ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.243 by root, Fri May 9 15:52:13 2008 UTC vs.
Revision 1.252 by root, Thu May 22 03:43:32 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
240#ifndef EV_USE_4HEAP 250#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 251# define EV_USE_4HEAP !EV_MINIMAL
242#endif 252#endif
243 253
244#ifndef EV_HEAP_CACHE_AT 254#ifndef EV_HEAP_CACHE_AT
287} 297}
288# endif 298# endif
289#endif 299#endif
290 300
291/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
292 308
293/* 309/*
294 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
444 typedef struct { 460 typedef struct {
445 ev_tstamp at; 461 ev_tstamp at;
446 WT w; 462 WT w;
447 } ANHE; 463 } ANHE;
448 464
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 465 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 466 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 468#else
453 typedef WT ANHE; 469 typedef WT ANHE;
454 470
455 #define ANHE_w(he) (he) 471 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 472 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 473 #define ANHE_at_cache(he)
458#endif 474#endif
459 475
460#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
461 477
462 struct ev_loop 478 struct ev_loop
802 */ 818 */
803#if EV_USE_4HEAP 819#if EV_USE_4HEAP
804 820
805#define DHEAP 4 821#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807 823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808/* towards the root */ 824#define UPHEAP_DONE(p,k) ((p) == (k))
809void inline_speed
810upheap (ANHE *heap, int k)
811{
812 ANHE he = heap [k];
813
814 for (;;)
815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
821 heap [k] = heap [p];
822 ev_active (ANHE_w (heap [k])) = k;
823 k = p;
824 }
825
826 ev_active (ANHE_w (he)) = k;
827 heap [k] = he;
828}
829 825
830/* away from the root */ 826/* away from the root */
831void inline_speed 827void inline_speed
832downheap (ANHE *heap, int N, int k) 828downheap (ANHE *heap, int N, int k)
833{ 829{
836 832
837 for (;;) 833 for (;;)
838 { 834 {
839 ev_tstamp minat; 835 ev_tstamp minat;
840 ANHE *minpos; 836 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
842 838
843 // find minimum child 839 /* find minimum child */
844 if (expect_true (pos + DHEAP - 1 < E)) 840 if (expect_true (pos + DHEAP - 1 < E))
845 { 841 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 } 846 }
851 else if (pos < E) 847 else if (pos < E)
852 { 848 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 break; 855 break;
860 856
861 if (ANHE_at (he) <= minat) 857 if (ANHE_at (he) <= minat)
862 break; 858 break;
863 859
860 heap [k] = *minpos;
864 ev_active (ANHE_w (*minpos)) = k; 861 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866 862
867 k = minpos - heap; 863 k = minpos - heap;
868 } 864 }
869 865
866 heap [k] = he;
870 ev_active (ANHE_w (he)) = k; 867 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872} 868}
873 869
874#else // 4HEAP 870#else /* 4HEAP */
875 871
876#define HEAP0 1 872#define HEAP0 1
877 873#define HPARENT(k) ((k) >> 1)
878/* towards the root */ 874#define UPHEAP_DONE(p,k) (!(p))
879void inline_speed
880upheap (ANHE *heap, int k)
881{
882 ANHE he = heap [k];
883
884 for (;;)
885 {
886 int p = k >> 1;
887
888 /* maybe we could use a dummy element at heap [0]? */
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break;
891
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900 875
901/* away from the root */ 876/* away from the root */
902void inline_speed 877void inline_speed
903downheap (ANHE *heap, int N, int k) 878downheap (ANHE *heap, int N, int k)
904{ 879{
906 881
907 for (;;) 882 for (;;)
908 { 883 {
909 int c = k << 1; 884 int c = k << 1;
910 885
911 if (c > N) 886 if (c > N + HEAP0 - 1)
912 break; 887 break;
913 888
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0; 890 ? 1 : 0;
916 891
917 if (ANHE_at (he) <= ANHE_at (heap [c])) 892 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break; 893 break;
919 894
926 heap [k] = he; 901 heap [k] = he;
927 ev_active (ANHE_w (he)) = k; 902 ev_active (ANHE_w (he)) = k;
928} 903}
929#endif 904#endif
930 905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
919 heap [k] = heap [p];
920 ev_active (ANHE_w (heap [k])) = k;
921 k = p;
922 }
923
924 heap [k] = he;
925 ev_active (ANHE_w (he)) = k;
926}
927
931void inline_size 928void inline_size
932adjustheap (ANHE *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
933{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
934 upheap (heap, k); 932 upheap (heap, k);
933 else
935 downheap (heap, N, k); 934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
936} 947}
937 948
938/*****************************************************************************/ 949/*****************************************************************************/
939 950
940typedef struct 951typedef struct
1458 1469
1459 postfork = 0; 1470 postfork = 0;
1460} 1471}
1461 1472
1462#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
1474
1463struct ev_loop * 1475struct ev_loop *
1464ev_loop_new (unsigned int flags) 1476ev_loop_new (unsigned int flags)
1465{ 1477{
1466 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1467 1479
1485void 1497void
1486ev_loop_fork (EV_P) 1498ev_loop_fork (EV_P)
1487{ 1499{
1488 postfork = 1; /* must be in line with ev_default_fork */ 1500 postfork = 1; /* must be in line with ev_default_fork */
1489} 1501}
1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idleall >= 0);
1574 assert (idlemax [i] >= idlecnt [i]);
1575 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1576#endif
1577 }
1578
1579#if EV_FORK_ENABLE
1580 assert (forkmax >= forkcnt);
1581 array_verify (EV_A_ (W *)forks, forkcnt);
1582#endif
1583
1584#if EV_ASYNC_ENABLE
1585 assert (asyncmax >= asynccnt);
1586 array_verify (EV_A_ (W *)asyncs, asynccnt);
1587#endif
1588
1589 assert (preparemax >= preparecnt);
1590 array_verify (EV_A_ (W *)prepares, preparecnt);
1591
1592 assert (checkmax >= checkcnt);
1593 array_verify (EV_A_ (W *)checks, checkcnt);
1594
1595# if 0
1596 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1597 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1490#endif 1598# endif
1599#endif
1600}
1601
1602#endif /* multiplicity */
1491 1603
1492#if EV_MULTIPLICITY 1604#if EV_MULTIPLICITY
1493struct ev_loop * 1605struct ev_loop *
1494ev_default_loop_init (unsigned int flags) 1606ev_default_loop_init (unsigned int flags)
1495#else 1607#else
1571 { 1683 {
1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1684 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1573 1685
1574 p->w->pending = 0; 1686 p->w->pending = 0;
1575 EV_CB_INVOKE (p->w, p->events); 1687 EV_CB_INVOKE (p->w, p->events);
1688 EV_FREQUENT_CHECK;
1576 } 1689 }
1577 } 1690 }
1578} 1691}
1579 1692
1580#if EV_IDLE_ENABLE 1693#if EV_IDLE_ENABLE
1601#endif 1714#endif
1602 1715
1603void inline_size 1716void inline_size
1604timers_reify (EV_P) 1717timers_reify (EV_P)
1605{ 1718{
1719 EV_FREQUENT_CHECK;
1720
1606 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now) 1721 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1607 { 1722 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1723 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1609 1724
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1725 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1611 1726
1616 if (ev_at (w) < mn_now) 1731 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now; 1732 ev_at (w) = mn_now;
1618 1733
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1734 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620 1735
1621 ANHE_at_set (timers [HEAP0]); 1736 ANHE_at_cache (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0); 1737 downheap (timers, timercnt, HEAP0);
1623 } 1738 }
1624 else 1739 else
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1740 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 1741
1742 EV_FREQUENT_CHECK;
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1743 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1628 } 1744 }
1629} 1745}
1630 1746
1631#if EV_PERIODIC_ENABLE 1747#if EV_PERIODIC_ENABLE
1632void inline_size 1748void inline_size
1633periodics_reify (EV_P) 1749periodics_reify (EV_P)
1634{ 1750{
1751 EV_FREQUENT_CHECK;
1752
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now) 1753 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1636 { 1754 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1638 1756
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1757 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1640 1758
1641 /* first reschedule or stop timer */ 1759 /* first reschedule or stop timer */
1642 if (w->reschedule_cb) 1760 if (w->reschedule_cb)
1643 { 1761 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1762 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645 1763
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1764 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647 1765
1648 ANHE_at_set (periodics [HEAP0]); 1766 ANHE_at_cache (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0); 1767 downheap (periodics, periodiccnt, HEAP0);
1650 } 1768 }
1651 else if (w->interval) 1769 else if (w->interval)
1652 { 1770 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1771 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1772 /* if next trigger time is not sufficiently in the future, put it there */
1773 /* this might happen because of floating point inexactness */
1654 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1774 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1775 {
1776 ev_at (w) += w->interval;
1655 1777
1656 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1778 /* if interval is unreasonably low we might still have a time in the past */
1779 /* so correct this. this will make the periodic very inexact, but the user */
1780 /* has effectively asked to get triggered more often than possible */
1781 if (ev_at (w) < ev_rt_now)
1782 ev_at (w) = ev_rt_now;
1783 }
1657 1784
1658 ANHE_at_set (periodics [HEAP0]); 1785 ANHE_at_cache (periodics [HEAP0]);
1659 downheap (periodics, periodiccnt, HEAP0); 1786 downheap (periodics, periodiccnt, HEAP0);
1660 } 1787 }
1661 else 1788 else
1662 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1789 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1663 1790
1791 EV_FREQUENT_CHECK;
1664 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1792 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1665 } 1793 }
1666} 1794}
1667 1795
1668static void noinline 1796static void noinline
1678 if (w->reschedule_cb) 1806 if (w->reschedule_cb)
1679 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1807 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1680 else if (w->interval) 1808 else if (w->interval)
1681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1809 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1682 1810
1683 ANHE_at_set (periodics [i]); 1811 ANHE_at_cache (periodics [i]);
1684 } 1812 }
1685 1813
1686 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 1814 reheap (periodics, periodiccnt);
1687 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1688 for (i = 0; i < periodiccnt; ++i)
1689 upheap (periodics, i + HEAP0);
1690} 1815}
1691#endif 1816#endif
1692 1817
1693void inline_speed 1818void inline_speed
1694time_update (EV_P_ ev_tstamp max_block) 1819time_update (EV_P_ ev_tstamp max_block)
1752 /* adjust timers. this is easy, as the offset is the same for all of them */ 1877 /* adjust timers. this is easy, as the offset is the same for all of them */
1753 for (i = 0; i < timercnt; ++i) 1878 for (i = 0; i < timercnt; ++i)
1754 { 1879 {
1755 ANHE *he = timers + i + HEAP0; 1880 ANHE *he = timers + i + HEAP0;
1756 ANHE_w (*he)->at += ev_rt_now - mn_now; 1881 ANHE_w (*he)->at += ev_rt_now - mn_now;
1757 ANHE_at_set (*he); 1882 ANHE_at_cache (*he);
1758 } 1883 }
1759 } 1884 }
1760 1885
1761 mn_now = ev_rt_now; 1886 mn_now = ev_rt_now;
1762 } 1887 }
1783 1908
1784 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1909 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1785 1910
1786 do 1911 do
1787 { 1912 {
1913#if EV_VERIFY >= 2
1914 ev_loop_verify (EV_A);
1915#endif
1916
1788#ifndef _WIN32 1917#ifndef _WIN32
1789 if (expect_false (curpid)) /* penalise the forking check even more */ 1918 if (expect_false (curpid)) /* penalise the forking check even more */
1790 if (expect_false (getpid () != curpid)) 1919 if (expect_false (getpid () != curpid))
1791 { 1920 {
1792 curpid = getpid (); 1921 curpid = getpid ();
1987 if (expect_false (ev_is_active (w))) 2116 if (expect_false (ev_is_active (w)))
1988 return; 2117 return;
1989 2118
1990 assert (("ev_io_start called with negative fd", fd >= 0)); 2119 assert (("ev_io_start called with negative fd", fd >= 0));
1991 2120
2121 EV_FREQUENT_CHECK;
2122
1992 ev_start (EV_A_ (W)w, 1); 2123 ev_start (EV_A_ (W)w, 1);
1993 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2124 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1994 wlist_add (&anfds[fd].head, (WL)w); 2125 wlist_add (&anfds[fd].head, (WL)w);
1995 2126
1996 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2127 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1997 w->events &= ~EV_IOFDSET; 2128 w->events &= ~EV_IOFDSET;
2129
2130 EV_FREQUENT_CHECK;
1998} 2131}
1999 2132
2000void noinline 2133void noinline
2001ev_io_stop (EV_P_ ev_io *w) 2134ev_io_stop (EV_P_ ev_io *w)
2002{ 2135{
2004 if (expect_false (!ev_is_active (w))) 2137 if (expect_false (!ev_is_active (w)))
2005 return; 2138 return;
2006 2139
2007 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2140 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2008 2141
2142 EV_FREQUENT_CHECK;
2143
2009 wlist_del (&anfds[w->fd].head, (WL)w); 2144 wlist_del (&anfds[w->fd].head, (WL)w);
2010 ev_stop (EV_A_ (W)w); 2145 ev_stop (EV_A_ (W)w);
2011 2146
2012 fd_change (EV_A_ w->fd, 1); 2147 fd_change (EV_A_ w->fd, 1);
2148
2149 EV_FREQUENT_CHECK;
2013} 2150}
2014 2151
2015void noinline 2152void noinline
2016ev_timer_start (EV_P_ ev_timer *w) 2153ev_timer_start (EV_P_ ev_timer *w)
2017{ 2154{
2020 2157
2021 ev_at (w) += mn_now; 2158 ev_at (w) += mn_now;
2022 2159
2023 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2024 2161
2162 EV_FREQUENT_CHECK;
2163
2164 ++timercnt;
2025 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2165 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2026 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2166 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2027 ANHE_w (timers [ev_active (w)]) = (WT)w; 2167 ANHE_w (timers [ev_active (w)]) = (WT)w;
2028 ANHE_at_set (timers [ev_active (w)]); 2168 ANHE_at_cache (timers [ev_active (w)]);
2029 upheap (timers, ev_active (w)); 2169 upheap (timers, ev_active (w));
2170
2171 EV_FREQUENT_CHECK;
2030 2172
2031 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2173 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2032} 2174}
2033 2175
2034void noinline 2176void noinline
2036{ 2178{
2037 clear_pending (EV_A_ (W)w); 2179 clear_pending (EV_A_ (W)w);
2038 if (expect_false (!ev_is_active (w))) 2180 if (expect_false (!ev_is_active (w)))
2039 return; 2181 return;
2040 2182
2183 EV_FREQUENT_CHECK;
2184
2041 { 2185 {
2042 int active = ev_active (w); 2186 int active = ev_active (w);
2043 2187
2044 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2188 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2045 2189
2190 --timercnt;
2191
2046 if (expect_true (active < timercnt + HEAP0 - 1)) 2192 if (expect_true (active < timercnt + HEAP0))
2047 { 2193 {
2048 timers [active] = timers [timercnt + HEAP0 - 1]; 2194 timers [active] = timers [timercnt + HEAP0];
2049 adjustheap (timers, timercnt, active); 2195 adjustheap (timers, timercnt, active);
2050 } 2196 }
2051
2052 --timercnt;
2053 } 2197 }
2198
2199 EV_FREQUENT_CHECK;
2054 2200
2055 ev_at (w) -= mn_now; 2201 ev_at (w) -= mn_now;
2056 2202
2057 ev_stop (EV_A_ (W)w); 2203 ev_stop (EV_A_ (W)w);
2058} 2204}
2059 2205
2060void noinline 2206void noinline
2061ev_timer_again (EV_P_ ev_timer *w) 2207ev_timer_again (EV_P_ ev_timer *w)
2062{ 2208{
2209 EV_FREQUENT_CHECK;
2210
2063 if (ev_is_active (w)) 2211 if (ev_is_active (w))
2064 { 2212 {
2065 if (w->repeat) 2213 if (w->repeat)
2066 { 2214 {
2067 ev_at (w) = mn_now + w->repeat; 2215 ev_at (w) = mn_now + w->repeat;
2068 ANHE_at_set (timers [ev_active (w)]); 2216 ANHE_at_cache (timers [ev_active (w)]);
2069 adjustheap (timers, timercnt, ev_active (w)); 2217 adjustheap (timers, timercnt, ev_active (w));
2070 } 2218 }
2071 else 2219 else
2072 ev_timer_stop (EV_A_ w); 2220 ev_timer_stop (EV_A_ w);
2073 } 2221 }
2074 else if (w->repeat) 2222 else if (w->repeat)
2075 { 2223 {
2076 ev_at (w) = w->repeat; 2224 ev_at (w) = w->repeat;
2077 ev_timer_start (EV_A_ w); 2225 ev_timer_start (EV_A_ w);
2078 } 2226 }
2227
2228 EV_FREQUENT_CHECK;
2079} 2229}
2080 2230
2081#if EV_PERIODIC_ENABLE 2231#if EV_PERIODIC_ENABLE
2082void noinline 2232void noinline
2083ev_periodic_start (EV_P_ ev_periodic *w) 2233ev_periodic_start (EV_P_ ev_periodic *w)
2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2244 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 } 2245 }
2096 else 2246 else
2097 ev_at (w) = w->offset; 2247 ev_at (w) = w->offset;
2098 2248
2249 EV_FREQUENT_CHECK;
2250
2251 ++periodiccnt;
2099 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2252 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2100 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2253 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2101 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2254 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2102 ANHE_at_set (periodics [ev_active (w)]); 2255 ANHE_at_cache (periodics [ev_active (w)]);
2103 upheap (periodics, ev_active (w)); 2256 upheap (periodics, ev_active (w));
2257
2258 EV_FREQUENT_CHECK;
2104 2259
2105 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2260 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2106} 2261}
2107 2262
2108void noinline 2263void noinline
2110{ 2265{
2111 clear_pending (EV_A_ (W)w); 2266 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w))) 2267 if (expect_false (!ev_is_active (w)))
2113 return; 2268 return;
2114 2269
2270 EV_FREQUENT_CHECK;
2271
2115 { 2272 {
2116 int active = ev_active (w); 2273 int active = ev_active (w);
2117 2274
2118 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2275 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2119 2276
2277 --periodiccnt;
2278
2120 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2279 if (expect_true (active < periodiccnt + HEAP0))
2121 { 2280 {
2122 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2281 periodics [active] = periodics [periodiccnt + HEAP0];
2123 adjustheap (periodics, periodiccnt, active); 2282 adjustheap (periodics, periodiccnt, active);
2124 } 2283 }
2125
2126 --periodiccnt;
2127 } 2284 }
2285
2286 EV_FREQUENT_CHECK;
2128 2287
2129 ev_stop (EV_A_ (W)w); 2288 ev_stop (EV_A_ (W)w);
2130} 2289}
2131 2290
2132void noinline 2291void noinline
2152 return; 2311 return;
2153 2312
2154 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2313 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2155 2314
2156 evpipe_init (EV_A); 2315 evpipe_init (EV_A);
2316
2317 EV_FREQUENT_CHECK;
2157 2318
2158 { 2319 {
2159#ifndef _WIN32 2320#ifndef _WIN32
2160 sigset_t full, prev; 2321 sigset_t full, prev;
2161 sigfillset (&full); 2322 sigfillset (&full);
2182 sigfillset (&sa.sa_mask); 2343 sigfillset (&sa.sa_mask);
2183 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2344 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2184 sigaction (w->signum, &sa, 0); 2345 sigaction (w->signum, &sa, 0);
2185#endif 2346#endif
2186 } 2347 }
2348
2349 EV_FREQUENT_CHECK;
2187} 2350}
2188 2351
2189void noinline 2352void noinline
2190ev_signal_stop (EV_P_ ev_signal *w) 2353ev_signal_stop (EV_P_ ev_signal *w)
2191{ 2354{
2192 clear_pending (EV_A_ (W)w); 2355 clear_pending (EV_A_ (W)w);
2193 if (expect_false (!ev_is_active (w))) 2356 if (expect_false (!ev_is_active (w)))
2194 return; 2357 return;
2195 2358
2359 EV_FREQUENT_CHECK;
2360
2196 wlist_del (&signals [w->signum - 1].head, (WL)w); 2361 wlist_del (&signals [w->signum - 1].head, (WL)w);
2197 ev_stop (EV_A_ (W)w); 2362 ev_stop (EV_A_ (W)w);
2198 2363
2199 if (!signals [w->signum - 1].head) 2364 if (!signals [w->signum - 1].head)
2200 signal (w->signum, SIG_DFL); 2365 signal (w->signum, SIG_DFL);
2366
2367 EV_FREQUENT_CHECK;
2201} 2368}
2202 2369
2203void 2370void
2204ev_child_start (EV_P_ ev_child *w) 2371ev_child_start (EV_P_ ev_child *w)
2205{ 2372{
2207 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2374 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2208#endif 2375#endif
2209 if (expect_false (ev_is_active (w))) 2376 if (expect_false (ev_is_active (w)))
2210 return; 2377 return;
2211 2378
2379 EV_FREQUENT_CHECK;
2380
2212 ev_start (EV_A_ (W)w, 1); 2381 ev_start (EV_A_ (W)w, 1);
2213 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2382 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2383
2384 EV_FREQUENT_CHECK;
2214} 2385}
2215 2386
2216void 2387void
2217ev_child_stop (EV_P_ ev_child *w) 2388ev_child_stop (EV_P_ ev_child *w)
2218{ 2389{
2219 clear_pending (EV_A_ (W)w); 2390 clear_pending (EV_A_ (W)w);
2220 if (expect_false (!ev_is_active (w))) 2391 if (expect_false (!ev_is_active (w)))
2221 return; 2392 return;
2222 2393
2394 EV_FREQUENT_CHECK;
2395
2223 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2396 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2224 ev_stop (EV_A_ (W)w); 2397 ev_stop (EV_A_ (W)w);
2398
2399 EV_FREQUENT_CHECK;
2225} 2400}
2226 2401
2227#if EV_STAT_ENABLE 2402#if EV_STAT_ENABLE
2228 2403
2229# ifdef _WIN32 2404# ifdef _WIN32
2457 else 2632 else
2458#endif 2633#endif
2459 ev_timer_start (EV_A_ &w->timer); 2634 ev_timer_start (EV_A_ &w->timer);
2460 2635
2461 ev_start (EV_A_ (W)w, 1); 2636 ev_start (EV_A_ (W)w, 1);
2637
2638 EV_FREQUENT_CHECK;
2462} 2639}
2463 2640
2464void 2641void
2465ev_stat_stop (EV_P_ ev_stat *w) 2642ev_stat_stop (EV_P_ ev_stat *w)
2466{ 2643{
2467 clear_pending (EV_A_ (W)w); 2644 clear_pending (EV_A_ (W)w);
2468 if (expect_false (!ev_is_active (w))) 2645 if (expect_false (!ev_is_active (w)))
2469 return; 2646 return;
2470 2647
2648 EV_FREQUENT_CHECK;
2649
2471#if EV_USE_INOTIFY 2650#if EV_USE_INOTIFY
2472 infy_del (EV_A_ w); 2651 infy_del (EV_A_ w);
2473#endif 2652#endif
2474 ev_timer_stop (EV_A_ &w->timer); 2653 ev_timer_stop (EV_A_ &w->timer);
2475 2654
2476 ev_stop (EV_A_ (W)w); 2655 ev_stop (EV_A_ (W)w);
2656
2657 EV_FREQUENT_CHECK;
2477} 2658}
2478#endif 2659#endif
2479 2660
2480#if EV_IDLE_ENABLE 2661#if EV_IDLE_ENABLE
2481void 2662void
2483{ 2664{
2484 if (expect_false (ev_is_active (w))) 2665 if (expect_false (ev_is_active (w)))
2485 return; 2666 return;
2486 2667
2487 pri_adjust (EV_A_ (W)w); 2668 pri_adjust (EV_A_ (W)w);
2669
2670 EV_FREQUENT_CHECK;
2488 2671
2489 { 2672 {
2490 int active = ++idlecnt [ABSPRI (w)]; 2673 int active = ++idlecnt [ABSPRI (w)];
2491 2674
2492 ++idleall; 2675 ++idleall;
2493 ev_start (EV_A_ (W)w, active); 2676 ev_start (EV_A_ (W)w, active);
2494 2677
2495 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2678 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2496 idles [ABSPRI (w)][active - 1] = w; 2679 idles [ABSPRI (w)][active - 1] = w;
2497 } 2680 }
2681
2682 EV_FREQUENT_CHECK;
2498} 2683}
2499 2684
2500void 2685void
2501ev_idle_stop (EV_P_ ev_idle *w) 2686ev_idle_stop (EV_P_ ev_idle *w)
2502{ 2687{
2503 clear_pending (EV_A_ (W)w); 2688 clear_pending (EV_A_ (W)w);
2504 if (expect_false (!ev_is_active (w))) 2689 if (expect_false (!ev_is_active (w)))
2505 return; 2690 return;
2506 2691
2692 EV_FREQUENT_CHECK;
2693
2507 { 2694 {
2508 int active = ev_active (w); 2695 int active = ev_active (w);
2509 2696
2510 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2697 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2511 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2698 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2512 2699
2513 ev_stop (EV_A_ (W)w); 2700 ev_stop (EV_A_ (W)w);
2514 --idleall; 2701 --idleall;
2515 } 2702 }
2703
2704 EV_FREQUENT_CHECK;
2516} 2705}
2517#endif 2706#endif
2518 2707
2519void 2708void
2520ev_prepare_start (EV_P_ ev_prepare *w) 2709ev_prepare_start (EV_P_ ev_prepare *w)
2521{ 2710{
2522 if (expect_false (ev_is_active (w))) 2711 if (expect_false (ev_is_active (w)))
2523 return; 2712 return;
2713
2714 EV_FREQUENT_CHECK;
2524 2715
2525 ev_start (EV_A_ (W)w, ++preparecnt); 2716 ev_start (EV_A_ (W)w, ++preparecnt);
2526 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2717 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2527 prepares [preparecnt - 1] = w; 2718 prepares [preparecnt - 1] = w;
2719
2720 EV_FREQUENT_CHECK;
2528} 2721}
2529 2722
2530void 2723void
2531ev_prepare_stop (EV_P_ ev_prepare *w) 2724ev_prepare_stop (EV_P_ ev_prepare *w)
2532{ 2725{
2533 clear_pending (EV_A_ (W)w); 2726 clear_pending (EV_A_ (W)w);
2534 if (expect_false (!ev_is_active (w))) 2727 if (expect_false (!ev_is_active (w)))
2535 return; 2728 return;
2536 2729
2730 EV_FREQUENT_CHECK;
2731
2537 { 2732 {
2538 int active = ev_active (w); 2733 int active = ev_active (w);
2539 2734
2540 prepares [active - 1] = prepares [--preparecnt]; 2735 prepares [active - 1] = prepares [--preparecnt];
2541 ev_active (prepares [active - 1]) = active; 2736 ev_active (prepares [active - 1]) = active;
2542 } 2737 }
2543 2738
2544 ev_stop (EV_A_ (W)w); 2739 ev_stop (EV_A_ (W)w);
2740
2741 EV_FREQUENT_CHECK;
2545} 2742}
2546 2743
2547void 2744void
2548ev_check_start (EV_P_ ev_check *w) 2745ev_check_start (EV_P_ ev_check *w)
2549{ 2746{
2550 if (expect_false (ev_is_active (w))) 2747 if (expect_false (ev_is_active (w)))
2551 return; 2748 return;
2749
2750 EV_FREQUENT_CHECK;
2552 2751
2553 ev_start (EV_A_ (W)w, ++checkcnt); 2752 ev_start (EV_A_ (W)w, ++checkcnt);
2554 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2753 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2555 checks [checkcnt - 1] = w; 2754 checks [checkcnt - 1] = w;
2755
2756 EV_FREQUENT_CHECK;
2556} 2757}
2557 2758
2558void 2759void
2559ev_check_stop (EV_P_ ev_check *w) 2760ev_check_stop (EV_P_ ev_check *w)
2560{ 2761{
2561 clear_pending (EV_A_ (W)w); 2762 clear_pending (EV_A_ (W)w);
2562 if (expect_false (!ev_is_active (w))) 2763 if (expect_false (!ev_is_active (w)))
2563 return; 2764 return;
2564 2765
2766 EV_FREQUENT_CHECK;
2767
2565 { 2768 {
2566 int active = ev_active (w); 2769 int active = ev_active (w);
2567 2770
2568 checks [active - 1] = checks [--checkcnt]; 2771 checks [active - 1] = checks [--checkcnt];
2569 ev_active (checks [active - 1]) = active; 2772 ev_active (checks [active - 1]) = active;
2570 } 2773 }
2571 2774
2572 ev_stop (EV_A_ (W)w); 2775 ev_stop (EV_A_ (W)w);
2776
2777 EV_FREQUENT_CHECK;
2573} 2778}
2574 2779
2575#if EV_EMBED_ENABLE 2780#if EV_EMBED_ENABLE
2576void noinline 2781void noinline
2577ev_embed_sweep (EV_P_ ev_embed *w) 2782ev_embed_sweep (EV_P_ ev_embed *w)
2624 struct ev_loop *loop = w->other; 2829 struct ev_loop *loop = w->other;
2625 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2830 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2626 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2831 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2627 } 2832 }
2628 2833
2834 EV_FREQUENT_CHECK;
2835
2629 ev_set_priority (&w->io, ev_priority (w)); 2836 ev_set_priority (&w->io, ev_priority (w));
2630 ev_io_start (EV_A_ &w->io); 2837 ev_io_start (EV_A_ &w->io);
2631 2838
2632 ev_prepare_init (&w->prepare, embed_prepare_cb); 2839 ev_prepare_init (&w->prepare, embed_prepare_cb);
2633 ev_set_priority (&w->prepare, EV_MINPRI); 2840 ev_set_priority (&w->prepare, EV_MINPRI);
2634 ev_prepare_start (EV_A_ &w->prepare); 2841 ev_prepare_start (EV_A_ &w->prepare);
2635 2842
2636 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2843 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2637 2844
2638 ev_start (EV_A_ (W)w, 1); 2845 ev_start (EV_A_ (W)w, 1);
2846
2847 EV_FREQUENT_CHECK;
2639} 2848}
2640 2849
2641void 2850void
2642ev_embed_stop (EV_P_ ev_embed *w) 2851ev_embed_stop (EV_P_ ev_embed *w)
2643{ 2852{
2644 clear_pending (EV_A_ (W)w); 2853 clear_pending (EV_A_ (W)w);
2645 if (expect_false (!ev_is_active (w))) 2854 if (expect_false (!ev_is_active (w)))
2646 return; 2855 return;
2647 2856
2857 EV_FREQUENT_CHECK;
2858
2648 ev_io_stop (EV_A_ &w->io); 2859 ev_io_stop (EV_A_ &w->io);
2649 ev_prepare_stop (EV_A_ &w->prepare); 2860 ev_prepare_stop (EV_A_ &w->prepare);
2650 2861
2651 ev_stop (EV_A_ (W)w); 2862 ev_stop (EV_A_ (W)w);
2863
2864 EV_FREQUENT_CHECK;
2652} 2865}
2653#endif 2866#endif
2654 2867
2655#if EV_FORK_ENABLE 2868#if EV_FORK_ENABLE
2656void 2869void
2657ev_fork_start (EV_P_ ev_fork *w) 2870ev_fork_start (EV_P_ ev_fork *w)
2658{ 2871{
2659 if (expect_false (ev_is_active (w))) 2872 if (expect_false (ev_is_active (w)))
2660 return; 2873 return;
2874
2875 EV_FREQUENT_CHECK;
2661 2876
2662 ev_start (EV_A_ (W)w, ++forkcnt); 2877 ev_start (EV_A_ (W)w, ++forkcnt);
2663 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2878 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2664 forks [forkcnt - 1] = w; 2879 forks [forkcnt - 1] = w;
2880
2881 EV_FREQUENT_CHECK;
2665} 2882}
2666 2883
2667void 2884void
2668ev_fork_stop (EV_P_ ev_fork *w) 2885ev_fork_stop (EV_P_ ev_fork *w)
2669{ 2886{
2670 clear_pending (EV_A_ (W)w); 2887 clear_pending (EV_A_ (W)w);
2671 if (expect_false (!ev_is_active (w))) 2888 if (expect_false (!ev_is_active (w)))
2672 return; 2889 return;
2673 2890
2891 EV_FREQUENT_CHECK;
2892
2674 { 2893 {
2675 int active = ev_active (w); 2894 int active = ev_active (w);
2676 2895
2677 forks [active - 1] = forks [--forkcnt]; 2896 forks [active - 1] = forks [--forkcnt];
2678 ev_active (forks [active - 1]) = active; 2897 ev_active (forks [active - 1]) = active;
2679 } 2898 }
2680 2899
2681 ev_stop (EV_A_ (W)w); 2900 ev_stop (EV_A_ (W)w);
2901
2902 EV_FREQUENT_CHECK;
2682} 2903}
2683#endif 2904#endif
2684 2905
2685#if EV_ASYNC_ENABLE 2906#if EV_ASYNC_ENABLE
2686void 2907void
2688{ 2909{
2689 if (expect_false (ev_is_active (w))) 2910 if (expect_false (ev_is_active (w)))
2690 return; 2911 return;
2691 2912
2692 evpipe_init (EV_A); 2913 evpipe_init (EV_A);
2914
2915 EV_FREQUENT_CHECK;
2693 2916
2694 ev_start (EV_A_ (W)w, ++asynccnt); 2917 ev_start (EV_A_ (W)w, ++asynccnt);
2695 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2918 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2696 asyncs [asynccnt - 1] = w; 2919 asyncs [asynccnt - 1] = w;
2920
2921 EV_FREQUENT_CHECK;
2697} 2922}
2698 2923
2699void 2924void
2700ev_async_stop (EV_P_ ev_async *w) 2925ev_async_stop (EV_P_ ev_async *w)
2701{ 2926{
2702 clear_pending (EV_A_ (W)w); 2927 clear_pending (EV_A_ (W)w);
2703 if (expect_false (!ev_is_active (w))) 2928 if (expect_false (!ev_is_active (w)))
2704 return; 2929 return;
2705 2930
2931 EV_FREQUENT_CHECK;
2932
2706 { 2933 {
2707 int active = ev_active (w); 2934 int active = ev_active (w);
2708 2935
2709 asyncs [active - 1] = asyncs [--asynccnt]; 2936 asyncs [active - 1] = asyncs [--asynccnt];
2710 ev_active (asyncs [active - 1]) = active; 2937 ev_active (asyncs [active - 1]) = active;
2711 } 2938 }
2712 2939
2713 ev_stop (EV_A_ (W)w); 2940 ev_stop (EV_A_ (W)w);
2941
2942 EV_FREQUENT_CHECK;
2714} 2943}
2715 2944
2716void 2945void
2717ev_async_send (EV_P_ ev_async *w) 2946ev_async_send (EV_P_ ev_async *w)
2718{ 2947{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines