodics, periodiccnt, HEAP0); 3196 downheap (periodics, periodiccnt, HEAP0);
3197 }
3198 else if (w->interval)
3199 {
3200 periodic_recalc (EV_A_ w);
3201 ANHE_at_cache (periodics [HEAP0]);
3202 downheap (periodics, periodiccnt, HEAP0);
3203 }
3204 else
3205 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3206
3207 EV_FREQUENT_CHECK;
3208 feed_reverse (EV_A_ (W)w);
1642 } 3209 }
1643 else if (w->interval) 3210 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1644 {
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else
1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1653 3211
1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3212 feed_reverse_done (EV_A_ EV_PERIODIC);
1655 } 3213 }
1656} 3214}
1657 3215
3216/* simply recalculate all periodics */
3217/* TODO: maybe ensure that at least one event happens when jumping forward? */
1658static void noinline 3218static void noinline ecb_cold
1659periodics_reschedule (EV_P) 3219periodics_reschedule (EV_P)
1660{ 3220{
1661 int i; 3221 int i;
1662 3222
1663 /* adjust periodics after time jump */ 3223 /* adjust periodics after time jump */
1666 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3226 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1667 3227
1668 if (w->reschedule_cb) 3228 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3229 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1670 else if (w->interval) 3230 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3231 periodic_recalc (EV_A_ w);
1672 3232
1673 ANHE_at_set (periodics [i]); 3233 ANHE_at_cache (periodics [i]);
3234 }
3235
3236 reheap (periodics, periodiccnt);
3237}
3238#endif
3239
3240/* adjust all timers by a given offset */
3241static void noinline ecb_cold
3242timers_reschedule (EV_P_ ev_tstamp adjust)
3243{
3244 int i;
3245
3246 for (i = 0; i < timercnt; ++i)
1674 } 3247 {
1675 3248 ANHE *he = timers + i + HEAP0;
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */ 3249 ANHE_w (*he)->at += adjust;
1677 for (i = periodiccnt >> 1; --i; ) 3250 ANHE_at_cache (*he);
1678 downheap (periodics, periodiccnt, i + HEAP0); 3251 }
1679} 3252}
1680#endif
1681 3253
1682void inline_speed 3254/* fetch new monotonic and realtime times from the kernel */
3255/* also detect if there was a timejump, and act accordingly */
3256inline_speed void
1683time_update (EV_P_ ev_tstamp max_block) 3257time_update (EV_P_ ev_tstamp max_block)
1684{ 3258{
1685 int i;
1686
1687#if EV_USE_MONOTONIC 3259#if EV_USE_MONOTONIC
1688 if (expect_true (have_monotonic)) 3260 if (expect_true (have_monotonic))
1689 { 3261 {
3262 int i;
1690 ev_tstamp odiff = rtmn_diff; 3263 ev_tstamp odiff = rtmn_diff;
1691 3264
1692 mn_now = get_clock (); 3265 mn_now = get_clock ();
1693 3266
1694 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3267 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1710 * doesn't hurt either as we only do this on time-jumps or 3283 * doesn't hurt either as we only do this on time-jumps or
1711 * in the unlikely event of having been preempted here. 3284 * in the unlikely event of having been preempted here.
1712 */ 3285 */
1713 for (i = 4; --i; ) 3286 for (i = 4; --i; )
1714 { 3287 {
3288 ev_tstamp diff;
1715 rtmn_diff = ev_rt_now - mn_now; 3289 rtmn_diff = ev_rt_now - mn_now;
1716 3290
3291 diff = odiff - rtmn_diff;
3292
1717 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3293 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1718 return; /* all is well */ 3294 return; /* all is well */
1719 3295
1720 ev_rt_now = ev_time (); 3296 ev_rt_now = ev_time ();
1721 mn_now = get_clock (); 3297 mn_now = get_clock ();
1722 now_floor = mn_now; 3298 now_floor = mn_now;
1723 } 3299 }
1724 3300
3301 /* no timer adjustment, as the monotonic clock doesn't jump */
3302 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1725# if EV_PERIODIC_ENABLE 3303# if EV_PERIODIC_ENABLE
1726 periodics_reschedule (EV_A); 3304 periodics_reschedule (EV_A);
1727# endif 3305# endif
1728 /* no timer adjustment, as the monotonic clock doesn't jump */
1729 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1730 } 3306 }
1731 else 3307 else
1732#endif 3308#endif
1733 { 3309 {
1734 ev_rt_now = ev_time (); 3310 ev_rt_now = ev_time ();
1735 3311
1736 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3312 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1737 { 3313 {
3314 /* adjust timers. this is easy, as the offset is the same for all of them */
3315 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1738#if EV_PERIODIC_ENABLE 3316#if EV_PERIODIC_ENABLE
1739 periodics_reschedule (EV_A); 3317 periodics_reschedule (EV_A);
1740#endif 3318#endif
1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1742 for (i = 0; i < timercnt; ++i)
1743 {
1744 ANHE *he = timers + i + HEAP0;
1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he);
1747 }
1748 } 3319 }
1749 3320
1750 mn_now = ev_rt_now; 3321 mn_now = ev_rt_now;
1751 } 3322 }
1752} 3323}
1753 3324
1754void 3325int
1755ev_ref (EV_P)
1756{
1757 ++activecnt;
1758}
1759
1760void
1761ev_unref (EV_P)
1762{
1763 --activecnt;
1764}
1765
1766static int loop_done;
1767
1768void
1769ev_loop (EV_P_ int flags) 3326ev_run (EV_P_ int flags)
1770{ 3327{
3328#if EV_FEATURE_API
3329 ++loop_depth;
3330#endif
3331
3332 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3333
1771 loop_done = EVUNLOOP_CANCEL; 3334 loop_done = EVBREAK_CANCEL;
1772 3335
1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3336 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1774 3337
1775 do 3338 do
1776 { 3339 {
3340#if EV_VERIFY >= 2
3341 ev_verify (EV_A);
3342#endif
3343
1777#ifndef _WIN32 3344#ifndef _WIN32
1778 if (expect_false (curpid)) /* penalise the forking check even more */ 3345 if (expect_false (curpid)) /* penalise the forking check even more */
1779 if (expect_false (getpid () != curpid)) 3346 if (expect_false (getpid () != curpid))
1780 { 3347 {
1781 curpid = getpid (); 3348 curpid = getpid ();
1787 /* we might have forked, so queue fork handlers */ 3354 /* we might have forked, so queue fork handlers */
1788 if (expect_false (postfork)) 3355 if (expect_false (postfork))
1789 if (forkcnt) 3356 if (forkcnt)
1790 { 3357 {
1791 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3358 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1792 call_pending (EV_A); 3359 EV_INVOKE_PENDING;
1793 } 3360 }
1794#endif 3361#endif
1795 3362
3363#if EV_PREPARE_ENABLE
1796 /* queue prepare watchers (and execute them) */ 3364 /* queue prepare watchers (and execute them) */
1797 if (expect_false (preparecnt)) 3365 if (expect_false (preparecnt))
1798 { 3366 {
1799 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3367 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1800 call_pending (EV_A); 3368 EV_INVOKE_PENDING;
1801 } 3369 }
3370#endif
1802 3371
1803 if (expect_false (!activecnt)) 3372 if (expect_false (loop_done))
1804 break; 3373 break;
1805 3374
1806 /* we might have forked, so reify kernel state if necessary */ 3375 /* we might have forked, so reify kernel state if necessary */
1807 if (expect_false (postfork)) 3376 if (expect_false (postfork))
1808 loop_fork (EV_A); 3377 loop_fork (EV_A);
1813 /* calculate blocking time */ 3382 /* calculate blocking time */
1814 { 3383 {
1815 ev_tstamp waittime = 0.; 3384 ev_tstamp waittime = 0.;
1816 ev_tstamp sleeptime = 0.; 3385 ev_tstamp sleeptime = 0.;
1817 3386
3387 /* remember old timestamp for io_blocktime calculation */
3388 ev_tstamp prev_mn_now = mn_now;
3389
3390 /* update time to cancel out callback processing overhead */
3391 time_update (EV_A_ 1e100);
3392
3393 /* from now on, we want a pipe-wake-up */
3394 pipe_write_wanted = 1;
3395
3396 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3397
1818 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3398 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1819 { 3399 {
1820 /* update time to cancel out callback processing overhead */
1821 time_update (EV_A_ 1e100);
1822
1823 waittime = MAX_BLOCKTIME; 3400 waittime = MAX_BLOCKTIME;
1824 3401
1825 if (timercnt) 3402 if (timercnt)
1826 { 3403 {
1827 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3404 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1828 if (waittime > to) waittime = to; 3405 if (waittime > to) waittime = to;
1829 } 3406 }
1830 3407
1831#if EV_PERIODIC_ENABLE 3408#if EV_PERIODIC_ENABLE
1832 if (periodiccnt) 3409 if (periodiccnt)
1833 { 3410 {
1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3411 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1835 if (waittime > to) waittime = to; 3412 if (waittime > to) waittime = to;
1836 } 3413 }
1837#endif 3414#endif
1838 3415
3416 /* don't let timeouts decrease the waittime below timeout_blocktime */
1839 if (expect_false (waittime < timeout_blocktime)) 3417 if (expect_false (waittime < timeout_blocktime))
1840 waittime = timeout_blocktime; 3418 waittime = timeout_blocktime;
1841 3419
1842 sleeptime = waittime - backend_fudge; 3420 /* at this point, we NEED to wait, so we have to ensure */
3421 /* to pass a minimum nonzero value to the backend */
3422 if (expect_false (waittime < backend_mintime))
3423 waittime = backend_mintime;
1843 3424
3425 /* extra check because io_blocktime is commonly 0 */
1844 if (expect_true (sleeptime > io_blocktime)) 3426 if (expect_false (io_blocktime))
1845 sleeptime = io_blocktime;
1846
1847 if (sleeptime)
1848 { 3427 {
3428 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3429
3430 if (sleeptime > waittime - backend_mintime)
3431 sleeptime = waittime - backend_mintime;
3432
3433 if (expect_true (sleeptime > 0.))
3434 {
1849 ev_sleep (sleeptime); 3435 ev_sleep (sleeptime);
1850 waittime -= sleeptime; 3436 waittime -= sleeptime;
3437 }
1851 } 3438 }
1852 } 3439 }
1853 3440
3441#if EV_FEATURE_API
1854 ++loop_count; 3442 ++loop_count;
3443#endif
3444 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1855 backend_poll (EV_A_ waittime); 3445 backend_poll (EV_A_ waittime);
3446 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3447
3448 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3449
3450 ECB_MEMORY_FENCE_ACQUIRE;
3451 if (pipe_write_skipped)
3452 {
3453 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3454 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3455 }
3456
1856 3457
1857 /* update ev_rt_now, do magic */ 3458 /* update ev_rt_now, do magic */
1858 time_update (EV_A_ waittime + sleeptime); 3459 time_update (EV_A_ waittime + sleeptime);
1859 } 3460 }
1860 3461
1867#if EV_IDLE_ENABLE 3468#if EV_IDLE_ENABLE
1868 /* queue idle watchers unless other events are pending */ 3469 /* queue idle watchers unless other events are pending */
1869 idle_reify (EV_A); 3470 idle_reify (EV_A);
1870#endif 3471#endif
1871 3472
3473#if EV_CHECK_ENABLE
1872 /* queue check watchers, to be executed first */ 3474 /* queue check watchers, to be executed first */
1873 if (expect_false (checkcnt)) 3475 if (expect_false (checkcnt))
1874 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3476 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3477#endif
1875 3478
1876 call_pending (EV_A); 3479 EV_INVOKE_PENDING;
1877 } 3480 }
1878 while (expect_true ( 3481 while (expect_true (
1879 activecnt 3482 activecnt
1880 && !loop_done 3483 && !loop_done
1881 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3484 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1882 )); 3485 ));
1883 3486
1884 if (loop_done == EVUNLOOP_ONE) 3487 if (loop_done == EVBREAK_ONE)
1885 loop_done = EVUNLOOP_CANCEL; 3488 loop_done = EVBREAK_CANCEL;
3489
3490#if EV_FEATURE_API
3491 --loop_depth;
3492#endif
3493
3494 return activecnt;
1886} 3495}
1887 3496
1888void 3497void
1889ev_unloop (EV_P_ int how) 3498ev_break (EV_P_ int how) EV_THROW
1890{ 3499{
1891 loop_done = how; 3500 loop_done = how;
1892} 3501}
1893 3502
3503void
3504ev_ref (EV_P) EV_THROW
3505{
3506 ++activecnt;
3507}
3508
3509void
3510ev_unref (EV_P) EV_THROW
3511{
3512 --activecnt;
3513}
3514
3515void
3516ev_now_update (EV_P) EV_THROW
3517{
3518 time_update (EV_A_ 1e100);
3519}
3520
3521void
3522ev_suspend (EV_P) EV_THROW
3523{
3524 ev_now_update (EV_A);
3525}
3526
3527void
3528ev_resume (EV_P) EV_THROW
3529{
3530 ev_tstamp mn_prev = mn_now;
3531
3532 ev_now_update (EV_A);
3533 timers_reschedule (EV_A_ mn_now - mn_prev);
3534#if EV_PERIODIC_ENABLE
3535 /* TODO: really do this? */
3536 periodics_reschedule (EV_A);
3537#endif
3538}
3539
1894/*****************************************************************************/ 3540/*****************************************************************************/
3541/* singly-linked list management, used when the expected list length is short */
1895 3542
1896void inline_size 3543inline_size void
1897wlist_add (WL *head, WL elem) 3544wlist_add (WL *head, WL elem)
1898{ 3545{
1899 elem->next = *head; 3546 elem->next = *head;
1900 *head = elem; 3547 *head = elem;
1901} 3548}
1902 3549
1903void inline_size 3550inline_size void
1904wlist_del (WL *head, WL elem) 3551wlist_del (WL *head, WL elem)
1905{ 3552{
1906 while (*head) 3553 while (*head)
1907 { 3554 {
1908 if (*head == elem) 3555 if (expect_true (*head == elem))
1909 { 3556 {
1910 *head = elem->next; 3557 *head = elem->next;
1911 return; 3558 break;
1912 } 3559 }
1913 3560
1914 head = &(*head)->next; 3561 head = &(*head)->next;
1915 } 3562 }
1916} 3563}
1917 3564
1918void inline_speed 3565/* internal, faster, version of ev_clear_pending */
3566inline_speed void
1919clear_pending (EV_P_ W w) 3567clear_pending (EV_P_ W w)
1920{ 3568{
1921 if (w->pending) 3569 if (w->pending)
1922 { 3570 {
1923 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3571 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1924 w->pending = 0; 3572 w->pending = 0;
1925 } 3573 }
1926} 3574}
1927 3575
1928int 3576int
1929ev_clear_pending (EV_P_ void *w) 3577ev_clear_pending (EV_P_ void *w) EV_THROW
1930{ 3578{
1931 W w_ = (W)w; 3579 W w_ = (W)w;
1932 int pending = w_->pending; 3580 int pending = w_->pending;
1933 3581
1934 if (expect_true (pending)) 3582 if (expect_true (pending))
1935 { 3583 {
1936 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3584 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3585 p->w = (W)&pending_w;
1937 w_->pending = 0; 3586 w_->pending = 0;
1938 p->w = 0;
1939 return p->events; 3587 return p->events;
1940 } 3588 }
1941 else 3589 else
1942 return 0; 3590 return 0;
1943} 3591}
1944 3592
1945void inline_size 3593inline_size void
1946pri_adjust (EV_P_ W w) 3594pri_adjust (EV_P_ W w)
1947{ 3595{
1948 int pri = w->priority; 3596 int pri = ev_priority (w);
1949 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3597 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1950 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3598 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1951 w->priority = pri; 3599 ev_set_priority (w, pri);
1952} 3600}
1953 3601
1954void inline_speed 3602inline_speed void
1955ev_start (EV_P_ W w, int active) 3603ev_start (EV_P_ W w, int active)
1956{ 3604{
1957 pri_adjust (EV_A_ w); 3605 pri_adjust (EV_A_ w);
1958 w->active = active; 3606 w->active = active;
1959 ev_ref (EV_A); 3607 ev_ref (EV_A);
1960} 3608}
1961 3609
1962void inline_size 3610inline_size void
1963ev_stop (EV_P_ W w) 3611ev_stop (EV_P_ W w)
1964{ 3612{
1965 ev_unref (EV_A); 3613 ev_unref (EV_A);
1966 w->active = 0; 3614 w->active = 0;
1967} 3615}
1968 3616
1969/*****************************************************************************/ 3617/*****************************************************************************/
1970 3618
1971void noinline 3619void noinline
1972ev_io_start (EV_P_ ev_io *w) 3620ev_io_start (EV_P_ ev_io *w) EV_THROW
1973{ 3621{
1974 int fd = w->fd; 3622 int fd = w->fd;
1975 3623
1976 if (expect_false (ev_is_active (w))) 3624 if (expect_false (ev_is_active (w)))
1977 return; 3625 return;
1978 3626
1979 assert (("ev_io_start called with negative fd", fd >= 0)); 3627 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3628 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3629
3630 EV_FREQUENT_CHECK;
1980 3631
1981 ev_start (EV_A_ (W)w, 1); 3632 ev_start (EV_A_ (W)w, 1);
1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3633 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1983 wlist_add (&anfds[fd].head, (WL)w); 3634 wlist_add (&anfds[fd].head, (WL)w);
1984 3635
3636 /* common bug, apparently */
3637 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3638
1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3639 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1986 w->events &= ~EV_IOFDSET; 3640 w->events &= ~EV__IOFDSET;
3641
3642 EV_FREQUENT_CHECK;
1987} 3643}
1988 3644
1989void noinline 3645void noinline
1990ev_io_stop (EV_P_ ev_io *w) 3646ev_io_stop (EV_P_ ev_io *w) EV_THROW
1991{ 3647{
1992 clear_pending (EV_A_ (W)w); 3648 clear_pending (EV_A_ (W)w);
1993 if (expect_false (!ev_is_active (w))) 3649 if (expect_false (!ev_is_active (w)))
1994 return; 3650 return;
1995 3651
1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3652 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3653
3654 EV_FREQUENT_CHECK;
1997 3655
1998 wlist_del (&anfds[w->fd].head, (WL)w); 3656 wlist_del (&anfds[w->fd].head, (WL)w);
1999 ev_stop (EV_A_ (W)w); 3657 ev_stop (EV_A_ (W)w);
2000 3658
2001 fd_change (EV_A_ w->fd, 1); 3659 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3660
3661 EV_FREQUENT_CHECK;
2002} 3662}
2003 3663
2004void noinline 3664void noinline
2005ev_timer_start (EV_P_ ev_timer *w) 3665ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2006{ 3666{
2007 if (expect_false (ev_is_active (w))) 3667 if (expect_false (ev_is_active (w)))
2008 return; 3668 return;
2009 3669
2010 ev_at (w) += mn_now; 3670 ev_at (w) += mn_now;
2011 3671
2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3672 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2013 3673
3674 EV_FREQUENT_CHECK;
3675
3676 ++timercnt;
2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 3677 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 3678 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2016 ANHE_w (timers [ev_active (w)]) = (WT)w; 3679 ANHE_w (timers [ev_active (w)]) = (WT)w;
2017 ANHE_at_set (timers [ev_active (w)]); 3680 ANHE_at_cache (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w)); 3681 upheap (timers, ev_active (w));
2019 3682
3683 EV_FREQUENT_CHECK;
3684
2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3685 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2021} 3686}
2022 3687
2023void noinline 3688void noinline
2024ev_timer_stop (EV_P_ ev_timer *w) 3689ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2025{ 3690{
2026 clear_pending (EV_A_ (W)w); 3691 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 3692 if (expect_false (!ev_is_active (w)))
2028 return; 3693 return;
2029 3694
3695 EV_FREQUENT_CHECK;
3696
2030 { 3697 {
2031 int active = ev_active (w); 3698 int active = ev_active (w);
2032 3699
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3700 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034 3701
3702 --timercnt;
3703
2035 if (expect_true (active < timercnt + HEAP0 - 1)) 3704 if (expect_true (active < timercnt + HEAP0))
2036 { 3705 {
2037 timers [active] = timers [timercnt + HEAP0 - 1]; 3706 timers [active] = timers [timercnt + HEAP0];
2038 adjustheap (timers, timercnt, active); 3707 adjustheap (timers, timercnt, active);
2039 } 3708 }
2040
2041 --timercnt;
2042 } 3709 }
2043 3710
2044 ev_at (w) -= mn_now; 3711 ev_at (w) -= mn_now;
2045 3712
2046 ev_stop (EV_A_ (W)w); 3713 ev_stop (EV_A_ (W)w);
3714
3715 EV_FREQUENT_CHECK;
2047} 3716}
2048 3717
2049void noinline 3718void noinline
2050ev_timer_again (EV_P_ ev_timer *w) 3719ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2051{ 3720{
3721 EV_FREQUENT_CHECK;
3722
3723 clear_pending (EV_A_ (W)w);
3724
2052 if (ev_is_active (w)) 3725 if (ev_is_active (w))
2053 { 3726 {
2054 if (w->repeat) 3727 if (w->repeat)
2055 { 3728 {
2056 ev_at (w) = mn_now + w->repeat; 3729 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]); 3730 ANHE_at_cache (timers [ev_active (w)]);
2058 adjustheap (timers, timercnt, ev_active (w)); 3731 adjustheap (timers, timercnt, ev_active (w));
2059 } 3732 }
2060 else 3733 else
2061 ev_timer_stop (EV_A_ w); 3734 ev_timer_stop (EV_A_ w);
2062 } 3735 }
2063 else if (w->repeat) 3736 else if (w->repeat)
2064 { 3737 {
2065 ev_at (w) = w->repeat; 3738 ev_at (w) = w->repeat;
2066 ev_timer_start (EV_A_ w); 3739 ev_timer_start (EV_A_ w);
2067 } 3740 }
3741
3742 EV_FREQUENT_CHECK;
3743}
3744
3745ev_tstamp
3746ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3747{
3748 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2068} 3749}
2069 3750
2070#if EV_PERIODIC_ENABLE 3751#if EV_PERIODIC_ENABLE
2071void noinline 3752void noinline
2072ev_periodic_start (EV_P_ ev_periodic *w) 3753ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2073{ 3754{
2074 if (expect_false (ev_is_active (w))) 3755 if (expect_false (ev_is_active (w)))
2075 return; 3756 return;
2076 3757
2077 if (w->reschedule_cb) 3758 if (w->reschedule_cb)
2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3759 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2079 else if (w->interval) 3760 else if (w->interval)
2080 { 3761 {
2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3762 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2082 /* this formula differs from the one in periodic_reify because we do not always round up */ 3763 periodic_recalc (EV_A_ w);
2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2084 } 3764 }
2085 else 3765 else
2086 ev_at (w) = w->offset; 3766 ev_at (w) = w->offset;
2087 3767
3768 EV_FREQUENT_CHECK;
3769
3770 ++periodiccnt;
2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 3771 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 3772 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2090 ANHE_w (periodics [ev_active (w)]) = (WT)w; 3773 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3774 ANHE_at_cache (periodics [ev_active (w)]);
2091 upheap (periodics, ev_active (w)); 3775 upheap (periodics, ev_active (w));
2092 3776
3777 EV_FREQUENT_CHECK;
3778
2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3779 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2094} 3780}
2095 3781
2096void noinline 3782void noinline
2097ev_periodic_stop (EV_P_ ev_periodic *w) 3783ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2098{ 3784{
2099 clear_pending (EV_A_ (W)w); 3785 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w))) 3786 if (expect_false (!ev_is_active (w)))
2101 return; 3787 return;
2102 3788
3789 EV_FREQUENT_CHECK;
3790
2103 { 3791 {
2104 int active = ev_active (w); 3792 int active = ev_active (w);
2105 3793
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3794 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107 3795
3796 --periodiccnt;
3797
2108 if (expect_true (active < periodiccnt + HEAP0 - 1)) 3798 if (expect_true (active < periodiccnt + HEAP0))
2109 { 3799 {
2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 3800 periodics [active] = periodics [periodiccnt + HEAP0];
2111 adjustheap (periodics, periodiccnt, active); 3801 adjustheap (periodics, periodiccnt, active);
2112 } 3802 }
2113
2114 --periodiccnt;
2115 } 3803 }
2116 3804
2117 ev_stop (EV_A_ (W)w); 3805 ev_stop (EV_A_ (W)w);
3806
3807 EV_FREQUENT_CHECK;
2118} 3808}
2119 3809
2120void noinline 3810void noinline
2121ev_periodic_again (EV_P_ ev_periodic *w) 3811ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2122{ 3812{
2123 /* TODO: use adjustheap and recalculation */ 3813 /* TODO: use adjustheap and recalculation */
2124 ev_periodic_stop (EV_A_ w); 3814 ev_periodic_stop (EV_A_ w);
2125 ev_periodic_start (EV_A_ w); 3815 ev_periodic_start (EV_A_ w);
2126} 3816}
2128 3818
2129#ifndef SA_RESTART 3819#ifndef SA_RESTART
2130# define SA_RESTART 0 3820# define SA_RESTART 0
2131#endif 3821#endif
2132 3822
3823#if EV_SIGNAL_ENABLE
3824
2133void noinline 3825void noinline
2134ev_signal_start (EV_P_ ev_signal *w) 3826ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2135{ 3827{
2136#if EV_MULTIPLICITY
2137 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2138#endif
2139 if (expect_false (ev_is_active (w))) 3828 if (expect_false (ev_is_active (w)))
2140 return; 3829 return;
2141 3830
2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3831 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2143 3832
2144 evpipe_init (EV_A); 3833#if EV_MULTIPLICITY
3834 assert (("libev: a signal must not be attached to two different loops",
3835 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2145 3836
3837 signals [w->signum - 1].loop = EV_A;
3838 ECB_MEMORY_FENCE_RELEASE;
3839#endif
3840
3841 EV_FREQUENT_CHECK;
3842
3843#if EV_USE_SIGNALFD
3844 if (sigfd == -2)
2146 { 3845 {
2147#ifndef _WIN32 3846 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2148 sigset_t full, prev; 3847 if (sigfd < 0 && errno == EINVAL)
2149 sigfillset (&full); 3848 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2150 sigprocmask (SIG_SETMASK, &full, &prev);
2151#endif
2152 3849
2153 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3850 if (sigfd >= 0)
3851 {
3852 fd_intern (sigfd); /* doing it twice will not hurt */
2154 3853
2155#ifndef _WIN32 3854 sigemptyset (&sigfd_set);
2156 sigprocmask (SIG_SETMASK, &prev, 0); 3855
2157#endif 3856 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3857 ev_set_priority (&sigfd_w, EV_MAXPRI);
3858 ev_io_start (EV_A_ &sigfd_w);
3859 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3860 }
2158 } 3861 }
3862
3863 if (sigfd >= 0)
3864 {
3865 /* TODO: check .head */
3866 sigaddset (&sigfd_set, w->signum);
3867 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3868
3869 signalfd (sigfd, &sigfd_set, 0);
3870 }
3871#endif
2159 3872
2160 ev_start (EV_A_ (W)w, 1); 3873 ev_start (EV_A_ (W)w, 1);
2161 wlist_add (&signals [w->signum - 1].head, (WL)w); 3874 wlist_add (&signals [w->signum - 1].head, (WL)w);
2162 3875
2163 if (!((WL)w)->next) 3876 if (!((WL)w)->next)
3877# if EV_USE_SIGNALFD
3878 if (sigfd < 0) /*TODO*/
3879# endif
2164 { 3880 {
2165#if _WIN32 3881# ifdef _WIN32
3882 evpipe_init (EV_A);
3883
2166 signal (w->signum, ev_sighandler); 3884 signal (w->signum, ev_sighandler);
2167#else 3885# else
2168 struct sigaction sa; 3886 struct sigaction sa;
3887
3888 evpipe_init (EV_A);
3889
2169 sa.sa_handler = ev_sighandler; 3890 sa.sa_handler = ev_sighandler;
2170 sigfillset (&sa.sa_mask); 3891 sigfillset (&sa.sa_mask);
2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3892 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2172 sigaction (w->signum, &sa, 0); 3893 sigaction (w->signum, &sa, 0);
3894
3895 if (origflags & EVFLAG_NOSIGMASK)
3896 {
3897 sigemptyset (&sa.sa_mask);
3898 sigaddset (&sa.sa_mask, w->signum);
3899 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3900 }
2173#endif 3901#endif
2174 } 3902 }
3903
3904 EV_FREQUENT_CHECK;
2175} 3905}
2176 3906
2177void noinline 3907void noinline
2178ev_signal_stop (EV_P_ ev_signal *w) 3908ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2179{ 3909{
2180 clear_pending (EV_A_ (W)w); 3910 clear_pending (EV_A_ (W)w);
2181 if (expect_false (!ev_is_active (w))) 3911 if (expect_false (!ev_is_active (w)))
2182 return; 3912 return;
2183 3913
3914 EV_FREQUENT_CHECK;
3915
2184 wlist_del (&signals [w->signum - 1].head, (WL)w); 3916 wlist_del (&signals [w->signum - 1].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 3917 ev_stop (EV_A_ (W)w);
2186 3918
2187 if (!signals [w->signum - 1].head) 3919 if (!signals [w->signum - 1].head)
3920 {
3921#if EV_MULTIPLICITY
3922 signals [w->signum - 1].loop = 0; /* unattach from signal */
3923#endif
3924#if EV_USE_SIGNALFD
3925 if (sigfd >= 0)
3926 {
3927 sigset_t ss;
3928
3929 sigemptyset (&ss);
3930 sigaddset (&ss, w->signum);
3931 sigdelset (&sigfd_set, w->signum);
3932
3933 signalfd (sigfd, &sigfd_set, 0);
3934 sigprocmask (SIG_UNBLOCK, &ss, 0);
3935 }
3936 else
3937#endif
2188 signal (w->signum, SIG_DFL); 3938 signal (w->signum, SIG_DFL);
3939 }
3940
3941 EV_FREQUENT_CHECK;
2189} 3942}
3943
3944#endif
3945
3946#if EV_CHILD_ENABLE
2190 3947
2191void 3948void
2192ev_child_start (EV_P_ ev_child *w) 3949ev_child_start (EV_P_ ev_child *w) EV_THROW
2193{ 3950{
2194#if EV_MULTIPLICITY 3951#if EV_MULTIPLICITY
2195 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3952 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2196#endif 3953#endif
2197 if (expect_false (ev_is_active (w))) 3954 if (expect_false (ev_is_active (w)))
2198 return; 3955 return;
2199 3956
3957 EV_FREQUENT_CHECK;
3958
2200 ev_start (EV_A_ (W)w, 1); 3959 ev_start (EV_A_ (W)w, 1);
2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3960 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3961
3962 EV_FREQUENT_CHECK;
2202} 3963}
2203 3964
2204void 3965void
2205ev_child_stop (EV_P_ ev_child *w) 3966ev_child_stop (EV_P_ ev_child *w) EV_THROW
2206{ 3967{
2207 clear_pending (EV_A_ (W)w); 3968 clear_pending (EV_A_ (W)w);
2208 if (expect_false (!ev_is_active (w))) 3969 if (expect_false (!ev_is_active (w)))
2209 return; 3970 return;
2210 3971
3972 EV_FREQUENT_CHECK;
3973
2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3974 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2212 ev_stop (EV_A_ (W)w); 3975 ev_stop (EV_A_ (W)w);
3976
3977 EV_FREQUENT_CHECK;
2213} 3978}
3979
3980#endif
2214 3981
2215#if EV_STAT_ENABLE 3982#if EV_STAT_ENABLE
2216 3983
2217# ifdef _WIN32 3984# ifdef _WIN32
2218# undef lstat 3985# undef lstat
2219# define lstat(a,b) _stati64 (a,b) 3986# define lstat(a,b) _stati64 (a,b)
2220# endif 3987# endif
2221 3988
2222#define DEF_STAT_INTERVAL 5.0074891 3989#define DEF_STAT_INTERVAL 5.0074891
3990#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2223#define MIN_STAT_INTERVAL 0.1074891 3991#define MIN_STAT_INTERVAL 0.1074891
2224 3992
2225static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3993static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2226 3994
2227#if EV_USE_INOTIFY 3995#if EV_USE_INOTIFY
2228# define EV_INOTIFY_BUFSIZE 8192 3996
3997/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3998# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2229 3999
2230static void noinline 4000static void noinline
2231infy_add (EV_P_ ev_stat *w) 4001infy_add (EV_P_ ev_stat *w)
2232{ 4002{
2233 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4003 w->wd = inotify_add_watch (fs_fd, w->path,
4004 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4005 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4006 | IN_DONT_FOLLOW | IN_MASK_ADD);
2234 4007
2235 if (w->wd < 0) 4008 if (w->wd >= 0)
4009 {
4010 struct statfs sfs;
4011
4012 /* now local changes will be tracked by inotify, but remote changes won't */
4013 /* unless the filesystem is known to be local, we therefore still poll */
4014 /* also do poll on <2.6.25, but with normal frequency */
4015
4016 if (!fs_2625)
4017 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4018 else if (!statfs (w->path, &sfs)
4019 && (sfs.f_type == 0x1373 /* devfs */
4020 || sfs.f_type == 0x4006 /* fat */
4021 || sfs.f_type == 0x4d44 /* msdos */
4022 || sfs.f_type == 0xEF53 /* ext2/3 */
4023 || sfs.f_type == 0x72b6 /* jffs2 */
4024 || sfs.f_type == 0x858458f6 /* ramfs */
4025 || sfs.f_type == 0x5346544e /* ntfs */
4026 || sfs.f_type == 0x3153464a /* jfs */
4027 || sfs.f_type == 0x9123683e /* btrfs */
4028 || sfs.f_type == 0x52654973 /* reiser3 */
4029 || sfs.f_type == 0x01021994 /* tmpfs */
4030 || sfs.f_type == 0x58465342 /* xfs */))
4031 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4032 else
4033 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2236 { 4034 }
2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4035 else
4036 {
4037 /* can't use inotify, continue to stat */
4038 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2238 4039
2239 /* monitor some parent directory for speedup hints */ 4040 /* if path is not there, monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4041 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2241 /* but an efficiency issue only */ 4042 /* but an efficiency issue only */
2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4043 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2243 { 4044 {
2244 char path [4096]; 4045 char path [4096];
2245 strcpy (path, w->path); 4046 strcpy (path, w->path);
2249 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4050 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2250 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4051 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2251 4052
2252 char *pend = strrchr (path, '/'); 4053 char *pend = strrchr (path, '/');
2253 4054
2254 if (!pend) 4055 if (!pend || pend == path)
2255 break; /* whoops, no '/', complain to your admin */ 4056 break;
2256 4057
2257 *pend = 0; 4058 *pend = 0;
2258 w->wd = inotify_add_watch (fs_fd, path, mask); 4059 w->wd = inotify_add_watch (fs_fd, path, mask);
2259 } 4060 }
2260 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4061 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2261 } 4062 }
2262 } 4063 }
2263 else
2264 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2265 4064
2266 if (w->wd >= 0) 4065 if (w->wd >= 0)
2267 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4066 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4067
4068 /* now re-arm timer, if required */
4069 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4070 ev_timer_again (EV_A_ &w->timer);
4071 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2268} 4072}
2269 4073
2270static void noinline 4074static void noinline
2271infy_del (EV_P_ ev_stat *w) 4075infy_del (EV_P_ ev_stat *w)
2272{ 4076{
2275 4079
2276 if (wd < 0) 4080 if (wd < 0)
2277 return; 4081 return;
2278 4082
2279 w->wd = -2; 4083 w->wd = -2;
2280 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4084 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2281 wlist_del (&fs_hash [slot].head, (WL)w); 4085 wlist_del (&fs_hash [slot].head, (WL)w);
2282 4086
2283 /* remove this watcher, if others are watching it, they will rearm */ 4087 /* remove this watcher, if others are watching it, they will rearm */
2284 inotify_rm_watch (fs_fd, wd); 4088 inotify_rm_watch (fs_fd, wd);
2285} 4089}
2286 4090
2287static void noinline 4091static void noinline
2288infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4092infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2289{ 4093{
2290 if (slot < 0) 4094 if (slot < 0)
2291 /* overflow, need to check for all hahs slots */ 4095 /* overflow, need to check for all hash slots */
2292 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4096 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2293 infy_wd (EV_A_ slot, wd, ev); 4097 infy_wd (EV_A_ slot, wd, ev);
2294 else 4098 else
2295 { 4099 {
2296 WL w_; 4100 WL w_;
2297 4101
2298 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4102 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2299 { 4103 {
2300 ev_stat *w = (ev_stat *)w_; 4104 ev_stat *w = (ev_stat *)w_;
2301 w_ = w_->next; /* lets us remove this watcher and all before it */ 4105 w_ = w_->next; /* lets us remove this watcher and all before it */
2302 4106
2303 if (w->wd == wd || wd == -1) 4107 if (w->wd == wd || wd == -1)
2304 { 4108 {
2305 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4109 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2306 { 4110 {
4111 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2307 w->wd = -1; 4112 w->wd = -1;
2308 infy_add (EV_A_ w); /* re-add, no matter what */ 4113 infy_add (EV_A_ w); /* re-add, no matter what */
2309 } 4114 }
2310 4115
2311 stat_timer_cb (EV_A_ &w->timer, 0); 4116 stat_timer_cb (EV_A_ &w->timer, 0);
2316 4121
2317static void 4122static void
2318infy_cb (EV_P_ ev_io *w, int revents) 4123infy_cb (EV_P_ ev_io *w, int revents)
2319{ 4124{
2320 char buf [EV_INOTIFY_BUFSIZE]; 4125 char buf [EV_INOTIFY_BUFSIZE];
2321 struct inotify_event *ev = (struct inotify_event *)buf;
2322 int ofs; 4126 int ofs;
2323 int len = read (fs_fd, buf, sizeof (buf)); 4127 int len = read (fs_fd, buf, sizeof (buf));
2324 4128
2325 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4129 for (ofs = 0; ofs < len; )
4130 {
4131 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2326 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4132 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4133 ofs += sizeof (struct inotify_event) + ev->len;
4134 }
2327} 4135}
2328 4136
2329void inline_size 4137inline_size void ecb_cold
4138ev_check_2625 (EV_P)
4139{
4140 /* kernels < 2.6.25 are borked
4141 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4142 */
4143 if (ev_linux_version () < 0x020619)
4144 return;
4145
4146 fs_2625 = 1;
4147}
4148
4149inline_size int
4150infy_newfd (void)
4151{
4152#if defined IN_CLOEXEC && defined IN_NONBLOCK
4153 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4154 if (fd >= 0)
4155 return fd;
4156#endif
4157 return inotify_init ();
4158}
4159
4160inline_size void
2330infy_init (EV_P) 4161infy_init (EV_P)
2331{ 4162{
2332 if (fs_fd != -2) 4163 if (fs_fd != -2)
2333 return; 4164 return;
2334 4165
4166 fs_fd = -1;
4167
4168 ev_check_2625 (EV_A);
4169
2335 fs_fd = inotify_init (); 4170 fs_fd = infy_newfd ();
2336 4171
2337 if (fs_fd >= 0) 4172 if (fs_fd >= 0)
2338 { 4173 {
4174 fd_intern (fs_fd);
2339 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4175 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2340 ev_set_priority (&fs_w, EV_MAXPRI); 4176 ev_set_priority (&fs_w, EV_MAXPRI);
2341 ev_io_start (EV_A_ &fs_w); 4177 ev_io_start (EV_A_ &fs_w);
4178 ev_unref (EV_A);
2342 } 4179 }
2343} 4180}
2344 4181
2345void inline_size 4182inline_size void
2346infy_fork (EV_P) 4183infy_fork (EV_P)
2347{ 4184{
2348 int slot; 4185 int slot;
2349 4186
2350 if (fs_fd < 0) 4187 if (fs_fd < 0)
2351 return; 4188 return;
2352 4189
4190 ev_ref (EV_A);
4191 ev_io_stop (EV_A_ &fs_w);
2353 close (fs_fd); 4192 close (fs_fd);
2354 fs_fd = inotify_init (); 4193 fs_fd = infy_newfd ();
2355 4194
4195 if (fs_fd >= 0)
4196 {
4197 fd_intern (fs_fd);
4198 ev_io_set (&fs_w, fs_fd, EV_READ);
4199 ev_io_start (EV_A_ &fs_w);
4200 ev_unref (EV_A);
4201 }
4202
2356 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4203 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2357 { 4204 {
2358 WL w_ = fs_hash [slot].head; 4205 WL w_ = fs_hash [slot].head;
2359 fs_hash [slot].head = 0; 4206 fs_hash [slot].head = 0;
2360 4207
2361 while (w_) 4208 while (w_)
2366 w->wd = -1; 4213 w->wd = -1;
2367 4214
2368 if (fs_fd >= 0) 4215 if (fs_fd >= 0)
2369 infy_add (EV_A_ w); /* re-add, no matter what */ 4216 infy_add (EV_A_ w); /* re-add, no matter what */
2370 else 4217 else
4218 {
4219 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4220 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2371 ev_timer_start (EV_A_ &w->timer); 4221 ev_timer_again (EV_A_ &w->timer);
4222 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4223 }
2372 } 4224 }
2373
2374 } 4225 }
2375} 4226}
2376 4227
4228#endif
4229
4230#ifdef _WIN32
4231# define EV_LSTAT(p,b) _stati64 (p, b)
4232#else
4233# define EV_LSTAT(p,b) lstat (p, b)
2377#endif 4234#endif
2378 4235
2379void 4236void
2380ev_stat_stat (EV_P_ ev_stat *w) 4237ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2381{ 4238{
2382 if (lstat (w->path, &w->attr) < 0) 4239 if (lstat (w->path, &w->attr) < 0)
2383 w->attr.st_nlink = 0; 4240 w->attr.st_nlink = 0;
2384 else if (!w->attr.st_nlink) 4241 else if (!w->attr.st_nlink)
2385 w->attr.st_nlink = 1; 4242 w->attr.st_nlink = 1;
2388static void noinline 4245static void noinline
2389stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4246stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2390{ 4247{
2391 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4248 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2392 4249
2393 /* we copy this here each the time so that */ 4250 ev_statdata prev = w->attr;
2394 /* prev has the old value when the callback gets invoked */
2395 w->prev = w->attr;
2396 ev_stat_stat (EV_A_ w); 4251 ev_stat_stat (EV_A_ w);
2397 4252
2398 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4253 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2399 if ( 4254 if (
2400 w->prev.st_dev != w->attr.st_dev 4255 prev.st_dev != w->attr.st_dev
2401 || w->prev.st_ino != w->attr.st_ino 4256 || prev.st_ino != w->attr.st_ino
2402 || w->prev.st_mode != w->attr.st_mode 4257 || prev.st_mode != w->attr.st_mode
2403 || w->prev.st_nlink != w->attr.st_nlink 4258 || prev.st_nlink != w->attr.st_nlink
2404 || w->prev.st_uid != w->attr.st_uid 4259 || prev.st_uid != w->attr.st_uid
2405 || w->prev.st_gid != w->attr.st_gid 4260 || prev.st_gid != w->attr.st_gid
2406 || w->prev.st_rdev != w->attr.st_rdev 4261 || prev.st_rdev != w->attr.st_rdev
2407 || w->prev.st_size != w->attr.st_size 4262 || prev.st_size != w->attr.st_size
2408 || w->prev.st_atime != w->attr.st_atime 4263 || prev.st_atime != w->attr.st_atime
2409 || w->prev.st_mtime != w->attr.st_mtime 4264 || prev.st_mtime != w->attr.st_mtime
2410 || w->prev.st_ctime != w->attr.st_ctime 4265 || prev.st_ctime != w->attr.st_ctime
2411 ) { 4266 ) {
4267 /* we only update w->prev on actual differences */
4268 /* in case we test more often than invoke the callback, */
4269 /* to ensure that prev is always different to attr */
4270 w->prev = prev;
4271
2412 #if EV_USE_INOTIFY 4272 #if EV_USE_INOTIFY
4273 if (fs_fd >= 0)
4274 {
2413 infy_del (EV_A_ w); 4275 infy_del (EV_A_ w);
2414 infy_add (EV_A_ w); 4276 infy_add (EV_A_ w);
2415 ev_stat_stat (EV_A_ w); /* avoid race... */ 4277 ev_stat_stat (EV_A_ w); /* avoid race... */
4278 }
2416 #endif 4279 #endif
2417 4280
2418 ev_feed_event (EV_A_ w, EV_STAT); 4281 ev_feed_event (EV_A_ w, EV_STAT);
2419 } 4282 }
2420} 4283}
2421 4284
2422void 4285void
2423ev_stat_start (EV_P_ ev_stat *w) 4286ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2424{ 4287{
2425 if (expect_false (ev_is_active (w))) 4288 if (expect_false (ev_is_active (w)))
2426 return; 4289 return;
2427 4290
2428 /* since we use memcmp, we need to clear any padding data etc. */
2429 memset (&w->prev, 0, sizeof (ev_statdata));
2430 memset (&w->attr, 0, sizeof (ev_statdata));
2431
2432 ev_stat_stat (EV_A_ w); 4291 ev_stat_stat (EV_A_ w);
2433 4292
4293 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2434 if (w->interval < MIN_STAT_INTERVAL) 4294 w->interval = MIN_STAT_INTERVAL;
2435 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2436 4295
2437 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4296 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2438 ev_set_priority (&w->timer, ev_priority (w)); 4297 ev_set_priority (&w->timer, ev_priority (w));
2439 4298
2440#if EV_USE_INOTIFY 4299#if EV_USE_INOTIFY
2441 infy_init (EV_A); 4300 infy_init (EV_A);
2442 4301
2443 if (fs_fd >= 0) 4302 if (fs_fd >= 0)
2444 infy_add (EV_A_ w); 4303 infy_add (EV_A_ w);
2445 else 4304 else
2446#endif 4305#endif
4306 {
2447 ev_timer_start (EV_A_ &w->timer); 4307 ev_timer_again (EV_A_ &w->timer);
4308 ev_unref (EV_A);
4309 }
2448 4310
2449 ev_start (EV_A_ (W)w, 1); 4311 ev_start (EV_A_ (W)w, 1);
4312
4313 EV_FREQUENT_CHECK;
2450} 4314}
2451 4315
2452void 4316void
2453ev_stat_stop (EV_P_ ev_stat *w) 4317ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2454{ 4318{
2455 clear_pending (EV_A_ (W)w); 4319 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 4320 if (expect_false (!ev_is_active (w)))
2457 return; 4321 return;
2458 4322
4323 EV_FREQUENT_CHECK;
4324
2459#if EV_USE_INOTIFY 4325#if EV_USE_INOTIFY
2460 infy_del (EV_A_ w); 4326 infy_del (EV_A_ w);
2461#endif 4327#endif
4328
4329 if (ev_is_active (&w->timer))
4330 {
4331 ev_ref (EV_A);
2462 ev_timer_stop (EV_A_ &w->timer); 4332 ev_timer_stop (EV_A_ &w->timer);
4333 }
2463 4334
2464 ev_stop (EV_A_ (W)w); 4335 ev_stop (EV_A_ (W)w);
4336
4337 EV_FREQUENT_CHECK;
2465} 4338}
2466#endif 4339#endif
2467 4340
2468#if EV_IDLE_ENABLE 4341#if EV_IDLE_ENABLE
2469void 4342void
2470ev_idle_start (EV_P_ ev_idle *w) 4343ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2471{ 4344{
2472 if (expect_false (ev_is_active (w))) 4345 if (expect_false (ev_is_active (w)))
2473 return; 4346 return;
2474 4347
2475 pri_adjust (EV_A_ (W)w); 4348 pri_adjust (EV_A_ (W)w);
4349
4350 EV_FREQUENT_CHECK;
2476 4351
2477 { 4352 {
2478 int active = ++idlecnt [ABSPRI (w)]; 4353 int active = ++idlecnt [ABSPRI (w)];
2479 4354
2480 ++idleall; 4355 ++idleall;
2481 ev_start (EV_A_ (W)w, active); 4356 ev_start (EV_A_ (W)w, active);
2482 4357
2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4358 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2484 idles [ABSPRI (w)][active - 1] = w; 4359 idles [ABSPRI (w)][active - 1] = w;
2485 } 4360 }
4361
4362 EV_FREQUENT_CHECK;
2486} 4363}
2487 4364
2488void 4365void
2489ev_idle_stop (EV_P_ ev_idle *w) 4366ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2490{ 4367{
2491 clear_pending (EV_A_ (W)w); 4368 clear_pending (EV_A_ (W)w);
2492 if (expect_false (!ev_is_active (w))) 4369 if (expect_false (!ev_is_active (w)))
2493 return; 4370 return;
2494 4371
4372 EV_FREQUENT_CHECK;
4373
2495 { 4374 {
2496 int active = ev_active (w); 4375 int active = ev_active (w);
2497 4376
2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4377 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active; 4378 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500 4379
2501 ev_stop (EV_A_ (W)w); 4380 ev_stop (EV_A_ (W)w);
2502 --idleall; 4381 --idleall;
2503 } 4382 }
2504}
2505#endif
2506 4383
4384 EV_FREQUENT_CHECK;
4385}
4386#endif
4387
4388#if EV_PREPARE_ENABLE
2507void 4389void
2508ev_prepare_start (EV_P_ ev_prepare *w) 4390ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2509{ 4391{
2510 if (expect_false (ev_is_active (w))) 4392 if (expect_false (ev_is_active (w)))
2511 return; 4393 return;
4394
4395 EV_FREQUENT_CHECK;
2512 4396
2513 ev_start (EV_A_ (W)w, ++preparecnt); 4397 ev_start (EV_A_ (W)w, ++preparecnt);
2514 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4398 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2515 prepares [preparecnt - 1] = w; 4399 prepares [preparecnt - 1] = w;
4400
4401 EV_FREQUENT_CHECK;
2516} 4402}
2517 4403
2518void 4404void
2519ev_prepare_stop (EV_P_ ev_prepare *w) 4405ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2520{ 4406{
2521 clear_pending (EV_A_ (W)w); 4407 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 4408 if (expect_false (!ev_is_active (w)))
2523 return; 4409 return;
2524 4410
4411 EV_FREQUENT_CHECK;
4412
2525 { 4413 {
2526 int active = ev_active (w); 4414 int active = ev_active (w);
2527 4415
2528 prepares [active - 1] = prepares [--preparecnt]; 4416 prepares [active - 1] = prepares [--preparecnt];
2529 ev_active (prepares [active - 1]) = active; 4417 ev_active (prepares [active - 1]) = active;
2530 } 4418 }
2531 4419
2532 ev_stop (EV_A_ (W)w); 4420 ev_stop (EV_A_ (W)w);
2533}
2534 4421
4422 EV_FREQUENT_CHECK;
4423}
4424#endif
4425
4426#if EV_CHECK_ENABLE
2535void 4427void
2536ev_check_start (EV_P_ ev_check *w) 4428ev_check_start (EV_P_ ev_check *w) EV_THROW
2537{ 4429{
2538 if (expect_false (ev_is_active (w))) 4430 if (expect_false (ev_is_active (w)))
2539 return; 4431 return;
4432
4433 EV_FREQUENT_CHECK;
2540 4434
2541 ev_start (EV_A_ (W)w, ++checkcnt); 4435 ev_start (EV_A_ (W)w, ++checkcnt);
2542 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4436 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2543 checks [checkcnt - 1] = w; 4437 checks [checkcnt - 1] = w;
4438
4439 EV_FREQUENT_CHECK;
2544} 4440}
2545 4441
2546void 4442void
2547ev_check_stop (EV_P_ ev_check *w) 4443ev_check_stop (EV_P_ ev_check *w) EV_THROW
2548{ 4444{
2549 clear_pending (EV_A_ (W)w); 4445 clear_pending (EV_A_ (W)w);
2550 if (expect_false (!ev_is_active (w))) 4446 if (expect_false (!ev_is_active (w)))
2551 return; 4447 return;
2552 4448
4449 EV_FREQUENT_CHECK;
4450
2553 { 4451 {
2554 int active = ev_active (w); 4452 int active = ev_active (w);
2555 4453
2556 checks [active - 1] = checks [--checkcnt]; 4454 checks [active - 1] = checks [--checkcnt];
2557 ev_active (checks [active - 1]) = active; 4455 ev_active (checks [active - 1]) = active;
2558 } 4456 }
2559 4457
2560 ev_stop (EV_A_ (W)w); 4458 ev_stop (EV_A_ (W)w);
4459
4460 EV_FREQUENT_CHECK;
2561} 4461}
4462#endif
2562 4463
2563#if EV_EMBED_ENABLE 4464#if EV_EMBED_ENABLE
2564void noinline 4465void noinline
2565ev_embed_sweep (EV_P_ ev_embed *w) 4466ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2566{ 4467{
2567 ev_loop (w->other, EVLOOP_NONBLOCK); 4468 ev_run (w->other, EVRUN_NOWAIT);
2568} 4469}
2569 4470
2570static void 4471static void
2571embed_io_cb (EV_P_ ev_io *io, int revents) 4472embed_io_cb (EV_P_ ev_io *io, int revents)
2572{ 4473{
2573 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4474 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2574 4475
2575 if (ev_cb (w)) 4476 if (ev_cb (w))
2576 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4477 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2577 else 4478 else
2578 ev_loop (w->other, EVLOOP_NONBLOCK); 4479 ev_run (w->other, EVRUN_NOWAIT);
2579} 4480}
2580 4481
2581static void 4482static void
2582embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4483embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2583{ 4484{
2584 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4485 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2585 4486
2586 { 4487 {
2587 struct ev_loop *loop = w->other; 4488 EV_P = w->other;
2588 4489
2589 while (fdchangecnt) 4490 while (fdchangecnt)
2590 { 4491 {
2591 fd_reify (EV_A); 4492 fd_reify (EV_A);
2592 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4493 ev_run (EV_A_ EVRUN_NOWAIT);
2593 } 4494 }
2594 } 4495 }
4496}
4497
4498static void
4499embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4500{
4501 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4502
4503 ev_embed_stop (EV_A_ w);
4504
4505 {
4506 EV_P = w->other;
4507
4508 ev_loop_fork (EV_A);
4509 ev_run (EV_A_ EVRUN_NOWAIT);
4510 }
4511
4512 ev_embed_start (EV_A_ w);
2595} 4513}
2596 4514
2597#if 0 4515#if 0
2598static void 4516static void
2599embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4517embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2601 ev_idle_stop (EV_A_ idle); 4519 ev_idle_stop (EV_A_ idle);
2602} 4520}
2603#endif 4521#endif
2604 4522
2605void 4523void
2606ev_embed_start (EV_P_ ev_embed *w) 4524ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2607{ 4525{
2608 if (expect_false (ev_is_active (w))) 4526 if (expect_false (ev_is_active (w)))
2609 return; 4527 return;
2610 4528
2611 { 4529 {
2612 struct ev_loop *loop = w->other; 4530 EV_P = w->other;
2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4531 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4532 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2615 } 4533 }
4534
4535 EV_FREQUENT_CHECK;
2616 4536
2617 ev_set_priority (&w->io, ev_priority (w)); 4537 ev_set_priority (&w->io, ev_priority (w));
2618 ev_io_start (EV_A_ &w->io); 4538 ev_io_start (EV_A_ &w->io);
2619 4539
2620 ev_prepare_init (&w->prepare, embed_prepare_cb); 4540 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI); 4541 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare); 4542 ev_prepare_start (EV_A_ &w->prepare);
2623 4543
4544 ev_fork_init (&w->fork, embed_fork_cb);
4545 ev_fork_start (EV_A_ &w->fork);
4546
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4547 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625 4548
2626 ev_start (EV_A_ (W)w, 1); 4549 ev_start (EV_A_ (W)w, 1);
4550
4551 EV_FREQUENT_CHECK;
2627} 4552}
2628 4553
2629void 4554void
2630ev_embed_stop (EV_P_ ev_embed *w) 4555ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2631{ 4556{
2632 clear_pending (EV_A_ (W)w); 4557 clear_pending (EV_A_ (W)w);
2633 if (expect_false (!ev_is_active (w))) 4558 if (expect_false (!ev_is_active (w)))
2634 return; 4559 return;
2635 4560
4561 EV_FREQUENT_CHECK;
4562
2636 ev_io_stop (EV_A_ &w->io); 4563 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare); 4564 ev_prepare_stop (EV_A_ &w->prepare);
4565 ev_fork_stop (EV_A_ &w->fork);
2638 4566
2639 ev_stop (EV_A_ (W)w); 4567 ev_stop (EV_A_ (W)w);
4568
4569 EV_FREQUENT_CHECK;
2640} 4570}
2641#endif 4571#endif
2642 4572
2643#if EV_FORK_ENABLE 4573#if EV_FORK_ENABLE
2644void 4574void
2645ev_fork_start (EV_P_ ev_fork *w) 4575ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2646{ 4576{
2647 if (expect_false (ev_is_active (w))) 4577 if (expect_false (ev_is_active (w)))
2648 return; 4578 return;
4579
4580 EV_FREQUENT_CHECK;
2649 4581
2650 ev_start (EV_A_ (W)w, ++forkcnt); 4582 ev_start (EV_A_ (W)w, ++forkcnt);
2651 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4583 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2652 forks [forkcnt - 1] = w; 4584 forks [forkcnt - 1] = w;
4585
4586 EV_FREQUENT_CHECK;
2653} 4587}
2654 4588
2655void 4589void
2656ev_fork_stop (EV_P_ ev_fork *w) 4590ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2657{ 4591{
2658 clear_pending (EV_A_ (W)w); 4592 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w))) 4593 if (expect_false (!ev_is_active (w)))
2660 return; 4594 return;
2661 4595
4596 EV_FREQUENT_CHECK;
4597
2662 { 4598 {
2663 int active = ev_active (w); 4599 int active = ev_active (w);
2664 4600
2665 forks [active - 1] = forks [--forkcnt]; 4601 forks [active - 1] = forks [--forkcnt];
2666 ev_active (forks [active - 1]) = active; 4602 ev_active (forks [active - 1]) = active;
2667 } 4603 }
2668 4604
2669 ev_stop (EV_A_ (W)w); 4605 ev_stop (EV_A_ (W)w);
4606
4607 EV_FREQUENT_CHECK;
4608}
4609#endif
4610
4611#if EV_CLEANUP_ENABLE
4612void
4613ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4614{
4615 if (expect_false (ev_is_active (w)))
4616 return;
4617
4618 EV_FREQUENT_CHECK;
4619
4620 ev_start (EV_A_ (W)w, ++cleanupcnt);
4621 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4622 cleanups [cleanupcnt - 1] = w;
4623
4624 /* cleanup watchers should never keep a refcount on the loop */
4625 ev_unref (EV_A);
4626 EV_FREQUENT_CHECK;
4627}
4628
4629void
4630ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4631{
4632 clear_pending (EV_A_ (W)w);
4633 if (expect_false (!ev_is_active (w)))
4634 return;
4635
4636 EV_FREQUENT_CHECK;
4637 ev_ref (EV_A);
4638
4639 {
4640 int active = ev_active (w);
4641
4642 cleanups [active - 1] = cleanups [--cleanupcnt];
4643 ev_active (cleanups [active - 1]) = active;
4644 }
4645
4646 ev_stop (EV_A_ (W)w);
4647
4648 EV_FREQUENT_CHECK;
2670} 4649}
2671#endif 4650#endif
2672 4651
2673#if EV_ASYNC_ENABLE 4652#if EV_ASYNC_ENABLE
2674void 4653void
2675ev_async_start (EV_P_ ev_async *w) 4654ev_async_start (EV_P_ ev_async *w) EV_THROW
2676{ 4655{
2677 if (expect_false (ev_is_active (w))) 4656 if (expect_false (ev_is_active (w)))
2678 return; 4657 return;
2679 4658
4659 w->sent = 0;
4660
2680 evpipe_init (EV_A); 4661 evpipe_init (EV_A);
4662
4663 EV_FREQUENT_CHECK;
2681 4664
2682 ev_start (EV_A_ (W)w, ++asynccnt); 4665 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4666 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w; 4667 asyncs [asynccnt - 1] = w;
4668
4669 EV_FREQUENT_CHECK;
2685} 4670}
2686 4671
2687void 4672void
2688ev_async_stop (EV_P_ ev_async *w) 4673ev_async_stop (EV_P_ ev_async *w) EV_THROW
2689{ 4674{
2690 clear_pending (EV_A_ (W)w); 4675 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w))) 4676 if (expect_false (!ev_is_active (w)))
2692 return; 4677 return;
2693 4678
4679 EV_FREQUENT_CHECK;
4680
2694 { 4681 {
2695 int active = ev_active (w); 4682 int active = ev_active (w);
2696 4683
2697 asyncs [active - 1] = asyncs [--asynccnt]; 4684 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active; 4685 ev_active (asyncs [active - 1]) = active;
2699 } 4686 }
2700 4687
2701 ev_stop (EV_A_ (W)w); 4688 ev_stop (EV_A_ (W)w);
4689
4690 EV_FREQUENT_CHECK;
2702} 4691}
2703 4692
2704void 4693void
2705ev_async_send (EV_P_ ev_async *w) 4694ev_async_send (EV_P_ ev_async *w) EV_THROW
2706{ 4695{
2707 w->sent = 1; 4696 w->sent = 1;
2708 evpipe_write (EV_A_ &gotasync); 4697 evpipe_write (EV_A_ &async_pending);
2709} 4698}
2710#endif 4699#endif
2711 4700
2712/*****************************************************************************/ 4701/*****************************************************************************/
2713 4702
2723once_cb (EV_P_ struct ev_once *once, int revents) 4712once_cb (EV_P_ struct ev_once *once, int revents)
2724{ 4713{
2725 void (*cb)(int revents, void *arg) = once->cb; 4714 void (*cb)(int revents, void *arg) = once->cb;
2726 void *arg = once->arg; 4715 void *arg = once->arg;
2727 4716
2728 ev_io_stop (EV_A_ &once->io); 4717 ev_io_stop (EV_A_ &once->io);
2729 ev_timer_stop (EV_A_ &once->to); 4718 ev_timer_stop (EV_A_ &once->to);
2730 ev_free (once); 4719 ev_free (once);
2731 4720
2732 cb (revents, arg); 4721 cb (revents, arg);
2733} 4722}
2734 4723
2735static void 4724static void
2736once_cb_io (EV_P_ ev_io *w, int revents) 4725once_cb_io (EV_P_ ev_io *w, int revents)
2737{ 4726{
2738 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4727 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4728
4729 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2739} 4730}
2740 4731
2741static void 4732static void
2742once_cb_to (EV_P_ ev_timer *w, int revents) 4733once_cb_to (EV_P_ ev_timer *w, int revents)
2743{ 4734{
2744 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4735 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4736
4737 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2745} 4738}
2746 4739
2747void 4740void
2748ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4741ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2749{ 4742{
2750 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4743 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2751 4744
2752 if (expect_false (!once)) 4745 if (expect_false (!once))
2753 { 4746 {
2754 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4747 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2755 return; 4748 return;
2756 } 4749 }
2757 4750
2758 once->cb = cb; 4751 once->cb = cb;
2759 once->arg = arg; 4752 once->arg = arg;
2771 ev_timer_set (&once->to, timeout, 0.); 4764 ev_timer_set (&once->to, timeout, 0.);
2772 ev_timer_start (EV_A_ &once->to); 4765 ev_timer_start (EV_A_ &once->to);
2773 } 4766 }
2774} 4767}
2775 4768
4769/*****************************************************************************/
4770
4771#if EV_WALK_ENABLE
4772void ecb_cold
4773ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4774{
4775 int i, j;
4776 ev_watcher_list *wl, *wn;
4777
4778 if (types & (EV_IO | EV_EMBED))
4779 for (i = 0; i < anfdmax; ++i)
4780 for (wl = anfds [i].head; wl; )
4781 {
4782 wn = wl->next;
4783
4784#if EV_EMBED_ENABLE
4785 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4786 {
4787 if (types & EV_EMBED)
4788 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4789 }
4790 else
4791#endif
4792#if EV_USE_INOTIFY
4793 if (ev_cb ((ev_io *)wl) == infy_cb)
4794 ;
4795 else
4796#endif
4797 if ((ev_io *)wl != &pipe_w)
4798 if (types & EV_IO)
4799 cb (EV_A_ EV_IO, wl);
4800
4801 wl = wn;
4802 }
4803
4804 if (types & (EV_TIMER | EV_STAT))
4805 for (i = timercnt + HEAP0; i-- > HEAP0; )
4806#if EV_STAT_ENABLE
4807 /*TODO: timer is not always active*/
4808 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4809 {
4810 if (types & EV_STAT)
4811 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4812 }
4813 else
4814#endif
4815 if (types & EV_TIMER)
4816 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4817
4818#if EV_PERIODIC_ENABLE
4819 if (types & EV_PERIODIC)
4820 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4821 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4822#endif
4823
4824#if EV_IDLE_ENABLE
4825 if (types & EV_IDLE)
4826 for (j = NUMPRI; j--; )
4827 for (i = idlecnt [j]; i--; )
4828 cb (EV_A_ EV_IDLE, idles [j][i]);
4829#endif
4830
4831#if EV_FORK_ENABLE
4832 if (types & EV_FORK)
4833 for (i = forkcnt; i--; )
4834 if (ev_cb (forks [i]) != embed_fork_cb)
4835 cb (EV_A_ EV_FORK, forks [i]);
4836#endif
4837
4838#if EV_ASYNC_ENABLE
4839 if (types & EV_ASYNC)
4840 for (i = asynccnt; i--; )
4841 cb (EV_A_ EV_ASYNC, asyncs [i]);
4842#endif
4843
4844#if EV_PREPARE_ENABLE
4845 if (types & EV_PREPARE)
4846 for (i = preparecnt; i--; )
4847# if EV_EMBED_ENABLE
4848 if (ev_cb (prepares [i]) != embed_prepare_cb)
4849# endif
4850 cb (EV_A_ EV_PREPARE, prepares [i]);
4851#endif
4852
4853#if EV_CHECK_ENABLE
4854 if (types & EV_CHECK)
4855 for (i = checkcnt; i--; )
4856 cb (EV_A_ EV_CHECK, checks [i]);
4857#endif
4858
4859#if EV_SIGNAL_ENABLE
4860 if (types & EV_SIGNAL)
4861 for (i = 0; i < EV_NSIG - 1; ++i)
4862 for (wl = signals [i].head; wl; )
4863 {
4864 wn = wl->next;
4865 cb (EV_A_ EV_SIGNAL, wl);
4866 wl = wn;
4867 }
4868#endif
4869
4870#if EV_CHILD_ENABLE
4871 if (types & EV_CHILD)
4872 for (i = (EV_PID_HASHSIZE); i--; )
4873 for (wl = childs [i]; wl; )
4874 {
4875 wn = wl->next;
4876 cb (EV_A_ EV_CHILD, wl);
4877 wl = wn;
4878 }
4879#endif
4880/* EV_STAT 0x00001000 /* stat data changed */
4881/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4882}
4883#endif
4884
2776#if EV_MULTIPLICITY 4885#if EV_MULTIPLICITY
2777 #include "ev_wrap.h" 4886 #include "ev_wrap.h"
2778#endif 4887#endif
2779 4888
2780#ifdef __cplusplus
2781}
2782#endif
2783

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines