ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC vs.
Revision 1.530 by root, Wed Mar 18 12:30:35 2020 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
100# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
102# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO 0 /* was: EV_FEATURE_BACKENDS, always off by default */
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
106# endif 127# endif
107 128
129# if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
108# ifndef EV_USE_PORT 130# ifndef EV_USE_IOURING
109# if HAVE_PORT_H && HAVE_PORT_CREATE 131# define EV_USE_IOURING EV_FEATURE_BACKENDS
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_IOURING
135# define EV_USE_IOURING 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY 138# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 139# ifndef EV_USE_KQUEUE
118# define EV_USE_INOTIFY 1 140# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
119# else
120# define EV_USE_INOTIFY 0
121# endif 141# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else 142# else
143# undef EV_USE_KQUEUE
128# define EV_USE_EVENTFD 0 144# define EV_USE_KQUEUE 0
129# endif
130# endif 145# endif
131 146
147# if HAVE_PORT_H && HAVE_PORT_CREATE
148# ifndef EV_USE_PORT
149# define EV_USE_PORT EV_FEATURE_BACKENDS
150# endif
151# else
152# undef EV_USE_PORT
153# define EV_USE_PORT 0
132#endif 154# endif
133 155
134#include <math.h> 156# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157# ifndef EV_USE_INOTIFY
158# define EV_USE_INOTIFY EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_INOTIFY
162# define EV_USE_INOTIFY 0
163# endif
164
165# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166# ifndef EV_USE_SIGNALFD
167# define EV_USE_SIGNALFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_SIGNALFD
171# define EV_USE_SIGNALFD 0
172# endif
173
174# if HAVE_EVENTFD
175# ifndef EV_USE_EVENTFD
176# define EV_USE_EVENTFD EV_FEATURE_OS
177# endif
178# else
179# undef EV_USE_EVENTFD
180# define EV_USE_EVENTFD 0
181# endif
182
183# if HAVE_SYS_TIMERFD_H
184# ifndef EV_USE_TIMERFD
185# define EV_USE_TIMERFD EV_FEATURE_OS
186# endif
187# else
188# undef EV_USE_TIMERFD
189# define EV_USE_TIMERFD 0
190# endif
191
192#endif
193
194/* OS X, in its infinite idiocy, actually HARDCODES
195 * a limit of 1024 into their select. Where people have brains,
196 * OS X engineers apparently have a vacuum. Or maybe they were
197 * ordered to have a vacuum, or they do anything for money.
198 * This might help. Or not.
199 * Note that this must be defined early, as other include files
200 * will rely on this define as well.
201 */
202#define _DARWIN_UNLIMITED_SELECT 1
203
135#include <stdlib.h> 204#include <stdlib.h>
205#include <string.h>
136#include <fcntl.h> 206#include <fcntl.h>
137#include <stddef.h> 207#include <stddef.h>
138 208
139#include <stdio.h> 209#include <stdio.h>
140 210
141#include <assert.h> 211#include <assert.h>
142#include <errno.h> 212#include <errno.h>
143#include <sys/types.h> 213#include <sys/types.h>
144#include <time.h> 214#include <time.h>
215#include <limits.h>
145 216
146#include <signal.h> 217#include <signal.h>
147 218
148#ifdef EV_H 219#ifdef EV_H
149# include EV_H 220# include EV_H
150#else 221#else
151# include "ev.h" 222# include "ev.h"
223#endif
224
225#if EV_NO_THREADS
226# undef EV_NO_SMP
227# define EV_NO_SMP 1
228# undef ECB_NO_THREADS
229# define ECB_NO_THREADS 1
230#endif
231#if EV_NO_SMP
232# undef EV_NO_SMP
233# define ECB_NO_SMP 1
152#endif 234#endif
153 235
154#ifndef _WIN32 236#ifndef _WIN32
155# include <sys/time.h> 237# include <sys/time.h>
156# include <sys/wait.h> 238# include <sys/wait.h>
157# include <unistd.h> 239# include <unistd.h>
158#else 240#else
241# include <io.h>
159# define WIN32_LEAN_AND_MEAN 242# define WIN32_LEAN_AND_MEAN
243# include <winsock2.h>
160# include <windows.h> 244# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 245# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 246# define EV_SELECT_IS_WINSOCKET 1
163# endif 247# endif
248# undef EV_AVOID_STDIO
164#endif 249#endif
165 250
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 251/* this block tries to deduce configuration from header-defined symbols and defaults */
167 252
253/* try to deduce the maximum number of signals on this platform */
254#if defined EV_NSIG
255/* use what's provided */
256#elif defined NSIG
257# define EV_NSIG (NSIG)
258#elif defined _NSIG
259# define EV_NSIG (_NSIG)
260#elif defined SIGMAX
261# define EV_NSIG (SIGMAX+1)
262#elif defined SIG_MAX
263# define EV_NSIG (SIG_MAX+1)
264#elif defined _SIG_MAX
265# define EV_NSIG (_SIG_MAX+1)
266#elif defined MAXSIG
267# define EV_NSIG (MAXSIG+1)
268#elif defined MAX_SIG
269# define EV_NSIG (MAX_SIG+1)
270#elif defined SIGARRAYSIZE
271# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
272#elif defined _sys_nsig
273# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
274#else
275# define EV_NSIG (8 * sizeof (sigset_t) + 1)
276#endif
277
278#ifndef EV_USE_FLOOR
279# define EV_USE_FLOOR 0
280#endif
281
282#ifndef EV_USE_CLOCK_SYSCALL
283# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
284# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
285# else
286# define EV_USE_CLOCK_SYSCALL 0
287# endif
288#endif
289
290#if !(_POSIX_TIMERS > 0)
291# ifndef EV_USE_MONOTONIC
292# define EV_USE_MONOTONIC 0
293# endif
294# ifndef EV_USE_REALTIME
295# define EV_USE_REALTIME 0
296# endif
297#endif
298
168#ifndef EV_USE_MONOTONIC 299#ifndef EV_USE_MONOTONIC
300# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
301# define EV_USE_MONOTONIC EV_FEATURE_OS
302# else
169# define EV_USE_MONOTONIC 0 303# define EV_USE_MONOTONIC 0
304# endif
170#endif 305#endif
171 306
172#ifndef EV_USE_REALTIME 307#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 308# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 309#endif
175 310
176#ifndef EV_USE_NANOSLEEP 311#ifndef EV_USE_NANOSLEEP
312# if _POSIX_C_SOURCE >= 199309L
313# define EV_USE_NANOSLEEP EV_FEATURE_OS
314# else
177# define EV_USE_NANOSLEEP 0 315# define EV_USE_NANOSLEEP 0
316# endif
178#endif 317#endif
179 318
180#ifndef EV_USE_SELECT 319#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 320# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 321#endif
183 322
184#ifndef EV_USE_POLL 323#ifndef EV_USE_POLL
185# ifdef _WIN32 324# ifdef _WIN32
186# define EV_USE_POLL 0 325# define EV_USE_POLL 0
187# else 326# else
188# define EV_USE_POLL 1 327# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 328# endif
190#endif 329#endif
191 330
192#ifndef EV_USE_EPOLL 331#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 332# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 333# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 334# else
196# define EV_USE_EPOLL 0 335# define EV_USE_EPOLL 0
197# endif 336# endif
198#endif 337#endif
199 338
203 342
204#ifndef EV_USE_PORT 343#ifndef EV_USE_PORT
205# define EV_USE_PORT 0 344# define EV_USE_PORT 0
206#endif 345#endif
207 346
347#ifndef EV_USE_LINUXAIO
348# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
349# define EV_USE_LINUXAIO 0 /* was: 1, always off by default */
350# else
351# define EV_USE_LINUXAIO 0
352# endif
353#endif
354
355#ifndef EV_USE_IOURING
356# if __linux /* later checks might disable again */
357# define EV_USE_IOURING 1
358# else
359# define EV_USE_IOURING 0
360# endif
361#endif
362
208#ifndef EV_USE_INOTIFY 363#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 364# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 365# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 366# else
212# define EV_USE_INOTIFY 0 367# define EV_USE_INOTIFY 0
213# endif 368# endif
214#endif 369#endif
215 370
216#ifndef EV_PID_HASHSIZE 371#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 372# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 373#endif
223 374
224#ifndef EV_INOTIFY_HASHSIZE 375#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 376# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 377#endif
231 378
232#ifndef EV_USE_EVENTFD 379#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 380# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 381# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 382# else
236# define EV_USE_EVENTFD 0 383# define EV_USE_EVENTFD 0
237# endif 384# endif
238#endif 385#endif
239 386
387#ifndef EV_USE_SIGNALFD
388# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
389# define EV_USE_SIGNALFD EV_FEATURE_OS
390# else
391# define EV_USE_SIGNALFD 0
392# endif
393#endif
394
395#ifndef EV_USE_TIMERFD
396# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 8))
397# define EV_USE_TIMERFD EV_FEATURE_OS
398# else
399# define EV_USE_TIMERFD 0
400# endif
401#endif
402
403#if 0 /* debugging */
404# define EV_VERIFY 3
405# define EV_USE_4HEAP 1
406# define EV_HEAP_CACHE_AT 1
407#endif
408
409#ifndef EV_VERIFY
410# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
411#endif
412
413#ifndef EV_USE_4HEAP
414# define EV_USE_4HEAP EV_FEATURE_DATA
415#endif
416
417#ifndef EV_HEAP_CACHE_AT
418# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
419#endif
420
421#ifdef __ANDROID__
422/* supposedly, android doesn't typedef fd_mask */
423# undef EV_USE_SELECT
424# define EV_USE_SELECT 0
425/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
426# undef EV_USE_CLOCK_SYSCALL
427# define EV_USE_CLOCK_SYSCALL 0
428#endif
429
430/* aix's poll.h seems to cause lots of trouble */
431#ifdef _AIX
432/* AIX has a completely broken poll.h header */
433# undef EV_USE_POLL
434# define EV_USE_POLL 0
435#endif
436
437/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
438/* which makes programs even slower. might work on other unices, too. */
439#if EV_USE_CLOCK_SYSCALL
440# include <sys/syscall.h>
441# ifdef SYS_clock_gettime
442# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
443# undef EV_USE_MONOTONIC
444# define EV_USE_MONOTONIC 1
445# define EV_NEED_SYSCALL 1
446# else
447# undef EV_USE_CLOCK_SYSCALL
448# define EV_USE_CLOCK_SYSCALL 0
449# endif
450#endif
451
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 452/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 453
242#ifndef CLOCK_MONOTONIC 454#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 455# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 456# define EV_USE_MONOTONIC 0
252#if !EV_STAT_ENABLE 464#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY 465# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 466# define EV_USE_INOTIFY 0
255#endif 467#endif
256 468
469#if __linux && EV_USE_IOURING
470# include <linux/version.h>
471# if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
472# undef EV_USE_IOURING
473# define EV_USE_IOURING 0
474# endif
475#endif
476
257#if !EV_USE_NANOSLEEP 477#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 478/* hp-ux has it in sys/time.h, which we unconditionally include above */
479# if !defined _WIN32 && !defined __hpux
259# include <sys/select.h> 480# include <sys/select.h>
260# endif 481# endif
261#endif 482#endif
262 483
484#if EV_USE_LINUXAIO
485# include <sys/syscall.h>
486# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
487# define EV_NEED_SYSCALL 1
488# else
489# undef EV_USE_LINUXAIO
490# define EV_USE_LINUXAIO 0
491# endif
492#endif
493
494#if EV_USE_IOURING
495# include <sys/syscall.h>
496# if !SYS_io_uring_setup && __linux && !__alpha
497# define SYS_io_uring_setup 425
498# define SYS_io_uring_enter 426
499# define SYS_io_uring_wregister 427
500# endif
501# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
502# define EV_NEED_SYSCALL 1
503# else
504# undef EV_USE_IOURING
505# define EV_USE_IOURING 0
506# endif
507#endif
508
263#if EV_USE_INOTIFY 509#if EV_USE_INOTIFY
510# include <sys/statfs.h>
264# include <sys/inotify.h> 511# include <sys/inotify.h>
512/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
513# ifndef IN_DONT_FOLLOW
514# undef EV_USE_INOTIFY
515# define EV_USE_INOTIFY 0
265#endif 516# endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif 517#endif
270 518
271#if EV_USE_EVENTFD 519#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 520/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
273# include <stdint.h> 521# include <stdint.h>
274# ifdef __cplusplus 522# ifndef EFD_NONBLOCK
275extern "C" { 523# define EFD_NONBLOCK O_NONBLOCK
276# endif 524# endif
277int eventfd (unsigned int initval, int flags); 525# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 526# ifdef O_CLOEXEC
279} 527# define EFD_CLOEXEC O_CLOEXEC
528# else
529# define EFD_CLOEXEC 02000000
530# endif
280# endif 531# endif
532EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
533#endif
534
535#if EV_USE_SIGNALFD
536/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
537# include <stdint.h>
538# ifndef SFD_NONBLOCK
539# define SFD_NONBLOCK O_NONBLOCK
281#endif 540# endif
541# ifndef SFD_CLOEXEC
542# ifdef O_CLOEXEC
543# define SFD_CLOEXEC O_CLOEXEC
544# else
545# define SFD_CLOEXEC 02000000
546# endif
547# endif
548EV_CPP (extern "C") int (signalfd) (int fd, const sigset_t *mask, int flags);
282 549
283/**/ 550struct signalfd_siginfo
551{
552 uint32_t ssi_signo;
553 char pad[128 - sizeof (uint32_t)];
554};
555#endif
556
557/* for timerfd, libev core requires TFD_TIMER_CANCEL_ON_SET &c */
558#if EV_USE_TIMERFD
559# include <sys/timerfd.h>
560/* timerfd is only used for periodics */
561# if !(defined (TFD_TIMER_CANCEL_ON_SET) && defined (TFD_CLOEXEC) && defined (TFD_NONBLOCK)) || !EV_PERIODIC_ENABLE
562# undef EV_USE_TIMERFD
563# define EV_USE_TIMERFD 0
564# endif
565#endif
566
567/*****************************************************************************/
568
569#if EV_VERIFY >= 3
570# define EV_FREQUENT_CHECK ev_verify (EV_A)
571#else
572# define EV_FREQUENT_CHECK do { } while (0)
573#endif
284 574
285/* 575/*
286 * This is used to avoid floating point rounding problems. 576 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 577 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 578 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 579#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
580/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 581
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 582#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 583#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 584#define MAX_BLOCKTIME2 1500001.07 /* same, but when timerfd is used to detect jumps, also safe delay to not overflow */
298 585
586/* find a portable timestamp that is "always" in the future but fits into time_t.
587 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
588 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
589#define EV_TSTAMP_HUGE \
590 (sizeof (time_t) >= 8 ? 10000000000000. \
591 : 0 < (time_t)4294967295 ? 4294967295. \
592 : 2147483647.) \
593
594#ifndef EV_TS_CONST
595# define EV_TS_CONST(nv) nv
596# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
597# define EV_TS_FROM_USEC(us) us * 1e-6
598# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
599# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
600# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
601# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
602#endif
603
604/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
605/* ECB.H BEGIN */
606/*
607 * libecb - http://software.schmorp.de/pkg/libecb
608 *
609 * Copyright (©) 2009-2015,2018-2020 Marc Alexander Lehmann <libecb@schmorp.de>
610 * Copyright (©) 2011 Emanuele Giaquinta
611 * All rights reserved.
612 *
613 * Redistribution and use in source and binary forms, with or without modifica-
614 * tion, are permitted provided that the following conditions are met:
615 *
616 * 1. Redistributions of source code must retain the above copyright notice,
617 * this list of conditions and the following disclaimer.
618 *
619 * 2. Redistributions in binary form must reproduce the above copyright
620 * notice, this list of conditions and the following disclaimer in the
621 * documentation and/or other materials provided with the distribution.
622 *
623 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
624 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
625 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
626 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
627 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
628 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
629 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
630 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
631 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
632 * OF THE POSSIBILITY OF SUCH DAMAGE.
633 *
634 * Alternatively, the contents of this file may be used under the terms of
635 * the GNU General Public License ("GPL") version 2 or any later version,
636 * in which case the provisions of the GPL are applicable instead of
637 * the above. If you wish to allow the use of your version of this file
638 * only under the terms of the GPL and not to allow others to use your
639 * version of this file under the BSD license, indicate your decision
640 * by deleting the provisions above and replace them with the notice
641 * and other provisions required by the GPL. If you do not delete the
642 * provisions above, a recipient may use your version of this file under
643 * either the BSD or the GPL.
644 */
645
646#ifndef ECB_H
647#define ECB_H
648
649/* 16 bits major, 16 bits minor */
650#define ECB_VERSION 0x00010008
651
652#include <string.h> /* for memcpy */
653
654#if defined (_WIN32) && !defined (__MINGW32__)
655 typedef signed char int8_t;
656 typedef unsigned char uint8_t;
657 typedef signed char int_fast8_t;
658 typedef unsigned char uint_fast8_t;
659 typedef signed short int16_t;
660 typedef unsigned short uint16_t;
661 typedef signed int int_fast16_t;
662 typedef unsigned int uint_fast16_t;
663 typedef signed int int32_t;
664 typedef unsigned int uint32_t;
665 typedef signed int int_fast32_t;
666 typedef unsigned int uint_fast32_t;
299#if __GNUC__ >= 4 667 #if __GNUC__
300# define expect(expr,value) __builtin_expect ((expr),(value)) 668 typedef signed long long int64_t;
301# define noinline __attribute__ ((noinline)) 669 typedef unsigned long long uint64_t;
670 #else /* _MSC_VER || __BORLANDC__ */
671 typedef signed __int64 int64_t;
672 typedef unsigned __int64 uint64_t;
673 #endif
674 typedef int64_t int_fast64_t;
675 typedef uint64_t uint_fast64_t;
676 #ifdef _WIN64
677 #define ECB_PTRSIZE 8
678 typedef uint64_t uintptr_t;
679 typedef int64_t intptr_t;
680 #else
681 #define ECB_PTRSIZE 4
682 typedef uint32_t uintptr_t;
683 typedef int32_t intptr_t;
684 #endif
302#else 685#else
303# define expect(expr,value) (expr) 686 #include <inttypes.h>
304# define noinline 687 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 688 #define ECB_PTRSIZE 8
306# define inline 689 #else
690 #define ECB_PTRSIZE 4
691 #endif
307# endif 692#endif
693
694#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
695#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
696
697#ifndef ECB_OPTIMIZE_SIZE
698 #if __OPTIMIZE_SIZE__
699 #define ECB_OPTIMIZE_SIZE 1
700 #else
701 #define ECB_OPTIMIZE_SIZE 0
308#endif 702 #endif
703#endif
309 704
310#define expect_false(expr) expect ((expr) != 0, 0) 705/* work around x32 idiocy by defining proper macros */
311#define expect_true(expr) expect ((expr) != 0, 1) 706#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
312#define inline_size static inline 707 #if _ILP32
708 #define ECB_AMD64_X32 1
709 #else
710 #define ECB_AMD64 1
711 #endif
712#endif
313 713
314#if EV_MINIMAL 714/* many compilers define _GNUC_ to some versions but then only implement
315# define inline_speed static noinline 715 * what their idiot authors think are the "more important" extensions,
716 * causing enormous grief in return for some better fake benchmark numbers.
717 * or so.
718 * we try to detect these and simply assume they are not gcc - if they have
719 * an issue with that they should have done it right in the first place.
720 */
721#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
722 #define ECB_GCC_VERSION(major,minor) 0
316#else 723#else
724 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
725#endif
726
727#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
728
729#if __clang__ && defined __has_builtin
730 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
731#else
732 #define ECB_CLANG_BUILTIN(x) 0
733#endif
734
735#if __clang__ && defined __has_extension
736 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
737#else
738 #define ECB_CLANG_EXTENSION(x) 0
739#endif
740
741#define ECB_CPP (__cplusplus+0)
742#define ECB_CPP11 (__cplusplus >= 201103L)
743#define ECB_CPP14 (__cplusplus >= 201402L)
744#define ECB_CPP17 (__cplusplus >= 201703L)
745
746#if ECB_CPP
747 #define ECB_C 0
748 #define ECB_STDC_VERSION 0
749#else
750 #define ECB_C 1
751 #define ECB_STDC_VERSION __STDC_VERSION__
752#endif
753
754#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
755#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
756#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
757
758#if ECB_CPP
759 #define ECB_EXTERN_C extern "C"
760 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
761 #define ECB_EXTERN_C_END }
762#else
763 #define ECB_EXTERN_C extern
764 #define ECB_EXTERN_C_BEG
765 #define ECB_EXTERN_C_END
766#endif
767
768/*****************************************************************************/
769
770/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
771/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
772
773#if ECB_NO_THREADS
774 #define ECB_NO_SMP 1
775#endif
776
777#if ECB_NO_SMP
778 #define ECB_MEMORY_FENCE do { } while (0)
779#endif
780
781/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
782#if __xlC__ && ECB_CPP
783 #include <builtins.h>
784#endif
785
786#if 1400 <= _MSC_VER
787 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
788#endif
789
790#ifndef ECB_MEMORY_FENCE
791 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
792 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
793 #if __i386 || __i386__
794 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
795 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
796 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
797 #elif ECB_GCC_AMD64
798 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
799 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
800 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
801 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
802 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
803 #elif defined __ARM_ARCH_2__ \
804 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
805 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
806 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
807 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
808 || defined __ARM_ARCH_5TEJ__
809 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
810 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
811 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
812 || defined __ARM_ARCH_6T2__
813 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
814 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
815 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
816 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
817 #elif __aarch64__
818 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
819 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
820 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
821 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
822 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
823 #elif defined __s390__ || defined __s390x__
824 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
825 #elif defined __mips__
826 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
827 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
828 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
829 #elif defined __alpha__
830 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
831 #elif defined __hppa__
832 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
833 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
834 #elif defined __ia64__
835 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
836 #elif defined __m68k__
837 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
838 #elif defined __m88k__
839 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
840 #elif defined __sh__
841 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
842 #endif
843 #endif
844#endif
845
846#ifndef ECB_MEMORY_FENCE
847 #if ECB_GCC_VERSION(4,7)
848 /* see comment below (stdatomic.h) about the C11 memory model. */
849 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
850 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
851 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
852 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
853
854 #elif ECB_CLANG_EXTENSION(c_atomic)
855 /* see comment below (stdatomic.h) about the C11 memory model. */
856 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
857 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
858 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
859 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
860
861 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
862 #define ECB_MEMORY_FENCE __sync_synchronize ()
863 #elif _MSC_VER >= 1500 /* VC++ 2008 */
864 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
865 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
866 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
867 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
868 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
869 #elif _MSC_VER >= 1400 /* VC++ 2005 */
870 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
871 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
872 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
873 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
874 #elif defined _WIN32
875 #include <WinNT.h>
876 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
877 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
878 #include <mbarrier.h>
879 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
880 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
881 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
882 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
883 #elif __xlC__
884 #define ECB_MEMORY_FENCE __sync ()
885 #endif
886#endif
887
888#ifndef ECB_MEMORY_FENCE
889 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
890 /* we assume that these memory fences work on all variables/all memory accesses, */
891 /* not just C11 atomics and atomic accesses */
892 #include <stdatomic.h>
893 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
894 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
895 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
896 #endif
897#endif
898
899#ifndef ECB_MEMORY_FENCE
900 #if !ECB_AVOID_PTHREADS
901 /*
902 * if you get undefined symbol references to pthread_mutex_lock,
903 * or failure to find pthread.h, then you should implement
904 * the ECB_MEMORY_FENCE operations for your cpu/compiler
905 * OR provide pthread.h and link against the posix thread library
906 * of your system.
907 */
908 #include <pthread.h>
909 #define ECB_NEEDS_PTHREADS 1
910 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
911
912 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
913 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
914 #endif
915#endif
916
917#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
918 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
919#endif
920
921#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
922 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
923#endif
924
925#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
926 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
927#endif
928
929/*****************************************************************************/
930
931#if ECB_CPP
932 #define ecb_inline static inline
933#elif ECB_GCC_VERSION(2,5)
934 #define ecb_inline static __inline__
935#elif ECB_C99
936 #define ecb_inline static inline
937#else
938 #define ecb_inline static
939#endif
940
941#if ECB_GCC_VERSION(3,3)
942 #define ecb_restrict __restrict__
943#elif ECB_C99
944 #define ecb_restrict restrict
945#else
946 #define ecb_restrict
947#endif
948
949typedef int ecb_bool;
950
951#define ECB_CONCAT_(a, b) a ## b
952#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
953#define ECB_STRINGIFY_(a) # a
954#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
955#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
956
957#define ecb_function_ ecb_inline
958
959#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
960 #define ecb_attribute(attrlist) __attribute__ (attrlist)
961#else
962 #define ecb_attribute(attrlist)
963#endif
964
965#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
966 #define ecb_is_constant(expr) __builtin_constant_p (expr)
967#else
968 /* possible C11 impl for integral types
969 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
970 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
971
972 #define ecb_is_constant(expr) 0
973#endif
974
975#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
976 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
977#else
978 #define ecb_expect(expr,value) (expr)
979#endif
980
981#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
982 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
983#else
984 #define ecb_prefetch(addr,rw,locality)
985#endif
986
987/* no emulation for ecb_decltype */
988#if ECB_CPP11
989 // older implementations might have problems with decltype(x)::type, work around it
990 template<class T> struct ecb_decltype_t { typedef T type; };
991 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
992#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
993 #define ecb_decltype(x) __typeof__ (x)
994#endif
995
996#if _MSC_VER >= 1300
997 #define ecb_deprecated __declspec (deprecated)
998#else
999 #define ecb_deprecated ecb_attribute ((__deprecated__))
1000#endif
1001
1002#if _MSC_VER >= 1500
1003 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
1004#elif ECB_GCC_VERSION(4,5)
1005 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
1006#else
1007 #define ecb_deprecated_message(msg) ecb_deprecated
1008#endif
1009
1010#if _MSC_VER >= 1400
1011 #define ecb_noinline __declspec (noinline)
1012#else
1013 #define ecb_noinline ecb_attribute ((__noinline__))
1014#endif
1015
1016#define ecb_unused ecb_attribute ((__unused__))
1017#define ecb_const ecb_attribute ((__const__))
1018#define ecb_pure ecb_attribute ((__pure__))
1019
1020#if ECB_C11 || __IBMC_NORETURN
1021 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1022 #define ecb_noreturn _Noreturn
1023#elif ECB_CPP11
1024 #define ecb_noreturn [[noreturn]]
1025#elif _MSC_VER >= 1200
1026 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1027 #define ecb_noreturn __declspec (noreturn)
1028#else
1029 #define ecb_noreturn ecb_attribute ((__noreturn__))
1030#endif
1031
1032#if ECB_GCC_VERSION(4,3)
1033 #define ecb_artificial ecb_attribute ((__artificial__))
1034 #define ecb_hot ecb_attribute ((__hot__))
1035 #define ecb_cold ecb_attribute ((__cold__))
1036#else
1037 #define ecb_artificial
1038 #define ecb_hot
1039 #define ecb_cold
1040#endif
1041
1042/* put around conditional expressions if you are very sure that the */
1043/* expression is mostly true or mostly false. note that these return */
1044/* booleans, not the expression. */
1045#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1046#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1047/* for compatibility to the rest of the world */
1048#define ecb_likely(expr) ecb_expect_true (expr)
1049#define ecb_unlikely(expr) ecb_expect_false (expr)
1050
1051/* count trailing zero bits and count # of one bits */
1052#if ECB_GCC_VERSION(3,4) \
1053 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1054 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1055 && ECB_CLANG_BUILTIN(__builtin_popcount))
1056 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1057 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1058 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1059 #define ecb_ctz32(x) __builtin_ctz (x)
1060 #define ecb_ctz64(x) __builtin_ctzll (x)
1061 #define ecb_popcount32(x) __builtin_popcount (x)
1062 /* no popcountll */
1063#else
1064 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1065 ecb_function_ ecb_const int
1066 ecb_ctz32 (uint32_t x)
1067 {
1068#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1069 unsigned long r;
1070 _BitScanForward (&r, x);
1071 return (int)r;
1072#else
1073 int r = 0;
1074
1075 x &= ~x + 1; /* this isolates the lowest bit */
1076
1077#if ECB_branchless_on_i386
1078 r += !!(x & 0xaaaaaaaa) << 0;
1079 r += !!(x & 0xcccccccc) << 1;
1080 r += !!(x & 0xf0f0f0f0) << 2;
1081 r += !!(x & 0xff00ff00) << 3;
1082 r += !!(x & 0xffff0000) << 4;
1083#else
1084 if (x & 0xaaaaaaaa) r += 1;
1085 if (x & 0xcccccccc) r += 2;
1086 if (x & 0xf0f0f0f0) r += 4;
1087 if (x & 0xff00ff00) r += 8;
1088 if (x & 0xffff0000) r += 16;
1089#endif
1090
1091 return r;
1092#endif
1093 }
1094
1095 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1096 ecb_function_ ecb_const int
1097 ecb_ctz64 (uint64_t x)
1098 {
1099#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1100 unsigned long r;
1101 _BitScanForward64 (&r, x);
1102 return (int)r;
1103#else
1104 int shift = x & 0xffffffff ? 0 : 32;
1105 return ecb_ctz32 (x >> shift) + shift;
1106#endif
1107 }
1108
1109 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1110 ecb_function_ ecb_const int
1111 ecb_popcount32 (uint32_t x)
1112 {
1113 x -= (x >> 1) & 0x55555555;
1114 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1115 x = ((x >> 4) + x) & 0x0f0f0f0f;
1116 x *= 0x01010101;
1117
1118 return x >> 24;
1119 }
1120
1121 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1122 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1123 {
1124#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1125 unsigned long r;
1126 _BitScanReverse (&r, x);
1127 return (int)r;
1128#else
1129 int r = 0;
1130
1131 if (x >> 16) { x >>= 16; r += 16; }
1132 if (x >> 8) { x >>= 8; r += 8; }
1133 if (x >> 4) { x >>= 4; r += 4; }
1134 if (x >> 2) { x >>= 2; r += 2; }
1135 if (x >> 1) { r += 1; }
1136
1137 return r;
1138#endif
1139 }
1140
1141 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1142 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1143 {
1144#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1145 unsigned long r;
1146 _BitScanReverse64 (&r, x);
1147 return (int)r;
1148#else
1149 int r = 0;
1150
1151 if (x >> 32) { x >>= 32; r += 32; }
1152
1153 return r + ecb_ld32 (x);
1154#endif
1155 }
1156#endif
1157
1158ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1159ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1160ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1161ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1162
1163ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1164ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1165{
1166 return ( (x * 0x0802U & 0x22110U)
1167 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1168}
1169
1170ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1171ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1172{
1173 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1174 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1175 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1176 x = ( x >> 8 ) | ( x << 8);
1177
1178 return x;
1179}
1180
1181ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1182ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1183{
1184 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1185 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1186 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1187 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1188 x = ( x >> 16 ) | ( x << 16);
1189
1190 return x;
1191}
1192
1193/* popcount64 is only available on 64 bit cpus as gcc builtin */
1194/* so for this version we are lazy */
1195ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1196ecb_function_ ecb_const int
1197ecb_popcount64 (uint64_t x)
1198{
1199 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1200}
1201
1202ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1203ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1204ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1205ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1206ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1207ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1208ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1209ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1210
1211ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1212ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1213ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1214ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1215ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1216ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1217ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1218ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1219
1220#if ECB_CPP
1221
1222inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
1223inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
1224inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); }
1225inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); }
1226
1227inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); }
1228inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); }
1229inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); }
1230inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); }
1231
1232inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); }
1233inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); }
1234inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); }
1235inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); }
1236
1237inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); }
1238inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); }
1239inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); }
1240inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); }
1241
1242inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); }
1243inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); }
1244inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); }
1245
1246inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); }
1247inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); }
1248inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); }
1249inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); }
1250
1251inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); }
1252inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); }
1253inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); }
1254inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); }
1255
1256#endif
1257
1258#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1259 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1260 #define ecb_bswap16(x) __builtin_bswap16 (x)
1261 #else
1262 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1263 #endif
1264 #define ecb_bswap32(x) __builtin_bswap32 (x)
1265 #define ecb_bswap64(x) __builtin_bswap64 (x)
1266#elif _MSC_VER
1267 #include <stdlib.h>
1268 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1269 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1270 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1271#else
1272 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1273 ecb_function_ ecb_const uint16_t
1274 ecb_bswap16 (uint16_t x)
1275 {
1276 return ecb_rotl16 (x, 8);
1277 }
1278
1279 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1280 ecb_function_ ecb_const uint32_t
1281 ecb_bswap32 (uint32_t x)
1282 {
1283 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1284 }
1285
1286 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1287 ecb_function_ ecb_const uint64_t
1288 ecb_bswap64 (uint64_t x)
1289 {
1290 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1291 }
1292#endif
1293
1294#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1295 #define ecb_unreachable() __builtin_unreachable ()
1296#else
1297 /* this seems to work fine, but gcc always emits a warning for it :/ */
1298 ecb_inline ecb_noreturn void ecb_unreachable (void);
1299 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1300#endif
1301
1302/* try to tell the compiler that some condition is definitely true */
1303#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1304
1305ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1306ecb_inline ecb_const uint32_t
1307ecb_byteorder_helper (void)
1308{
1309 /* the union code still generates code under pressure in gcc, */
1310 /* but less than using pointers, and always seems to */
1311 /* successfully return a constant. */
1312 /* the reason why we have this horrible preprocessor mess */
1313 /* is to avoid it in all cases, at least on common architectures */
1314 /* or when using a recent enough gcc version (>= 4.6) */
1315#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1316 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1317 #define ECB_LITTLE_ENDIAN 1
1318 return 0x44332211;
1319#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1320 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1321 #define ECB_BIG_ENDIAN 1
1322 return 0x11223344;
1323#else
1324 union
1325 {
1326 uint8_t c[4];
1327 uint32_t u;
1328 } u = { 0x11, 0x22, 0x33, 0x44 };
1329 return u.u;
1330#endif
1331}
1332
1333ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1334ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1335ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1336ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1337
1338/*****************************************************************************/
1339/* unaligned load/store */
1340
1341ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1342ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1343ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1344
1345ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1346ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1347ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1348
1349ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1350ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1351ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1352
1353ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); }
1354ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); }
1355ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); }
1356
1357ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); }
1358ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); }
1359ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); }
1360
1361ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1362ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1363ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1364
1365ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1366ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1367ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1368
1369ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); }
1370ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); }
1371ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
1372
1373ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
1374ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
1375ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
1376
1377ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
1378ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
1379ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
1380
1381#if ECB_CPP
1382
1383inline uint8_t ecb_bswap (uint8_t v) { return v; }
1384inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); }
1385inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); }
1386inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); }
1387
1388template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1389template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1390template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; }
1391template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); }
1392template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); }
1393template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; }
1394template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); }
1395template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); }
1396
1397template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1398template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1399template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; }
1400template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); }
1401template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); }
1402template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); }
1403template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); }
1404template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
1405
1406#endif
1407
1408/*****************************************************************************/
1409
1410#if ECB_GCC_VERSION(3,0) || ECB_C99
1411 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1412#else
1413 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1414#endif
1415
1416#if ECB_CPP
1417 template<typename T>
1418 static inline T ecb_div_rd (T val, T div)
1419 {
1420 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1421 }
1422 template<typename T>
1423 static inline T ecb_div_ru (T val, T div)
1424 {
1425 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1426 }
1427#else
1428 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1429 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1430#endif
1431
1432#if ecb_cplusplus_does_not_suck
1433 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1434 template<typename T, int N>
1435 static inline int ecb_array_length (const T (&arr)[N])
1436 {
1437 return N;
1438 }
1439#else
1440 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1441#endif
1442
1443/*****************************************************************************/
1444
1445ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1446ecb_function_ ecb_const uint32_t
1447ecb_binary16_to_binary32 (uint32_t x)
1448{
1449 unsigned int s = (x & 0x8000) << (31 - 15);
1450 int e = (x >> 10) & 0x001f;
1451 unsigned int m = x & 0x03ff;
1452
1453 if (ecb_expect_false (e == 31))
1454 /* infinity or NaN */
1455 e = 255 - (127 - 15);
1456 else if (ecb_expect_false (!e))
1457 {
1458 if (ecb_expect_true (!m))
1459 /* zero, handled by code below by forcing e to 0 */
1460 e = 0 - (127 - 15);
1461 else
1462 {
1463 /* subnormal, renormalise */
1464 unsigned int s = 10 - ecb_ld32 (m);
1465
1466 m = (m << s) & 0x3ff; /* mask implicit bit */
1467 e -= s - 1;
1468 }
1469 }
1470
1471 /* e and m now are normalised, or zero, (or inf or nan) */
1472 e += 127 - 15;
1473
1474 return s | (e << 23) | (m << (23 - 10));
1475}
1476
1477ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1478ecb_function_ ecb_const uint16_t
1479ecb_binary32_to_binary16 (uint32_t x)
1480{
1481 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1482 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1483 unsigned int m = x & 0x007fffff;
1484
1485 x &= 0x7fffffff;
1486
1487 /* if it's within range of binary16 normals, use fast path */
1488 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1489 {
1490 /* mantissa round-to-even */
1491 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1492
1493 /* handle overflow */
1494 if (ecb_expect_false (m >= 0x00800000))
1495 {
1496 m >>= 1;
1497 e += 1;
1498 }
1499
1500 return s | (e << 10) | (m >> (23 - 10));
1501 }
1502
1503 /* handle large numbers and infinity */
1504 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1505 return s | 0x7c00;
1506
1507 /* handle zero, subnormals and small numbers */
1508 if (ecb_expect_true (x < 0x38800000))
1509 {
1510 /* zero */
1511 if (ecb_expect_true (!x))
1512 return s;
1513
1514 /* handle subnormals */
1515
1516 /* too small, will be zero */
1517 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1518 return s;
1519
1520 m |= 0x00800000; /* make implicit bit explicit */
1521
1522 /* very tricky - we need to round to the nearest e (+10) bit value */
1523 {
1524 unsigned int bits = 14 - e;
1525 unsigned int half = (1 << (bits - 1)) - 1;
1526 unsigned int even = (m >> bits) & 1;
1527
1528 /* if this overflows, we will end up with a normalised number */
1529 m = (m + half + even) >> bits;
1530 }
1531
1532 return s | m;
1533 }
1534
1535 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1536 m >>= 13;
1537
1538 return s | 0x7c00 | m | !m;
1539}
1540
1541/*******************************************************************************/
1542/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1543
1544/* basically, everything uses "ieee pure-endian" floating point numbers */
1545/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1546#if 0 \
1547 || __i386 || __i386__ \
1548 || ECB_GCC_AMD64 \
1549 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1550 || defined __s390__ || defined __s390x__ \
1551 || defined __mips__ \
1552 || defined __alpha__ \
1553 || defined __hppa__ \
1554 || defined __ia64__ \
1555 || defined __m68k__ \
1556 || defined __m88k__ \
1557 || defined __sh__ \
1558 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1559 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1560 || defined __aarch64__
1561 #define ECB_STDFP 1
1562#else
1563 #define ECB_STDFP 0
1564#endif
1565
1566#ifndef ECB_NO_LIBM
1567
1568 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1569
1570 /* only the oldest of old doesn't have this one. solaris. */
1571 #ifdef INFINITY
1572 #define ECB_INFINITY INFINITY
1573 #else
1574 #define ECB_INFINITY HUGE_VAL
1575 #endif
1576
1577 #ifdef NAN
1578 #define ECB_NAN NAN
1579 #else
1580 #define ECB_NAN ECB_INFINITY
1581 #endif
1582
1583 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1584 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1585 #define ecb_frexpf(x,e) frexpf ((x), (e))
1586 #else
1587 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1588 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1589 #endif
1590
1591 /* convert a float to ieee single/binary32 */
1592 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1593 ecb_function_ ecb_const uint32_t
1594 ecb_float_to_binary32 (float x)
1595 {
1596 uint32_t r;
1597
1598 #if ECB_STDFP
1599 memcpy (&r, &x, 4);
1600 #else
1601 /* slow emulation, works for anything but -0 */
1602 uint32_t m;
1603 int e;
1604
1605 if (x == 0e0f ) return 0x00000000U;
1606 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1607 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1608 if (x != x ) return 0x7fbfffffU;
1609
1610 m = ecb_frexpf (x, &e) * 0x1000000U;
1611
1612 r = m & 0x80000000U;
1613
1614 if (r)
1615 m = -m;
1616
1617 if (e <= -126)
1618 {
1619 m &= 0xffffffU;
1620 m >>= (-125 - e);
1621 e = -126;
1622 }
1623
1624 r |= (e + 126) << 23;
1625 r |= m & 0x7fffffU;
1626 #endif
1627
1628 return r;
1629 }
1630
1631 /* converts an ieee single/binary32 to a float */
1632 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1633 ecb_function_ ecb_const float
1634 ecb_binary32_to_float (uint32_t x)
1635 {
1636 float r;
1637
1638 #if ECB_STDFP
1639 memcpy (&r, &x, 4);
1640 #else
1641 /* emulation, only works for normals and subnormals and +0 */
1642 int neg = x >> 31;
1643 int e = (x >> 23) & 0xffU;
1644
1645 x &= 0x7fffffU;
1646
1647 if (e)
1648 x |= 0x800000U;
1649 else
1650 e = 1;
1651
1652 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1653 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1654
1655 r = neg ? -r : r;
1656 #endif
1657
1658 return r;
1659 }
1660
1661 /* convert a double to ieee double/binary64 */
1662 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1663 ecb_function_ ecb_const uint64_t
1664 ecb_double_to_binary64 (double x)
1665 {
1666 uint64_t r;
1667
1668 #if ECB_STDFP
1669 memcpy (&r, &x, 8);
1670 #else
1671 /* slow emulation, works for anything but -0 */
1672 uint64_t m;
1673 int e;
1674
1675 if (x == 0e0 ) return 0x0000000000000000U;
1676 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1677 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1678 if (x != x ) return 0X7ff7ffffffffffffU;
1679
1680 m = frexp (x, &e) * 0x20000000000000U;
1681
1682 r = m & 0x8000000000000000;;
1683
1684 if (r)
1685 m = -m;
1686
1687 if (e <= -1022)
1688 {
1689 m &= 0x1fffffffffffffU;
1690 m >>= (-1021 - e);
1691 e = -1022;
1692 }
1693
1694 r |= ((uint64_t)(e + 1022)) << 52;
1695 r |= m & 0xfffffffffffffU;
1696 #endif
1697
1698 return r;
1699 }
1700
1701 /* converts an ieee double/binary64 to a double */
1702 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1703 ecb_function_ ecb_const double
1704 ecb_binary64_to_double (uint64_t x)
1705 {
1706 double r;
1707
1708 #if ECB_STDFP
1709 memcpy (&r, &x, 8);
1710 #else
1711 /* emulation, only works for normals and subnormals and +0 */
1712 int neg = x >> 63;
1713 int e = (x >> 52) & 0x7ffU;
1714
1715 x &= 0xfffffffffffffU;
1716
1717 if (e)
1718 x |= 0x10000000000000U;
1719 else
1720 e = 1;
1721
1722 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1723 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1724
1725 r = neg ? -r : r;
1726 #endif
1727
1728 return r;
1729 }
1730
1731 /* convert a float to ieee half/binary16 */
1732 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1733 ecb_function_ ecb_const uint16_t
1734 ecb_float_to_binary16 (float x)
1735 {
1736 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1737 }
1738
1739 /* convert an ieee half/binary16 to float */
1740 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1741 ecb_function_ ecb_const float
1742 ecb_binary16_to_float (uint16_t x)
1743 {
1744 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1745 }
1746
1747#endif
1748
1749#endif
1750
1751/* ECB.H END */
1752
1753#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1754/* if your architecture doesn't need memory fences, e.g. because it is
1755 * single-cpu/core, or if you use libev in a project that doesn't use libev
1756 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1757 * libev, in which cases the memory fences become nops.
1758 * alternatively, you can remove this #error and link against libpthread,
1759 * which will then provide the memory fences.
1760 */
1761# error "memory fences not defined for your architecture, please report"
1762#endif
1763
1764#ifndef ECB_MEMORY_FENCE
1765# define ECB_MEMORY_FENCE do { } while (0)
1766# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1767# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1768#endif
1769
1770#define inline_size ecb_inline
1771
1772#if EV_FEATURE_CODE
317# define inline_speed static inline 1773# define inline_speed ecb_inline
1774#else
1775# define inline_speed ecb_noinline static
318#endif 1776#endif
319 1777
1778/*****************************************************************************/
1779/* raw syscall wrappers */
1780
1781#if EV_NEED_SYSCALL
1782
1783#include <sys/syscall.h>
1784
1785/*
1786 * define some syscall wrappers for common architectures
1787 * this is mostly for nice looks during debugging, not performance.
1788 * our syscalls return < 0, not == -1, on error. which is good
1789 * enough for linux aio.
1790 * TODO: arm is also common nowadays, maybe even mips and x86
1791 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1792 */
1793#if __GNUC__ && __linux && ECB_AMD64 && !EV_FEATURE_CODE
1794 /* the costly errno access probably kills this for size optimisation */
1795
1796 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1797 ({ \
1798 long res; \
1799 register unsigned long r6 __asm__ ("r9" ); \
1800 register unsigned long r5 __asm__ ("r8" ); \
1801 register unsigned long r4 __asm__ ("r10"); \
1802 register unsigned long r3 __asm__ ("rdx"); \
1803 register unsigned long r2 __asm__ ("rsi"); \
1804 register unsigned long r1 __asm__ ("rdi"); \
1805 if (narg >= 6) r6 = (unsigned long)(arg6); \
1806 if (narg >= 5) r5 = (unsigned long)(arg5); \
1807 if (narg >= 4) r4 = (unsigned long)(arg4); \
1808 if (narg >= 3) r3 = (unsigned long)(arg3); \
1809 if (narg >= 2) r2 = (unsigned long)(arg2); \
1810 if (narg >= 1) r1 = (unsigned long)(arg1); \
1811 __asm__ __volatile__ ( \
1812 "syscall\n\t" \
1813 : "=a" (res) \
1814 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1815 : "cc", "r11", "cx", "memory"); \
1816 errno = -res; \
1817 res; \
1818 })
1819
1820#endif
1821
1822#ifdef ev_syscall
1823 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1824 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1825 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1826 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1827 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1828 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1829 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1830#else
1831 #define ev_syscall0(nr) syscall (nr)
1832 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1833 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1834 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1835 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1836 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1837 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1838#endif
1839
1840#endif
1841
1842/*****************************************************************************/
1843
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1844#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1845
1846#if EV_MINPRI == EV_MAXPRI
1847# define ABSPRI(w) (((W)w), 0)
1848#else
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1849# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1850#endif
322 1851
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1852#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */
325 1853
326typedef ev_watcher *W; 1854typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 1855typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 1856typedef ev_watcher_time *WT;
329 1857
330#define ev_active(w) ((W)(w))->active 1858#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 1859#define ev_at(w) ((WT)(w))->at
332 1860
1861#if EV_USE_REALTIME
1862/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1863/* giving it a reasonably high chance of working on typical architectures */
1864static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1865#endif
1866
333#if EV_USE_MONOTONIC 1867#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1868static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1869#endif
1870
1871#ifndef EV_FD_TO_WIN32_HANDLE
1872# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1873#endif
1874#ifndef EV_WIN32_HANDLE_TO_FD
1875# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1876#endif
1877#ifndef EV_WIN32_CLOSE_FD
1878# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 1879#endif
338 1880
339#ifdef _WIN32 1881#ifdef _WIN32
340# include "ev_win32.c" 1882# include "ev_win32.c"
341#endif 1883#endif
342 1884
343/*****************************************************************************/ 1885/*****************************************************************************/
344 1886
1887#if EV_USE_LINUXAIO
1888# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1889#endif
1890
1891/* define a suitable floor function (only used by periodics atm) */
1892
1893#if EV_USE_FLOOR
1894# include <math.h>
1895# define ev_floor(v) floor (v)
1896#else
1897
1898#include <float.h>
1899
1900/* a floor() replacement function, should be independent of ev_tstamp type */
1901ecb_noinline
1902static ev_tstamp
1903ev_floor (ev_tstamp v)
1904{
1905 /* the choice of shift factor is not terribly important */
1906#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1907 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1908#else
1909 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1910#endif
1911
1912 /* special treatment for negative arguments */
1913 if (ecb_expect_false (v < 0.))
1914 {
1915 ev_tstamp f = -ev_floor (-v);
1916
1917 return f - (f == v ? 0 : 1);
1918 }
1919
1920 /* argument too large for an unsigned long? then reduce it */
1921 if (ecb_expect_false (v >= shift))
1922 {
1923 ev_tstamp f;
1924
1925 if (v == v - 1.)
1926 return v; /* very large numbers are assumed to be integer */
1927
1928 f = shift * ev_floor (v * (1. / shift));
1929 return f + ev_floor (v - f);
1930 }
1931
1932 /* fits into an unsigned long */
1933 return (unsigned long)v;
1934}
1935
1936#endif
1937
1938/*****************************************************************************/
1939
1940#ifdef __linux
1941# include <sys/utsname.h>
1942#endif
1943
1944ecb_noinline ecb_cold
1945static unsigned int
1946ev_linux_version (void)
1947{
1948#ifdef __linux
1949 unsigned int v = 0;
1950 struct utsname buf;
1951 int i;
1952 char *p = buf.release;
1953
1954 if (uname (&buf))
1955 return 0;
1956
1957 for (i = 3+1; --i; )
1958 {
1959 unsigned int c = 0;
1960
1961 for (;;)
1962 {
1963 if (*p >= '0' && *p <= '9')
1964 c = c * 10 + *p++ - '0';
1965 else
1966 {
1967 p += *p == '.';
1968 break;
1969 }
1970 }
1971
1972 v = (v << 8) | c;
1973 }
1974
1975 return v;
1976#else
1977 return 0;
1978#endif
1979}
1980
1981/*****************************************************************************/
1982
1983#if EV_AVOID_STDIO
1984ecb_noinline ecb_cold
1985static void
1986ev_printerr (const char *msg)
1987{
1988 write (STDERR_FILENO, msg, strlen (msg));
1989}
1990#endif
1991
345static void (*syserr_cb)(const char *msg); 1992static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
346 1993
1994ecb_cold
347void 1995void
348ev_set_syserr_cb (void (*cb)(const char *msg)) 1996ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
349{ 1997{
350 syserr_cb = cb; 1998 syserr_cb = cb;
351} 1999}
352 2000
353static void noinline 2001ecb_noinline ecb_cold
2002static void
354syserr (const char *msg) 2003ev_syserr (const char *msg)
355{ 2004{
356 if (!msg) 2005 if (!msg)
357 msg = "(libev) system error"; 2006 msg = "(libev) system error";
358 2007
359 if (syserr_cb) 2008 if (syserr_cb)
360 syserr_cb (msg); 2009 syserr_cb (msg);
361 else 2010 else
362 { 2011 {
2012#if EV_AVOID_STDIO
2013 ev_printerr (msg);
2014 ev_printerr (": ");
2015 ev_printerr (strerror (errno));
2016 ev_printerr ("\n");
2017#else
363 perror (msg); 2018 perror (msg);
2019#endif
364 abort (); 2020 abort ();
365 } 2021 }
366} 2022}
367 2023
368static void * 2024static void *
369ev_realloc_emul (void *ptr, long size) 2025ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
370{ 2026{
371 /* some systems, notably openbsd and darwin, fail to properly 2027 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 2028 * implement realloc (x, 0) (as required by both ansi c-89 and
373 * the single unix specification, so work around them here. 2029 * the single unix specification, so work around them here.
2030 * recently, also (at least) fedora and debian started breaking it,
2031 * despite documenting it otherwise.
374 */ 2032 */
375 2033
376 if (size) 2034 if (size)
377 return realloc (ptr, size); 2035 return realloc (ptr, size);
378 2036
379 free (ptr); 2037 free (ptr);
380 return 0; 2038 return 0;
381} 2039}
382 2040
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 2041static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
384 2042
2043ecb_cold
385void 2044void
386ev_set_allocator (void *(*cb)(void *ptr, long size)) 2045ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
387{ 2046{
388 alloc = cb; 2047 alloc = cb;
389} 2048}
390 2049
391inline_speed void * 2050inline_speed void *
393{ 2052{
394 ptr = alloc (ptr, size); 2053 ptr = alloc (ptr, size);
395 2054
396 if (!ptr && size) 2055 if (!ptr && size)
397 { 2056 {
2057#if EV_AVOID_STDIO
2058 ev_printerr ("(libev) memory allocation failed, aborting.\n");
2059#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 2060 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
2061#endif
399 abort (); 2062 abort ();
400 } 2063 }
401 2064
402 return ptr; 2065 return ptr;
403} 2066}
405#define ev_malloc(size) ev_realloc (0, (size)) 2068#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 2069#define ev_free(ptr) ev_realloc ((ptr), 0)
407 2070
408/*****************************************************************************/ 2071/*****************************************************************************/
409 2072
2073/* set in reify when reification needed */
2074#define EV_ANFD_REIFY 1
2075
2076/* file descriptor info structure */
410typedef struct 2077typedef struct
411{ 2078{
412 WL head; 2079 WL head;
413 unsigned char events; 2080 unsigned char events; /* the events watched for */
414 unsigned char reify; 2081 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
2082 unsigned char emask; /* some backends store the actual kernel mask in here */
2083 unsigned char eflags; /* flags field for use by backends */
2084#if EV_USE_EPOLL
2085 unsigned int egen; /* generation counter to counter epoll bugs */
2086#endif
415#if EV_SELECT_IS_WINSOCKET 2087#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
416 SOCKET handle; 2088 SOCKET handle;
417#endif 2089#endif
2090#if EV_USE_IOCP
2091 OVERLAPPED or, ow;
2092#endif
418} ANFD; 2093} ANFD;
419 2094
2095/* stores the pending event set for a given watcher */
420typedef struct 2096typedef struct
421{ 2097{
422 W w; 2098 W w;
423 int events; 2099 int events; /* the pending event set for the given watcher */
424} ANPENDING; 2100} ANPENDING;
425 2101
426#if EV_USE_INOTIFY 2102#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */ 2103/* hash table entry per inotify-id */
428typedef struct 2104typedef struct
430 WL head; 2106 WL head;
431} ANFS; 2107} ANFS;
432#endif 2108#endif
433 2109
434/* Heap Entry */ 2110/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT 2111#if EV_HEAP_CACHE_AT
2112 /* a heap element */
437 typedef struct { 2113 typedef struct {
2114 ev_tstamp at;
438 WT w; 2115 WT w;
439 ev_tstamp at;
440 } ANHE; 2116 } ANHE;
441 2117
442 #define ANHE_w(he) (he).w /* access watcher, read-write */ 2118 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */ 2119 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 2120 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
445#else 2121#else
2122 /* a heap element */
446 typedef WT ANHE; 2123 typedef WT ANHE;
447 2124
448 #define ANHE_w(he) (he) 2125 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at 2126 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he) 2127 #define ANHE_at_cache(he)
451#endif 2128#endif
452 2129
453#if EV_MULTIPLICITY 2130#if EV_MULTIPLICITY
454 2131
455 struct ev_loop 2132 struct ev_loop
461 #undef VAR 2138 #undef VAR
462 }; 2139 };
463 #include "ev_wrap.h" 2140 #include "ev_wrap.h"
464 2141
465 static struct ev_loop default_loop_struct; 2142 static struct ev_loop default_loop_struct;
466 struct ev_loop *ev_default_loop_ptr; 2143 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
467 2144
468#else 2145#else
469 2146
470 ev_tstamp ev_rt_now; 2147 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
471 #define VAR(name,decl) static decl; 2148 #define VAR(name,decl) static decl;
472 #include "ev_vars.h" 2149 #include "ev_vars.h"
473 #undef VAR 2150 #undef VAR
474 2151
475 static int ev_default_loop_ptr; 2152 static int ev_default_loop_ptr;
476 2153
477#endif 2154#endif
478 2155
2156#if EV_FEATURE_API
2157# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2158# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2159# define EV_INVOKE_PENDING invoke_cb (EV_A)
2160#else
2161# define EV_RELEASE_CB (void)0
2162# define EV_ACQUIRE_CB (void)0
2163# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2164#endif
2165
2166#define EVBREAK_RECURSE 0x80
2167
479/*****************************************************************************/ 2168/*****************************************************************************/
480 2169
2170#ifndef EV_HAVE_EV_TIME
481ev_tstamp 2171ev_tstamp
482ev_time (void) 2172ev_time (void) EV_NOEXCEPT
483{ 2173{
484#if EV_USE_REALTIME 2174#if EV_USE_REALTIME
2175 if (ecb_expect_true (have_realtime))
2176 {
485 struct timespec ts; 2177 struct timespec ts;
486 clock_gettime (CLOCK_REALTIME, &ts); 2178 clock_gettime (CLOCK_REALTIME, &ts);
487 return ts.tv_sec + ts.tv_nsec * 1e-9; 2179 return EV_TS_GET (ts);
488#else 2180 }
2181#endif
2182
2183 {
489 struct timeval tv; 2184 struct timeval tv;
490 gettimeofday (&tv, 0); 2185 gettimeofday (&tv, 0);
491 return tv.tv_sec + tv.tv_usec * 1e-6; 2186 return EV_TV_GET (tv);
492#endif 2187 }
493} 2188}
2189#endif
494 2190
495ev_tstamp inline_size 2191inline_size ev_tstamp
496get_clock (void) 2192get_clock (void)
497{ 2193{
498#if EV_USE_MONOTONIC 2194#if EV_USE_MONOTONIC
499 if (expect_true (have_monotonic)) 2195 if (ecb_expect_true (have_monotonic))
500 { 2196 {
501 struct timespec ts; 2197 struct timespec ts;
502 clock_gettime (CLOCK_MONOTONIC, &ts); 2198 clock_gettime (CLOCK_MONOTONIC, &ts);
503 return ts.tv_sec + ts.tv_nsec * 1e-9; 2199 return EV_TS_GET (ts);
504 } 2200 }
505#endif 2201#endif
506 2202
507 return ev_time (); 2203 return ev_time ();
508} 2204}
509 2205
510#if EV_MULTIPLICITY 2206#if EV_MULTIPLICITY
511ev_tstamp 2207ev_tstamp
512ev_now (EV_P) 2208ev_now (EV_P) EV_NOEXCEPT
513{ 2209{
514 return ev_rt_now; 2210 return ev_rt_now;
515} 2211}
516#endif 2212#endif
517 2213
518void 2214void
519ev_sleep (ev_tstamp delay) 2215ev_sleep (ev_tstamp delay) EV_NOEXCEPT
520{ 2216{
521 if (delay > 0.) 2217 if (delay > EV_TS_CONST (0.))
522 { 2218 {
523#if EV_USE_NANOSLEEP 2219#if EV_USE_NANOSLEEP
524 struct timespec ts; 2220 struct timespec ts;
525 2221
526 ts.tv_sec = (time_t)delay; 2222 EV_TS_SET (ts, delay);
527 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
528
529 nanosleep (&ts, 0); 2223 nanosleep (&ts, 0);
530#elif defined(_WIN32) 2224#elif defined _WIN32
2225 /* maybe this should round up, as ms is very low resolution */
2226 /* compared to select (µs) or nanosleep (ns) */
531 Sleep ((unsigned long)(delay * 1e3)); 2227 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
532#else 2228#else
533 struct timeval tv; 2229 struct timeval tv;
534 2230
535 tv.tv_sec = (time_t)delay; 2231 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 2232 /* something not guaranteed by newer posix versions, but guaranteed */
537 2233 /* by older ones */
2234 EV_TV_SET (tv, delay);
538 select (0, 0, 0, 0, &tv); 2235 select (0, 0, 0, 0, &tv);
539#endif 2236#endif
540 } 2237 }
541} 2238}
542 2239
543/*****************************************************************************/ 2240/*****************************************************************************/
544 2241
545#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 2242#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
546 2243
547int inline_size 2244/* find a suitable new size for the given array, */
2245/* hopefully by rounding to a nice-to-malloc size */
2246inline_size int
548array_nextsize (int elem, int cur, int cnt) 2247array_nextsize (int elem, int cur, int cnt)
549{ 2248{
550 int ncur = cur + 1; 2249 int ncur = cur + 1;
551 2250
552 do 2251 do
553 ncur <<= 1; 2252 ncur <<= 1;
554 while (cnt > ncur); 2253 while (cnt > ncur);
555 2254
556 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 2255 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
557 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 2256 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
558 { 2257 {
559 ncur *= elem; 2258 ncur *= elem;
560 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 2259 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
561 ncur = ncur - sizeof (void *) * 4; 2260 ncur = ncur - sizeof (void *) * 4;
563 } 2262 }
564 2263
565 return ncur; 2264 return ncur;
566} 2265}
567 2266
568static noinline void * 2267ecb_noinline ecb_cold
2268static void *
569array_realloc (int elem, void *base, int *cur, int cnt) 2269array_realloc (int elem, void *base, int *cur, int cnt)
570{ 2270{
571 *cur = array_nextsize (elem, *cur, cnt); 2271 *cur = array_nextsize (elem, *cur, cnt);
572 return ev_realloc (base, elem * *cur); 2272 return ev_realloc (base, elem * *cur);
573} 2273}
574 2274
2275#define array_needsize_noinit(base,offset,count)
2276
2277#define array_needsize_zerofill(base,offset,count) \
2278 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2279
575#define array_needsize(type,base,cur,cnt,init) \ 2280#define array_needsize(type,base,cur,cnt,init) \
576 if (expect_false ((cnt) > (cur))) \ 2281 if (ecb_expect_false ((cnt) > (cur))) \
577 { \ 2282 { \
578 int ocur_ = (cur); \ 2283 ecb_unused int ocur_ = (cur); \
579 (base) = (type *)array_realloc \ 2284 (base) = (type *)array_realloc \
580 (sizeof (type), (base), &(cur), (cnt)); \ 2285 (sizeof (type), (base), &(cur), (cnt)); \
581 init ((base) + (ocur_), (cur) - ocur_); \ 2286 init ((base), ocur_, ((cur) - ocur_)); \
582 } 2287 }
583 2288
584#if 0 2289#if 0
585#define array_slim(type,stem) \ 2290#define array_slim(type,stem) \
586 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
590 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
591 } 2296 }
592#endif 2297#endif
593 2298
594#define array_free(stem, idx) \ 2299#define array_free(stem, idx) \
595 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2300 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
596 2301
597/*****************************************************************************/ 2302/*****************************************************************************/
598 2303
599void noinline 2304/* dummy callback for pending events */
2305ecb_noinline
2306static void
2307pendingcb (EV_P_ ev_prepare *w, int revents)
2308{
2309}
2310
2311ecb_noinline
2312void
600ev_feed_event (EV_P_ void *w, int revents) 2313ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
601{ 2314{
602 W w_ = (W)w; 2315 W w_ = (W)w;
603 int pri = ABSPRI (w_); 2316 int pri = ABSPRI (w_);
604 2317
605 if (expect_false (w_->pending)) 2318 if (ecb_expect_false (w_->pending))
606 pendings [pri][w_->pending - 1].events |= revents; 2319 pendings [pri][w_->pending - 1].events |= revents;
607 else 2320 else
608 { 2321 {
609 w_->pending = ++pendingcnt [pri]; 2322 w_->pending = ++pendingcnt [pri];
610 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2323 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
611 pendings [pri][w_->pending - 1].w = w_; 2324 pendings [pri][w_->pending - 1].w = w_;
612 pendings [pri][w_->pending - 1].events = revents; 2325 pendings [pri][w_->pending - 1].events = revents;
613 } 2326 }
614}
615 2327
616void inline_speed 2328 pendingpri = NUMPRI - 1;
2329}
2330
2331inline_speed void
2332feed_reverse (EV_P_ W w)
2333{
2334 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2335 rfeeds [rfeedcnt++] = w;
2336}
2337
2338inline_size void
2339feed_reverse_done (EV_P_ int revents)
2340{
2341 do
2342 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2343 while (rfeedcnt);
2344}
2345
2346inline_speed void
617queue_events (EV_P_ W *events, int eventcnt, int type) 2347queue_events (EV_P_ W *events, int eventcnt, int type)
618{ 2348{
619 int i; 2349 int i;
620 2350
621 for (i = 0; i < eventcnt; ++i) 2351 for (i = 0; i < eventcnt; ++i)
622 ev_feed_event (EV_A_ events [i], type); 2352 ev_feed_event (EV_A_ events [i], type);
623} 2353}
624 2354
625/*****************************************************************************/ 2355/*****************************************************************************/
626 2356
627void inline_size 2357inline_speed void
628anfds_init (ANFD *base, int count)
629{
630 while (count--)
631 {
632 base->head = 0;
633 base->events = EV_NONE;
634 base->reify = 0;
635
636 ++base;
637 }
638}
639
640void inline_speed
641fd_event (EV_P_ int fd, int revents) 2358fd_event_nocheck (EV_P_ int fd, int revents)
642{ 2359{
643 ANFD *anfd = anfds + fd; 2360 ANFD *anfd = anfds + fd;
644 ev_io *w; 2361 ev_io *w;
645 2362
646 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2363 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
650 if (ev) 2367 if (ev)
651 ev_feed_event (EV_A_ (W)w, ev); 2368 ev_feed_event (EV_A_ (W)w, ev);
652 } 2369 }
653} 2370}
654 2371
2372/* do not submit kernel events for fds that have reify set */
2373/* because that means they changed while we were polling for new events */
2374inline_speed void
2375fd_event (EV_P_ int fd, int revents)
2376{
2377 ANFD *anfd = anfds + fd;
2378
2379 if (ecb_expect_true (!anfd->reify))
2380 fd_event_nocheck (EV_A_ fd, revents);
2381}
2382
655void 2383void
656ev_feed_fd_event (EV_P_ int fd, int revents) 2384ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
657{ 2385{
658 if (fd >= 0 && fd < anfdmax) 2386 if (fd >= 0 && fd < anfdmax)
659 fd_event (EV_A_ fd, revents); 2387 fd_event_nocheck (EV_A_ fd, revents);
660} 2388}
661 2389
662void inline_size 2390/* make sure the external fd watch events are in-sync */
2391/* with the kernel/libev internal state */
2392inline_size void
663fd_reify (EV_P) 2393fd_reify (EV_P)
664{ 2394{
665 int i; 2395 int i;
666 2396
2397 /* most backends do not modify the fdchanges list in backend_modfiy.
2398 * except io_uring, which has fixed-size buffers which might force us
2399 * to handle events in backend_modify, causing fdchanges to be amended,
2400 * which could result in an endless loop.
2401 * to avoid this, we do not dynamically handle fds that were added
2402 * during fd_reify. that means that for those backends, fdchangecnt
2403 * might be non-zero during poll, which must cause them to not block.
2404 * to not put too much of a burden on other backends, this detail
2405 * needs to be handled in the backend.
2406 */
2407 int changecnt = fdchangecnt;
2408
2409#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
667 for (i = 0; i < fdchangecnt; ++i) 2410 for (i = 0; i < changecnt; ++i)
2411 {
2412 int fd = fdchanges [i];
2413 ANFD *anfd = anfds + fd;
2414
2415 if (anfd->reify & EV__IOFDSET && anfd->head)
2416 {
2417 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2418
2419 if (handle != anfd->handle)
2420 {
2421 unsigned long arg;
2422
2423 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2424
2425 /* handle changed, but fd didn't - we need to do it in two steps */
2426 backend_modify (EV_A_ fd, anfd->events, 0);
2427 anfd->events = 0;
2428 anfd->handle = handle;
2429 }
2430 }
2431 }
2432#endif
2433
2434 for (i = 0; i < changecnt; ++i)
668 { 2435 {
669 int fd = fdchanges [i]; 2436 int fd = fdchanges [i];
670 ANFD *anfd = anfds + fd; 2437 ANFD *anfd = anfds + fd;
671 ev_io *w; 2438 ev_io *w;
672 2439
673 unsigned char events = 0; 2440 unsigned char o_events = anfd->events;
2441 unsigned char o_reify = anfd->reify;
674 2442
675 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2443 anfd->reify = 0;
676 events |= (unsigned char)w->events;
677 2444
678#if EV_SELECT_IS_WINSOCKET 2445 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
679 if (events)
680 { 2446 {
681 unsigned long argp; 2447 anfd->events = 0;
682 #ifdef EV_FD_TO_WIN32_HANDLE 2448
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2449 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
684 #else 2450 anfd->events |= (unsigned char)w->events;
685 anfd->handle = _get_osfhandle (fd); 2451
686 #endif 2452 if (o_events != anfd->events)
687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2453 o_reify = EV__IOFDSET; /* actually |= */
688 } 2454 }
689#endif
690 2455
691 { 2456 if (o_reify & EV__IOFDSET)
692 unsigned char o_events = anfd->events;
693 unsigned char o_reify = anfd->reify;
694
695 anfd->reify = 0;
696 anfd->events = events;
697
698 if (o_events != events || o_reify & EV_IOFDSET)
699 backend_modify (EV_A_ fd, o_events, events); 2457 backend_modify (EV_A_ fd, o_events, anfd->events);
700 } 2458 }
701 }
702 2459
2460 /* normally, fdchangecnt hasn't changed. if it has, then new fds have been added.
2461 * this is a rare case (see beginning comment in this function), so we copy them to the
2462 * front and hope the backend handles this case.
2463 */
2464 if (ecb_expect_false (fdchangecnt != changecnt))
2465 memmove (fdchanges, fdchanges + changecnt, (fdchangecnt - changecnt) * sizeof (*fdchanges));
2466
703 fdchangecnt = 0; 2467 fdchangecnt -= changecnt;
704} 2468}
705 2469
2470/* something about the given fd changed */
706void inline_size 2471inline_size
2472void
707fd_change (EV_P_ int fd, int flags) 2473fd_change (EV_P_ int fd, int flags)
708{ 2474{
709 unsigned char reify = anfds [fd].reify; 2475 unsigned char reify = anfds [fd].reify;
710 anfds [fd].reify |= flags; 2476 anfds [fd].reify = reify | flags;
711 2477
712 if (expect_true (!reify)) 2478 if (ecb_expect_true (!reify))
713 { 2479 {
714 ++fdchangecnt; 2480 ++fdchangecnt;
715 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2481 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
716 fdchanges [fdchangecnt - 1] = fd; 2482 fdchanges [fdchangecnt - 1] = fd;
717 } 2483 }
718} 2484}
719 2485
720void inline_speed 2486/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2487inline_speed ecb_cold void
721fd_kill (EV_P_ int fd) 2488fd_kill (EV_P_ int fd)
722{ 2489{
723 ev_io *w; 2490 ev_io *w;
724 2491
725 while ((w = (ev_io *)anfds [fd].head)) 2492 while ((w = (ev_io *)anfds [fd].head))
727 ev_io_stop (EV_A_ w); 2494 ev_io_stop (EV_A_ w);
728 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
729 } 2496 }
730} 2497}
731 2498
732int inline_size 2499/* check whether the given fd is actually valid, for error recovery */
2500inline_size ecb_cold int
733fd_valid (int fd) 2501fd_valid (int fd)
734{ 2502{
735#ifdef _WIN32 2503#ifdef _WIN32
736 return _get_osfhandle (fd) != -1; 2504 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
737#else 2505#else
738 return fcntl (fd, F_GETFD) != -1; 2506 return fcntl (fd, F_GETFD) != -1;
739#endif 2507#endif
740} 2508}
741 2509
742/* called on EBADF to verify fds */ 2510/* called on EBADF to verify fds */
743static void noinline 2511ecb_noinline ecb_cold
2512static void
744fd_ebadf (EV_P) 2513fd_ebadf (EV_P)
745{ 2514{
746 int fd; 2515 int fd;
747 2516
748 for (fd = 0; fd < anfdmax; ++fd) 2517 for (fd = 0; fd < anfdmax; ++fd)
749 if (anfds [fd].events) 2518 if (anfds [fd].events)
750 if (!fd_valid (fd) == -1 && errno == EBADF) 2519 if (!fd_valid (fd) && errno == EBADF)
751 fd_kill (EV_A_ fd); 2520 fd_kill (EV_A_ fd);
752} 2521}
753 2522
754/* called on ENOMEM in select/poll to kill some fds and retry */ 2523/* called on ENOMEM in select/poll to kill some fds and retry */
755static void noinline 2524ecb_noinline ecb_cold
2525static void
756fd_enomem (EV_P) 2526fd_enomem (EV_P)
757{ 2527{
758 int fd; 2528 int fd;
759 2529
760 for (fd = anfdmax; fd--; ) 2530 for (fd = anfdmax; fd--; )
761 if (anfds [fd].events) 2531 if (anfds [fd].events)
762 { 2532 {
763 fd_kill (EV_A_ fd); 2533 fd_kill (EV_A_ fd);
764 return; 2534 break;
765 } 2535 }
766} 2536}
767 2537
768/* usually called after fork if backend needs to re-arm all fds from scratch */ 2538/* usually called after fork if backend needs to re-arm all fds from scratch */
769static void noinline 2539ecb_noinline
2540static void
770fd_rearm_all (EV_P) 2541fd_rearm_all (EV_P)
771{ 2542{
772 int fd; 2543 int fd;
773 2544
774 for (fd = 0; fd < anfdmax; ++fd) 2545 for (fd = 0; fd < anfdmax; ++fd)
775 if (anfds [fd].events) 2546 if (anfds [fd].events)
776 { 2547 {
777 anfds [fd].events = 0; 2548 anfds [fd].events = 0;
2549 anfds [fd].emask = 0;
778 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2550 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
779 } 2551 }
780} 2552}
781 2553
2554/* used to prepare libev internal fd's */
2555/* this is not fork-safe */
2556inline_speed void
2557fd_intern (int fd)
2558{
2559#ifdef _WIN32
2560 unsigned long arg = 1;
2561 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2562#else
2563 fcntl (fd, F_SETFD, FD_CLOEXEC);
2564 fcntl (fd, F_SETFL, O_NONBLOCK);
2565#endif
2566}
2567
782/*****************************************************************************/ 2568/*****************************************************************************/
783 2569
784/* 2570/*
785 * the heap functions want a real array index. array index 0 uis guaranteed to not 2571 * the heap functions want a real array index. array index 0 is guaranteed to not
786 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2572 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
787 * the branching factor of the d-tree. 2573 * the branching factor of the d-tree.
788 */ 2574 */
789 2575
790/* 2576/*
791 * at the moment we allow libev the luxury of two heaps, 2577 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 2578 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient. 2579 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers. 2580 * the difference is about 5% with 50000+ watchers.
795 */ 2581 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP 2582#if EV_USE_4HEAP
798 2583
799#define DHEAP 4 2584#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2585#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801 2586#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
802/* towards the root */ 2587#define UPHEAP_DONE(p,k) ((p) == (k))
803void inline_speed
804upheap (ANHE *heap, int k)
805{
806 ANHE he = heap [k];
807
808 for (;;)
809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
815 heap [k] = heap [p];
816 ev_active (ANHE_w (heap [k])) = k;
817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823 2588
824/* away from the root */ 2589/* away from the root */
825void inline_speed 2590inline_speed void
826downheap (ANHE *heap, int N, int k) 2591downheap (ANHE *heap, int N, int k)
827{ 2592{
828 ANHE he = heap [k]; 2593 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0; 2594 ANHE *E = heap + N + HEAP0;
830 2595
831 for (;;) 2596 for (;;)
832 { 2597 {
833 ev_tstamp minat; 2598 ev_tstamp minat;
834 ANHE *minpos; 2599 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 2600 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
836 2601
837 // find minimum child 2602 /* find minimum child */
838 if (expect_true (pos + DHEAP - 1 < E)) 2603 if (ecb_expect_true (pos + DHEAP - 1 < E))
839 { 2604 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2605 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2606 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2607 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2608 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 } 2609 }
845 else if (pos < E) 2610 else if (pos < E)
846 { 2611 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2612 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2613 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2614 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2615 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 } 2616 }
852 else 2617 else
853 break; 2618 break;
854 2619
855 if (ANHE_at (he) <= minat) 2620 if (ANHE_at (he) <= minat)
856 break; 2621 break;
857 2622
2623 heap [k] = *minpos;
858 ev_active (ANHE_w (*minpos)) = k; 2624 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860 2625
861 k = minpos - heap; 2626 k = minpos - heap;
862 } 2627 }
863 2628
2629 heap [k] = he;
864 ev_active (ANHE_w (he)) = k; 2630 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866} 2631}
867 2632
868#else // 4HEAP 2633#else /* not 4HEAP */
869 2634
870#define HEAP0 1 2635#define HEAP0 1
2636#define HPARENT(k) ((k) >> 1)
2637#define UPHEAP_DONE(p,k) (!(p))
871 2638
872/* towards the root */ 2639/* away from the root */
873void inline_speed 2640inline_speed void
874upheap (ANHE *heap, int k) 2641downheap (ANHE *heap, int N, int k)
875{ 2642{
876 ANHE he = heap [k]; 2643 ANHE he = heap [k];
877 2644
878 for (;;) 2645 for (;;)
879 { 2646 {
880 int p = k >> 1; 2647 int c = k << 1;
881 2648
882 /* maybe we could use a dummy element at heap [0]? */ 2649 if (c >= N + HEAP0)
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break; 2650 break;
885 2651
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
889 }
890
891 heap [k] = w;
892 ev_active (ANHE_w (heap [k])) = k;
893}
894
895/* away from the root */
896void inline_speed
897downheap (ANHE *heap, int N, int k)
898{
899 ANHE he = heap [k];
900
901 for (;;)
902 {
903 int c = k << 1;
904
905 if (c > N)
906 break;
907
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2652 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0; 2653 ? 1 : 0;
910 2654
911 if (w->at <= ANHE_at (heap [c])) 2655 if (ANHE_at (he) <= ANHE_at (heap [c]))
912 break; 2656 break;
913 2657
914 heap [k] = heap [c]; 2658 heap [k] = heap [c];
915 ev_active (ANHE_w (heap [k])) = k; 2659 ev_active (ANHE_w (heap [k])) = k;
916 2660
920 heap [k] = he; 2664 heap [k] = he;
921 ev_active (ANHE_w (he)) = k; 2665 ev_active (ANHE_w (he)) = k;
922} 2666}
923#endif 2667#endif
924 2668
925void inline_size 2669/* towards the root */
2670inline_speed void
2671upheap (ANHE *heap, int k)
2672{
2673 ANHE he = heap [k];
2674
2675 for (;;)
2676 {
2677 int p = HPARENT (k);
2678
2679 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2680 break;
2681
2682 heap [k] = heap [p];
2683 ev_active (ANHE_w (heap [k])) = k;
2684 k = p;
2685 }
2686
2687 heap [k] = he;
2688 ev_active (ANHE_w (he)) = k;
2689}
2690
2691/* move an element suitably so it is in a correct place */
2692inline_size void
926adjustheap (ANHE *heap, int N, int k) 2693adjustheap (ANHE *heap, int N, int k)
927{ 2694{
2695 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
928 upheap (heap, k); 2696 upheap (heap, k);
2697 else
929 downheap (heap, N, k); 2698 downheap (heap, N, k);
2699}
2700
2701/* rebuild the heap: this function is used only once and executed rarely */
2702inline_size void
2703reheap (ANHE *heap, int N)
2704{
2705 int i;
2706
2707 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2708 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2709 for (i = 0; i < N; ++i)
2710 upheap (heap, i + HEAP0);
930} 2711}
931 2712
932/*****************************************************************************/ 2713/*****************************************************************************/
933 2714
2715/* associate signal watchers to a signal */
934typedef struct 2716typedef struct
935{ 2717{
2718 EV_ATOMIC_T pending;
2719#if EV_MULTIPLICITY
2720 EV_P;
2721#endif
936 WL head; 2722 WL head;
937 EV_ATOMIC_T gotsig;
938} ANSIG; 2723} ANSIG;
939 2724
940static ANSIG *signals; 2725static ANSIG signals [EV_NSIG - 1];
941static int signalmax;
942
943static EV_ATOMIC_T gotsig;
944
945void inline_size
946signals_init (ANSIG *base, int count)
947{
948 while (count--)
949 {
950 base->head = 0;
951 base->gotsig = 0;
952
953 ++base;
954 }
955}
956 2726
957/*****************************************************************************/ 2727/*****************************************************************************/
958 2728
959void inline_speed 2729#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
960fd_intern (int fd)
961{
962#ifdef _WIN32
963 int arg = 1;
964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
965#else
966 fcntl (fd, F_SETFD, FD_CLOEXEC);
967 fcntl (fd, F_SETFL, O_NONBLOCK);
968#endif
969}
970 2730
971static void noinline 2731ecb_noinline ecb_cold
2732static void
972evpipe_init (EV_P) 2733evpipe_init (EV_P)
973{ 2734{
974 if (!ev_is_active (&pipeev)) 2735 if (!ev_is_active (&pipe_w))
2736 {
2737 int fds [2];
2738
2739# if EV_USE_EVENTFD
2740 fds [0] = -1;
2741 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2742 if (fds [1] < 0 && errno == EINVAL)
2743 fds [1] = eventfd (0, 0);
2744
2745 if (fds [1] < 0)
2746# endif
2747 {
2748 while (pipe (fds))
2749 ev_syserr ("(libev) error creating signal/async pipe");
2750
2751 fd_intern (fds [0]);
2752 }
2753
2754 evpipe [0] = fds [0];
2755
2756 if (evpipe [1] < 0)
2757 evpipe [1] = fds [1]; /* first call, set write fd */
2758 else
2759 {
2760 /* on subsequent calls, do not change evpipe [1] */
2761 /* so that evpipe_write can always rely on its value. */
2762 /* this branch does not do anything sensible on windows, */
2763 /* so must not be executed on windows */
2764
2765 dup2 (fds [1], evpipe [1]);
2766 close (fds [1]);
2767 }
2768
2769 fd_intern (evpipe [1]);
2770
2771 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2772 ev_io_start (EV_A_ &pipe_w);
2773 ev_unref (EV_A); /* watcher should not keep loop alive */
975 { 2774 }
2775}
2776
2777inline_speed void
2778evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2779{
2780 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2781
2782 if (ecb_expect_true (*flag))
2783 return;
2784
2785 *flag = 1;
2786 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2787
2788 pipe_write_skipped = 1;
2789
2790 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2791
2792 if (pipe_write_wanted)
2793 {
2794 int old_errno;
2795
2796 pipe_write_skipped = 0;
2797 ECB_MEMORY_FENCE_RELEASE;
2798
2799 old_errno = errno; /* save errno because write will clobber it */
2800
976#if EV_USE_EVENTFD 2801#if EV_USE_EVENTFD
977 if ((evfd = eventfd (0, 0)) >= 0) 2802 if (evpipe [0] < 0)
978 { 2803 {
979 evpipe [0] = -1; 2804 uint64_t counter = 1;
980 fd_intern (evfd); 2805 write (evpipe [1], &counter, sizeof (uint64_t));
981 ev_io_set (&pipeev, evfd, EV_READ);
982 } 2806 }
983 else 2807 else
984#endif 2808#endif
985 { 2809 {
986 while (pipe (evpipe)) 2810#ifdef _WIN32
987 syserr ("(libev) error creating signal/async pipe"); 2811 WSABUF buf;
988 2812 DWORD sent;
989 fd_intern (evpipe [0]); 2813 buf.buf = (char *)&buf;
990 fd_intern (evpipe [1]); 2814 buf.len = 1;
991 ev_io_set (&pipeev, evpipe [0], EV_READ); 2815 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2816#else
2817 write (evpipe [1], &(evpipe [1]), 1);
2818#endif
992 } 2819 }
993 2820
994 ev_io_start (EV_A_ &pipeev); 2821 errno = old_errno;
995 ev_unref (EV_A); /* watcher should not keep loop alive */
996 }
997}
998
999void inline_size
1000evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1001{
1002 if (!*flag)
1003 { 2822 }
1004 int old_errno = errno; /* save errno because write might clobber it */ 2823}
1005 2824
1006 *flag = 1; 2825/* called whenever the libev signal pipe */
2826/* got some events (signal, async) */
2827static void
2828pipecb (EV_P_ ev_io *iow, int revents)
2829{
2830 int i;
1007 2831
2832 if (revents & EV_READ)
2833 {
1008#if EV_USE_EVENTFD 2834#if EV_USE_EVENTFD
1009 if (evfd >= 0) 2835 if (evpipe [0] < 0)
1010 { 2836 {
1011 uint64_t counter = 1; 2837 uint64_t counter;
1012 write (evfd, &counter, sizeof (uint64_t)); 2838 read (evpipe [1], &counter, sizeof (uint64_t));
1013 } 2839 }
1014 else 2840 else
1015#endif 2841#endif
1016 write (evpipe [1], &old_errno, 1); 2842 {
1017
1018 errno = old_errno;
1019 }
1020}
1021
1022static void
1023pipecb (EV_P_ ev_io *iow, int revents)
1024{
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter;
1029 read (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 {
1034 char dummy; 2843 char dummy[4];
2844#ifdef _WIN32
2845 WSABUF buf;
2846 DWORD recvd;
2847 DWORD flags = 0;
2848 buf.buf = dummy;
2849 buf.len = sizeof (dummy);
2850 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2851#else
1035 read (evpipe [0], &dummy, 1); 2852 read (evpipe [0], &dummy, sizeof (dummy));
2853#endif
2854 }
2855 }
2856
2857 pipe_write_skipped = 0;
2858
2859 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2860
2861#if EV_SIGNAL_ENABLE
2862 if (sig_pending)
1036 } 2863 {
2864 sig_pending = 0;
1037 2865
1038 if (gotsig && ev_is_default_loop (EV_A)) 2866 ECB_MEMORY_FENCE;
1039 {
1040 int signum;
1041 gotsig = 0;
1042 2867
1043 for (signum = signalmax; signum--; ) 2868 for (i = EV_NSIG - 1; i--; )
1044 if (signals [signum].gotsig) 2869 if (ecb_expect_false (signals [i].pending))
1045 ev_feed_signal_event (EV_A_ signum + 1); 2870 ev_feed_signal_event (EV_A_ i + 1);
1046 } 2871 }
2872#endif
1047 2873
1048#if EV_ASYNC_ENABLE 2874#if EV_ASYNC_ENABLE
1049 if (gotasync) 2875 if (async_pending)
1050 { 2876 {
1051 int i; 2877 async_pending = 0;
1052 gotasync = 0; 2878
2879 ECB_MEMORY_FENCE;
1053 2880
1054 for (i = asynccnt; i--; ) 2881 for (i = asynccnt; i--; )
1055 if (asyncs [i]->sent) 2882 if (asyncs [i]->sent)
1056 { 2883 {
1057 asyncs [i]->sent = 0; 2884 asyncs [i]->sent = 0;
2885 ECB_MEMORY_FENCE_RELEASE;
1058 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2886 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1059 } 2887 }
1060 } 2888 }
1061#endif 2889#endif
1062} 2890}
1063 2891
1064/*****************************************************************************/ 2892/*****************************************************************************/
1065 2893
2894void
2895ev_feed_signal (int signum) EV_NOEXCEPT
2896{
2897#if EV_MULTIPLICITY
2898 EV_P;
2899 ECB_MEMORY_FENCE_ACQUIRE;
2900 EV_A = signals [signum - 1].loop;
2901
2902 if (!EV_A)
2903 return;
2904#endif
2905
2906 signals [signum - 1].pending = 1;
2907 evpipe_write (EV_A_ &sig_pending);
2908}
2909
1066static void 2910static void
1067ev_sighandler (int signum) 2911ev_sighandler (int signum)
1068{ 2912{
2913#ifdef _WIN32
2914 signal (signum, ev_sighandler);
2915#endif
2916
2917 ev_feed_signal (signum);
2918}
2919
2920ecb_noinline
2921void
2922ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2923{
2924 WL w;
2925
2926 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2927 return;
2928
2929 --signum;
2930
1069#if EV_MULTIPLICITY 2931#if EV_MULTIPLICITY
1070 struct ev_loop *loop = &default_loop_struct; 2932 /* it is permissible to try to feed a signal to the wrong loop */
1071#endif 2933 /* or, likely more useful, feeding a signal nobody is waiting for */
1072 2934
1073#if _WIN32 2935 if (ecb_expect_false (signals [signum].loop != EV_A))
1074 signal (signum, ev_sighandler);
1075#endif
1076
1077 signals [signum - 1].gotsig = 1;
1078 evpipe_write (EV_A_ &gotsig);
1079}
1080
1081void noinline
1082ev_feed_signal_event (EV_P_ int signum)
1083{
1084 WL w;
1085
1086#if EV_MULTIPLICITY
1087 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1088#endif
1089
1090 --signum;
1091
1092 if (signum < 0 || signum >= signalmax)
1093 return; 2936 return;
2937#endif
1094 2938
1095 signals [signum].gotsig = 0; 2939 signals [signum].pending = 0;
2940 ECB_MEMORY_FENCE_RELEASE;
1096 2941
1097 for (w = signals [signum].head; w; w = w->next) 2942 for (w = signals [signum].head; w; w = w->next)
1098 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2943 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1099} 2944}
1100 2945
2946#if EV_USE_SIGNALFD
2947static void
2948sigfdcb (EV_P_ ev_io *iow, int revents)
2949{
2950 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2951
2952 for (;;)
2953 {
2954 ssize_t res = read (sigfd, si, sizeof (si));
2955
2956 /* not ISO-C, as res might be -1, but works with SuS */
2957 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2958 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2959
2960 if (res < (ssize_t)sizeof (si))
2961 break;
2962 }
2963}
2964#endif
2965
2966#endif
2967
1101/*****************************************************************************/ 2968/*****************************************************************************/
1102 2969
2970#if EV_CHILD_ENABLE
1103static WL childs [EV_PID_HASHSIZE]; 2971static WL childs [EV_PID_HASHSIZE];
1104
1105#ifndef _WIN32
1106 2972
1107static ev_signal childev; 2973static ev_signal childev;
1108 2974
1109#ifndef WIFCONTINUED 2975#ifndef WIFCONTINUED
1110# define WIFCONTINUED(status) 0 2976# define WIFCONTINUED(status) 0
1111#endif 2977#endif
1112 2978
1113void inline_speed 2979/* handle a single child status event */
2980inline_speed void
1114child_reap (EV_P_ int chain, int pid, int status) 2981child_reap (EV_P_ int chain, int pid, int status)
1115{ 2982{
1116 ev_child *w; 2983 ev_child *w;
1117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2984 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1118 2985
1119 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2986 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1120 { 2987 {
1121 if ((w->pid == pid || !w->pid) 2988 if ((w->pid == pid || !w->pid)
1122 && (!traced || (w->flags & 1))) 2989 && (!traced || (w->flags & 1)))
1123 { 2990 {
1124 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2991 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1131 2998
1132#ifndef WCONTINUED 2999#ifndef WCONTINUED
1133# define WCONTINUED 0 3000# define WCONTINUED 0
1134#endif 3001#endif
1135 3002
3003/* called on sigchld etc., calls waitpid */
1136static void 3004static void
1137childcb (EV_P_ ev_signal *sw, int revents) 3005childcb (EV_P_ ev_signal *sw, int revents)
1138{ 3006{
1139 int pid, status; 3007 int pid, status;
1140 3008
1148 /* make sure we are called again until all children have been reaped */ 3016 /* make sure we are called again until all children have been reaped */
1149 /* we need to do it this way so that the callback gets called before we continue */ 3017 /* we need to do it this way so that the callback gets called before we continue */
1150 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 3018 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1151 3019
1152 child_reap (EV_A_ pid, pid, status); 3020 child_reap (EV_A_ pid, pid, status);
1153 if (EV_PID_HASHSIZE > 1) 3021 if ((EV_PID_HASHSIZE) > 1)
1154 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 3022 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1155} 3023}
1156 3024
1157#endif 3025#endif
1158 3026
1159/*****************************************************************************/ 3027/*****************************************************************************/
1160 3028
3029#if EV_USE_TIMERFD
3030
3031static void periodics_reschedule (EV_P);
3032
3033static void
3034timerfdcb (EV_P_ ev_io *iow, int revents)
3035{
3036 struct itimerspec its = { 0 };
3037
3038 its.it_value.tv_sec = ev_rt_now + (int)MAX_BLOCKTIME2;
3039 timerfd_settime (timerfd, TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET, &its, 0);
3040
3041 ev_rt_now = ev_time ();
3042 /* periodics_reschedule only needs ev_rt_now */
3043 /* but maybe in the future we want the full treatment. */
3044 /*
3045 now_floor = EV_TS_CONST (0.);
3046 time_update (EV_A_ EV_TSTAMP_HUGE);
3047 */
3048#if EV_PERIODIC_ENABLE
3049 periodics_reschedule (EV_A);
3050#endif
3051}
3052
3053ecb_noinline ecb_cold
3054static void
3055evtimerfd_init (EV_P)
3056{
3057 if (!ev_is_active (&timerfd_w))
3058 {
3059 timerfd = timerfd_create (CLOCK_REALTIME, TFD_NONBLOCK | TFD_CLOEXEC);
3060
3061 if (timerfd >= 0)
3062 {
3063 fd_intern (timerfd); /* just to be sure */
3064
3065 ev_io_init (&timerfd_w, timerfdcb, timerfd, EV_READ);
3066 ev_set_priority (&timerfd_w, EV_MINPRI);
3067 ev_io_start (EV_A_ &timerfd_w);
3068 ev_unref (EV_A); /* watcher should not keep loop alive */
3069
3070 /* (re-) arm timer */
3071 timerfdcb (EV_A_ 0, 0);
3072 }
3073 }
3074}
3075
3076#endif
3077
3078/*****************************************************************************/
3079
3080#if EV_USE_IOCP
3081# include "ev_iocp.c"
3082#endif
1161#if EV_USE_PORT 3083#if EV_USE_PORT
1162# include "ev_port.c" 3084# include "ev_port.c"
1163#endif 3085#endif
1164#if EV_USE_KQUEUE 3086#if EV_USE_KQUEUE
1165# include "ev_kqueue.c" 3087# include "ev_kqueue.c"
1166#endif 3088#endif
1167#if EV_USE_EPOLL 3089#if EV_USE_EPOLL
1168# include "ev_epoll.c" 3090# include "ev_epoll.c"
1169#endif 3091#endif
3092#if EV_USE_LINUXAIO
3093# include "ev_linuxaio.c"
3094#endif
3095#if EV_USE_IOURING
3096# include "ev_iouring.c"
3097#endif
1170#if EV_USE_POLL 3098#if EV_USE_POLL
1171# include "ev_poll.c" 3099# include "ev_poll.c"
1172#endif 3100#endif
1173#if EV_USE_SELECT 3101#if EV_USE_SELECT
1174# include "ev_select.c" 3102# include "ev_select.c"
1175#endif 3103#endif
1176 3104
1177int 3105ecb_cold int
1178ev_version_major (void) 3106ev_version_major (void) EV_NOEXCEPT
1179{ 3107{
1180 return EV_VERSION_MAJOR; 3108 return EV_VERSION_MAJOR;
1181} 3109}
1182 3110
1183int 3111ecb_cold int
1184ev_version_minor (void) 3112ev_version_minor (void) EV_NOEXCEPT
1185{ 3113{
1186 return EV_VERSION_MINOR; 3114 return EV_VERSION_MINOR;
1187} 3115}
1188 3116
1189/* return true if we are running with elevated privileges and should ignore env variables */ 3117/* return true if we are running with elevated privileges and should ignore env variables */
1190int inline_size 3118inline_size ecb_cold int
1191enable_secure (void) 3119enable_secure (void)
1192{ 3120{
1193#ifdef _WIN32 3121#ifdef _WIN32
1194 return 0; 3122 return 0;
1195#else 3123#else
1196 return getuid () != geteuid () 3124 return getuid () != geteuid ()
1197 || getgid () != getegid (); 3125 || getgid () != getegid ();
1198#endif 3126#endif
1199} 3127}
1200 3128
3129ecb_cold
1201unsigned int 3130unsigned int
1202ev_supported_backends (void) 3131ev_supported_backends (void) EV_NOEXCEPT
1203{ 3132{
1204 unsigned int flags = 0; 3133 unsigned int flags = 0;
1205 3134
1206 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 3135 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1207 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 3136 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
1208 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 3137 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1209 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 3138 if (EV_USE_LINUXAIO ) flags |= EVBACKEND_LINUXAIO;
1210 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 3139 if (EV_USE_IOURING && ev_linux_version () >= 0x050601) flags |= EVBACKEND_IOURING; /* 5.6.1+ */
1211 3140 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
3141 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
3142
1212 return flags; 3143 return flags;
1213} 3144}
1214 3145
3146ecb_cold
1215unsigned int 3147unsigned int
1216ev_recommended_backends (void) 3148ev_recommended_backends (void) EV_NOEXCEPT
1217{ 3149{
1218 unsigned int flags = ev_supported_backends (); 3150 unsigned int flags = ev_supported_backends ();
1219 3151
1220#ifndef __NetBSD__ 3152#ifndef __NetBSD__
1221 /* kqueue is borked on everything but netbsd apparently */ 3153 /* kqueue is borked on everything but netbsd apparently */
1222 /* it usually doesn't work correctly on anything but sockets and pipes */ 3154 /* it usually doesn't work correctly on anything but sockets and pipes */
1223 flags &= ~EVBACKEND_KQUEUE; 3155 flags &= ~EVBACKEND_KQUEUE;
1224#endif 3156#endif
1225#ifdef __APPLE__ 3157#ifdef __APPLE__
1226 // flags &= ~EVBACKEND_KQUEUE; for documentation 3158 /* only select works correctly on that "unix-certified" platform */
3159 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
3160 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
3161#endif
3162#ifdef __FreeBSD__
3163 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
3164#endif
3165
3166 /* TODO: linuxaio is very experimental */
3167#if !EV_RECOMMEND_LINUXAIO
3168 flags &= ~EVBACKEND_LINUXAIO;
3169#endif
3170 /* TODO: linuxaio is super experimental */
3171#if !EV_RECOMMEND_IOURING
1227 flags &= ~EVBACKEND_POLL; 3172 flags &= ~EVBACKEND_IOURING;
1228#endif 3173#endif
1229 3174
1230 return flags; 3175 return flags;
1231} 3176}
1232 3177
3178ecb_cold
1233unsigned int 3179unsigned int
1234ev_embeddable_backends (void) 3180ev_embeddable_backends (void) EV_NOEXCEPT
1235{ 3181{
1236 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 3182 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT | EVBACKEND_IOURING;
1237 3183
1238 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 3184 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1239 /* please fix it and tell me how to detect the fix */ 3185 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1240 flags &= ~EVBACKEND_EPOLL; 3186 flags &= ~EVBACKEND_EPOLL;
3187
3188 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
1241 3189
1242 return flags; 3190 return flags;
1243} 3191}
1244 3192
1245unsigned int 3193unsigned int
1246ev_backend (EV_P) 3194ev_backend (EV_P) EV_NOEXCEPT
1247{ 3195{
1248 return backend; 3196 return backend;
1249} 3197}
1250 3198
3199#if EV_FEATURE_API
1251unsigned int 3200unsigned int
1252ev_loop_count (EV_P) 3201ev_iteration (EV_P) EV_NOEXCEPT
1253{ 3202{
1254 return loop_count; 3203 return loop_count;
1255} 3204}
1256 3205
3206unsigned int
3207ev_depth (EV_P) EV_NOEXCEPT
3208{
3209 return loop_depth;
3210}
3211
1257void 3212void
1258ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 3213ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1259{ 3214{
1260 io_blocktime = interval; 3215 io_blocktime = interval;
1261} 3216}
1262 3217
1263void 3218void
1264ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 3219ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1265{ 3220{
1266 timeout_blocktime = interval; 3221 timeout_blocktime = interval;
1267} 3222}
1268 3223
1269static void noinline 3224void
3225ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3226{
3227 userdata = data;
3228}
3229
3230void *
3231ev_userdata (EV_P) EV_NOEXCEPT
3232{
3233 return userdata;
3234}
3235
3236void
3237ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3238{
3239 invoke_cb = invoke_pending_cb;
3240}
3241
3242void
3243ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3244{
3245 release_cb = release;
3246 acquire_cb = acquire;
3247}
3248#endif
3249
3250/* initialise a loop structure, must be zero-initialised */
3251ecb_noinline ecb_cold
3252static void
1270loop_init (EV_P_ unsigned int flags) 3253loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
1271{ 3254{
1272 if (!backend) 3255 if (!backend)
1273 { 3256 {
3257 origflags = flags;
3258
3259#if EV_USE_REALTIME
3260 if (!have_realtime)
3261 {
3262 struct timespec ts;
3263
3264 if (!clock_gettime (CLOCK_REALTIME, &ts))
3265 have_realtime = 1;
3266 }
3267#endif
3268
1274#if EV_USE_MONOTONIC 3269#if EV_USE_MONOTONIC
3270 if (!have_monotonic)
1275 { 3271 {
1276 struct timespec ts; 3272 struct timespec ts;
3273
1277 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3274 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1278 have_monotonic = 1; 3275 have_monotonic = 1;
1279 } 3276 }
1280#endif
1281
1282 ev_rt_now = ev_time ();
1283 mn_now = get_clock ();
1284 now_floor = mn_now;
1285 rtmn_diff = ev_rt_now - mn_now;
1286
1287 io_blocktime = 0.;
1288 timeout_blocktime = 0.;
1289 backend = 0;
1290 backend_fd = -1;
1291 gotasync = 0;
1292#if EV_USE_INOTIFY
1293 fs_fd = -2;
1294#endif 3277#endif
1295 3278
1296 /* pid check not overridable via env */ 3279 /* pid check not overridable via env */
1297#ifndef _WIN32 3280#ifndef _WIN32
1298 if (flags & EVFLAG_FORKCHECK) 3281 if (flags & EVFLAG_FORKCHECK)
1302 if (!(flags & EVFLAG_NOENV) 3285 if (!(flags & EVFLAG_NOENV)
1303 && !enable_secure () 3286 && !enable_secure ()
1304 && getenv ("LIBEV_FLAGS")) 3287 && getenv ("LIBEV_FLAGS"))
1305 flags = atoi (getenv ("LIBEV_FLAGS")); 3288 flags = atoi (getenv ("LIBEV_FLAGS"));
1306 3289
1307 if (!(flags & 0x0000ffffU)) 3290 ev_rt_now = ev_time ();
3291 mn_now = get_clock ();
3292 now_floor = mn_now;
3293 rtmn_diff = ev_rt_now - mn_now;
3294#if EV_FEATURE_API
3295 invoke_cb = ev_invoke_pending;
3296#endif
3297
3298 io_blocktime = 0.;
3299 timeout_blocktime = 0.;
3300 backend = 0;
3301 backend_fd = -1;
3302 sig_pending = 0;
3303#if EV_ASYNC_ENABLE
3304 async_pending = 0;
3305#endif
3306 pipe_write_skipped = 0;
3307 pipe_write_wanted = 0;
3308 evpipe [0] = -1;
3309 evpipe [1] = -1;
3310#if EV_USE_INOTIFY
3311 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3312#endif
3313#if EV_USE_SIGNALFD
3314 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3315#endif
3316#if EV_USE_TIMERFD
3317 timerfd = flags & EVFLAG_NOTIMERFD ? -1 : -2;
3318#endif
3319
3320 if (!(flags & EVBACKEND_MASK))
1308 flags |= ev_recommended_backends (); 3321 flags |= ev_recommended_backends ();
1309 3322
3323#if EV_USE_IOCP
3324 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3325#endif
1310#if EV_USE_PORT 3326#if EV_USE_PORT
1311 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 3327 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1312#endif 3328#endif
1313#if EV_USE_KQUEUE 3329#if EV_USE_KQUEUE
1314 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 3330 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3331#endif
3332#if EV_USE_IOURING
3333 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3334#endif
3335#if EV_USE_LINUXAIO
3336 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
1315#endif 3337#endif
1316#if EV_USE_EPOLL 3338#if EV_USE_EPOLL
1317 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 3339 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1318#endif 3340#endif
1319#if EV_USE_POLL 3341#if EV_USE_POLL
1320 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 3342 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1321#endif 3343#endif
1322#if EV_USE_SELECT 3344#if EV_USE_SELECT
1323 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 3345 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
1324#endif 3346#endif
1325 3347
3348 ev_prepare_init (&pending_w, pendingcb);
3349
3350#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1326 ev_init (&pipeev, pipecb); 3351 ev_init (&pipe_w, pipecb);
1327 ev_set_priority (&pipeev, EV_MAXPRI); 3352 ev_set_priority (&pipe_w, EV_MAXPRI);
3353#endif
1328 } 3354 }
1329} 3355}
1330 3356
1331static void noinline 3357/* free up a loop structure */
3358ecb_cold
3359void
1332loop_destroy (EV_P) 3360ev_loop_destroy (EV_P)
1333{ 3361{
1334 int i; 3362 int i;
1335 3363
3364#if EV_MULTIPLICITY
3365 /* mimic free (0) */
3366 if (!EV_A)
3367 return;
3368#endif
3369
3370#if EV_CLEANUP_ENABLE
3371 /* queue cleanup watchers (and execute them) */
3372 if (ecb_expect_false (cleanupcnt))
3373 {
3374 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3375 EV_INVOKE_PENDING;
3376 }
3377#endif
3378
3379#if EV_CHILD_ENABLE
3380 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3381 {
3382 ev_ref (EV_A); /* child watcher */
3383 ev_signal_stop (EV_A_ &childev);
3384 }
3385#endif
3386
1336 if (ev_is_active (&pipeev)) 3387 if (ev_is_active (&pipe_w))
1337 { 3388 {
1338 ev_ref (EV_A); /* signal watcher */ 3389 /*ev_ref (EV_A);*/
1339 ev_io_stop (EV_A_ &pipeev); 3390 /*ev_io_stop (EV_A_ &pipe_w);*/
1340 3391
3392 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3393 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3394 }
3395
3396#if EV_USE_SIGNALFD
3397 if (ev_is_active (&sigfd_w))
3398 close (sigfd);
3399#endif
3400
1341#if EV_USE_EVENTFD 3401#if EV_USE_TIMERFD
1342 if (evfd >= 0) 3402 if (ev_is_active (&timerfd_w))
1343 close (evfd); 3403 close (timerfd);
1344#endif 3404#endif
1345
1346 if (evpipe [0] >= 0)
1347 {
1348 close (evpipe [0]);
1349 close (evpipe [1]);
1350 }
1351 }
1352 3405
1353#if EV_USE_INOTIFY 3406#if EV_USE_INOTIFY
1354 if (fs_fd >= 0) 3407 if (fs_fd >= 0)
1355 close (fs_fd); 3408 close (fs_fd);
1356#endif 3409#endif
1357 3410
1358 if (backend_fd >= 0) 3411 if (backend_fd >= 0)
1359 close (backend_fd); 3412 close (backend_fd);
1360 3413
3414#if EV_USE_IOCP
3415 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3416#endif
1361#if EV_USE_PORT 3417#if EV_USE_PORT
1362 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3418 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1363#endif 3419#endif
1364#if EV_USE_KQUEUE 3420#if EV_USE_KQUEUE
1365 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3421 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3422#endif
3423#if EV_USE_IOURING
3424 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3425#endif
3426#if EV_USE_LINUXAIO
3427 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1366#endif 3428#endif
1367#if EV_USE_EPOLL 3429#if EV_USE_EPOLL
1368 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3430 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1369#endif 3431#endif
1370#if EV_USE_POLL 3432#if EV_USE_POLL
1371 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3433 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1372#endif 3434#endif
1373#if EV_USE_SELECT 3435#if EV_USE_SELECT
1374 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3436 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1375#endif 3437#endif
1376 3438
1377 for (i = NUMPRI; i--; ) 3439 for (i = NUMPRI; i--; )
1378 { 3440 {
1379 array_free (pending, [i]); 3441 array_free (pending, [i]);
1380#if EV_IDLE_ENABLE 3442#if EV_IDLE_ENABLE
1381 array_free (idle, [i]); 3443 array_free (idle, [i]);
1382#endif 3444#endif
1383 } 3445 }
1384 3446
1385 ev_free (anfds); anfdmax = 0; 3447 ev_free (anfds); anfds = 0; anfdmax = 0;
1386 3448
1387 /* have to use the microsoft-never-gets-it-right macro */ 3449 /* have to use the microsoft-never-gets-it-right macro */
3450 array_free (rfeed, EMPTY);
1388 array_free (fdchange, EMPTY); 3451 array_free (fdchange, EMPTY);
1389 array_free (timer, EMPTY); 3452 array_free (timer, EMPTY);
1390#if EV_PERIODIC_ENABLE 3453#if EV_PERIODIC_ENABLE
1391 array_free (periodic, EMPTY); 3454 array_free (periodic, EMPTY);
1392#endif 3455#endif
1393#if EV_FORK_ENABLE 3456#if EV_FORK_ENABLE
1394 array_free (fork, EMPTY); 3457 array_free (fork, EMPTY);
1395#endif 3458#endif
3459#if EV_CLEANUP_ENABLE
3460 array_free (cleanup, EMPTY);
3461#endif
1396 array_free (prepare, EMPTY); 3462 array_free (prepare, EMPTY);
1397 array_free (check, EMPTY); 3463 array_free (check, EMPTY);
1398#if EV_ASYNC_ENABLE 3464#if EV_ASYNC_ENABLE
1399 array_free (async, EMPTY); 3465 array_free (async, EMPTY);
1400#endif 3466#endif
1401 3467
1402 backend = 0; 3468 backend = 0;
3469
3470#if EV_MULTIPLICITY
3471 if (ev_is_default_loop (EV_A))
3472#endif
3473 ev_default_loop_ptr = 0;
3474#if EV_MULTIPLICITY
3475 else
3476 ev_free (EV_A);
3477#endif
1403} 3478}
1404 3479
1405#if EV_USE_INOTIFY 3480#if EV_USE_INOTIFY
1406void inline_size infy_fork (EV_P); 3481inline_size void infy_fork (EV_P);
1407#endif 3482#endif
1408 3483
1409void inline_size 3484inline_size void
1410loop_fork (EV_P) 3485loop_fork (EV_P)
1411{ 3486{
1412#if EV_USE_PORT 3487#if EV_USE_PORT
1413 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3488 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1414#endif 3489#endif
1415#if EV_USE_KQUEUE 3490#if EV_USE_KQUEUE
1416 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3491 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3492#endif
3493#if EV_USE_IOURING
3494 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3495#endif
3496#if EV_USE_LINUXAIO
3497 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1417#endif 3498#endif
1418#if EV_USE_EPOLL 3499#if EV_USE_EPOLL
1419 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3500 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1420#endif 3501#endif
1421#if EV_USE_INOTIFY 3502#if EV_USE_INOTIFY
1422 infy_fork (EV_A); 3503 infy_fork (EV_A);
1423#endif 3504#endif
1424 3505
3506 if (postfork != 2)
3507 {
3508 #if EV_USE_SIGNALFD
3509 /* surprisingly, nothing needs to be done for signalfd, accoridng to docs, it does the right thing on fork */
3510 #endif
3511
3512 #if EV_USE_TIMERFD
3513 if (ev_is_active (&timerfd_w))
3514 {
3515 ev_ref (EV_A);
3516 ev_io_stop (EV_A_ &timerfd_w);
3517
3518 close (timerfd);
3519 timerfd = -2;
3520
3521 evtimerfd_init (EV_A);
3522 /* reschedule periodics, in case we missed something */
3523 ev_feed_event (EV_A_ &timerfd_w, EV_CUSTOM);
3524 }
3525 #endif
3526
3527 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1425 if (ev_is_active (&pipeev)) 3528 if (ev_is_active (&pipe_w))
3529 {
3530 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3531
3532 ev_ref (EV_A);
3533 ev_io_stop (EV_A_ &pipe_w);
3534
3535 if (evpipe [0] >= 0)
3536 EV_WIN32_CLOSE_FD (evpipe [0]);
3537
3538 evpipe_init (EV_A);
3539 /* iterate over everything, in case we missed something before */
3540 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3541 }
3542 #endif
1426 { 3543 }
1427 /* this "locks" the handlers against writing to the pipe */ 3544
1428 /* while we modify the fd vars */ 3545 postfork = 0;
1429 gotsig = 1; 3546}
3547
3548#if EV_MULTIPLICITY
3549
3550ecb_cold
3551struct ev_loop *
3552ev_loop_new (unsigned int flags) EV_NOEXCEPT
3553{
3554 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3555
3556 memset (EV_A, 0, sizeof (struct ev_loop));
3557 loop_init (EV_A_ flags);
3558
3559 if (ev_backend (EV_A))
3560 return EV_A;
3561
3562 ev_free (EV_A);
3563 return 0;
3564}
3565
3566#endif /* multiplicity */
3567
3568#if EV_VERIFY
3569ecb_noinline ecb_cold
3570static void
3571verify_watcher (EV_P_ W w)
3572{
3573 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3574
3575 if (w->pending)
3576 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3577}
3578
3579ecb_noinline ecb_cold
3580static void
3581verify_heap (EV_P_ ANHE *heap, int N)
3582{
3583 int i;
3584
3585 for (i = HEAP0; i < N + HEAP0; ++i)
3586 {
3587 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3588 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3589 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3590
3591 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3592 }
3593}
3594
3595ecb_noinline ecb_cold
3596static void
3597array_verify (EV_P_ W *ws, int cnt)
3598{
3599 while (cnt--)
3600 {
3601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3602 verify_watcher (EV_A_ ws [cnt]);
3603 }
3604}
3605#endif
3606
3607#if EV_FEATURE_API
3608void ecb_cold
3609ev_verify (EV_P) EV_NOEXCEPT
3610{
3611#if EV_VERIFY
3612 int i;
3613 WL w, w2;
3614
3615 assert (activecnt >= -1);
3616
3617 assert (fdchangemax >= fdchangecnt);
3618 for (i = 0; i < fdchangecnt; ++i)
3619 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3620
3621 assert (anfdmax >= 0);
3622 for (i = 0; i < anfdmax; ++i)
3623 {
3624 int j = 0;
3625
3626 for (w = w2 = anfds [i].head; w; w = w->next)
3627 {
3628 verify_watcher (EV_A_ (W)w);
3629
3630 if (j++ & 1)
3631 {
3632 assert (("libev: io watcher list contains a loop", w != w2));
3633 w2 = w2->next;
3634 }
3635
3636 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3637 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3638 }
3639 }
3640
3641 assert (timermax >= timercnt);
3642 verify_heap (EV_A_ timers, timercnt);
3643
3644#if EV_PERIODIC_ENABLE
3645 assert (periodicmax >= periodiccnt);
3646 verify_heap (EV_A_ periodics, periodiccnt);
3647#endif
3648
3649 for (i = NUMPRI; i--; )
3650 {
3651 assert (pendingmax [i] >= pendingcnt [i]);
3652#if EV_IDLE_ENABLE
3653 assert (idleall >= 0);
3654 assert (idlemax [i] >= idlecnt [i]);
3655 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3656#endif
3657 }
3658
3659#if EV_FORK_ENABLE
3660 assert (forkmax >= forkcnt);
3661 array_verify (EV_A_ (W *)forks, forkcnt);
3662#endif
3663
3664#if EV_CLEANUP_ENABLE
3665 assert (cleanupmax >= cleanupcnt);
3666 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3667#endif
3668
1430#if EV_ASYNC_ENABLE 3669#if EV_ASYNC_ENABLE
1431 gotasync = 1; 3670 assert (asyncmax >= asynccnt);
3671 array_verify (EV_A_ (W *)asyncs, asynccnt);
3672#endif
3673
3674#if EV_PREPARE_ENABLE
3675 assert (preparemax >= preparecnt);
3676 array_verify (EV_A_ (W *)prepares, preparecnt);
3677#endif
3678
3679#if EV_CHECK_ENABLE
3680 assert (checkmax >= checkcnt);
3681 array_verify (EV_A_ (W *)checks, checkcnt);
3682#endif
3683
3684# if 0
3685#if EV_CHILD_ENABLE
3686 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3687 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3688#endif
1432#endif 3689# endif
1433
1434 ev_ref (EV_A);
1435 ev_io_stop (EV_A_ &pipeev);
1436
1437#if EV_USE_EVENTFD
1438 if (evfd >= 0)
1439 close (evfd);
1440#endif 3690#endif
1441
1442 if (evpipe [0] >= 0)
1443 {
1444 close (evpipe [0]);
1445 close (evpipe [1]);
1446 }
1447
1448 evpipe_init (EV_A);
1449 /* now iterate over everything, in case we missed something */
1450 pipecb (EV_A_ &pipeev, EV_READ);
1451 }
1452
1453 postfork = 0;
1454} 3691}
3692#endif
1455 3693
1456#if EV_MULTIPLICITY 3694#if EV_MULTIPLICITY
3695ecb_cold
1457struct ev_loop * 3696struct ev_loop *
1458ev_loop_new (unsigned int flags)
1459{
1460 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1461
1462 memset (loop, 0, sizeof (struct ev_loop));
1463
1464 loop_init (EV_A_ flags);
1465
1466 if (ev_backend (EV_A))
1467 return loop;
1468
1469 return 0;
1470}
1471
1472void
1473ev_loop_destroy (EV_P)
1474{
1475 loop_destroy (EV_A);
1476 ev_free (loop);
1477}
1478
1479void
1480ev_loop_fork (EV_P)
1481{
1482 postfork = 1; /* must be in line with ev_default_fork */
1483}
1484#endif
1485
1486#if EV_MULTIPLICITY
1487struct ev_loop *
1488ev_default_loop_init (unsigned int flags)
1489#else 3697#else
1490int 3698int
3699#endif
1491ev_default_loop (unsigned int flags) 3700ev_default_loop (unsigned int flags) EV_NOEXCEPT
1492#endif
1493{ 3701{
1494 if (!ev_default_loop_ptr) 3702 if (!ev_default_loop_ptr)
1495 { 3703 {
1496#if EV_MULTIPLICITY 3704#if EV_MULTIPLICITY
1497 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3705 EV_P = ev_default_loop_ptr = &default_loop_struct;
1498#else 3706#else
1499 ev_default_loop_ptr = 1; 3707 ev_default_loop_ptr = 1;
1500#endif 3708#endif
1501 3709
1502 loop_init (EV_A_ flags); 3710 loop_init (EV_A_ flags);
1503 3711
1504 if (ev_backend (EV_A)) 3712 if (ev_backend (EV_A))
1505 { 3713 {
1506#ifndef _WIN32 3714#if EV_CHILD_ENABLE
1507 ev_signal_init (&childev, childcb, SIGCHLD); 3715 ev_signal_init (&childev, childcb, SIGCHLD);
1508 ev_set_priority (&childev, EV_MAXPRI); 3716 ev_set_priority (&childev, EV_MAXPRI);
1509 ev_signal_start (EV_A_ &childev); 3717 ev_signal_start (EV_A_ &childev);
1510 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3718 ev_unref (EV_A); /* child watcher should not keep loop alive */
1511#endif 3719#endif
1516 3724
1517 return ev_default_loop_ptr; 3725 return ev_default_loop_ptr;
1518} 3726}
1519 3727
1520void 3728void
1521ev_default_destroy (void) 3729ev_loop_fork (EV_P) EV_NOEXCEPT
1522{ 3730{
1523#if EV_MULTIPLICITY 3731 postfork = 1;
1524 struct ev_loop *loop = ev_default_loop_ptr;
1525#endif
1526
1527#ifndef _WIN32
1528 ev_ref (EV_A); /* child watcher */
1529 ev_signal_stop (EV_A_ &childev);
1530#endif
1531
1532 loop_destroy (EV_A);
1533}
1534
1535void
1536ev_default_fork (void)
1537{
1538#if EV_MULTIPLICITY
1539 struct ev_loop *loop = ev_default_loop_ptr;
1540#endif
1541
1542 if (backend)
1543 postfork = 1; /* must be in line with ev_loop_fork */
1544} 3732}
1545 3733
1546/*****************************************************************************/ 3734/*****************************************************************************/
1547 3735
1548void 3736void
1549ev_invoke (EV_P_ void *w, int revents) 3737ev_invoke (EV_P_ void *w, int revents)
1550{ 3738{
1551 EV_CB_INVOKE ((W)w, revents); 3739 EV_CB_INVOKE ((W)w, revents);
1552} 3740}
1553 3741
1554void inline_speed 3742unsigned int
1555call_pending (EV_P) 3743ev_pending_count (EV_P) EV_NOEXCEPT
1556{ 3744{
1557 int pri; 3745 int pri;
3746 unsigned int count = 0;
1558 3747
1559 for (pri = NUMPRI; pri--; ) 3748 for (pri = NUMPRI; pri--; )
3749 count += pendingcnt [pri];
3750
3751 return count;
3752}
3753
3754ecb_noinline
3755void
3756ev_invoke_pending (EV_P)
3757{
3758 pendingpri = NUMPRI;
3759
3760 do
3761 {
3762 --pendingpri;
3763
3764 /* pendingpri possibly gets modified in the inner loop */
1560 while (pendingcnt [pri]) 3765 while (pendingcnt [pendingpri])
1561 {
1562 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1563
1564 if (expect_true (p->w))
1565 { 3766 {
1566 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3767 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1567 3768
1568 p->w->pending = 0; 3769 p->w->pending = 0;
1569 EV_CB_INVOKE (p->w, p->events); 3770 EV_CB_INVOKE (p->w, p->events);
3771 EV_FREQUENT_CHECK;
1570 } 3772 }
1571 } 3773 }
3774 while (pendingpri);
1572} 3775}
1573 3776
1574#if EV_IDLE_ENABLE 3777#if EV_IDLE_ENABLE
1575void inline_size 3778/* make idle watchers pending. this handles the "call-idle */
3779/* only when higher priorities are idle" logic */
3780inline_size void
1576idle_reify (EV_P) 3781idle_reify (EV_P)
1577{ 3782{
1578 if (expect_false (idleall)) 3783 if (ecb_expect_false (idleall))
1579 { 3784 {
1580 int pri; 3785 int pri;
1581 3786
1582 for (pri = NUMPRI; pri--; ) 3787 for (pri = NUMPRI; pri--; )
1583 { 3788 {
1592 } 3797 }
1593 } 3798 }
1594} 3799}
1595#endif 3800#endif
1596 3801
1597void inline_size 3802/* make timers pending */
3803inline_size void
1598timers_reify (EV_P) 3804timers_reify (EV_P)
1599{ 3805{
3806 EV_FREQUENT_CHECK;
3807
1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now) 3808 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1601 { 3809 {
1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3810 do
1603
1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1605
1606 /* first reschedule or stop timer */
1607 if (w->repeat)
1608 { 3811 {
1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3812 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1610 3813
3814 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3815
3816 /* first reschedule or stop timer */
3817 if (w->repeat)
3818 {
1611 ev_at (w) += w->repeat; 3819 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now) 3820 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now; 3821 ev_at (w) = mn_now;
1614 3822
3823 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
3824
1615 ANHE_at_set (timers [HEAP0]); 3825 ANHE_at_cache (timers [HEAP0]);
1616 downheap (timers, timercnt, HEAP0); 3826 downheap (timers, timercnt, HEAP0);
3827 }
3828 else
3829 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3830
3831 EV_FREQUENT_CHECK;
3832 feed_reverse (EV_A_ (W)w);
1617 } 3833 }
1618 else 3834 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1620 3835
1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3836 feed_reverse_done (EV_A_ EV_TIMER);
1622 } 3837 }
1623} 3838}
1624 3839
1625#if EV_PERIODIC_ENABLE 3840#if EV_PERIODIC_ENABLE
1626void inline_size 3841
3842ecb_noinline
3843static void
3844periodic_recalc (EV_P_ ev_periodic *w)
3845{
3846 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3847 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3848
3849 /* the above almost always errs on the low side */
3850 while (at <= ev_rt_now)
3851 {
3852 ev_tstamp nat = at + w->interval;
3853
3854 /* when resolution fails us, we use ev_rt_now */
3855 if (ecb_expect_false (nat == at))
3856 {
3857 at = ev_rt_now;
3858 break;
3859 }
3860
3861 at = nat;
3862 }
3863
3864 ev_at (w) = at;
3865}
3866
3867/* make periodics pending */
3868inline_size void
1627periodics_reify (EV_P) 3869periodics_reify (EV_P)
1628{ 3870{
3871 EV_FREQUENT_CHECK;
3872
1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now) 3873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1630 { 3874 {
1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3875 do
1632
1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1634
1635 /* first reschedule or stop timer */
1636 if (w->reschedule_cb)
1637 { 3876 {
3877 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3878
3879 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3880
3881 /* first reschedule or stop timer */
3882 if (w->reschedule_cb)
3883 {
1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 3884 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3885
1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 3886 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3887
1640 ANHE_at_set (periodics [HEAP0]); 3888 ANHE_at_cache (periodics [HEAP0]);
1641 downheap (periodics, periodiccnt, HEAP0); 3889 downheap (periodics, periodiccnt, HEAP0);
3890 }
3891 else if (w->interval)
3892 {
3893 periodic_recalc (EV_A_ w);
3894 ANHE_at_cache (periodics [HEAP0]);
3895 downheap (periodics, periodiccnt, HEAP0);
3896 }
3897 else
3898 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3899
3900 EV_FREQUENT_CHECK;
3901 feed_reverse (EV_A_ (W)w);
1642 } 3902 }
1643 else if (w->interval) 3903 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1644 {
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else
1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1653 3904
1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3905 feed_reverse_done (EV_A_ EV_PERIODIC);
1655 } 3906 }
1656} 3907}
1657 3908
1658static void noinline 3909/* simply recalculate all periodics */
3910/* TODO: maybe ensure that at least one event happens when jumping forward? */
3911ecb_noinline ecb_cold
3912static void
1659periodics_reschedule (EV_P) 3913periodics_reschedule (EV_P)
1660{ 3914{
1661 int i; 3915 int i;
1662 3916
1663 /* adjust periodics after time jump */ 3917 /* adjust periodics after time jump */
1666 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1667 3921
1668 if (w->reschedule_cb) 3922 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1670 else if (w->interval) 3924 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3925 periodic_recalc (EV_A_ w);
1672 3926
1673 ANHE_at_set (periodics [i]); 3927 ANHE_at_cache (periodics [i]);
3928 }
3929
3930 reheap (periodics, periodiccnt);
3931}
3932#endif
3933
3934/* adjust all timers by a given offset */
3935ecb_noinline ecb_cold
3936static void
3937timers_reschedule (EV_P_ ev_tstamp adjust)
3938{
3939 int i;
3940
3941 for (i = 0; i < timercnt; ++i)
1674 } 3942 {
1675 3943 ANHE *he = timers + i + HEAP0;
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */ 3944 ANHE_w (*he)->at += adjust;
1677 for (i = periodiccnt >> 1; --i; ) 3945 ANHE_at_cache (*he);
1678 downheap (periodics, periodiccnt, i + HEAP0); 3946 }
1679} 3947}
1680#endif
1681 3948
1682void inline_speed 3949/* fetch new monotonic and realtime times from the kernel */
3950/* also detect if there was a timejump, and act accordingly */
3951inline_speed void
1683time_update (EV_P_ ev_tstamp max_block) 3952time_update (EV_P_ ev_tstamp max_block)
1684{ 3953{
1685 int i;
1686
1687#if EV_USE_MONOTONIC 3954#if EV_USE_MONOTONIC
1688 if (expect_true (have_monotonic)) 3955 if (ecb_expect_true (have_monotonic))
1689 { 3956 {
3957 int i;
1690 ev_tstamp odiff = rtmn_diff; 3958 ev_tstamp odiff = rtmn_diff;
1691 3959
1692 mn_now = get_clock (); 3960 mn_now = get_clock ();
1693 3961
1694 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3962 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1695 /* interpolate in the meantime */ 3963 /* interpolate in the meantime */
1696 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3964 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
1697 { 3965 {
1698 ev_rt_now = rtmn_diff + mn_now; 3966 ev_rt_now = rtmn_diff + mn_now;
1699 return; 3967 return;
1700 } 3968 }
1701 3969
1710 * doesn't hurt either as we only do this on time-jumps or 3978 * doesn't hurt either as we only do this on time-jumps or
1711 * in the unlikely event of having been preempted here. 3979 * in the unlikely event of having been preempted here.
1712 */ 3980 */
1713 for (i = 4; --i; ) 3981 for (i = 4; --i; )
1714 { 3982 {
3983 ev_tstamp diff;
1715 rtmn_diff = ev_rt_now - mn_now; 3984 rtmn_diff = ev_rt_now - mn_now;
1716 3985
1717 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3986 diff = odiff - rtmn_diff;
3987
3988 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
1718 return; /* all is well */ 3989 return; /* all is well */
1719 3990
1720 ev_rt_now = ev_time (); 3991 ev_rt_now = ev_time ();
1721 mn_now = get_clock (); 3992 mn_now = get_clock ();
1722 now_floor = mn_now; 3993 now_floor = mn_now;
1723 } 3994 }
1724 3995
3996 /* no timer adjustment, as the monotonic clock doesn't jump */
3997 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1725# if EV_PERIODIC_ENABLE 3998# if EV_PERIODIC_ENABLE
1726 periodics_reschedule (EV_A); 3999 periodics_reschedule (EV_A);
1727# endif 4000# endif
1728 /* no timer adjustment, as the monotonic clock doesn't jump */
1729 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1730 } 4001 }
1731 else 4002 else
1732#endif 4003#endif
1733 { 4004 {
1734 ev_rt_now = ev_time (); 4005 ev_rt_now = ev_time ();
1735 4006
1736 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 4007 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
1737 { 4008 {
4009 /* adjust timers. this is easy, as the offset is the same for all of them */
4010 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1738#if EV_PERIODIC_ENABLE 4011#if EV_PERIODIC_ENABLE
1739 periodics_reschedule (EV_A); 4012 periodics_reschedule (EV_A);
1740#endif 4013#endif
1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1742 for (i = 0; i < timercnt; ++i)
1743 {
1744 ANHE *he = timers + i + HEAP0;
1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he);
1747 }
1748 } 4014 }
1749 4015
1750 mn_now = ev_rt_now; 4016 mn_now = ev_rt_now;
1751 } 4017 }
1752} 4018}
1753 4019
1754void 4020int
1755ev_ref (EV_P)
1756{
1757 ++activecnt;
1758}
1759
1760void
1761ev_unref (EV_P)
1762{
1763 --activecnt;
1764}
1765
1766static int loop_done;
1767
1768void
1769ev_loop (EV_P_ int flags) 4021ev_run (EV_P_ int flags)
1770{ 4022{
4023#if EV_FEATURE_API
4024 ++loop_depth;
4025#endif
4026
4027 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
4028
1771 loop_done = EVUNLOOP_CANCEL; 4029 loop_done = EVBREAK_CANCEL;
1772 4030
1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 4031 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1774 4032
1775 do 4033 do
1776 { 4034 {
4035#if EV_VERIFY >= 2
4036 ev_verify (EV_A);
4037#endif
4038
1777#ifndef _WIN32 4039#ifndef _WIN32
1778 if (expect_false (curpid)) /* penalise the forking check even more */ 4040 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
1779 if (expect_false (getpid () != curpid)) 4041 if (ecb_expect_false (getpid () != curpid))
1780 { 4042 {
1781 curpid = getpid (); 4043 curpid = getpid ();
1782 postfork = 1; 4044 postfork = 1;
1783 } 4045 }
1784#endif 4046#endif
1785 4047
1786#if EV_FORK_ENABLE 4048#if EV_FORK_ENABLE
1787 /* we might have forked, so queue fork handlers */ 4049 /* we might have forked, so queue fork handlers */
1788 if (expect_false (postfork)) 4050 if (ecb_expect_false (postfork))
1789 if (forkcnt) 4051 if (forkcnt)
1790 { 4052 {
1791 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 4053 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1792 call_pending (EV_A); 4054 EV_INVOKE_PENDING;
1793 } 4055 }
1794#endif 4056#endif
1795 4057
4058#if EV_PREPARE_ENABLE
1796 /* queue prepare watchers (and execute them) */ 4059 /* queue prepare watchers (and execute them) */
1797 if (expect_false (preparecnt)) 4060 if (ecb_expect_false (preparecnt))
1798 { 4061 {
1799 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 4062 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1800 call_pending (EV_A); 4063 EV_INVOKE_PENDING;
1801 } 4064 }
4065#endif
1802 4066
1803 if (expect_false (!activecnt)) 4067 if (ecb_expect_false (loop_done))
1804 break; 4068 break;
1805 4069
1806 /* we might have forked, so reify kernel state if necessary */ 4070 /* we might have forked, so reify kernel state if necessary */
1807 if (expect_false (postfork)) 4071 if (ecb_expect_false (postfork))
1808 loop_fork (EV_A); 4072 loop_fork (EV_A);
1809 4073
1810 /* update fd-related kernel structures */ 4074 /* update fd-related kernel structures */
1811 fd_reify (EV_A); 4075 fd_reify (EV_A);
1812 4076
1813 /* calculate blocking time */ 4077 /* calculate blocking time */
1814 { 4078 {
1815 ev_tstamp waittime = 0.; 4079 ev_tstamp waittime = 0.;
1816 ev_tstamp sleeptime = 0.; 4080 ev_tstamp sleeptime = 0.;
1817 4081
4082 /* remember old timestamp for io_blocktime calculation */
4083 ev_tstamp prev_mn_now = mn_now;
4084
4085 /* update time to cancel out callback processing overhead */
4086 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
4087
4088 /* from now on, we want a pipe-wake-up */
4089 pipe_write_wanted = 1;
4090
4091 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
4092
1818 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 4093 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1819 { 4094 {
1820 /* update time to cancel out callback processing overhead */
1821 time_update (EV_A_ 1e100);
1822
1823 waittime = MAX_BLOCKTIME; 4095 waittime = EV_TS_CONST (MAX_BLOCKTIME);
4096
4097#if EV_USE_TIMERFD
4098 /* sleep a lot longer when we can reliably detect timejumps */
4099 if (ecb_expect_true (timerfd >= 0))
4100 waittime = EV_TS_CONST (MAX_BLOCKTIME2);
4101#endif
4102#if !EV_PERIODIC_ENABLE
4103 /* without periodics but with monotonic clock there is no need */
4104 /* for any time jump detection, so sleep longer */
4105 if (ecb_expect_true (have_monotonic))
4106 waittime = EV_TS_CONST (MAX_BLOCKTIME2);
4107#endif
1824 4108
1825 if (timercnt) 4109 if (timercnt)
1826 { 4110 {
1827 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 4111 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1828 if (waittime > to) waittime = to; 4112 if (waittime > to) waittime = to;
1829 } 4113 }
1830 4114
1831#if EV_PERIODIC_ENABLE 4115#if EV_PERIODIC_ENABLE
1832 if (periodiccnt) 4116 if (periodiccnt)
1833 { 4117 {
1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 4118 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1835 if (waittime > to) waittime = to; 4119 if (waittime > to) waittime = to;
1836 } 4120 }
1837#endif 4121#endif
1838 4122
4123 /* don't let timeouts decrease the waittime below timeout_blocktime */
1839 if (expect_false (waittime < timeout_blocktime)) 4124 if (ecb_expect_false (waittime < timeout_blocktime))
1840 waittime = timeout_blocktime; 4125 waittime = timeout_blocktime;
1841 4126
1842 sleeptime = waittime - backend_fudge; 4127 /* now there are two more special cases left, either we have
4128 * already-expired timers, so we should not sleep, or we have timers
4129 * that expire very soon, in which case we need to wait for a minimum
4130 * amount of time for some event loop backends.
4131 */
4132 if (ecb_expect_false (waittime < backend_mintime))
4133 waittime = waittime <= EV_TS_CONST (0.)
4134 ? EV_TS_CONST (0.)
4135 : backend_mintime;
1843 4136
4137 /* extra check because io_blocktime is commonly 0 */
1844 if (expect_true (sleeptime > io_blocktime)) 4138 if (ecb_expect_false (io_blocktime))
1845 sleeptime = io_blocktime;
1846
1847 if (sleeptime)
1848 { 4139 {
4140 sleeptime = io_blocktime - (mn_now - prev_mn_now);
4141
4142 if (sleeptime > waittime - backend_mintime)
4143 sleeptime = waittime - backend_mintime;
4144
4145 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
4146 {
1849 ev_sleep (sleeptime); 4147 ev_sleep (sleeptime);
1850 waittime -= sleeptime; 4148 waittime -= sleeptime;
4149 }
1851 } 4150 }
1852 } 4151 }
1853 4152
4153#if EV_FEATURE_API
1854 ++loop_count; 4154 ++loop_count;
4155#endif
4156 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1855 backend_poll (EV_A_ waittime); 4157 backend_poll (EV_A_ waittime);
4158 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
4159
4160 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
4161
4162 ECB_MEMORY_FENCE_ACQUIRE;
4163 if (pipe_write_skipped)
4164 {
4165 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
4166 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
4167 }
1856 4168
1857 /* update ev_rt_now, do magic */ 4169 /* update ev_rt_now, do magic */
1858 time_update (EV_A_ waittime + sleeptime); 4170 time_update (EV_A_ waittime + sleeptime);
1859 } 4171 }
1860 4172
1867#if EV_IDLE_ENABLE 4179#if EV_IDLE_ENABLE
1868 /* queue idle watchers unless other events are pending */ 4180 /* queue idle watchers unless other events are pending */
1869 idle_reify (EV_A); 4181 idle_reify (EV_A);
1870#endif 4182#endif
1871 4183
4184#if EV_CHECK_ENABLE
1872 /* queue check watchers, to be executed first */ 4185 /* queue check watchers, to be executed first */
1873 if (expect_false (checkcnt)) 4186 if (ecb_expect_false (checkcnt))
1874 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 4187 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
4188#endif
1875 4189
1876 call_pending (EV_A); 4190 EV_INVOKE_PENDING;
1877 } 4191 }
1878 while (expect_true ( 4192 while (ecb_expect_true (
1879 activecnt 4193 activecnt
1880 && !loop_done 4194 && !loop_done
1881 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 4195 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1882 )); 4196 ));
1883 4197
1884 if (loop_done == EVUNLOOP_ONE) 4198 if (loop_done == EVBREAK_ONE)
1885 loop_done = EVUNLOOP_CANCEL; 4199 loop_done = EVBREAK_CANCEL;
4200
4201#if EV_FEATURE_API
4202 --loop_depth;
4203#endif
4204
4205 return activecnt;
1886} 4206}
1887 4207
1888void 4208void
1889ev_unloop (EV_P_ int how) 4209ev_break (EV_P_ int how) EV_NOEXCEPT
1890{ 4210{
1891 loop_done = how; 4211 loop_done = how;
1892} 4212}
1893 4213
4214void
4215ev_ref (EV_P) EV_NOEXCEPT
4216{
4217 ++activecnt;
4218}
4219
4220void
4221ev_unref (EV_P) EV_NOEXCEPT
4222{
4223 --activecnt;
4224}
4225
4226void
4227ev_now_update (EV_P) EV_NOEXCEPT
4228{
4229 time_update (EV_A_ EV_TSTAMP_HUGE);
4230}
4231
4232void
4233ev_suspend (EV_P) EV_NOEXCEPT
4234{
4235 ev_now_update (EV_A);
4236}
4237
4238void
4239ev_resume (EV_P) EV_NOEXCEPT
4240{
4241 ev_tstamp mn_prev = mn_now;
4242
4243 ev_now_update (EV_A);
4244 timers_reschedule (EV_A_ mn_now - mn_prev);
4245#if EV_PERIODIC_ENABLE
4246 /* TODO: really do this? */
4247 periodics_reschedule (EV_A);
4248#endif
4249}
4250
1894/*****************************************************************************/ 4251/*****************************************************************************/
4252/* singly-linked list management, used when the expected list length is short */
1895 4253
1896void inline_size 4254inline_size void
1897wlist_add (WL *head, WL elem) 4255wlist_add (WL *head, WL elem)
1898{ 4256{
1899 elem->next = *head; 4257 elem->next = *head;
1900 *head = elem; 4258 *head = elem;
1901} 4259}
1902 4260
1903void inline_size 4261inline_size void
1904wlist_del (WL *head, WL elem) 4262wlist_del (WL *head, WL elem)
1905{ 4263{
1906 while (*head) 4264 while (*head)
1907 { 4265 {
1908 if (*head == elem) 4266 if (ecb_expect_true (*head == elem))
1909 { 4267 {
1910 *head = elem->next; 4268 *head = elem->next;
1911 return; 4269 break;
1912 } 4270 }
1913 4271
1914 head = &(*head)->next; 4272 head = &(*head)->next;
1915 } 4273 }
1916} 4274}
1917 4275
1918void inline_speed 4276/* internal, faster, version of ev_clear_pending */
4277inline_speed void
1919clear_pending (EV_P_ W w) 4278clear_pending (EV_P_ W w)
1920{ 4279{
1921 if (w->pending) 4280 if (w->pending)
1922 { 4281 {
1923 pendings [ABSPRI (w)][w->pending - 1].w = 0; 4282 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1924 w->pending = 0; 4283 w->pending = 0;
1925 } 4284 }
1926} 4285}
1927 4286
1928int 4287int
1929ev_clear_pending (EV_P_ void *w) 4288ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
1930{ 4289{
1931 W w_ = (W)w; 4290 W w_ = (W)w;
1932 int pending = w_->pending; 4291 int pending = w_->pending;
1933 4292
1934 if (expect_true (pending)) 4293 if (ecb_expect_true (pending))
1935 { 4294 {
1936 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 4295 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4296 p->w = (W)&pending_w;
1937 w_->pending = 0; 4297 w_->pending = 0;
1938 p->w = 0;
1939 return p->events; 4298 return p->events;
1940 } 4299 }
1941 else 4300 else
1942 return 0; 4301 return 0;
1943} 4302}
1944 4303
1945void inline_size 4304inline_size void
1946pri_adjust (EV_P_ W w) 4305pri_adjust (EV_P_ W w)
1947{ 4306{
1948 int pri = w->priority; 4307 int pri = ev_priority (w);
1949 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 4308 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1950 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 4309 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1951 w->priority = pri; 4310 ev_set_priority (w, pri);
1952} 4311}
1953 4312
1954void inline_speed 4313inline_speed void
1955ev_start (EV_P_ W w, int active) 4314ev_start (EV_P_ W w, int active)
1956{ 4315{
1957 pri_adjust (EV_A_ w); 4316 pri_adjust (EV_A_ w);
1958 w->active = active; 4317 w->active = active;
1959 ev_ref (EV_A); 4318 ev_ref (EV_A);
1960} 4319}
1961 4320
1962void inline_size 4321inline_size void
1963ev_stop (EV_P_ W w) 4322ev_stop (EV_P_ W w)
1964{ 4323{
1965 ev_unref (EV_A); 4324 ev_unref (EV_A);
1966 w->active = 0; 4325 w->active = 0;
1967} 4326}
1968 4327
1969/*****************************************************************************/ 4328/*****************************************************************************/
1970 4329
1971void noinline 4330ecb_noinline
4331void
1972ev_io_start (EV_P_ ev_io *w) 4332ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
1973{ 4333{
1974 int fd = w->fd; 4334 int fd = w->fd;
1975 4335
1976 if (expect_false (ev_is_active (w))) 4336 if (ecb_expect_false (ev_is_active (w)))
1977 return; 4337 return;
1978 4338
1979 assert (("ev_io_start called with negative fd", fd >= 0)); 4339 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4340 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4341
4342#if EV_VERIFY >= 2
4343 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4344#endif
4345 EV_FREQUENT_CHECK;
1980 4346
1981 ev_start (EV_A_ (W)w, 1); 4347 ev_start (EV_A_ (W)w, 1);
1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 4348 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
1983 wlist_add (&anfds[fd].head, (WL)w); 4349 wlist_add (&anfds[fd].head, (WL)w);
1984 4350
4351 /* common bug, apparently */
4352 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4353
1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 4354 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1986 w->events &= ~EV_IOFDSET; 4355 w->events &= ~EV__IOFDSET;
1987}
1988 4356
1989void noinline 4357 EV_FREQUENT_CHECK;
4358}
4359
4360ecb_noinline
4361void
1990ev_io_stop (EV_P_ ev_io *w) 4362ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
1991{ 4363{
1992 clear_pending (EV_A_ (W)w); 4364 clear_pending (EV_A_ (W)w);
1993 if (expect_false (!ev_is_active (w))) 4365 if (ecb_expect_false (!ev_is_active (w)))
1994 return; 4366 return;
1995 4367
1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 4368 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4369
4370#if EV_VERIFY >= 2
4371 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4372#endif
4373 EV_FREQUENT_CHECK;
1997 4374
1998 wlist_del (&anfds[w->fd].head, (WL)w); 4375 wlist_del (&anfds[w->fd].head, (WL)w);
1999 ev_stop (EV_A_ (W)w); 4376 ev_stop (EV_A_ (W)w);
2000 4377
2001 fd_change (EV_A_ w->fd, 1); 4378 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2002}
2003 4379
2004void noinline 4380 EV_FREQUENT_CHECK;
4381}
4382
4383ecb_noinline
4384void
2005ev_timer_start (EV_P_ ev_timer *w) 4385ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
2006{ 4386{
2007 if (expect_false (ev_is_active (w))) 4387 if (ecb_expect_false (ev_is_active (w)))
2008 return; 4388 return;
2009 4389
2010 ev_at (w) += mn_now; 4390 ev_at (w) += mn_now;
2011 4391
2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 4392 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2013 4393
4394 EV_FREQUENT_CHECK;
4395
4396 ++timercnt;
2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 4397 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 4398 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
2016 ANHE_w (timers [ev_active (w)]) = (WT)w; 4399 ANHE_w (timers [ev_active (w)]) = (WT)w;
2017 ANHE_at_set (timers [ev_active (w)]); 4400 ANHE_at_cache (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w)); 4401 upheap (timers, ev_active (w));
2019 4402
4403 EV_FREQUENT_CHECK;
4404
2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 4405 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2021} 4406}
2022 4407
2023void noinline 4408ecb_noinline
4409void
2024ev_timer_stop (EV_P_ ev_timer *w) 4410ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
2025{ 4411{
2026 clear_pending (EV_A_ (W)w); 4412 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 4413 if (ecb_expect_false (!ev_is_active (w)))
2028 return; 4414 return;
4415
4416 EV_FREQUENT_CHECK;
2029 4417
2030 { 4418 {
2031 int active = ev_active (w); 4419 int active = ev_active (w);
2032 4420
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 4421 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034 4422
4423 --timercnt;
4424
2035 if (expect_true (active < timercnt + HEAP0 - 1)) 4425 if (ecb_expect_true (active < timercnt + HEAP0))
2036 { 4426 {
2037 timers [active] = timers [timercnt + HEAP0 - 1]; 4427 timers [active] = timers [timercnt + HEAP0];
2038 adjustheap (timers, timercnt, active); 4428 adjustheap (timers, timercnt, active);
2039 } 4429 }
2040
2041 --timercnt;
2042 } 4430 }
2043 4431
2044 ev_at (w) -= mn_now; 4432 ev_at (w) -= mn_now;
2045 4433
2046 ev_stop (EV_A_ (W)w); 4434 ev_stop (EV_A_ (W)w);
2047}
2048 4435
2049void noinline 4436 EV_FREQUENT_CHECK;
4437}
4438
4439ecb_noinline
4440void
2050ev_timer_again (EV_P_ ev_timer *w) 4441ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
2051{ 4442{
4443 EV_FREQUENT_CHECK;
4444
4445 clear_pending (EV_A_ (W)w);
4446
2052 if (ev_is_active (w)) 4447 if (ev_is_active (w))
2053 { 4448 {
2054 if (w->repeat) 4449 if (w->repeat)
2055 { 4450 {
2056 ev_at (w) = mn_now + w->repeat; 4451 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]); 4452 ANHE_at_cache (timers [ev_active (w)]);
2058 adjustheap (timers, timercnt, ev_active (w)); 4453 adjustheap (timers, timercnt, ev_active (w));
2059 } 4454 }
2060 else 4455 else
2061 ev_timer_stop (EV_A_ w); 4456 ev_timer_stop (EV_A_ w);
2062 } 4457 }
2063 else if (w->repeat) 4458 else if (w->repeat)
2064 { 4459 {
2065 ev_at (w) = w->repeat; 4460 ev_at (w) = w->repeat;
2066 ev_timer_start (EV_A_ w); 4461 ev_timer_start (EV_A_ w);
2067 } 4462 }
4463
4464 EV_FREQUENT_CHECK;
4465}
4466
4467ev_tstamp
4468ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4469{
4470 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
2068} 4471}
2069 4472
2070#if EV_PERIODIC_ENABLE 4473#if EV_PERIODIC_ENABLE
2071void noinline 4474ecb_noinline
4475void
2072ev_periodic_start (EV_P_ ev_periodic *w) 4476ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
2073{ 4477{
2074 if (expect_false (ev_is_active (w))) 4478 if (ecb_expect_false (ev_is_active (w)))
2075 return; 4479 return;
4480
4481#if EV_USE_TIMERFD
4482 if (timerfd == -2)
4483 evtimerfd_init (EV_A);
4484#endif
2076 4485
2077 if (w->reschedule_cb) 4486 if (w->reschedule_cb)
2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 4487 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2079 else if (w->interval) 4488 else if (w->interval)
2080 { 4489 {
2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4490 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2082 /* this formula differs from the one in periodic_reify because we do not always round up */ 4491 periodic_recalc (EV_A_ w);
2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2084 } 4492 }
2085 else 4493 else
2086 ev_at (w) = w->offset; 4494 ev_at (w) = w->offset;
2087 4495
4496 EV_FREQUENT_CHECK;
4497
4498 ++periodiccnt;
2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 4499 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 4500 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
2090 ANHE_w (periodics [ev_active (w)]) = (WT)w; 4501 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4502 ANHE_at_cache (periodics [ev_active (w)]);
2091 upheap (periodics, ev_active (w)); 4503 upheap (periodics, ev_active (w));
2092 4504
4505 EV_FREQUENT_CHECK;
4506
2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 4507 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2094} 4508}
2095 4509
2096void noinline 4510ecb_noinline
4511void
2097ev_periodic_stop (EV_P_ ev_periodic *w) 4512ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
2098{ 4513{
2099 clear_pending (EV_A_ (W)w); 4514 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w))) 4515 if (ecb_expect_false (!ev_is_active (w)))
2101 return; 4516 return;
4517
4518 EV_FREQUENT_CHECK;
2102 4519
2103 { 4520 {
2104 int active = ev_active (w); 4521 int active = ev_active (w);
2105 4522
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 4523 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107 4524
4525 --periodiccnt;
4526
2108 if (expect_true (active < periodiccnt + HEAP0 - 1)) 4527 if (ecb_expect_true (active < periodiccnt + HEAP0))
2109 { 4528 {
2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 4529 periodics [active] = periodics [periodiccnt + HEAP0];
2111 adjustheap (periodics, periodiccnt, active); 4530 adjustheap (periodics, periodiccnt, active);
2112 } 4531 }
2113
2114 --periodiccnt;
2115 } 4532 }
2116 4533
2117 ev_stop (EV_A_ (W)w); 4534 ev_stop (EV_A_ (W)w);
2118}
2119 4535
2120void noinline 4536 EV_FREQUENT_CHECK;
4537}
4538
4539ecb_noinline
4540void
2121ev_periodic_again (EV_P_ ev_periodic *w) 4541ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
2122{ 4542{
2123 /* TODO: use adjustheap and recalculation */ 4543 /* TODO: use adjustheap and recalculation */
2124 ev_periodic_stop (EV_A_ w); 4544 ev_periodic_stop (EV_A_ w);
2125 ev_periodic_start (EV_A_ w); 4545 ev_periodic_start (EV_A_ w);
2126} 4546}
2128 4548
2129#ifndef SA_RESTART 4549#ifndef SA_RESTART
2130# define SA_RESTART 0 4550# define SA_RESTART 0
2131#endif 4551#endif
2132 4552
2133void noinline 4553#if EV_SIGNAL_ENABLE
4554
4555ecb_noinline
4556void
2134ev_signal_start (EV_P_ ev_signal *w) 4557ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
2135{ 4558{
4559 if (ecb_expect_false (ev_is_active (w)))
4560 return;
4561
4562 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4563
2136#if EV_MULTIPLICITY 4564#if EV_MULTIPLICITY
2137 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4565 assert (("libev: a signal must not be attached to two different loops",
2138#endif 4566 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2139 if (expect_false (ev_is_active (w)))
2140 return;
2141 4567
2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4568 signals [w->signum - 1].loop = EV_A;
4569 ECB_MEMORY_FENCE_RELEASE;
4570#endif
2143 4571
2144 evpipe_init (EV_A); 4572 EV_FREQUENT_CHECK;
2145 4573
4574#if EV_USE_SIGNALFD
4575 if (sigfd == -2)
2146 { 4576 {
2147#ifndef _WIN32 4577 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2148 sigset_t full, prev; 4578 if (sigfd < 0 && errno == EINVAL)
2149 sigfillset (&full); 4579 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2150 sigprocmask (SIG_SETMASK, &full, &prev);
2151#endif
2152 4580
2153 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4581 if (sigfd >= 0)
4582 {
4583 fd_intern (sigfd); /* doing it twice will not hurt */
2154 4584
2155#ifndef _WIN32 4585 sigemptyset (&sigfd_set);
2156 sigprocmask (SIG_SETMASK, &prev, 0); 4586
2157#endif 4587 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4588 ev_set_priority (&sigfd_w, EV_MAXPRI);
4589 ev_io_start (EV_A_ &sigfd_w);
4590 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4591 }
2158 } 4592 }
4593
4594 if (sigfd >= 0)
4595 {
4596 /* TODO: check .head */
4597 sigaddset (&sigfd_set, w->signum);
4598 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4599
4600 signalfd (sigfd, &sigfd_set, 0);
4601 }
4602#endif
2159 4603
2160 ev_start (EV_A_ (W)w, 1); 4604 ev_start (EV_A_ (W)w, 1);
2161 wlist_add (&signals [w->signum - 1].head, (WL)w); 4605 wlist_add (&signals [w->signum - 1].head, (WL)w);
2162 4606
2163 if (!((WL)w)->next) 4607 if (!((WL)w)->next)
4608# if EV_USE_SIGNALFD
4609 if (sigfd < 0) /*TODO*/
4610# endif
2164 { 4611 {
2165#if _WIN32 4612# ifdef _WIN32
4613 evpipe_init (EV_A);
4614
2166 signal (w->signum, ev_sighandler); 4615 signal (w->signum, ev_sighandler);
2167#else 4616# else
2168 struct sigaction sa; 4617 struct sigaction sa;
4618
4619 evpipe_init (EV_A);
4620
2169 sa.sa_handler = ev_sighandler; 4621 sa.sa_handler = ev_sighandler;
2170 sigfillset (&sa.sa_mask); 4622 sigfillset (&sa.sa_mask);
2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4623 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2172 sigaction (w->signum, &sa, 0); 4624 sigaction (w->signum, &sa, 0);
4625
4626 if (origflags & EVFLAG_NOSIGMASK)
4627 {
4628 sigemptyset (&sa.sa_mask);
4629 sigaddset (&sa.sa_mask, w->signum);
4630 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4631 }
2173#endif 4632#endif
2174 } 4633 }
2175}
2176 4634
2177void noinline 4635 EV_FREQUENT_CHECK;
4636}
4637
4638ecb_noinline
4639void
2178ev_signal_stop (EV_P_ ev_signal *w) 4640ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
2179{ 4641{
2180 clear_pending (EV_A_ (W)w); 4642 clear_pending (EV_A_ (W)w);
2181 if (expect_false (!ev_is_active (w))) 4643 if (ecb_expect_false (!ev_is_active (w)))
2182 return; 4644 return;
4645
4646 EV_FREQUENT_CHECK;
2183 4647
2184 wlist_del (&signals [w->signum - 1].head, (WL)w); 4648 wlist_del (&signals [w->signum - 1].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 4649 ev_stop (EV_A_ (W)w);
2186 4650
2187 if (!signals [w->signum - 1].head) 4651 if (!signals [w->signum - 1].head)
4652 {
4653#if EV_MULTIPLICITY
4654 signals [w->signum - 1].loop = 0; /* unattach from signal */
4655#endif
4656#if EV_USE_SIGNALFD
4657 if (sigfd >= 0)
4658 {
4659 sigset_t ss;
4660
4661 sigemptyset (&ss);
4662 sigaddset (&ss, w->signum);
4663 sigdelset (&sigfd_set, w->signum);
4664
4665 signalfd (sigfd, &sigfd_set, 0);
4666 sigprocmask (SIG_UNBLOCK, &ss, 0);
4667 }
4668 else
4669#endif
2188 signal (w->signum, SIG_DFL); 4670 signal (w->signum, SIG_DFL);
4671 }
4672
4673 EV_FREQUENT_CHECK;
2189} 4674}
4675
4676#endif
4677
4678#if EV_CHILD_ENABLE
2190 4679
2191void 4680void
2192ev_child_start (EV_P_ ev_child *w) 4681ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
2193{ 4682{
2194#if EV_MULTIPLICITY 4683#if EV_MULTIPLICITY
2195 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4684 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2196#endif 4685#endif
2197 if (expect_false (ev_is_active (w))) 4686 if (ecb_expect_false (ev_is_active (w)))
2198 return; 4687 return;
2199 4688
4689 EV_FREQUENT_CHECK;
4690
2200 ev_start (EV_A_ (W)w, 1); 4691 ev_start (EV_A_ (W)w, 1);
2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4692 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4693
4694 EV_FREQUENT_CHECK;
2202} 4695}
2203 4696
2204void 4697void
2205ev_child_stop (EV_P_ ev_child *w) 4698ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
2206{ 4699{
2207 clear_pending (EV_A_ (W)w); 4700 clear_pending (EV_A_ (W)w);
2208 if (expect_false (!ev_is_active (w))) 4701 if (ecb_expect_false (!ev_is_active (w)))
2209 return; 4702 return;
2210 4703
4704 EV_FREQUENT_CHECK;
4705
2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4706 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2212 ev_stop (EV_A_ (W)w); 4707 ev_stop (EV_A_ (W)w);
4708
4709 EV_FREQUENT_CHECK;
2213} 4710}
4711
4712#endif
2214 4713
2215#if EV_STAT_ENABLE 4714#if EV_STAT_ENABLE
2216 4715
2217# ifdef _WIN32 4716# ifdef _WIN32
2218# undef lstat 4717# undef lstat
2219# define lstat(a,b) _stati64 (a,b) 4718# define lstat(a,b) _stati64 (a,b)
2220# endif 4719# endif
2221 4720
2222#define DEF_STAT_INTERVAL 5.0074891 4721#define DEF_STAT_INTERVAL 5.0074891
4722#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2223#define MIN_STAT_INTERVAL 0.1074891 4723#define MIN_STAT_INTERVAL 0.1074891
2224 4724
2225static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4725ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2226 4726
2227#if EV_USE_INOTIFY 4727#if EV_USE_INOTIFY
2228# define EV_INOTIFY_BUFSIZE 8192
2229 4728
2230static void noinline 4729/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4730# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4731
4732ecb_noinline
4733static void
2231infy_add (EV_P_ ev_stat *w) 4734infy_add (EV_P_ ev_stat *w)
2232{ 4735{
2233 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4736 w->wd = inotify_add_watch (fs_fd, w->path,
4737 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4738 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4739 | IN_DONT_FOLLOW | IN_MASK_ADD);
2234 4740
2235 if (w->wd < 0) 4741 if (w->wd >= 0)
4742 {
4743 struct statfs sfs;
4744
4745 /* now local changes will be tracked by inotify, but remote changes won't */
4746 /* unless the filesystem is known to be local, we therefore still poll */
4747 /* also do poll on <2.6.25, but with normal frequency */
4748
4749 if (!fs_2625)
4750 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4751 else if (!statfs (w->path, &sfs)
4752 && (sfs.f_type == 0x1373 /* devfs */
4753 || sfs.f_type == 0x4006 /* fat */
4754 || sfs.f_type == 0x4d44 /* msdos */
4755 || sfs.f_type == 0xEF53 /* ext2/3 */
4756 || sfs.f_type == 0x72b6 /* jffs2 */
4757 || sfs.f_type == 0x858458f6 /* ramfs */
4758 || sfs.f_type == 0x5346544e /* ntfs */
4759 || sfs.f_type == 0x3153464a /* jfs */
4760 || sfs.f_type == 0x9123683e /* btrfs */
4761 || sfs.f_type == 0x52654973 /* reiser3 */
4762 || sfs.f_type == 0x01021994 /* tmpfs */
4763 || sfs.f_type == 0x58465342 /* xfs */))
4764 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4765 else
4766 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2236 { 4767 }
2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4768 else
4769 {
4770 /* can't use inotify, continue to stat */
4771 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2238 4772
2239 /* monitor some parent directory for speedup hints */ 4773 /* if path is not there, monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4774 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2241 /* but an efficiency issue only */ 4775 /* but an efficiency issue only */
2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4776 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2243 { 4777 {
2244 char path [4096]; 4778 char path [4096];
2245 strcpy (path, w->path); 4779 strcpy (path, w->path);
2249 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4783 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2250 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4784 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2251 4785
2252 char *pend = strrchr (path, '/'); 4786 char *pend = strrchr (path, '/');
2253 4787
2254 if (!pend) 4788 if (!pend || pend == path)
2255 break; /* whoops, no '/', complain to your admin */ 4789 break;
2256 4790
2257 *pend = 0; 4791 *pend = 0;
2258 w->wd = inotify_add_watch (fs_fd, path, mask); 4792 w->wd = inotify_add_watch (fs_fd, path, mask);
2259 } 4793 }
2260 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4794 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2261 } 4795 }
2262 } 4796 }
2263 else
2264 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2265 4797
2266 if (w->wd >= 0) 4798 if (w->wd >= 0)
2267 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4799 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2268}
2269 4800
2270static void noinline 4801 /* now re-arm timer, if required */
4802 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4803 ev_timer_again (EV_A_ &w->timer);
4804 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4805}
4806
4807ecb_noinline
4808static void
2271infy_del (EV_P_ ev_stat *w) 4809infy_del (EV_P_ ev_stat *w)
2272{ 4810{
2273 int slot; 4811 int slot;
2274 int wd = w->wd; 4812 int wd = w->wd;
2275 4813
2276 if (wd < 0) 4814 if (wd < 0)
2277 return; 4815 return;
2278 4816
2279 w->wd = -2; 4817 w->wd = -2;
2280 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4818 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2281 wlist_del (&fs_hash [slot].head, (WL)w); 4819 wlist_del (&fs_hash [slot].head, (WL)w);
2282 4820
2283 /* remove this watcher, if others are watching it, they will rearm */ 4821 /* remove this watcher, if others are watching it, they will rearm */
2284 inotify_rm_watch (fs_fd, wd); 4822 inotify_rm_watch (fs_fd, wd);
2285} 4823}
2286 4824
2287static void noinline 4825ecb_noinline
4826static void
2288infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4827infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2289{ 4828{
2290 if (slot < 0) 4829 if (slot < 0)
2291 /* overflow, need to check for all hahs slots */ 4830 /* overflow, need to check for all hash slots */
2292 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4831 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2293 infy_wd (EV_A_ slot, wd, ev); 4832 infy_wd (EV_A_ slot, wd, ev);
2294 else 4833 else
2295 { 4834 {
2296 WL w_; 4835 WL w_;
2297 4836
2298 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4837 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2299 { 4838 {
2300 ev_stat *w = (ev_stat *)w_; 4839 ev_stat *w = (ev_stat *)w_;
2301 w_ = w_->next; /* lets us remove this watcher and all before it */ 4840 w_ = w_->next; /* lets us remove this watcher and all before it */
2302 4841
2303 if (w->wd == wd || wd == -1) 4842 if (w->wd == wd || wd == -1)
2304 { 4843 {
2305 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4844 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2306 { 4845 {
4846 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2307 w->wd = -1; 4847 w->wd = -1;
2308 infy_add (EV_A_ w); /* re-add, no matter what */ 4848 infy_add (EV_A_ w); /* re-add, no matter what */
2309 } 4849 }
2310 4850
2311 stat_timer_cb (EV_A_ &w->timer, 0); 4851 stat_timer_cb (EV_A_ &w->timer, 0);
2316 4856
2317static void 4857static void
2318infy_cb (EV_P_ ev_io *w, int revents) 4858infy_cb (EV_P_ ev_io *w, int revents)
2319{ 4859{
2320 char buf [EV_INOTIFY_BUFSIZE]; 4860 char buf [EV_INOTIFY_BUFSIZE];
2321 struct inotify_event *ev = (struct inotify_event *)buf;
2322 int ofs; 4861 int ofs;
2323 int len = read (fs_fd, buf, sizeof (buf)); 4862 int len = read (fs_fd, buf, sizeof (buf));
2324 4863
2325 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4864 for (ofs = 0; ofs < len; )
4865 {
4866 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2326 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4867 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4868 ofs += sizeof (struct inotify_event) + ev->len;
4869 }
2327} 4870}
2328 4871
2329void inline_size 4872inline_size ecb_cold
4873void
4874ev_check_2625 (EV_P)
4875{
4876 /* kernels < 2.6.25 are borked
4877 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4878 */
4879 if (ev_linux_version () < 0x020619)
4880 return;
4881
4882 fs_2625 = 1;
4883}
4884
4885inline_size int
4886infy_newfd (void)
4887{
4888#if defined IN_CLOEXEC && defined IN_NONBLOCK
4889 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4890 if (fd >= 0)
4891 return fd;
4892#endif
4893 return inotify_init ();
4894}
4895
4896inline_size void
2330infy_init (EV_P) 4897infy_init (EV_P)
2331{ 4898{
2332 if (fs_fd != -2) 4899 if (fs_fd != -2)
2333 return; 4900 return;
2334 4901
4902 fs_fd = -1;
4903
4904 ev_check_2625 (EV_A);
4905
2335 fs_fd = inotify_init (); 4906 fs_fd = infy_newfd ();
2336 4907
2337 if (fs_fd >= 0) 4908 if (fs_fd >= 0)
2338 { 4909 {
4910 fd_intern (fs_fd);
2339 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4911 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2340 ev_set_priority (&fs_w, EV_MAXPRI); 4912 ev_set_priority (&fs_w, EV_MAXPRI);
2341 ev_io_start (EV_A_ &fs_w); 4913 ev_io_start (EV_A_ &fs_w);
4914 ev_unref (EV_A);
2342 } 4915 }
2343} 4916}
2344 4917
2345void inline_size 4918inline_size void
2346infy_fork (EV_P) 4919infy_fork (EV_P)
2347{ 4920{
2348 int slot; 4921 int slot;
2349 4922
2350 if (fs_fd < 0) 4923 if (fs_fd < 0)
2351 return; 4924 return;
2352 4925
4926 ev_ref (EV_A);
4927 ev_io_stop (EV_A_ &fs_w);
2353 close (fs_fd); 4928 close (fs_fd);
2354 fs_fd = inotify_init (); 4929 fs_fd = infy_newfd ();
2355 4930
4931 if (fs_fd >= 0)
4932 {
4933 fd_intern (fs_fd);
4934 ev_io_set (&fs_w, fs_fd, EV_READ);
4935 ev_io_start (EV_A_ &fs_w);
4936 ev_unref (EV_A);
4937 }
4938
2356 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4939 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2357 { 4940 {
2358 WL w_ = fs_hash [slot].head; 4941 WL w_ = fs_hash [slot].head;
2359 fs_hash [slot].head = 0; 4942 fs_hash [slot].head = 0;
2360 4943
2361 while (w_) 4944 while (w_)
2366 w->wd = -1; 4949 w->wd = -1;
2367 4950
2368 if (fs_fd >= 0) 4951 if (fs_fd >= 0)
2369 infy_add (EV_A_ w); /* re-add, no matter what */ 4952 infy_add (EV_A_ w); /* re-add, no matter what */
2370 else 4953 else
4954 {
4955 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4956 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2371 ev_timer_start (EV_A_ &w->timer); 4957 ev_timer_again (EV_A_ &w->timer);
4958 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4959 }
2372 } 4960 }
2373
2374 } 4961 }
2375} 4962}
2376 4963
4964#endif
4965
4966#ifdef _WIN32
4967# define EV_LSTAT(p,b) _stati64 (p, b)
4968#else
4969# define EV_LSTAT(p,b) lstat (p, b)
2377#endif 4970#endif
2378 4971
2379void 4972void
2380ev_stat_stat (EV_P_ ev_stat *w) 4973ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2381{ 4974{
2382 if (lstat (w->path, &w->attr) < 0) 4975 if (lstat (w->path, &w->attr) < 0)
2383 w->attr.st_nlink = 0; 4976 w->attr.st_nlink = 0;
2384 else if (!w->attr.st_nlink) 4977 else if (!w->attr.st_nlink)
2385 w->attr.st_nlink = 1; 4978 w->attr.st_nlink = 1;
2386} 4979}
2387 4980
2388static void noinline 4981ecb_noinline
4982static void
2389stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4983stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2390{ 4984{
2391 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4985 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2392 4986
2393 /* we copy this here each the time so that */ 4987 ev_statdata prev = w->attr;
2394 /* prev has the old value when the callback gets invoked */
2395 w->prev = w->attr;
2396 ev_stat_stat (EV_A_ w); 4988 ev_stat_stat (EV_A_ w);
2397 4989
2398 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4990 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2399 if ( 4991 if (
2400 w->prev.st_dev != w->attr.st_dev 4992 prev.st_dev != w->attr.st_dev
2401 || w->prev.st_ino != w->attr.st_ino 4993 || prev.st_ino != w->attr.st_ino
2402 || w->prev.st_mode != w->attr.st_mode 4994 || prev.st_mode != w->attr.st_mode
2403 || w->prev.st_nlink != w->attr.st_nlink 4995 || prev.st_nlink != w->attr.st_nlink
2404 || w->prev.st_uid != w->attr.st_uid 4996 || prev.st_uid != w->attr.st_uid
2405 || w->prev.st_gid != w->attr.st_gid 4997 || prev.st_gid != w->attr.st_gid
2406 || w->prev.st_rdev != w->attr.st_rdev 4998 || prev.st_rdev != w->attr.st_rdev
2407 || w->prev.st_size != w->attr.st_size 4999 || prev.st_size != w->attr.st_size
2408 || w->prev.st_atime != w->attr.st_atime 5000 || prev.st_atime != w->attr.st_atime
2409 || w->prev.st_mtime != w->attr.st_mtime 5001 || prev.st_mtime != w->attr.st_mtime
2410 || w->prev.st_ctime != w->attr.st_ctime 5002 || prev.st_ctime != w->attr.st_ctime
2411 ) { 5003 ) {
5004 /* we only update w->prev on actual differences */
5005 /* in case we test more often than invoke the callback, */
5006 /* to ensure that prev is always different to attr */
5007 w->prev = prev;
5008
2412 #if EV_USE_INOTIFY 5009 #if EV_USE_INOTIFY
5010 if (fs_fd >= 0)
5011 {
2413 infy_del (EV_A_ w); 5012 infy_del (EV_A_ w);
2414 infy_add (EV_A_ w); 5013 infy_add (EV_A_ w);
2415 ev_stat_stat (EV_A_ w); /* avoid race... */ 5014 ev_stat_stat (EV_A_ w); /* avoid race... */
5015 }
2416 #endif 5016 #endif
2417 5017
2418 ev_feed_event (EV_A_ w, EV_STAT); 5018 ev_feed_event (EV_A_ w, EV_STAT);
2419 } 5019 }
2420} 5020}
2421 5021
2422void 5022void
2423ev_stat_start (EV_P_ ev_stat *w) 5023ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2424{ 5024{
2425 if (expect_false (ev_is_active (w))) 5025 if (ecb_expect_false (ev_is_active (w)))
2426 return; 5026 return;
2427 5027
2428 /* since we use memcmp, we need to clear any padding data etc. */
2429 memset (&w->prev, 0, sizeof (ev_statdata));
2430 memset (&w->attr, 0, sizeof (ev_statdata));
2431
2432 ev_stat_stat (EV_A_ w); 5028 ev_stat_stat (EV_A_ w);
2433 5029
5030 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2434 if (w->interval < MIN_STAT_INTERVAL) 5031 w->interval = MIN_STAT_INTERVAL;
2435 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2436 5032
2437 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 5033 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2438 ev_set_priority (&w->timer, ev_priority (w)); 5034 ev_set_priority (&w->timer, ev_priority (w));
2439 5035
2440#if EV_USE_INOTIFY 5036#if EV_USE_INOTIFY
2441 infy_init (EV_A); 5037 infy_init (EV_A);
2442 5038
2443 if (fs_fd >= 0) 5039 if (fs_fd >= 0)
2444 infy_add (EV_A_ w); 5040 infy_add (EV_A_ w);
2445 else 5041 else
2446#endif 5042#endif
5043 {
2447 ev_timer_start (EV_A_ &w->timer); 5044 ev_timer_again (EV_A_ &w->timer);
5045 ev_unref (EV_A);
5046 }
2448 5047
2449 ev_start (EV_A_ (W)w, 1); 5048 ev_start (EV_A_ (W)w, 1);
5049
5050 EV_FREQUENT_CHECK;
2450} 5051}
2451 5052
2452void 5053void
2453ev_stat_stop (EV_P_ ev_stat *w) 5054ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2454{ 5055{
2455 clear_pending (EV_A_ (W)w); 5056 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 5057 if (ecb_expect_false (!ev_is_active (w)))
2457 return; 5058 return;
5059
5060 EV_FREQUENT_CHECK;
2458 5061
2459#if EV_USE_INOTIFY 5062#if EV_USE_INOTIFY
2460 infy_del (EV_A_ w); 5063 infy_del (EV_A_ w);
2461#endif 5064#endif
5065
5066 if (ev_is_active (&w->timer))
5067 {
5068 ev_ref (EV_A);
2462 ev_timer_stop (EV_A_ &w->timer); 5069 ev_timer_stop (EV_A_ &w->timer);
5070 }
2463 5071
2464 ev_stop (EV_A_ (W)w); 5072 ev_stop (EV_A_ (W)w);
5073
5074 EV_FREQUENT_CHECK;
2465} 5075}
2466#endif 5076#endif
2467 5077
2468#if EV_IDLE_ENABLE 5078#if EV_IDLE_ENABLE
2469void 5079void
2470ev_idle_start (EV_P_ ev_idle *w) 5080ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2471{ 5081{
2472 if (expect_false (ev_is_active (w))) 5082 if (ecb_expect_false (ev_is_active (w)))
2473 return; 5083 return;
2474 5084
2475 pri_adjust (EV_A_ (W)w); 5085 pri_adjust (EV_A_ (W)w);
5086
5087 EV_FREQUENT_CHECK;
2476 5088
2477 { 5089 {
2478 int active = ++idlecnt [ABSPRI (w)]; 5090 int active = ++idlecnt [ABSPRI (w)];
2479 5091
2480 ++idleall; 5092 ++idleall;
2481 ev_start (EV_A_ (W)w, active); 5093 ev_start (EV_A_ (W)w, active);
2482 5094
2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 5095 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
2484 idles [ABSPRI (w)][active - 1] = w; 5096 idles [ABSPRI (w)][active - 1] = w;
2485 } 5097 }
5098
5099 EV_FREQUENT_CHECK;
2486} 5100}
2487 5101
2488void 5102void
2489ev_idle_stop (EV_P_ ev_idle *w) 5103ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2490{ 5104{
2491 clear_pending (EV_A_ (W)w); 5105 clear_pending (EV_A_ (W)w);
2492 if (expect_false (!ev_is_active (w))) 5106 if (ecb_expect_false (!ev_is_active (w)))
2493 return; 5107 return;
5108
5109 EV_FREQUENT_CHECK;
2494 5110
2495 { 5111 {
2496 int active = ev_active (w); 5112 int active = ev_active (w);
2497 5113
2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 5114 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active; 5115 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500 5116
2501 ev_stop (EV_A_ (W)w); 5117 ev_stop (EV_A_ (W)w);
2502 --idleall; 5118 --idleall;
2503 } 5119 }
2504}
2505#endif
2506 5120
5121 EV_FREQUENT_CHECK;
5122}
5123#endif
5124
5125#if EV_PREPARE_ENABLE
2507void 5126void
2508ev_prepare_start (EV_P_ ev_prepare *w) 5127ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2509{ 5128{
2510 if (expect_false (ev_is_active (w))) 5129 if (ecb_expect_false (ev_is_active (w)))
2511 return; 5130 return;
2512 5131
5132 EV_FREQUENT_CHECK;
5133
2513 ev_start (EV_A_ (W)w, ++preparecnt); 5134 ev_start (EV_A_ (W)w, ++preparecnt);
2514 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 5135 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
2515 prepares [preparecnt - 1] = w; 5136 prepares [preparecnt - 1] = w;
5137
5138 EV_FREQUENT_CHECK;
2516} 5139}
2517 5140
2518void 5141void
2519ev_prepare_stop (EV_P_ ev_prepare *w) 5142ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2520{ 5143{
2521 clear_pending (EV_A_ (W)w); 5144 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 5145 if (ecb_expect_false (!ev_is_active (w)))
2523 return; 5146 return;
5147
5148 EV_FREQUENT_CHECK;
2524 5149
2525 { 5150 {
2526 int active = ev_active (w); 5151 int active = ev_active (w);
2527 5152
2528 prepares [active - 1] = prepares [--preparecnt]; 5153 prepares [active - 1] = prepares [--preparecnt];
2529 ev_active (prepares [active - 1]) = active; 5154 ev_active (prepares [active - 1]) = active;
2530 } 5155 }
2531 5156
2532 ev_stop (EV_A_ (W)w); 5157 ev_stop (EV_A_ (W)w);
2533}
2534 5158
5159 EV_FREQUENT_CHECK;
5160}
5161#endif
5162
5163#if EV_CHECK_ENABLE
2535void 5164void
2536ev_check_start (EV_P_ ev_check *w) 5165ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2537{ 5166{
2538 if (expect_false (ev_is_active (w))) 5167 if (ecb_expect_false (ev_is_active (w)))
2539 return; 5168 return;
2540 5169
5170 EV_FREQUENT_CHECK;
5171
2541 ev_start (EV_A_ (W)w, ++checkcnt); 5172 ev_start (EV_A_ (W)w, ++checkcnt);
2542 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 5173 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2543 checks [checkcnt - 1] = w; 5174 checks [checkcnt - 1] = w;
5175
5176 EV_FREQUENT_CHECK;
2544} 5177}
2545 5178
2546void 5179void
2547ev_check_stop (EV_P_ ev_check *w) 5180ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2548{ 5181{
2549 clear_pending (EV_A_ (W)w); 5182 clear_pending (EV_A_ (W)w);
2550 if (expect_false (!ev_is_active (w))) 5183 if (ecb_expect_false (!ev_is_active (w)))
2551 return; 5184 return;
5185
5186 EV_FREQUENT_CHECK;
2552 5187
2553 { 5188 {
2554 int active = ev_active (w); 5189 int active = ev_active (w);
2555 5190
2556 checks [active - 1] = checks [--checkcnt]; 5191 checks [active - 1] = checks [--checkcnt];
2557 ev_active (checks [active - 1]) = active; 5192 ev_active (checks [active - 1]) = active;
2558 } 5193 }
2559 5194
2560 ev_stop (EV_A_ (W)w); 5195 ev_stop (EV_A_ (W)w);
5196
5197 EV_FREQUENT_CHECK;
2561} 5198}
5199#endif
2562 5200
2563#if EV_EMBED_ENABLE 5201#if EV_EMBED_ENABLE
2564void noinline 5202ecb_noinline
5203void
2565ev_embed_sweep (EV_P_ ev_embed *w) 5204ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2566{ 5205{
2567 ev_loop (w->other, EVLOOP_NONBLOCK); 5206 ev_run (w->other, EVRUN_NOWAIT);
2568} 5207}
2569 5208
2570static void 5209static void
2571embed_io_cb (EV_P_ ev_io *io, int revents) 5210embed_io_cb (EV_P_ ev_io *io, int revents)
2572{ 5211{
2573 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 5212 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2574 5213
2575 if (ev_cb (w)) 5214 if (ev_cb (w))
2576 ev_feed_event (EV_A_ (W)w, EV_EMBED); 5215 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2577 else 5216 else
2578 ev_loop (w->other, EVLOOP_NONBLOCK); 5217 ev_run (w->other, EVRUN_NOWAIT);
2579} 5218}
2580 5219
2581static void 5220static void
2582embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 5221embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2583{ 5222{
2584 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 5223 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2585 5224
2586 { 5225 {
2587 struct ev_loop *loop = w->other; 5226 EV_P = w->other;
2588 5227
2589 while (fdchangecnt) 5228 while (fdchangecnt)
2590 { 5229 {
2591 fd_reify (EV_A); 5230 fd_reify (EV_A);
2592 ev_loop (EV_A_ EVLOOP_NONBLOCK); 5231 ev_run (EV_A_ EVRUN_NOWAIT);
2593 } 5232 }
2594 } 5233 }
2595} 5234}
5235
5236#if EV_FORK_ENABLE
5237static void
5238embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
5239{
5240 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
5241
5242 ev_embed_stop (EV_A_ w);
5243
5244 {
5245 EV_P = w->other;
5246
5247 ev_loop_fork (EV_A);
5248 ev_run (EV_A_ EVRUN_NOWAIT);
5249 }
5250
5251 ev_embed_start (EV_A_ w);
5252}
5253#endif
2596 5254
2597#if 0 5255#if 0
2598static void 5256static void
2599embed_idle_cb (EV_P_ ev_idle *idle, int revents) 5257embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2600{ 5258{
2601 ev_idle_stop (EV_A_ idle); 5259 ev_idle_stop (EV_A_ idle);
2602} 5260}
2603#endif 5261#endif
2604 5262
2605void 5263void
2606ev_embed_start (EV_P_ ev_embed *w) 5264ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2607{ 5265{
2608 if (expect_false (ev_is_active (w))) 5266 if (ecb_expect_false (ev_is_active (w)))
2609 return; 5267 return;
2610 5268
2611 { 5269 {
2612 struct ev_loop *loop = w->other; 5270 EV_P = w->other;
2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 5271 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 5272 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2615 } 5273 }
5274
5275 EV_FREQUENT_CHECK;
2616 5276
2617 ev_set_priority (&w->io, ev_priority (w)); 5277 ev_set_priority (&w->io, ev_priority (w));
2618 ev_io_start (EV_A_ &w->io); 5278 ev_io_start (EV_A_ &w->io);
2619 5279
2620 ev_prepare_init (&w->prepare, embed_prepare_cb); 5280 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI); 5281 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare); 5282 ev_prepare_start (EV_A_ &w->prepare);
2623 5283
5284#if EV_FORK_ENABLE
5285 ev_fork_init (&w->fork, embed_fork_cb);
5286 ev_fork_start (EV_A_ &w->fork);
5287#endif
5288
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 5289 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625 5290
2626 ev_start (EV_A_ (W)w, 1); 5291 ev_start (EV_A_ (W)w, 1);
5292
5293 EV_FREQUENT_CHECK;
2627} 5294}
2628 5295
2629void 5296void
2630ev_embed_stop (EV_P_ ev_embed *w) 5297ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2631{ 5298{
2632 clear_pending (EV_A_ (W)w); 5299 clear_pending (EV_A_ (W)w);
2633 if (expect_false (!ev_is_active (w))) 5300 if (ecb_expect_false (!ev_is_active (w)))
2634 return; 5301 return;
2635 5302
5303 EV_FREQUENT_CHECK;
5304
2636 ev_io_stop (EV_A_ &w->io); 5305 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare); 5306 ev_prepare_stop (EV_A_ &w->prepare);
5307#if EV_FORK_ENABLE
5308 ev_fork_stop (EV_A_ &w->fork);
5309#endif
2638 5310
2639 ev_stop (EV_A_ (W)w); 5311 ev_stop (EV_A_ (W)w);
5312
5313 EV_FREQUENT_CHECK;
2640} 5314}
2641#endif 5315#endif
2642 5316
2643#if EV_FORK_ENABLE 5317#if EV_FORK_ENABLE
2644void 5318void
2645ev_fork_start (EV_P_ ev_fork *w) 5319ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2646{ 5320{
2647 if (expect_false (ev_is_active (w))) 5321 if (ecb_expect_false (ev_is_active (w)))
2648 return; 5322 return;
2649 5323
5324 EV_FREQUENT_CHECK;
5325
2650 ev_start (EV_A_ (W)w, ++forkcnt); 5326 ev_start (EV_A_ (W)w, ++forkcnt);
2651 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 5327 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
2652 forks [forkcnt - 1] = w; 5328 forks [forkcnt - 1] = w;
5329
5330 EV_FREQUENT_CHECK;
2653} 5331}
2654 5332
2655void 5333void
2656ev_fork_stop (EV_P_ ev_fork *w) 5334ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2657{ 5335{
2658 clear_pending (EV_A_ (W)w); 5336 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w))) 5337 if (ecb_expect_false (!ev_is_active (w)))
2660 return; 5338 return;
5339
5340 EV_FREQUENT_CHECK;
2661 5341
2662 { 5342 {
2663 int active = ev_active (w); 5343 int active = ev_active (w);
2664 5344
2665 forks [active - 1] = forks [--forkcnt]; 5345 forks [active - 1] = forks [--forkcnt];
2666 ev_active (forks [active - 1]) = active; 5346 ev_active (forks [active - 1]) = active;
2667 } 5347 }
2668 5348
2669 ev_stop (EV_A_ (W)w); 5349 ev_stop (EV_A_ (W)w);
5350
5351 EV_FREQUENT_CHECK;
5352}
5353#endif
5354
5355#if EV_CLEANUP_ENABLE
5356void
5357ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5358{
5359 if (ecb_expect_false (ev_is_active (w)))
5360 return;
5361
5362 EV_FREQUENT_CHECK;
5363
5364 ev_start (EV_A_ (W)w, ++cleanupcnt);
5365 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5366 cleanups [cleanupcnt - 1] = w;
5367
5368 /* cleanup watchers should never keep a refcount on the loop */
5369 ev_unref (EV_A);
5370 EV_FREQUENT_CHECK;
5371}
5372
5373void
5374ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5375{
5376 clear_pending (EV_A_ (W)w);
5377 if (ecb_expect_false (!ev_is_active (w)))
5378 return;
5379
5380 EV_FREQUENT_CHECK;
5381 ev_ref (EV_A);
5382
5383 {
5384 int active = ev_active (w);
5385
5386 cleanups [active - 1] = cleanups [--cleanupcnt];
5387 ev_active (cleanups [active - 1]) = active;
5388 }
5389
5390 ev_stop (EV_A_ (W)w);
5391
5392 EV_FREQUENT_CHECK;
2670} 5393}
2671#endif 5394#endif
2672 5395
2673#if EV_ASYNC_ENABLE 5396#if EV_ASYNC_ENABLE
2674void 5397void
2675ev_async_start (EV_P_ ev_async *w) 5398ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
2676{ 5399{
2677 if (expect_false (ev_is_active (w))) 5400 if (ecb_expect_false (ev_is_active (w)))
2678 return; 5401 return;
2679 5402
5403 w->sent = 0;
5404
2680 evpipe_init (EV_A); 5405 evpipe_init (EV_A);
2681 5406
5407 EV_FREQUENT_CHECK;
5408
2682 ev_start (EV_A_ (W)w, ++asynccnt); 5409 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 5410 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
2684 asyncs [asynccnt - 1] = w; 5411 asyncs [asynccnt - 1] = w;
5412
5413 EV_FREQUENT_CHECK;
2685} 5414}
2686 5415
2687void 5416void
2688ev_async_stop (EV_P_ ev_async *w) 5417ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
2689{ 5418{
2690 clear_pending (EV_A_ (W)w); 5419 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w))) 5420 if (ecb_expect_false (!ev_is_active (w)))
2692 return; 5421 return;
5422
5423 EV_FREQUENT_CHECK;
2693 5424
2694 { 5425 {
2695 int active = ev_active (w); 5426 int active = ev_active (w);
2696 5427
2697 asyncs [active - 1] = asyncs [--asynccnt]; 5428 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active; 5429 ev_active (asyncs [active - 1]) = active;
2699 } 5430 }
2700 5431
2701 ev_stop (EV_A_ (W)w); 5432 ev_stop (EV_A_ (W)w);
5433
5434 EV_FREQUENT_CHECK;
2702} 5435}
2703 5436
2704void 5437void
2705ev_async_send (EV_P_ ev_async *w) 5438ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
2706{ 5439{
2707 w->sent = 1; 5440 w->sent = 1;
2708 evpipe_write (EV_A_ &gotasync); 5441 evpipe_write (EV_A_ &async_pending);
2709} 5442}
2710#endif 5443#endif
2711 5444
2712/*****************************************************************************/ 5445/*****************************************************************************/
2713 5446
2723once_cb (EV_P_ struct ev_once *once, int revents) 5456once_cb (EV_P_ struct ev_once *once, int revents)
2724{ 5457{
2725 void (*cb)(int revents, void *arg) = once->cb; 5458 void (*cb)(int revents, void *arg) = once->cb;
2726 void *arg = once->arg; 5459 void *arg = once->arg;
2727 5460
2728 ev_io_stop (EV_A_ &once->io); 5461 ev_io_stop (EV_A_ &once->io);
2729 ev_timer_stop (EV_A_ &once->to); 5462 ev_timer_stop (EV_A_ &once->to);
2730 ev_free (once); 5463 ev_free (once);
2731 5464
2732 cb (revents, arg); 5465 cb (revents, arg);
2733} 5466}
2734 5467
2735static void 5468static void
2736once_cb_io (EV_P_ ev_io *w, int revents) 5469once_cb_io (EV_P_ ev_io *w, int revents)
2737{ 5470{
2738 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5471 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5472
5473 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2739} 5474}
2740 5475
2741static void 5476static void
2742once_cb_to (EV_P_ ev_timer *w, int revents) 5477once_cb_to (EV_P_ ev_timer *w, int revents)
2743{ 5478{
2744 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5479 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5480
5481 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2745} 5482}
2746 5483
2747void 5484void
2748ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5485ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
2749{ 5486{
2750 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5487 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2751
2752 if (expect_false (!once))
2753 {
2754 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2755 return;
2756 }
2757 5488
2758 once->cb = cb; 5489 once->cb = cb;
2759 once->arg = arg; 5490 once->arg = arg;
2760 5491
2761 ev_init (&once->io, once_cb_io); 5492 ev_init (&once->io, once_cb_io);
2771 ev_timer_set (&once->to, timeout, 0.); 5502 ev_timer_set (&once->to, timeout, 0.);
2772 ev_timer_start (EV_A_ &once->to); 5503 ev_timer_start (EV_A_ &once->to);
2773 } 5504 }
2774} 5505}
2775 5506
5507/*****************************************************************************/
5508
5509#if EV_WALK_ENABLE
5510ecb_cold
5511void
5512ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5513{
5514 int i, j;
5515 ev_watcher_list *wl, *wn;
5516
5517 if (types & (EV_IO | EV_EMBED))
5518 for (i = 0; i < anfdmax; ++i)
5519 for (wl = anfds [i].head; wl; )
5520 {
5521 wn = wl->next;
5522
5523#if EV_EMBED_ENABLE
5524 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5525 {
5526 if (types & EV_EMBED)
5527 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5528 }
5529 else
5530#endif
5531#if EV_USE_INOTIFY
5532 if (ev_cb ((ev_io *)wl) == infy_cb)
5533 ;
5534 else
5535#endif
5536 if ((ev_io *)wl != &pipe_w)
5537 if (types & EV_IO)
5538 cb (EV_A_ EV_IO, wl);
5539
5540 wl = wn;
5541 }
5542
5543 if (types & (EV_TIMER | EV_STAT))
5544 for (i = timercnt + HEAP0; i-- > HEAP0; )
5545#if EV_STAT_ENABLE
5546 /*TODO: timer is not always active*/
5547 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5548 {
5549 if (types & EV_STAT)
5550 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5551 }
5552 else
5553#endif
5554 if (types & EV_TIMER)
5555 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5556
5557#if EV_PERIODIC_ENABLE
5558 if (types & EV_PERIODIC)
5559 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5560 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5561#endif
5562
5563#if EV_IDLE_ENABLE
5564 if (types & EV_IDLE)
5565 for (j = NUMPRI; j--; )
5566 for (i = idlecnt [j]; i--; )
5567 cb (EV_A_ EV_IDLE, idles [j][i]);
5568#endif
5569
5570#if EV_FORK_ENABLE
5571 if (types & EV_FORK)
5572 for (i = forkcnt; i--; )
5573 if (ev_cb (forks [i]) != embed_fork_cb)
5574 cb (EV_A_ EV_FORK, forks [i]);
5575#endif
5576
5577#if EV_ASYNC_ENABLE
5578 if (types & EV_ASYNC)
5579 for (i = asynccnt; i--; )
5580 cb (EV_A_ EV_ASYNC, asyncs [i]);
5581#endif
5582
5583#if EV_PREPARE_ENABLE
5584 if (types & EV_PREPARE)
5585 for (i = preparecnt; i--; )
5586# if EV_EMBED_ENABLE
5587 if (ev_cb (prepares [i]) != embed_prepare_cb)
5588# endif
5589 cb (EV_A_ EV_PREPARE, prepares [i]);
5590#endif
5591
5592#if EV_CHECK_ENABLE
5593 if (types & EV_CHECK)
5594 for (i = checkcnt; i--; )
5595 cb (EV_A_ EV_CHECK, checks [i]);
5596#endif
5597
5598#if EV_SIGNAL_ENABLE
5599 if (types & EV_SIGNAL)
5600 for (i = 0; i < EV_NSIG - 1; ++i)
5601 for (wl = signals [i].head; wl; )
5602 {
5603 wn = wl->next;
5604 cb (EV_A_ EV_SIGNAL, wl);
5605 wl = wn;
5606 }
5607#endif
5608
5609#if EV_CHILD_ENABLE
5610 if (types & EV_CHILD)
5611 for (i = (EV_PID_HASHSIZE); i--; )
5612 for (wl = childs [i]; wl; )
5613 {
5614 wn = wl->next;
5615 cb (EV_A_ EV_CHILD, wl);
5616 wl = wn;
5617 }
5618#endif
5619/* EV_STAT 0x00001000 /* stat data changed */
5620/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5621}
5622#endif
5623
2776#if EV_MULTIPLICITY 5624#if EV_MULTIPLICITY
2777 #include "ev_wrap.h" 5625 #include "ev_wrap.h"
2778#endif 5626#endif
2779 5627
2780#ifdef __cplusplus
2781}
2782#endif
2783

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines