ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.244 by root, Tue May 20 23:49:41 2008 UTC vs.
Revision 1.295 by root, Wed Jul 8 04:29:31 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
126# define EV_USE_EVENTFD 1 140# define EV_USE_EVENTFD 1
127# else 141# else
128# define EV_USE_EVENTFD 0 142# define EV_USE_EVENTFD 0
129# endif 143# endif
130# endif 144# endif
131 145
132#endif 146#endif
133 147
134#include <math.h> 148#include <math.h>
135#include <stdlib.h> 149#include <stdlib.h>
136#include <fcntl.h> 150#include <fcntl.h>
154#ifndef _WIN32 168#ifndef _WIN32
155# include <sys/time.h> 169# include <sys/time.h>
156# include <sys/wait.h> 170# include <sys/wait.h>
157# include <unistd.h> 171# include <unistd.h>
158#else 172#else
173# include <io.h>
159# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 175# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
163# endif 178# endif
164#endif 179#endif
165 180
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
167 182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
190
168#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
169# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
170#endif 197#endif
171 198
172#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 201#endif
175 202
176#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
177# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
178#endif 209#endif
179 210
180#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
182#endif 213#endif
235# else 266# else
236# define EV_USE_EVENTFD 0 267# define EV_USE_EVENTFD 0
237# endif 268# endif
238#endif 269#endif
239 270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
240#ifndef EV_USE_4HEAP 281#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 282# define EV_USE_4HEAP !EV_MINIMAL
242#endif 283#endif
243 284
244#ifndef EV_HEAP_CACHE_AT 285#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
246#endif 301#endif
247 302
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
249 304
250#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
267# include <sys/select.h> 322# include <sys/select.h>
268# endif 323# endif
269#endif 324#endif
270 325
271#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
272# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
273#endif 335#endif
274 336
275#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h> 338# include <winsock.h>
277#endif 339#endif
287} 349}
288# endif 350# endif
289#endif 351#endif
290 352
291/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
292 360
293/* 361/*
294 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
323# define inline_speed static noinline 391# define inline_speed static noinline
324#else 392#else
325# define inline_speed static inline 393# define inline_speed static inline
326#endif 394#endif
327 395
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
330 403
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
333 406
334typedef ev_watcher *W; 407typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
337 410
338#define ev_active(w) ((W)(w))->active 411#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 412#define ev_at(w) ((WT)(w))->at
340 413
341#if EV_USE_MONOTONIC 414#if EV_USE_REALTIME
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
345#endif 422#endif
346 423
347#ifdef _WIN32 424#ifdef _WIN32
348# include "ev_win32.c" 425# include "ev_win32.c"
357{ 434{
358 syserr_cb = cb; 435 syserr_cb = cb;
359} 436}
360 437
361static void noinline 438static void noinline
362syserr (const char *msg) 439ev_syserr (const char *msg)
363{ 440{
364 if (!msg) 441 if (!msg)
365 msg = "(libev) system error"; 442 msg = "(libev) system error";
366 443
367 if (syserr_cb) 444 if (syserr_cb)
413#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
415 492
416/*****************************************************************************/ 493/*****************************************************************************/
417 494
495/* file descriptor info structure */
418typedef struct 496typedef struct
419{ 497{
420 WL head; 498 WL head;
421 unsigned char events; 499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 502 unsigned char unused;
503#if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505#endif
423#if EV_SELECT_IS_WINSOCKET 506#if EV_SELECT_IS_WINSOCKET
424 SOCKET handle; 507 SOCKET handle;
425#endif 508#endif
426} ANFD; 509} ANFD;
427 510
511/* stores the pending event set for a given watcher */
428typedef struct 512typedef struct
429{ 513{
430 W w; 514 W w;
431 int events; 515 int events; /* the pending event set for the given watcher */
432} ANPENDING; 516} ANPENDING;
433 517
434#if EV_USE_INOTIFY 518#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 519/* hash table entry per inotify-id */
436typedef struct 520typedef struct
439} ANFS; 523} ANFS;
440#endif 524#endif
441 525
442/* Heap Entry */ 526/* Heap Entry */
443#if EV_HEAP_CACHE_AT 527#if EV_HEAP_CACHE_AT
528 /* a heap element */
444 typedef struct { 529 typedef struct {
445 ev_tstamp at; 530 ev_tstamp at;
446 WT w; 531 WT w;
447 } ANHE; 532 } ANHE;
448 533
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 534 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 535 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 537#else
538 /* a heap element */
453 typedef WT ANHE; 539 typedef WT ANHE;
454 540
455 #define ANHE_w(he) (he) 541 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 542 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 543 #define ANHE_at_cache(he)
458#endif 544#endif
459 545
460#if EV_MULTIPLICITY 546#if EV_MULTIPLICITY
461 547
462 struct ev_loop 548 struct ev_loop
483 569
484#endif 570#endif
485 571
486/*****************************************************************************/ 572/*****************************************************************************/
487 573
574#ifndef EV_HAVE_EV_TIME
488ev_tstamp 575ev_tstamp
489ev_time (void) 576ev_time (void)
490{ 577{
491#if EV_USE_REALTIME 578#if EV_USE_REALTIME
579 if (expect_true (have_realtime))
580 {
492 struct timespec ts; 581 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 582 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 583 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 584 }
585#endif
586
496 struct timeval tv; 587 struct timeval tv;
497 gettimeofday (&tv, 0); 588 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 589 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 590}
591#endif
501 592
502ev_tstamp inline_size 593inline_size ev_tstamp
503get_clock (void) 594get_clock (void)
504{ 595{
505#if EV_USE_MONOTONIC 596#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 597 if (expect_true (have_monotonic))
507 { 598 {
540 struct timeval tv; 631 struct timeval tv;
541 632
542 tv.tv_sec = (time_t)delay; 633 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 634 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544 635
636 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
637 /* somehting not guaranteed by newer posix versions, but guaranteed */
638 /* by older ones */
545 select (0, 0, 0, 0, &tv); 639 select (0, 0, 0, 0, &tv);
546#endif 640#endif
547 } 641 }
548} 642}
549 643
550/*****************************************************************************/ 644/*****************************************************************************/
551 645
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 646#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 647
554int inline_size 648/* find a suitable new size for the given array, */
649/* hopefully by rounding to a ncie-to-malloc size */
650inline_size int
555array_nextsize (int elem, int cur, int cnt) 651array_nextsize (int elem, int cur, int cnt)
556{ 652{
557 int ncur = cur + 1; 653 int ncur = cur + 1;
558 654
559 do 655 do
576array_realloc (int elem, void *base, int *cur, int cnt) 672array_realloc (int elem, void *base, int *cur, int cnt)
577{ 673{
578 *cur = array_nextsize (elem, *cur, cnt); 674 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 675 return ev_realloc (base, elem * *cur);
580} 676}
677
678#define array_init_zero(base,count) \
679 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 680
582#define array_needsize(type,base,cur,cnt,init) \ 681#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 682 if (expect_false ((cnt) > (cur))) \
584 { \ 683 { \
585 int ocur_ = (cur); \ 684 int ocur_ = (cur); \
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 696 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 697 }
599#endif 698#endif
600 699
601#define array_free(stem, idx) \ 700#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 701 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 702
604/*****************************************************************************/ 703/*****************************************************************************/
704
705/* dummy callback for pending events */
706static void noinline
707pendingcb (EV_P_ ev_prepare *w, int revents)
708{
709}
605 710
606void noinline 711void noinline
607ev_feed_event (EV_P_ void *w, int revents) 712ev_feed_event (EV_P_ void *w, int revents)
608{ 713{
609 W w_ = (W)w; 714 W w_ = (W)w;
618 pendings [pri][w_->pending - 1].w = w_; 723 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 724 pendings [pri][w_->pending - 1].events = revents;
620 } 725 }
621} 726}
622 727
623void inline_speed 728inline_speed void
729feed_reverse (EV_P_ W w)
730{
731 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
732 rfeeds [rfeedcnt++] = w;
733}
734
735inline_size void
736feed_reverse_done (EV_P_ int revents)
737{
738 do
739 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
740 while (rfeedcnt);
741}
742
743inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 744queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 745{
626 int i; 746 int i;
627 747
628 for (i = 0; i < eventcnt; ++i) 748 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 749 ev_feed_event (EV_A_ events [i], type);
630} 750}
631 751
632/*****************************************************************************/ 752/*****************************************************************************/
633 753
634void inline_size 754inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 755fd_event (EV_P_ int fd, int revents)
649{ 756{
650 ANFD *anfd = anfds + fd; 757 ANFD *anfd = anfds + fd;
651 ev_io *w; 758 ev_io *w;
652 759
664{ 771{
665 if (fd >= 0 && fd < anfdmax) 772 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 773 fd_event (EV_A_ fd, revents);
667} 774}
668 775
669void inline_size 776/* make sure the external fd watch events are in-sync */
777/* with the kernel/libev internal state */
778inline_size void
670fd_reify (EV_P) 779fd_reify (EV_P)
671{ 780{
672 int i; 781 int i;
673 782
674 for (i = 0; i < fdchangecnt; ++i) 783 for (i = 0; i < fdchangecnt; ++i)
683 events |= (unsigned char)w->events; 792 events |= (unsigned char)w->events;
684 793
685#if EV_SELECT_IS_WINSOCKET 794#if EV_SELECT_IS_WINSOCKET
686 if (events) 795 if (events)
687 { 796 {
688 unsigned long argp; 797 unsigned long arg;
689 #ifdef EV_FD_TO_WIN32_HANDLE 798 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 799 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else 800 #else
692 anfd->handle = _get_osfhandle (fd); 801 anfd->handle = _get_osfhandle (fd);
693 #endif 802 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 803 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
695 } 804 }
696#endif 805#endif
697 806
698 { 807 {
699 unsigned char o_events = anfd->events; 808 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify; 809 unsigned char o_reify = anfd->reify;
701 810
702 anfd->reify = 0; 811 anfd->reify = 0;
703 anfd->events = events; 812 anfd->events = events;
704 813
705 if (o_events != events || o_reify & EV_IOFDSET) 814 if (o_events != events || o_reify & EV__IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 815 backend_modify (EV_A_ fd, o_events, events);
707 } 816 }
708 } 817 }
709 818
710 fdchangecnt = 0; 819 fdchangecnt = 0;
711} 820}
712 821
713void inline_size 822/* something about the given fd changed */
823inline_size void
714fd_change (EV_P_ int fd, int flags) 824fd_change (EV_P_ int fd, int flags)
715{ 825{
716 unsigned char reify = anfds [fd].reify; 826 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 827 anfds [fd].reify |= flags;
718 828
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 832 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 833 fdchanges [fdchangecnt - 1] = fd;
724 } 834 }
725} 835}
726 836
727void inline_speed 837/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
838inline_speed void
728fd_kill (EV_P_ int fd) 839fd_kill (EV_P_ int fd)
729{ 840{
730 ev_io *w; 841 ev_io *w;
731 842
732 while ((w = (ev_io *)anfds [fd].head)) 843 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 845 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 846 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 847 }
737} 848}
738 849
739int inline_size 850/* check whether the given fd is atcually valid, for error recovery */
851inline_size int
740fd_valid (int fd) 852fd_valid (int fd)
741{ 853{
742#ifdef _WIN32 854#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 855 return _get_osfhandle (fd) != -1;
744#else 856#else
752{ 864{
753 int fd; 865 int fd;
754 866
755 for (fd = 0; fd < anfdmax; ++fd) 867 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 868 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 869 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 870 fd_kill (EV_A_ fd);
759} 871}
760 872
761/* called on ENOMEM in select/poll to kill some fds and retry */ 873/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 874static void noinline
780 892
781 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 894 if (anfds [fd].events)
783 { 895 {
784 anfds [fd].events = 0; 896 anfds [fd].events = 0;
897 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 898 fd_change (EV_A_ fd, EV__IOFDSET | 1);
786 } 899 }
787} 900}
788 901
789/*****************************************************************************/ 902/*****************************************************************************/
790 903
802 */ 915 */
803#if EV_USE_4HEAP 916#if EV_USE_4HEAP
804 917
805#define DHEAP 4 918#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 919#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807 920#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808/* towards the root */ 921#define UPHEAP_DONE(p,k) ((p) == (k))
809void inline_speed
810upheap (ANHE *heap, int k)
811{
812 ANHE he = heap [k];
813
814 for (;;)
815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
821 heap [k] = heap [p];
822 ev_active (ANHE_w (heap [k])) = k;
823 k = p;
824 }
825
826 ev_active (ANHE_w (he)) = k;
827 heap [k] = he;
828}
829 922
830/* away from the root */ 923/* away from the root */
831void inline_speed 924inline_speed void
832downheap (ANHE *heap, int N, int k) 925downheap (ANHE *heap, int N, int k)
833{ 926{
834 ANHE he = heap [k]; 927 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0; 928 ANHE *E = heap + N + HEAP0;
836 929
837 for (;;) 930 for (;;)
838 { 931 {
839 ev_tstamp minat; 932 ev_tstamp minat;
840 ANHE *minpos; 933 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 934 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
842 935
843 // find minimum child 936 /* find minimum child */
844 if (expect_true (pos + DHEAP - 1 < E)) 937 if (expect_true (pos + DHEAP - 1 < E))
845 { 938 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 939 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 940 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 941 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 942 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 } 943 }
851 else if (pos < E) 944 else if (pos < E)
852 { 945 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 946 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 947 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 break; 952 break;
860 953
861 if (ANHE_at (he) <= minat) 954 if (ANHE_at (he) <= minat)
862 break; 955 break;
863 956
957 heap [k] = *minpos;
864 ev_active (ANHE_w (*minpos)) = k; 958 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866 959
867 k = minpos - heap; 960 k = minpos - heap;
868 } 961 }
869 962
963 heap [k] = he;
870 ev_active (ANHE_w (he)) = k; 964 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872} 965}
873 966
874#else // 4HEAP 967#else /* 4HEAP */
875 968
876#define HEAP0 1 969#define HEAP0 1
970#define HPARENT(k) ((k) >> 1)
971#define UPHEAP_DONE(p,k) (!(p))
877 972
878/* towards the root */ 973/* away from the root */
879void inline_speed 974inline_speed void
880upheap (ANHE *heap, int k) 975downheap (ANHE *heap, int N, int k)
881{ 976{
882 ANHE he = heap [k]; 977 ANHE he = heap [k];
883 978
884 for (;;) 979 for (;;)
885 { 980 {
886 int p = k >> 1; 981 int c = k << 1;
887 982
888 /* maybe we could use a dummy element at heap [0]? */ 983 if (c > N + HEAP0 - 1)
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break; 984 break;
891 985
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 986 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0; 987 ? 1 : 0;
916 988
917 if (ANHE_at (he) <= ANHE_at (heap [c])) 989 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break; 990 break;
919 991
926 heap [k] = he; 998 heap [k] = he;
927 ev_active (ANHE_w (he)) = k; 999 ev_active (ANHE_w (he)) = k;
928} 1000}
929#endif 1001#endif
930 1002
931void inline_size 1003/* towards the root */
1004inline_speed void
1005upheap (ANHE *heap, int k)
1006{
1007 ANHE he = heap [k];
1008
1009 for (;;)
1010 {
1011 int p = HPARENT (k);
1012
1013 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1014 break;
1015
1016 heap [k] = heap [p];
1017 ev_active (ANHE_w (heap [k])) = k;
1018 k = p;
1019 }
1020
1021 heap [k] = he;
1022 ev_active (ANHE_w (he)) = k;
1023}
1024
1025/* move an element suitably so it is in a correct place */
1026inline_size void
932adjustheap (ANHE *heap, int N, int k) 1027adjustheap (ANHE *heap, int N, int k)
933{ 1028{
1029 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
934 upheap (heap, k); 1030 upheap (heap, k);
1031 else
935 downheap (heap, N, k); 1032 downheap (heap, N, k);
1033}
1034
1035/* rebuild the heap: this function is used only once and executed rarely */
1036inline_size void
1037reheap (ANHE *heap, int N)
1038{
1039 int i;
1040
1041 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1042 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1043 for (i = 0; i < N; ++i)
1044 upheap (heap, i + HEAP0);
936} 1045}
937 1046
938/*****************************************************************************/ 1047/*****************************************************************************/
939 1048
1049/* associate signal watchers to a signal signal */
940typedef struct 1050typedef struct
941{ 1051{
942 WL head; 1052 WL head;
943 EV_ATOMIC_T gotsig; 1053 EV_ATOMIC_T gotsig;
944} ANSIG; 1054} ANSIG;
946static ANSIG *signals; 1056static ANSIG *signals;
947static int signalmax; 1057static int signalmax;
948 1058
949static EV_ATOMIC_T gotsig; 1059static EV_ATOMIC_T gotsig;
950 1060
951void inline_size
952signals_init (ANSIG *base, int count)
953{
954 while (count--)
955 {
956 base->head = 0;
957 base->gotsig = 0;
958
959 ++base;
960 }
961}
962
963/*****************************************************************************/ 1061/*****************************************************************************/
964 1062
965void inline_speed 1063/* used to prepare libev internal fd's */
1064/* this is not fork-safe */
1065inline_speed void
966fd_intern (int fd) 1066fd_intern (int fd)
967{ 1067{
968#ifdef _WIN32 1068#ifdef _WIN32
969 int arg = 1; 1069 unsigned long arg = 1;
970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1070 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
971#else 1071#else
972 fcntl (fd, F_SETFD, FD_CLOEXEC); 1072 fcntl (fd, F_SETFD, FD_CLOEXEC);
973 fcntl (fd, F_SETFL, O_NONBLOCK); 1073 fcntl (fd, F_SETFL, O_NONBLOCK);
974#endif 1074#endif
975} 1075}
976 1076
977static void noinline 1077static void noinline
978evpipe_init (EV_P) 1078evpipe_init (EV_P)
979{ 1079{
980 if (!ev_is_active (&pipeev)) 1080 if (!ev_is_active (&pipe_w))
981 { 1081 {
982#if EV_USE_EVENTFD 1082#if EV_USE_EVENTFD
983 if ((evfd = eventfd (0, 0)) >= 0) 1083 if ((evfd = eventfd (0, 0)) >= 0)
984 { 1084 {
985 evpipe [0] = -1; 1085 evpipe [0] = -1;
986 fd_intern (evfd); 1086 fd_intern (evfd);
987 ev_io_set (&pipeev, evfd, EV_READ); 1087 ev_io_set (&pipe_w, evfd, EV_READ);
988 } 1088 }
989 else 1089 else
990#endif 1090#endif
991 { 1091 {
992 while (pipe (evpipe)) 1092 while (pipe (evpipe))
993 syserr ("(libev) error creating signal/async pipe"); 1093 ev_syserr ("(libev) error creating signal/async pipe");
994 1094
995 fd_intern (evpipe [0]); 1095 fd_intern (evpipe [0]);
996 fd_intern (evpipe [1]); 1096 fd_intern (evpipe [1]);
997 ev_io_set (&pipeev, evpipe [0], EV_READ); 1097 ev_io_set (&pipe_w, evpipe [0], EV_READ);
998 } 1098 }
999 1099
1000 ev_io_start (EV_A_ &pipeev); 1100 ev_io_start (EV_A_ &pipe_w);
1001 ev_unref (EV_A); /* watcher should not keep loop alive */ 1101 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 } 1102 }
1003} 1103}
1004 1104
1005void inline_size 1105inline_size void
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1106evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{ 1107{
1008 if (!*flag) 1108 if (!*flag)
1009 { 1109 {
1010 int old_errno = errno; /* save errno because write might clobber it */ 1110 int old_errno = errno; /* save errno because write might clobber it */
1023 1123
1024 errno = old_errno; 1124 errno = old_errno;
1025 } 1125 }
1026} 1126}
1027 1127
1128/* called whenever the libev signal pipe */
1129/* got some events (signal, async) */
1028static void 1130static void
1029pipecb (EV_P_ ev_io *iow, int revents) 1131pipecb (EV_P_ ev_io *iow, int revents)
1030{ 1132{
1031#if EV_USE_EVENTFD 1133#if EV_USE_EVENTFD
1032 if (evfd >= 0) 1134 if (evfd >= 0)
1088ev_feed_signal_event (EV_P_ int signum) 1190ev_feed_signal_event (EV_P_ int signum)
1089{ 1191{
1090 WL w; 1192 WL w;
1091 1193
1092#if EV_MULTIPLICITY 1194#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1195 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1094#endif 1196#endif
1095 1197
1096 --signum; 1198 --signum;
1097 1199
1098 if (signum < 0 || signum >= signalmax) 1200 if (signum < 0 || signum >= signalmax)
1114 1216
1115#ifndef WIFCONTINUED 1217#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0 1218# define WIFCONTINUED(status) 0
1117#endif 1219#endif
1118 1220
1119void inline_speed 1221/* handle a single child status event */
1222inline_speed void
1120child_reap (EV_P_ int chain, int pid, int status) 1223child_reap (EV_P_ int chain, int pid, int status)
1121{ 1224{
1122 ev_child *w; 1225 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1226 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1124 1227
1137 1240
1138#ifndef WCONTINUED 1241#ifndef WCONTINUED
1139# define WCONTINUED 0 1242# define WCONTINUED 0
1140#endif 1243#endif
1141 1244
1245/* called on sigchld etc., calls waitpid */
1142static void 1246static void
1143childcb (EV_P_ ev_signal *sw, int revents) 1247childcb (EV_P_ ev_signal *sw, int revents)
1144{ 1248{
1145 int pid, status; 1249 int pid, status;
1146 1250
1227 /* kqueue is borked on everything but netbsd apparently */ 1331 /* kqueue is borked on everything but netbsd apparently */
1228 /* it usually doesn't work correctly on anything but sockets and pipes */ 1332 /* it usually doesn't work correctly on anything but sockets and pipes */
1229 flags &= ~EVBACKEND_KQUEUE; 1333 flags &= ~EVBACKEND_KQUEUE;
1230#endif 1334#endif
1231#ifdef __APPLE__ 1335#ifdef __APPLE__
1232 // flags &= ~EVBACKEND_KQUEUE; for documentation 1336 /* only select works correctly on that "unix-certified" platform */
1233 flags &= ~EVBACKEND_POLL; 1337 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1338 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1234#endif 1339#endif
1235 1340
1236 return flags; 1341 return flags;
1237} 1342}
1238 1343
1258ev_loop_count (EV_P) 1363ev_loop_count (EV_P)
1259{ 1364{
1260 return loop_count; 1365 return loop_count;
1261} 1366}
1262 1367
1368unsigned int
1369ev_loop_depth (EV_P)
1370{
1371 return loop_depth;
1372}
1373
1263void 1374void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1375ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1265{ 1376{
1266 io_blocktime = interval; 1377 io_blocktime = interval;
1267} 1378}
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1381ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1271{ 1382{
1272 timeout_blocktime = interval; 1383 timeout_blocktime = interval;
1273} 1384}
1274 1385
1386/* initialise a loop structure, must be zero-initialised */
1275static void noinline 1387static void noinline
1276loop_init (EV_P_ unsigned int flags) 1388loop_init (EV_P_ unsigned int flags)
1277{ 1389{
1278 if (!backend) 1390 if (!backend)
1279 { 1391 {
1392#if EV_USE_REALTIME
1393 if (!have_realtime)
1394 {
1395 struct timespec ts;
1396
1397 if (!clock_gettime (CLOCK_REALTIME, &ts))
1398 have_realtime = 1;
1399 }
1400#endif
1401
1280#if EV_USE_MONOTONIC 1402#if EV_USE_MONOTONIC
1403 if (!have_monotonic)
1281 { 1404 {
1282 struct timespec ts; 1405 struct timespec ts;
1406
1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1407 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1284 have_monotonic = 1; 1408 have_monotonic = 1;
1285 } 1409 }
1286#endif 1410#endif
1287 1411
1288 ev_rt_now = ev_time (); 1412 ev_rt_now = ev_time ();
1289 mn_now = get_clock (); 1413 mn_now = get_clock ();
1290 now_floor = mn_now; 1414 now_floor = mn_now;
1327#endif 1451#endif
1328#if EV_USE_SELECT 1452#if EV_USE_SELECT
1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1453 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1330#endif 1454#endif
1331 1455
1456 ev_prepare_init (&pending_w, pendingcb);
1457
1332 ev_init (&pipeev, pipecb); 1458 ev_init (&pipe_w, pipecb);
1333 ev_set_priority (&pipeev, EV_MAXPRI); 1459 ev_set_priority (&pipe_w, EV_MAXPRI);
1334 } 1460 }
1335} 1461}
1336 1462
1463/* free up a loop structure */
1337static void noinline 1464static void noinline
1338loop_destroy (EV_P) 1465loop_destroy (EV_P)
1339{ 1466{
1340 int i; 1467 int i;
1341 1468
1342 if (ev_is_active (&pipeev)) 1469 if (ev_is_active (&pipe_w))
1343 { 1470 {
1344 ev_ref (EV_A); /* signal watcher */ 1471 ev_ref (EV_A); /* signal watcher */
1345 ev_io_stop (EV_A_ &pipeev); 1472 ev_io_stop (EV_A_ &pipe_w);
1346 1473
1347#if EV_USE_EVENTFD 1474#if EV_USE_EVENTFD
1348 if (evfd >= 0) 1475 if (evfd >= 0)
1349 close (evfd); 1476 close (evfd);
1350#endif 1477#endif
1389 } 1516 }
1390 1517
1391 ev_free (anfds); anfdmax = 0; 1518 ev_free (anfds); anfdmax = 0;
1392 1519
1393 /* have to use the microsoft-never-gets-it-right macro */ 1520 /* have to use the microsoft-never-gets-it-right macro */
1521 array_free (rfeed, EMPTY);
1394 array_free (fdchange, EMPTY); 1522 array_free (fdchange, EMPTY);
1395 array_free (timer, EMPTY); 1523 array_free (timer, EMPTY);
1396#if EV_PERIODIC_ENABLE 1524#if EV_PERIODIC_ENABLE
1397 array_free (periodic, EMPTY); 1525 array_free (periodic, EMPTY);
1398#endif 1526#endif
1407 1535
1408 backend = 0; 1536 backend = 0;
1409} 1537}
1410 1538
1411#if EV_USE_INOTIFY 1539#if EV_USE_INOTIFY
1412void inline_size infy_fork (EV_P); 1540inline_size void infy_fork (EV_P);
1413#endif 1541#endif
1414 1542
1415void inline_size 1543inline_size void
1416loop_fork (EV_P) 1544loop_fork (EV_P)
1417{ 1545{
1418#if EV_USE_PORT 1546#if EV_USE_PORT
1419 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1547 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1420#endif 1548#endif
1426#endif 1554#endif
1427#if EV_USE_INOTIFY 1555#if EV_USE_INOTIFY
1428 infy_fork (EV_A); 1556 infy_fork (EV_A);
1429#endif 1557#endif
1430 1558
1431 if (ev_is_active (&pipeev)) 1559 if (ev_is_active (&pipe_w))
1432 { 1560 {
1433 /* this "locks" the handlers against writing to the pipe */ 1561 /* this "locks" the handlers against writing to the pipe */
1434 /* while we modify the fd vars */ 1562 /* while we modify the fd vars */
1435 gotsig = 1; 1563 gotsig = 1;
1436#if EV_ASYNC_ENABLE 1564#if EV_ASYNC_ENABLE
1437 gotasync = 1; 1565 gotasync = 1;
1438#endif 1566#endif
1439 1567
1440 ev_ref (EV_A); 1568 ev_ref (EV_A);
1441 ev_io_stop (EV_A_ &pipeev); 1569 ev_io_stop (EV_A_ &pipe_w);
1442 1570
1443#if EV_USE_EVENTFD 1571#if EV_USE_EVENTFD
1444 if (evfd >= 0) 1572 if (evfd >= 0)
1445 close (evfd); 1573 close (evfd);
1446#endif 1574#endif
1451 close (evpipe [1]); 1579 close (evpipe [1]);
1452 } 1580 }
1453 1581
1454 evpipe_init (EV_A); 1582 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */ 1583 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ); 1584 pipecb (EV_A_ &pipe_w, EV_READ);
1457 } 1585 }
1458 1586
1459 postfork = 0; 1587 postfork = 0;
1460} 1588}
1461 1589
1462#if EV_MULTIPLICITY 1590#if EV_MULTIPLICITY
1591
1463struct ev_loop * 1592struct ev_loop *
1464ev_loop_new (unsigned int flags) 1593ev_loop_new (unsigned int flags)
1465{ 1594{
1466 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1595 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1467 1596
1485void 1614void
1486ev_loop_fork (EV_P) 1615ev_loop_fork (EV_P)
1487{ 1616{
1488 postfork = 1; /* must be in line with ev_default_fork */ 1617 postfork = 1; /* must be in line with ev_default_fork */
1489} 1618}
1619
1620#if EV_VERIFY
1621static void noinline
1622verify_watcher (EV_P_ W w)
1623{
1624 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1625
1626 if (w->pending)
1627 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1628}
1629
1630static void noinline
1631verify_heap (EV_P_ ANHE *heap, int N)
1632{
1633 int i;
1634
1635 for (i = HEAP0; i < N + HEAP0; ++i)
1636 {
1637 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1638 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1639 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1640
1641 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1642 }
1643}
1644
1645static void noinline
1646array_verify (EV_P_ W *ws, int cnt)
1647{
1648 while (cnt--)
1649 {
1650 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1651 verify_watcher (EV_A_ ws [cnt]);
1652 }
1653}
1654#endif
1655
1656void
1657ev_loop_verify (EV_P)
1658{
1659#if EV_VERIFY
1660 int i;
1661 WL w;
1662
1663 assert (activecnt >= -1);
1664
1665 assert (fdchangemax >= fdchangecnt);
1666 for (i = 0; i < fdchangecnt; ++i)
1667 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1668
1669 assert (anfdmax >= 0);
1670 for (i = 0; i < anfdmax; ++i)
1671 for (w = anfds [i].head; w; w = w->next)
1672 {
1673 verify_watcher (EV_A_ (W)w);
1674 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1675 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1676 }
1677
1678 assert (timermax >= timercnt);
1679 verify_heap (EV_A_ timers, timercnt);
1680
1681#if EV_PERIODIC_ENABLE
1682 assert (periodicmax >= periodiccnt);
1683 verify_heap (EV_A_ periodics, periodiccnt);
1684#endif
1685
1686 for (i = NUMPRI; i--; )
1687 {
1688 assert (pendingmax [i] >= pendingcnt [i]);
1689#if EV_IDLE_ENABLE
1690 assert (idleall >= 0);
1691 assert (idlemax [i] >= idlecnt [i]);
1692 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1693#endif
1694 }
1695
1696#if EV_FORK_ENABLE
1697 assert (forkmax >= forkcnt);
1698 array_verify (EV_A_ (W *)forks, forkcnt);
1699#endif
1700
1701#if EV_ASYNC_ENABLE
1702 assert (asyncmax >= asynccnt);
1703 array_verify (EV_A_ (W *)asyncs, asynccnt);
1704#endif
1705
1706 assert (preparemax >= preparecnt);
1707 array_verify (EV_A_ (W *)prepares, preparecnt);
1708
1709 assert (checkmax >= checkcnt);
1710 array_verify (EV_A_ (W *)checks, checkcnt);
1711
1712# if 0
1713 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1714 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1490#endif 1715# endif
1716#endif
1717}
1718
1719#endif /* multiplicity */
1491 1720
1492#if EV_MULTIPLICITY 1721#if EV_MULTIPLICITY
1493struct ev_loop * 1722struct ev_loop *
1494ev_default_loop_init (unsigned int flags) 1723ev_default_loop_init (unsigned int flags)
1495#else 1724#else
1528{ 1757{
1529#if EV_MULTIPLICITY 1758#if EV_MULTIPLICITY
1530 struct ev_loop *loop = ev_default_loop_ptr; 1759 struct ev_loop *loop = ev_default_loop_ptr;
1531#endif 1760#endif
1532 1761
1762 ev_default_loop_ptr = 0;
1763
1533#ifndef _WIN32 1764#ifndef _WIN32
1534 ev_ref (EV_A); /* child watcher */ 1765 ev_ref (EV_A); /* child watcher */
1535 ev_signal_stop (EV_A_ &childev); 1766 ev_signal_stop (EV_A_ &childev);
1536#endif 1767#endif
1537 1768
1543{ 1774{
1544#if EV_MULTIPLICITY 1775#if EV_MULTIPLICITY
1545 struct ev_loop *loop = ev_default_loop_ptr; 1776 struct ev_loop *loop = ev_default_loop_ptr;
1546#endif 1777#endif
1547 1778
1548 if (backend)
1549 postfork = 1; /* must be in line with ev_loop_fork */ 1779 postfork = 1; /* must be in line with ev_loop_fork */
1550} 1780}
1551 1781
1552/*****************************************************************************/ 1782/*****************************************************************************/
1553 1783
1554void 1784void
1555ev_invoke (EV_P_ void *w, int revents) 1785ev_invoke (EV_P_ void *w, int revents)
1556{ 1786{
1557 EV_CB_INVOKE ((W)w, revents); 1787 EV_CB_INVOKE ((W)w, revents);
1558} 1788}
1559 1789
1560void inline_speed 1790inline_speed void
1561call_pending (EV_P) 1791call_pending (EV_P)
1562{ 1792{
1563 int pri; 1793 int pri;
1564 1794
1565 for (pri = NUMPRI; pri--; ) 1795 for (pri = NUMPRI; pri--; )
1566 while (pendingcnt [pri]) 1796 while (pendingcnt [pri])
1567 { 1797 {
1568 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1798 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1569 1799
1570 if (expect_true (p->w))
1571 {
1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1800 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1801 /* ^ this is no longer true, as pending_w could be here */
1573 1802
1574 p->w->pending = 0; 1803 p->w->pending = 0;
1575 EV_CB_INVOKE (p->w, p->events); 1804 EV_CB_INVOKE (p->w, p->events);
1576 } 1805 EV_FREQUENT_CHECK;
1577 } 1806 }
1578} 1807}
1579 1808
1580#if EV_IDLE_ENABLE 1809#if EV_IDLE_ENABLE
1581void inline_size 1810/* make idle watchers pending. this handles the "call-idle */
1811/* only when higher priorities are idle" logic */
1812inline_size void
1582idle_reify (EV_P) 1813idle_reify (EV_P)
1583{ 1814{
1584 if (expect_false (idleall)) 1815 if (expect_false (idleall))
1585 { 1816 {
1586 int pri; 1817 int pri;
1598 } 1829 }
1599 } 1830 }
1600} 1831}
1601#endif 1832#endif
1602 1833
1603void inline_size 1834/* make timers pending */
1835inline_size void
1604timers_reify (EV_P) 1836timers_reify (EV_P)
1605{ 1837{
1838 EV_FREQUENT_CHECK;
1839
1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1840 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1607 { 1841 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1842 do
1609
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1611
1612 /* first reschedule or stop timer */
1613 if (w->repeat)
1614 { 1843 {
1844 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1845
1846 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1847
1848 /* first reschedule or stop timer */
1849 if (w->repeat)
1850 {
1615 ev_at (w) += w->repeat; 1851 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now) 1852 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now; 1853 ev_at (w) = mn_now;
1618 1854
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1855 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620 1856
1621 ANHE_at_set (timers [HEAP0]); 1857 ANHE_at_cache (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0); 1858 downheap (timers, timercnt, HEAP0);
1859 }
1860 else
1861 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1862
1863 EV_FREQUENT_CHECK;
1864 feed_reverse (EV_A_ (W)w);
1623 } 1865 }
1624 else 1866 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 1867
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1868 feed_reverse_done (EV_A_ EV_TIMEOUT);
1628 } 1869 }
1629} 1870}
1630 1871
1631#if EV_PERIODIC_ENABLE 1872#if EV_PERIODIC_ENABLE
1632void inline_size 1873/* make periodics pending */
1874inline_size void
1633periodics_reify (EV_P) 1875periodics_reify (EV_P)
1634{ 1876{
1877 EV_FREQUENT_CHECK;
1878
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 1879 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1636 { 1880 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1881 int feed_count = 0;
1638 1882
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1883 do
1640
1641 /* first reschedule or stop timer */
1642 if (w->reschedule_cb)
1643 { 1884 {
1885 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1886
1887 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1888
1889 /* first reschedule or stop timer */
1890 if (w->reschedule_cb)
1891 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1892 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645 1893
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 1894 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647 1895
1648 ANHE_at_set (periodics [HEAP0]); 1896 ANHE_at_cache (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0); 1897 downheap (periodics, periodiccnt, HEAP0);
1898 }
1899 else if (w->interval)
1900 {
1901 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1902 /* if next trigger time is not sufficiently in the future, put it there */
1903 /* this might happen because of floating point inexactness */
1904 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1905 {
1906 ev_at (w) += w->interval;
1907
1908 /* if interval is unreasonably low we might still have a time in the past */
1909 /* so correct this. this will make the periodic very inexact, but the user */
1910 /* has effectively asked to get triggered more often than possible */
1911 if (ev_at (w) < ev_rt_now)
1912 ev_at (w) = ev_rt_now;
1913 }
1914
1915 ANHE_at_cache (periodics [HEAP0]);
1916 downheap (periodics, periodiccnt, HEAP0);
1917 }
1918 else
1919 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1920
1921 EV_FREQUENT_CHECK;
1922 feed_reverse (EV_A_ (W)w);
1650 } 1923 }
1651 else if (w->interval) 1924 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1655 1925
1656 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) >= ev_rt_now));
1657
1658 ANHE_at_set (periodics [HEAP0]);
1659 downheap (periodics, periodiccnt, HEAP0);
1660 }
1661 else
1662 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1663
1664 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1926 feed_reverse_done (EV_A_ EV_PERIODIC);
1665 } 1927 }
1666} 1928}
1667 1929
1930/* simply recalculate all periodics */
1931/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1668static void noinline 1932static void noinline
1669periodics_reschedule (EV_P) 1933periodics_reschedule (EV_P)
1670{ 1934{
1671 int i; 1935 int i;
1672 1936
1678 if (w->reschedule_cb) 1942 if (w->reschedule_cb)
1679 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1943 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1680 else if (w->interval) 1944 else if (w->interval)
1681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1945 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1682 1946
1683 ANHE_at_set (periodics [i]); 1947 ANHE_at_cache (periodics [i]);
1684 } 1948 }
1685 1949
1686 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 1950 reheap (periodics, periodiccnt);
1687 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 1951}
1952#endif
1953
1954/* adjust all timers by a given offset */
1955static void noinline
1956timers_reschedule (EV_P_ ev_tstamp adjust)
1957{
1958 int i;
1959
1688 for (i = 0; i < periodiccnt; ++i) 1960 for (i = 0; i < timercnt; ++i)
1689 upheap (periodics, i + HEAP0); 1961 {
1962 ANHE *he = timers + i + HEAP0;
1963 ANHE_w (*he)->at += adjust;
1964 ANHE_at_cache (*he);
1965 }
1690} 1966}
1691#endif
1692 1967
1693void inline_speed 1968/* fetch new monotonic and realtime times from the kernel */
1969/* also detetc if there was a timejump, and act accordingly */
1970inline_speed void
1694time_update (EV_P_ ev_tstamp max_block) 1971time_update (EV_P_ ev_tstamp max_block)
1695{ 1972{
1696 int i;
1697
1698#if EV_USE_MONOTONIC 1973#if EV_USE_MONOTONIC
1699 if (expect_true (have_monotonic)) 1974 if (expect_true (have_monotonic))
1700 { 1975 {
1976 int i;
1701 ev_tstamp odiff = rtmn_diff; 1977 ev_tstamp odiff = rtmn_diff;
1702 1978
1703 mn_now = get_clock (); 1979 mn_now = get_clock ();
1704 1980
1705 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 1981 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1731 ev_rt_now = ev_time (); 2007 ev_rt_now = ev_time ();
1732 mn_now = get_clock (); 2008 mn_now = get_clock ();
1733 now_floor = mn_now; 2009 now_floor = mn_now;
1734 } 2010 }
1735 2011
2012 /* no timer adjustment, as the monotonic clock doesn't jump */
2013 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1736# if EV_PERIODIC_ENABLE 2014# if EV_PERIODIC_ENABLE
1737 periodics_reschedule (EV_A); 2015 periodics_reschedule (EV_A);
1738# endif 2016# endif
1739 /* no timer adjustment, as the monotonic clock doesn't jump */
1740 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1741 } 2017 }
1742 else 2018 else
1743#endif 2019#endif
1744 { 2020 {
1745 ev_rt_now = ev_time (); 2021 ev_rt_now = ev_time ();
1746 2022
1747 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2023 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1748 { 2024 {
2025 /* adjust timers. this is easy, as the offset is the same for all of them */
2026 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1749#if EV_PERIODIC_ENABLE 2027#if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A); 2028 periodics_reschedule (EV_A);
1751#endif 2029#endif
1752 /* adjust timers. this is easy, as the offset is the same for all of them */
1753 for (i = 0; i < timercnt; ++i)
1754 {
1755 ANHE *he = timers + i + HEAP0;
1756 ANHE_w (*he)->at += ev_rt_now - mn_now;
1757 ANHE_at_set (*he);
1758 }
1759 } 2030 }
1760 2031
1761 mn_now = ev_rt_now; 2032 mn_now = ev_rt_now;
1762 } 2033 }
1763} 2034}
1764 2035
1765void 2036void
1766ev_ref (EV_P)
1767{
1768 ++activecnt;
1769}
1770
1771void
1772ev_unref (EV_P)
1773{
1774 --activecnt;
1775}
1776
1777static int loop_done;
1778
1779void
1780ev_loop (EV_P_ int flags) 2037ev_loop (EV_P_ int flags)
1781{ 2038{
2039 ++loop_depth;
2040
1782 loop_done = EVUNLOOP_CANCEL; 2041 loop_done = EVUNLOOP_CANCEL;
1783 2042
1784 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2043 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1785 2044
1786 do 2045 do
1787 { 2046 {
2047#if EV_VERIFY >= 2
2048 ev_loop_verify (EV_A);
2049#endif
2050
1788#ifndef _WIN32 2051#ifndef _WIN32
1789 if (expect_false (curpid)) /* penalise the forking check even more */ 2052 if (expect_false (curpid)) /* penalise the forking check even more */
1790 if (expect_false (getpid () != curpid)) 2053 if (expect_false (getpid () != curpid))
1791 { 2054 {
1792 curpid = getpid (); 2055 curpid = getpid ();
1809 { 2072 {
1810 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2073 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1811 call_pending (EV_A); 2074 call_pending (EV_A);
1812 } 2075 }
1813 2076
1814 if (expect_false (!activecnt))
1815 break;
1816
1817 /* we might have forked, so reify kernel state if necessary */ 2077 /* we might have forked, so reify kernel state if necessary */
1818 if (expect_false (postfork)) 2078 if (expect_false (postfork))
1819 loop_fork (EV_A); 2079 loop_fork (EV_A);
1820 2080
1821 /* update fd-related kernel structures */ 2081 /* update fd-related kernel structures */
1826 ev_tstamp waittime = 0.; 2086 ev_tstamp waittime = 0.;
1827 ev_tstamp sleeptime = 0.; 2087 ev_tstamp sleeptime = 0.;
1828 2088
1829 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2089 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1830 { 2090 {
2091 /* remember old timestamp for io_blocktime calculation */
2092 ev_tstamp prev_mn_now = mn_now;
2093
1831 /* update time to cancel out callback processing overhead */ 2094 /* update time to cancel out callback processing overhead */
1832 time_update (EV_A_ 1e100); 2095 time_update (EV_A_ 1e100);
1833 2096
1834 waittime = MAX_BLOCKTIME; 2097 waittime = MAX_BLOCKTIME;
1835 2098
1845 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2108 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1846 if (waittime > to) waittime = to; 2109 if (waittime > to) waittime = to;
1847 } 2110 }
1848#endif 2111#endif
1849 2112
2113 /* don't let timeouts decrease the waittime below timeout_blocktime */
1850 if (expect_false (waittime < timeout_blocktime)) 2114 if (expect_false (waittime < timeout_blocktime))
1851 waittime = timeout_blocktime; 2115 waittime = timeout_blocktime;
1852 2116
1853 sleeptime = waittime - backend_fudge; 2117 /* extra check because io_blocktime is commonly 0 */
1854
1855 if (expect_true (sleeptime > io_blocktime)) 2118 if (expect_false (io_blocktime))
1856 sleeptime = io_blocktime;
1857
1858 if (sleeptime)
1859 { 2119 {
2120 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2121
2122 if (sleeptime > waittime - backend_fudge)
2123 sleeptime = waittime - backend_fudge;
2124
2125 if (expect_true (sleeptime > 0.))
2126 {
1860 ev_sleep (sleeptime); 2127 ev_sleep (sleeptime);
1861 waittime -= sleeptime; 2128 waittime -= sleeptime;
2129 }
1862 } 2130 }
1863 } 2131 }
1864 2132
1865 ++loop_count; 2133 ++loop_count;
1866 backend_poll (EV_A_ waittime); 2134 backend_poll (EV_A_ waittime);
1892 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2160 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1893 )); 2161 ));
1894 2162
1895 if (loop_done == EVUNLOOP_ONE) 2163 if (loop_done == EVUNLOOP_ONE)
1896 loop_done = EVUNLOOP_CANCEL; 2164 loop_done = EVUNLOOP_CANCEL;
2165
2166 --loop_depth;
1897} 2167}
1898 2168
1899void 2169void
1900ev_unloop (EV_P_ int how) 2170ev_unloop (EV_P_ int how)
1901{ 2171{
1902 loop_done = how; 2172 loop_done = how;
1903} 2173}
1904 2174
2175void
2176ev_ref (EV_P)
2177{
2178 ++activecnt;
2179}
2180
2181void
2182ev_unref (EV_P)
2183{
2184 --activecnt;
2185}
2186
2187void
2188ev_now_update (EV_P)
2189{
2190 time_update (EV_A_ 1e100);
2191}
2192
2193void
2194ev_suspend (EV_P)
2195{
2196 ev_now_update (EV_A);
2197}
2198
2199void
2200ev_resume (EV_P)
2201{
2202 ev_tstamp mn_prev = mn_now;
2203
2204 ev_now_update (EV_A);
2205 timers_reschedule (EV_A_ mn_now - mn_prev);
2206#if EV_PERIODIC_ENABLE
2207 /* TODO: really do this? */
2208 periodics_reschedule (EV_A);
2209#endif
2210}
2211
1905/*****************************************************************************/ 2212/*****************************************************************************/
2213/* singly-linked list management, used when the expected list length is short */
1906 2214
1907void inline_size 2215inline_size void
1908wlist_add (WL *head, WL elem) 2216wlist_add (WL *head, WL elem)
1909{ 2217{
1910 elem->next = *head; 2218 elem->next = *head;
1911 *head = elem; 2219 *head = elem;
1912} 2220}
1913 2221
1914void inline_size 2222inline_size void
1915wlist_del (WL *head, WL elem) 2223wlist_del (WL *head, WL elem)
1916{ 2224{
1917 while (*head) 2225 while (*head)
1918 { 2226 {
1919 if (*head == elem) 2227 if (*head == elem)
1924 2232
1925 head = &(*head)->next; 2233 head = &(*head)->next;
1926 } 2234 }
1927} 2235}
1928 2236
1929void inline_speed 2237/* internal, faster, version of ev_clear_pending */
2238inline_speed void
1930clear_pending (EV_P_ W w) 2239clear_pending (EV_P_ W w)
1931{ 2240{
1932 if (w->pending) 2241 if (w->pending)
1933 { 2242 {
1934 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2243 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1935 w->pending = 0; 2244 w->pending = 0;
1936 } 2245 }
1937} 2246}
1938 2247
1939int 2248int
1943 int pending = w_->pending; 2252 int pending = w_->pending;
1944 2253
1945 if (expect_true (pending)) 2254 if (expect_true (pending))
1946 { 2255 {
1947 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2256 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2257 p->w = (W)&pending_w;
1948 w_->pending = 0; 2258 w_->pending = 0;
1949 p->w = 0;
1950 return p->events; 2259 return p->events;
1951 } 2260 }
1952 else 2261 else
1953 return 0; 2262 return 0;
1954} 2263}
1955 2264
1956void inline_size 2265inline_size void
1957pri_adjust (EV_P_ W w) 2266pri_adjust (EV_P_ W w)
1958{ 2267{
1959 int pri = w->priority; 2268 int pri = ev_priority (w);
1960 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2269 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1961 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2270 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1962 w->priority = pri; 2271 ev_set_priority (w, pri);
1963} 2272}
1964 2273
1965void inline_speed 2274inline_speed void
1966ev_start (EV_P_ W w, int active) 2275ev_start (EV_P_ W w, int active)
1967{ 2276{
1968 pri_adjust (EV_A_ w); 2277 pri_adjust (EV_A_ w);
1969 w->active = active; 2278 w->active = active;
1970 ev_ref (EV_A); 2279 ev_ref (EV_A);
1971} 2280}
1972 2281
1973void inline_size 2282inline_size void
1974ev_stop (EV_P_ W w) 2283ev_stop (EV_P_ W w)
1975{ 2284{
1976 ev_unref (EV_A); 2285 ev_unref (EV_A);
1977 w->active = 0; 2286 w->active = 0;
1978} 2287}
1985 int fd = w->fd; 2294 int fd = w->fd;
1986 2295
1987 if (expect_false (ev_is_active (w))) 2296 if (expect_false (ev_is_active (w)))
1988 return; 2297 return;
1989 2298
1990 assert (("ev_io_start called with negative fd", fd >= 0)); 2299 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2300 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2301
2302 EV_FREQUENT_CHECK;
1991 2303
1992 ev_start (EV_A_ (W)w, 1); 2304 ev_start (EV_A_ (W)w, 1);
1993 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2305 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1994 wlist_add (&anfds[fd].head, (WL)w); 2306 wlist_add (&anfds[fd].head, (WL)w);
1995 2307
1996 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2308 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1997 w->events &= ~EV_IOFDSET; 2309 w->events &= ~EV__IOFDSET;
2310
2311 EV_FREQUENT_CHECK;
1998} 2312}
1999 2313
2000void noinline 2314void noinline
2001ev_io_stop (EV_P_ ev_io *w) 2315ev_io_stop (EV_P_ ev_io *w)
2002{ 2316{
2003 clear_pending (EV_A_ (W)w); 2317 clear_pending (EV_A_ (W)w);
2004 if (expect_false (!ev_is_active (w))) 2318 if (expect_false (!ev_is_active (w)))
2005 return; 2319 return;
2006 2320
2007 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2321 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2322
2323 EV_FREQUENT_CHECK;
2008 2324
2009 wlist_del (&anfds[w->fd].head, (WL)w); 2325 wlist_del (&anfds[w->fd].head, (WL)w);
2010 ev_stop (EV_A_ (W)w); 2326 ev_stop (EV_A_ (W)w);
2011 2327
2012 fd_change (EV_A_ w->fd, 1); 2328 fd_change (EV_A_ w->fd, 1);
2329
2330 EV_FREQUENT_CHECK;
2013} 2331}
2014 2332
2015void noinline 2333void noinline
2016ev_timer_start (EV_P_ ev_timer *w) 2334ev_timer_start (EV_P_ ev_timer *w)
2017{ 2335{
2018 if (expect_false (ev_is_active (w))) 2336 if (expect_false (ev_is_active (w)))
2019 return; 2337 return;
2020 2338
2021 ev_at (w) += mn_now; 2339 ev_at (w) += mn_now;
2022 2340
2023 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2341 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2024 2342
2343 EV_FREQUENT_CHECK;
2344
2345 ++timercnt;
2025 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2346 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2026 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2347 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2027 ANHE_w (timers [ev_active (w)]) = (WT)w; 2348 ANHE_w (timers [ev_active (w)]) = (WT)w;
2028 ANHE_at_set (timers [ev_active (w)]); 2349 ANHE_at_cache (timers [ev_active (w)]);
2029 upheap (timers, ev_active (w)); 2350 upheap (timers, ev_active (w));
2030 2351
2352 EV_FREQUENT_CHECK;
2353
2031 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2354 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2032} 2355}
2033 2356
2034void noinline 2357void noinline
2035ev_timer_stop (EV_P_ ev_timer *w) 2358ev_timer_stop (EV_P_ ev_timer *w)
2036{ 2359{
2037 clear_pending (EV_A_ (W)w); 2360 clear_pending (EV_A_ (W)w);
2038 if (expect_false (!ev_is_active (w))) 2361 if (expect_false (!ev_is_active (w)))
2039 return; 2362 return;
2040 2363
2364 EV_FREQUENT_CHECK;
2365
2041 { 2366 {
2042 int active = ev_active (w); 2367 int active = ev_active (w);
2043 2368
2044 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2369 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2045 2370
2371 --timercnt;
2372
2046 if (expect_true (active < timercnt + HEAP0 - 1)) 2373 if (expect_true (active < timercnt + HEAP0))
2047 { 2374 {
2048 timers [active] = timers [timercnt + HEAP0 - 1]; 2375 timers [active] = timers [timercnt + HEAP0];
2049 adjustheap (timers, timercnt, active); 2376 adjustheap (timers, timercnt, active);
2050 } 2377 }
2051
2052 --timercnt;
2053 } 2378 }
2379
2380 EV_FREQUENT_CHECK;
2054 2381
2055 ev_at (w) -= mn_now; 2382 ev_at (w) -= mn_now;
2056 2383
2057 ev_stop (EV_A_ (W)w); 2384 ev_stop (EV_A_ (W)w);
2058} 2385}
2059 2386
2060void noinline 2387void noinline
2061ev_timer_again (EV_P_ ev_timer *w) 2388ev_timer_again (EV_P_ ev_timer *w)
2062{ 2389{
2390 EV_FREQUENT_CHECK;
2391
2063 if (ev_is_active (w)) 2392 if (ev_is_active (w))
2064 { 2393 {
2065 if (w->repeat) 2394 if (w->repeat)
2066 { 2395 {
2067 ev_at (w) = mn_now + w->repeat; 2396 ev_at (w) = mn_now + w->repeat;
2068 ANHE_at_set (timers [ev_active (w)]); 2397 ANHE_at_cache (timers [ev_active (w)]);
2069 adjustheap (timers, timercnt, ev_active (w)); 2398 adjustheap (timers, timercnt, ev_active (w));
2070 } 2399 }
2071 else 2400 else
2072 ev_timer_stop (EV_A_ w); 2401 ev_timer_stop (EV_A_ w);
2073 } 2402 }
2074 else if (w->repeat) 2403 else if (w->repeat)
2075 { 2404 {
2076 ev_at (w) = w->repeat; 2405 ev_at (w) = w->repeat;
2077 ev_timer_start (EV_A_ w); 2406 ev_timer_start (EV_A_ w);
2078 } 2407 }
2408
2409 EV_FREQUENT_CHECK;
2079} 2410}
2080 2411
2081#if EV_PERIODIC_ENABLE 2412#if EV_PERIODIC_ENABLE
2082void noinline 2413void noinline
2083ev_periodic_start (EV_P_ ev_periodic *w) 2414ev_periodic_start (EV_P_ ev_periodic *w)
2087 2418
2088 if (w->reschedule_cb) 2419 if (w->reschedule_cb)
2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2420 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2090 else if (w->interval) 2421 else if (w->interval)
2091 { 2422 {
2092 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2423 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2093 /* this formula differs from the one in periodic_reify because we do not always round up */ 2424 /* this formula differs from the one in periodic_reify because we do not always round up */
2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2425 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 } 2426 }
2096 else 2427 else
2097 ev_at (w) = w->offset; 2428 ev_at (w) = w->offset;
2098 2429
2430 EV_FREQUENT_CHECK;
2431
2432 ++periodiccnt;
2099 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2433 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2100 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2434 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2101 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2435 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2102 ANHE_at_set (periodics [ev_active (w)]); 2436 ANHE_at_cache (periodics [ev_active (w)]);
2103 upheap (periodics, ev_active (w)); 2437 upheap (periodics, ev_active (w));
2104 2438
2439 EV_FREQUENT_CHECK;
2440
2105 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2441 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2106} 2442}
2107 2443
2108void noinline 2444void noinline
2109ev_periodic_stop (EV_P_ ev_periodic *w) 2445ev_periodic_stop (EV_P_ ev_periodic *w)
2110{ 2446{
2111 clear_pending (EV_A_ (W)w); 2447 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w))) 2448 if (expect_false (!ev_is_active (w)))
2113 return; 2449 return;
2114 2450
2451 EV_FREQUENT_CHECK;
2452
2115 { 2453 {
2116 int active = ev_active (w); 2454 int active = ev_active (w);
2117 2455
2118 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2456 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2119 2457
2458 --periodiccnt;
2459
2120 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2460 if (expect_true (active < periodiccnt + HEAP0))
2121 { 2461 {
2122 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2462 periodics [active] = periodics [periodiccnt + HEAP0];
2123 adjustheap (periodics, periodiccnt, active); 2463 adjustheap (periodics, periodiccnt, active);
2124 } 2464 }
2125
2126 --periodiccnt;
2127 } 2465 }
2466
2467 EV_FREQUENT_CHECK;
2128 2468
2129 ev_stop (EV_A_ (W)w); 2469 ev_stop (EV_A_ (W)w);
2130} 2470}
2131 2471
2132void noinline 2472void noinline
2144 2484
2145void noinline 2485void noinline
2146ev_signal_start (EV_P_ ev_signal *w) 2486ev_signal_start (EV_P_ ev_signal *w)
2147{ 2487{
2148#if EV_MULTIPLICITY 2488#if EV_MULTIPLICITY
2149 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2489 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2150#endif 2490#endif
2151 if (expect_false (ev_is_active (w))) 2491 if (expect_false (ev_is_active (w)))
2152 return; 2492 return;
2153 2493
2154 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2494 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2155 2495
2156 evpipe_init (EV_A); 2496 evpipe_init (EV_A);
2497
2498 EV_FREQUENT_CHECK;
2157 2499
2158 { 2500 {
2159#ifndef _WIN32 2501#ifndef _WIN32
2160 sigset_t full, prev; 2502 sigset_t full, prev;
2161 sigfillset (&full); 2503 sigfillset (&full);
2162 sigprocmask (SIG_SETMASK, &full, &prev); 2504 sigprocmask (SIG_SETMASK, &full, &prev);
2163#endif 2505#endif
2164 2506
2165 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2507 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2166 2508
2167#ifndef _WIN32 2509#ifndef _WIN32
2168 sigprocmask (SIG_SETMASK, &prev, 0); 2510 sigprocmask (SIG_SETMASK, &prev, 0);
2169#endif 2511#endif
2170 } 2512 }
2182 sigfillset (&sa.sa_mask); 2524 sigfillset (&sa.sa_mask);
2183 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2525 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2184 sigaction (w->signum, &sa, 0); 2526 sigaction (w->signum, &sa, 0);
2185#endif 2527#endif
2186 } 2528 }
2529
2530 EV_FREQUENT_CHECK;
2187} 2531}
2188 2532
2189void noinline 2533void noinline
2190ev_signal_stop (EV_P_ ev_signal *w) 2534ev_signal_stop (EV_P_ ev_signal *w)
2191{ 2535{
2192 clear_pending (EV_A_ (W)w); 2536 clear_pending (EV_A_ (W)w);
2193 if (expect_false (!ev_is_active (w))) 2537 if (expect_false (!ev_is_active (w)))
2194 return; 2538 return;
2195 2539
2540 EV_FREQUENT_CHECK;
2541
2196 wlist_del (&signals [w->signum - 1].head, (WL)w); 2542 wlist_del (&signals [w->signum - 1].head, (WL)w);
2197 ev_stop (EV_A_ (W)w); 2543 ev_stop (EV_A_ (W)w);
2198 2544
2199 if (!signals [w->signum - 1].head) 2545 if (!signals [w->signum - 1].head)
2200 signal (w->signum, SIG_DFL); 2546 signal (w->signum, SIG_DFL);
2547
2548 EV_FREQUENT_CHECK;
2201} 2549}
2202 2550
2203void 2551void
2204ev_child_start (EV_P_ ev_child *w) 2552ev_child_start (EV_P_ ev_child *w)
2205{ 2553{
2206#if EV_MULTIPLICITY 2554#if EV_MULTIPLICITY
2207 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2555 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2208#endif 2556#endif
2209 if (expect_false (ev_is_active (w))) 2557 if (expect_false (ev_is_active (w)))
2210 return; 2558 return;
2211 2559
2560 EV_FREQUENT_CHECK;
2561
2212 ev_start (EV_A_ (W)w, 1); 2562 ev_start (EV_A_ (W)w, 1);
2213 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2563 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2564
2565 EV_FREQUENT_CHECK;
2214} 2566}
2215 2567
2216void 2568void
2217ev_child_stop (EV_P_ ev_child *w) 2569ev_child_stop (EV_P_ ev_child *w)
2218{ 2570{
2219 clear_pending (EV_A_ (W)w); 2571 clear_pending (EV_A_ (W)w);
2220 if (expect_false (!ev_is_active (w))) 2572 if (expect_false (!ev_is_active (w)))
2221 return; 2573 return;
2222 2574
2575 EV_FREQUENT_CHECK;
2576
2223 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2577 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2224 ev_stop (EV_A_ (W)w); 2578 ev_stop (EV_A_ (W)w);
2579
2580 EV_FREQUENT_CHECK;
2225} 2581}
2226 2582
2227#if EV_STAT_ENABLE 2583#if EV_STAT_ENABLE
2228 2584
2229# ifdef _WIN32 2585# ifdef _WIN32
2230# undef lstat 2586# undef lstat
2231# define lstat(a,b) _stati64 (a,b) 2587# define lstat(a,b) _stati64 (a,b)
2232# endif 2588# endif
2233 2589
2234#define DEF_STAT_INTERVAL 5.0074891 2590#define DEF_STAT_INTERVAL 5.0074891
2591#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2235#define MIN_STAT_INTERVAL 0.1074891 2592#define MIN_STAT_INTERVAL 0.1074891
2236 2593
2237static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2594static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2238 2595
2239#if EV_USE_INOTIFY 2596#if EV_USE_INOTIFY
2240# define EV_INOTIFY_BUFSIZE 8192 2597# define EV_INOTIFY_BUFSIZE 8192
2244{ 2601{
2245 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2602 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2246 2603
2247 if (w->wd < 0) 2604 if (w->wd < 0)
2248 { 2605 {
2606 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2249 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2607 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2250 2608
2251 /* monitor some parent directory for speedup hints */ 2609 /* monitor some parent directory for speedup hints */
2252 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2610 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2253 /* but an efficiency issue only */ 2611 /* but an efficiency issue only */
2254 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2612 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2255 { 2613 {
2256 char path [4096]; 2614 char path [4096];
2257 strcpy (path, w->path); 2615 strcpy (path, w->path);
2261 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2619 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2262 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2620 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2263 2621
2264 char *pend = strrchr (path, '/'); 2622 char *pend = strrchr (path, '/');
2265 2623
2266 if (!pend) 2624 if (!pend || pend == path)
2267 break; /* whoops, no '/', complain to your admin */ 2625 break;
2268 2626
2269 *pend = 0; 2627 *pend = 0;
2270 w->wd = inotify_add_watch (fs_fd, path, mask); 2628 w->wd = inotify_add_watch (fs_fd, path, mask);
2271 } 2629 }
2272 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2630 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2273 } 2631 }
2274 } 2632 }
2275 else
2276 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2277 2633
2278 if (w->wd >= 0) 2634 if (w->wd >= 0)
2635 {
2279 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2636 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2637
2638 /* now local changes will be tracked by inotify, but remote changes won't */
2639 /* unless the filesystem it known to be local, we therefore still poll */
2640 /* also do poll on <2.6.25, but with normal frequency */
2641 struct statfs sfs;
2642
2643 if (fs_2625 && !statfs (w->path, &sfs))
2644 if (sfs.f_type == 0x1373 /* devfs */
2645 || sfs.f_type == 0xEF53 /* ext2/3 */
2646 || sfs.f_type == 0x3153464a /* jfs */
2647 || sfs.f_type == 0x52654973 /* reiser3 */
2648 || sfs.f_type == 0x01021994 /* tempfs */
2649 || sfs.f_type == 0x58465342 /* xfs */)
2650 return;
2651
2652 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2653 ev_timer_again (EV_A_ &w->timer);
2654 }
2280} 2655}
2281 2656
2282static void noinline 2657static void noinline
2283infy_del (EV_P_ ev_stat *w) 2658infy_del (EV_P_ ev_stat *w)
2284{ 2659{
2298 2673
2299static void noinline 2674static void noinline
2300infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2675infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2301{ 2676{
2302 if (slot < 0) 2677 if (slot < 0)
2303 /* overflow, need to check for all hahs slots */ 2678 /* overflow, need to check for all hash slots */
2304 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2679 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2305 infy_wd (EV_A_ slot, wd, ev); 2680 infy_wd (EV_A_ slot, wd, ev);
2306 else 2681 else
2307 { 2682 {
2308 WL w_; 2683 WL w_;
2314 2689
2315 if (w->wd == wd || wd == -1) 2690 if (w->wd == wd || wd == -1)
2316 { 2691 {
2317 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2692 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2318 { 2693 {
2694 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2319 w->wd = -1; 2695 w->wd = -1;
2320 infy_add (EV_A_ w); /* re-add, no matter what */ 2696 infy_add (EV_A_ w); /* re-add, no matter what */
2321 } 2697 }
2322 2698
2323 stat_timer_cb (EV_A_ &w->timer, 0); 2699 stat_timer_cb (EV_A_ &w->timer, 0);
2336 2712
2337 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2713 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2338 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2714 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2339} 2715}
2340 2716
2341void inline_size 2717inline_size void
2718check_2625 (EV_P)
2719{
2720 /* kernels < 2.6.25 are borked
2721 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2722 */
2723 struct utsname buf;
2724 int major, minor, micro;
2725
2726 if (uname (&buf))
2727 return;
2728
2729 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2730 return;
2731
2732 if (major < 2
2733 || (major == 2 && minor < 6)
2734 || (major == 2 && minor == 6 && micro < 25))
2735 return;
2736
2737 fs_2625 = 1;
2738}
2739
2740inline_size void
2342infy_init (EV_P) 2741infy_init (EV_P)
2343{ 2742{
2344 if (fs_fd != -2) 2743 if (fs_fd != -2)
2345 return; 2744 return;
2745
2746 fs_fd = -1;
2747
2748 check_2625 (EV_A);
2346 2749
2347 fs_fd = inotify_init (); 2750 fs_fd = inotify_init ();
2348 2751
2349 if (fs_fd >= 0) 2752 if (fs_fd >= 0)
2350 { 2753 {
2352 ev_set_priority (&fs_w, EV_MAXPRI); 2755 ev_set_priority (&fs_w, EV_MAXPRI);
2353 ev_io_start (EV_A_ &fs_w); 2756 ev_io_start (EV_A_ &fs_w);
2354 } 2757 }
2355} 2758}
2356 2759
2357void inline_size 2760inline_size void
2358infy_fork (EV_P) 2761infy_fork (EV_P)
2359{ 2762{
2360 int slot; 2763 int slot;
2361 2764
2362 if (fs_fd < 0) 2765 if (fs_fd < 0)
2378 w->wd = -1; 2781 w->wd = -1;
2379 2782
2380 if (fs_fd >= 0) 2783 if (fs_fd >= 0)
2381 infy_add (EV_A_ w); /* re-add, no matter what */ 2784 infy_add (EV_A_ w); /* re-add, no matter what */
2382 else 2785 else
2383 ev_timer_start (EV_A_ &w->timer); 2786 ev_timer_again (EV_A_ &w->timer);
2384 } 2787 }
2385
2386 } 2788 }
2387} 2789}
2388 2790
2791#endif
2792
2793#ifdef _WIN32
2794# define EV_LSTAT(p,b) _stati64 (p, b)
2795#else
2796# define EV_LSTAT(p,b) lstat (p, b)
2389#endif 2797#endif
2390 2798
2391void 2799void
2392ev_stat_stat (EV_P_ ev_stat *w) 2800ev_stat_stat (EV_P_ ev_stat *w)
2393{ 2801{
2420 || w->prev.st_atime != w->attr.st_atime 2828 || w->prev.st_atime != w->attr.st_atime
2421 || w->prev.st_mtime != w->attr.st_mtime 2829 || w->prev.st_mtime != w->attr.st_mtime
2422 || w->prev.st_ctime != w->attr.st_ctime 2830 || w->prev.st_ctime != w->attr.st_ctime
2423 ) { 2831 ) {
2424 #if EV_USE_INOTIFY 2832 #if EV_USE_INOTIFY
2833 if (fs_fd >= 0)
2834 {
2425 infy_del (EV_A_ w); 2835 infy_del (EV_A_ w);
2426 infy_add (EV_A_ w); 2836 infy_add (EV_A_ w);
2427 ev_stat_stat (EV_A_ w); /* avoid race... */ 2837 ev_stat_stat (EV_A_ w); /* avoid race... */
2838 }
2428 #endif 2839 #endif
2429 2840
2430 ev_feed_event (EV_A_ w, EV_STAT); 2841 ev_feed_event (EV_A_ w, EV_STAT);
2431 } 2842 }
2432} 2843}
2435ev_stat_start (EV_P_ ev_stat *w) 2846ev_stat_start (EV_P_ ev_stat *w)
2436{ 2847{
2437 if (expect_false (ev_is_active (w))) 2848 if (expect_false (ev_is_active (w)))
2438 return; 2849 return;
2439 2850
2440 /* since we use memcmp, we need to clear any padding data etc. */
2441 memset (&w->prev, 0, sizeof (ev_statdata));
2442 memset (&w->attr, 0, sizeof (ev_statdata));
2443
2444 ev_stat_stat (EV_A_ w); 2851 ev_stat_stat (EV_A_ w);
2445 2852
2853 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2446 if (w->interval < MIN_STAT_INTERVAL) 2854 w->interval = MIN_STAT_INTERVAL;
2447 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2448 2855
2449 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2856 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2450 ev_set_priority (&w->timer, ev_priority (w)); 2857 ev_set_priority (&w->timer, ev_priority (w));
2451 2858
2452#if EV_USE_INOTIFY 2859#if EV_USE_INOTIFY
2453 infy_init (EV_A); 2860 infy_init (EV_A);
2454 2861
2455 if (fs_fd >= 0) 2862 if (fs_fd >= 0)
2456 infy_add (EV_A_ w); 2863 infy_add (EV_A_ w);
2457 else 2864 else
2458#endif 2865#endif
2459 ev_timer_start (EV_A_ &w->timer); 2866 ev_timer_again (EV_A_ &w->timer);
2460 2867
2461 ev_start (EV_A_ (W)w, 1); 2868 ev_start (EV_A_ (W)w, 1);
2869
2870 EV_FREQUENT_CHECK;
2462} 2871}
2463 2872
2464void 2873void
2465ev_stat_stop (EV_P_ ev_stat *w) 2874ev_stat_stop (EV_P_ ev_stat *w)
2466{ 2875{
2467 clear_pending (EV_A_ (W)w); 2876 clear_pending (EV_A_ (W)w);
2468 if (expect_false (!ev_is_active (w))) 2877 if (expect_false (!ev_is_active (w)))
2469 return; 2878 return;
2470 2879
2880 EV_FREQUENT_CHECK;
2881
2471#if EV_USE_INOTIFY 2882#if EV_USE_INOTIFY
2472 infy_del (EV_A_ w); 2883 infy_del (EV_A_ w);
2473#endif 2884#endif
2474 ev_timer_stop (EV_A_ &w->timer); 2885 ev_timer_stop (EV_A_ &w->timer);
2475 2886
2476 ev_stop (EV_A_ (W)w); 2887 ev_stop (EV_A_ (W)w);
2888
2889 EV_FREQUENT_CHECK;
2477} 2890}
2478#endif 2891#endif
2479 2892
2480#if EV_IDLE_ENABLE 2893#if EV_IDLE_ENABLE
2481void 2894void
2483{ 2896{
2484 if (expect_false (ev_is_active (w))) 2897 if (expect_false (ev_is_active (w)))
2485 return; 2898 return;
2486 2899
2487 pri_adjust (EV_A_ (W)w); 2900 pri_adjust (EV_A_ (W)w);
2901
2902 EV_FREQUENT_CHECK;
2488 2903
2489 { 2904 {
2490 int active = ++idlecnt [ABSPRI (w)]; 2905 int active = ++idlecnt [ABSPRI (w)];
2491 2906
2492 ++idleall; 2907 ++idleall;
2493 ev_start (EV_A_ (W)w, active); 2908 ev_start (EV_A_ (W)w, active);
2494 2909
2495 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2910 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2496 idles [ABSPRI (w)][active - 1] = w; 2911 idles [ABSPRI (w)][active - 1] = w;
2497 } 2912 }
2913
2914 EV_FREQUENT_CHECK;
2498} 2915}
2499 2916
2500void 2917void
2501ev_idle_stop (EV_P_ ev_idle *w) 2918ev_idle_stop (EV_P_ ev_idle *w)
2502{ 2919{
2503 clear_pending (EV_A_ (W)w); 2920 clear_pending (EV_A_ (W)w);
2504 if (expect_false (!ev_is_active (w))) 2921 if (expect_false (!ev_is_active (w)))
2505 return; 2922 return;
2506 2923
2924 EV_FREQUENT_CHECK;
2925
2507 { 2926 {
2508 int active = ev_active (w); 2927 int active = ev_active (w);
2509 2928
2510 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2929 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2511 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2930 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2512 2931
2513 ev_stop (EV_A_ (W)w); 2932 ev_stop (EV_A_ (W)w);
2514 --idleall; 2933 --idleall;
2515 } 2934 }
2935
2936 EV_FREQUENT_CHECK;
2516} 2937}
2517#endif 2938#endif
2518 2939
2519void 2940void
2520ev_prepare_start (EV_P_ ev_prepare *w) 2941ev_prepare_start (EV_P_ ev_prepare *w)
2521{ 2942{
2522 if (expect_false (ev_is_active (w))) 2943 if (expect_false (ev_is_active (w)))
2523 return; 2944 return;
2945
2946 EV_FREQUENT_CHECK;
2524 2947
2525 ev_start (EV_A_ (W)w, ++preparecnt); 2948 ev_start (EV_A_ (W)w, ++preparecnt);
2526 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2949 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2527 prepares [preparecnt - 1] = w; 2950 prepares [preparecnt - 1] = w;
2951
2952 EV_FREQUENT_CHECK;
2528} 2953}
2529 2954
2530void 2955void
2531ev_prepare_stop (EV_P_ ev_prepare *w) 2956ev_prepare_stop (EV_P_ ev_prepare *w)
2532{ 2957{
2533 clear_pending (EV_A_ (W)w); 2958 clear_pending (EV_A_ (W)w);
2534 if (expect_false (!ev_is_active (w))) 2959 if (expect_false (!ev_is_active (w)))
2535 return; 2960 return;
2536 2961
2962 EV_FREQUENT_CHECK;
2963
2537 { 2964 {
2538 int active = ev_active (w); 2965 int active = ev_active (w);
2539 2966
2540 prepares [active - 1] = prepares [--preparecnt]; 2967 prepares [active - 1] = prepares [--preparecnt];
2541 ev_active (prepares [active - 1]) = active; 2968 ev_active (prepares [active - 1]) = active;
2542 } 2969 }
2543 2970
2544 ev_stop (EV_A_ (W)w); 2971 ev_stop (EV_A_ (W)w);
2972
2973 EV_FREQUENT_CHECK;
2545} 2974}
2546 2975
2547void 2976void
2548ev_check_start (EV_P_ ev_check *w) 2977ev_check_start (EV_P_ ev_check *w)
2549{ 2978{
2550 if (expect_false (ev_is_active (w))) 2979 if (expect_false (ev_is_active (w)))
2551 return; 2980 return;
2981
2982 EV_FREQUENT_CHECK;
2552 2983
2553 ev_start (EV_A_ (W)w, ++checkcnt); 2984 ev_start (EV_A_ (W)w, ++checkcnt);
2554 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2985 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2555 checks [checkcnt - 1] = w; 2986 checks [checkcnt - 1] = w;
2987
2988 EV_FREQUENT_CHECK;
2556} 2989}
2557 2990
2558void 2991void
2559ev_check_stop (EV_P_ ev_check *w) 2992ev_check_stop (EV_P_ ev_check *w)
2560{ 2993{
2561 clear_pending (EV_A_ (W)w); 2994 clear_pending (EV_A_ (W)w);
2562 if (expect_false (!ev_is_active (w))) 2995 if (expect_false (!ev_is_active (w)))
2563 return; 2996 return;
2564 2997
2998 EV_FREQUENT_CHECK;
2999
2565 { 3000 {
2566 int active = ev_active (w); 3001 int active = ev_active (w);
2567 3002
2568 checks [active - 1] = checks [--checkcnt]; 3003 checks [active - 1] = checks [--checkcnt];
2569 ev_active (checks [active - 1]) = active; 3004 ev_active (checks [active - 1]) = active;
2570 } 3005 }
2571 3006
2572 ev_stop (EV_A_ (W)w); 3007 ev_stop (EV_A_ (W)w);
3008
3009 EV_FREQUENT_CHECK;
2573} 3010}
2574 3011
2575#if EV_EMBED_ENABLE 3012#if EV_EMBED_ENABLE
2576void noinline 3013void noinline
2577ev_embed_sweep (EV_P_ ev_embed *w) 3014ev_embed_sweep (EV_P_ ev_embed *w)
2604 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3041 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2605 } 3042 }
2606 } 3043 }
2607} 3044}
2608 3045
3046static void
3047embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3048{
3049 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3050
3051 ev_embed_stop (EV_A_ w);
3052
3053 {
3054 struct ev_loop *loop = w->other;
3055
3056 ev_loop_fork (EV_A);
3057 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3058 }
3059
3060 ev_embed_start (EV_A_ w);
3061}
3062
2609#if 0 3063#if 0
2610static void 3064static void
2611embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3065embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2612{ 3066{
2613 ev_idle_stop (EV_A_ idle); 3067 ev_idle_stop (EV_A_ idle);
2620 if (expect_false (ev_is_active (w))) 3074 if (expect_false (ev_is_active (w)))
2621 return; 3075 return;
2622 3076
2623 { 3077 {
2624 struct ev_loop *loop = w->other; 3078 struct ev_loop *loop = w->other;
2625 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3079 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2626 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3080 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2627 } 3081 }
3082
3083 EV_FREQUENT_CHECK;
2628 3084
2629 ev_set_priority (&w->io, ev_priority (w)); 3085 ev_set_priority (&w->io, ev_priority (w));
2630 ev_io_start (EV_A_ &w->io); 3086 ev_io_start (EV_A_ &w->io);
2631 3087
2632 ev_prepare_init (&w->prepare, embed_prepare_cb); 3088 ev_prepare_init (&w->prepare, embed_prepare_cb);
2633 ev_set_priority (&w->prepare, EV_MINPRI); 3089 ev_set_priority (&w->prepare, EV_MINPRI);
2634 ev_prepare_start (EV_A_ &w->prepare); 3090 ev_prepare_start (EV_A_ &w->prepare);
2635 3091
3092 ev_fork_init (&w->fork, embed_fork_cb);
3093 ev_fork_start (EV_A_ &w->fork);
3094
2636 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3095 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2637 3096
2638 ev_start (EV_A_ (W)w, 1); 3097 ev_start (EV_A_ (W)w, 1);
3098
3099 EV_FREQUENT_CHECK;
2639} 3100}
2640 3101
2641void 3102void
2642ev_embed_stop (EV_P_ ev_embed *w) 3103ev_embed_stop (EV_P_ ev_embed *w)
2643{ 3104{
2644 clear_pending (EV_A_ (W)w); 3105 clear_pending (EV_A_ (W)w);
2645 if (expect_false (!ev_is_active (w))) 3106 if (expect_false (!ev_is_active (w)))
2646 return; 3107 return;
2647 3108
3109 EV_FREQUENT_CHECK;
3110
2648 ev_io_stop (EV_A_ &w->io); 3111 ev_io_stop (EV_A_ &w->io);
2649 ev_prepare_stop (EV_A_ &w->prepare); 3112 ev_prepare_stop (EV_A_ &w->prepare);
3113 ev_fork_stop (EV_A_ &w->fork);
2650 3114
2651 ev_stop (EV_A_ (W)w); 3115 EV_FREQUENT_CHECK;
2652} 3116}
2653#endif 3117#endif
2654 3118
2655#if EV_FORK_ENABLE 3119#if EV_FORK_ENABLE
2656void 3120void
2657ev_fork_start (EV_P_ ev_fork *w) 3121ev_fork_start (EV_P_ ev_fork *w)
2658{ 3122{
2659 if (expect_false (ev_is_active (w))) 3123 if (expect_false (ev_is_active (w)))
2660 return; 3124 return;
3125
3126 EV_FREQUENT_CHECK;
2661 3127
2662 ev_start (EV_A_ (W)w, ++forkcnt); 3128 ev_start (EV_A_ (W)w, ++forkcnt);
2663 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3129 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2664 forks [forkcnt - 1] = w; 3130 forks [forkcnt - 1] = w;
3131
3132 EV_FREQUENT_CHECK;
2665} 3133}
2666 3134
2667void 3135void
2668ev_fork_stop (EV_P_ ev_fork *w) 3136ev_fork_stop (EV_P_ ev_fork *w)
2669{ 3137{
2670 clear_pending (EV_A_ (W)w); 3138 clear_pending (EV_A_ (W)w);
2671 if (expect_false (!ev_is_active (w))) 3139 if (expect_false (!ev_is_active (w)))
2672 return; 3140 return;
2673 3141
3142 EV_FREQUENT_CHECK;
3143
2674 { 3144 {
2675 int active = ev_active (w); 3145 int active = ev_active (w);
2676 3146
2677 forks [active - 1] = forks [--forkcnt]; 3147 forks [active - 1] = forks [--forkcnt];
2678 ev_active (forks [active - 1]) = active; 3148 ev_active (forks [active - 1]) = active;
2679 } 3149 }
2680 3150
2681 ev_stop (EV_A_ (W)w); 3151 ev_stop (EV_A_ (W)w);
3152
3153 EV_FREQUENT_CHECK;
2682} 3154}
2683#endif 3155#endif
2684 3156
2685#if EV_ASYNC_ENABLE 3157#if EV_ASYNC_ENABLE
2686void 3158void
2688{ 3160{
2689 if (expect_false (ev_is_active (w))) 3161 if (expect_false (ev_is_active (w)))
2690 return; 3162 return;
2691 3163
2692 evpipe_init (EV_A); 3164 evpipe_init (EV_A);
3165
3166 EV_FREQUENT_CHECK;
2693 3167
2694 ev_start (EV_A_ (W)w, ++asynccnt); 3168 ev_start (EV_A_ (W)w, ++asynccnt);
2695 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3169 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2696 asyncs [asynccnt - 1] = w; 3170 asyncs [asynccnt - 1] = w;
3171
3172 EV_FREQUENT_CHECK;
2697} 3173}
2698 3174
2699void 3175void
2700ev_async_stop (EV_P_ ev_async *w) 3176ev_async_stop (EV_P_ ev_async *w)
2701{ 3177{
2702 clear_pending (EV_A_ (W)w); 3178 clear_pending (EV_A_ (W)w);
2703 if (expect_false (!ev_is_active (w))) 3179 if (expect_false (!ev_is_active (w)))
2704 return; 3180 return;
2705 3181
3182 EV_FREQUENT_CHECK;
3183
2706 { 3184 {
2707 int active = ev_active (w); 3185 int active = ev_active (w);
2708 3186
2709 asyncs [active - 1] = asyncs [--asynccnt]; 3187 asyncs [active - 1] = asyncs [--asynccnt];
2710 ev_active (asyncs [active - 1]) = active; 3188 ev_active (asyncs [active - 1]) = active;
2711 } 3189 }
2712 3190
2713 ev_stop (EV_A_ (W)w); 3191 ev_stop (EV_A_ (W)w);
3192
3193 EV_FREQUENT_CHECK;
2714} 3194}
2715 3195
2716void 3196void
2717ev_async_send (EV_P_ ev_async *w) 3197ev_async_send (EV_P_ ev_async *w)
2718{ 3198{
2735once_cb (EV_P_ struct ev_once *once, int revents) 3215once_cb (EV_P_ struct ev_once *once, int revents)
2736{ 3216{
2737 void (*cb)(int revents, void *arg) = once->cb; 3217 void (*cb)(int revents, void *arg) = once->cb;
2738 void *arg = once->arg; 3218 void *arg = once->arg;
2739 3219
2740 ev_io_stop (EV_A_ &once->io); 3220 ev_io_stop (EV_A_ &once->io);
2741 ev_timer_stop (EV_A_ &once->to); 3221 ev_timer_stop (EV_A_ &once->to);
2742 ev_free (once); 3222 ev_free (once);
2743 3223
2744 cb (revents, arg); 3224 cb (revents, arg);
2745} 3225}
2746 3226
2747static void 3227static void
2748once_cb_io (EV_P_ ev_io *w, int revents) 3228once_cb_io (EV_P_ ev_io *w, int revents)
2749{ 3229{
2750 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3230 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3231
3232 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2751} 3233}
2752 3234
2753static void 3235static void
2754once_cb_to (EV_P_ ev_timer *w, int revents) 3236once_cb_to (EV_P_ ev_timer *w, int revents)
2755{ 3237{
2756 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3238 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3239
3240 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2757} 3241}
2758 3242
2759void 3243void
2760ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3244ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2761{ 3245{
2783 ev_timer_set (&once->to, timeout, 0.); 3267 ev_timer_set (&once->to, timeout, 0.);
2784 ev_timer_start (EV_A_ &once->to); 3268 ev_timer_start (EV_A_ &once->to);
2785 } 3269 }
2786} 3270}
2787 3271
3272/*****************************************************************************/
3273
3274#if EV_WALK_ENABLE
3275void
3276ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3277{
3278 int i, j;
3279 ev_watcher_list *wl, *wn;
3280
3281 if (types & (EV_IO | EV_EMBED))
3282 for (i = 0; i < anfdmax; ++i)
3283 for (wl = anfds [i].head; wl; )
3284 {
3285 wn = wl->next;
3286
3287#if EV_EMBED_ENABLE
3288 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3289 {
3290 if (types & EV_EMBED)
3291 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3292 }
3293 else
3294#endif
3295#if EV_USE_INOTIFY
3296 if (ev_cb ((ev_io *)wl) == infy_cb)
3297 ;
3298 else
3299#endif
3300 if ((ev_io *)wl != &pipe_w)
3301 if (types & EV_IO)
3302 cb (EV_A_ EV_IO, wl);
3303
3304 wl = wn;
3305 }
3306
3307 if (types & (EV_TIMER | EV_STAT))
3308 for (i = timercnt + HEAP0; i-- > HEAP0; )
3309#if EV_STAT_ENABLE
3310 /*TODO: timer is not always active*/
3311 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3312 {
3313 if (types & EV_STAT)
3314 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3315 }
3316 else
3317#endif
3318 if (types & EV_TIMER)
3319 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3320
3321#if EV_PERIODIC_ENABLE
3322 if (types & EV_PERIODIC)
3323 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3324 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3325#endif
3326
3327#if EV_IDLE_ENABLE
3328 if (types & EV_IDLE)
3329 for (j = NUMPRI; i--; )
3330 for (i = idlecnt [j]; i--; )
3331 cb (EV_A_ EV_IDLE, idles [j][i]);
3332#endif
3333
3334#if EV_FORK_ENABLE
3335 if (types & EV_FORK)
3336 for (i = forkcnt; i--; )
3337 if (ev_cb (forks [i]) != embed_fork_cb)
3338 cb (EV_A_ EV_FORK, forks [i]);
3339#endif
3340
3341#if EV_ASYNC_ENABLE
3342 if (types & EV_ASYNC)
3343 for (i = asynccnt; i--; )
3344 cb (EV_A_ EV_ASYNC, asyncs [i]);
3345#endif
3346
3347 if (types & EV_PREPARE)
3348 for (i = preparecnt; i--; )
3349#if EV_EMBED_ENABLE
3350 if (ev_cb (prepares [i]) != embed_prepare_cb)
3351#endif
3352 cb (EV_A_ EV_PREPARE, prepares [i]);
3353
3354 if (types & EV_CHECK)
3355 for (i = checkcnt; i--; )
3356 cb (EV_A_ EV_CHECK, checks [i]);
3357
3358 if (types & EV_SIGNAL)
3359 for (i = 0; i < signalmax; ++i)
3360 for (wl = signals [i].head; wl; )
3361 {
3362 wn = wl->next;
3363 cb (EV_A_ EV_SIGNAL, wl);
3364 wl = wn;
3365 }
3366
3367 if (types & EV_CHILD)
3368 for (i = EV_PID_HASHSIZE; i--; )
3369 for (wl = childs [i]; wl; )
3370 {
3371 wn = wl->next;
3372 cb (EV_A_ EV_CHILD, wl);
3373 wl = wn;
3374 }
3375/* EV_STAT 0x00001000 /* stat data changed */
3376/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3377}
3378#endif
3379
2788#if EV_MULTIPLICITY 3380#if EV_MULTIPLICITY
2789 #include "ev_wrap.h" 3381 #include "ev_wrap.h"
2790#endif 3382#endif
2791 3383
2792#ifdef __cplusplus 3384#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines