ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.221 by root, Sun Apr 6 12:44:49 2008 UTC vs.
Revision 1.243 by root, Fri May 9 15:52:13 2008 UTC

235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 249
242#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
269#endif 277#endif
270 278
271#if EV_USE_EVENTFD 279#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
274int eventfd (unsigned int initval, int flags); 285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
275#endif 289#endif
276 290
277/**/ 291/**/
278 292
279/* 293/*
294# define expect(expr,value) __builtin_expect ((expr),(value)) 308# define expect(expr,value) __builtin_expect ((expr),(value))
295# define noinline __attribute__ ((noinline)) 309# define noinline __attribute__ ((noinline))
296#else 310#else
297# define expect(expr,value) (expr) 311# define expect(expr,value) (expr)
298# define noinline 312# define noinline
299# if __STDC_VERSION__ < 199901L 313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
300# define inline 314# define inline
301# endif 315# endif
302#endif 316#endif
303 317
304#define expect_false(expr) expect ((expr) != 0, 0) 318#define expect_false(expr) expect ((expr) != 0, 0)
319 333
320typedef ev_watcher *W; 334typedef ev_watcher *W;
321typedef ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
322typedef ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
323 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
324#if EV_USE_MONOTONIC 341#if EV_USE_MONOTONIC
325/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
326/* giving it a reasonably high chance of working on typical architetcures */ 343/* giving it a reasonably high chance of working on typical architetcures */
327static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
328#endif 345#endif
354 perror (msg); 371 perror (msg);
355 abort (); 372 abort ();
356 } 373 }
357} 374}
358 375
376static void *
377ev_realloc_emul (void *ptr, long size)
378{
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389}
390
359static void *(*alloc)(void *ptr, long size); 391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
360 392
361void 393void
362ev_set_allocator (void *(*cb)(void *ptr, long size)) 394ev_set_allocator (void *(*cb)(void *ptr, long size))
363{ 395{
364 alloc = cb; 396 alloc = cb;
365} 397}
366 398
367inline_speed void * 399inline_speed void *
368ev_realloc (void *ptr, long size) 400ev_realloc (void *ptr, long size)
369{ 401{
370 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 402 ptr = alloc (ptr, size);
371 403
372 if (!ptr && size) 404 if (!ptr && size)
373 { 405 {
374 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
375 abort (); 407 abort ();
398 W w; 430 W w;
399 int events; 431 int events;
400} ANPENDING; 432} ANPENDING;
401 433
402#if EV_USE_INOTIFY 434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
403typedef struct 436typedef struct
404{ 437{
405 WL head; 438 WL head;
406} ANFS; 439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
407#endif 458#endif
408 459
409#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
410 461
411 struct ev_loop 462 struct ev_loop
496 } 547 }
497} 548}
498 549
499/*****************************************************************************/ 550/*****************************************************************************/
500 551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
501int inline_size 554int inline_size
502array_nextsize (int elem, int cur, int cnt) 555array_nextsize (int elem, int cur, int cnt)
503{ 556{
504 int ncur = cur + 1; 557 int ncur = cur + 1;
505 558
506 do 559 do
507 ncur <<= 1; 560 ncur <<= 1;
508 while (cnt > ncur); 561 while (cnt > ncur);
509 562
510 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
511 if (elem * ncur > 4096) 564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
512 { 565 {
513 ncur *= elem; 566 ncur *= elem;
514 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
515 ncur = ncur - sizeof (void *) * 4; 568 ncur = ncur - sizeof (void *) * 4;
516 ncur /= elem; 569 ncur /= elem;
517 } 570 }
518 571
519 return ncur; 572 return ncur;
733 } 786 }
734} 787}
735 788
736/*****************************************************************************/ 789/*****************************************************************************/
737 790
791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807
808/* towards the root */
738void inline_speed 809void inline_speed
739upheap (WT *heap, int k) 810upheap (ANHE *heap, int k)
740{ 811{
741 WT w = heap [k]; 812 ANHE he = heap [k];
742 813
743 while (k) 814 for (;;)
744 { 815 {
745 int p = (k - 1) >> 1; 816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
746 817
747 if (heap [p]->at <= w->at) 818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
748 break; 819 break;
749 820
750 heap [k] = heap [p]; 821 heap [k] = heap [p];
751 ((W)heap [k])->active = k + 1; 822 ev_active (ANHE_w (heap [k])) = k;
752 k = p; 823 k = p;
753 } 824 }
754 825
826 ev_active (ANHE_w (he)) = k;
755 heap [k] = w; 827 heap [k] = he;
756 ((W)heap [k])->active = k + 1;
757} 828}
758 829
830/* away from the root */
759void inline_speed 831void inline_speed
760downheap (WT *heap, int N, int k) 832downheap (ANHE *heap, int N, int k)
761{ 833{
762 WT w = heap [k]; 834 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0;
763 836
764 for (;;) 837 for (;;)
765 { 838 {
766 int c = (k << 1) + 1; 839 ev_tstamp minat;
840 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
767 842
768 if (c >= N) 843 // find minimum child
844 if (expect_true (pos + DHEAP - 1 < E))
845 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else if (pos < E)
852 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else
769 break; 859 break;
770 860
861 if (ANHE_at (he) <= minat)
862 break;
863
864 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866
867 k = minpos - heap;
868 }
869
870 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872}
873
874#else // 4HEAP
875
876#define HEAP0 1
877
878/* towards the root */
879void inline_speed
880upheap (ANHE *heap, int k)
881{
882 ANHE he = heap [k];
883
884 for (;;)
885 {
886 int p = k >> 1;
887
888 /* maybe we could use a dummy element at heap [0]? */
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break;
891
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
771 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
772 ? 1 : 0; 915 ? 1 : 0;
773 916
774 if (w->at <= heap [c]->at) 917 if (ANHE_at (he) <= ANHE_at (heap [c]))
775 break; 918 break;
776 919
777 heap [k] = heap [c]; 920 heap [k] = heap [c];
778 ((W)heap [k])->active = k + 1; 921 ev_active (ANHE_w (heap [k])) = k;
779 922
780 k = c; 923 k = c;
781 } 924 }
782 925
783 heap [k] = w; 926 heap [k] = he;
784 ((W)heap [k])->active = k + 1; 927 ev_active (ANHE_w (he)) = k;
785} 928}
929#endif
786 930
787void inline_size 931void inline_size
788adjustheap (WT *heap, int N, int k) 932adjustheap (ANHE *heap, int N, int k)
789{ 933{
790 upheap (heap, k); 934 upheap (heap, k);
791 downheap (heap, N, k); 935 downheap (heap, N, k);
792} 936}
793 937
885pipecb (EV_P_ ev_io *iow, int revents) 1029pipecb (EV_P_ ev_io *iow, int revents)
886{ 1030{
887#if EV_USE_EVENTFD 1031#if EV_USE_EVENTFD
888 if (evfd >= 0) 1032 if (evfd >= 0)
889 { 1033 {
890 uint64_t counter = 1; 1034 uint64_t counter;
891 read (evfd, &counter, sizeof (uint64_t)); 1035 read (evfd, &counter, sizeof (uint64_t));
892 } 1036 }
893 else 1037 else
894#endif 1038#endif
895 { 1039 {
1164 if (!(flags & EVFLAG_NOENV) 1308 if (!(flags & EVFLAG_NOENV)
1165 && !enable_secure () 1309 && !enable_secure ()
1166 && getenv ("LIBEV_FLAGS")) 1310 && getenv ("LIBEV_FLAGS"))
1167 flags = atoi (getenv ("LIBEV_FLAGS")); 1311 flags = atoi (getenv ("LIBEV_FLAGS"));
1168 1312
1169 if (!(flags & 0x0000ffffUL)) 1313 if (!(flags & 0x0000ffffU))
1170 flags |= ev_recommended_backends (); 1314 flags |= ev_recommended_backends ();
1171 1315
1172#if EV_USE_PORT 1316#if EV_USE_PORT
1173 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1174#endif 1318#endif
1262#endif 1406#endif
1263 1407
1264 backend = 0; 1408 backend = 0;
1265} 1409}
1266 1410
1411#if EV_USE_INOTIFY
1267void inline_size infy_fork (EV_P); 1412void inline_size infy_fork (EV_P);
1413#endif
1268 1414
1269void inline_size 1415void inline_size
1270loop_fork (EV_P) 1416loop_fork (EV_P)
1271{ 1417{
1272#if EV_USE_PORT 1418#if EV_USE_PORT
1339void 1485void
1340ev_loop_fork (EV_P) 1486ev_loop_fork (EV_P)
1341{ 1487{
1342 postfork = 1; /* must be in line with ev_default_fork */ 1488 postfork = 1; /* must be in line with ev_default_fork */
1343} 1489}
1344
1345#endif 1490#endif
1346 1491
1347#if EV_MULTIPLICITY 1492#if EV_MULTIPLICITY
1348struct ev_loop * 1493struct ev_loop *
1349ev_default_loop_init (unsigned int flags) 1494ev_default_loop_init (unsigned int flags)
1430 EV_CB_INVOKE (p->w, p->events); 1575 EV_CB_INVOKE (p->w, p->events);
1431 } 1576 }
1432 } 1577 }
1433} 1578}
1434 1579
1435void inline_size
1436timers_reify (EV_P)
1437{
1438 while (timercnt && ((WT)timers [0])->at <= mn_now)
1439 {
1440 ev_timer *w = (ev_timer *)timers [0];
1441
1442 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1443
1444 /* first reschedule or stop timer */
1445 if (w->repeat)
1446 {
1447 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1448
1449 ((WT)w)->at += w->repeat;
1450 if (((WT)w)->at < mn_now)
1451 ((WT)w)->at = mn_now;
1452
1453 downheap (timers, timercnt, 0);
1454 }
1455 else
1456 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1457
1458 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1459 }
1460}
1461
1462#if EV_PERIODIC_ENABLE
1463void inline_size
1464periodics_reify (EV_P)
1465{
1466 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1467 {
1468 ev_periodic *w = (ev_periodic *)periodics [0];
1469
1470 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->reschedule_cb)
1474 {
1475 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1476 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1477 downheap (periodics, periodiccnt, 0);
1478 }
1479 else if (w->interval)
1480 {
1481 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1482 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1483 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1484 downheap (periodics, periodiccnt, 0);
1485 }
1486 else
1487 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1488
1489 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1490 }
1491}
1492
1493static void noinline
1494periodics_reschedule (EV_P)
1495{
1496 int i;
1497
1498 /* adjust periodics after time jump */
1499 for (i = 0; i < periodiccnt; ++i)
1500 {
1501 ev_periodic *w = (ev_periodic *)periodics [i];
1502
1503 if (w->reschedule_cb)
1504 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1505 else if (w->interval)
1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1507 }
1508
1509 /* now rebuild the heap */
1510 for (i = periodiccnt >> 1; i--; )
1511 downheap (periodics, periodiccnt, i);
1512}
1513#endif
1514
1515#if EV_IDLE_ENABLE 1580#if EV_IDLE_ENABLE
1516void inline_size 1581void inline_size
1517idle_reify (EV_P) 1582idle_reify (EV_P)
1518{ 1583{
1519 if (expect_false (idleall)) 1584 if (expect_false (idleall))
1530 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1595 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1531 break; 1596 break;
1532 } 1597 }
1533 } 1598 }
1534 } 1599 }
1600}
1601#endif
1602
1603void inline_size
1604timers_reify (EV_P)
1605{
1606 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now)
1607 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1609
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1611
1612 /* first reschedule or stop timer */
1613 if (w->repeat)
1614 {
1615 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now;
1618
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620
1621 ANHE_at_set (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0);
1623 }
1624 else
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1628 }
1629}
1630
1631#if EV_PERIODIC_ENABLE
1632void inline_size
1633periodics_reify (EV_P)
1634{
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now)
1636 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1638
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1640
1641 /* first reschedule or stop timer */
1642 if (w->reschedule_cb)
1643 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1645
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1647
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else if (w->interval)
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1655
1656 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1657
1658 ANHE_at_set (periodics [HEAP0]);
1659 downheap (periodics, periodiccnt, HEAP0);
1660 }
1661 else
1662 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1663
1664 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1665 }
1666}
1667
1668static void noinline
1669periodics_reschedule (EV_P)
1670{
1671 int i;
1672
1673 /* adjust periodics after time jump */
1674 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1675 {
1676 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1677
1678 if (w->reschedule_cb)
1679 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1680 else if (w->interval)
1681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1682
1683 ANHE_at_set (periodics [i]);
1684 }
1685
1686 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1687 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1688 for (i = 0; i < periodiccnt; ++i)
1689 upheap (periodics, i + HEAP0);
1535} 1690}
1536#endif 1691#endif
1537 1692
1538void inline_speed 1693void inline_speed
1539time_update (EV_P_ ev_tstamp max_block) 1694time_update (EV_P_ ev_tstamp max_block)
1568 */ 1723 */
1569 for (i = 4; --i; ) 1724 for (i = 4; --i; )
1570 { 1725 {
1571 rtmn_diff = ev_rt_now - mn_now; 1726 rtmn_diff = ev_rt_now - mn_now;
1572 1727
1573 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1728 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1574 return; /* all is well */ 1729 return; /* all is well */
1575 1730
1576 ev_rt_now = ev_time (); 1731 ev_rt_now = ev_time ();
1577 mn_now = get_clock (); 1732 mn_now = get_clock ();
1578 now_floor = mn_now; 1733 now_floor = mn_now;
1594#if EV_PERIODIC_ENABLE 1749#if EV_PERIODIC_ENABLE
1595 periodics_reschedule (EV_A); 1750 periodics_reschedule (EV_A);
1596#endif 1751#endif
1597 /* adjust timers. this is easy, as the offset is the same for all of them */ 1752 /* adjust timers. this is easy, as the offset is the same for all of them */
1598 for (i = 0; i < timercnt; ++i) 1753 for (i = 0; i < timercnt; ++i)
1754 {
1755 ANHE *he = timers + i + HEAP0;
1599 ((WT)timers [i])->at += ev_rt_now - mn_now; 1756 ANHE_w (*he)->at += ev_rt_now - mn_now;
1757 ANHE_at_set (*he);
1758 }
1600 } 1759 }
1601 1760
1602 mn_now = ev_rt_now; 1761 mn_now = ev_rt_now;
1603 } 1762 }
1604} 1763}
1674 1833
1675 waittime = MAX_BLOCKTIME; 1834 waittime = MAX_BLOCKTIME;
1676 1835
1677 if (timercnt) 1836 if (timercnt)
1678 { 1837 {
1679 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1838 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1680 if (waittime > to) waittime = to; 1839 if (waittime > to) waittime = to;
1681 } 1840 }
1682 1841
1683#if EV_PERIODIC_ENABLE 1842#if EV_PERIODIC_ENABLE
1684 if (periodiccnt) 1843 if (periodiccnt)
1685 { 1844 {
1686 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1845 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1687 if (waittime > to) waittime = to; 1846 if (waittime > to) waittime = to;
1688 } 1847 }
1689#endif 1848#endif
1690 1849
1691 if (expect_false (waittime < timeout_blocktime)) 1850 if (expect_false (waittime < timeout_blocktime))
1843{ 2002{
1844 clear_pending (EV_A_ (W)w); 2003 clear_pending (EV_A_ (W)w);
1845 if (expect_false (!ev_is_active (w))) 2004 if (expect_false (!ev_is_active (w)))
1846 return; 2005 return;
1847 2006
1848 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2007 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1849 2008
1850 wlist_del (&anfds[w->fd].head, (WL)w); 2009 wlist_del (&anfds[w->fd].head, (WL)w);
1851 ev_stop (EV_A_ (W)w); 2010 ev_stop (EV_A_ (W)w);
1852 2011
1853 fd_change (EV_A_ w->fd, 1); 2012 fd_change (EV_A_ w->fd, 1);
1857ev_timer_start (EV_P_ ev_timer *w) 2016ev_timer_start (EV_P_ ev_timer *w)
1858{ 2017{
1859 if (expect_false (ev_is_active (w))) 2018 if (expect_false (ev_is_active (w)))
1860 return; 2019 return;
1861 2020
1862 ((WT)w)->at += mn_now; 2021 ev_at (w) += mn_now;
1863 2022
1864 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2023 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1865 2024
1866 ev_start (EV_A_ (W)w, ++timercnt); 2025 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1867 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2026 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1868 timers [timercnt - 1] = (WT)w; 2027 ANHE_w (timers [ev_active (w)]) = (WT)w;
1869 upheap (timers, timercnt - 1); 2028 ANHE_at_set (timers [ev_active (w)]);
2029 upheap (timers, ev_active (w));
1870 2030
1871 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2031 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1872} 2032}
1873 2033
1874void noinline 2034void noinline
1875ev_timer_stop (EV_P_ ev_timer *w) 2035ev_timer_stop (EV_P_ ev_timer *w)
1876{ 2036{
1877 clear_pending (EV_A_ (W)w); 2037 clear_pending (EV_A_ (W)w);
1878 if (expect_false (!ev_is_active (w))) 2038 if (expect_false (!ev_is_active (w)))
1879 return; 2039 return;
1880 2040
1881 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1882
1883 { 2041 {
1884 int active = ((W)w)->active; 2042 int active = ev_active (w);
1885 2043
2044 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2045
1886 if (expect_true (--active < --timercnt)) 2046 if (expect_true (active < timercnt + HEAP0 - 1))
1887 { 2047 {
1888 timers [active] = timers [timercnt]; 2048 timers [active] = timers [timercnt + HEAP0 - 1];
1889 adjustheap (timers, timercnt, active); 2049 adjustheap (timers, timercnt, active);
1890 } 2050 }
2051
2052 --timercnt;
1891 } 2053 }
1892 2054
1893 ((WT)w)->at -= mn_now; 2055 ev_at (w) -= mn_now;
1894 2056
1895 ev_stop (EV_A_ (W)w); 2057 ev_stop (EV_A_ (W)w);
1896} 2058}
1897 2059
1898void noinline 2060void noinline
1900{ 2062{
1901 if (ev_is_active (w)) 2063 if (ev_is_active (w))
1902 { 2064 {
1903 if (w->repeat) 2065 if (w->repeat)
1904 { 2066 {
1905 ((WT)w)->at = mn_now + w->repeat; 2067 ev_at (w) = mn_now + w->repeat;
2068 ANHE_at_set (timers [ev_active (w)]);
1906 adjustheap (timers, timercnt, ((W)w)->active - 1); 2069 adjustheap (timers, timercnt, ev_active (w));
1907 } 2070 }
1908 else 2071 else
1909 ev_timer_stop (EV_A_ w); 2072 ev_timer_stop (EV_A_ w);
1910 } 2073 }
1911 else if (w->repeat) 2074 else if (w->repeat)
1912 { 2075 {
1913 w->at = w->repeat; 2076 ev_at (w) = w->repeat;
1914 ev_timer_start (EV_A_ w); 2077 ev_timer_start (EV_A_ w);
1915 } 2078 }
1916} 2079}
1917 2080
1918#if EV_PERIODIC_ENABLE 2081#if EV_PERIODIC_ENABLE
1921{ 2084{
1922 if (expect_false (ev_is_active (w))) 2085 if (expect_false (ev_is_active (w)))
1923 return; 2086 return;
1924 2087
1925 if (w->reschedule_cb) 2088 if (w->reschedule_cb)
1926 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1927 else if (w->interval) 2090 else if (w->interval)
1928 { 2091 {
1929 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2092 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1930 /* this formula differs from the one in periodic_reify because we do not always round up */ 2093 /* this formula differs from the one in periodic_reify because we do not always round up */
1931 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1932 } 2095 }
1933 else 2096 else
1934 ((WT)w)->at = w->offset; 2097 ev_at (w) = w->offset;
1935 2098
1936 ev_start (EV_A_ (W)w, ++periodiccnt); 2099 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1937 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2100 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1938 periodics [periodiccnt - 1] = (WT)w; 2101 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1939 upheap (periodics, periodiccnt - 1); 2102 ANHE_at_set (periodics [ev_active (w)]);
2103 upheap (periodics, ev_active (w));
1940 2104
1941 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2105 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1942} 2106}
1943 2107
1944void noinline 2108void noinline
1945ev_periodic_stop (EV_P_ ev_periodic *w) 2109ev_periodic_stop (EV_P_ ev_periodic *w)
1946{ 2110{
1947 clear_pending (EV_A_ (W)w); 2111 clear_pending (EV_A_ (W)w);
1948 if (expect_false (!ev_is_active (w))) 2112 if (expect_false (!ev_is_active (w)))
1949 return; 2113 return;
1950 2114
1951 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1952
1953 { 2115 {
1954 int active = ((W)w)->active; 2116 int active = ev_active (w);
1955 2117
2118 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2119
1956 if (expect_true (--active < --periodiccnt)) 2120 if (expect_true (active < periodiccnt + HEAP0 - 1))
1957 { 2121 {
1958 periodics [active] = periodics [periodiccnt]; 2122 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1959 adjustheap (periodics, periodiccnt, active); 2123 adjustheap (periodics, periodiccnt, active);
1960 } 2124 }
2125
2126 --periodiccnt;
1961 } 2127 }
1962 2128
1963 ev_stop (EV_A_ (W)w); 2129 ev_stop (EV_A_ (W)w);
1964} 2130}
1965 2131
2081 if (w->wd < 0) 2247 if (w->wd < 0)
2082 { 2248 {
2083 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2249 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2084 2250
2085 /* monitor some parent directory for speedup hints */ 2251 /* monitor some parent directory for speedup hints */
2252 /* note that exceeding the hardcoded limit is not a correctness issue, */
2253 /* but an efficiency issue only */
2086 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2254 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2087 { 2255 {
2088 char path [4096]; 2256 char path [4096];
2089 strcpy (path, w->path); 2257 strcpy (path, w->path);
2090 2258
2335 clear_pending (EV_A_ (W)w); 2503 clear_pending (EV_A_ (W)w);
2336 if (expect_false (!ev_is_active (w))) 2504 if (expect_false (!ev_is_active (w)))
2337 return; 2505 return;
2338 2506
2339 { 2507 {
2340 int active = ((W)w)->active; 2508 int active = ev_active (w);
2341 2509
2342 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2510 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2343 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2511 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2344 2512
2345 ev_stop (EV_A_ (W)w); 2513 ev_stop (EV_A_ (W)w);
2346 --idleall; 2514 --idleall;
2347 } 2515 }
2348} 2516}
2365 clear_pending (EV_A_ (W)w); 2533 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w))) 2534 if (expect_false (!ev_is_active (w)))
2367 return; 2535 return;
2368 2536
2369 { 2537 {
2370 int active = ((W)w)->active; 2538 int active = ev_active (w);
2539
2371 prepares [active - 1] = prepares [--preparecnt]; 2540 prepares [active - 1] = prepares [--preparecnt];
2372 ((W)prepares [active - 1])->active = active; 2541 ev_active (prepares [active - 1]) = active;
2373 } 2542 }
2374 2543
2375 ev_stop (EV_A_ (W)w); 2544 ev_stop (EV_A_ (W)w);
2376} 2545}
2377 2546
2392 clear_pending (EV_A_ (W)w); 2561 clear_pending (EV_A_ (W)w);
2393 if (expect_false (!ev_is_active (w))) 2562 if (expect_false (!ev_is_active (w)))
2394 return; 2563 return;
2395 2564
2396 { 2565 {
2397 int active = ((W)w)->active; 2566 int active = ev_active (w);
2567
2398 checks [active - 1] = checks [--checkcnt]; 2568 checks [active - 1] = checks [--checkcnt];
2399 ((W)checks [active - 1])->active = active; 2569 ev_active (checks [active - 1]) = active;
2400 } 2570 }
2401 2571
2402 ev_stop (EV_A_ (W)w); 2572 ev_stop (EV_A_ (W)w);
2403} 2573}
2404 2574
2500 clear_pending (EV_A_ (W)w); 2670 clear_pending (EV_A_ (W)w);
2501 if (expect_false (!ev_is_active (w))) 2671 if (expect_false (!ev_is_active (w)))
2502 return; 2672 return;
2503 2673
2504 { 2674 {
2505 int active = ((W)w)->active; 2675 int active = ev_active (w);
2676
2506 forks [active - 1] = forks [--forkcnt]; 2677 forks [active - 1] = forks [--forkcnt];
2507 ((W)forks [active - 1])->active = active; 2678 ev_active (forks [active - 1]) = active;
2508 } 2679 }
2509 2680
2510 ev_stop (EV_A_ (W)w); 2681 ev_stop (EV_A_ (W)w);
2511} 2682}
2512#endif 2683#endif
2531 clear_pending (EV_A_ (W)w); 2702 clear_pending (EV_A_ (W)w);
2532 if (expect_false (!ev_is_active (w))) 2703 if (expect_false (!ev_is_active (w)))
2533 return; 2704 return;
2534 2705
2535 { 2706 {
2536 int active = ((W)w)->active; 2707 int active = ev_active (w);
2708
2537 asyncs [active - 1] = asyncs [--asynccnt]; 2709 asyncs [active - 1] = asyncs [--asynccnt];
2538 ((W)asyncs [active - 1])->active = active; 2710 ev_active (asyncs [active - 1]) = active;
2539 } 2711 }
2540 2712
2541 ev_stop (EV_A_ (W)w); 2713 ev_stop (EV_A_ (W)w);
2542} 2714}
2543 2715

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines