ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC vs.
Revision 1.243 by root, Fri May 9 15:52:13 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 249
197#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
200#endif 253#endif
202#ifndef CLOCK_REALTIME 255#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 256# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 257# define EV_USE_REALTIME 0
205#endif 258#endif
206 259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
207#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 276# include <winsock.h>
209#endif 277#endif
210 278
211#if !EV_STAT_ENABLE 279#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
213#endif 284# endif
214 285int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 286# ifdef __cplusplus
216# include <sys/inotify.h> 287}
288# endif
217#endif 289#endif
218 290
219/**/ 291/**/
220 292
221/* 293/*
222 * This is used to avoid floating point rounding problems. 294 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 295 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 296 * to ensure progress, time-wise, even when rounding
225 * errors are against us. 297 * errors are against us.
226 * This value is good at least till the year 4000 298 * This value is good at least till the year 4000.
227 * and intervals up to 20 years.
228 * Better solutions welcome. 299 * Better solutions welcome.
229 */ 300 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231 302
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 306
236#if __GNUC__ >= 3 307#if __GNUC__ >= 4
237# define expect(expr,value) __builtin_expect ((expr),(value)) 308# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 309# define noinline __attribute__ ((noinline))
239#else 310#else
240# define expect(expr,value) (expr) 311# define expect(expr,value) (expr)
241# define noinline 312# define noinline
242# if __STDC_VERSION__ < 199901L 313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
243# define inline 314# define inline
244# endif 315# endif
245#endif 316#endif
246 317
247#define expect_false(expr) expect ((expr) != 0, 0) 318#define expect_false(expr) expect ((expr) != 0, 0)
262 333
263typedef ev_watcher *W; 334typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
266 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
341#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
345#endif
268 346
269#ifdef _WIN32 347#ifdef _WIN32
270# include "ev_win32.c" 348# include "ev_win32.c"
271#endif 349#endif
272 350
293 perror (msg); 371 perror (msg);
294 abort (); 372 abort ();
295 } 373 }
296} 374}
297 375
376static void *
377ev_realloc_emul (void *ptr, long size)
378{
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389}
390
298static void *(*alloc)(void *ptr, long size); 391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
299 392
300void 393void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 394ev_set_allocator (void *(*cb)(void *ptr, long size))
302{ 395{
303 alloc = cb; 396 alloc = cb;
304} 397}
305 398
306inline_speed void * 399inline_speed void *
307ev_realloc (void *ptr, long size) 400ev_realloc (void *ptr, long size)
308{ 401{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 402 ptr = alloc (ptr, size);
310 403
311 if (!ptr && size) 404 if (!ptr && size)
312 { 405 {
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
314 abort (); 407 abort ();
337 W w; 430 W w;
338 int events; 431 int events;
339} ANPENDING; 432} ANPENDING;
340 433
341#if EV_USE_INOTIFY 434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
342typedef struct 436typedef struct
343{ 437{
344 WL head; 438 WL head;
345} ANFS; 439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
346#endif 458#endif
347 459
348#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
349 461
350 struct ev_loop 462 struct ev_loop
408{ 520{
409 return ev_rt_now; 521 return ev_rt_now;
410} 522}
411#endif 523#endif
412 524
525void
526ev_sleep (ev_tstamp delay)
527{
528 if (delay > 0.)
529 {
530#if EV_USE_NANOSLEEP
531 struct timespec ts;
532
533 ts.tv_sec = (time_t)delay;
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0);
537#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3));
539#else
540 struct timeval tv;
541
542 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544
545 select (0, 0, 0, 0, &tv);
546#endif
547 }
548}
549
550/*****************************************************************************/
551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
413int inline_size 554int inline_size
414array_nextsize (int elem, int cur, int cnt) 555array_nextsize (int elem, int cur, int cnt)
415{ 556{
416 int ncur = cur + 1; 557 int ncur = cur + 1;
417 558
418 do 559 do
419 ncur <<= 1; 560 ncur <<= 1;
420 while (cnt > ncur); 561 while (cnt > ncur);
421 562
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096) 564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 565 {
425 ncur *= elem; 566 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 568 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 569 ncur /= elem;
429 } 570 }
430 571
431 return ncur; 572 return ncur;
477 pendings [pri][w_->pending - 1].w = w_; 618 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 619 pendings [pri][w_->pending - 1].events = revents;
479 } 620 }
480} 621}
481 622
482void inline_size 623void inline_speed
483queue_events (EV_P_ W *events, int eventcnt, int type) 624queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 625{
485 int i; 626 int i;
486 627
487 for (i = 0; i < eventcnt; ++i) 628 for (i = 0; i < eventcnt; ++i)
534 { 675 {
535 int fd = fdchanges [i]; 676 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 677 ANFD *anfd = anfds + fd;
537 ev_io *w; 678 ev_io *w;
538 679
539 int events = 0; 680 unsigned char events = 0;
540 681
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
542 events |= w->events; 683 events |= (unsigned char)w->events;
543 684
544#if EV_SELECT_IS_WINSOCKET 685#if EV_SELECT_IS_WINSOCKET
545 if (events) 686 if (events)
546 { 687 {
547 unsigned long argp; 688 unsigned long argp;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
548 anfd->handle = _get_osfhandle (fd); 692 anfd->handle = _get_osfhandle (fd);
693 #endif
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
550 } 695 }
551#endif 696#endif
552 697
698 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
553 anfd->reify = 0; 702 anfd->reify = 0;
554
555 backend_modify (EV_A_ fd, anfd->events, events);
556 anfd->events = events; 703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events);
707 }
557 } 708 }
558 709
559 fdchangecnt = 0; 710 fdchangecnt = 0;
560} 711}
561 712
562void inline_size 713void inline_size
563fd_change (EV_P_ int fd) 714fd_change (EV_P_ int fd, int flags)
564{ 715{
565 if (expect_false (anfds [fd].reify)) 716 unsigned char reify = anfds [fd].reify;
566 return;
567
568 anfds [fd].reify = 1; 717 anfds [fd].reify |= flags;
569 718
719 if (expect_true (!reify))
720 {
570 ++fdchangecnt; 721 ++fdchangecnt;
571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
572 fdchanges [fdchangecnt - 1] = fd; 723 fdchanges [fdchangecnt - 1] = fd;
724 }
573} 725}
574 726
575void inline_speed 727void inline_speed
576fd_kill (EV_P_ int fd) 728fd_kill (EV_P_ int fd)
577{ 729{
628 780
629 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 782 if (anfds [fd].events)
631 { 783 {
632 anfds [fd].events = 0; 784 anfds [fd].events = 0;
633 fd_change (EV_A_ fd); 785 fd_change (EV_A_ fd, EV_IOFDSET | 1);
634 } 786 }
635} 787}
636 788
637/*****************************************************************************/ 789/*****************************************************************************/
638 790
791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807
808/* towards the root */
639void inline_speed 809void inline_speed
640upheap (WT *heap, int k) 810upheap (ANHE *heap, int k)
641{ 811{
642 WT w = heap [k]; 812 ANHE he = heap [k];
643 813
644 while (k && heap [k >> 1]->at > w->at) 814 for (;;)
645 { 815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
646 heap [k] = heap [k >> 1]; 821 heap [k] = heap [p];
647 ((W)heap [k])->active = k + 1; 822 ev_active (ANHE_w (heap [k])) = k;
648 k >>= 1; 823 k = p;
649 } 824 }
650 825
826 ev_active (ANHE_w (he)) = k;
651 heap [k] = w; 827 heap [k] = he;
652 ((W)heap [k])->active = k + 1;
653
654} 828}
655 829
830/* away from the root */
656void inline_speed 831void inline_speed
657downheap (WT *heap, int N, int k) 832downheap (ANHE *heap, int N, int k)
658{ 833{
659 WT w = heap [k]; 834 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0;
660 836
661 while (k < (N >> 1)) 837 for (;;)
662 { 838 {
663 int j = k << 1; 839 ev_tstamp minat;
840 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
664 842
665 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 843 // find minimum child
844 if (expect_true (pos + DHEAP - 1 < E))
666 ++j; 845 {
667 846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
668 if (w->at <= heap [j]->at) 847 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else if (pos < E)
852 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else
669 break; 859 break;
670 860
861 if (ANHE_at (he) <= minat)
862 break;
863
864 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866
867 k = minpos - heap;
868 }
869
870 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872}
873
874#else // 4HEAP
875
876#define HEAP0 1
877
878/* towards the root */
879void inline_speed
880upheap (ANHE *heap, int k)
881{
882 ANHE he = heap [k];
883
884 for (;;)
885 {
886 int p = k >> 1;
887
888 /* maybe we could use a dummy element at heap [0]? */
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break;
891
671 heap [k] = heap [j]; 892 heap [k] = heap [p];
672 ((W)heap [k])->active = k + 1; 893 ev_active (ANHE_w (heap [k])) = k;
673 k = j; 894 k = p;
674 } 895 }
675 896
676 heap [k] = w; 897 heap [k] = he;
677 ((W)heap [k])->active = k + 1; 898 ev_active (ANHE_w (heap [k])) = k;
678} 899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0;
916
917 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break;
919
920 heap [k] = heap [c];
921 ev_active (ANHE_w (heap [k])) = k;
922
923 k = c;
924 }
925
926 heap [k] = he;
927 ev_active (ANHE_w (he)) = k;
928}
929#endif
679 930
680void inline_size 931void inline_size
681adjustheap (WT *heap, int N, int k) 932adjustheap (ANHE *heap, int N, int k)
682{ 933{
683 upheap (heap, k); 934 upheap (heap, k);
684 downheap (heap, N, k); 935 downheap (heap, N, k);
685} 936}
686 937
687/*****************************************************************************/ 938/*****************************************************************************/
688 939
689typedef struct 940typedef struct
690{ 941{
691 WL head; 942 WL head;
692 sig_atomic_t volatile gotsig; 943 EV_ATOMIC_T gotsig;
693} ANSIG; 944} ANSIG;
694 945
695static ANSIG *signals; 946static ANSIG *signals;
696static int signalmax; 947static int signalmax;
697 948
698static int sigpipe [2]; 949static EV_ATOMIC_T gotsig;
699static sig_atomic_t volatile gotsig;
700static ev_io sigev;
701 950
702void inline_size 951void inline_size
703signals_init (ANSIG *base, int count) 952signals_init (ANSIG *base, int count)
704{ 953{
705 while (count--) 954 while (count--)
709 958
710 ++base; 959 ++base;
711 } 960 }
712} 961}
713 962
714static void 963/*****************************************************************************/
715sighandler (int signum)
716{
717#if _WIN32
718 signal (signum, sighandler);
719#endif
720
721 signals [signum - 1].gotsig = 1;
722
723 if (!gotsig)
724 {
725 int old_errno = errno;
726 gotsig = 1;
727 write (sigpipe [1], &signum, 1);
728 errno = old_errno;
729 }
730}
731
732void noinline
733ev_feed_signal_event (EV_P_ int signum)
734{
735 WL w;
736
737#if EV_MULTIPLICITY
738 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
739#endif
740
741 --signum;
742
743 if (signum < 0 || signum >= signalmax)
744 return;
745
746 signals [signum].gotsig = 0;
747
748 for (w = signals [signum].head; w; w = w->next)
749 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
750}
751
752static void
753sigcb (EV_P_ ev_io *iow, int revents)
754{
755 int signum;
756
757 read (sigpipe [0], &revents, 1);
758 gotsig = 0;
759
760 for (signum = signalmax; signum--; )
761 if (signals [signum].gotsig)
762 ev_feed_signal_event (EV_A_ signum + 1);
763}
764 964
765void inline_speed 965void inline_speed
766fd_intern (int fd) 966fd_intern (int fd)
767{ 967{
768#ifdef _WIN32 968#ifdef _WIN32
773 fcntl (fd, F_SETFL, O_NONBLOCK); 973 fcntl (fd, F_SETFL, O_NONBLOCK);
774#endif 974#endif
775} 975}
776 976
777static void noinline 977static void noinline
778siginit (EV_P) 978evpipe_init (EV_P)
779{ 979{
980 if (!ev_is_active (&pipeev))
981 {
982#if EV_USE_EVENTFD
983 if ((evfd = eventfd (0, 0)) >= 0)
984 {
985 evpipe [0] = -1;
986 fd_intern (evfd);
987 ev_io_set (&pipeev, evfd, EV_READ);
988 }
989 else
990#endif
991 {
992 while (pipe (evpipe))
993 syserr ("(libev) error creating signal/async pipe");
994
780 fd_intern (sigpipe [0]); 995 fd_intern (evpipe [0]);
781 fd_intern (sigpipe [1]); 996 fd_intern (evpipe [1]);
997 ev_io_set (&pipeev, evpipe [0], EV_READ);
998 }
782 999
783 ev_io_set (&sigev, sigpipe [0], EV_READ);
784 ev_io_start (EV_A_ &sigev); 1000 ev_io_start (EV_A_ &pipeev);
785 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1001 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 }
1003}
1004
1005void inline_size
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{
1008 if (!*flag)
1009 {
1010 int old_errno = errno; /* save errno because write might clobber it */
1011
1012 *flag = 1;
1013
1014#if EV_USE_EVENTFD
1015 if (evfd >= 0)
1016 {
1017 uint64_t counter = 1;
1018 write (evfd, &counter, sizeof (uint64_t));
1019 }
1020 else
1021#endif
1022 write (evpipe [1], &old_errno, 1);
1023
1024 errno = old_errno;
1025 }
1026}
1027
1028static void
1029pipecb (EV_P_ ev_io *iow, int revents)
1030{
1031#if EV_USE_EVENTFD
1032 if (evfd >= 0)
1033 {
1034 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t));
1036 }
1037 else
1038#endif
1039 {
1040 char dummy;
1041 read (evpipe [0], &dummy, 1);
1042 }
1043
1044 if (gotsig && ev_is_default_loop (EV_A))
1045 {
1046 int signum;
1047 gotsig = 0;
1048
1049 for (signum = signalmax; signum--; )
1050 if (signals [signum].gotsig)
1051 ev_feed_signal_event (EV_A_ signum + 1);
1052 }
1053
1054#if EV_ASYNC_ENABLE
1055 if (gotasync)
1056 {
1057 int i;
1058 gotasync = 0;
1059
1060 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent)
1062 {
1063 asyncs [i]->sent = 0;
1064 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1065 }
1066 }
1067#endif
786} 1068}
787 1069
788/*****************************************************************************/ 1070/*****************************************************************************/
789 1071
1072static void
1073ev_sighandler (int signum)
1074{
1075#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct;
1077#endif
1078
1079#if _WIN32
1080 signal (signum, ev_sighandler);
1081#endif
1082
1083 signals [signum - 1].gotsig = 1;
1084 evpipe_write (EV_A_ &gotsig);
1085}
1086
1087void noinline
1088ev_feed_signal_event (EV_P_ int signum)
1089{
1090 WL w;
1091
1092#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1094#endif
1095
1096 --signum;
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return;
1100
1101 signals [signum].gotsig = 0;
1102
1103 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105}
1106
1107/*****************************************************************************/
1108
790static ev_child *childs [EV_PID_HASHSIZE]; 1109static WL childs [EV_PID_HASHSIZE];
791 1110
792#ifndef _WIN32 1111#ifndef _WIN32
793 1112
794static ev_signal childev; 1113static ev_signal childev;
795 1114
1115#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0
1117#endif
1118
796void inline_speed 1119void inline_speed
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1120child_reap (EV_P_ int chain, int pid, int status)
798{ 1121{
799 ev_child *w; 1122 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
800 1124
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1126 {
802 if (w->pid == pid || !w->pid) 1127 if ((w->pid == pid || !w->pid)
1128 && (!traced || (w->flags & 1)))
803 { 1129 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
805 w->rpid = pid; 1131 w->rpid = pid;
806 w->rstatus = status; 1132 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1133 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 } 1134 }
1135 }
809} 1136}
810 1137
811#ifndef WCONTINUED 1138#ifndef WCONTINUED
812# define WCONTINUED 0 1139# define WCONTINUED 0
813#endif 1140#endif
822 if (!WCONTINUED 1149 if (!WCONTINUED
823 || errno != EINVAL 1150 || errno != EINVAL
824 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1151 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
825 return; 1152 return;
826 1153
827 /* make sure we are called again until all childs have been reaped */ 1154 /* make sure we are called again until all children have been reaped */
828 /* we need to do it this way so that the callback gets called before we continue */ 1155 /* we need to do it this way so that the callback gets called before we continue */
829 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
830 1157
831 child_reap (EV_A_ sw, pid, pid, status); 1158 child_reap (EV_A_ pid, pid, status);
832 if (EV_PID_HASHSIZE > 1) 1159 if (EV_PID_HASHSIZE > 1)
833 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
834} 1161}
835 1162
836#endif 1163#endif
837 1164
838/*****************************************************************************/ 1165/*****************************************************************************/
910} 1237}
911 1238
912unsigned int 1239unsigned int
913ev_embeddable_backends (void) 1240ev_embeddable_backends (void)
914{ 1241{
915 return EVBACKEND_EPOLL 1242 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
916 | EVBACKEND_KQUEUE 1243
917 | EVBACKEND_PORT; 1244 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1245 /* please fix it and tell me how to detect the fix */
1246 flags &= ~EVBACKEND_EPOLL;
1247
1248 return flags;
918} 1249}
919 1250
920unsigned int 1251unsigned int
921ev_backend (EV_P) 1252ev_backend (EV_P)
922{ 1253{
925 1256
926unsigned int 1257unsigned int
927ev_loop_count (EV_P) 1258ev_loop_count (EV_P)
928{ 1259{
929 return loop_count; 1260 return loop_count;
1261}
1262
1263void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1265{
1266 io_blocktime = interval;
1267}
1268
1269void
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1271{
1272 timeout_blocktime = interval;
930} 1273}
931 1274
932static void noinline 1275static void noinline
933loop_init (EV_P_ unsigned int flags) 1276loop_init (EV_P_ unsigned int flags)
934{ 1277{
940 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
941 have_monotonic = 1; 1284 have_monotonic = 1;
942 } 1285 }
943#endif 1286#endif
944 1287
945 ev_rt_now = ev_time (); 1288 ev_rt_now = ev_time ();
946 mn_now = get_clock (); 1289 mn_now = get_clock ();
947 now_floor = mn_now; 1290 now_floor = mn_now;
948 rtmn_diff = ev_rt_now - mn_now; 1291 rtmn_diff = ev_rt_now - mn_now;
1292
1293 io_blocktime = 0.;
1294 timeout_blocktime = 0.;
1295 backend = 0;
1296 backend_fd = -1;
1297 gotasync = 0;
1298#if EV_USE_INOTIFY
1299 fs_fd = -2;
1300#endif
949 1301
950 /* pid check not overridable via env */ 1302 /* pid check not overridable via env */
951#ifndef _WIN32 1303#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK) 1304 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid (); 1305 curpid = getpid ();
956 if (!(flags & EVFLAG_NOENV) 1308 if (!(flags & EVFLAG_NOENV)
957 && !enable_secure () 1309 && !enable_secure ()
958 && getenv ("LIBEV_FLAGS")) 1310 && getenv ("LIBEV_FLAGS"))
959 flags = atoi (getenv ("LIBEV_FLAGS")); 1311 flags = atoi (getenv ("LIBEV_FLAGS"));
960 1312
961 if (!(flags & 0x0000ffffUL)) 1313 if (!(flags & 0x0000ffffU))
962 flags |= ev_recommended_backends (); 1314 flags |= ev_recommended_backends ();
963
964 backend = 0;
965 backend_fd = -1;
966#if EV_USE_INOTIFY
967 fs_fd = -2;
968#endif
969 1315
970#if EV_USE_PORT 1316#if EV_USE_PORT
971 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
972#endif 1318#endif
973#if EV_USE_KQUEUE 1319#if EV_USE_KQUEUE
981#endif 1327#endif
982#if EV_USE_SELECT 1328#if EV_USE_SELECT
983 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
984#endif 1330#endif
985 1331
986 ev_init (&sigev, sigcb); 1332 ev_init (&pipeev, pipecb);
987 ev_set_priority (&sigev, EV_MAXPRI); 1333 ev_set_priority (&pipeev, EV_MAXPRI);
988 } 1334 }
989} 1335}
990 1336
991static void noinline 1337static void noinline
992loop_destroy (EV_P) 1338loop_destroy (EV_P)
993{ 1339{
994 int i; 1340 int i;
1341
1342 if (ev_is_active (&pipeev))
1343 {
1344 ev_ref (EV_A); /* signal watcher */
1345 ev_io_stop (EV_A_ &pipeev);
1346
1347#if EV_USE_EVENTFD
1348 if (evfd >= 0)
1349 close (evfd);
1350#endif
1351
1352 if (evpipe [0] >= 0)
1353 {
1354 close (evpipe [0]);
1355 close (evpipe [1]);
1356 }
1357 }
995 1358
996#if EV_USE_INOTIFY 1359#if EV_USE_INOTIFY
997 if (fs_fd >= 0) 1360 if (fs_fd >= 0)
998 close (fs_fd); 1361 close (fs_fd);
999#endif 1362#endif
1022 array_free (pending, [i]); 1385 array_free (pending, [i]);
1023#if EV_IDLE_ENABLE 1386#if EV_IDLE_ENABLE
1024 array_free (idle, [i]); 1387 array_free (idle, [i]);
1025#endif 1388#endif
1026 } 1389 }
1390
1391 ev_free (anfds); anfdmax = 0;
1027 1392
1028 /* have to use the microsoft-never-gets-it-right macro */ 1393 /* have to use the microsoft-never-gets-it-right macro */
1029 array_free (fdchange, EMPTY); 1394 array_free (fdchange, EMPTY);
1030 array_free (timer, EMPTY); 1395 array_free (timer, EMPTY);
1031#if EV_PERIODIC_ENABLE 1396#if EV_PERIODIC_ENABLE
1032 array_free (periodic, EMPTY); 1397 array_free (periodic, EMPTY);
1033#endif 1398#endif
1399#if EV_FORK_ENABLE
1400 array_free (fork, EMPTY);
1401#endif
1034 array_free (prepare, EMPTY); 1402 array_free (prepare, EMPTY);
1035 array_free (check, EMPTY); 1403 array_free (check, EMPTY);
1404#if EV_ASYNC_ENABLE
1405 array_free (async, EMPTY);
1406#endif
1036 1407
1037 backend = 0; 1408 backend = 0;
1038} 1409}
1039 1410
1411#if EV_USE_INOTIFY
1040void inline_size infy_fork (EV_P); 1412void inline_size infy_fork (EV_P);
1413#endif
1041 1414
1042void inline_size 1415void inline_size
1043loop_fork (EV_P) 1416loop_fork (EV_P)
1044{ 1417{
1045#if EV_USE_PORT 1418#if EV_USE_PORT
1053#endif 1426#endif
1054#if EV_USE_INOTIFY 1427#if EV_USE_INOTIFY
1055 infy_fork (EV_A); 1428 infy_fork (EV_A);
1056#endif 1429#endif
1057 1430
1058 if (ev_is_active (&sigev)) 1431 if (ev_is_active (&pipeev))
1059 { 1432 {
1060 /* default loop */ 1433 /* this "locks" the handlers against writing to the pipe */
1434 /* while we modify the fd vars */
1435 gotsig = 1;
1436#if EV_ASYNC_ENABLE
1437 gotasync = 1;
1438#endif
1061 1439
1062 ev_ref (EV_A); 1440 ev_ref (EV_A);
1063 ev_io_stop (EV_A_ &sigev); 1441 ev_io_stop (EV_A_ &pipeev);
1442
1443#if EV_USE_EVENTFD
1444 if (evfd >= 0)
1445 close (evfd);
1446#endif
1447
1448 if (evpipe [0] >= 0)
1449 {
1064 close (sigpipe [0]); 1450 close (evpipe [0]);
1065 close (sigpipe [1]); 1451 close (evpipe [1]);
1452 }
1066 1453
1067 while (pipe (sigpipe))
1068 syserr ("(libev) error creating pipe");
1069
1070 siginit (EV_A); 1454 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ);
1071 } 1457 }
1072 1458
1073 postfork = 0; 1459 postfork = 0;
1074} 1460}
1075 1461
1097} 1483}
1098 1484
1099void 1485void
1100ev_loop_fork (EV_P) 1486ev_loop_fork (EV_P)
1101{ 1487{
1102 postfork = 1; 1488 postfork = 1; /* must be in line with ev_default_fork */
1103} 1489}
1104
1105#endif 1490#endif
1106 1491
1107#if EV_MULTIPLICITY 1492#if EV_MULTIPLICITY
1108struct ev_loop * 1493struct ev_loop *
1109ev_default_loop_init (unsigned int flags) 1494ev_default_loop_init (unsigned int flags)
1110#else 1495#else
1111int 1496int
1112ev_default_loop (unsigned int flags) 1497ev_default_loop (unsigned int flags)
1113#endif 1498#endif
1114{ 1499{
1115 if (sigpipe [0] == sigpipe [1])
1116 if (pipe (sigpipe))
1117 return 0;
1118
1119 if (!ev_default_loop_ptr) 1500 if (!ev_default_loop_ptr)
1120 { 1501 {
1121#if EV_MULTIPLICITY 1502#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1123#else 1504#else
1126 1507
1127 loop_init (EV_A_ flags); 1508 loop_init (EV_A_ flags);
1128 1509
1129 if (ev_backend (EV_A)) 1510 if (ev_backend (EV_A))
1130 { 1511 {
1131 siginit (EV_A);
1132
1133#ifndef _WIN32 1512#ifndef _WIN32
1134 ev_signal_init (&childev, childcb, SIGCHLD); 1513 ev_signal_init (&childev, childcb, SIGCHLD);
1135 ev_set_priority (&childev, EV_MAXPRI); 1514 ev_set_priority (&childev, EV_MAXPRI);
1136 ev_signal_start (EV_A_ &childev); 1515 ev_signal_start (EV_A_ &childev);
1137 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1516 ev_unref (EV_A); /* child watcher should not keep loop alive */
1154#ifndef _WIN32 1533#ifndef _WIN32
1155 ev_ref (EV_A); /* child watcher */ 1534 ev_ref (EV_A); /* child watcher */
1156 ev_signal_stop (EV_A_ &childev); 1535 ev_signal_stop (EV_A_ &childev);
1157#endif 1536#endif
1158 1537
1159 ev_ref (EV_A); /* signal watcher */
1160 ev_io_stop (EV_A_ &sigev);
1161
1162 close (sigpipe [0]); sigpipe [0] = 0;
1163 close (sigpipe [1]); sigpipe [1] = 0;
1164
1165 loop_destroy (EV_A); 1538 loop_destroy (EV_A);
1166} 1539}
1167 1540
1168void 1541void
1169ev_default_fork (void) 1542ev_default_fork (void)
1171#if EV_MULTIPLICITY 1544#if EV_MULTIPLICITY
1172 struct ev_loop *loop = ev_default_loop_ptr; 1545 struct ev_loop *loop = ev_default_loop_ptr;
1173#endif 1546#endif
1174 1547
1175 if (backend) 1548 if (backend)
1176 postfork = 1; 1549 postfork = 1; /* must be in line with ev_loop_fork */
1177} 1550}
1178 1551
1179/*****************************************************************************/ 1552/*****************************************************************************/
1180 1553
1181void 1554void
1201 p->w->pending = 0; 1574 p->w->pending = 0;
1202 EV_CB_INVOKE (p->w, p->events); 1575 EV_CB_INVOKE (p->w, p->events);
1203 } 1576 }
1204 } 1577 }
1205} 1578}
1206
1207void inline_size
1208timers_reify (EV_P)
1209{
1210 while (timercnt && ((WT)timers [0])->at <= mn_now)
1211 {
1212 ev_timer *w = timers [0];
1213
1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1215
1216 /* first reschedule or stop timer */
1217 if (w->repeat)
1218 {
1219 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1220
1221 ((WT)w)->at += w->repeat;
1222 if (((WT)w)->at < mn_now)
1223 ((WT)w)->at = mn_now;
1224
1225 downheap ((WT *)timers, timercnt, 0);
1226 }
1227 else
1228 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1229
1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1231 }
1232}
1233
1234#if EV_PERIODIC_ENABLE
1235void inline_size
1236periodics_reify (EV_P)
1237{
1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1239 {
1240 ev_periodic *w = periodics [0];
1241
1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1243
1244 /* first reschedule or stop timer */
1245 if (w->reschedule_cb)
1246 {
1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1249 downheap ((WT *)periodics, periodiccnt, 0);
1250 }
1251 else if (w->interval)
1252 {
1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0);
1256 }
1257 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1261 }
1262}
1263
1264static void noinline
1265periodics_reschedule (EV_P)
1266{
1267 int i;
1268
1269 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i)
1271 {
1272 ev_periodic *w = periodics [i];
1273
1274 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 }
1279
1280 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i);
1283}
1284#endif
1285 1579
1286#if EV_IDLE_ENABLE 1580#if EV_IDLE_ENABLE
1287void inline_size 1581void inline_size
1288idle_reify (EV_P) 1582idle_reify (EV_P)
1289{ 1583{
1304 } 1598 }
1305 } 1599 }
1306} 1600}
1307#endif 1601#endif
1308 1602
1309int inline_size 1603void inline_size
1310time_update_monotonic (EV_P) 1604timers_reify (EV_P)
1311{ 1605{
1606 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now)
1607 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1609
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1611
1612 /* first reschedule or stop timer */
1613 if (w->repeat)
1614 {
1615 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now;
1618
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620
1621 ANHE_at_set (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0);
1623 }
1624 else
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1628 }
1629}
1630
1631#if EV_PERIODIC_ENABLE
1632void inline_size
1633periodics_reify (EV_P)
1634{
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now)
1636 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1638
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1640
1641 /* first reschedule or stop timer */
1642 if (w->reschedule_cb)
1643 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1645
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1647
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else if (w->interval)
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1655
1656 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1657
1658 ANHE_at_set (periodics [HEAP0]);
1659 downheap (periodics, periodiccnt, HEAP0);
1660 }
1661 else
1662 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1663
1664 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1665 }
1666}
1667
1668static void noinline
1669periodics_reschedule (EV_P)
1670{
1671 int i;
1672
1673 /* adjust periodics after time jump */
1674 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1675 {
1676 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1677
1678 if (w->reschedule_cb)
1679 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1680 else if (w->interval)
1681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1682
1683 ANHE_at_set (periodics [i]);
1684 }
1685
1686 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1687 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1688 for (i = 0; i < periodiccnt; ++i)
1689 upheap (periodics, i + HEAP0);
1690}
1691#endif
1692
1693void inline_speed
1694time_update (EV_P_ ev_tstamp max_block)
1695{
1696 int i;
1697
1698#if EV_USE_MONOTONIC
1699 if (expect_true (have_monotonic))
1700 {
1701 ev_tstamp odiff = rtmn_diff;
1702
1312 mn_now = get_clock (); 1703 mn_now = get_clock ();
1313 1704
1705 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1706 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1707 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 1708 {
1316 ev_rt_now = rtmn_diff + mn_now; 1709 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 1710 return;
1318 } 1711 }
1319 else 1712
1320 {
1321 now_floor = mn_now; 1713 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 1714 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 1715
1327void inline_size 1716 /* loop a few times, before making important decisions.
1328time_update (EV_P) 1717 * on the choice of "4": one iteration isn't enough,
1329{ 1718 * in case we get preempted during the calls to
1330 int i; 1719 * ev_time and get_clock. a second call is almost guaranteed
1331 1720 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 1721 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 1722 * in the unlikely event of having been preempted here.
1334 { 1723 */
1335 if (time_update_monotonic (EV_A)) 1724 for (i = 4; --i; )
1336 { 1725 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 1726 rtmn_diff = ev_rt_now - mn_now;
1350 1727
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1728 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1352 return; /* all is well */ 1729 return; /* all is well */
1353 1730
1354 ev_rt_now = ev_time (); 1731 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 1732 mn_now = get_clock ();
1356 now_floor = mn_now; 1733 now_floor = mn_now;
1357 } 1734 }
1358 1735
1359# if EV_PERIODIC_ENABLE 1736# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 1737 periodics_reschedule (EV_A);
1361# endif 1738# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */ 1739 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1740 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 1741 }
1366 else 1742 else
1367#endif 1743#endif
1368 { 1744 {
1369 ev_rt_now = ev_time (); 1745 ev_rt_now = ev_time ();
1370 1746
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1747 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 1748 {
1373#if EV_PERIODIC_ENABLE 1749#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 1750 periodics_reschedule (EV_A);
1375#endif 1751#endif
1376
1377 /* adjust timers. this is easy, as the offset is the same for all of them */ 1752 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i) 1753 for (i = 0; i < timercnt; ++i)
1754 {
1755 ANHE *he = timers + i + HEAP0;
1379 ((WT)timers [i])->at += ev_rt_now - mn_now; 1756 ANHE_w (*he)->at += ev_rt_now - mn_now;
1757 ANHE_at_set (*he);
1758 }
1380 } 1759 }
1381 1760
1382 mn_now = ev_rt_now; 1761 mn_now = ev_rt_now;
1383 } 1762 }
1384} 1763}
1398static int loop_done; 1777static int loop_done;
1399 1778
1400void 1779void
1401ev_loop (EV_P_ int flags) 1780ev_loop (EV_P_ int flags)
1402{ 1781{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1782 loop_done = EVUNLOOP_CANCEL;
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1406 1783
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1784 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408 1785
1409 do 1786 do
1410 { 1787 {
1444 /* update fd-related kernel structures */ 1821 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 1822 fd_reify (EV_A);
1446 1823
1447 /* calculate blocking time */ 1824 /* calculate blocking time */
1448 { 1825 {
1449 ev_tstamp block; 1826 ev_tstamp waittime = 0.;
1827 ev_tstamp sleeptime = 0.;
1450 1828
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1829 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 1830 {
1455 /* update time to cancel out callback processing overhead */ 1831 /* update time to cancel out callback processing overhead */
1456#if EV_USE_MONOTONIC
1457 if (expect_true (have_monotonic))
1458 time_update_monotonic (EV_A); 1832 time_update (EV_A_ 1e100);
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463 mn_now = ev_rt_now;
1464 }
1465 1833
1466 block = MAX_BLOCKTIME; 1834 waittime = MAX_BLOCKTIME;
1467 1835
1468 if (timercnt) 1836 if (timercnt)
1469 { 1837 {
1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1838 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1471 if (block > to) block = to; 1839 if (waittime > to) waittime = to;
1472 } 1840 }
1473 1841
1474#if EV_PERIODIC_ENABLE 1842#if EV_PERIODIC_ENABLE
1475 if (periodiccnt) 1843 if (periodiccnt)
1476 { 1844 {
1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1845 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1478 if (block > to) block = to; 1846 if (waittime > to) waittime = to;
1479 } 1847 }
1480#endif 1848#endif
1481 1849
1482 if (expect_false (block < 0.)) block = 0.; 1850 if (expect_false (waittime < timeout_blocktime))
1851 waittime = timeout_blocktime;
1852
1853 sleeptime = waittime - backend_fudge;
1854
1855 if (expect_true (sleeptime > io_blocktime))
1856 sleeptime = io_blocktime;
1857
1858 if (sleeptime)
1859 {
1860 ev_sleep (sleeptime);
1861 waittime -= sleeptime;
1862 }
1483 } 1863 }
1484 1864
1485 ++loop_count; 1865 ++loop_count;
1486 backend_poll (EV_A_ block); 1866 backend_poll (EV_A_ waittime);
1867
1868 /* update ev_rt_now, do magic */
1869 time_update (EV_A_ waittime + sleeptime);
1487 } 1870 }
1488
1489 /* update ev_rt_now, do magic */
1490 time_update (EV_A);
1491 1871
1492 /* queue pending timers and reschedule them */ 1872 /* queue pending timers and reschedule them */
1493 timers_reify (EV_A); /* relative timers called last */ 1873 timers_reify (EV_A); /* relative timers called last */
1494#if EV_PERIODIC_ENABLE 1874#if EV_PERIODIC_ENABLE
1495 periodics_reify (EV_A); /* absolute timers called first */ 1875 periodics_reify (EV_A); /* absolute timers called first */
1503 /* queue check watchers, to be executed first */ 1883 /* queue check watchers, to be executed first */
1504 if (expect_false (checkcnt)) 1884 if (expect_false (checkcnt))
1505 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1885 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1506 1886
1507 call_pending (EV_A); 1887 call_pending (EV_A);
1508
1509 } 1888 }
1510 while (expect_true (activecnt && !loop_done)); 1889 while (expect_true (
1890 activecnt
1891 && !loop_done
1892 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1893 ));
1511 1894
1512 if (loop_done == EVUNLOOP_ONE) 1895 if (loop_done == EVUNLOOP_ONE)
1513 loop_done = EVUNLOOP_CANCEL; 1896 loop_done = EVUNLOOP_CANCEL;
1514} 1897}
1515 1898
1606 1989
1607 assert (("ev_io_start called with negative fd", fd >= 0)); 1990 assert (("ev_io_start called with negative fd", fd >= 0));
1608 1991
1609 ev_start (EV_A_ (W)w, 1); 1992 ev_start (EV_A_ (W)w, 1);
1610 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1993 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1611 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1994 wlist_add (&anfds[fd].head, (WL)w);
1612 1995
1613 fd_change (EV_A_ fd); 1996 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1997 w->events &= ~EV_IOFDSET;
1614} 1998}
1615 1999
1616void noinline 2000void noinline
1617ev_io_stop (EV_P_ ev_io *w) 2001ev_io_stop (EV_P_ ev_io *w)
1618{ 2002{
1619 clear_pending (EV_A_ (W)w); 2003 clear_pending (EV_A_ (W)w);
1620 if (expect_false (!ev_is_active (w))) 2004 if (expect_false (!ev_is_active (w)))
1621 return; 2005 return;
1622 2006
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2007 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1624 2008
1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2009 wlist_del (&anfds[w->fd].head, (WL)w);
1626 ev_stop (EV_A_ (W)w); 2010 ev_stop (EV_A_ (W)w);
1627 2011
1628 fd_change (EV_A_ w->fd); 2012 fd_change (EV_A_ w->fd, 1);
1629} 2013}
1630 2014
1631void noinline 2015void noinline
1632ev_timer_start (EV_P_ ev_timer *w) 2016ev_timer_start (EV_P_ ev_timer *w)
1633{ 2017{
1634 if (expect_false (ev_is_active (w))) 2018 if (expect_false (ev_is_active (w)))
1635 return; 2019 return;
1636 2020
1637 ((WT)w)->at += mn_now; 2021 ev_at (w) += mn_now;
1638 2022
1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2023 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1640 2024
1641 ev_start (EV_A_ (W)w, ++timercnt); 2025 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2026 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1643 timers [timercnt - 1] = w; 2027 ANHE_w (timers [ev_active (w)]) = (WT)w;
1644 upheap ((WT *)timers, timercnt - 1); 2028 ANHE_at_set (timers [ev_active (w)]);
2029 upheap (timers, ev_active (w));
1645 2030
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2031 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1647} 2032}
1648 2033
1649void noinline 2034void noinline
1650ev_timer_stop (EV_P_ ev_timer *w) 2035ev_timer_stop (EV_P_ ev_timer *w)
1651{ 2036{
1652 clear_pending (EV_A_ (W)w); 2037 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 2038 if (expect_false (!ev_is_active (w)))
1654 return; 2039 return;
1655 2040
1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1657
1658 { 2041 {
1659 int active = ((W)w)->active; 2042 int active = ev_active (w);
1660 2043
2044 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2045
1661 if (expect_true (--active < --timercnt)) 2046 if (expect_true (active < timercnt + HEAP0 - 1))
1662 { 2047 {
1663 timers [active] = timers [timercnt]; 2048 timers [active] = timers [timercnt + HEAP0 - 1];
1664 adjustheap ((WT *)timers, timercnt, active); 2049 adjustheap (timers, timercnt, active);
1665 } 2050 }
2051
2052 --timercnt;
1666 } 2053 }
1667 2054
1668 ((WT)w)->at -= mn_now; 2055 ev_at (w) -= mn_now;
1669 2056
1670 ev_stop (EV_A_ (W)w); 2057 ev_stop (EV_A_ (W)w);
1671} 2058}
1672 2059
1673void noinline 2060void noinline
1675{ 2062{
1676 if (ev_is_active (w)) 2063 if (ev_is_active (w))
1677 { 2064 {
1678 if (w->repeat) 2065 if (w->repeat)
1679 { 2066 {
1680 ((WT)w)->at = mn_now + w->repeat; 2067 ev_at (w) = mn_now + w->repeat;
2068 ANHE_at_set (timers [ev_active (w)]);
1681 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2069 adjustheap (timers, timercnt, ev_active (w));
1682 } 2070 }
1683 else 2071 else
1684 ev_timer_stop (EV_A_ w); 2072 ev_timer_stop (EV_A_ w);
1685 } 2073 }
1686 else if (w->repeat) 2074 else if (w->repeat)
1687 { 2075 {
1688 w->at = w->repeat; 2076 ev_at (w) = w->repeat;
1689 ev_timer_start (EV_A_ w); 2077 ev_timer_start (EV_A_ w);
1690 } 2078 }
1691} 2079}
1692 2080
1693#if EV_PERIODIC_ENABLE 2081#if EV_PERIODIC_ENABLE
1696{ 2084{
1697 if (expect_false (ev_is_active (w))) 2085 if (expect_false (ev_is_active (w)))
1698 return; 2086 return;
1699 2087
1700 if (w->reschedule_cb) 2088 if (w->reschedule_cb)
1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1702 else if (w->interval) 2090 else if (w->interval)
1703 { 2091 {
1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2092 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1705 /* this formula differs from the one in periodic_reify because we do not always round up */ 2093 /* this formula differs from the one in periodic_reify because we do not always round up */
1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1707 } 2095 }
1708 else 2096 else
1709 ((WT)w)->at = w->offset; 2097 ev_at (w) = w->offset;
1710 2098
1711 ev_start (EV_A_ (W)w, ++periodiccnt); 2099 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2100 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1713 periodics [periodiccnt - 1] = w; 2101 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1714 upheap ((WT *)periodics, periodiccnt - 1); 2102 ANHE_at_set (periodics [ev_active (w)]);
2103 upheap (periodics, ev_active (w));
1715 2104
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2105 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1717} 2106}
1718 2107
1719void noinline 2108void noinline
1720ev_periodic_stop (EV_P_ ev_periodic *w) 2109ev_periodic_stop (EV_P_ ev_periodic *w)
1721{ 2110{
1722 clear_pending (EV_A_ (W)w); 2111 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w))) 2112 if (expect_false (!ev_is_active (w)))
1724 return; 2113 return;
1725 2114
1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1727
1728 { 2115 {
1729 int active = ((W)w)->active; 2116 int active = ev_active (w);
1730 2117
2118 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2119
1731 if (expect_true (--active < --periodiccnt)) 2120 if (expect_true (active < periodiccnt + HEAP0 - 1))
1732 { 2121 {
1733 periodics [active] = periodics [periodiccnt]; 2122 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1734 adjustheap ((WT *)periodics, periodiccnt, active); 2123 adjustheap (periodics, periodiccnt, active);
1735 } 2124 }
2125
2126 --periodiccnt;
1736 } 2127 }
1737 2128
1738 ev_stop (EV_A_ (W)w); 2129 ev_stop (EV_A_ (W)w);
1739} 2130}
1740 2131
1760 if (expect_false (ev_is_active (w))) 2151 if (expect_false (ev_is_active (w)))
1761 return; 2152 return;
1762 2153
1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2154 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1764 2155
2156 evpipe_init (EV_A);
2157
2158 {
2159#ifndef _WIN32
2160 sigset_t full, prev;
2161 sigfillset (&full);
2162 sigprocmask (SIG_SETMASK, &full, &prev);
2163#endif
2164
2165 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2166
2167#ifndef _WIN32
2168 sigprocmask (SIG_SETMASK, &prev, 0);
2169#endif
2170 }
2171
1765 ev_start (EV_A_ (W)w, 1); 2172 ev_start (EV_A_ (W)w, 1);
1766 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1767 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2173 wlist_add (&signals [w->signum - 1].head, (WL)w);
1768 2174
1769 if (!((WL)w)->next) 2175 if (!((WL)w)->next)
1770 { 2176 {
1771#if _WIN32 2177#if _WIN32
1772 signal (w->signum, sighandler); 2178 signal (w->signum, ev_sighandler);
1773#else 2179#else
1774 struct sigaction sa; 2180 struct sigaction sa;
1775 sa.sa_handler = sighandler; 2181 sa.sa_handler = ev_sighandler;
1776 sigfillset (&sa.sa_mask); 2182 sigfillset (&sa.sa_mask);
1777 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2183 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1778 sigaction (w->signum, &sa, 0); 2184 sigaction (w->signum, &sa, 0);
1779#endif 2185#endif
1780 } 2186 }
1785{ 2191{
1786 clear_pending (EV_A_ (W)w); 2192 clear_pending (EV_A_ (W)w);
1787 if (expect_false (!ev_is_active (w))) 2193 if (expect_false (!ev_is_active (w)))
1788 return; 2194 return;
1789 2195
1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2196 wlist_del (&signals [w->signum - 1].head, (WL)w);
1791 ev_stop (EV_A_ (W)w); 2197 ev_stop (EV_A_ (W)w);
1792 2198
1793 if (!signals [w->signum - 1].head) 2199 if (!signals [w->signum - 1].head)
1794 signal (w->signum, SIG_DFL); 2200 signal (w->signum, SIG_DFL);
1795} 2201}
1802#endif 2208#endif
1803 if (expect_false (ev_is_active (w))) 2209 if (expect_false (ev_is_active (w)))
1804 return; 2210 return;
1805 2211
1806 ev_start (EV_A_ (W)w, 1); 2212 ev_start (EV_A_ (W)w, 1);
1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2213 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1808} 2214}
1809 2215
1810void 2216void
1811ev_child_stop (EV_P_ ev_child *w) 2217ev_child_stop (EV_P_ ev_child *w)
1812{ 2218{
1813 clear_pending (EV_A_ (W)w); 2219 clear_pending (EV_A_ (W)w);
1814 if (expect_false (!ev_is_active (w))) 2220 if (expect_false (!ev_is_active (w)))
1815 return; 2221 return;
1816 2222
1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2223 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1818 ev_stop (EV_A_ (W)w); 2224 ev_stop (EV_A_ (W)w);
1819} 2225}
1820 2226
1821#if EV_STAT_ENABLE 2227#if EV_STAT_ENABLE
1822 2228
1841 if (w->wd < 0) 2247 if (w->wd < 0)
1842 { 2248 {
1843 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2249 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1844 2250
1845 /* monitor some parent directory for speedup hints */ 2251 /* monitor some parent directory for speedup hints */
2252 /* note that exceeding the hardcoded limit is not a correctness issue, */
2253 /* but an efficiency issue only */
1846 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2254 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1847 { 2255 {
1848 char path [4096]; 2256 char path [4096];
1849 strcpy (path, w->path); 2257 strcpy (path, w->path);
1850 2258
2095 clear_pending (EV_A_ (W)w); 2503 clear_pending (EV_A_ (W)w);
2096 if (expect_false (!ev_is_active (w))) 2504 if (expect_false (!ev_is_active (w)))
2097 return; 2505 return;
2098 2506
2099 { 2507 {
2100 int active = ((W)w)->active; 2508 int active = ev_active (w);
2101 2509
2102 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2510 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2103 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2511 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2104 2512
2105 ev_stop (EV_A_ (W)w); 2513 ev_stop (EV_A_ (W)w);
2106 --idleall; 2514 --idleall;
2107 } 2515 }
2108} 2516}
2125 clear_pending (EV_A_ (W)w); 2533 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 2534 if (expect_false (!ev_is_active (w)))
2127 return; 2535 return;
2128 2536
2129 { 2537 {
2130 int active = ((W)w)->active; 2538 int active = ev_active (w);
2539
2131 prepares [active - 1] = prepares [--preparecnt]; 2540 prepares [active - 1] = prepares [--preparecnt];
2132 ((W)prepares [active - 1])->active = active; 2541 ev_active (prepares [active - 1]) = active;
2133 } 2542 }
2134 2543
2135 ev_stop (EV_A_ (W)w); 2544 ev_stop (EV_A_ (W)w);
2136} 2545}
2137 2546
2152 clear_pending (EV_A_ (W)w); 2561 clear_pending (EV_A_ (W)w);
2153 if (expect_false (!ev_is_active (w))) 2562 if (expect_false (!ev_is_active (w)))
2154 return; 2563 return;
2155 2564
2156 { 2565 {
2157 int active = ((W)w)->active; 2566 int active = ev_active (w);
2567
2158 checks [active - 1] = checks [--checkcnt]; 2568 checks [active - 1] = checks [--checkcnt];
2159 ((W)checks [active - 1])->active = active; 2569 ev_active (checks [active - 1]) = active;
2160 } 2570 }
2161 2571
2162 ev_stop (EV_A_ (W)w); 2572 ev_stop (EV_A_ (W)w);
2163} 2573}
2164 2574
2165#if EV_EMBED_ENABLE 2575#if EV_EMBED_ENABLE
2166void noinline 2576void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w) 2577ev_embed_sweep (EV_P_ ev_embed *w)
2168{ 2578{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK); 2579 ev_loop (w->other, EVLOOP_NONBLOCK);
2170} 2580}
2171 2581
2172static void 2582static void
2173embed_cb (EV_P_ ev_io *io, int revents) 2583embed_io_cb (EV_P_ ev_io *io, int revents)
2174{ 2584{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2585 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176 2586
2177 if (ev_cb (w)) 2587 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2588 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else 2589 else
2180 ev_embed_sweep (loop, w); 2590 ev_loop (w->other, EVLOOP_NONBLOCK);
2181} 2591}
2592
2593static void
2594embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2595{
2596 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2597
2598 {
2599 struct ev_loop *loop = w->other;
2600
2601 while (fdchangecnt)
2602 {
2603 fd_reify (EV_A);
2604 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2605 }
2606 }
2607}
2608
2609#if 0
2610static void
2611embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2612{
2613 ev_idle_stop (EV_A_ idle);
2614}
2615#endif
2182 2616
2183void 2617void
2184ev_embed_start (EV_P_ ev_embed *w) 2618ev_embed_start (EV_P_ ev_embed *w)
2185{ 2619{
2186 if (expect_false (ev_is_active (w))) 2620 if (expect_false (ev_is_active (w)))
2187 return; 2621 return;
2188 2622
2189 { 2623 {
2190 struct ev_loop *loop = w->loop; 2624 struct ev_loop *loop = w->other;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2625 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2626 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2193 } 2627 }
2194 2628
2195 ev_set_priority (&w->io, ev_priority (w)); 2629 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io); 2630 ev_io_start (EV_A_ &w->io);
2631
2632 ev_prepare_init (&w->prepare, embed_prepare_cb);
2633 ev_set_priority (&w->prepare, EV_MINPRI);
2634 ev_prepare_start (EV_A_ &w->prepare);
2635
2636 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2197 2637
2198 ev_start (EV_A_ (W)w, 1); 2638 ev_start (EV_A_ (W)w, 1);
2199} 2639}
2200 2640
2201void 2641void
2204 clear_pending (EV_A_ (W)w); 2644 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 2645 if (expect_false (!ev_is_active (w)))
2206 return; 2646 return;
2207 2647
2208 ev_io_stop (EV_A_ &w->io); 2648 ev_io_stop (EV_A_ &w->io);
2649 ev_prepare_stop (EV_A_ &w->prepare);
2209 2650
2210 ev_stop (EV_A_ (W)w); 2651 ev_stop (EV_A_ (W)w);
2211} 2652}
2212#endif 2653#endif
2213 2654
2229 clear_pending (EV_A_ (W)w); 2670 clear_pending (EV_A_ (W)w);
2230 if (expect_false (!ev_is_active (w))) 2671 if (expect_false (!ev_is_active (w)))
2231 return; 2672 return;
2232 2673
2233 { 2674 {
2234 int active = ((W)w)->active; 2675 int active = ev_active (w);
2676
2235 forks [active - 1] = forks [--forkcnt]; 2677 forks [active - 1] = forks [--forkcnt];
2236 ((W)forks [active - 1])->active = active; 2678 ev_active (forks [active - 1]) = active;
2237 } 2679 }
2238 2680
2239 ev_stop (EV_A_ (W)w); 2681 ev_stop (EV_A_ (W)w);
2682}
2683#endif
2684
2685#if EV_ASYNC_ENABLE
2686void
2687ev_async_start (EV_P_ ev_async *w)
2688{
2689 if (expect_false (ev_is_active (w)))
2690 return;
2691
2692 evpipe_init (EV_A);
2693
2694 ev_start (EV_A_ (W)w, ++asynccnt);
2695 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2696 asyncs [asynccnt - 1] = w;
2697}
2698
2699void
2700ev_async_stop (EV_P_ ev_async *w)
2701{
2702 clear_pending (EV_A_ (W)w);
2703 if (expect_false (!ev_is_active (w)))
2704 return;
2705
2706 {
2707 int active = ev_active (w);
2708
2709 asyncs [active - 1] = asyncs [--asynccnt];
2710 ev_active (asyncs [active - 1]) = active;
2711 }
2712
2713 ev_stop (EV_A_ (W)w);
2714}
2715
2716void
2717ev_async_send (EV_P_ ev_async *w)
2718{
2719 w->sent = 1;
2720 evpipe_write (EV_A_ &gotasync);
2240} 2721}
2241#endif 2722#endif
2242 2723
2243/*****************************************************************************/ 2724/*****************************************************************************/
2244 2725
2302 ev_timer_set (&once->to, timeout, 0.); 2783 ev_timer_set (&once->to, timeout, 0.);
2303 ev_timer_start (EV_A_ &once->to); 2784 ev_timer_start (EV_A_ &once->to);
2304 } 2785 }
2305} 2786}
2306 2787
2788#if EV_MULTIPLICITY
2789 #include "ev_wrap.h"
2790#endif
2791
2307#ifdef __cplusplus 2792#ifdef __cplusplus
2308} 2793}
2309#endif 2794#endif
2310 2795

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines