ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.243 by root, Fri May 9 15:52:13 2008 UTC vs.
Revision 1.304 by root, Sun Jul 19 03:12:28 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
136#include <fcntl.h> 158#include <fcntl.h>
154#ifndef _WIN32 176#ifndef _WIN32
155# include <sys/time.h> 177# include <sys/time.h>
156# include <sys/wait.h> 178# include <sys/wait.h>
157# include <unistd.h> 179# include <unistd.h>
158#else 180#else
181# include <io.h>
159# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 183# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
163# endif 186# endif
164#endif 187#endif
165 188
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
167 190
191#ifndef EV_USE_CLOCK_SYSCALL
192# if __linux && __GLIBC__ >= 2
193# define EV_USE_CLOCK_SYSCALL 1
194# else
195# define EV_USE_CLOCK_SYSCALL 0
196# endif
197#endif
198
168#ifndef EV_USE_MONOTONIC 199#ifndef EV_USE_MONOTONIC
200# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
201# define EV_USE_MONOTONIC 1
202# else
169# define EV_USE_MONOTONIC 0 203# define EV_USE_MONOTONIC 0
204# endif
170#endif 205#endif
171 206
172#ifndef EV_USE_REALTIME 207#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 208# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 209#endif
175 210
176#ifndef EV_USE_NANOSLEEP 211#ifndef EV_USE_NANOSLEEP
212# if _POSIX_C_SOURCE >= 199309L
213# define EV_USE_NANOSLEEP 1
214# else
177# define EV_USE_NANOSLEEP 0 215# define EV_USE_NANOSLEEP 0
216# endif
178#endif 217#endif
179 218
180#ifndef EV_USE_SELECT 219#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 220# define EV_USE_SELECT 1
182#endif 221#endif
235# else 274# else
236# define EV_USE_EVENTFD 0 275# define EV_USE_EVENTFD 0
237# endif 276# endif
238#endif 277#endif
239 278
279#ifndef EV_USE_SIGNALFD
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
281# define EV_USE_SIGNALFD 1
282# else
283# define EV_USE_SIGNALFD 0
284# endif
285#endif
286
287#if 0 /* debugging */
288# define EV_VERIFY 3
289# define EV_USE_4HEAP 1
290# define EV_HEAP_CACHE_AT 1
291#endif
292
293#ifndef EV_VERIFY
294# define EV_VERIFY !EV_MINIMAL
295#endif
296
240#ifndef EV_USE_4HEAP 297#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 298# define EV_USE_4HEAP !EV_MINIMAL
242#endif 299#endif
243 300
244#ifndef EV_HEAP_CACHE_AT 301#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 302# define EV_HEAP_CACHE_AT !EV_MINIMAL
303#endif
304
305/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
306/* which makes programs even slower. might work on other unices, too. */
307#if EV_USE_CLOCK_SYSCALL
308# include <syscall.h>
309# ifdef SYS_clock_gettime
310# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
311# undef EV_USE_MONOTONIC
312# define EV_USE_MONOTONIC 1
313# else
314# undef EV_USE_CLOCK_SYSCALL
315# define EV_USE_CLOCK_SYSCALL 0
316# endif
246#endif 317#endif
247 318
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 319/* this block fixes any misconfiguration where we know we run into trouble otherwise */
249 320
250#ifndef CLOCK_MONOTONIC 321#ifndef CLOCK_MONOTONIC
267# include <sys/select.h> 338# include <sys/select.h>
268# endif 339# endif
269#endif 340#endif
270 341
271#if EV_USE_INOTIFY 342#if EV_USE_INOTIFY
343# include <sys/utsname.h>
344# include <sys/statfs.h>
272# include <sys/inotify.h> 345# include <sys/inotify.h>
346/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
347# ifndef IN_DONT_FOLLOW
348# undef EV_USE_INOTIFY
349# define EV_USE_INOTIFY 0
350# endif
273#endif 351#endif
274 352
275#if EV_SELECT_IS_WINSOCKET 353#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h> 354# include <winsock.h>
277#endif 355#endif
278 356
279#if EV_USE_EVENTFD 357#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 358/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 359# include <stdint.h>
360# ifndef EFD_NONBLOCK
361# define EFD_NONBLOCK O_NONBLOCK
362# endif
363# ifndef EFD_CLOEXEC
364# define EFD_CLOEXEC O_CLOEXEC
365# endif
282# ifdef __cplusplus 366# ifdef __cplusplus
283extern "C" { 367extern "C" {
284# endif 368# endif
285int eventfd (unsigned int initval, int flags); 369int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus 370# ifdef __cplusplus
287} 371}
288# endif 372# endif
289#endif 373#endif
290 374
375#if EV_USE_SIGNALFD
376# include <sys/signalfd.h>
377#endif
378
291/**/ 379/**/
380
381#if EV_VERIFY >= 3
382# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
383#else
384# define EV_FREQUENT_CHECK do { } while (0)
385#endif
292 386
293/* 387/*
294 * This is used to avoid floating point rounding problems. 388 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics 389 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding 390 * to ensure progress, time-wise, even when rounding
323# define inline_speed static noinline 417# define inline_speed static noinline
324#else 418#else
325# define inline_speed static inline 419# define inline_speed static inline
326#endif 420#endif
327 421
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 422#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
423
424#if EV_MINPRI == EV_MAXPRI
425# define ABSPRI(w) (((W)w), 0)
426#else
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 427# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
428#endif
330 429
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 430#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 431#define EMPTY2(a,b) /* used to suppress some warnings */
333 432
334typedef ev_watcher *W; 433typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 435typedef ev_watcher_time *WT;
337 436
338#define ev_active(w) ((W)(w))->active 437#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 438#define ev_at(w) ((WT)(w))->at
340 439
341#if EV_USE_MONOTONIC 440#if EV_USE_REALTIME
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 441/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */ 442/* giving it a reasonably high chance of working on typical architetcures */
443static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
444#endif
445
446#if EV_USE_MONOTONIC
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 447static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
345#endif 448#endif
346 449
347#ifdef _WIN32 450#ifdef _WIN32
348# include "ev_win32.c" 451# include "ev_win32.c"
357{ 460{
358 syserr_cb = cb; 461 syserr_cb = cb;
359} 462}
360 463
361static void noinline 464static void noinline
362syserr (const char *msg) 465ev_syserr (const char *msg)
363{ 466{
364 if (!msg) 467 if (!msg)
365 msg = "(libev) system error"; 468 msg = "(libev) system error";
366 469
367 if (syserr_cb) 470 if (syserr_cb)
413#define ev_malloc(size) ev_realloc (0, (size)) 516#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 517#define ev_free(ptr) ev_realloc ((ptr), 0)
415 518
416/*****************************************************************************/ 519/*****************************************************************************/
417 520
521/* set in reify when reification needed */
522#define EV_ANFD_REIFY 1
523
524/* file descriptor info structure */
418typedef struct 525typedef struct
419{ 526{
420 WL head; 527 WL head;
421 unsigned char events; 528 unsigned char events; /* the events watched for */
529 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
530 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 531 unsigned char unused;
532#if EV_USE_EPOLL
533 unsigned int egen; /* generation counter to counter epoll bugs */
534#endif
423#if EV_SELECT_IS_WINSOCKET 535#if EV_SELECT_IS_WINSOCKET
424 SOCKET handle; 536 SOCKET handle;
425#endif 537#endif
426} ANFD; 538} ANFD;
427 539
540/* stores the pending event set for a given watcher */
428typedef struct 541typedef struct
429{ 542{
430 W w; 543 W w;
431 int events; 544 int events; /* the pending event set for the given watcher */
432} ANPENDING; 545} ANPENDING;
433 546
434#if EV_USE_INOTIFY 547#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 548/* hash table entry per inotify-id */
436typedef struct 549typedef struct
439} ANFS; 552} ANFS;
440#endif 553#endif
441 554
442/* Heap Entry */ 555/* Heap Entry */
443#if EV_HEAP_CACHE_AT 556#if EV_HEAP_CACHE_AT
557 /* a heap element */
444 typedef struct { 558 typedef struct {
445 ev_tstamp at; 559 ev_tstamp at;
446 WT w; 560 WT w;
447 } ANHE; 561 } ANHE;
448 562
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 563 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 564 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 565 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 566#else
567 /* a heap element */
453 typedef WT ANHE; 568 typedef WT ANHE;
454 569
455 #define ANHE_w(he) (he) 570 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 571 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 572 #define ANHE_at_cache(he)
458#endif 573#endif
459 574
460#if EV_MULTIPLICITY 575#if EV_MULTIPLICITY
461 576
462 struct ev_loop 577 struct ev_loop
481 596
482 static int ev_default_loop_ptr; 597 static int ev_default_loop_ptr;
483 598
484#endif 599#endif
485 600
601#if EV_MINIMAL < 2
602# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
603# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
604# define EV_INVOKE_PENDING invoke_cb (EV_A)
605#else
606# define EV_RELEASE_CB (void)0
607# define EV_ACQUIRE_CB (void)0
608# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
609#endif
610
611#define EVUNLOOP_RECURSE 0x80
612
486/*****************************************************************************/ 613/*****************************************************************************/
487 614
615#ifndef EV_HAVE_EV_TIME
488ev_tstamp 616ev_tstamp
489ev_time (void) 617ev_time (void)
490{ 618{
491#if EV_USE_REALTIME 619#if EV_USE_REALTIME
620 if (expect_true (have_realtime))
621 {
492 struct timespec ts; 622 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 623 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 624 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 625 }
626#endif
627
496 struct timeval tv; 628 struct timeval tv;
497 gettimeofday (&tv, 0); 629 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 630 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 631}
632#endif
501 633
502ev_tstamp inline_size 634inline_size ev_tstamp
503get_clock (void) 635get_clock (void)
504{ 636{
505#if EV_USE_MONOTONIC 637#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 638 if (expect_true (have_monotonic))
507 { 639 {
540 struct timeval tv; 672 struct timeval tv;
541 673
542 tv.tv_sec = (time_t)delay; 674 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 675 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544 676
677 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
678 /* something not guaranteed by newer posix versions, but guaranteed */
679 /* by older ones */
545 select (0, 0, 0, 0, &tv); 680 select (0, 0, 0, 0, &tv);
546#endif 681#endif
547 } 682 }
548} 683}
549 684
550/*****************************************************************************/ 685/*****************************************************************************/
551 686
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 687#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 688
554int inline_size 689/* find a suitable new size for the given array, */
690/* hopefully by rounding to a ncie-to-malloc size */
691inline_size int
555array_nextsize (int elem, int cur, int cnt) 692array_nextsize (int elem, int cur, int cnt)
556{ 693{
557 int ncur = cur + 1; 694 int ncur = cur + 1;
558 695
559 do 696 do
576array_realloc (int elem, void *base, int *cur, int cnt) 713array_realloc (int elem, void *base, int *cur, int cnt)
577{ 714{
578 *cur = array_nextsize (elem, *cur, cnt); 715 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 716 return ev_realloc (base, elem * *cur);
580} 717}
718
719#define array_init_zero(base,count) \
720 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 721
582#define array_needsize(type,base,cur,cnt,init) \ 722#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 723 if (expect_false ((cnt) > (cur))) \
584 { \ 724 { \
585 int ocur_ = (cur); \ 725 int ocur_ = (cur); \
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 737 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 738 }
599#endif 739#endif
600 740
601#define array_free(stem, idx) \ 741#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 742 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 743
604/*****************************************************************************/ 744/*****************************************************************************/
745
746/* dummy callback for pending events */
747static void noinline
748pendingcb (EV_P_ ev_prepare *w, int revents)
749{
750}
605 751
606void noinline 752void noinline
607ev_feed_event (EV_P_ void *w, int revents) 753ev_feed_event (EV_P_ void *w, int revents)
608{ 754{
609 W w_ = (W)w; 755 W w_ = (W)w;
618 pendings [pri][w_->pending - 1].w = w_; 764 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 765 pendings [pri][w_->pending - 1].events = revents;
620 } 766 }
621} 767}
622 768
623void inline_speed 769inline_speed void
770feed_reverse (EV_P_ W w)
771{
772 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
773 rfeeds [rfeedcnt++] = w;
774}
775
776inline_size void
777feed_reverse_done (EV_P_ int revents)
778{
779 do
780 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
781 while (rfeedcnt);
782}
783
784inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 785queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 786{
626 int i; 787 int i;
627 788
628 for (i = 0; i < eventcnt; ++i) 789 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 790 ev_feed_event (EV_A_ events [i], type);
630} 791}
631 792
632/*****************************************************************************/ 793/*****************************************************************************/
633 794
634void inline_size 795inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 796fd_event_nc (EV_P_ int fd, int revents)
649{ 797{
650 ANFD *anfd = anfds + fd; 798 ANFD *anfd = anfds + fd;
651 ev_io *w; 799 ev_io *w;
652 800
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 801 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 805 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 806 ev_feed_event (EV_A_ (W)w, ev);
659 } 807 }
660} 808}
661 809
810/* do not submit kernel events for fds that have reify set */
811/* because that means they changed while we were polling for new events */
812inline_speed void
813fd_event (EV_P_ int fd, int revents)
814{
815 ANFD *anfd = anfds + fd;
816
817 if (expect_true (!anfd->reify))
818 fd_event_nc (EV_A_ fd, revents);
819}
820
662void 821void
663ev_feed_fd_event (EV_P_ int fd, int revents) 822ev_feed_fd_event (EV_P_ int fd, int revents)
664{ 823{
665 if (fd >= 0 && fd < anfdmax) 824 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 825 fd_event_nc (EV_A_ fd, revents);
667} 826}
668 827
669void inline_size 828/* make sure the external fd watch events are in-sync */
829/* with the kernel/libev internal state */
830inline_size void
670fd_reify (EV_P) 831fd_reify (EV_P)
671{ 832{
672 int i; 833 int i;
673 834
674 for (i = 0; i < fdchangecnt; ++i) 835 for (i = 0; i < fdchangecnt; ++i)
683 events |= (unsigned char)w->events; 844 events |= (unsigned char)w->events;
684 845
685#if EV_SELECT_IS_WINSOCKET 846#if EV_SELECT_IS_WINSOCKET
686 if (events) 847 if (events)
687 { 848 {
688 unsigned long argp; 849 unsigned long arg;
689 #ifdef EV_FD_TO_WIN32_HANDLE 850 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 851 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else 852 #else
692 anfd->handle = _get_osfhandle (fd); 853 anfd->handle = _get_osfhandle (fd);
693 #endif 854 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 855 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
695 } 856 }
696#endif 857#endif
697 858
698 { 859 {
699 unsigned char o_events = anfd->events; 860 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify; 861 unsigned char o_reify = anfd->reify;
701 862
702 anfd->reify = 0; 863 anfd->reify = 0;
703 anfd->events = events; 864 anfd->events = events;
704 865
705 if (o_events != events || o_reify & EV_IOFDSET) 866 if (o_events != events || o_reify & EV__IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 867 backend_modify (EV_A_ fd, o_events, events);
707 } 868 }
708 } 869 }
709 870
710 fdchangecnt = 0; 871 fdchangecnt = 0;
711} 872}
712 873
713void inline_size 874/* something about the given fd changed */
875inline_size void
714fd_change (EV_P_ int fd, int flags) 876fd_change (EV_P_ int fd, int flags)
715{ 877{
716 unsigned char reify = anfds [fd].reify; 878 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 879 anfds [fd].reify |= flags;
718 880
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 884 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 885 fdchanges [fdchangecnt - 1] = fd;
724 } 886 }
725} 887}
726 888
727void inline_speed 889/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
890inline_speed void
728fd_kill (EV_P_ int fd) 891fd_kill (EV_P_ int fd)
729{ 892{
730 ev_io *w; 893 ev_io *w;
731 894
732 while ((w = (ev_io *)anfds [fd].head)) 895 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 897 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 898 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 899 }
737} 900}
738 901
739int inline_size 902/* check whether the given fd is atcually valid, for error recovery */
903inline_size int
740fd_valid (int fd) 904fd_valid (int fd)
741{ 905{
742#ifdef _WIN32 906#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 907 return _get_osfhandle (fd) != -1;
744#else 908#else
752{ 916{
753 int fd; 917 int fd;
754 918
755 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 920 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 921 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 922 fd_kill (EV_A_ fd);
759} 923}
760 924
761/* called on ENOMEM in select/poll to kill some fds and retry */ 925/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 926static void noinline
780 944
781 for (fd = 0; fd < anfdmax; ++fd) 945 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 946 if (anfds [fd].events)
783 { 947 {
784 anfds [fd].events = 0; 948 anfds [fd].events = 0;
949 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 950 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 951 }
787} 952}
788 953
789/*****************************************************************************/ 954/*****************************************************************************/
790 955
802 */ 967 */
803#if EV_USE_4HEAP 968#if EV_USE_4HEAP
804 969
805#define DHEAP 4 970#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 971#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807 972#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808/* towards the root */ 973#define UPHEAP_DONE(p,k) ((p) == (k))
809void inline_speed
810upheap (ANHE *heap, int k)
811{
812 ANHE he = heap [k];
813
814 for (;;)
815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
821 heap [k] = heap [p];
822 ev_active (ANHE_w (heap [k])) = k;
823 k = p;
824 }
825
826 ev_active (ANHE_w (he)) = k;
827 heap [k] = he;
828}
829 974
830/* away from the root */ 975/* away from the root */
831void inline_speed 976inline_speed void
832downheap (ANHE *heap, int N, int k) 977downheap (ANHE *heap, int N, int k)
833{ 978{
834 ANHE he = heap [k]; 979 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0; 980 ANHE *E = heap + N + HEAP0;
836 981
837 for (;;) 982 for (;;)
838 { 983 {
839 ev_tstamp minat; 984 ev_tstamp minat;
840 ANHE *minpos; 985 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 986 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
842 987
843 // find minimum child 988 /* find minimum child */
844 if (expect_true (pos + DHEAP - 1 < E)) 989 if (expect_true (pos + DHEAP - 1 < E))
845 { 990 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 991 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 992 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 993 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 994 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 } 995 }
851 else if (pos < E) 996 else if (pos < E)
852 { 997 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 998 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 999 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 break; 1004 break;
860 1005
861 if (ANHE_at (he) <= minat) 1006 if (ANHE_at (he) <= minat)
862 break; 1007 break;
863 1008
1009 heap [k] = *minpos;
864 ev_active (ANHE_w (*minpos)) = k; 1010 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866 1011
867 k = minpos - heap; 1012 k = minpos - heap;
868 } 1013 }
869 1014
1015 heap [k] = he;
870 ev_active (ANHE_w (he)) = k; 1016 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872} 1017}
873 1018
874#else // 4HEAP 1019#else /* 4HEAP */
875 1020
876#define HEAP0 1 1021#define HEAP0 1
1022#define HPARENT(k) ((k) >> 1)
1023#define UPHEAP_DONE(p,k) (!(p))
877 1024
878/* towards the root */ 1025/* away from the root */
879void inline_speed 1026inline_speed void
880upheap (ANHE *heap, int k) 1027downheap (ANHE *heap, int N, int k)
881{ 1028{
882 ANHE he = heap [k]; 1029 ANHE he = heap [k];
883 1030
884 for (;;) 1031 for (;;)
885 { 1032 {
886 int p = k >> 1; 1033 int c = k << 1;
887 1034
888 /* maybe we could use a dummy element at heap [0]? */ 1035 if (c > N + HEAP0 - 1)
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break; 1036 break;
891 1037
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1038 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0; 1039 ? 1 : 0;
916 1040
917 if (ANHE_at (he) <= ANHE_at (heap [c])) 1041 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break; 1042 break;
919 1043
926 heap [k] = he; 1050 heap [k] = he;
927 ev_active (ANHE_w (he)) = k; 1051 ev_active (ANHE_w (he)) = k;
928} 1052}
929#endif 1053#endif
930 1054
931void inline_size 1055/* towards the root */
1056inline_speed void
1057upheap (ANHE *heap, int k)
1058{
1059 ANHE he = heap [k];
1060
1061 for (;;)
1062 {
1063 int p = HPARENT (k);
1064
1065 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1066 break;
1067
1068 heap [k] = heap [p];
1069 ev_active (ANHE_w (heap [k])) = k;
1070 k = p;
1071 }
1072
1073 heap [k] = he;
1074 ev_active (ANHE_w (he)) = k;
1075}
1076
1077/* move an element suitably so it is in a correct place */
1078inline_size void
932adjustheap (ANHE *heap, int N, int k) 1079adjustheap (ANHE *heap, int N, int k)
933{ 1080{
1081 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
934 upheap (heap, k); 1082 upheap (heap, k);
1083 else
935 downheap (heap, N, k); 1084 downheap (heap, N, k);
1085}
1086
1087/* rebuild the heap: this function is used only once and executed rarely */
1088inline_size void
1089reheap (ANHE *heap, int N)
1090{
1091 int i;
1092
1093 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1094 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1095 for (i = 0; i < N; ++i)
1096 upheap (heap, i + HEAP0);
936} 1097}
937 1098
938/*****************************************************************************/ 1099/*****************************************************************************/
939 1100
1101/* associate signal watchers to a signal signal */
940typedef struct 1102typedef struct
941{ 1103{
942 WL head; 1104 WL head;
943 EV_ATOMIC_T gotsig; 1105 EV_ATOMIC_T gotsig;
944} ANSIG; 1106} ANSIG;
946static ANSIG *signals; 1108static ANSIG *signals;
947static int signalmax; 1109static int signalmax;
948 1110
949static EV_ATOMIC_T gotsig; 1111static EV_ATOMIC_T gotsig;
950 1112
951void inline_size
952signals_init (ANSIG *base, int count)
953{
954 while (count--)
955 {
956 base->head = 0;
957 base->gotsig = 0;
958
959 ++base;
960 }
961}
962
963/*****************************************************************************/ 1113/*****************************************************************************/
964 1114
965void inline_speed 1115/* used to prepare libev internal fd's */
1116/* this is not fork-safe */
1117inline_speed void
966fd_intern (int fd) 1118fd_intern (int fd)
967{ 1119{
968#ifdef _WIN32 1120#ifdef _WIN32
969 int arg = 1; 1121 unsigned long arg = 1;
970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1122 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
971#else 1123#else
972 fcntl (fd, F_SETFD, FD_CLOEXEC); 1124 fcntl (fd, F_SETFD, FD_CLOEXEC);
973 fcntl (fd, F_SETFL, O_NONBLOCK); 1125 fcntl (fd, F_SETFL, O_NONBLOCK);
974#endif 1126#endif
975} 1127}
976 1128
977static void noinline 1129static void noinline
978evpipe_init (EV_P) 1130evpipe_init (EV_P)
979{ 1131{
980 if (!ev_is_active (&pipeev)) 1132 if (!ev_is_active (&pipe_w))
981 { 1133 {
982#if EV_USE_EVENTFD 1134#if EV_USE_EVENTFD
1135 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1136 if (evfd < 0 && errno == EINVAL)
983 if ((evfd = eventfd (0, 0)) >= 0) 1137 evfd = eventfd (0, 0);
1138
1139 if (evfd >= 0)
984 { 1140 {
985 evpipe [0] = -1; 1141 evpipe [0] = -1;
986 fd_intern (evfd); 1142 fd_intern (evfd); /* doing it twice doesn't hurt */
987 ev_io_set (&pipeev, evfd, EV_READ); 1143 ev_io_set (&pipe_w, evfd, EV_READ);
988 } 1144 }
989 else 1145 else
990#endif 1146#endif
991 { 1147 {
992 while (pipe (evpipe)) 1148 while (pipe (evpipe))
993 syserr ("(libev) error creating signal/async pipe"); 1149 ev_syserr ("(libev) error creating signal/async pipe");
994 1150
995 fd_intern (evpipe [0]); 1151 fd_intern (evpipe [0]);
996 fd_intern (evpipe [1]); 1152 fd_intern (evpipe [1]);
997 ev_io_set (&pipeev, evpipe [0], EV_READ); 1153 ev_io_set (&pipe_w, evpipe [0], EV_READ);
998 } 1154 }
999 1155
1000 ev_io_start (EV_A_ &pipeev); 1156 ev_io_start (EV_A_ &pipe_w);
1001 ev_unref (EV_A); /* watcher should not keep loop alive */ 1157 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 } 1158 }
1003} 1159}
1004 1160
1005void inline_size 1161inline_size void
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1162evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{ 1163{
1008 if (!*flag) 1164 if (!*flag)
1009 { 1165 {
1010 int old_errno = errno; /* save errno because write might clobber it */ 1166 int old_errno = errno; /* save errno because write might clobber it */
1023 1179
1024 errno = old_errno; 1180 errno = old_errno;
1025 } 1181 }
1026} 1182}
1027 1183
1184/* called whenever the libev signal pipe */
1185/* got some events (signal, async) */
1028static void 1186static void
1029pipecb (EV_P_ ev_io *iow, int revents) 1187pipecb (EV_P_ ev_io *iow, int revents)
1030{ 1188{
1031#if EV_USE_EVENTFD 1189#if EV_USE_EVENTFD
1032 if (evfd >= 0) 1190 if (evfd >= 0)
1088ev_feed_signal_event (EV_P_ int signum) 1246ev_feed_signal_event (EV_P_ int signum)
1089{ 1247{
1090 WL w; 1248 WL w;
1091 1249
1092#if EV_MULTIPLICITY 1250#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1251 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1094#endif 1252#endif
1095 1253
1096 --signum; 1254 --signum;
1097 1255
1098 if (signum < 0 || signum >= signalmax) 1256 if (signum < 0 || signum >= signalmax)
1102 1260
1103 for (w = signals [signum].head; w; w = w->next) 1261 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1262 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105} 1263}
1106 1264
1265#if EV_USE_SIGNALFD
1266static void
1267sigfdcb (EV_P_ ev_io *iow, int revents)
1268{
1269 struct signalfd_siginfo si[4], *sip;
1270
1271 for (;;)
1272 {
1273 ssize_t res = read (sigfd, si, sizeof (si));
1274
1275 /* not ISO-C, as res might be -1, but works with SuS */
1276 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1277 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1278
1279 if (res < (ssize_t)sizeof (si))
1280 break;
1281 }
1282}
1283#endif
1284
1107/*****************************************************************************/ 1285/*****************************************************************************/
1108 1286
1109static WL childs [EV_PID_HASHSIZE]; 1287static WL childs [EV_PID_HASHSIZE];
1110 1288
1111#ifndef _WIN32 1289#ifndef _WIN32
1114 1292
1115#ifndef WIFCONTINUED 1293#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0 1294# define WIFCONTINUED(status) 0
1117#endif 1295#endif
1118 1296
1119void inline_speed 1297/* handle a single child status event */
1298inline_speed void
1120child_reap (EV_P_ int chain, int pid, int status) 1299child_reap (EV_P_ int chain, int pid, int status)
1121{ 1300{
1122 ev_child *w; 1301 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1302 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1124 1303
1137 1316
1138#ifndef WCONTINUED 1317#ifndef WCONTINUED
1139# define WCONTINUED 0 1318# define WCONTINUED 0
1140#endif 1319#endif
1141 1320
1321/* called on sigchld etc., calls waitpid */
1142static void 1322static void
1143childcb (EV_P_ ev_signal *sw, int revents) 1323childcb (EV_P_ ev_signal *sw, int revents)
1144{ 1324{
1145 int pid, status; 1325 int pid, status;
1146 1326
1227 /* kqueue is borked on everything but netbsd apparently */ 1407 /* kqueue is borked on everything but netbsd apparently */
1228 /* it usually doesn't work correctly on anything but sockets and pipes */ 1408 /* it usually doesn't work correctly on anything but sockets and pipes */
1229 flags &= ~EVBACKEND_KQUEUE; 1409 flags &= ~EVBACKEND_KQUEUE;
1230#endif 1410#endif
1231#ifdef __APPLE__ 1411#ifdef __APPLE__
1232 // flags &= ~EVBACKEND_KQUEUE; for documentation 1412 /* only select works correctly on that "unix-certified" platform */
1233 flags &= ~EVBACKEND_POLL; 1413 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1414 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1234#endif 1415#endif
1235 1416
1236 return flags; 1417 return flags;
1237} 1418}
1238 1419
1252ev_backend (EV_P) 1433ev_backend (EV_P)
1253{ 1434{
1254 return backend; 1435 return backend;
1255} 1436}
1256 1437
1438#if EV_MINIMAL < 2
1257unsigned int 1439unsigned int
1258ev_loop_count (EV_P) 1440ev_loop_count (EV_P)
1259{ 1441{
1260 return loop_count; 1442 return loop_count;
1261} 1443}
1262 1444
1445unsigned int
1446ev_loop_depth (EV_P)
1447{
1448 return loop_depth;
1449}
1450
1263void 1451void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1452ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1265{ 1453{
1266 io_blocktime = interval; 1454 io_blocktime = interval;
1267} 1455}
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1458ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1271{ 1459{
1272 timeout_blocktime = interval; 1460 timeout_blocktime = interval;
1273} 1461}
1274 1462
1463void
1464ev_set_userdata (EV_P_ void *data)
1465{
1466 userdata = data;
1467}
1468
1469void *
1470ev_userdata (EV_P)
1471{
1472 return userdata;
1473}
1474
1475void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1476{
1477 invoke_cb = invoke_pending_cb;
1478}
1479
1480void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1481{
1482 release_cb = release;
1483 acquire_cb = acquire;
1484}
1485#endif
1486
1487/* initialise a loop structure, must be zero-initialised */
1275static void noinline 1488static void noinline
1276loop_init (EV_P_ unsigned int flags) 1489loop_init (EV_P_ unsigned int flags)
1277{ 1490{
1278 if (!backend) 1491 if (!backend)
1279 { 1492 {
1493#if EV_USE_REALTIME
1494 if (!have_realtime)
1495 {
1496 struct timespec ts;
1497
1498 if (!clock_gettime (CLOCK_REALTIME, &ts))
1499 have_realtime = 1;
1500 }
1501#endif
1502
1280#if EV_USE_MONOTONIC 1503#if EV_USE_MONOTONIC
1504 if (!have_monotonic)
1281 { 1505 {
1282 struct timespec ts; 1506 struct timespec ts;
1507
1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1508 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1284 have_monotonic = 1; 1509 have_monotonic = 1;
1285 } 1510 }
1286#endif 1511#endif
1287 1512
1288 ev_rt_now = ev_time (); 1513 ev_rt_now = ev_time ();
1289 mn_now = get_clock (); 1514 mn_now = get_clock ();
1290 now_floor = mn_now; 1515 now_floor = mn_now;
1291 rtmn_diff = ev_rt_now - mn_now; 1516 rtmn_diff = ev_rt_now - mn_now;
1517#if EV_MINIMAL < 2
1518 invoke_cb = ev_invoke_pending;
1519#endif
1292 1520
1293 io_blocktime = 0.; 1521 io_blocktime = 0.;
1294 timeout_blocktime = 0.; 1522 timeout_blocktime = 0.;
1295 backend = 0; 1523 backend = 0;
1296 backend_fd = -1; 1524 backend_fd = -1;
1297 gotasync = 0; 1525 gotasync = 0;
1298#if EV_USE_INOTIFY 1526#if EV_USE_INOTIFY
1299 fs_fd = -2; 1527 fs_fd = -2;
1300#endif 1528#endif
1529#if EV_USE_SIGNALFD
1530 sigfd = -2;
1531#endif
1301 1532
1302 /* pid check not overridable via env */ 1533 /* pid check not overridable via env */
1303#ifndef _WIN32 1534#ifndef _WIN32
1304 if (flags & EVFLAG_FORKCHECK) 1535 if (flags & EVFLAG_FORKCHECK)
1305 curpid = getpid (); 1536 curpid = getpid ();
1327#endif 1558#endif
1328#if EV_USE_SELECT 1559#if EV_USE_SELECT
1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1560 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1330#endif 1561#endif
1331 1562
1563 ev_prepare_init (&pending_w, pendingcb);
1564
1332 ev_init (&pipeev, pipecb); 1565 ev_init (&pipe_w, pipecb);
1333 ev_set_priority (&pipeev, EV_MAXPRI); 1566 ev_set_priority (&pipe_w, EV_MAXPRI);
1334 } 1567 }
1335} 1568}
1336 1569
1570/* free up a loop structure */
1337static void noinline 1571static void noinline
1338loop_destroy (EV_P) 1572loop_destroy (EV_P)
1339{ 1573{
1340 int i; 1574 int i;
1341 1575
1342 if (ev_is_active (&pipeev)) 1576 if (ev_is_active (&pipe_w))
1343 { 1577 {
1344 ev_ref (EV_A); /* signal watcher */ 1578 /*ev_ref (EV_A);*/
1345 ev_io_stop (EV_A_ &pipeev); 1579 /*ev_io_stop (EV_A_ &pipe_w);*/
1346 1580
1347#if EV_USE_EVENTFD 1581#if EV_USE_EVENTFD
1348 if (evfd >= 0) 1582 if (evfd >= 0)
1349 close (evfd); 1583 close (evfd);
1350#endif 1584#endif
1354 close (evpipe [0]); 1588 close (evpipe [0]);
1355 close (evpipe [1]); 1589 close (evpipe [1]);
1356 } 1590 }
1357 } 1591 }
1358 1592
1593#if EV_USE_SIGNALFD
1594 if (ev_is_active (&sigfd_w))
1595 {
1596 /*ev_ref (EV_A);*/
1597 /*ev_io_stop (EV_A_ &sigfd_w);*/
1598
1599 close (sigfd);
1600 }
1601#endif
1602
1359#if EV_USE_INOTIFY 1603#if EV_USE_INOTIFY
1360 if (fs_fd >= 0) 1604 if (fs_fd >= 0)
1361 close (fs_fd); 1605 close (fs_fd);
1362#endif 1606#endif
1363 1607
1389 } 1633 }
1390 1634
1391 ev_free (anfds); anfdmax = 0; 1635 ev_free (anfds); anfdmax = 0;
1392 1636
1393 /* have to use the microsoft-never-gets-it-right macro */ 1637 /* have to use the microsoft-never-gets-it-right macro */
1638 array_free (rfeed, EMPTY);
1394 array_free (fdchange, EMPTY); 1639 array_free (fdchange, EMPTY);
1395 array_free (timer, EMPTY); 1640 array_free (timer, EMPTY);
1396#if EV_PERIODIC_ENABLE 1641#if EV_PERIODIC_ENABLE
1397 array_free (periodic, EMPTY); 1642 array_free (periodic, EMPTY);
1398#endif 1643#endif
1407 1652
1408 backend = 0; 1653 backend = 0;
1409} 1654}
1410 1655
1411#if EV_USE_INOTIFY 1656#if EV_USE_INOTIFY
1412void inline_size infy_fork (EV_P); 1657inline_size void infy_fork (EV_P);
1413#endif 1658#endif
1414 1659
1415void inline_size 1660inline_size void
1416loop_fork (EV_P) 1661loop_fork (EV_P)
1417{ 1662{
1418#if EV_USE_PORT 1663#if EV_USE_PORT
1419 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1664 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1420#endif 1665#endif
1426#endif 1671#endif
1427#if EV_USE_INOTIFY 1672#if EV_USE_INOTIFY
1428 infy_fork (EV_A); 1673 infy_fork (EV_A);
1429#endif 1674#endif
1430 1675
1431 if (ev_is_active (&pipeev)) 1676 if (ev_is_active (&pipe_w))
1432 { 1677 {
1433 /* this "locks" the handlers against writing to the pipe */ 1678 /* this "locks" the handlers against writing to the pipe */
1434 /* while we modify the fd vars */ 1679 /* while we modify the fd vars */
1435 gotsig = 1; 1680 gotsig = 1;
1436#if EV_ASYNC_ENABLE 1681#if EV_ASYNC_ENABLE
1437 gotasync = 1; 1682 gotasync = 1;
1438#endif 1683#endif
1439 1684
1440 ev_ref (EV_A); 1685 ev_ref (EV_A);
1441 ev_io_stop (EV_A_ &pipeev); 1686 ev_io_stop (EV_A_ &pipe_w);
1442 1687
1443#if EV_USE_EVENTFD 1688#if EV_USE_EVENTFD
1444 if (evfd >= 0) 1689 if (evfd >= 0)
1445 close (evfd); 1690 close (evfd);
1446#endif 1691#endif
1451 close (evpipe [1]); 1696 close (evpipe [1]);
1452 } 1697 }
1453 1698
1454 evpipe_init (EV_A); 1699 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */ 1700 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ); 1701 pipecb (EV_A_ &pipe_w, EV_READ);
1457 } 1702 }
1458 1703
1459 postfork = 0; 1704 postfork = 0;
1460} 1705}
1461 1706
1462#if EV_MULTIPLICITY 1707#if EV_MULTIPLICITY
1708
1463struct ev_loop * 1709struct ev_loop *
1464ev_loop_new (unsigned int flags) 1710ev_loop_new (unsigned int flags)
1465{ 1711{
1466 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1712 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1467 1713
1468 memset (loop, 0, sizeof (struct ev_loop)); 1714 memset (loop, 0, sizeof (struct ev_loop));
1469
1470 loop_init (EV_A_ flags); 1715 loop_init (EV_A_ flags);
1471 1716
1472 if (ev_backend (EV_A)) 1717 if (ev_backend (EV_A))
1473 return loop; 1718 return loop;
1474 1719
1484 1729
1485void 1730void
1486ev_loop_fork (EV_P) 1731ev_loop_fork (EV_P)
1487{ 1732{
1488 postfork = 1; /* must be in line with ev_default_fork */ 1733 postfork = 1; /* must be in line with ev_default_fork */
1734}
1735#endif /* multiplicity */
1736
1737#if EV_VERIFY
1738static void noinline
1739verify_watcher (EV_P_ W w)
1740{
1741 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1742
1743 if (w->pending)
1744 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1745}
1746
1747static void noinline
1748verify_heap (EV_P_ ANHE *heap, int N)
1749{
1750 int i;
1751
1752 for (i = HEAP0; i < N + HEAP0; ++i)
1753 {
1754 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1755 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1756 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1757
1758 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1759 }
1760}
1761
1762static void noinline
1763array_verify (EV_P_ W *ws, int cnt)
1764{
1765 while (cnt--)
1766 {
1767 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1768 verify_watcher (EV_A_ ws [cnt]);
1769 }
1770}
1771#endif
1772
1773#if EV_MINIMAL < 2
1774void
1775ev_loop_verify (EV_P)
1776{
1777#if EV_VERIFY
1778 int i;
1779 WL w;
1780
1781 assert (activecnt >= -1);
1782
1783 assert (fdchangemax >= fdchangecnt);
1784 for (i = 0; i < fdchangecnt; ++i)
1785 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1786
1787 assert (anfdmax >= 0);
1788 for (i = 0; i < anfdmax; ++i)
1789 for (w = anfds [i].head; w; w = w->next)
1790 {
1791 verify_watcher (EV_A_ (W)w);
1792 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1793 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1794 }
1795
1796 assert (timermax >= timercnt);
1797 verify_heap (EV_A_ timers, timercnt);
1798
1799#if EV_PERIODIC_ENABLE
1800 assert (periodicmax >= periodiccnt);
1801 verify_heap (EV_A_ periodics, periodiccnt);
1802#endif
1803
1804 for (i = NUMPRI; i--; )
1805 {
1806 assert (pendingmax [i] >= pendingcnt [i]);
1807#if EV_IDLE_ENABLE
1808 assert (idleall >= 0);
1809 assert (idlemax [i] >= idlecnt [i]);
1810 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1811#endif
1812 }
1813
1814#if EV_FORK_ENABLE
1815 assert (forkmax >= forkcnt);
1816 array_verify (EV_A_ (W *)forks, forkcnt);
1817#endif
1818
1819#if EV_ASYNC_ENABLE
1820 assert (asyncmax >= asynccnt);
1821 array_verify (EV_A_ (W *)asyncs, asynccnt);
1822#endif
1823
1824 assert (preparemax >= preparecnt);
1825 array_verify (EV_A_ (W *)prepares, preparecnt);
1826
1827 assert (checkmax >= checkcnt);
1828 array_verify (EV_A_ (W *)checks, checkcnt);
1829
1830# if 0
1831 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1832 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1833# endif
1834#endif
1489} 1835}
1490#endif 1836#endif
1491 1837
1492#if EV_MULTIPLICITY 1838#if EV_MULTIPLICITY
1493struct ev_loop * 1839struct ev_loop *
1528{ 1874{
1529#if EV_MULTIPLICITY 1875#if EV_MULTIPLICITY
1530 struct ev_loop *loop = ev_default_loop_ptr; 1876 struct ev_loop *loop = ev_default_loop_ptr;
1531#endif 1877#endif
1532 1878
1879 ev_default_loop_ptr = 0;
1880
1533#ifndef _WIN32 1881#ifndef _WIN32
1534 ev_ref (EV_A); /* child watcher */ 1882 ev_ref (EV_A); /* child watcher */
1535 ev_signal_stop (EV_A_ &childev); 1883 ev_signal_stop (EV_A_ &childev);
1536#endif 1884#endif
1537 1885
1543{ 1891{
1544#if EV_MULTIPLICITY 1892#if EV_MULTIPLICITY
1545 struct ev_loop *loop = ev_default_loop_ptr; 1893 struct ev_loop *loop = ev_default_loop_ptr;
1546#endif 1894#endif
1547 1895
1548 if (backend)
1549 postfork = 1; /* must be in line with ev_loop_fork */ 1896 postfork = 1; /* must be in line with ev_loop_fork */
1550} 1897}
1551 1898
1552/*****************************************************************************/ 1899/*****************************************************************************/
1553 1900
1554void 1901void
1555ev_invoke (EV_P_ void *w, int revents) 1902ev_invoke (EV_P_ void *w, int revents)
1556{ 1903{
1557 EV_CB_INVOKE ((W)w, revents); 1904 EV_CB_INVOKE ((W)w, revents);
1558} 1905}
1559 1906
1560void inline_speed 1907unsigned int
1561call_pending (EV_P) 1908ev_pending_count (EV_P)
1909{
1910 int pri;
1911 unsigned int count = 0;
1912
1913 for (pri = NUMPRI; pri--; )
1914 count += pendingcnt [pri];
1915
1916 return count;
1917}
1918
1919void noinline
1920ev_invoke_pending (EV_P)
1562{ 1921{
1563 int pri; 1922 int pri;
1564 1923
1565 for (pri = NUMPRI; pri--; ) 1924 for (pri = NUMPRI; pri--; )
1566 while (pendingcnt [pri]) 1925 while (pendingcnt [pri])
1567 { 1926 {
1568 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1927 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1569 1928
1570 if (expect_true (p->w))
1571 {
1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1929 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1930 /* ^ this is no longer true, as pending_w could be here */
1573 1931
1574 p->w->pending = 0; 1932 p->w->pending = 0;
1575 EV_CB_INVOKE (p->w, p->events); 1933 EV_CB_INVOKE (p->w, p->events);
1576 } 1934 EV_FREQUENT_CHECK;
1577 } 1935 }
1578} 1936}
1579 1937
1580#if EV_IDLE_ENABLE 1938#if EV_IDLE_ENABLE
1581void inline_size 1939/* make idle watchers pending. this handles the "call-idle */
1940/* only when higher priorities are idle" logic */
1941inline_size void
1582idle_reify (EV_P) 1942idle_reify (EV_P)
1583{ 1943{
1584 if (expect_false (idleall)) 1944 if (expect_false (idleall))
1585 { 1945 {
1586 int pri; 1946 int pri;
1598 } 1958 }
1599 } 1959 }
1600} 1960}
1601#endif 1961#endif
1602 1962
1603void inline_size 1963/* make timers pending */
1964inline_size void
1604timers_reify (EV_P) 1965timers_reify (EV_P)
1605{ 1966{
1967 EV_FREQUENT_CHECK;
1968
1606 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now) 1969 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1607 { 1970 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1971 do
1609
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1611
1612 /* first reschedule or stop timer */
1613 if (w->repeat)
1614 { 1972 {
1973 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1974
1975 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1976
1977 /* first reschedule or stop timer */
1978 if (w->repeat)
1979 {
1615 ev_at (w) += w->repeat; 1980 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now) 1981 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now; 1982 ev_at (w) = mn_now;
1618 1983
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1984 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620 1985
1621 ANHE_at_set (timers [HEAP0]); 1986 ANHE_at_cache (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0); 1987 downheap (timers, timercnt, HEAP0);
1988 }
1989 else
1990 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1991
1992 EV_FREQUENT_CHECK;
1993 feed_reverse (EV_A_ (W)w);
1623 } 1994 }
1624 else 1995 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 1996
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1997 feed_reverse_done (EV_A_ EV_TIMEOUT);
1628 } 1998 }
1629} 1999}
1630 2000
1631#if EV_PERIODIC_ENABLE 2001#if EV_PERIODIC_ENABLE
1632void inline_size 2002/* make periodics pending */
2003inline_size void
1633periodics_reify (EV_P) 2004periodics_reify (EV_P)
1634{ 2005{
2006 EV_FREQUENT_CHECK;
2007
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now) 2008 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1636 { 2009 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2010 int feed_count = 0;
1638 2011
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2012 do
1640
1641 /* first reschedule or stop timer */
1642 if (w->reschedule_cb)
1643 { 2013 {
2014 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2015
2016 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2017
2018 /* first reschedule or stop timer */
2019 if (w->reschedule_cb)
2020 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 2021 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645 2022
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 2023 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647 2024
1648 ANHE_at_set (periodics [HEAP0]); 2025 ANHE_at_cache (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0); 2026 downheap (periodics, periodiccnt, HEAP0);
2027 }
2028 else if (w->interval)
2029 {
2030 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2031 /* if next trigger time is not sufficiently in the future, put it there */
2032 /* this might happen because of floating point inexactness */
2033 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2034 {
2035 ev_at (w) += w->interval;
2036
2037 /* if interval is unreasonably low we might still have a time in the past */
2038 /* so correct this. this will make the periodic very inexact, but the user */
2039 /* has effectively asked to get triggered more often than possible */
2040 if (ev_at (w) < ev_rt_now)
2041 ev_at (w) = ev_rt_now;
2042 }
2043
2044 ANHE_at_cache (periodics [HEAP0]);
2045 downheap (periodics, periodiccnt, HEAP0);
2046 }
2047 else
2048 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2049
2050 EV_FREQUENT_CHECK;
2051 feed_reverse (EV_A_ (W)w);
1650 } 2052 }
1651 else if (w->interval) 2053 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1655 2054
1656 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1657
1658 ANHE_at_set (periodics [HEAP0]);
1659 downheap (periodics, periodiccnt, HEAP0);
1660 }
1661 else
1662 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1663
1664 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2055 feed_reverse_done (EV_A_ EV_PERIODIC);
1665 } 2056 }
1666} 2057}
1667 2058
2059/* simply recalculate all periodics */
2060/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1668static void noinline 2061static void noinline
1669periodics_reschedule (EV_P) 2062periodics_reschedule (EV_P)
1670{ 2063{
1671 int i; 2064 int i;
1672 2065
1678 if (w->reschedule_cb) 2071 if (w->reschedule_cb)
1679 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2072 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1680 else if (w->interval) 2073 else if (w->interval)
1681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2074 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1682 2075
1683 ANHE_at_set (periodics [i]); 2076 ANHE_at_cache (periodics [i]);
1684 } 2077 }
1685 2078
1686 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 2079 reheap (periodics, periodiccnt);
1687 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 2080}
2081#endif
2082
2083/* adjust all timers by a given offset */
2084static void noinline
2085timers_reschedule (EV_P_ ev_tstamp adjust)
2086{
2087 int i;
2088
1688 for (i = 0; i < periodiccnt; ++i) 2089 for (i = 0; i < timercnt; ++i)
1689 upheap (periodics, i + HEAP0); 2090 {
2091 ANHE *he = timers + i + HEAP0;
2092 ANHE_w (*he)->at += adjust;
2093 ANHE_at_cache (*he);
2094 }
1690} 2095}
1691#endif
1692 2096
1693void inline_speed 2097/* fetch new monotonic and realtime times from the kernel */
2098/* also detetc if there was a timejump, and act accordingly */
2099inline_speed void
1694time_update (EV_P_ ev_tstamp max_block) 2100time_update (EV_P_ ev_tstamp max_block)
1695{ 2101{
1696 int i;
1697
1698#if EV_USE_MONOTONIC 2102#if EV_USE_MONOTONIC
1699 if (expect_true (have_monotonic)) 2103 if (expect_true (have_monotonic))
1700 { 2104 {
2105 int i;
1701 ev_tstamp odiff = rtmn_diff; 2106 ev_tstamp odiff = rtmn_diff;
1702 2107
1703 mn_now = get_clock (); 2108 mn_now = get_clock ();
1704 2109
1705 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2110 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1731 ev_rt_now = ev_time (); 2136 ev_rt_now = ev_time ();
1732 mn_now = get_clock (); 2137 mn_now = get_clock ();
1733 now_floor = mn_now; 2138 now_floor = mn_now;
1734 } 2139 }
1735 2140
2141 /* no timer adjustment, as the monotonic clock doesn't jump */
2142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1736# if EV_PERIODIC_ENABLE 2143# if EV_PERIODIC_ENABLE
1737 periodics_reschedule (EV_A); 2144 periodics_reschedule (EV_A);
1738# endif 2145# endif
1739 /* no timer adjustment, as the monotonic clock doesn't jump */
1740 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1741 } 2146 }
1742 else 2147 else
1743#endif 2148#endif
1744 { 2149 {
1745 ev_rt_now = ev_time (); 2150 ev_rt_now = ev_time ();
1746 2151
1747 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2152 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1748 { 2153 {
2154 /* adjust timers. this is easy, as the offset is the same for all of them */
2155 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1749#if EV_PERIODIC_ENABLE 2156#if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A); 2157 periodics_reschedule (EV_A);
1751#endif 2158#endif
1752 /* adjust timers. this is easy, as the offset is the same for all of them */
1753 for (i = 0; i < timercnt; ++i)
1754 {
1755 ANHE *he = timers + i + HEAP0;
1756 ANHE_w (*he)->at += ev_rt_now - mn_now;
1757 ANHE_at_set (*he);
1758 }
1759 } 2159 }
1760 2160
1761 mn_now = ev_rt_now; 2161 mn_now = ev_rt_now;
1762 } 2162 }
1763} 2163}
1764 2164
1765void 2165void
1766ev_ref (EV_P)
1767{
1768 ++activecnt;
1769}
1770
1771void
1772ev_unref (EV_P)
1773{
1774 --activecnt;
1775}
1776
1777static int loop_done;
1778
1779void
1780ev_loop (EV_P_ int flags) 2166ev_loop (EV_P_ int flags)
1781{ 2167{
2168#if EV_MINIMAL < 2
2169 ++loop_depth;
2170#endif
2171
2172 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2173
1782 loop_done = EVUNLOOP_CANCEL; 2174 loop_done = EVUNLOOP_CANCEL;
1783 2175
1784 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2176 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1785 2177
1786 do 2178 do
1787 { 2179 {
2180#if EV_VERIFY >= 2
2181 ev_loop_verify (EV_A);
2182#endif
2183
1788#ifndef _WIN32 2184#ifndef _WIN32
1789 if (expect_false (curpid)) /* penalise the forking check even more */ 2185 if (expect_false (curpid)) /* penalise the forking check even more */
1790 if (expect_false (getpid () != curpid)) 2186 if (expect_false (getpid () != curpid))
1791 { 2187 {
1792 curpid = getpid (); 2188 curpid = getpid ();
1798 /* we might have forked, so queue fork handlers */ 2194 /* we might have forked, so queue fork handlers */
1799 if (expect_false (postfork)) 2195 if (expect_false (postfork))
1800 if (forkcnt) 2196 if (forkcnt)
1801 { 2197 {
1802 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2198 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1803 call_pending (EV_A); 2199 EV_INVOKE_PENDING;
1804 } 2200 }
1805#endif 2201#endif
1806 2202
1807 /* queue prepare watchers (and execute them) */ 2203 /* queue prepare watchers (and execute them) */
1808 if (expect_false (preparecnt)) 2204 if (expect_false (preparecnt))
1809 { 2205 {
1810 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2206 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1811 call_pending (EV_A); 2207 EV_INVOKE_PENDING;
1812 } 2208 }
1813 2209
1814 if (expect_false (!activecnt)) 2210 if (expect_false (loop_done))
1815 break; 2211 break;
1816 2212
1817 /* we might have forked, so reify kernel state if necessary */ 2213 /* we might have forked, so reify kernel state if necessary */
1818 if (expect_false (postfork)) 2214 if (expect_false (postfork))
1819 loop_fork (EV_A); 2215 loop_fork (EV_A);
1826 ev_tstamp waittime = 0.; 2222 ev_tstamp waittime = 0.;
1827 ev_tstamp sleeptime = 0.; 2223 ev_tstamp sleeptime = 0.;
1828 2224
1829 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2225 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1830 { 2226 {
2227 /* remember old timestamp for io_blocktime calculation */
2228 ev_tstamp prev_mn_now = mn_now;
2229
1831 /* update time to cancel out callback processing overhead */ 2230 /* update time to cancel out callback processing overhead */
1832 time_update (EV_A_ 1e100); 2231 time_update (EV_A_ 1e100);
1833 2232
1834 waittime = MAX_BLOCKTIME; 2233 waittime = MAX_BLOCKTIME;
1835 2234
1845 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2244 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1846 if (waittime > to) waittime = to; 2245 if (waittime > to) waittime = to;
1847 } 2246 }
1848#endif 2247#endif
1849 2248
2249 /* don't let timeouts decrease the waittime below timeout_blocktime */
1850 if (expect_false (waittime < timeout_blocktime)) 2250 if (expect_false (waittime < timeout_blocktime))
1851 waittime = timeout_blocktime; 2251 waittime = timeout_blocktime;
1852 2252
1853 sleeptime = waittime - backend_fudge; 2253 /* extra check because io_blocktime is commonly 0 */
1854
1855 if (expect_true (sleeptime > io_blocktime)) 2254 if (expect_false (io_blocktime))
1856 sleeptime = io_blocktime;
1857
1858 if (sleeptime)
1859 { 2255 {
2256 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2257
2258 if (sleeptime > waittime - backend_fudge)
2259 sleeptime = waittime - backend_fudge;
2260
2261 if (expect_true (sleeptime > 0.))
2262 {
1860 ev_sleep (sleeptime); 2263 ev_sleep (sleeptime);
1861 waittime -= sleeptime; 2264 waittime -= sleeptime;
2265 }
1862 } 2266 }
1863 } 2267 }
1864 2268
2269#if EV_MINIMAL < 2
1865 ++loop_count; 2270 ++loop_count;
2271#endif
2272 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1866 backend_poll (EV_A_ waittime); 2273 backend_poll (EV_A_ waittime);
2274 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1867 2275
1868 /* update ev_rt_now, do magic */ 2276 /* update ev_rt_now, do magic */
1869 time_update (EV_A_ waittime + sleeptime); 2277 time_update (EV_A_ waittime + sleeptime);
1870 } 2278 }
1871 2279
1882 2290
1883 /* queue check watchers, to be executed first */ 2291 /* queue check watchers, to be executed first */
1884 if (expect_false (checkcnt)) 2292 if (expect_false (checkcnt))
1885 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2293 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1886 2294
1887 call_pending (EV_A); 2295 EV_INVOKE_PENDING;
1888 } 2296 }
1889 while (expect_true ( 2297 while (expect_true (
1890 activecnt 2298 activecnt
1891 && !loop_done 2299 && !loop_done
1892 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2300 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1893 )); 2301 ));
1894 2302
1895 if (loop_done == EVUNLOOP_ONE) 2303 if (loop_done == EVUNLOOP_ONE)
1896 loop_done = EVUNLOOP_CANCEL; 2304 loop_done = EVUNLOOP_CANCEL;
2305
2306#if EV_MINIMAL < 2
2307 --loop_depth;
2308#endif
1897} 2309}
1898 2310
1899void 2311void
1900ev_unloop (EV_P_ int how) 2312ev_unloop (EV_P_ int how)
1901{ 2313{
1902 loop_done = how; 2314 loop_done = how;
1903} 2315}
1904 2316
2317void
2318ev_ref (EV_P)
2319{
2320 ++activecnt;
2321}
2322
2323void
2324ev_unref (EV_P)
2325{
2326 --activecnt;
2327}
2328
2329void
2330ev_now_update (EV_P)
2331{
2332 time_update (EV_A_ 1e100);
2333}
2334
2335void
2336ev_suspend (EV_P)
2337{
2338 ev_now_update (EV_A);
2339}
2340
2341void
2342ev_resume (EV_P)
2343{
2344 ev_tstamp mn_prev = mn_now;
2345
2346 ev_now_update (EV_A);
2347 timers_reschedule (EV_A_ mn_now - mn_prev);
2348#if EV_PERIODIC_ENABLE
2349 /* TODO: really do this? */
2350 periodics_reschedule (EV_A);
2351#endif
2352}
2353
1905/*****************************************************************************/ 2354/*****************************************************************************/
2355/* singly-linked list management, used when the expected list length is short */
1906 2356
1907void inline_size 2357inline_size void
1908wlist_add (WL *head, WL elem) 2358wlist_add (WL *head, WL elem)
1909{ 2359{
1910 elem->next = *head; 2360 elem->next = *head;
1911 *head = elem; 2361 *head = elem;
1912} 2362}
1913 2363
1914void inline_size 2364inline_size void
1915wlist_del (WL *head, WL elem) 2365wlist_del (WL *head, WL elem)
1916{ 2366{
1917 while (*head) 2367 while (*head)
1918 { 2368 {
1919 if (*head == elem) 2369 if (*head == elem)
1924 2374
1925 head = &(*head)->next; 2375 head = &(*head)->next;
1926 } 2376 }
1927} 2377}
1928 2378
1929void inline_speed 2379/* internal, faster, version of ev_clear_pending */
2380inline_speed void
1930clear_pending (EV_P_ W w) 2381clear_pending (EV_P_ W w)
1931{ 2382{
1932 if (w->pending) 2383 if (w->pending)
1933 { 2384 {
1934 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2385 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1935 w->pending = 0; 2386 w->pending = 0;
1936 } 2387 }
1937} 2388}
1938 2389
1939int 2390int
1943 int pending = w_->pending; 2394 int pending = w_->pending;
1944 2395
1945 if (expect_true (pending)) 2396 if (expect_true (pending))
1946 { 2397 {
1947 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2398 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2399 p->w = (W)&pending_w;
1948 w_->pending = 0; 2400 w_->pending = 0;
1949 p->w = 0;
1950 return p->events; 2401 return p->events;
1951 } 2402 }
1952 else 2403 else
1953 return 0; 2404 return 0;
1954} 2405}
1955 2406
1956void inline_size 2407inline_size void
1957pri_adjust (EV_P_ W w) 2408pri_adjust (EV_P_ W w)
1958{ 2409{
1959 int pri = w->priority; 2410 int pri = ev_priority (w);
1960 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2411 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1961 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2412 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1962 w->priority = pri; 2413 ev_set_priority (w, pri);
1963} 2414}
1964 2415
1965void inline_speed 2416inline_speed void
1966ev_start (EV_P_ W w, int active) 2417ev_start (EV_P_ W w, int active)
1967{ 2418{
1968 pri_adjust (EV_A_ w); 2419 pri_adjust (EV_A_ w);
1969 w->active = active; 2420 w->active = active;
1970 ev_ref (EV_A); 2421 ev_ref (EV_A);
1971} 2422}
1972 2423
1973void inline_size 2424inline_size void
1974ev_stop (EV_P_ W w) 2425ev_stop (EV_P_ W w)
1975{ 2426{
1976 ev_unref (EV_A); 2427 ev_unref (EV_A);
1977 w->active = 0; 2428 w->active = 0;
1978} 2429}
1985 int fd = w->fd; 2436 int fd = w->fd;
1986 2437
1987 if (expect_false (ev_is_active (w))) 2438 if (expect_false (ev_is_active (w)))
1988 return; 2439 return;
1989 2440
1990 assert (("ev_io_start called with negative fd", fd >= 0)); 2441 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2442 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2443
2444 EV_FREQUENT_CHECK;
1991 2445
1992 ev_start (EV_A_ (W)w, 1); 2446 ev_start (EV_A_ (W)w, 1);
1993 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2447 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1994 wlist_add (&anfds[fd].head, (WL)w); 2448 wlist_add (&anfds[fd].head, (WL)w);
1995 2449
1996 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2450 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1997 w->events &= ~EV_IOFDSET; 2451 w->events &= ~EV__IOFDSET;
2452
2453 EV_FREQUENT_CHECK;
1998} 2454}
1999 2455
2000void noinline 2456void noinline
2001ev_io_stop (EV_P_ ev_io *w) 2457ev_io_stop (EV_P_ ev_io *w)
2002{ 2458{
2003 clear_pending (EV_A_ (W)w); 2459 clear_pending (EV_A_ (W)w);
2004 if (expect_false (!ev_is_active (w))) 2460 if (expect_false (!ev_is_active (w)))
2005 return; 2461 return;
2006 2462
2007 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2463 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2464
2465 EV_FREQUENT_CHECK;
2008 2466
2009 wlist_del (&anfds[w->fd].head, (WL)w); 2467 wlist_del (&anfds[w->fd].head, (WL)w);
2010 ev_stop (EV_A_ (W)w); 2468 ev_stop (EV_A_ (W)w);
2011 2469
2012 fd_change (EV_A_ w->fd, 1); 2470 fd_change (EV_A_ w->fd, 1);
2471
2472 EV_FREQUENT_CHECK;
2013} 2473}
2014 2474
2015void noinline 2475void noinline
2016ev_timer_start (EV_P_ ev_timer *w) 2476ev_timer_start (EV_P_ ev_timer *w)
2017{ 2477{
2018 if (expect_false (ev_is_active (w))) 2478 if (expect_false (ev_is_active (w)))
2019 return; 2479 return;
2020 2480
2021 ev_at (w) += mn_now; 2481 ev_at (w) += mn_now;
2022 2482
2023 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2483 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2024 2484
2485 EV_FREQUENT_CHECK;
2486
2487 ++timercnt;
2025 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2488 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2026 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2489 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2027 ANHE_w (timers [ev_active (w)]) = (WT)w; 2490 ANHE_w (timers [ev_active (w)]) = (WT)w;
2028 ANHE_at_set (timers [ev_active (w)]); 2491 ANHE_at_cache (timers [ev_active (w)]);
2029 upheap (timers, ev_active (w)); 2492 upheap (timers, ev_active (w));
2030 2493
2494 EV_FREQUENT_CHECK;
2495
2031 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2496 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2032} 2497}
2033 2498
2034void noinline 2499void noinline
2035ev_timer_stop (EV_P_ ev_timer *w) 2500ev_timer_stop (EV_P_ ev_timer *w)
2036{ 2501{
2037 clear_pending (EV_A_ (W)w); 2502 clear_pending (EV_A_ (W)w);
2038 if (expect_false (!ev_is_active (w))) 2503 if (expect_false (!ev_is_active (w)))
2039 return; 2504 return;
2040 2505
2506 EV_FREQUENT_CHECK;
2507
2041 { 2508 {
2042 int active = ev_active (w); 2509 int active = ev_active (w);
2043 2510
2044 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2511 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2045 2512
2513 --timercnt;
2514
2046 if (expect_true (active < timercnt + HEAP0 - 1)) 2515 if (expect_true (active < timercnt + HEAP0))
2047 { 2516 {
2048 timers [active] = timers [timercnt + HEAP0 - 1]; 2517 timers [active] = timers [timercnt + HEAP0];
2049 adjustheap (timers, timercnt, active); 2518 adjustheap (timers, timercnt, active);
2050 } 2519 }
2051
2052 --timercnt;
2053 } 2520 }
2521
2522 EV_FREQUENT_CHECK;
2054 2523
2055 ev_at (w) -= mn_now; 2524 ev_at (w) -= mn_now;
2056 2525
2057 ev_stop (EV_A_ (W)w); 2526 ev_stop (EV_A_ (W)w);
2058} 2527}
2059 2528
2060void noinline 2529void noinline
2061ev_timer_again (EV_P_ ev_timer *w) 2530ev_timer_again (EV_P_ ev_timer *w)
2062{ 2531{
2532 EV_FREQUENT_CHECK;
2533
2063 if (ev_is_active (w)) 2534 if (ev_is_active (w))
2064 { 2535 {
2065 if (w->repeat) 2536 if (w->repeat)
2066 { 2537 {
2067 ev_at (w) = mn_now + w->repeat; 2538 ev_at (w) = mn_now + w->repeat;
2068 ANHE_at_set (timers [ev_active (w)]); 2539 ANHE_at_cache (timers [ev_active (w)]);
2069 adjustheap (timers, timercnt, ev_active (w)); 2540 adjustheap (timers, timercnt, ev_active (w));
2070 } 2541 }
2071 else 2542 else
2072 ev_timer_stop (EV_A_ w); 2543 ev_timer_stop (EV_A_ w);
2073 } 2544 }
2074 else if (w->repeat) 2545 else if (w->repeat)
2075 { 2546 {
2076 ev_at (w) = w->repeat; 2547 ev_at (w) = w->repeat;
2077 ev_timer_start (EV_A_ w); 2548 ev_timer_start (EV_A_ w);
2078 } 2549 }
2550
2551 EV_FREQUENT_CHECK;
2552}
2553
2554ev_tstamp
2555ev_timer_remaining (EV_P_ ev_timer *w)
2556{
2557 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2079} 2558}
2080 2559
2081#if EV_PERIODIC_ENABLE 2560#if EV_PERIODIC_ENABLE
2082void noinline 2561void noinline
2083ev_periodic_start (EV_P_ ev_periodic *w) 2562ev_periodic_start (EV_P_ ev_periodic *w)
2087 2566
2088 if (w->reschedule_cb) 2567 if (w->reschedule_cb)
2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2568 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2090 else if (w->interval) 2569 else if (w->interval)
2091 { 2570 {
2092 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2571 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2093 /* this formula differs from the one in periodic_reify because we do not always round up */ 2572 /* this formula differs from the one in periodic_reify because we do not always round up */
2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2573 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 } 2574 }
2096 else 2575 else
2097 ev_at (w) = w->offset; 2576 ev_at (w) = w->offset;
2098 2577
2578 EV_FREQUENT_CHECK;
2579
2580 ++periodiccnt;
2099 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2581 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2100 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2582 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2101 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2583 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2102 ANHE_at_set (periodics [ev_active (w)]); 2584 ANHE_at_cache (periodics [ev_active (w)]);
2103 upheap (periodics, ev_active (w)); 2585 upheap (periodics, ev_active (w));
2104 2586
2587 EV_FREQUENT_CHECK;
2588
2105 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2589 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2106} 2590}
2107 2591
2108void noinline 2592void noinline
2109ev_periodic_stop (EV_P_ ev_periodic *w) 2593ev_periodic_stop (EV_P_ ev_periodic *w)
2110{ 2594{
2111 clear_pending (EV_A_ (W)w); 2595 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w))) 2596 if (expect_false (!ev_is_active (w)))
2113 return; 2597 return;
2114 2598
2599 EV_FREQUENT_CHECK;
2600
2115 { 2601 {
2116 int active = ev_active (w); 2602 int active = ev_active (w);
2117 2603
2118 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2604 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2119 2605
2606 --periodiccnt;
2607
2120 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2608 if (expect_true (active < periodiccnt + HEAP0))
2121 { 2609 {
2122 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2610 periodics [active] = periodics [periodiccnt + HEAP0];
2123 adjustheap (periodics, periodiccnt, active); 2611 adjustheap (periodics, periodiccnt, active);
2124 } 2612 }
2125
2126 --periodiccnt;
2127 } 2613 }
2614
2615 EV_FREQUENT_CHECK;
2128 2616
2129 ev_stop (EV_A_ (W)w); 2617 ev_stop (EV_A_ (W)w);
2130} 2618}
2131 2619
2132void noinline 2620void noinline
2144 2632
2145void noinline 2633void noinline
2146ev_signal_start (EV_P_ ev_signal *w) 2634ev_signal_start (EV_P_ ev_signal *w)
2147{ 2635{
2148#if EV_MULTIPLICITY 2636#if EV_MULTIPLICITY
2149 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2637 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2150#endif 2638#endif
2151 if (expect_false (ev_is_active (w))) 2639 if (expect_false (ev_is_active (w)))
2152 return; 2640 return;
2153 2641
2154 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2642 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2155 2643
2644 EV_FREQUENT_CHECK;
2645
2646#if EV_USE_SIGNALFD
2647 if (sigfd == -2)
2648 {
2649 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2650 if (sigfd < 0 && errno == EINVAL)
2651 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2652
2653 if (sigfd >= 0)
2654 {
2655 fd_intern (sigfd); /* doing it twice will not hurt */
2656
2657 sigemptyset (&sigfd_set);
2658
2659 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2660 ev_set_priority (&sigfd_w, EV_MAXPRI);
2661 ev_io_start (EV_A_ &sigfd_w);
2662 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2663 }
2664 }
2665
2666 if (sigfd >= 0)
2667 {
2668 /* TODO: check .head */
2669 sigaddset (&sigfd_set, w->signum);
2670 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2671
2672 signalfd (sigfd, &sigfd_set, 0);
2673 }
2674 else
2675#endif
2156 evpipe_init (EV_A); 2676 evpipe_init (EV_A);
2157 2677
2158 { 2678 {
2159#ifndef _WIN32 2679#ifndef _WIN32
2160 sigset_t full, prev; 2680 sigset_t full, prev;
2161 sigfillset (&full); 2681 sigfillset (&full);
2162 sigprocmask (SIG_SETMASK, &full, &prev); 2682 sigprocmask (SIG_SETMASK, &full, &prev);
2163#endif 2683#endif
2164 2684
2165 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2685 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2166 2686
2167#ifndef _WIN32 2687#ifndef _WIN32
2688# if EV_USE_SIGNALFD
2689 if (sigfd < 0)/*TODO*/
2690# endif
2691 sigdelset (&prev, w->signum);
2168 sigprocmask (SIG_SETMASK, &prev, 0); 2692 sigprocmask (SIG_SETMASK, &prev, 0);
2169#endif 2693#endif
2170 } 2694 }
2171 2695
2172 ev_start (EV_A_ (W)w, 1); 2696 ev_start (EV_A_ (W)w, 1);
2175 if (!((WL)w)->next) 2699 if (!((WL)w)->next)
2176 { 2700 {
2177#if _WIN32 2701#if _WIN32
2178 signal (w->signum, ev_sighandler); 2702 signal (w->signum, ev_sighandler);
2179#else 2703#else
2704# if EV_USE_SIGNALFD
2705 if (sigfd < 0) /*TODO*/
2706# endif
2707 {
2180 struct sigaction sa; 2708 struct sigaction sa = { };
2181 sa.sa_handler = ev_sighandler; 2709 sa.sa_handler = ev_sighandler;
2182 sigfillset (&sa.sa_mask); 2710 sigfillset (&sa.sa_mask);
2183 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2711 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2184 sigaction (w->signum, &sa, 0); 2712 sigaction (w->signum, &sa, 0);
2713 }
2185#endif 2714#endif
2186 } 2715 }
2716
2717 EV_FREQUENT_CHECK;
2187} 2718}
2188 2719
2189void noinline 2720void noinline
2190ev_signal_stop (EV_P_ ev_signal *w) 2721ev_signal_stop (EV_P_ ev_signal *w)
2191{ 2722{
2192 clear_pending (EV_A_ (W)w); 2723 clear_pending (EV_A_ (W)w);
2193 if (expect_false (!ev_is_active (w))) 2724 if (expect_false (!ev_is_active (w)))
2194 return; 2725 return;
2195 2726
2727 EV_FREQUENT_CHECK;
2728
2196 wlist_del (&signals [w->signum - 1].head, (WL)w); 2729 wlist_del (&signals [w->signum - 1].head, (WL)w);
2197 ev_stop (EV_A_ (W)w); 2730 ev_stop (EV_A_ (W)w);
2198 2731
2199 if (!signals [w->signum - 1].head) 2732 if (!signals [w->signum - 1].head)
2733#if EV_USE_SIGNALFD
2734 if (sigfd >= 0)
2735 {
2736 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2737 sigdelset (&sigfd_set, w->signum);
2738 signalfd (sigfd, &sigfd_set, 0);
2739 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2740 /*TODO: maybe unblock signal? */
2741 }
2742 else
2743#endif
2200 signal (w->signum, SIG_DFL); 2744 signal (w->signum, SIG_DFL);
2745
2746 EV_FREQUENT_CHECK;
2201} 2747}
2202 2748
2203void 2749void
2204ev_child_start (EV_P_ ev_child *w) 2750ev_child_start (EV_P_ ev_child *w)
2205{ 2751{
2206#if EV_MULTIPLICITY 2752#if EV_MULTIPLICITY
2207 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2753 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2208#endif 2754#endif
2209 if (expect_false (ev_is_active (w))) 2755 if (expect_false (ev_is_active (w)))
2210 return; 2756 return;
2211 2757
2758 EV_FREQUENT_CHECK;
2759
2212 ev_start (EV_A_ (W)w, 1); 2760 ev_start (EV_A_ (W)w, 1);
2213 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2761 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2762
2763 EV_FREQUENT_CHECK;
2214} 2764}
2215 2765
2216void 2766void
2217ev_child_stop (EV_P_ ev_child *w) 2767ev_child_stop (EV_P_ ev_child *w)
2218{ 2768{
2219 clear_pending (EV_A_ (W)w); 2769 clear_pending (EV_A_ (W)w);
2220 if (expect_false (!ev_is_active (w))) 2770 if (expect_false (!ev_is_active (w)))
2221 return; 2771 return;
2222 2772
2773 EV_FREQUENT_CHECK;
2774
2223 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2775 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2224 ev_stop (EV_A_ (W)w); 2776 ev_stop (EV_A_ (W)w);
2777
2778 EV_FREQUENT_CHECK;
2225} 2779}
2226 2780
2227#if EV_STAT_ENABLE 2781#if EV_STAT_ENABLE
2228 2782
2229# ifdef _WIN32 2783# ifdef _WIN32
2230# undef lstat 2784# undef lstat
2231# define lstat(a,b) _stati64 (a,b) 2785# define lstat(a,b) _stati64 (a,b)
2232# endif 2786# endif
2233 2787
2234#define DEF_STAT_INTERVAL 5.0074891 2788#define DEF_STAT_INTERVAL 5.0074891
2789#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2235#define MIN_STAT_INTERVAL 0.1074891 2790#define MIN_STAT_INTERVAL 0.1074891
2236 2791
2237static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2792static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2238 2793
2239#if EV_USE_INOTIFY 2794#if EV_USE_INOTIFY
2240# define EV_INOTIFY_BUFSIZE 8192 2795# define EV_INOTIFY_BUFSIZE 8192
2244{ 2799{
2245 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2800 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2246 2801
2247 if (w->wd < 0) 2802 if (w->wd < 0)
2248 { 2803 {
2804 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2249 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2805 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2250 2806
2251 /* monitor some parent directory for speedup hints */ 2807 /* monitor some parent directory for speedup hints */
2252 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2808 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2253 /* but an efficiency issue only */ 2809 /* but an efficiency issue only */
2254 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2810 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2255 { 2811 {
2256 char path [4096]; 2812 char path [4096];
2257 strcpy (path, w->path); 2813 strcpy (path, w->path);
2261 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2817 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2262 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2818 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2263 2819
2264 char *pend = strrchr (path, '/'); 2820 char *pend = strrchr (path, '/');
2265 2821
2266 if (!pend) 2822 if (!pend || pend == path)
2267 break; /* whoops, no '/', complain to your admin */ 2823 break;
2268 2824
2269 *pend = 0; 2825 *pend = 0;
2270 w->wd = inotify_add_watch (fs_fd, path, mask); 2826 w->wd = inotify_add_watch (fs_fd, path, mask);
2271 } 2827 }
2272 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2828 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2273 } 2829 }
2274 } 2830 }
2275 else
2276 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2277 2831
2278 if (w->wd >= 0) 2832 if (w->wd >= 0)
2833 {
2279 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2834 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2835
2836 /* now local changes will be tracked by inotify, but remote changes won't */
2837 /* unless the filesystem it known to be local, we therefore still poll */
2838 /* also do poll on <2.6.25, but with normal frequency */
2839 struct statfs sfs;
2840
2841 if (fs_2625 && !statfs (w->path, &sfs))
2842 if (sfs.f_type == 0x1373 /* devfs */
2843 || sfs.f_type == 0xEF53 /* ext2/3 */
2844 || sfs.f_type == 0x3153464a /* jfs */
2845 || sfs.f_type == 0x52654973 /* reiser3 */
2846 || sfs.f_type == 0x01021994 /* tempfs */
2847 || sfs.f_type == 0x58465342 /* xfs */)
2848 return;
2849
2850 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2851 ev_timer_again (EV_A_ &w->timer);
2852 }
2280} 2853}
2281 2854
2282static void noinline 2855static void noinline
2283infy_del (EV_P_ ev_stat *w) 2856infy_del (EV_P_ ev_stat *w)
2284{ 2857{
2298 2871
2299static void noinline 2872static void noinline
2300infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2873infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2301{ 2874{
2302 if (slot < 0) 2875 if (slot < 0)
2303 /* overflow, need to check for all hahs slots */ 2876 /* overflow, need to check for all hash slots */
2304 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2877 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2305 infy_wd (EV_A_ slot, wd, ev); 2878 infy_wd (EV_A_ slot, wd, ev);
2306 else 2879 else
2307 { 2880 {
2308 WL w_; 2881 WL w_;
2314 2887
2315 if (w->wd == wd || wd == -1) 2888 if (w->wd == wd || wd == -1)
2316 { 2889 {
2317 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2890 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2318 { 2891 {
2892 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2319 w->wd = -1; 2893 w->wd = -1;
2320 infy_add (EV_A_ w); /* re-add, no matter what */ 2894 infy_add (EV_A_ w); /* re-add, no matter what */
2321 } 2895 }
2322 2896
2323 stat_timer_cb (EV_A_ &w->timer, 0); 2897 stat_timer_cb (EV_A_ &w->timer, 0);
2336 2910
2337 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2911 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2338 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2912 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2339} 2913}
2340 2914
2341void inline_size 2915inline_size void
2916check_2625 (EV_P)
2917{
2918 /* kernels < 2.6.25 are borked
2919 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2920 */
2921 struct utsname buf;
2922 int major, minor, micro;
2923
2924 if (uname (&buf))
2925 return;
2926
2927 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2928 return;
2929
2930 if (major < 2
2931 || (major == 2 && minor < 6)
2932 || (major == 2 && minor == 6 && micro < 25))
2933 return;
2934
2935 fs_2625 = 1;
2936}
2937
2938inline_size void
2342infy_init (EV_P) 2939infy_init (EV_P)
2343{ 2940{
2344 if (fs_fd != -2) 2941 if (fs_fd != -2)
2345 return; 2942 return;
2943
2944 fs_fd = -1;
2945
2946 check_2625 (EV_A);
2346 2947
2347 fs_fd = inotify_init (); 2948 fs_fd = inotify_init ();
2348 2949
2349 if (fs_fd >= 0) 2950 if (fs_fd >= 0)
2350 { 2951 {
2352 ev_set_priority (&fs_w, EV_MAXPRI); 2953 ev_set_priority (&fs_w, EV_MAXPRI);
2353 ev_io_start (EV_A_ &fs_w); 2954 ev_io_start (EV_A_ &fs_w);
2354 } 2955 }
2355} 2956}
2356 2957
2357void inline_size 2958inline_size void
2358infy_fork (EV_P) 2959infy_fork (EV_P)
2359{ 2960{
2360 int slot; 2961 int slot;
2361 2962
2362 if (fs_fd < 0) 2963 if (fs_fd < 0)
2378 w->wd = -1; 2979 w->wd = -1;
2379 2980
2380 if (fs_fd >= 0) 2981 if (fs_fd >= 0)
2381 infy_add (EV_A_ w); /* re-add, no matter what */ 2982 infy_add (EV_A_ w); /* re-add, no matter what */
2382 else 2983 else
2383 ev_timer_start (EV_A_ &w->timer); 2984 ev_timer_again (EV_A_ &w->timer);
2384 } 2985 }
2385
2386 } 2986 }
2387} 2987}
2388 2988
2989#endif
2990
2991#ifdef _WIN32
2992# define EV_LSTAT(p,b) _stati64 (p, b)
2993#else
2994# define EV_LSTAT(p,b) lstat (p, b)
2389#endif 2995#endif
2390 2996
2391void 2997void
2392ev_stat_stat (EV_P_ ev_stat *w) 2998ev_stat_stat (EV_P_ ev_stat *w)
2393{ 2999{
2420 || w->prev.st_atime != w->attr.st_atime 3026 || w->prev.st_atime != w->attr.st_atime
2421 || w->prev.st_mtime != w->attr.st_mtime 3027 || w->prev.st_mtime != w->attr.st_mtime
2422 || w->prev.st_ctime != w->attr.st_ctime 3028 || w->prev.st_ctime != w->attr.st_ctime
2423 ) { 3029 ) {
2424 #if EV_USE_INOTIFY 3030 #if EV_USE_INOTIFY
3031 if (fs_fd >= 0)
3032 {
2425 infy_del (EV_A_ w); 3033 infy_del (EV_A_ w);
2426 infy_add (EV_A_ w); 3034 infy_add (EV_A_ w);
2427 ev_stat_stat (EV_A_ w); /* avoid race... */ 3035 ev_stat_stat (EV_A_ w); /* avoid race... */
3036 }
2428 #endif 3037 #endif
2429 3038
2430 ev_feed_event (EV_A_ w, EV_STAT); 3039 ev_feed_event (EV_A_ w, EV_STAT);
2431 } 3040 }
2432} 3041}
2435ev_stat_start (EV_P_ ev_stat *w) 3044ev_stat_start (EV_P_ ev_stat *w)
2436{ 3045{
2437 if (expect_false (ev_is_active (w))) 3046 if (expect_false (ev_is_active (w)))
2438 return; 3047 return;
2439 3048
2440 /* since we use memcmp, we need to clear any padding data etc. */
2441 memset (&w->prev, 0, sizeof (ev_statdata));
2442 memset (&w->attr, 0, sizeof (ev_statdata));
2443
2444 ev_stat_stat (EV_A_ w); 3049 ev_stat_stat (EV_A_ w);
2445 3050
3051 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2446 if (w->interval < MIN_STAT_INTERVAL) 3052 w->interval = MIN_STAT_INTERVAL;
2447 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2448 3053
2449 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3054 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2450 ev_set_priority (&w->timer, ev_priority (w)); 3055 ev_set_priority (&w->timer, ev_priority (w));
2451 3056
2452#if EV_USE_INOTIFY 3057#if EV_USE_INOTIFY
2453 infy_init (EV_A); 3058 infy_init (EV_A);
2454 3059
2455 if (fs_fd >= 0) 3060 if (fs_fd >= 0)
2456 infy_add (EV_A_ w); 3061 infy_add (EV_A_ w);
2457 else 3062 else
2458#endif 3063#endif
2459 ev_timer_start (EV_A_ &w->timer); 3064 ev_timer_again (EV_A_ &w->timer);
2460 3065
2461 ev_start (EV_A_ (W)w, 1); 3066 ev_start (EV_A_ (W)w, 1);
3067
3068 EV_FREQUENT_CHECK;
2462} 3069}
2463 3070
2464void 3071void
2465ev_stat_stop (EV_P_ ev_stat *w) 3072ev_stat_stop (EV_P_ ev_stat *w)
2466{ 3073{
2467 clear_pending (EV_A_ (W)w); 3074 clear_pending (EV_A_ (W)w);
2468 if (expect_false (!ev_is_active (w))) 3075 if (expect_false (!ev_is_active (w)))
2469 return; 3076 return;
2470 3077
3078 EV_FREQUENT_CHECK;
3079
2471#if EV_USE_INOTIFY 3080#if EV_USE_INOTIFY
2472 infy_del (EV_A_ w); 3081 infy_del (EV_A_ w);
2473#endif 3082#endif
2474 ev_timer_stop (EV_A_ &w->timer); 3083 ev_timer_stop (EV_A_ &w->timer);
2475 3084
2476 ev_stop (EV_A_ (W)w); 3085 ev_stop (EV_A_ (W)w);
3086
3087 EV_FREQUENT_CHECK;
2477} 3088}
2478#endif 3089#endif
2479 3090
2480#if EV_IDLE_ENABLE 3091#if EV_IDLE_ENABLE
2481void 3092void
2483{ 3094{
2484 if (expect_false (ev_is_active (w))) 3095 if (expect_false (ev_is_active (w)))
2485 return; 3096 return;
2486 3097
2487 pri_adjust (EV_A_ (W)w); 3098 pri_adjust (EV_A_ (W)w);
3099
3100 EV_FREQUENT_CHECK;
2488 3101
2489 { 3102 {
2490 int active = ++idlecnt [ABSPRI (w)]; 3103 int active = ++idlecnt [ABSPRI (w)];
2491 3104
2492 ++idleall; 3105 ++idleall;
2493 ev_start (EV_A_ (W)w, active); 3106 ev_start (EV_A_ (W)w, active);
2494 3107
2495 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3108 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2496 idles [ABSPRI (w)][active - 1] = w; 3109 idles [ABSPRI (w)][active - 1] = w;
2497 } 3110 }
3111
3112 EV_FREQUENT_CHECK;
2498} 3113}
2499 3114
2500void 3115void
2501ev_idle_stop (EV_P_ ev_idle *w) 3116ev_idle_stop (EV_P_ ev_idle *w)
2502{ 3117{
2503 clear_pending (EV_A_ (W)w); 3118 clear_pending (EV_A_ (W)w);
2504 if (expect_false (!ev_is_active (w))) 3119 if (expect_false (!ev_is_active (w)))
2505 return; 3120 return;
2506 3121
3122 EV_FREQUENT_CHECK;
3123
2507 { 3124 {
2508 int active = ev_active (w); 3125 int active = ev_active (w);
2509 3126
2510 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3127 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2511 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3128 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2512 3129
2513 ev_stop (EV_A_ (W)w); 3130 ev_stop (EV_A_ (W)w);
2514 --idleall; 3131 --idleall;
2515 } 3132 }
3133
3134 EV_FREQUENT_CHECK;
2516} 3135}
2517#endif 3136#endif
2518 3137
2519void 3138void
2520ev_prepare_start (EV_P_ ev_prepare *w) 3139ev_prepare_start (EV_P_ ev_prepare *w)
2521{ 3140{
2522 if (expect_false (ev_is_active (w))) 3141 if (expect_false (ev_is_active (w)))
2523 return; 3142 return;
3143
3144 EV_FREQUENT_CHECK;
2524 3145
2525 ev_start (EV_A_ (W)w, ++preparecnt); 3146 ev_start (EV_A_ (W)w, ++preparecnt);
2526 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3147 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2527 prepares [preparecnt - 1] = w; 3148 prepares [preparecnt - 1] = w;
3149
3150 EV_FREQUENT_CHECK;
2528} 3151}
2529 3152
2530void 3153void
2531ev_prepare_stop (EV_P_ ev_prepare *w) 3154ev_prepare_stop (EV_P_ ev_prepare *w)
2532{ 3155{
2533 clear_pending (EV_A_ (W)w); 3156 clear_pending (EV_A_ (W)w);
2534 if (expect_false (!ev_is_active (w))) 3157 if (expect_false (!ev_is_active (w)))
2535 return; 3158 return;
2536 3159
3160 EV_FREQUENT_CHECK;
3161
2537 { 3162 {
2538 int active = ev_active (w); 3163 int active = ev_active (w);
2539 3164
2540 prepares [active - 1] = prepares [--preparecnt]; 3165 prepares [active - 1] = prepares [--preparecnt];
2541 ev_active (prepares [active - 1]) = active; 3166 ev_active (prepares [active - 1]) = active;
2542 } 3167 }
2543 3168
2544 ev_stop (EV_A_ (W)w); 3169 ev_stop (EV_A_ (W)w);
3170
3171 EV_FREQUENT_CHECK;
2545} 3172}
2546 3173
2547void 3174void
2548ev_check_start (EV_P_ ev_check *w) 3175ev_check_start (EV_P_ ev_check *w)
2549{ 3176{
2550 if (expect_false (ev_is_active (w))) 3177 if (expect_false (ev_is_active (w)))
2551 return; 3178 return;
3179
3180 EV_FREQUENT_CHECK;
2552 3181
2553 ev_start (EV_A_ (W)w, ++checkcnt); 3182 ev_start (EV_A_ (W)w, ++checkcnt);
2554 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3183 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2555 checks [checkcnt - 1] = w; 3184 checks [checkcnt - 1] = w;
3185
3186 EV_FREQUENT_CHECK;
2556} 3187}
2557 3188
2558void 3189void
2559ev_check_stop (EV_P_ ev_check *w) 3190ev_check_stop (EV_P_ ev_check *w)
2560{ 3191{
2561 clear_pending (EV_A_ (W)w); 3192 clear_pending (EV_A_ (W)w);
2562 if (expect_false (!ev_is_active (w))) 3193 if (expect_false (!ev_is_active (w)))
2563 return; 3194 return;
2564 3195
3196 EV_FREQUENT_CHECK;
3197
2565 { 3198 {
2566 int active = ev_active (w); 3199 int active = ev_active (w);
2567 3200
2568 checks [active - 1] = checks [--checkcnt]; 3201 checks [active - 1] = checks [--checkcnt];
2569 ev_active (checks [active - 1]) = active; 3202 ev_active (checks [active - 1]) = active;
2570 } 3203 }
2571 3204
2572 ev_stop (EV_A_ (W)w); 3205 ev_stop (EV_A_ (W)w);
3206
3207 EV_FREQUENT_CHECK;
2573} 3208}
2574 3209
2575#if EV_EMBED_ENABLE 3210#if EV_EMBED_ENABLE
2576void noinline 3211void noinline
2577ev_embed_sweep (EV_P_ ev_embed *w) 3212ev_embed_sweep (EV_P_ ev_embed *w)
2604 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3239 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2605 } 3240 }
2606 } 3241 }
2607} 3242}
2608 3243
3244static void
3245embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3246{
3247 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3248
3249 ev_embed_stop (EV_A_ w);
3250
3251 {
3252 struct ev_loop *loop = w->other;
3253
3254 ev_loop_fork (EV_A);
3255 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3256 }
3257
3258 ev_embed_start (EV_A_ w);
3259}
3260
2609#if 0 3261#if 0
2610static void 3262static void
2611embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3263embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2612{ 3264{
2613 ev_idle_stop (EV_A_ idle); 3265 ev_idle_stop (EV_A_ idle);
2620 if (expect_false (ev_is_active (w))) 3272 if (expect_false (ev_is_active (w)))
2621 return; 3273 return;
2622 3274
2623 { 3275 {
2624 struct ev_loop *loop = w->other; 3276 struct ev_loop *loop = w->other;
2625 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3277 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2626 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3278 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2627 } 3279 }
3280
3281 EV_FREQUENT_CHECK;
2628 3282
2629 ev_set_priority (&w->io, ev_priority (w)); 3283 ev_set_priority (&w->io, ev_priority (w));
2630 ev_io_start (EV_A_ &w->io); 3284 ev_io_start (EV_A_ &w->io);
2631 3285
2632 ev_prepare_init (&w->prepare, embed_prepare_cb); 3286 ev_prepare_init (&w->prepare, embed_prepare_cb);
2633 ev_set_priority (&w->prepare, EV_MINPRI); 3287 ev_set_priority (&w->prepare, EV_MINPRI);
2634 ev_prepare_start (EV_A_ &w->prepare); 3288 ev_prepare_start (EV_A_ &w->prepare);
2635 3289
3290 ev_fork_init (&w->fork, embed_fork_cb);
3291 ev_fork_start (EV_A_ &w->fork);
3292
2636 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3293 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2637 3294
2638 ev_start (EV_A_ (W)w, 1); 3295 ev_start (EV_A_ (W)w, 1);
3296
3297 EV_FREQUENT_CHECK;
2639} 3298}
2640 3299
2641void 3300void
2642ev_embed_stop (EV_P_ ev_embed *w) 3301ev_embed_stop (EV_P_ ev_embed *w)
2643{ 3302{
2644 clear_pending (EV_A_ (W)w); 3303 clear_pending (EV_A_ (W)w);
2645 if (expect_false (!ev_is_active (w))) 3304 if (expect_false (!ev_is_active (w)))
2646 return; 3305 return;
2647 3306
3307 EV_FREQUENT_CHECK;
3308
2648 ev_io_stop (EV_A_ &w->io); 3309 ev_io_stop (EV_A_ &w->io);
2649 ev_prepare_stop (EV_A_ &w->prepare); 3310 ev_prepare_stop (EV_A_ &w->prepare);
3311 ev_fork_stop (EV_A_ &w->fork);
2650 3312
2651 ev_stop (EV_A_ (W)w); 3313 EV_FREQUENT_CHECK;
2652} 3314}
2653#endif 3315#endif
2654 3316
2655#if EV_FORK_ENABLE 3317#if EV_FORK_ENABLE
2656void 3318void
2657ev_fork_start (EV_P_ ev_fork *w) 3319ev_fork_start (EV_P_ ev_fork *w)
2658{ 3320{
2659 if (expect_false (ev_is_active (w))) 3321 if (expect_false (ev_is_active (w)))
2660 return; 3322 return;
3323
3324 EV_FREQUENT_CHECK;
2661 3325
2662 ev_start (EV_A_ (W)w, ++forkcnt); 3326 ev_start (EV_A_ (W)w, ++forkcnt);
2663 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3327 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2664 forks [forkcnt - 1] = w; 3328 forks [forkcnt - 1] = w;
3329
3330 EV_FREQUENT_CHECK;
2665} 3331}
2666 3332
2667void 3333void
2668ev_fork_stop (EV_P_ ev_fork *w) 3334ev_fork_stop (EV_P_ ev_fork *w)
2669{ 3335{
2670 clear_pending (EV_A_ (W)w); 3336 clear_pending (EV_A_ (W)w);
2671 if (expect_false (!ev_is_active (w))) 3337 if (expect_false (!ev_is_active (w)))
2672 return; 3338 return;
2673 3339
3340 EV_FREQUENT_CHECK;
3341
2674 { 3342 {
2675 int active = ev_active (w); 3343 int active = ev_active (w);
2676 3344
2677 forks [active - 1] = forks [--forkcnt]; 3345 forks [active - 1] = forks [--forkcnt];
2678 ev_active (forks [active - 1]) = active; 3346 ev_active (forks [active - 1]) = active;
2679 } 3347 }
2680 3348
2681 ev_stop (EV_A_ (W)w); 3349 ev_stop (EV_A_ (W)w);
3350
3351 EV_FREQUENT_CHECK;
2682} 3352}
2683#endif 3353#endif
2684 3354
2685#if EV_ASYNC_ENABLE 3355#if EV_ASYNC_ENABLE
2686void 3356void
2688{ 3358{
2689 if (expect_false (ev_is_active (w))) 3359 if (expect_false (ev_is_active (w)))
2690 return; 3360 return;
2691 3361
2692 evpipe_init (EV_A); 3362 evpipe_init (EV_A);
3363
3364 EV_FREQUENT_CHECK;
2693 3365
2694 ev_start (EV_A_ (W)w, ++asynccnt); 3366 ev_start (EV_A_ (W)w, ++asynccnt);
2695 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3367 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2696 asyncs [asynccnt - 1] = w; 3368 asyncs [asynccnt - 1] = w;
3369
3370 EV_FREQUENT_CHECK;
2697} 3371}
2698 3372
2699void 3373void
2700ev_async_stop (EV_P_ ev_async *w) 3374ev_async_stop (EV_P_ ev_async *w)
2701{ 3375{
2702 clear_pending (EV_A_ (W)w); 3376 clear_pending (EV_A_ (W)w);
2703 if (expect_false (!ev_is_active (w))) 3377 if (expect_false (!ev_is_active (w)))
2704 return; 3378 return;
2705 3379
3380 EV_FREQUENT_CHECK;
3381
2706 { 3382 {
2707 int active = ev_active (w); 3383 int active = ev_active (w);
2708 3384
2709 asyncs [active - 1] = asyncs [--asynccnt]; 3385 asyncs [active - 1] = asyncs [--asynccnt];
2710 ev_active (asyncs [active - 1]) = active; 3386 ev_active (asyncs [active - 1]) = active;
2711 } 3387 }
2712 3388
2713 ev_stop (EV_A_ (W)w); 3389 ev_stop (EV_A_ (W)w);
3390
3391 EV_FREQUENT_CHECK;
2714} 3392}
2715 3393
2716void 3394void
2717ev_async_send (EV_P_ ev_async *w) 3395ev_async_send (EV_P_ ev_async *w)
2718{ 3396{
2735once_cb (EV_P_ struct ev_once *once, int revents) 3413once_cb (EV_P_ struct ev_once *once, int revents)
2736{ 3414{
2737 void (*cb)(int revents, void *arg) = once->cb; 3415 void (*cb)(int revents, void *arg) = once->cb;
2738 void *arg = once->arg; 3416 void *arg = once->arg;
2739 3417
2740 ev_io_stop (EV_A_ &once->io); 3418 ev_io_stop (EV_A_ &once->io);
2741 ev_timer_stop (EV_A_ &once->to); 3419 ev_timer_stop (EV_A_ &once->to);
2742 ev_free (once); 3420 ev_free (once);
2743 3421
2744 cb (revents, arg); 3422 cb (revents, arg);
2745} 3423}
2746 3424
2747static void 3425static void
2748once_cb_io (EV_P_ ev_io *w, int revents) 3426once_cb_io (EV_P_ ev_io *w, int revents)
2749{ 3427{
2750 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3428 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3429
3430 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2751} 3431}
2752 3432
2753static void 3433static void
2754once_cb_to (EV_P_ ev_timer *w, int revents) 3434once_cb_to (EV_P_ ev_timer *w, int revents)
2755{ 3435{
2756 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3436 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3437
3438 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2757} 3439}
2758 3440
2759void 3441void
2760ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3442ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2761{ 3443{
2783 ev_timer_set (&once->to, timeout, 0.); 3465 ev_timer_set (&once->to, timeout, 0.);
2784 ev_timer_start (EV_A_ &once->to); 3466 ev_timer_start (EV_A_ &once->to);
2785 } 3467 }
2786} 3468}
2787 3469
3470/*****************************************************************************/
3471
3472#if EV_WALK_ENABLE
3473void
3474ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3475{
3476 int i, j;
3477 ev_watcher_list *wl, *wn;
3478
3479 if (types & (EV_IO | EV_EMBED))
3480 for (i = 0; i < anfdmax; ++i)
3481 for (wl = anfds [i].head; wl; )
3482 {
3483 wn = wl->next;
3484
3485#if EV_EMBED_ENABLE
3486 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3487 {
3488 if (types & EV_EMBED)
3489 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3490 }
3491 else
3492#endif
3493#if EV_USE_INOTIFY
3494 if (ev_cb ((ev_io *)wl) == infy_cb)
3495 ;
3496 else
3497#endif
3498 if ((ev_io *)wl != &pipe_w)
3499 if (types & EV_IO)
3500 cb (EV_A_ EV_IO, wl);
3501
3502 wl = wn;
3503 }
3504
3505 if (types & (EV_TIMER | EV_STAT))
3506 for (i = timercnt + HEAP0; i-- > HEAP0; )
3507#if EV_STAT_ENABLE
3508 /*TODO: timer is not always active*/
3509 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3510 {
3511 if (types & EV_STAT)
3512 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3513 }
3514 else
3515#endif
3516 if (types & EV_TIMER)
3517 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3518
3519#if EV_PERIODIC_ENABLE
3520 if (types & EV_PERIODIC)
3521 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3522 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3523#endif
3524
3525#if EV_IDLE_ENABLE
3526 if (types & EV_IDLE)
3527 for (j = NUMPRI; i--; )
3528 for (i = idlecnt [j]; i--; )
3529 cb (EV_A_ EV_IDLE, idles [j][i]);
3530#endif
3531
3532#if EV_FORK_ENABLE
3533 if (types & EV_FORK)
3534 for (i = forkcnt; i--; )
3535 if (ev_cb (forks [i]) != embed_fork_cb)
3536 cb (EV_A_ EV_FORK, forks [i]);
3537#endif
3538
3539#if EV_ASYNC_ENABLE
3540 if (types & EV_ASYNC)
3541 for (i = asynccnt; i--; )
3542 cb (EV_A_ EV_ASYNC, asyncs [i]);
3543#endif
3544
3545 if (types & EV_PREPARE)
3546 for (i = preparecnt; i--; )
3547#if EV_EMBED_ENABLE
3548 if (ev_cb (prepares [i]) != embed_prepare_cb)
3549#endif
3550 cb (EV_A_ EV_PREPARE, prepares [i]);
3551
3552 if (types & EV_CHECK)
3553 for (i = checkcnt; i--; )
3554 cb (EV_A_ EV_CHECK, checks [i]);
3555
3556 if (types & EV_SIGNAL)
3557 for (i = 0; i < signalmax; ++i)
3558 for (wl = signals [i].head; wl; )
3559 {
3560 wn = wl->next;
3561 cb (EV_A_ EV_SIGNAL, wl);
3562 wl = wn;
3563 }
3564
3565 if (types & EV_CHILD)
3566 for (i = EV_PID_HASHSIZE; i--; )
3567 for (wl = childs [i]; wl; )
3568 {
3569 wn = wl->next;
3570 cb (EV_A_ EV_CHILD, wl);
3571 wl = wn;
3572 }
3573/* EV_STAT 0x00001000 /* stat data changed */
3574/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3575}
3576#endif
3577
2788#if EV_MULTIPLICITY 3578#if EV_MULTIPLICITY
2789 #include "ev_wrap.h" 3579 #include "ev_wrap.h"
2790#endif 3580#endif
2791 3581
2792#ifdef __cplusplus 3582#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines