ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.244 by root, Tue May 20 23:49:41 2008 UTC vs.
Revision 1.387 by root, Wed Jul 20 01:04:43 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
152#endif 186#endif
187
188EV_CPP(extern "C" {)
153 189
154#ifndef _WIN32 190#ifndef _WIN32
155# include <sys/time.h> 191# include <sys/time.h>
156# include <sys/wait.h> 192# include <sys/wait.h>
157# include <unistd.h> 193# include <unistd.h>
158#else 194#else
195# include <io.h>
159# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 197# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
163# endif 200# endif
201# undef EV_AVOID_STDIO
164#endif 202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
165 211
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 212/* this block tries to deduce configuration from header-defined symbols and defaults */
167 213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
251# endif
252#endif
253
168#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
169# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
170#endif 260#endif
171 261
172#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 264#endif
175 265
176#ifndef EV_USE_NANOSLEEP 266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
177# define EV_USE_NANOSLEEP 0 270# define EV_USE_NANOSLEEP 0
271# endif
178#endif 272#endif
179 273
180#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 276#endif
183 277
184#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
185# ifdef _WIN32 279# ifdef _WIN32
186# define EV_USE_POLL 0 280# define EV_USE_POLL 0
187# else 281# else
188# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 283# endif
190#endif 284#endif
191 285
192#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 289# else
196# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
197# endif 291# endif
198#endif 292#endif
199 293
205# define EV_USE_PORT 0 299# define EV_USE_PORT 0
206#endif 300#endif
207 301
208#ifndef EV_USE_INOTIFY 302#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 304# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 305# else
212# define EV_USE_INOTIFY 0 306# define EV_USE_INOTIFY 0
213# endif 307# endif
214#endif 308#endif
215 309
216#ifndef EV_PID_HASHSIZE 310#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 312#endif
223 313
224#ifndef EV_INOTIFY_HASHSIZE 314#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 316#endif
231 317
232#ifndef EV_USE_EVENTFD 318#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 320# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 321# else
236# define EV_USE_EVENTFD 0 322# define EV_USE_EVENTFD 0
237# endif 323# endif
238#endif 324#endif
239 325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
240#ifndef EV_USE_4HEAP 344#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 345# define EV_USE_4HEAP EV_FEATURE_DATA
242#endif 346#endif
243 347
244#ifndef EV_HEAP_CACHE_AT 348#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
246#endif 364#endif
247 365
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
249 373
250#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
251# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
252# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
253#endif 377#endif
261# undef EV_USE_INOTIFY 385# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0 386# define EV_USE_INOTIFY 0
263#endif 387#endif
264 388
265#if !EV_USE_NANOSLEEP 389#if !EV_USE_NANOSLEEP
266# ifndef _WIN32 390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
267# include <sys/select.h> 392# include <sys/select.h>
268# endif 393# endif
269#endif 394#endif
270 395
271#if EV_USE_INOTIFY 396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
272# include <sys/inotify.h> 398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
273#endif 404#endif
274 405
275#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h> 407# include <winsock.h>
277#endif 408#endif
278 409
279#if EV_USE_EVENTFD 410#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 412# include <stdint.h>
282# ifdef __cplusplus 413# ifndef EFD_NONBLOCK
283extern "C" { 414# define EFD_NONBLOCK O_NONBLOCK
284# endif 415# endif
285int eventfd (unsigned int initval, int flags); 416# ifndef EFD_CLOEXEC
286# ifdef __cplusplus 417# ifdef O_CLOEXEC
287} 418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
288# endif 422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
289#endif 446#endif
290 447
291/**/ 448/**/
292 449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
293/* 456/*
294 * This is used to avoid floating point rounding problems. 457 * This is used to work around floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000. 458 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */ 459 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
302 462
303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
306 465
307#if __GNUC__ >= 4 466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
308# define expect(expr,value) __builtin_expect ((expr),(value)) 467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
309# define noinline __attribute__ ((noinline)) 468
469/* the following are taken from libecb */
470/* ecb.h start */
471
472/* many compilers define _GNUC_ to some versions but then only implement
473 * what their idiot authors think are the "more important" extensions,
474 * causing enourmous grief in return for some better fake benchmark numbers.
475 * or so.
476 * we try to detect these and simply assume they are not gcc - if they have
477 * an issue with that they should have done it right in the first place.
478 */
479#ifndef ECB_GCC_VERSION
480 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
481 #define ECB_GCC_VERSION(major,minor) 0
482 #else
483 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
484 #endif
485#endif
486
487#if __cplusplus
488 #define ecb_inline static inline
489#elif ECB_GCC_VERSION(2,5)
490 #define ecb_inline static __inline__
491#elif ECB_C99
492 #define ecb_inline static inline
310#else 493#else
311# define expect(expr,value) (expr) 494 #define ecb_inline static
312# define noinline
313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
314# define inline
315# endif 495#endif
496
497#ifndef ECB_MEMORY_FENCE
498 #if ECB_GCC_VERSION(2,5)
499 #if __x86
500 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
501 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
502 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
503 #elif __amd64
504 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
505 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
506 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence")
507 #endif
316#endif 508 #endif
509#endif
317 510
511#ifndef ECB_MEMORY_FENCE
512 #if ECB_GCC_VERSION(4,4)
513 #define ECB_MEMORY_FENCE __sync_synchronize ()
514 #define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); })
515 #define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); })
516 #elif defined(_WIN32) && defined(MemoryBarrier)
517 #define ECB_MEMORY_FENCE MemoryBarrier ()
518 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
519 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
520 #endif
521#endif
522
523#ifndef ECB_MEMORY_FENCE
524 #include <pthread.h>
525
526 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
527 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
528 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
529 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
530#endif
531
532#if ECB_GCC_VERSION(3,1)
533 #define ecb_attribute(attrlist) __attribute__(attrlist)
534 #define ecb_is_constant(expr) __builtin_constant_p (expr)
535 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
536 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
537#else
538 #define ecb_attribute(attrlist)
539 #define ecb_is_constant(expr) 0
540 #define ecb_expect(expr,value) (expr)
541 #define ecb_prefetch(addr,rw,locality)
542#endif
543
544#define ecb_noinline ecb_attribute ((__noinline__))
545#define ecb_noreturn ecb_attribute ((__noreturn__))
546#define ecb_unused ecb_attribute ((__unused__))
547#define ecb_const ecb_attribute ((__const__))
548#define ecb_pure ecb_attribute ((__pure__))
549
550#if ECB_GCC_VERSION(4,3)
551 #define ecb_artificial ecb_attribute ((__artificial__))
552 #define ecb_hot ecb_attribute ((__hot__))
553 #define ecb_cold ecb_attribute ((__cold__))
554#else
555 #define ecb_artificial
556 #define ecb_hot
557 #define ecb_cold
558#endif
559
560/* put around conditional expressions if you are very sure that the */
561/* expression is mostly true or mostly false. note that these return */
562/* booleans, not the expression. */
318#define expect_false(expr) expect ((expr) != 0, 0) 563#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
319#define expect_true(expr) expect ((expr) != 0, 1) 564#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
565/* ecb.h end */
566
567#define expect_false(cond) ecb_expect_false (cond)
568#define expect_true(cond) ecb_expect_true (cond)
569#define noinline ecb_noinline
570
320#define inline_size static inline 571#define inline_size ecb_inline
321 572
322#if EV_MINIMAL 573#if EV_FEATURE_CODE
574# define inline_speed ecb_inline
575#else
323# define inline_speed static noinline 576# define inline_speed static noinline
577#endif
578
579#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
580
581#if EV_MINPRI == EV_MAXPRI
582# define ABSPRI(w) (((W)w), 0)
324#else 583#else
325# define inline_speed static inline
326#endif
327
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 584# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
585#endif
330 586
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 587#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 588#define EMPTY2(a,b) /* used to suppress some warnings */
333 589
334typedef ev_watcher *W; 590typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 592typedef ev_watcher_time *WT;
337 593
338#define ev_active(w) ((W)(w))->active 594#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 595#define ev_at(w) ((WT)(w))->at
340 596
597#if EV_USE_REALTIME
598/* sig_atomic_t is used to avoid per-thread variables or locking but still */
599/* giving it a reasonably high chance of working on typical architectures */
600static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
601#endif
602
341#if EV_USE_MONOTONIC 603#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 604static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
605#endif
606
607#ifndef EV_FD_TO_WIN32_HANDLE
608# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
609#endif
610#ifndef EV_WIN32_HANDLE_TO_FD
611# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
612#endif
613#ifndef EV_WIN32_CLOSE_FD
614# define EV_WIN32_CLOSE_FD(fd) close (fd)
345#endif 615#endif
346 616
347#ifdef _WIN32 617#ifdef _WIN32
348# include "ev_win32.c" 618# include "ev_win32.c"
349#endif 619#endif
350 620
351/*****************************************************************************/ 621/*****************************************************************************/
352 622
623/* define a suitable floor function (only used by periodics atm) */
624
625#if EV_USE_FLOOR
626# include <math.h>
627# define ev_floor(v) floor (v)
628#else
629
630#include <float.h>
631
632/* a floor() replacement function, should be independent of ev_tstamp type */
633static ev_tstamp noinline
634ev_floor (ev_tstamp v)
635{
636 /* the choice of shift factor is not terribly important */
637#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
638 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
639#else
640 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
641#endif
642
643 /* argument too large for an unsigned long? */
644 if (expect_false (v >= shift))
645 {
646 ev_tstamp f;
647
648 if (v == v - 1.)
649 return v; /* very large number */
650
651 f = shift * ev_floor (v * (1. / shift));
652 return f + ev_floor (v - f);
653 }
654
655 /* special treatment for negative args? */
656 if (expect_false (v < 0.))
657 {
658 ev_tstamp f = -ev_floor (-v);
659
660 return f - (f == v ? 0 : 1);
661 }
662
663 /* fits into an unsigned long */
664 return (unsigned long)v;
665}
666
667#endif
668
669/*****************************************************************************/
670
671#ifdef __linux
672# include <sys/utsname.h>
673#endif
674
675static unsigned int noinline ecb_cold
676ev_linux_version (void)
677{
678#ifdef __linux
679 unsigned int v = 0;
680 struct utsname buf;
681 int i;
682 char *p = buf.release;
683
684 if (uname (&buf))
685 return 0;
686
687 for (i = 3+1; --i; )
688 {
689 unsigned int c = 0;
690
691 for (;;)
692 {
693 if (*p >= '0' && *p <= '9')
694 c = c * 10 + *p++ - '0';
695 else
696 {
697 p += *p == '.';
698 break;
699 }
700 }
701
702 v = (v << 8) | c;
703 }
704
705 return v;
706#else
707 return 0;
708#endif
709}
710
711/*****************************************************************************/
712
713#if EV_AVOID_STDIO
714static void noinline ecb_cold
715ev_printerr (const char *msg)
716{
717 write (STDERR_FILENO, msg, strlen (msg));
718}
719#endif
720
353static void (*syserr_cb)(const char *msg); 721static void (*syserr_cb)(const char *msg);
354 722
355void 723void ecb_cold
356ev_set_syserr_cb (void (*cb)(const char *msg)) 724ev_set_syserr_cb (void (*cb)(const char *msg))
357{ 725{
358 syserr_cb = cb; 726 syserr_cb = cb;
359} 727}
360 728
361static void noinline 729static void noinline ecb_cold
362syserr (const char *msg) 730ev_syserr (const char *msg)
363{ 731{
364 if (!msg) 732 if (!msg)
365 msg = "(libev) system error"; 733 msg = "(libev) system error";
366 734
367 if (syserr_cb) 735 if (syserr_cb)
368 syserr_cb (msg); 736 syserr_cb (msg);
369 else 737 else
370 { 738 {
739#if EV_AVOID_STDIO
740 ev_printerr (msg);
741 ev_printerr (": ");
742 ev_printerr (strerror (errno));
743 ev_printerr ("\n");
744#else
371 perror (msg); 745 perror (msg);
746#endif
372 abort (); 747 abort ();
373 } 748 }
374} 749}
375 750
376static void * 751static void *
377ev_realloc_emul (void *ptr, long size) 752ev_realloc_emul (void *ptr, long size)
378{ 753{
754#if __GLIBC__
755 return realloc (ptr, size);
756#else
379 /* some systems, notably openbsd and darwin, fail to properly 757 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and 758 * implement realloc (x, 0) (as required by both ansi c-89 and
381 * the single unix specification, so work around them here. 759 * the single unix specification, so work around them here.
382 */ 760 */
383 761
384 if (size) 762 if (size)
385 return realloc (ptr, size); 763 return realloc (ptr, size);
386 764
387 free (ptr); 765 free (ptr);
388 return 0; 766 return 0;
767#endif
389} 768}
390 769
391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 770static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
392 771
393void 772void ecb_cold
394ev_set_allocator (void *(*cb)(void *ptr, long size)) 773ev_set_allocator (void *(*cb)(void *ptr, long size))
395{ 774{
396 alloc = cb; 775 alloc = cb;
397} 776}
398 777
401{ 780{
402 ptr = alloc (ptr, size); 781 ptr = alloc (ptr, size);
403 782
404 if (!ptr && size) 783 if (!ptr && size)
405 { 784 {
785#if EV_AVOID_STDIO
786 ev_printerr ("(libev) memory allocation failed, aborting.\n");
787#else
406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 788 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
789#endif
407 abort (); 790 abort ();
408 } 791 }
409 792
410 return ptr; 793 return ptr;
411} 794}
413#define ev_malloc(size) ev_realloc (0, (size)) 796#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 797#define ev_free(ptr) ev_realloc ((ptr), 0)
415 798
416/*****************************************************************************/ 799/*****************************************************************************/
417 800
801/* set in reify when reification needed */
802#define EV_ANFD_REIFY 1
803
804/* file descriptor info structure */
418typedef struct 805typedef struct
419{ 806{
420 WL head; 807 WL head;
421 unsigned char events; 808 unsigned char events; /* the events watched for */
809 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
810 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 811 unsigned char unused;
812#if EV_USE_EPOLL
813 unsigned int egen; /* generation counter to counter epoll bugs */
814#endif
423#if EV_SELECT_IS_WINSOCKET 815#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
424 SOCKET handle; 816 SOCKET handle;
425#endif 817#endif
818#if EV_USE_IOCP
819 OVERLAPPED or, ow;
820#endif
426} ANFD; 821} ANFD;
427 822
823/* stores the pending event set for a given watcher */
428typedef struct 824typedef struct
429{ 825{
430 W w; 826 W w;
431 int events; 827 int events; /* the pending event set for the given watcher */
432} ANPENDING; 828} ANPENDING;
433 829
434#if EV_USE_INOTIFY 830#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 831/* hash table entry per inotify-id */
436typedef struct 832typedef struct
439} ANFS; 835} ANFS;
440#endif 836#endif
441 837
442/* Heap Entry */ 838/* Heap Entry */
443#if EV_HEAP_CACHE_AT 839#if EV_HEAP_CACHE_AT
840 /* a heap element */
444 typedef struct { 841 typedef struct {
445 ev_tstamp at; 842 ev_tstamp at;
446 WT w; 843 WT w;
447 } ANHE; 844 } ANHE;
448 845
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 846 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 847 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 848 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 849#else
850 /* a heap element */
453 typedef WT ANHE; 851 typedef WT ANHE;
454 852
455 #define ANHE_w(he) (he) 853 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 854 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 855 #define ANHE_at_cache(he)
458#endif 856#endif
459 857
460#if EV_MULTIPLICITY 858#if EV_MULTIPLICITY
461 859
462 struct ev_loop 860 struct ev_loop
481 879
482 static int ev_default_loop_ptr; 880 static int ev_default_loop_ptr;
483 881
484#endif 882#endif
485 883
884#if EV_FEATURE_API
885# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
886# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
887# define EV_INVOKE_PENDING invoke_cb (EV_A)
888#else
889# define EV_RELEASE_CB (void)0
890# define EV_ACQUIRE_CB (void)0
891# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
892#endif
893
894#define EVBREAK_RECURSE 0x80
895
486/*****************************************************************************/ 896/*****************************************************************************/
487 897
898#ifndef EV_HAVE_EV_TIME
488ev_tstamp 899ev_tstamp
489ev_time (void) 900ev_time (void)
490{ 901{
491#if EV_USE_REALTIME 902#if EV_USE_REALTIME
903 if (expect_true (have_realtime))
904 {
492 struct timespec ts; 905 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 906 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 907 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 908 }
909#endif
910
496 struct timeval tv; 911 struct timeval tv;
497 gettimeofday (&tv, 0); 912 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 913 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 914}
915#endif
501 916
502ev_tstamp inline_size 917inline_size ev_tstamp
503get_clock (void) 918get_clock (void)
504{ 919{
505#if EV_USE_MONOTONIC 920#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 921 if (expect_true (have_monotonic))
507 { 922 {
528 if (delay > 0.) 943 if (delay > 0.)
529 { 944 {
530#if EV_USE_NANOSLEEP 945#if EV_USE_NANOSLEEP
531 struct timespec ts; 946 struct timespec ts;
532 947
533 ts.tv_sec = (time_t)delay; 948 EV_TS_SET (ts, delay);
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0); 949 nanosleep (&ts, 0);
537#elif defined(_WIN32) 950#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3)); 951 Sleep ((unsigned long)(delay * 1e3));
539#else 952#else
540 struct timeval tv; 953 struct timeval tv;
541 954
542 tv.tv_sec = (time_t)delay; 955 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 956 /* something not guaranteed by newer posix versions, but guaranteed */
544 957 /* by older ones */
958 EV_TV_SET (tv, delay);
545 select (0, 0, 0, 0, &tv); 959 select (0, 0, 0, 0, &tv);
546#endif 960#endif
547 } 961 }
548} 962}
549 963
550/*****************************************************************************/ 964/*****************************************************************************/
551 965
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 966#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 967
554int inline_size 968/* find a suitable new size for the given array, */
969/* hopefully by rounding to a nice-to-malloc size */
970inline_size int
555array_nextsize (int elem, int cur, int cnt) 971array_nextsize (int elem, int cur, int cnt)
556{ 972{
557 int ncur = cur + 1; 973 int ncur = cur + 1;
558 974
559 do 975 do
570 } 986 }
571 987
572 return ncur; 988 return ncur;
573} 989}
574 990
575static noinline void * 991static void * noinline ecb_cold
576array_realloc (int elem, void *base, int *cur, int cnt) 992array_realloc (int elem, void *base, int *cur, int cnt)
577{ 993{
578 *cur = array_nextsize (elem, *cur, cnt); 994 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 995 return ev_realloc (base, elem * *cur);
580} 996}
997
998#define array_init_zero(base,count) \
999 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 1000
582#define array_needsize(type,base,cur,cnt,init) \ 1001#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 1002 if (expect_false ((cnt) > (cur))) \
584 { \ 1003 { \
585 int ocur_ = (cur); \ 1004 int ecb_unused ocur_ = (cur); \
586 (base) = (type *)array_realloc \ 1005 (base) = (type *)array_realloc \
587 (sizeof (type), (base), &(cur), (cnt)); \ 1006 (sizeof (type), (base), &(cur), (cnt)); \
588 init ((base) + (ocur_), (cur) - ocur_); \ 1007 init ((base) + (ocur_), (cur) - ocur_); \
589 } 1008 }
590 1009
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1016 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 1017 }
599#endif 1018#endif
600 1019
601#define array_free(stem, idx) \ 1020#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1021 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 1022
604/*****************************************************************************/ 1023/*****************************************************************************/
1024
1025/* dummy callback for pending events */
1026static void noinline
1027pendingcb (EV_P_ ev_prepare *w, int revents)
1028{
1029}
605 1030
606void noinline 1031void noinline
607ev_feed_event (EV_P_ void *w, int revents) 1032ev_feed_event (EV_P_ void *w, int revents)
608{ 1033{
609 W w_ = (W)w; 1034 W w_ = (W)w;
618 pendings [pri][w_->pending - 1].w = w_; 1043 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 1044 pendings [pri][w_->pending - 1].events = revents;
620 } 1045 }
621} 1046}
622 1047
623void inline_speed 1048inline_speed void
1049feed_reverse (EV_P_ W w)
1050{
1051 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1052 rfeeds [rfeedcnt++] = w;
1053}
1054
1055inline_size void
1056feed_reverse_done (EV_P_ int revents)
1057{
1058 do
1059 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1060 while (rfeedcnt);
1061}
1062
1063inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 1064queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 1065{
626 int i; 1066 int i;
627 1067
628 for (i = 0; i < eventcnt; ++i) 1068 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 1069 ev_feed_event (EV_A_ events [i], type);
630} 1070}
631 1071
632/*****************************************************************************/ 1072/*****************************************************************************/
633 1073
634void inline_size 1074inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 1075fd_event_nocheck (EV_P_ int fd, int revents)
649{ 1076{
650 ANFD *anfd = anfds + fd; 1077 ANFD *anfd = anfds + fd;
651 ev_io *w; 1078 ev_io *w;
652 1079
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1080 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 1084 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 1085 ev_feed_event (EV_A_ (W)w, ev);
659 } 1086 }
660} 1087}
661 1088
1089/* do not submit kernel events for fds that have reify set */
1090/* because that means they changed while we were polling for new events */
1091inline_speed void
1092fd_event (EV_P_ int fd, int revents)
1093{
1094 ANFD *anfd = anfds + fd;
1095
1096 if (expect_true (!anfd->reify))
1097 fd_event_nocheck (EV_A_ fd, revents);
1098}
1099
662void 1100void
663ev_feed_fd_event (EV_P_ int fd, int revents) 1101ev_feed_fd_event (EV_P_ int fd, int revents)
664{ 1102{
665 if (fd >= 0 && fd < anfdmax) 1103 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 1104 fd_event_nocheck (EV_A_ fd, revents);
667} 1105}
668 1106
669void inline_size 1107/* make sure the external fd watch events are in-sync */
1108/* with the kernel/libev internal state */
1109inline_size void
670fd_reify (EV_P) 1110fd_reify (EV_P)
671{ 1111{
672 int i; 1112 int i;
1113
1114#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1115 for (i = 0; i < fdchangecnt; ++i)
1116 {
1117 int fd = fdchanges [i];
1118 ANFD *anfd = anfds + fd;
1119
1120 if (anfd->reify & EV__IOFDSET && anfd->head)
1121 {
1122 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1123
1124 if (handle != anfd->handle)
1125 {
1126 unsigned long arg;
1127
1128 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1129
1130 /* handle changed, but fd didn't - we need to do it in two steps */
1131 backend_modify (EV_A_ fd, anfd->events, 0);
1132 anfd->events = 0;
1133 anfd->handle = handle;
1134 }
1135 }
1136 }
1137#endif
673 1138
674 for (i = 0; i < fdchangecnt; ++i) 1139 for (i = 0; i < fdchangecnt; ++i)
675 { 1140 {
676 int fd = fdchanges [i]; 1141 int fd = fdchanges [i];
677 ANFD *anfd = anfds + fd; 1142 ANFD *anfd = anfds + fd;
678 ev_io *w; 1143 ev_io *w;
679 1144
680 unsigned char events = 0; 1145 unsigned char o_events = anfd->events;
1146 unsigned char o_reify = anfd->reify;
681 1147
682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1148 anfd->reify = 0;
683 events |= (unsigned char)w->events;
684 1149
685#if EV_SELECT_IS_WINSOCKET 1150 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
686 if (events)
687 { 1151 {
688 unsigned long argp; 1152 anfd->events = 0;
689 #ifdef EV_FD_TO_WIN32_HANDLE 1153
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1154 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
691 #else 1155 anfd->events |= (unsigned char)w->events;
692 anfd->handle = _get_osfhandle (fd); 1156
693 #endif 1157 if (o_events != anfd->events)
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1158 o_reify = EV__IOFDSET; /* actually |= */
695 } 1159 }
696#endif
697 1160
698 { 1161 if (o_reify & EV__IOFDSET)
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
702 anfd->reify = 0;
703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 1162 backend_modify (EV_A_ fd, o_events, anfd->events);
707 }
708 } 1163 }
709 1164
710 fdchangecnt = 0; 1165 fdchangecnt = 0;
711} 1166}
712 1167
713void inline_size 1168/* something about the given fd changed */
1169inline_size void
714fd_change (EV_P_ int fd, int flags) 1170fd_change (EV_P_ int fd, int flags)
715{ 1171{
716 unsigned char reify = anfds [fd].reify; 1172 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 1173 anfds [fd].reify |= flags;
718 1174
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1178 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 1179 fdchanges [fdchangecnt - 1] = fd;
724 } 1180 }
725} 1181}
726 1182
727void inline_speed 1183/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1184inline_speed void ecb_cold
728fd_kill (EV_P_ int fd) 1185fd_kill (EV_P_ int fd)
729{ 1186{
730 ev_io *w; 1187 ev_io *w;
731 1188
732 while ((w = (ev_io *)anfds [fd].head)) 1189 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 1191 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1192 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 1193 }
737} 1194}
738 1195
739int inline_size 1196/* check whether the given fd is actually valid, for error recovery */
1197inline_size int ecb_cold
740fd_valid (int fd) 1198fd_valid (int fd)
741{ 1199{
742#ifdef _WIN32 1200#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 1201 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
744#else 1202#else
745 return fcntl (fd, F_GETFD) != -1; 1203 return fcntl (fd, F_GETFD) != -1;
746#endif 1204#endif
747} 1205}
748 1206
749/* called on EBADF to verify fds */ 1207/* called on EBADF to verify fds */
750static void noinline 1208static void noinline ecb_cold
751fd_ebadf (EV_P) 1209fd_ebadf (EV_P)
752{ 1210{
753 int fd; 1211 int fd;
754 1212
755 for (fd = 0; fd < anfdmax; ++fd) 1213 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 1214 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 1215 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 1216 fd_kill (EV_A_ fd);
759} 1217}
760 1218
761/* called on ENOMEM in select/poll to kill some fds and retry */ 1219/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 1220static void noinline ecb_cold
763fd_enomem (EV_P) 1221fd_enomem (EV_P)
764{ 1222{
765 int fd; 1223 int fd;
766 1224
767 for (fd = anfdmax; fd--; ) 1225 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events) 1226 if (anfds [fd].events)
769 { 1227 {
770 fd_kill (EV_A_ fd); 1228 fd_kill (EV_A_ fd);
771 return; 1229 break;
772 } 1230 }
773} 1231}
774 1232
775/* usually called after fork if backend needs to re-arm all fds from scratch */ 1233/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline 1234static void noinline
780 1238
781 for (fd = 0; fd < anfdmax; ++fd) 1239 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 1240 if (anfds [fd].events)
783 { 1241 {
784 anfds [fd].events = 0; 1242 anfds [fd].events = 0;
1243 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1244 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 1245 }
787} 1246}
788 1247
1248/* used to prepare libev internal fd's */
1249/* this is not fork-safe */
1250inline_speed void
1251fd_intern (int fd)
1252{
1253#ifdef _WIN32
1254 unsigned long arg = 1;
1255 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1256#else
1257 fcntl (fd, F_SETFD, FD_CLOEXEC);
1258 fcntl (fd, F_SETFL, O_NONBLOCK);
1259#endif
1260}
1261
789/*****************************************************************************/ 1262/*****************************************************************************/
790 1263
791/* 1264/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not 1265 * the heap functions want a real array index. array index 0 is guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1266 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree. 1267 * the branching factor of the d-tree.
795 */ 1268 */
796 1269
797/* 1270/*
802 */ 1275 */
803#if EV_USE_4HEAP 1276#if EV_USE_4HEAP
804 1277
805#define DHEAP 4 1278#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1279#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807 1280#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808/* towards the root */ 1281#define UPHEAP_DONE(p,k) ((p) == (k))
809void inline_speed
810upheap (ANHE *heap, int k)
811{
812 ANHE he = heap [k];
813
814 for (;;)
815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
821 heap [k] = heap [p];
822 ev_active (ANHE_w (heap [k])) = k;
823 k = p;
824 }
825
826 ev_active (ANHE_w (he)) = k;
827 heap [k] = he;
828}
829 1282
830/* away from the root */ 1283/* away from the root */
831void inline_speed 1284inline_speed void
832downheap (ANHE *heap, int N, int k) 1285downheap (ANHE *heap, int N, int k)
833{ 1286{
834 ANHE he = heap [k]; 1287 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0; 1288 ANHE *E = heap + N + HEAP0;
836 1289
837 for (;;) 1290 for (;;)
838 { 1291 {
839 ev_tstamp minat; 1292 ev_tstamp minat;
840 ANHE *minpos; 1293 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1294 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
842 1295
843 // find minimum child 1296 /* find minimum child */
844 if (expect_true (pos + DHEAP - 1 < E)) 1297 if (expect_true (pos + DHEAP - 1 < E))
845 { 1298 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1299 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1300 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1301 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 1302 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 } 1303 }
851 else if (pos < E) 1304 else if (pos < E)
852 { 1305 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1306 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1307 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 break; 1312 break;
860 1313
861 if (ANHE_at (he) <= minat) 1314 if (ANHE_at (he) <= minat)
862 break; 1315 break;
863 1316
1317 heap [k] = *minpos;
864 ev_active (ANHE_w (*minpos)) = k; 1318 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866 1319
867 k = minpos - heap; 1320 k = minpos - heap;
868 } 1321 }
869 1322
1323 heap [k] = he;
870 ev_active (ANHE_w (he)) = k; 1324 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872} 1325}
873 1326
874#else // 4HEAP 1327#else /* 4HEAP */
875 1328
876#define HEAP0 1 1329#define HEAP0 1
1330#define HPARENT(k) ((k) >> 1)
1331#define UPHEAP_DONE(p,k) (!(p))
877 1332
878/* towards the root */ 1333/* away from the root */
879void inline_speed 1334inline_speed void
880upheap (ANHE *heap, int k) 1335downheap (ANHE *heap, int N, int k)
881{ 1336{
882 ANHE he = heap [k]; 1337 ANHE he = heap [k];
883 1338
884 for (;;) 1339 for (;;)
885 { 1340 {
886 int p = k >> 1; 1341 int c = k << 1;
887 1342
888 /* maybe we could use a dummy element at heap [0]? */ 1343 if (c >= N + HEAP0)
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break; 1344 break;
891 1345
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1346 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0; 1347 ? 1 : 0;
916 1348
917 if (ANHE_at (he) <= ANHE_at (heap [c])) 1349 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break; 1350 break;
919 1351
926 heap [k] = he; 1358 heap [k] = he;
927 ev_active (ANHE_w (he)) = k; 1359 ev_active (ANHE_w (he)) = k;
928} 1360}
929#endif 1361#endif
930 1362
931void inline_size 1363/* towards the root */
1364inline_speed void
1365upheap (ANHE *heap, int k)
1366{
1367 ANHE he = heap [k];
1368
1369 for (;;)
1370 {
1371 int p = HPARENT (k);
1372
1373 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1374 break;
1375
1376 heap [k] = heap [p];
1377 ev_active (ANHE_w (heap [k])) = k;
1378 k = p;
1379 }
1380
1381 heap [k] = he;
1382 ev_active (ANHE_w (he)) = k;
1383}
1384
1385/* move an element suitably so it is in a correct place */
1386inline_size void
932adjustheap (ANHE *heap, int N, int k) 1387adjustheap (ANHE *heap, int N, int k)
933{ 1388{
1389 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
934 upheap (heap, k); 1390 upheap (heap, k);
1391 else
935 downheap (heap, N, k); 1392 downheap (heap, N, k);
1393}
1394
1395/* rebuild the heap: this function is used only once and executed rarely */
1396inline_size void
1397reheap (ANHE *heap, int N)
1398{
1399 int i;
1400
1401 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1402 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1403 for (i = 0; i < N; ++i)
1404 upheap (heap, i + HEAP0);
936} 1405}
937 1406
938/*****************************************************************************/ 1407/*****************************************************************************/
939 1408
1409/* associate signal watchers to a signal signal */
940typedef struct 1410typedef struct
941{ 1411{
1412 EV_ATOMIC_T pending;
1413#if EV_MULTIPLICITY
1414 EV_P;
1415#endif
942 WL head; 1416 WL head;
943 EV_ATOMIC_T gotsig;
944} ANSIG; 1417} ANSIG;
945 1418
946static ANSIG *signals; 1419static ANSIG signals [EV_NSIG - 1];
947static int signalmax;
948
949static EV_ATOMIC_T gotsig;
950
951void inline_size
952signals_init (ANSIG *base, int count)
953{
954 while (count--)
955 {
956 base->head = 0;
957 base->gotsig = 0;
958
959 ++base;
960 }
961}
962 1420
963/*****************************************************************************/ 1421/*****************************************************************************/
964 1422
965void inline_speed 1423#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
966fd_intern (int fd)
967{
968#ifdef _WIN32
969 int arg = 1;
970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
971#else
972 fcntl (fd, F_SETFD, FD_CLOEXEC);
973 fcntl (fd, F_SETFL, O_NONBLOCK);
974#endif
975}
976 1424
977static void noinline 1425static void noinline ecb_cold
978evpipe_init (EV_P) 1426evpipe_init (EV_P)
979{ 1427{
980 if (!ev_is_active (&pipeev)) 1428 if (!ev_is_active (&pipe_w))
981 { 1429 {
982#if EV_USE_EVENTFD 1430# if EV_USE_EVENTFD
1431 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1432 if (evfd < 0 && errno == EINVAL)
983 if ((evfd = eventfd (0, 0)) >= 0) 1433 evfd = eventfd (0, 0);
1434
1435 if (evfd >= 0)
984 { 1436 {
985 evpipe [0] = -1; 1437 evpipe [0] = -1;
986 fd_intern (evfd); 1438 fd_intern (evfd); /* doing it twice doesn't hurt */
987 ev_io_set (&pipeev, evfd, EV_READ); 1439 ev_io_set (&pipe_w, evfd, EV_READ);
988 } 1440 }
989 else 1441 else
990#endif 1442# endif
991 { 1443 {
992 while (pipe (evpipe)) 1444 while (pipe (evpipe))
993 syserr ("(libev) error creating signal/async pipe"); 1445 ev_syserr ("(libev) error creating signal/async pipe");
994 1446
995 fd_intern (evpipe [0]); 1447 fd_intern (evpipe [0]);
996 fd_intern (evpipe [1]); 1448 fd_intern (evpipe [1]);
997 ev_io_set (&pipeev, evpipe [0], EV_READ); 1449 ev_io_set (&pipe_w, evpipe [0], EV_READ);
998 } 1450 }
999 1451
1000 ev_io_start (EV_A_ &pipeev); 1452 ev_io_start (EV_A_ &pipe_w);
1001 ev_unref (EV_A); /* watcher should not keep loop alive */ 1453 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 } 1454 }
1003} 1455}
1004 1456
1005void inline_size 1457inline_speed void
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1458evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{ 1459{
1008 if (!*flag) 1460 if (expect_true (*flag))
1461 return;
1462
1463 *flag = 1;
1464
1465 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1466
1467 pipe_write_skipped = 1;
1468
1469 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1470
1471 if (pipe_write_wanted)
1009 { 1472 {
1473 int old_errno;
1474
1475 pipe_write_skipped = 0; /* just an optimsiation, no fence needed */
1476
1010 int old_errno = errno; /* save errno because write might clobber it */ 1477 old_errno = errno; /* save errno because write will clobber it */
1011
1012 *flag = 1;
1013 1478
1014#if EV_USE_EVENTFD 1479#if EV_USE_EVENTFD
1015 if (evfd >= 0) 1480 if (evfd >= 0)
1016 { 1481 {
1017 uint64_t counter = 1; 1482 uint64_t counter = 1;
1018 write (evfd, &counter, sizeof (uint64_t)); 1483 write (evfd, &counter, sizeof (uint64_t));
1019 } 1484 }
1020 else 1485 else
1021#endif 1486#endif
1487 {
1488 /* win32 people keep sending patches that change this write() to send() */
1489 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1490 /* so when you think this write should be a send instead, please find out */
1491 /* where your send() is from - it's definitely not the microsoft send, and */
1492 /* tell me. thank you. */
1022 write (evpipe [1], &old_errno, 1); 1493 write (evpipe [1], &(evpipe [1]), 1);
1494 }
1023 1495
1024 errno = old_errno; 1496 errno = old_errno;
1025 } 1497 }
1026} 1498}
1027 1499
1500/* called whenever the libev signal pipe */
1501/* got some events (signal, async) */
1028static void 1502static void
1029pipecb (EV_P_ ev_io *iow, int revents) 1503pipecb (EV_P_ ev_io *iow, int revents)
1030{ 1504{
1505 int i;
1506
1507 if (revents & EV_READ)
1508 {
1031#if EV_USE_EVENTFD 1509#if EV_USE_EVENTFD
1032 if (evfd >= 0) 1510 if (evfd >= 0)
1033 { 1511 {
1034 uint64_t counter; 1512 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t)); 1513 read (evfd, &counter, sizeof (uint64_t));
1036 } 1514 }
1037 else 1515 else
1038#endif 1516#endif
1039 { 1517 {
1040 char dummy; 1518 char dummy;
1519 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1041 read (evpipe [0], &dummy, 1); 1520 read (evpipe [0], &dummy, 1);
1521 }
1522 }
1523
1524 pipe_write_skipped = 0;
1525
1526#if EV_SIGNAL_ENABLE
1527 if (sig_pending)
1042 } 1528 {
1529 sig_pending = 0;
1043 1530
1044 if (gotsig && ev_is_default_loop (EV_A)) 1531 for (i = EV_NSIG - 1; i--; )
1045 { 1532 if (expect_false (signals [i].pending))
1046 int signum;
1047 gotsig = 0;
1048
1049 for (signum = signalmax; signum--; )
1050 if (signals [signum].gotsig)
1051 ev_feed_signal_event (EV_A_ signum + 1); 1533 ev_feed_signal_event (EV_A_ i + 1);
1052 } 1534 }
1535#endif
1053 1536
1054#if EV_ASYNC_ENABLE 1537#if EV_ASYNC_ENABLE
1055 if (gotasync) 1538 if (async_pending)
1056 { 1539 {
1057 int i; 1540 async_pending = 0;
1058 gotasync = 0;
1059 1541
1060 for (i = asynccnt; i--; ) 1542 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent) 1543 if (asyncs [i]->sent)
1062 { 1544 {
1063 asyncs [i]->sent = 0; 1545 asyncs [i]->sent = 0;
1067#endif 1549#endif
1068} 1550}
1069 1551
1070/*****************************************************************************/ 1552/*****************************************************************************/
1071 1553
1554void
1555ev_feed_signal (int signum)
1556{
1557#if EV_MULTIPLICITY
1558 EV_P = signals [signum - 1].loop;
1559
1560 if (!EV_A)
1561 return;
1562#endif
1563
1564 if (!ev_active (&pipe_w))
1565 return;
1566
1567 signals [signum - 1].pending = 1;
1568 evpipe_write (EV_A_ &sig_pending);
1569}
1570
1072static void 1571static void
1073ev_sighandler (int signum) 1572ev_sighandler (int signum)
1074{ 1573{
1075#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct;
1077#endif
1078
1079#if _WIN32 1574#ifdef _WIN32
1080 signal (signum, ev_sighandler); 1575 signal (signum, ev_sighandler);
1081#endif 1576#endif
1082 1577
1083 signals [signum - 1].gotsig = 1; 1578 ev_feed_signal (signum);
1084 evpipe_write (EV_A_ &gotsig);
1085} 1579}
1086 1580
1087void noinline 1581void noinline
1088ev_feed_signal_event (EV_P_ int signum) 1582ev_feed_signal_event (EV_P_ int signum)
1089{ 1583{
1090 WL w; 1584 WL w;
1091 1585
1586 if (expect_false (signum <= 0 || signum > EV_NSIG))
1587 return;
1588
1589 --signum;
1590
1092#if EV_MULTIPLICITY 1591#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1592 /* it is permissible to try to feed a signal to the wrong loop */
1094#endif 1593 /* or, likely more useful, feeding a signal nobody is waiting for */
1095 1594
1096 --signum; 1595 if (expect_false (signals [signum].loop != EV_A))
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return; 1596 return;
1597#endif
1100 1598
1101 signals [signum].gotsig = 0; 1599 signals [signum].pending = 0;
1102 1600
1103 for (w = signals [signum].head; w; w = w->next) 1601 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1602 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105} 1603}
1106 1604
1605#if EV_USE_SIGNALFD
1606static void
1607sigfdcb (EV_P_ ev_io *iow, int revents)
1608{
1609 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1610
1611 for (;;)
1612 {
1613 ssize_t res = read (sigfd, si, sizeof (si));
1614
1615 /* not ISO-C, as res might be -1, but works with SuS */
1616 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1617 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1618
1619 if (res < (ssize_t)sizeof (si))
1620 break;
1621 }
1622}
1623#endif
1624
1625#endif
1626
1107/*****************************************************************************/ 1627/*****************************************************************************/
1108 1628
1629#if EV_CHILD_ENABLE
1109static WL childs [EV_PID_HASHSIZE]; 1630static WL childs [EV_PID_HASHSIZE];
1110
1111#ifndef _WIN32
1112 1631
1113static ev_signal childev; 1632static ev_signal childev;
1114 1633
1115#ifndef WIFCONTINUED 1634#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0 1635# define WIFCONTINUED(status) 0
1117#endif 1636#endif
1118 1637
1119void inline_speed 1638/* handle a single child status event */
1639inline_speed void
1120child_reap (EV_P_ int chain, int pid, int status) 1640child_reap (EV_P_ int chain, int pid, int status)
1121{ 1641{
1122 ev_child *w; 1642 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1643 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1124 1644
1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1645 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1126 { 1646 {
1127 if ((w->pid == pid || !w->pid) 1647 if ((w->pid == pid || !w->pid)
1128 && (!traced || (w->flags & 1))) 1648 && (!traced || (w->flags & 1)))
1129 { 1649 {
1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1650 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1137 1657
1138#ifndef WCONTINUED 1658#ifndef WCONTINUED
1139# define WCONTINUED 0 1659# define WCONTINUED 0
1140#endif 1660#endif
1141 1661
1662/* called on sigchld etc., calls waitpid */
1142static void 1663static void
1143childcb (EV_P_ ev_signal *sw, int revents) 1664childcb (EV_P_ ev_signal *sw, int revents)
1144{ 1665{
1145 int pid, status; 1666 int pid, status;
1146 1667
1154 /* make sure we are called again until all children have been reaped */ 1675 /* make sure we are called again until all children have been reaped */
1155 /* we need to do it this way so that the callback gets called before we continue */ 1676 /* we need to do it this way so that the callback gets called before we continue */
1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1677 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1157 1678
1158 child_reap (EV_A_ pid, pid, status); 1679 child_reap (EV_A_ pid, pid, status);
1159 if (EV_PID_HASHSIZE > 1) 1680 if ((EV_PID_HASHSIZE) > 1)
1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1681 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1161} 1682}
1162 1683
1163#endif 1684#endif
1164 1685
1165/*****************************************************************************/ 1686/*****************************************************************************/
1166 1687
1688#if EV_USE_IOCP
1689# include "ev_iocp.c"
1690#endif
1167#if EV_USE_PORT 1691#if EV_USE_PORT
1168# include "ev_port.c" 1692# include "ev_port.c"
1169#endif 1693#endif
1170#if EV_USE_KQUEUE 1694#if EV_USE_KQUEUE
1171# include "ev_kqueue.c" 1695# include "ev_kqueue.c"
1178#endif 1702#endif
1179#if EV_USE_SELECT 1703#if EV_USE_SELECT
1180# include "ev_select.c" 1704# include "ev_select.c"
1181#endif 1705#endif
1182 1706
1183int 1707int ecb_cold
1184ev_version_major (void) 1708ev_version_major (void)
1185{ 1709{
1186 return EV_VERSION_MAJOR; 1710 return EV_VERSION_MAJOR;
1187} 1711}
1188 1712
1189int 1713int ecb_cold
1190ev_version_minor (void) 1714ev_version_minor (void)
1191{ 1715{
1192 return EV_VERSION_MINOR; 1716 return EV_VERSION_MINOR;
1193} 1717}
1194 1718
1195/* return true if we are running with elevated privileges and should ignore env variables */ 1719/* return true if we are running with elevated privileges and should ignore env variables */
1196int inline_size 1720int inline_size ecb_cold
1197enable_secure (void) 1721enable_secure (void)
1198{ 1722{
1199#ifdef _WIN32 1723#ifdef _WIN32
1200 return 0; 1724 return 0;
1201#else 1725#else
1202 return getuid () != geteuid () 1726 return getuid () != geteuid ()
1203 || getgid () != getegid (); 1727 || getgid () != getegid ();
1204#endif 1728#endif
1205} 1729}
1206 1730
1207unsigned int 1731unsigned int ecb_cold
1208ev_supported_backends (void) 1732ev_supported_backends (void)
1209{ 1733{
1210 unsigned int flags = 0; 1734 unsigned int flags = 0;
1211 1735
1212 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 1736 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1216 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 1740 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1217 1741
1218 return flags; 1742 return flags;
1219} 1743}
1220 1744
1221unsigned int 1745unsigned int ecb_cold
1222ev_recommended_backends (void) 1746ev_recommended_backends (void)
1223{ 1747{
1224 unsigned int flags = ev_supported_backends (); 1748 unsigned int flags = ev_supported_backends ();
1225 1749
1226#ifndef __NetBSD__ 1750#ifndef __NetBSD__
1227 /* kqueue is borked on everything but netbsd apparently */ 1751 /* kqueue is borked on everything but netbsd apparently */
1228 /* it usually doesn't work correctly on anything but sockets and pipes */ 1752 /* it usually doesn't work correctly on anything but sockets and pipes */
1229 flags &= ~EVBACKEND_KQUEUE; 1753 flags &= ~EVBACKEND_KQUEUE;
1230#endif 1754#endif
1231#ifdef __APPLE__ 1755#ifdef __APPLE__
1232 // flags &= ~EVBACKEND_KQUEUE; for documentation 1756 /* only select works correctly on that "unix-certified" platform */
1233 flags &= ~EVBACKEND_POLL; 1757 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1758 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1759#endif
1760#ifdef __FreeBSD__
1761 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1234#endif 1762#endif
1235 1763
1236 return flags; 1764 return flags;
1237} 1765}
1238 1766
1239unsigned int 1767unsigned int ecb_cold
1240ev_embeddable_backends (void) 1768ev_embeddable_backends (void)
1241{ 1769{
1242 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1770 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1243 1771
1244 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1772 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1245 /* please fix it and tell me how to detect the fix */ 1773 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1246 flags &= ~EVBACKEND_EPOLL; 1774 flags &= ~EVBACKEND_EPOLL;
1247 1775
1248 return flags; 1776 return flags;
1249} 1777}
1250 1778
1251unsigned int 1779unsigned int
1252ev_backend (EV_P) 1780ev_backend (EV_P)
1253{ 1781{
1254 return backend; 1782 return backend;
1255} 1783}
1256 1784
1785#if EV_FEATURE_API
1257unsigned int 1786unsigned int
1258ev_loop_count (EV_P) 1787ev_iteration (EV_P)
1259{ 1788{
1260 return loop_count; 1789 return loop_count;
1790}
1791
1792unsigned int
1793ev_depth (EV_P)
1794{
1795 return loop_depth;
1261} 1796}
1262 1797
1263void 1798void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1799ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1265{ 1800{
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1805ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1271{ 1806{
1272 timeout_blocktime = interval; 1807 timeout_blocktime = interval;
1273} 1808}
1274 1809
1810void
1811ev_set_userdata (EV_P_ void *data)
1812{
1813 userdata = data;
1814}
1815
1816void *
1817ev_userdata (EV_P)
1818{
1819 return userdata;
1820}
1821
1822void
1823ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1824{
1825 invoke_cb = invoke_pending_cb;
1826}
1827
1828void
1829ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1830{
1831 release_cb = release;
1832 acquire_cb = acquire;
1833}
1834#endif
1835
1836/* initialise a loop structure, must be zero-initialised */
1275static void noinline 1837static void noinline ecb_cold
1276loop_init (EV_P_ unsigned int flags) 1838loop_init (EV_P_ unsigned int flags)
1277{ 1839{
1278 if (!backend) 1840 if (!backend)
1279 { 1841 {
1842 origflags = flags;
1843
1844#if EV_USE_REALTIME
1845 if (!have_realtime)
1846 {
1847 struct timespec ts;
1848
1849 if (!clock_gettime (CLOCK_REALTIME, &ts))
1850 have_realtime = 1;
1851 }
1852#endif
1853
1280#if EV_USE_MONOTONIC 1854#if EV_USE_MONOTONIC
1855 if (!have_monotonic)
1281 { 1856 {
1282 struct timespec ts; 1857 struct timespec ts;
1858
1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1859 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1284 have_monotonic = 1; 1860 have_monotonic = 1;
1285 } 1861 }
1286#endif
1287
1288 ev_rt_now = ev_time ();
1289 mn_now = get_clock ();
1290 now_floor = mn_now;
1291 rtmn_diff = ev_rt_now - mn_now;
1292
1293 io_blocktime = 0.;
1294 timeout_blocktime = 0.;
1295 backend = 0;
1296 backend_fd = -1;
1297 gotasync = 0;
1298#if EV_USE_INOTIFY
1299 fs_fd = -2;
1300#endif 1862#endif
1301 1863
1302 /* pid check not overridable via env */ 1864 /* pid check not overridable via env */
1303#ifndef _WIN32 1865#ifndef _WIN32
1304 if (flags & EVFLAG_FORKCHECK) 1866 if (flags & EVFLAG_FORKCHECK)
1308 if (!(flags & EVFLAG_NOENV) 1870 if (!(flags & EVFLAG_NOENV)
1309 && !enable_secure () 1871 && !enable_secure ()
1310 && getenv ("LIBEV_FLAGS")) 1872 && getenv ("LIBEV_FLAGS"))
1311 flags = atoi (getenv ("LIBEV_FLAGS")); 1873 flags = atoi (getenv ("LIBEV_FLAGS"));
1312 1874
1313 if (!(flags & 0x0000ffffU)) 1875 ev_rt_now = ev_time ();
1876 mn_now = get_clock ();
1877 now_floor = mn_now;
1878 rtmn_diff = ev_rt_now - mn_now;
1879#if EV_FEATURE_API
1880 invoke_cb = ev_invoke_pending;
1881#endif
1882
1883 io_blocktime = 0.;
1884 timeout_blocktime = 0.;
1885 backend = 0;
1886 backend_fd = -1;
1887 sig_pending = 0;
1888#if EV_ASYNC_ENABLE
1889 async_pending = 0;
1890#endif
1891 pipe_write_skipped = 0;
1892 pipe_write_wanted = 0;
1893#if EV_USE_INOTIFY
1894 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1895#endif
1896#if EV_USE_SIGNALFD
1897 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1898#endif
1899
1900 if (!(flags & EVBACKEND_MASK))
1314 flags |= ev_recommended_backends (); 1901 flags |= ev_recommended_backends ();
1315 1902
1903#if EV_USE_IOCP
1904 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1905#endif
1316#if EV_USE_PORT 1906#if EV_USE_PORT
1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1907 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1318#endif 1908#endif
1319#if EV_USE_KQUEUE 1909#if EV_USE_KQUEUE
1320 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1910 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1327#endif 1917#endif
1328#if EV_USE_SELECT 1918#if EV_USE_SELECT
1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1919 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1330#endif 1920#endif
1331 1921
1922 ev_prepare_init (&pending_w, pendingcb);
1923
1924#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1332 ev_init (&pipeev, pipecb); 1925 ev_init (&pipe_w, pipecb);
1333 ev_set_priority (&pipeev, EV_MAXPRI); 1926 ev_set_priority (&pipe_w, EV_MAXPRI);
1927#endif
1334 } 1928 }
1335} 1929}
1336 1930
1337static void noinline 1931/* free up a loop structure */
1932void ecb_cold
1338loop_destroy (EV_P) 1933ev_loop_destroy (EV_P)
1339{ 1934{
1340 int i; 1935 int i;
1341 1936
1937#if EV_MULTIPLICITY
1938 /* mimic free (0) */
1939 if (!EV_A)
1940 return;
1941#endif
1942
1943#if EV_CLEANUP_ENABLE
1944 /* queue cleanup watchers (and execute them) */
1945 if (expect_false (cleanupcnt))
1946 {
1947 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1948 EV_INVOKE_PENDING;
1949 }
1950#endif
1951
1952#if EV_CHILD_ENABLE
1953 if (ev_is_active (&childev))
1954 {
1955 ev_ref (EV_A); /* child watcher */
1956 ev_signal_stop (EV_A_ &childev);
1957 }
1958#endif
1959
1342 if (ev_is_active (&pipeev)) 1960 if (ev_is_active (&pipe_w))
1343 { 1961 {
1344 ev_ref (EV_A); /* signal watcher */ 1962 /*ev_ref (EV_A);*/
1345 ev_io_stop (EV_A_ &pipeev); 1963 /*ev_io_stop (EV_A_ &pipe_w);*/
1346 1964
1347#if EV_USE_EVENTFD 1965#if EV_USE_EVENTFD
1348 if (evfd >= 0) 1966 if (evfd >= 0)
1349 close (evfd); 1967 close (evfd);
1350#endif 1968#endif
1351 1969
1352 if (evpipe [0] >= 0) 1970 if (evpipe [0] >= 0)
1353 { 1971 {
1354 close (evpipe [0]); 1972 EV_WIN32_CLOSE_FD (evpipe [0]);
1355 close (evpipe [1]); 1973 EV_WIN32_CLOSE_FD (evpipe [1]);
1356 } 1974 }
1357 } 1975 }
1976
1977#if EV_USE_SIGNALFD
1978 if (ev_is_active (&sigfd_w))
1979 close (sigfd);
1980#endif
1358 1981
1359#if EV_USE_INOTIFY 1982#if EV_USE_INOTIFY
1360 if (fs_fd >= 0) 1983 if (fs_fd >= 0)
1361 close (fs_fd); 1984 close (fs_fd);
1362#endif 1985#endif
1363 1986
1364 if (backend_fd >= 0) 1987 if (backend_fd >= 0)
1365 close (backend_fd); 1988 close (backend_fd);
1366 1989
1990#if EV_USE_IOCP
1991 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1992#endif
1367#if EV_USE_PORT 1993#if EV_USE_PORT
1368 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1994 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1369#endif 1995#endif
1370#if EV_USE_KQUEUE 1996#if EV_USE_KQUEUE
1371 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1997 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1386#if EV_IDLE_ENABLE 2012#if EV_IDLE_ENABLE
1387 array_free (idle, [i]); 2013 array_free (idle, [i]);
1388#endif 2014#endif
1389 } 2015 }
1390 2016
1391 ev_free (anfds); anfdmax = 0; 2017 ev_free (anfds); anfds = 0; anfdmax = 0;
1392 2018
1393 /* have to use the microsoft-never-gets-it-right macro */ 2019 /* have to use the microsoft-never-gets-it-right macro */
2020 array_free (rfeed, EMPTY);
1394 array_free (fdchange, EMPTY); 2021 array_free (fdchange, EMPTY);
1395 array_free (timer, EMPTY); 2022 array_free (timer, EMPTY);
1396#if EV_PERIODIC_ENABLE 2023#if EV_PERIODIC_ENABLE
1397 array_free (periodic, EMPTY); 2024 array_free (periodic, EMPTY);
1398#endif 2025#endif
1399#if EV_FORK_ENABLE 2026#if EV_FORK_ENABLE
1400 array_free (fork, EMPTY); 2027 array_free (fork, EMPTY);
1401#endif 2028#endif
2029#if EV_CLEANUP_ENABLE
2030 array_free (cleanup, EMPTY);
2031#endif
1402 array_free (prepare, EMPTY); 2032 array_free (prepare, EMPTY);
1403 array_free (check, EMPTY); 2033 array_free (check, EMPTY);
1404#if EV_ASYNC_ENABLE 2034#if EV_ASYNC_ENABLE
1405 array_free (async, EMPTY); 2035 array_free (async, EMPTY);
1406#endif 2036#endif
1407 2037
1408 backend = 0; 2038 backend = 0;
2039
2040#if EV_MULTIPLICITY
2041 if (ev_is_default_loop (EV_A))
2042#endif
2043 ev_default_loop_ptr = 0;
2044#if EV_MULTIPLICITY
2045 else
2046 ev_free (EV_A);
2047#endif
1409} 2048}
1410 2049
1411#if EV_USE_INOTIFY 2050#if EV_USE_INOTIFY
1412void inline_size infy_fork (EV_P); 2051inline_size void infy_fork (EV_P);
1413#endif 2052#endif
1414 2053
1415void inline_size 2054inline_size void
1416loop_fork (EV_P) 2055loop_fork (EV_P)
1417{ 2056{
1418#if EV_USE_PORT 2057#if EV_USE_PORT
1419 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2058 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1420#endif 2059#endif
1426#endif 2065#endif
1427#if EV_USE_INOTIFY 2066#if EV_USE_INOTIFY
1428 infy_fork (EV_A); 2067 infy_fork (EV_A);
1429#endif 2068#endif
1430 2069
1431 if (ev_is_active (&pipeev)) 2070 if (ev_is_active (&pipe_w))
1432 { 2071 {
1433 /* this "locks" the handlers against writing to the pipe */ 2072 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1434 /* while we modify the fd vars */
1435 gotsig = 1;
1436#if EV_ASYNC_ENABLE
1437 gotasync = 1;
1438#endif
1439 2073
1440 ev_ref (EV_A); 2074 ev_ref (EV_A);
1441 ev_io_stop (EV_A_ &pipeev); 2075 ev_io_stop (EV_A_ &pipe_w);
1442 2076
1443#if EV_USE_EVENTFD 2077#if EV_USE_EVENTFD
1444 if (evfd >= 0) 2078 if (evfd >= 0)
1445 close (evfd); 2079 close (evfd);
1446#endif 2080#endif
1447 2081
1448 if (evpipe [0] >= 0) 2082 if (evpipe [0] >= 0)
1449 { 2083 {
1450 close (evpipe [0]); 2084 EV_WIN32_CLOSE_FD (evpipe [0]);
1451 close (evpipe [1]); 2085 EV_WIN32_CLOSE_FD (evpipe [1]);
1452 } 2086 }
1453 2087
2088#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1454 evpipe_init (EV_A); 2089 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */ 2090 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ); 2091 pipecb (EV_A_ &pipe_w, EV_READ);
2092#endif
1457 } 2093 }
1458 2094
1459 postfork = 0; 2095 postfork = 0;
1460} 2096}
1461 2097
1462#if EV_MULTIPLICITY 2098#if EV_MULTIPLICITY
2099
1463struct ev_loop * 2100struct ev_loop * ecb_cold
1464ev_loop_new (unsigned int flags) 2101ev_loop_new (unsigned int flags)
1465{ 2102{
1466 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2103 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1467 2104
1468 memset (loop, 0, sizeof (struct ev_loop)); 2105 memset (EV_A, 0, sizeof (struct ev_loop));
1469
1470 loop_init (EV_A_ flags); 2106 loop_init (EV_A_ flags);
1471 2107
1472 if (ev_backend (EV_A)) 2108 if (ev_backend (EV_A))
1473 return loop; 2109 return EV_A;
1474 2110
2111 ev_free (EV_A);
1475 return 0; 2112 return 0;
1476} 2113}
1477 2114
1478void 2115#endif /* multiplicity */
1479ev_loop_destroy (EV_P)
1480{
1481 loop_destroy (EV_A);
1482 ev_free (loop);
1483}
1484 2116
1485void 2117#if EV_VERIFY
1486ev_loop_fork (EV_P) 2118static void noinline ecb_cold
2119verify_watcher (EV_P_ W w)
1487{ 2120{
1488 postfork = 1; /* must be in line with ev_default_fork */ 2121 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2122
2123 if (w->pending)
2124 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2125}
2126
2127static void noinline ecb_cold
2128verify_heap (EV_P_ ANHE *heap, int N)
2129{
2130 int i;
2131
2132 for (i = HEAP0; i < N + HEAP0; ++i)
2133 {
2134 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2135 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2136 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2137
2138 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2139 }
2140}
2141
2142static void noinline ecb_cold
2143array_verify (EV_P_ W *ws, int cnt)
2144{
2145 while (cnt--)
2146 {
2147 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2148 verify_watcher (EV_A_ ws [cnt]);
2149 }
2150}
2151#endif
2152
2153#if EV_FEATURE_API
2154void ecb_cold
2155ev_verify (EV_P)
2156{
2157#if EV_VERIFY
2158 int i;
2159 WL w;
2160
2161 assert (activecnt >= -1);
2162
2163 assert (fdchangemax >= fdchangecnt);
2164 for (i = 0; i < fdchangecnt; ++i)
2165 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2166
2167 assert (anfdmax >= 0);
2168 for (i = 0; i < anfdmax; ++i)
2169 for (w = anfds [i].head; w; w = w->next)
2170 {
2171 verify_watcher (EV_A_ (W)w);
2172 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2173 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2174 }
2175
2176 assert (timermax >= timercnt);
2177 verify_heap (EV_A_ timers, timercnt);
2178
2179#if EV_PERIODIC_ENABLE
2180 assert (periodicmax >= periodiccnt);
2181 verify_heap (EV_A_ periodics, periodiccnt);
2182#endif
2183
2184 for (i = NUMPRI; i--; )
2185 {
2186 assert (pendingmax [i] >= pendingcnt [i]);
2187#if EV_IDLE_ENABLE
2188 assert (idleall >= 0);
2189 assert (idlemax [i] >= idlecnt [i]);
2190 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2191#endif
2192 }
2193
2194#if EV_FORK_ENABLE
2195 assert (forkmax >= forkcnt);
2196 array_verify (EV_A_ (W *)forks, forkcnt);
2197#endif
2198
2199#if EV_CLEANUP_ENABLE
2200 assert (cleanupmax >= cleanupcnt);
2201 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2202#endif
2203
2204#if EV_ASYNC_ENABLE
2205 assert (asyncmax >= asynccnt);
2206 array_verify (EV_A_ (W *)asyncs, asynccnt);
2207#endif
2208
2209#if EV_PREPARE_ENABLE
2210 assert (preparemax >= preparecnt);
2211 array_verify (EV_A_ (W *)prepares, preparecnt);
2212#endif
2213
2214#if EV_CHECK_ENABLE
2215 assert (checkmax >= checkcnt);
2216 array_verify (EV_A_ (W *)checks, checkcnt);
2217#endif
2218
2219# if 0
2220#if EV_CHILD_ENABLE
2221 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2222 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2223#endif
2224# endif
2225#endif
1489} 2226}
1490#endif 2227#endif
1491 2228
1492#if EV_MULTIPLICITY 2229#if EV_MULTIPLICITY
1493struct ev_loop * 2230struct ev_loop * ecb_cold
1494ev_default_loop_init (unsigned int flags)
1495#else 2231#else
1496int 2232int
2233#endif
1497ev_default_loop (unsigned int flags) 2234ev_default_loop (unsigned int flags)
1498#endif
1499{ 2235{
1500 if (!ev_default_loop_ptr) 2236 if (!ev_default_loop_ptr)
1501 { 2237 {
1502#if EV_MULTIPLICITY 2238#if EV_MULTIPLICITY
1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2239 EV_P = ev_default_loop_ptr = &default_loop_struct;
1504#else 2240#else
1505 ev_default_loop_ptr = 1; 2241 ev_default_loop_ptr = 1;
1506#endif 2242#endif
1507 2243
1508 loop_init (EV_A_ flags); 2244 loop_init (EV_A_ flags);
1509 2245
1510 if (ev_backend (EV_A)) 2246 if (ev_backend (EV_A))
1511 { 2247 {
1512#ifndef _WIN32 2248#if EV_CHILD_ENABLE
1513 ev_signal_init (&childev, childcb, SIGCHLD); 2249 ev_signal_init (&childev, childcb, SIGCHLD);
1514 ev_set_priority (&childev, EV_MAXPRI); 2250 ev_set_priority (&childev, EV_MAXPRI);
1515 ev_signal_start (EV_A_ &childev); 2251 ev_signal_start (EV_A_ &childev);
1516 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2252 ev_unref (EV_A); /* child watcher should not keep loop alive */
1517#endif 2253#endif
1522 2258
1523 return ev_default_loop_ptr; 2259 return ev_default_loop_ptr;
1524} 2260}
1525 2261
1526void 2262void
1527ev_default_destroy (void) 2263ev_loop_fork (EV_P)
1528{ 2264{
1529#if EV_MULTIPLICITY
1530 struct ev_loop *loop = ev_default_loop_ptr;
1531#endif
1532
1533#ifndef _WIN32
1534 ev_ref (EV_A); /* child watcher */
1535 ev_signal_stop (EV_A_ &childev);
1536#endif
1537
1538 loop_destroy (EV_A);
1539}
1540
1541void
1542ev_default_fork (void)
1543{
1544#if EV_MULTIPLICITY
1545 struct ev_loop *loop = ev_default_loop_ptr;
1546#endif
1547
1548 if (backend)
1549 postfork = 1; /* must be in line with ev_loop_fork */ 2265 postfork = 1; /* must be in line with ev_default_fork */
1550} 2266}
1551 2267
1552/*****************************************************************************/ 2268/*****************************************************************************/
1553 2269
1554void 2270void
1555ev_invoke (EV_P_ void *w, int revents) 2271ev_invoke (EV_P_ void *w, int revents)
1556{ 2272{
1557 EV_CB_INVOKE ((W)w, revents); 2273 EV_CB_INVOKE ((W)w, revents);
1558} 2274}
1559 2275
1560void inline_speed 2276unsigned int
1561call_pending (EV_P) 2277ev_pending_count (EV_P)
2278{
2279 int pri;
2280 unsigned int count = 0;
2281
2282 for (pri = NUMPRI; pri--; )
2283 count += pendingcnt [pri];
2284
2285 return count;
2286}
2287
2288void noinline
2289ev_invoke_pending (EV_P)
1562{ 2290{
1563 int pri; 2291 int pri;
1564 2292
1565 for (pri = NUMPRI; pri--; ) 2293 for (pri = NUMPRI; pri--; )
1566 while (pendingcnt [pri]) 2294 while (pendingcnt [pri])
1567 { 2295 {
1568 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2296 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1569 2297
1570 if (expect_true (p->w))
1571 {
1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1573
1574 p->w->pending = 0; 2298 p->w->pending = 0;
1575 EV_CB_INVOKE (p->w, p->events); 2299 EV_CB_INVOKE (p->w, p->events);
1576 } 2300 EV_FREQUENT_CHECK;
1577 } 2301 }
1578} 2302}
1579 2303
1580#if EV_IDLE_ENABLE 2304#if EV_IDLE_ENABLE
1581void inline_size 2305/* make idle watchers pending. this handles the "call-idle */
2306/* only when higher priorities are idle" logic */
2307inline_size void
1582idle_reify (EV_P) 2308idle_reify (EV_P)
1583{ 2309{
1584 if (expect_false (idleall)) 2310 if (expect_false (idleall))
1585 { 2311 {
1586 int pri; 2312 int pri;
1598 } 2324 }
1599 } 2325 }
1600} 2326}
1601#endif 2327#endif
1602 2328
1603void inline_size 2329/* make timers pending */
2330inline_size void
1604timers_reify (EV_P) 2331timers_reify (EV_P)
1605{ 2332{
2333 EV_FREQUENT_CHECK;
2334
1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2335 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1607 { 2336 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2337 do
1609
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1611
1612 /* first reschedule or stop timer */
1613 if (w->repeat)
1614 { 2338 {
2339 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2340
2341 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2342
2343 /* first reschedule or stop timer */
2344 if (w->repeat)
2345 {
1615 ev_at (w) += w->repeat; 2346 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now) 2347 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now; 2348 ev_at (w) = mn_now;
1618 2349
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2350 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620 2351
1621 ANHE_at_set (timers [HEAP0]); 2352 ANHE_at_cache (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0); 2353 downheap (timers, timercnt, HEAP0);
2354 }
2355 else
2356 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2357
2358 EV_FREQUENT_CHECK;
2359 feed_reverse (EV_A_ (W)w);
1623 } 2360 }
1624 else 2361 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 2362
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2363 feed_reverse_done (EV_A_ EV_TIMER);
1628 } 2364 }
1629} 2365}
1630 2366
1631#if EV_PERIODIC_ENABLE 2367#if EV_PERIODIC_ENABLE
1632void inline_size 2368
2369static void noinline
2370periodic_recalc (EV_P_ ev_periodic *w)
2371{
2372 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2373 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2374
2375 /* the above almost always errs on the low side */
2376 while (at <= ev_rt_now)
2377 {
2378 ev_tstamp nat = at + w->interval;
2379
2380 /* when resolution fails us, we use ev_rt_now */
2381 if (expect_false (nat == at))
2382 {
2383 at = ev_rt_now;
2384 break;
2385 }
2386
2387 at = nat;
2388 }
2389
2390 ev_at (w) = at;
2391}
2392
2393/* make periodics pending */
2394inline_size void
1633periodics_reify (EV_P) 2395periodics_reify (EV_P)
1634{ 2396{
2397 EV_FREQUENT_CHECK;
2398
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2399 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1636 { 2400 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2401 int feed_count = 0;
1638 2402
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2403 do
1640
1641 /* first reschedule or stop timer */
1642 if (w->reschedule_cb)
1643 { 2404 {
2405 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2406
2407 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2408
2409 /* first reschedule or stop timer */
2410 if (w->reschedule_cb)
2411 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2412 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645 2413
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2414 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647 2415
1648 ANHE_at_set (periodics [HEAP0]); 2416 ANHE_at_cache (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0); 2417 downheap (periodics, periodiccnt, HEAP0);
2418 }
2419 else if (w->interval)
2420 {
2421 periodic_recalc (EV_A_ w);
2422 ANHE_at_cache (periodics [HEAP0]);
2423 downheap (periodics, periodiccnt, HEAP0);
2424 }
2425 else
2426 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2427
2428 EV_FREQUENT_CHECK;
2429 feed_reverse (EV_A_ (W)w);
1650 } 2430 }
1651 else if (w->interval) 2431 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1655 2432
1656 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) >= ev_rt_now));
1657
1658 ANHE_at_set (periodics [HEAP0]);
1659 downheap (periodics, periodiccnt, HEAP0);
1660 }
1661 else
1662 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1663
1664 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2433 feed_reverse_done (EV_A_ EV_PERIODIC);
1665 } 2434 }
1666} 2435}
1667 2436
2437/* simply recalculate all periodics */
2438/* TODO: maybe ensure that at least one event happens when jumping forward? */
1668static void noinline 2439static void noinline ecb_cold
1669periodics_reschedule (EV_P) 2440periodics_reschedule (EV_P)
1670{ 2441{
1671 int i; 2442 int i;
1672 2443
1673 /* adjust periodics after time jump */ 2444 /* adjust periodics after time jump */
1676 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 2447 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1677 2448
1678 if (w->reschedule_cb) 2449 if (w->reschedule_cb)
1679 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2450 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1680 else if (w->interval) 2451 else if (w->interval)
1681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2452 periodic_recalc (EV_A_ w);
1682 2453
1683 ANHE_at_set (periodics [i]); 2454 ANHE_at_cache (periodics [i]);
1684 } 2455 }
1685 2456
1686 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 2457 reheap (periodics, periodiccnt);
1687 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 2458}
2459#endif
2460
2461/* adjust all timers by a given offset */
2462static void noinline ecb_cold
2463timers_reschedule (EV_P_ ev_tstamp adjust)
2464{
2465 int i;
2466
1688 for (i = 0; i < periodiccnt; ++i) 2467 for (i = 0; i < timercnt; ++i)
1689 upheap (periodics, i + HEAP0); 2468 {
2469 ANHE *he = timers + i + HEAP0;
2470 ANHE_w (*he)->at += adjust;
2471 ANHE_at_cache (*he);
2472 }
1690} 2473}
1691#endif
1692 2474
1693void inline_speed 2475/* fetch new monotonic and realtime times from the kernel */
2476/* also detect if there was a timejump, and act accordingly */
2477inline_speed void
1694time_update (EV_P_ ev_tstamp max_block) 2478time_update (EV_P_ ev_tstamp max_block)
1695{ 2479{
1696 int i;
1697
1698#if EV_USE_MONOTONIC 2480#if EV_USE_MONOTONIC
1699 if (expect_true (have_monotonic)) 2481 if (expect_true (have_monotonic))
1700 { 2482 {
2483 int i;
1701 ev_tstamp odiff = rtmn_diff; 2484 ev_tstamp odiff = rtmn_diff;
1702 2485
1703 mn_now = get_clock (); 2486 mn_now = get_clock ();
1704 2487
1705 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2488 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1721 * doesn't hurt either as we only do this on time-jumps or 2504 * doesn't hurt either as we only do this on time-jumps or
1722 * in the unlikely event of having been preempted here. 2505 * in the unlikely event of having been preempted here.
1723 */ 2506 */
1724 for (i = 4; --i; ) 2507 for (i = 4; --i; )
1725 { 2508 {
2509 ev_tstamp diff;
1726 rtmn_diff = ev_rt_now - mn_now; 2510 rtmn_diff = ev_rt_now - mn_now;
1727 2511
2512 diff = odiff - rtmn_diff;
2513
1728 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2514 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1729 return; /* all is well */ 2515 return; /* all is well */
1730 2516
1731 ev_rt_now = ev_time (); 2517 ev_rt_now = ev_time ();
1732 mn_now = get_clock (); 2518 mn_now = get_clock ();
1733 now_floor = mn_now; 2519 now_floor = mn_now;
1734 } 2520 }
1735 2521
2522 /* no timer adjustment, as the monotonic clock doesn't jump */
2523 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1736# if EV_PERIODIC_ENABLE 2524# if EV_PERIODIC_ENABLE
1737 periodics_reschedule (EV_A); 2525 periodics_reschedule (EV_A);
1738# endif 2526# endif
1739 /* no timer adjustment, as the monotonic clock doesn't jump */
1740 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1741 } 2527 }
1742 else 2528 else
1743#endif 2529#endif
1744 { 2530 {
1745 ev_rt_now = ev_time (); 2531 ev_rt_now = ev_time ();
1746 2532
1747 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2533 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1748 { 2534 {
2535 /* adjust timers. this is easy, as the offset is the same for all of them */
2536 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1749#if EV_PERIODIC_ENABLE 2537#if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A); 2538 periodics_reschedule (EV_A);
1751#endif 2539#endif
1752 /* adjust timers. this is easy, as the offset is the same for all of them */
1753 for (i = 0; i < timercnt; ++i)
1754 {
1755 ANHE *he = timers + i + HEAP0;
1756 ANHE_w (*he)->at += ev_rt_now - mn_now;
1757 ANHE_at_set (*he);
1758 }
1759 } 2540 }
1760 2541
1761 mn_now = ev_rt_now; 2542 mn_now = ev_rt_now;
1762 } 2543 }
1763} 2544}
1764 2545
1765void 2546void
1766ev_ref (EV_P)
1767{
1768 ++activecnt;
1769}
1770
1771void
1772ev_unref (EV_P)
1773{
1774 --activecnt;
1775}
1776
1777static int loop_done;
1778
1779void
1780ev_loop (EV_P_ int flags) 2547ev_run (EV_P_ int flags)
1781{ 2548{
2549#if EV_FEATURE_API
2550 ++loop_depth;
2551#endif
2552
2553 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2554
1782 loop_done = EVUNLOOP_CANCEL; 2555 loop_done = EVBREAK_CANCEL;
1783 2556
1784 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2557 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1785 2558
1786 do 2559 do
1787 { 2560 {
2561#if EV_VERIFY >= 2
2562 ev_verify (EV_A);
2563#endif
2564
1788#ifndef _WIN32 2565#ifndef _WIN32
1789 if (expect_false (curpid)) /* penalise the forking check even more */ 2566 if (expect_false (curpid)) /* penalise the forking check even more */
1790 if (expect_false (getpid () != curpid)) 2567 if (expect_false (getpid () != curpid))
1791 { 2568 {
1792 curpid = getpid (); 2569 curpid = getpid ();
1798 /* we might have forked, so queue fork handlers */ 2575 /* we might have forked, so queue fork handlers */
1799 if (expect_false (postfork)) 2576 if (expect_false (postfork))
1800 if (forkcnt) 2577 if (forkcnt)
1801 { 2578 {
1802 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2579 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1803 call_pending (EV_A); 2580 EV_INVOKE_PENDING;
1804 } 2581 }
1805#endif 2582#endif
1806 2583
2584#if EV_PREPARE_ENABLE
1807 /* queue prepare watchers (and execute them) */ 2585 /* queue prepare watchers (and execute them) */
1808 if (expect_false (preparecnt)) 2586 if (expect_false (preparecnt))
1809 { 2587 {
1810 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2588 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1811 call_pending (EV_A); 2589 EV_INVOKE_PENDING;
1812 } 2590 }
2591#endif
1813 2592
1814 if (expect_false (!activecnt)) 2593 if (expect_false (loop_done))
1815 break; 2594 break;
1816 2595
1817 /* we might have forked, so reify kernel state if necessary */ 2596 /* we might have forked, so reify kernel state if necessary */
1818 if (expect_false (postfork)) 2597 if (expect_false (postfork))
1819 loop_fork (EV_A); 2598 loop_fork (EV_A);
1824 /* calculate blocking time */ 2603 /* calculate blocking time */
1825 { 2604 {
1826 ev_tstamp waittime = 0.; 2605 ev_tstamp waittime = 0.;
1827 ev_tstamp sleeptime = 0.; 2606 ev_tstamp sleeptime = 0.;
1828 2607
2608 /* remember old timestamp for io_blocktime calculation */
2609 ev_tstamp prev_mn_now = mn_now;
2610
2611 /* update time to cancel out callback processing overhead */
2612 time_update (EV_A_ 1e100);
2613
2614 /* from now on, we want a pipe-wake-up */
2615 pipe_write_wanted = 1;
2616
2617 ECB_MEMORY_FENCE; /* amke sure pipe_write_wanted is visible before we check for potential skips */
2618
1829 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2619 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1830 { 2620 {
1831 /* update time to cancel out callback processing overhead */
1832 time_update (EV_A_ 1e100);
1833
1834 waittime = MAX_BLOCKTIME; 2621 waittime = MAX_BLOCKTIME;
1835 2622
1836 if (timercnt) 2623 if (timercnt)
1837 { 2624 {
1838 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2625 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1839 if (waittime > to) waittime = to; 2626 if (waittime > to) waittime = to;
1840 } 2627 }
1841 2628
1842#if EV_PERIODIC_ENABLE 2629#if EV_PERIODIC_ENABLE
1843 if (periodiccnt) 2630 if (periodiccnt)
1844 { 2631 {
1845 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2632 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1846 if (waittime > to) waittime = to; 2633 if (waittime > to) waittime = to;
1847 } 2634 }
1848#endif 2635#endif
1849 2636
2637 /* don't let timeouts decrease the waittime below timeout_blocktime */
1850 if (expect_false (waittime < timeout_blocktime)) 2638 if (expect_false (waittime < timeout_blocktime))
1851 waittime = timeout_blocktime; 2639 waittime = timeout_blocktime;
1852 2640
1853 sleeptime = waittime - backend_fudge; 2641 /* at this point, we NEED to wait, so we have to ensure */
2642 /* to pass a minimum nonzero value to the backend */
2643 if (expect_false (waittime < backend_mintime))
2644 waittime = backend_mintime;
1854 2645
2646 /* extra check because io_blocktime is commonly 0 */
1855 if (expect_true (sleeptime > io_blocktime)) 2647 if (expect_false (io_blocktime))
1856 sleeptime = io_blocktime;
1857
1858 if (sleeptime)
1859 { 2648 {
2649 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2650
2651 if (sleeptime > waittime - backend_mintime)
2652 sleeptime = waittime - backend_mintime;
2653
2654 if (expect_true (sleeptime > 0.))
2655 {
1860 ev_sleep (sleeptime); 2656 ev_sleep (sleeptime);
1861 waittime -= sleeptime; 2657 waittime -= sleeptime;
2658 }
1862 } 2659 }
1863 } 2660 }
1864 2661
2662#if EV_FEATURE_API
1865 ++loop_count; 2663 ++loop_count;
2664#endif
2665 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1866 backend_poll (EV_A_ waittime); 2666 backend_poll (EV_A_ waittime);
2667 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2668
2669 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2670
2671 if (pipe_write_skipped)
2672 {
2673 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2674 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2675 }
2676
1867 2677
1868 /* update ev_rt_now, do magic */ 2678 /* update ev_rt_now, do magic */
1869 time_update (EV_A_ waittime + sleeptime); 2679 time_update (EV_A_ waittime + sleeptime);
1870 } 2680 }
1871 2681
1878#if EV_IDLE_ENABLE 2688#if EV_IDLE_ENABLE
1879 /* queue idle watchers unless other events are pending */ 2689 /* queue idle watchers unless other events are pending */
1880 idle_reify (EV_A); 2690 idle_reify (EV_A);
1881#endif 2691#endif
1882 2692
2693#if EV_CHECK_ENABLE
1883 /* queue check watchers, to be executed first */ 2694 /* queue check watchers, to be executed first */
1884 if (expect_false (checkcnt)) 2695 if (expect_false (checkcnt))
1885 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2696 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2697#endif
1886 2698
1887 call_pending (EV_A); 2699 EV_INVOKE_PENDING;
1888 } 2700 }
1889 while (expect_true ( 2701 while (expect_true (
1890 activecnt 2702 activecnt
1891 && !loop_done 2703 && !loop_done
1892 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2704 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1893 )); 2705 ));
1894 2706
1895 if (loop_done == EVUNLOOP_ONE) 2707 if (loop_done == EVBREAK_ONE)
1896 loop_done = EVUNLOOP_CANCEL; 2708 loop_done = EVBREAK_CANCEL;
2709
2710#if EV_FEATURE_API
2711 --loop_depth;
2712#endif
1897} 2713}
1898 2714
1899void 2715void
1900ev_unloop (EV_P_ int how) 2716ev_break (EV_P_ int how)
1901{ 2717{
1902 loop_done = how; 2718 loop_done = how;
1903} 2719}
1904 2720
2721void
2722ev_ref (EV_P)
2723{
2724 ++activecnt;
2725}
2726
2727void
2728ev_unref (EV_P)
2729{
2730 --activecnt;
2731}
2732
2733void
2734ev_now_update (EV_P)
2735{
2736 time_update (EV_A_ 1e100);
2737}
2738
2739void
2740ev_suspend (EV_P)
2741{
2742 ev_now_update (EV_A);
2743}
2744
2745void
2746ev_resume (EV_P)
2747{
2748 ev_tstamp mn_prev = mn_now;
2749
2750 ev_now_update (EV_A);
2751 timers_reschedule (EV_A_ mn_now - mn_prev);
2752#if EV_PERIODIC_ENABLE
2753 /* TODO: really do this? */
2754 periodics_reschedule (EV_A);
2755#endif
2756}
2757
1905/*****************************************************************************/ 2758/*****************************************************************************/
2759/* singly-linked list management, used when the expected list length is short */
1906 2760
1907void inline_size 2761inline_size void
1908wlist_add (WL *head, WL elem) 2762wlist_add (WL *head, WL elem)
1909{ 2763{
1910 elem->next = *head; 2764 elem->next = *head;
1911 *head = elem; 2765 *head = elem;
1912} 2766}
1913 2767
1914void inline_size 2768inline_size void
1915wlist_del (WL *head, WL elem) 2769wlist_del (WL *head, WL elem)
1916{ 2770{
1917 while (*head) 2771 while (*head)
1918 { 2772 {
1919 if (*head == elem) 2773 if (expect_true (*head == elem))
1920 { 2774 {
1921 *head = elem->next; 2775 *head = elem->next;
1922 return; 2776 break;
1923 } 2777 }
1924 2778
1925 head = &(*head)->next; 2779 head = &(*head)->next;
1926 } 2780 }
1927} 2781}
1928 2782
1929void inline_speed 2783/* internal, faster, version of ev_clear_pending */
2784inline_speed void
1930clear_pending (EV_P_ W w) 2785clear_pending (EV_P_ W w)
1931{ 2786{
1932 if (w->pending) 2787 if (w->pending)
1933 { 2788 {
1934 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2789 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1935 w->pending = 0; 2790 w->pending = 0;
1936 } 2791 }
1937} 2792}
1938 2793
1939int 2794int
1943 int pending = w_->pending; 2798 int pending = w_->pending;
1944 2799
1945 if (expect_true (pending)) 2800 if (expect_true (pending))
1946 { 2801 {
1947 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2802 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2803 p->w = (W)&pending_w;
1948 w_->pending = 0; 2804 w_->pending = 0;
1949 p->w = 0;
1950 return p->events; 2805 return p->events;
1951 } 2806 }
1952 else 2807 else
1953 return 0; 2808 return 0;
1954} 2809}
1955 2810
1956void inline_size 2811inline_size void
1957pri_adjust (EV_P_ W w) 2812pri_adjust (EV_P_ W w)
1958{ 2813{
1959 int pri = w->priority; 2814 int pri = ev_priority (w);
1960 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2815 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1961 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2816 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1962 w->priority = pri; 2817 ev_set_priority (w, pri);
1963} 2818}
1964 2819
1965void inline_speed 2820inline_speed void
1966ev_start (EV_P_ W w, int active) 2821ev_start (EV_P_ W w, int active)
1967{ 2822{
1968 pri_adjust (EV_A_ w); 2823 pri_adjust (EV_A_ w);
1969 w->active = active; 2824 w->active = active;
1970 ev_ref (EV_A); 2825 ev_ref (EV_A);
1971} 2826}
1972 2827
1973void inline_size 2828inline_size void
1974ev_stop (EV_P_ W w) 2829ev_stop (EV_P_ W w)
1975{ 2830{
1976 ev_unref (EV_A); 2831 ev_unref (EV_A);
1977 w->active = 0; 2832 w->active = 0;
1978} 2833}
1985 int fd = w->fd; 2840 int fd = w->fd;
1986 2841
1987 if (expect_false (ev_is_active (w))) 2842 if (expect_false (ev_is_active (w)))
1988 return; 2843 return;
1989 2844
1990 assert (("ev_io_start called with negative fd", fd >= 0)); 2845 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2846 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2847
2848 EV_FREQUENT_CHECK;
1991 2849
1992 ev_start (EV_A_ (W)w, 1); 2850 ev_start (EV_A_ (W)w, 1);
1993 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2851 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1994 wlist_add (&anfds[fd].head, (WL)w); 2852 wlist_add (&anfds[fd].head, (WL)w);
1995 2853
1996 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2854 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1997 w->events &= ~EV_IOFDSET; 2855 w->events &= ~EV__IOFDSET;
2856
2857 EV_FREQUENT_CHECK;
1998} 2858}
1999 2859
2000void noinline 2860void noinline
2001ev_io_stop (EV_P_ ev_io *w) 2861ev_io_stop (EV_P_ ev_io *w)
2002{ 2862{
2003 clear_pending (EV_A_ (W)w); 2863 clear_pending (EV_A_ (W)w);
2004 if (expect_false (!ev_is_active (w))) 2864 if (expect_false (!ev_is_active (w)))
2005 return; 2865 return;
2006 2866
2007 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2867 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2868
2869 EV_FREQUENT_CHECK;
2008 2870
2009 wlist_del (&anfds[w->fd].head, (WL)w); 2871 wlist_del (&anfds[w->fd].head, (WL)w);
2010 ev_stop (EV_A_ (W)w); 2872 ev_stop (EV_A_ (W)w);
2011 2873
2012 fd_change (EV_A_ w->fd, 1); 2874 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2875
2876 EV_FREQUENT_CHECK;
2013} 2877}
2014 2878
2015void noinline 2879void noinline
2016ev_timer_start (EV_P_ ev_timer *w) 2880ev_timer_start (EV_P_ ev_timer *w)
2017{ 2881{
2018 if (expect_false (ev_is_active (w))) 2882 if (expect_false (ev_is_active (w)))
2019 return; 2883 return;
2020 2884
2021 ev_at (w) += mn_now; 2885 ev_at (w) += mn_now;
2022 2886
2023 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2887 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2024 2888
2889 EV_FREQUENT_CHECK;
2890
2891 ++timercnt;
2025 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2892 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2026 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2893 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2027 ANHE_w (timers [ev_active (w)]) = (WT)w; 2894 ANHE_w (timers [ev_active (w)]) = (WT)w;
2028 ANHE_at_set (timers [ev_active (w)]); 2895 ANHE_at_cache (timers [ev_active (w)]);
2029 upheap (timers, ev_active (w)); 2896 upheap (timers, ev_active (w));
2030 2897
2898 EV_FREQUENT_CHECK;
2899
2031 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2900 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2032} 2901}
2033 2902
2034void noinline 2903void noinline
2035ev_timer_stop (EV_P_ ev_timer *w) 2904ev_timer_stop (EV_P_ ev_timer *w)
2036{ 2905{
2037 clear_pending (EV_A_ (W)w); 2906 clear_pending (EV_A_ (W)w);
2038 if (expect_false (!ev_is_active (w))) 2907 if (expect_false (!ev_is_active (w)))
2039 return; 2908 return;
2040 2909
2910 EV_FREQUENT_CHECK;
2911
2041 { 2912 {
2042 int active = ev_active (w); 2913 int active = ev_active (w);
2043 2914
2044 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2915 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2045 2916
2917 --timercnt;
2918
2046 if (expect_true (active < timercnt + HEAP0 - 1)) 2919 if (expect_true (active < timercnt + HEAP0))
2047 { 2920 {
2048 timers [active] = timers [timercnt + HEAP0 - 1]; 2921 timers [active] = timers [timercnt + HEAP0];
2049 adjustheap (timers, timercnt, active); 2922 adjustheap (timers, timercnt, active);
2050 } 2923 }
2051
2052 --timercnt;
2053 } 2924 }
2054 2925
2055 ev_at (w) -= mn_now; 2926 ev_at (w) -= mn_now;
2056 2927
2057 ev_stop (EV_A_ (W)w); 2928 ev_stop (EV_A_ (W)w);
2929
2930 EV_FREQUENT_CHECK;
2058} 2931}
2059 2932
2060void noinline 2933void noinline
2061ev_timer_again (EV_P_ ev_timer *w) 2934ev_timer_again (EV_P_ ev_timer *w)
2062{ 2935{
2936 EV_FREQUENT_CHECK;
2937
2063 if (ev_is_active (w)) 2938 if (ev_is_active (w))
2064 { 2939 {
2065 if (w->repeat) 2940 if (w->repeat)
2066 { 2941 {
2067 ev_at (w) = mn_now + w->repeat; 2942 ev_at (w) = mn_now + w->repeat;
2068 ANHE_at_set (timers [ev_active (w)]); 2943 ANHE_at_cache (timers [ev_active (w)]);
2069 adjustheap (timers, timercnt, ev_active (w)); 2944 adjustheap (timers, timercnt, ev_active (w));
2070 } 2945 }
2071 else 2946 else
2072 ev_timer_stop (EV_A_ w); 2947 ev_timer_stop (EV_A_ w);
2073 } 2948 }
2074 else if (w->repeat) 2949 else if (w->repeat)
2075 { 2950 {
2076 ev_at (w) = w->repeat; 2951 ev_at (w) = w->repeat;
2077 ev_timer_start (EV_A_ w); 2952 ev_timer_start (EV_A_ w);
2078 } 2953 }
2954
2955 EV_FREQUENT_CHECK;
2956}
2957
2958ev_tstamp
2959ev_timer_remaining (EV_P_ ev_timer *w)
2960{
2961 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2079} 2962}
2080 2963
2081#if EV_PERIODIC_ENABLE 2964#if EV_PERIODIC_ENABLE
2082void noinline 2965void noinline
2083ev_periodic_start (EV_P_ ev_periodic *w) 2966ev_periodic_start (EV_P_ ev_periodic *w)
2087 2970
2088 if (w->reschedule_cb) 2971 if (w->reschedule_cb)
2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2972 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2090 else if (w->interval) 2973 else if (w->interval)
2091 { 2974 {
2092 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2975 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2093 /* this formula differs from the one in periodic_reify because we do not always round up */ 2976 periodic_recalc (EV_A_ w);
2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 } 2977 }
2096 else 2978 else
2097 ev_at (w) = w->offset; 2979 ev_at (w) = w->offset;
2098 2980
2981 EV_FREQUENT_CHECK;
2982
2983 ++periodiccnt;
2099 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2984 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2100 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2985 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2101 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2986 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2102 ANHE_at_set (periodics [ev_active (w)]); 2987 ANHE_at_cache (periodics [ev_active (w)]);
2103 upheap (periodics, ev_active (w)); 2988 upheap (periodics, ev_active (w));
2104 2989
2990 EV_FREQUENT_CHECK;
2991
2105 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2992 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2106} 2993}
2107 2994
2108void noinline 2995void noinline
2109ev_periodic_stop (EV_P_ ev_periodic *w) 2996ev_periodic_stop (EV_P_ ev_periodic *w)
2110{ 2997{
2111 clear_pending (EV_A_ (W)w); 2998 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w))) 2999 if (expect_false (!ev_is_active (w)))
2113 return; 3000 return;
2114 3001
3002 EV_FREQUENT_CHECK;
3003
2115 { 3004 {
2116 int active = ev_active (w); 3005 int active = ev_active (w);
2117 3006
2118 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3007 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2119 3008
3009 --periodiccnt;
3010
2120 if (expect_true (active < periodiccnt + HEAP0 - 1)) 3011 if (expect_true (active < periodiccnt + HEAP0))
2121 { 3012 {
2122 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 3013 periodics [active] = periodics [periodiccnt + HEAP0];
2123 adjustheap (periodics, periodiccnt, active); 3014 adjustheap (periodics, periodiccnt, active);
2124 } 3015 }
2125
2126 --periodiccnt;
2127 } 3016 }
2128 3017
2129 ev_stop (EV_A_ (W)w); 3018 ev_stop (EV_A_ (W)w);
3019
3020 EV_FREQUENT_CHECK;
2130} 3021}
2131 3022
2132void noinline 3023void noinline
2133ev_periodic_again (EV_P_ ev_periodic *w) 3024ev_periodic_again (EV_P_ ev_periodic *w)
2134{ 3025{
2140 3031
2141#ifndef SA_RESTART 3032#ifndef SA_RESTART
2142# define SA_RESTART 0 3033# define SA_RESTART 0
2143#endif 3034#endif
2144 3035
3036#if EV_SIGNAL_ENABLE
3037
2145void noinline 3038void noinline
2146ev_signal_start (EV_P_ ev_signal *w) 3039ev_signal_start (EV_P_ ev_signal *w)
2147{ 3040{
2148#if EV_MULTIPLICITY
2149 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2150#endif
2151 if (expect_false (ev_is_active (w))) 3041 if (expect_false (ev_is_active (w)))
2152 return; 3042 return;
2153 3043
2154 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3044 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2155 3045
2156 evpipe_init (EV_A); 3046#if EV_MULTIPLICITY
3047 assert (("libev: a signal must not be attached to two different loops",
3048 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2157 3049
3050 signals [w->signum - 1].loop = EV_A;
3051#endif
3052
3053 EV_FREQUENT_CHECK;
3054
3055#if EV_USE_SIGNALFD
3056 if (sigfd == -2)
2158 { 3057 {
2159#ifndef _WIN32 3058 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2160 sigset_t full, prev; 3059 if (sigfd < 0 && errno == EINVAL)
2161 sigfillset (&full); 3060 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2162 sigprocmask (SIG_SETMASK, &full, &prev);
2163#endif
2164 3061
2165 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3062 if (sigfd >= 0)
3063 {
3064 fd_intern (sigfd); /* doing it twice will not hurt */
2166 3065
2167#ifndef _WIN32 3066 sigemptyset (&sigfd_set);
2168 sigprocmask (SIG_SETMASK, &prev, 0); 3067
2169#endif 3068 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3069 ev_set_priority (&sigfd_w, EV_MAXPRI);
3070 ev_io_start (EV_A_ &sigfd_w);
3071 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3072 }
2170 } 3073 }
3074
3075 if (sigfd >= 0)
3076 {
3077 /* TODO: check .head */
3078 sigaddset (&sigfd_set, w->signum);
3079 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3080
3081 signalfd (sigfd, &sigfd_set, 0);
3082 }
3083#endif
2171 3084
2172 ev_start (EV_A_ (W)w, 1); 3085 ev_start (EV_A_ (W)w, 1);
2173 wlist_add (&signals [w->signum - 1].head, (WL)w); 3086 wlist_add (&signals [w->signum - 1].head, (WL)w);
2174 3087
2175 if (!((WL)w)->next) 3088 if (!((WL)w)->next)
3089# if EV_USE_SIGNALFD
3090 if (sigfd < 0) /*TODO*/
3091# endif
2176 { 3092 {
2177#if _WIN32 3093# ifdef _WIN32
3094 evpipe_init (EV_A);
3095
2178 signal (w->signum, ev_sighandler); 3096 signal (w->signum, ev_sighandler);
2179#else 3097# else
2180 struct sigaction sa; 3098 struct sigaction sa;
3099
3100 evpipe_init (EV_A);
3101
2181 sa.sa_handler = ev_sighandler; 3102 sa.sa_handler = ev_sighandler;
2182 sigfillset (&sa.sa_mask); 3103 sigfillset (&sa.sa_mask);
2183 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3104 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2184 sigaction (w->signum, &sa, 0); 3105 sigaction (w->signum, &sa, 0);
3106
3107 if (origflags & EVFLAG_NOSIGMASK)
3108 {
3109 sigemptyset (&sa.sa_mask);
3110 sigaddset (&sa.sa_mask, w->signum);
3111 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3112 }
2185#endif 3113#endif
2186 } 3114 }
3115
3116 EV_FREQUENT_CHECK;
2187} 3117}
2188 3118
2189void noinline 3119void noinline
2190ev_signal_stop (EV_P_ ev_signal *w) 3120ev_signal_stop (EV_P_ ev_signal *w)
2191{ 3121{
2192 clear_pending (EV_A_ (W)w); 3122 clear_pending (EV_A_ (W)w);
2193 if (expect_false (!ev_is_active (w))) 3123 if (expect_false (!ev_is_active (w)))
2194 return; 3124 return;
2195 3125
3126 EV_FREQUENT_CHECK;
3127
2196 wlist_del (&signals [w->signum - 1].head, (WL)w); 3128 wlist_del (&signals [w->signum - 1].head, (WL)w);
2197 ev_stop (EV_A_ (W)w); 3129 ev_stop (EV_A_ (W)w);
2198 3130
2199 if (!signals [w->signum - 1].head) 3131 if (!signals [w->signum - 1].head)
3132 {
3133#if EV_MULTIPLICITY
3134 signals [w->signum - 1].loop = 0; /* unattach from signal */
3135#endif
3136#if EV_USE_SIGNALFD
3137 if (sigfd >= 0)
3138 {
3139 sigset_t ss;
3140
3141 sigemptyset (&ss);
3142 sigaddset (&ss, w->signum);
3143 sigdelset (&sigfd_set, w->signum);
3144
3145 signalfd (sigfd, &sigfd_set, 0);
3146 sigprocmask (SIG_UNBLOCK, &ss, 0);
3147 }
3148 else
3149#endif
2200 signal (w->signum, SIG_DFL); 3150 signal (w->signum, SIG_DFL);
3151 }
3152
3153 EV_FREQUENT_CHECK;
2201} 3154}
3155
3156#endif
3157
3158#if EV_CHILD_ENABLE
2202 3159
2203void 3160void
2204ev_child_start (EV_P_ ev_child *w) 3161ev_child_start (EV_P_ ev_child *w)
2205{ 3162{
2206#if EV_MULTIPLICITY 3163#if EV_MULTIPLICITY
2207 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3164 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2208#endif 3165#endif
2209 if (expect_false (ev_is_active (w))) 3166 if (expect_false (ev_is_active (w)))
2210 return; 3167 return;
2211 3168
3169 EV_FREQUENT_CHECK;
3170
2212 ev_start (EV_A_ (W)w, 1); 3171 ev_start (EV_A_ (W)w, 1);
2213 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3172 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3173
3174 EV_FREQUENT_CHECK;
2214} 3175}
2215 3176
2216void 3177void
2217ev_child_stop (EV_P_ ev_child *w) 3178ev_child_stop (EV_P_ ev_child *w)
2218{ 3179{
2219 clear_pending (EV_A_ (W)w); 3180 clear_pending (EV_A_ (W)w);
2220 if (expect_false (!ev_is_active (w))) 3181 if (expect_false (!ev_is_active (w)))
2221 return; 3182 return;
2222 3183
3184 EV_FREQUENT_CHECK;
3185
2223 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3186 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2224 ev_stop (EV_A_ (W)w); 3187 ev_stop (EV_A_ (W)w);
3188
3189 EV_FREQUENT_CHECK;
2225} 3190}
3191
3192#endif
2226 3193
2227#if EV_STAT_ENABLE 3194#if EV_STAT_ENABLE
2228 3195
2229# ifdef _WIN32 3196# ifdef _WIN32
2230# undef lstat 3197# undef lstat
2231# define lstat(a,b) _stati64 (a,b) 3198# define lstat(a,b) _stati64 (a,b)
2232# endif 3199# endif
2233 3200
2234#define DEF_STAT_INTERVAL 5.0074891 3201#define DEF_STAT_INTERVAL 5.0074891
3202#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2235#define MIN_STAT_INTERVAL 0.1074891 3203#define MIN_STAT_INTERVAL 0.1074891
2236 3204
2237static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3205static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2238 3206
2239#if EV_USE_INOTIFY 3207#if EV_USE_INOTIFY
2240# define EV_INOTIFY_BUFSIZE 8192 3208
3209/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3210# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2241 3211
2242static void noinline 3212static void noinline
2243infy_add (EV_P_ ev_stat *w) 3213infy_add (EV_P_ ev_stat *w)
2244{ 3214{
2245 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3215 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2246 3216
2247 if (w->wd < 0) 3217 if (w->wd >= 0)
3218 {
3219 struct statfs sfs;
3220
3221 /* now local changes will be tracked by inotify, but remote changes won't */
3222 /* unless the filesystem is known to be local, we therefore still poll */
3223 /* also do poll on <2.6.25, but with normal frequency */
3224
3225 if (!fs_2625)
3226 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3227 else if (!statfs (w->path, &sfs)
3228 && (sfs.f_type == 0x1373 /* devfs */
3229 || sfs.f_type == 0xEF53 /* ext2/3 */
3230 || sfs.f_type == 0x3153464a /* jfs */
3231 || sfs.f_type == 0x52654973 /* reiser3 */
3232 || sfs.f_type == 0x01021994 /* tempfs */
3233 || sfs.f_type == 0x58465342 /* xfs */))
3234 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3235 else
3236 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2248 { 3237 }
2249 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3238 else
3239 {
3240 /* can't use inotify, continue to stat */
3241 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2250 3242
2251 /* monitor some parent directory for speedup hints */ 3243 /* if path is not there, monitor some parent directory for speedup hints */
2252 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3244 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2253 /* but an efficiency issue only */ 3245 /* but an efficiency issue only */
2254 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3246 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2255 { 3247 {
2256 char path [4096]; 3248 char path [4096];
2257 strcpy (path, w->path); 3249 strcpy (path, w->path);
2261 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3253 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2262 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3254 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2263 3255
2264 char *pend = strrchr (path, '/'); 3256 char *pend = strrchr (path, '/');
2265 3257
2266 if (!pend) 3258 if (!pend || pend == path)
2267 break; /* whoops, no '/', complain to your admin */ 3259 break;
2268 3260
2269 *pend = 0; 3261 *pend = 0;
2270 w->wd = inotify_add_watch (fs_fd, path, mask); 3262 w->wd = inotify_add_watch (fs_fd, path, mask);
2271 } 3263 }
2272 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3264 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2273 } 3265 }
2274 } 3266 }
2275 else
2276 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2277 3267
2278 if (w->wd >= 0) 3268 if (w->wd >= 0)
2279 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3269 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3270
3271 /* now re-arm timer, if required */
3272 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3273 ev_timer_again (EV_A_ &w->timer);
3274 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2280} 3275}
2281 3276
2282static void noinline 3277static void noinline
2283infy_del (EV_P_ ev_stat *w) 3278infy_del (EV_P_ ev_stat *w)
2284{ 3279{
2287 3282
2288 if (wd < 0) 3283 if (wd < 0)
2289 return; 3284 return;
2290 3285
2291 w->wd = -2; 3286 w->wd = -2;
2292 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3287 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2293 wlist_del (&fs_hash [slot].head, (WL)w); 3288 wlist_del (&fs_hash [slot].head, (WL)w);
2294 3289
2295 /* remove this watcher, if others are watching it, they will rearm */ 3290 /* remove this watcher, if others are watching it, they will rearm */
2296 inotify_rm_watch (fs_fd, wd); 3291 inotify_rm_watch (fs_fd, wd);
2297} 3292}
2298 3293
2299static void noinline 3294static void noinline
2300infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3295infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2301{ 3296{
2302 if (slot < 0) 3297 if (slot < 0)
2303 /* overflow, need to check for all hahs slots */ 3298 /* overflow, need to check for all hash slots */
2304 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3299 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2305 infy_wd (EV_A_ slot, wd, ev); 3300 infy_wd (EV_A_ slot, wd, ev);
2306 else 3301 else
2307 { 3302 {
2308 WL w_; 3303 WL w_;
2309 3304
2310 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3305 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2311 { 3306 {
2312 ev_stat *w = (ev_stat *)w_; 3307 ev_stat *w = (ev_stat *)w_;
2313 w_ = w_->next; /* lets us remove this watcher and all before it */ 3308 w_ = w_->next; /* lets us remove this watcher and all before it */
2314 3309
2315 if (w->wd == wd || wd == -1) 3310 if (w->wd == wd || wd == -1)
2316 { 3311 {
2317 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3312 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2318 { 3313 {
3314 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2319 w->wd = -1; 3315 w->wd = -1;
2320 infy_add (EV_A_ w); /* re-add, no matter what */ 3316 infy_add (EV_A_ w); /* re-add, no matter what */
2321 } 3317 }
2322 3318
2323 stat_timer_cb (EV_A_ &w->timer, 0); 3319 stat_timer_cb (EV_A_ &w->timer, 0);
2328 3324
2329static void 3325static void
2330infy_cb (EV_P_ ev_io *w, int revents) 3326infy_cb (EV_P_ ev_io *w, int revents)
2331{ 3327{
2332 char buf [EV_INOTIFY_BUFSIZE]; 3328 char buf [EV_INOTIFY_BUFSIZE];
2333 struct inotify_event *ev = (struct inotify_event *)buf;
2334 int ofs; 3329 int ofs;
2335 int len = read (fs_fd, buf, sizeof (buf)); 3330 int len = read (fs_fd, buf, sizeof (buf));
2336 3331
2337 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3332 for (ofs = 0; ofs < len; )
3333 {
3334 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2338 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3335 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3336 ofs += sizeof (struct inotify_event) + ev->len;
3337 }
2339} 3338}
2340 3339
2341void inline_size 3340inline_size void ecb_cold
3341ev_check_2625 (EV_P)
3342{
3343 /* kernels < 2.6.25 are borked
3344 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3345 */
3346 if (ev_linux_version () < 0x020619)
3347 return;
3348
3349 fs_2625 = 1;
3350}
3351
3352inline_size int
3353infy_newfd (void)
3354{
3355#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3356 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3357 if (fd >= 0)
3358 return fd;
3359#endif
3360 return inotify_init ();
3361}
3362
3363inline_size void
2342infy_init (EV_P) 3364infy_init (EV_P)
2343{ 3365{
2344 if (fs_fd != -2) 3366 if (fs_fd != -2)
2345 return; 3367 return;
2346 3368
3369 fs_fd = -1;
3370
3371 ev_check_2625 (EV_A);
3372
2347 fs_fd = inotify_init (); 3373 fs_fd = infy_newfd ();
2348 3374
2349 if (fs_fd >= 0) 3375 if (fs_fd >= 0)
2350 { 3376 {
3377 fd_intern (fs_fd);
2351 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3378 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2352 ev_set_priority (&fs_w, EV_MAXPRI); 3379 ev_set_priority (&fs_w, EV_MAXPRI);
2353 ev_io_start (EV_A_ &fs_w); 3380 ev_io_start (EV_A_ &fs_w);
3381 ev_unref (EV_A);
2354 } 3382 }
2355} 3383}
2356 3384
2357void inline_size 3385inline_size void
2358infy_fork (EV_P) 3386infy_fork (EV_P)
2359{ 3387{
2360 int slot; 3388 int slot;
2361 3389
2362 if (fs_fd < 0) 3390 if (fs_fd < 0)
2363 return; 3391 return;
2364 3392
3393 ev_ref (EV_A);
3394 ev_io_stop (EV_A_ &fs_w);
2365 close (fs_fd); 3395 close (fs_fd);
2366 fs_fd = inotify_init (); 3396 fs_fd = infy_newfd ();
2367 3397
3398 if (fs_fd >= 0)
3399 {
3400 fd_intern (fs_fd);
3401 ev_io_set (&fs_w, fs_fd, EV_READ);
3402 ev_io_start (EV_A_ &fs_w);
3403 ev_unref (EV_A);
3404 }
3405
2368 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3406 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2369 { 3407 {
2370 WL w_ = fs_hash [slot].head; 3408 WL w_ = fs_hash [slot].head;
2371 fs_hash [slot].head = 0; 3409 fs_hash [slot].head = 0;
2372 3410
2373 while (w_) 3411 while (w_)
2378 w->wd = -1; 3416 w->wd = -1;
2379 3417
2380 if (fs_fd >= 0) 3418 if (fs_fd >= 0)
2381 infy_add (EV_A_ w); /* re-add, no matter what */ 3419 infy_add (EV_A_ w); /* re-add, no matter what */
2382 else 3420 else
3421 {
3422 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3423 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2383 ev_timer_start (EV_A_ &w->timer); 3424 ev_timer_again (EV_A_ &w->timer);
3425 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3426 }
2384 } 3427 }
2385
2386 } 3428 }
2387} 3429}
2388 3430
3431#endif
3432
3433#ifdef _WIN32
3434# define EV_LSTAT(p,b) _stati64 (p, b)
3435#else
3436# define EV_LSTAT(p,b) lstat (p, b)
2389#endif 3437#endif
2390 3438
2391void 3439void
2392ev_stat_stat (EV_P_ ev_stat *w) 3440ev_stat_stat (EV_P_ ev_stat *w)
2393{ 3441{
2400static void noinline 3448static void noinline
2401stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3449stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2402{ 3450{
2403 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3451 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2404 3452
2405 /* we copy this here each the time so that */ 3453 ev_statdata prev = w->attr;
2406 /* prev has the old value when the callback gets invoked */
2407 w->prev = w->attr;
2408 ev_stat_stat (EV_A_ w); 3454 ev_stat_stat (EV_A_ w);
2409 3455
2410 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3456 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2411 if ( 3457 if (
2412 w->prev.st_dev != w->attr.st_dev 3458 prev.st_dev != w->attr.st_dev
2413 || w->prev.st_ino != w->attr.st_ino 3459 || prev.st_ino != w->attr.st_ino
2414 || w->prev.st_mode != w->attr.st_mode 3460 || prev.st_mode != w->attr.st_mode
2415 || w->prev.st_nlink != w->attr.st_nlink 3461 || prev.st_nlink != w->attr.st_nlink
2416 || w->prev.st_uid != w->attr.st_uid 3462 || prev.st_uid != w->attr.st_uid
2417 || w->prev.st_gid != w->attr.st_gid 3463 || prev.st_gid != w->attr.st_gid
2418 || w->prev.st_rdev != w->attr.st_rdev 3464 || prev.st_rdev != w->attr.st_rdev
2419 || w->prev.st_size != w->attr.st_size 3465 || prev.st_size != w->attr.st_size
2420 || w->prev.st_atime != w->attr.st_atime 3466 || prev.st_atime != w->attr.st_atime
2421 || w->prev.st_mtime != w->attr.st_mtime 3467 || prev.st_mtime != w->attr.st_mtime
2422 || w->prev.st_ctime != w->attr.st_ctime 3468 || prev.st_ctime != w->attr.st_ctime
2423 ) { 3469 ) {
3470 /* we only update w->prev on actual differences */
3471 /* in case we test more often than invoke the callback, */
3472 /* to ensure that prev is always different to attr */
3473 w->prev = prev;
3474
2424 #if EV_USE_INOTIFY 3475 #if EV_USE_INOTIFY
3476 if (fs_fd >= 0)
3477 {
2425 infy_del (EV_A_ w); 3478 infy_del (EV_A_ w);
2426 infy_add (EV_A_ w); 3479 infy_add (EV_A_ w);
2427 ev_stat_stat (EV_A_ w); /* avoid race... */ 3480 ev_stat_stat (EV_A_ w); /* avoid race... */
3481 }
2428 #endif 3482 #endif
2429 3483
2430 ev_feed_event (EV_A_ w, EV_STAT); 3484 ev_feed_event (EV_A_ w, EV_STAT);
2431 } 3485 }
2432} 3486}
2435ev_stat_start (EV_P_ ev_stat *w) 3489ev_stat_start (EV_P_ ev_stat *w)
2436{ 3490{
2437 if (expect_false (ev_is_active (w))) 3491 if (expect_false (ev_is_active (w)))
2438 return; 3492 return;
2439 3493
2440 /* since we use memcmp, we need to clear any padding data etc. */
2441 memset (&w->prev, 0, sizeof (ev_statdata));
2442 memset (&w->attr, 0, sizeof (ev_statdata));
2443
2444 ev_stat_stat (EV_A_ w); 3494 ev_stat_stat (EV_A_ w);
2445 3495
3496 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2446 if (w->interval < MIN_STAT_INTERVAL) 3497 w->interval = MIN_STAT_INTERVAL;
2447 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2448 3498
2449 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3499 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2450 ev_set_priority (&w->timer, ev_priority (w)); 3500 ev_set_priority (&w->timer, ev_priority (w));
2451 3501
2452#if EV_USE_INOTIFY 3502#if EV_USE_INOTIFY
2453 infy_init (EV_A); 3503 infy_init (EV_A);
2454 3504
2455 if (fs_fd >= 0) 3505 if (fs_fd >= 0)
2456 infy_add (EV_A_ w); 3506 infy_add (EV_A_ w);
2457 else 3507 else
2458#endif 3508#endif
3509 {
2459 ev_timer_start (EV_A_ &w->timer); 3510 ev_timer_again (EV_A_ &w->timer);
3511 ev_unref (EV_A);
3512 }
2460 3513
2461 ev_start (EV_A_ (W)w, 1); 3514 ev_start (EV_A_ (W)w, 1);
3515
3516 EV_FREQUENT_CHECK;
2462} 3517}
2463 3518
2464void 3519void
2465ev_stat_stop (EV_P_ ev_stat *w) 3520ev_stat_stop (EV_P_ ev_stat *w)
2466{ 3521{
2467 clear_pending (EV_A_ (W)w); 3522 clear_pending (EV_A_ (W)w);
2468 if (expect_false (!ev_is_active (w))) 3523 if (expect_false (!ev_is_active (w)))
2469 return; 3524 return;
2470 3525
3526 EV_FREQUENT_CHECK;
3527
2471#if EV_USE_INOTIFY 3528#if EV_USE_INOTIFY
2472 infy_del (EV_A_ w); 3529 infy_del (EV_A_ w);
2473#endif 3530#endif
3531
3532 if (ev_is_active (&w->timer))
3533 {
3534 ev_ref (EV_A);
2474 ev_timer_stop (EV_A_ &w->timer); 3535 ev_timer_stop (EV_A_ &w->timer);
3536 }
2475 3537
2476 ev_stop (EV_A_ (W)w); 3538 ev_stop (EV_A_ (W)w);
3539
3540 EV_FREQUENT_CHECK;
2477} 3541}
2478#endif 3542#endif
2479 3543
2480#if EV_IDLE_ENABLE 3544#if EV_IDLE_ENABLE
2481void 3545void
2484 if (expect_false (ev_is_active (w))) 3548 if (expect_false (ev_is_active (w)))
2485 return; 3549 return;
2486 3550
2487 pri_adjust (EV_A_ (W)w); 3551 pri_adjust (EV_A_ (W)w);
2488 3552
3553 EV_FREQUENT_CHECK;
3554
2489 { 3555 {
2490 int active = ++idlecnt [ABSPRI (w)]; 3556 int active = ++idlecnt [ABSPRI (w)];
2491 3557
2492 ++idleall; 3558 ++idleall;
2493 ev_start (EV_A_ (W)w, active); 3559 ev_start (EV_A_ (W)w, active);
2494 3560
2495 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3561 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2496 idles [ABSPRI (w)][active - 1] = w; 3562 idles [ABSPRI (w)][active - 1] = w;
2497 } 3563 }
3564
3565 EV_FREQUENT_CHECK;
2498} 3566}
2499 3567
2500void 3568void
2501ev_idle_stop (EV_P_ ev_idle *w) 3569ev_idle_stop (EV_P_ ev_idle *w)
2502{ 3570{
2503 clear_pending (EV_A_ (W)w); 3571 clear_pending (EV_A_ (W)w);
2504 if (expect_false (!ev_is_active (w))) 3572 if (expect_false (!ev_is_active (w)))
2505 return; 3573 return;
2506 3574
3575 EV_FREQUENT_CHECK;
3576
2507 { 3577 {
2508 int active = ev_active (w); 3578 int active = ev_active (w);
2509 3579
2510 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3580 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2511 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3581 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2512 3582
2513 ev_stop (EV_A_ (W)w); 3583 ev_stop (EV_A_ (W)w);
2514 --idleall; 3584 --idleall;
2515 } 3585 }
2516}
2517#endif
2518 3586
3587 EV_FREQUENT_CHECK;
3588}
3589#endif
3590
3591#if EV_PREPARE_ENABLE
2519void 3592void
2520ev_prepare_start (EV_P_ ev_prepare *w) 3593ev_prepare_start (EV_P_ ev_prepare *w)
2521{ 3594{
2522 if (expect_false (ev_is_active (w))) 3595 if (expect_false (ev_is_active (w)))
2523 return; 3596 return;
3597
3598 EV_FREQUENT_CHECK;
2524 3599
2525 ev_start (EV_A_ (W)w, ++preparecnt); 3600 ev_start (EV_A_ (W)w, ++preparecnt);
2526 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3601 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2527 prepares [preparecnt - 1] = w; 3602 prepares [preparecnt - 1] = w;
3603
3604 EV_FREQUENT_CHECK;
2528} 3605}
2529 3606
2530void 3607void
2531ev_prepare_stop (EV_P_ ev_prepare *w) 3608ev_prepare_stop (EV_P_ ev_prepare *w)
2532{ 3609{
2533 clear_pending (EV_A_ (W)w); 3610 clear_pending (EV_A_ (W)w);
2534 if (expect_false (!ev_is_active (w))) 3611 if (expect_false (!ev_is_active (w)))
2535 return; 3612 return;
2536 3613
3614 EV_FREQUENT_CHECK;
3615
2537 { 3616 {
2538 int active = ev_active (w); 3617 int active = ev_active (w);
2539 3618
2540 prepares [active - 1] = prepares [--preparecnt]; 3619 prepares [active - 1] = prepares [--preparecnt];
2541 ev_active (prepares [active - 1]) = active; 3620 ev_active (prepares [active - 1]) = active;
2542 } 3621 }
2543 3622
2544 ev_stop (EV_A_ (W)w); 3623 ev_stop (EV_A_ (W)w);
2545}
2546 3624
3625 EV_FREQUENT_CHECK;
3626}
3627#endif
3628
3629#if EV_CHECK_ENABLE
2547void 3630void
2548ev_check_start (EV_P_ ev_check *w) 3631ev_check_start (EV_P_ ev_check *w)
2549{ 3632{
2550 if (expect_false (ev_is_active (w))) 3633 if (expect_false (ev_is_active (w)))
2551 return; 3634 return;
3635
3636 EV_FREQUENT_CHECK;
2552 3637
2553 ev_start (EV_A_ (W)w, ++checkcnt); 3638 ev_start (EV_A_ (W)w, ++checkcnt);
2554 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3639 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2555 checks [checkcnt - 1] = w; 3640 checks [checkcnt - 1] = w;
3641
3642 EV_FREQUENT_CHECK;
2556} 3643}
2557 3644
2558void 3645void
2559ev_check_stop (EV_P_ ev_check *w) 3646ev_check_stop (EV_P_ ev_check *w)
2560{ 3647{
2561 clear_pending (EV_A_ (W)w); 3648 clear_pending (EV_A_ (W)w);
2562 if (expect_false (!ev_is_active (w))) 3649 if (expect_false (!ev_is_active (w)))
2563 return; 3650 return;
2564 3651
3652 EV_FREQUENT_CHECK;
3653
2565 { 3654 {
2566 int active = ev_active (w); 3655 int active = ev_active (w);
2567 3656
2568 checks [active - 1] = checks [--checkcnt]; 3657 checks [active - 1] = checks [--checkcnt];
2569 ev_active (checks [active - 1]) = active; 3658 ev_active (checks [active - 1]) = active;
2570 } 3659 }
2571 3660
2572 ev_stop (EV_A_ (W)w); 3661 ev_stop (EV_A_ (W)w);
3662
3663 EV_FREQUENT_CHECK;
2573} 3664}
3665#endif
2574 3666
2575#if EV_EMBED_ENABLE 3667#if EV_EMBED_ENABLE
2576void noinline 3668void noinline
2577ev_embed_sweep (EV_P_ ev_embed *w) 3669ev_embed_sweep (EV_P_ ev_embed *w)
2578{ 3670{
2579 ev_loop (w->other, EVLOOP_NONBLOCK); 3671 ev_run (w->other, EVRUN_NOWAIT);
2580} 3672}
2581 3673
2582static void 3674static void
2583embed_io_cb (EV_P_ ev_io *io, int revents) 3675embed_io_cb (EV_P_ ev_io *io, int revents)
2584{ 3676{
2585 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3677 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2586 3678
2587 if (ev_cb (w)) 3679 if (ev_cb (w))
2588 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3680 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2589 else 3681 else
2590 ev_loop (w->other, EVLOOP_NONBLOCK); 3682 ev_run (w->other, EVRUN_NOWAIT);
2591} 3683}
2592 3684
2593static void 3685static void
2594embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3686embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2595{ 3687{
2596 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3688 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2597 3689
2598 { 3690 {
2599 struct ev_loop *loop = w->other; 3691 EV_P = w->other;
2600 3692
2601 while (fdchangecnt) 3693 while (fdchangecnt)
2602 { 3694 {
2603 fd_reify (EV_A); 3695 fd_reify (EV_A);
2604 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3696 ev_run (EV_A_ EVRUN_NOWAIT);
2605 } 3697 }
2606 } 3698 }
3699}
3700
3701static void
3702embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3703{
3704 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3705
3706 ev_embed_stop (EV_A_ w);
3707
3708 {
3709 EV_P = w->other;
3710
3711 ev_loop_fork (EV_A);
3712 ev_run (EV_A_ EVRUN_NOWAIT);
3713 }
3714
3715 ev_embed_start (EV_A_ w);
2607} 3716}
2608 3717
2609#if 0 3718#if 0
2610static void 3719static void
2611embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3720embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2619{ 3728{
2620 if (expect_false (ev_is_active (w))) 3729 if (expect_false (ev_is_active (w)))
2621 return; 3730 return;
2622 3731
2623 { 3732 {
2624 struct ev_loop *loop = w->other; 3733 EV_P = w->other;
2625 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3734 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2626 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3735 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2627 } 3736 }
3737
3738 EV_FREQUENT_CHECK;
2628 3739
2629 ev_set_priority (&w->io, ev_priority (w)); 3740 ev_set_priority (&w->io, ev_priority (w));
2630 ev_io_start (EV_A_ &w->io); 3741 ev_io_start (EV_A_ &w->io);
2631 3742
2632 ev_prepare_init (&w->prepare, embed_prepare_cb); 3743 ev_prepare_init (&w->prepare, embed_prepare_cb);
2633 ev_set_priority (&w->prepare, EV_MINPRI); 3744 ev_set_priority (&w->prepare, EV_MINPRI);
2634 ev_prepare_start (EV_A_ &w->prepare); 3745 ev_prepare_start (EV_A_ &w->prepare);
2635 3746
3747 ev_fork_init (&w->fork, embed_fork_cb);
3748 ev_fork_start (EV_A_ &w->fork);
3749
2636 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3750 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2637 3751
2638 ev_start (EV_A_ (W)w, 1); 3752 ev_start (EV_A_ (W)w, 1);
3753
3754 EV_FREQUENT_CHECK;
2639} 3755}
2640 3756
2641void 3757void
2642ev_embed_stop (EV_P_ ev_embed *w) 3758ev_embed_stop (EV_P_ ev_embed *w)
2643{ 3759{
2644 clear_pending (EV_A_ (W)w); 3760 clear_pending (EV_A_ (W)w);
2645 if (expect_false (!ev_is_active (w))) 3761 if (expect_false (!ev_is_active (w)))
2646 return; 3762 return;
2647 3763
3764 EV_FREQUENT_CHECK;
3765
2648 ev_io_stop (EV_A_ &w->io); 3766 ev_io_stop (EV_A_ &w->io);
2649 ev_prepare_stop (EV_A_ &w->prepare); 3767 ev_prepare_stop (EV_A_ &w->prepare);
3768 ev_fork_stop (EV_A_ &w->fork);
2650 3769
2651 ev_stop (EV_A_ (W)w); 3770 ev_stop (EV_A_ (W)w);
3771
3772 EV_FREQUENT_CHECK;
2652} 3773}
2653#endif 3774#endif
2654 3775
2655#if EV_FORK_ENABLE 3776#if EV_FORK_ENABLE
2656void 3777void
2657ev_fork_start (EV_P_ ev_fork *w) 3778ev_fork_start (EV_P_ ev_fork *w)
2658{ 3779{
2659 if (expect_false (ev_is_active (w))) 3780 if (expect_false (ev_is_active (w)))
2660 return; 3781 return;
2661 3782
3783 EV_FREQUENT_CHECK;
3784
2662 ev_start (EV_A_ (W)w, ++forkcnt); 3785 ev_start (EV_A_ (W)w, ++forkcnt);
2663 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3786 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2664 forks [forkcnt - 1] = w; 3787 forks [forkcnt - 1] = w;
3788
3789 EV_FREQUENT_CHECK;
2665} 3790}
2666 3791
2667void 3792void
2668ev_fork_stop (EV_P_ ev_fork *w) 3793ev_fork_stop (EV_P_ ev_fork *w)
2669{ 3794{
2670 clear_pending (EV_A_ (W)w); 3795 clear_pending (EV_A_ (W)w);
2671 if (expect_false (!ev_is_active (w))) 3796 if (expect_false (!ev_is_active (w)))
2672 return; 3797 return;
2673 3798
3799 EV_FREQUENT_CHECK;
3800
2674 { 3801 {
2675 int active = ev_active (w); 3802 int active = ev_active (w);
2676 3803
2677 forks [active - 1] = forks [--forkcnt]; 3804 forks [active - 1] = forks [--forkcnt];
2678 ev_active (forks [active - 1]) = active; 3805 ev_active (forks [active - 1]) = active;
2679 } 3806 }
2680 3807
2681 ev_stop (EV_A_ (W)w); 3808 ev_stop (EV_A_ (W)w);
3809
3810 EV_FREQUENT_CHECK;
3811}
3812#endif
3813
3814#if EV_CLEANUP_ENABLE
3815void
3816ev_cleanup_start (EV_P_ ev_cleanup *w)
3817{
3818 if (expect_false (ev_is_active (w)))
3819 return;
3820
3821 EV_FREQUENT_CHECK;
3822
3823 ev_start (EV_A_ (W)w, ++cleanupcnt);
3824 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3825 cleanups [cleanupcnt - 1] = w;
3826
3827 /* cleanup watchers should never keep a refcount on the loop */
3828 ev_unref (EV_A);
3829 EV_FREQUENT_CHECK;
3830}
3831
3832void
3833ev_cleanup_stop (EV_P_ ev_cleanup *w)
3834{
3835 clear_pending (EV_A_ (W)w);
3836 if (expect_false (!ev_is_active (w)))
3837 return;
3838
3839 EV_FREQUENT_CHECK;
3840 ev_ref (EV_A);
3841
3842 {
3843 int active = ev_active (w);
3844
3845 cleanups [active - 1] = cleanups [--cleanupcnt];
3846 ev_active (cleanups [active - 1]) = active;
3847 }
3848
3849 ev_stop (EV_A_ (W)w);
3850
3851 EV_FREQUENT_CHECK;
2682} 3852}
2683#endif 3853#endif
2684 3854
2685#if EV_ASYNC_ENABLE 3855#if EV_ASYNC_ENABLE
2686void 3856void
2687ev_async_start (EV_P_ ev_async *w) 3857ev_async_start (EV_P_ ev_async *w)
2688{ 3858{
2689 if (expect_false (ev_is_active (w))) 3859 if (expect_false (ev_is_active (w)))
2690 return; 3860 return;
2691 3861
3862 w->sent = 0;
3863
2692 evpipe_init (EV_A); 3864 evpipe_init (EV_A);
3865
3866 EV_FREQUENT_CHECK;
2693 3867
2694 ev_start (EV_A_ (W)w, ++asynccnt); 3868 ev_start (EV_A_ (W)w, ++asynccnt);
2695 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3869 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2696 asyncs [asynccnt - 1] = w; 3870 asyncs [asynccnt - 1] = w;
3871
3872 EV_FREQUENT_CHECK;
2697} 3873}
2698 3874
2699void 3875void
2700ev_async_stop (EV_P_ ev_async *w) 3876ev_async_stop (EV_P_ ev_async *w)
2701{ 3877{
2702 clear_pending (EV_A_ (W)w); 3878 clear_pending (EV_A_ (W)w);
2703 if (expect_false (!ev_is_active (w))) 3879 if (expect_false (!ev_is_active (w)))
2704 return; 3880 return;
2705 3881
3882 EV_FREQUENT_CHECK;
3883
2706 { 3884 {
2707 int active = ev_active (w); 3885 int active = ev_active (w);
2708 3886
2709 asyncs [active - 1] = asyncs [--asynccnt]; 3887 asyncs [active - 1] = asyncs [--asynccnt];
2710 ev_active (asyncs [active - 1]) = active; 3888 ev_active (asyncs [active - 1]) = active;
2711 } 3889 }
2712 3890
2713 ev_stop (EV_A_ (W)w); 3891 ev_stop (EV_A_ (W)w);
3892
3893 EV_FREQUENT_CHECK;
2714} 3894}
2715 3895
2716void 3896void
2717ev_async_send (EV_P_ ev_async *w) 3897ev_async_send (EV_P_ ev_async *w)
2718{ 3898{
2719 w->sent = 1; 3899 w->sent = 1;
2720 evpipe_write (EV_A_ &gotasync); 3900 evpipe_write (EV_A_ &async_pending);
2721} 3901}
2722#endif 3902#endif
2723 3903
2724/*****************************************************************************/ 3904/*****************************************************************************/
2725 3905
2735once_cb (EV_P_ struct ev_once *once, int revents) 3915once_cb (EV_P_ struct ev_once *once, int revents)
2736{ 3916{
2737 void (*cb)(int revents, void *arg) = once->cb; 3917 void (*cb)(int revents, void *arg) = once->cb;
2738 void *arg = once->arg; 3918 void *arg = once->arg;
2739 3919
2740 ev_io_stop (EV_A_ &once->io); 3920 ev_io_stop (EV_A_ &once->io);
2741 ev_timer_stop (EV_A_ &once->to); 3921 ev_timer_stop (EV_A_ &once->to);
2742 ev_free (once); 3922 ev_free (once);
2743 3923
2744 cb (revents, arg); 3924 cb (revents, arg);
2745} 3925}
2746 3926
2747static void 3927static void
2748once_cb_io (EV_P_ ev_io *w, int revents) 3928once_cb_io (EV_P_ ev_io *w, int revents)
2749{ 3929{
2750 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3930 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3931
3932 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2751} 3933}
2752 3934
2753static void 3935static void
2754once_cb_to (EV_P_ ev_timer *w, int revents) 3936once_cb_to (EV_P_ ev_timer *w, int revents)
2755{ 3937{
2756 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3938 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3939
3940 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2757} 3941}
2758 3942
2759void 3943void
2760ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3944ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2761{ 3945{
2762 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3946 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2763 3947
2764 if (expect_false (!once)) 3948 if (expect_false (!once))
2765 { 3949 {
2766 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3950 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2767 return; 3951 return;
2768 } 3952 }
2769 3953
2770 once->cb = cb; 3954 once->cb = cb;
2771 once->arg = arg; 3955 once->arg = arg;
2783 ev_timer_set (&once->to, timeout, 0.); 3967 ev_timer_set (&once->to, timeout, 0.);
2784 ev_timer_start (EV_A_ &once->to); 3968 ev_timer_start (EV_A_ &once->to);
2785 } 3969 }
2786} 3970}
2787 3971
3972/*****************************************************************************/
3973
3974#if EV_WALK_ENABLE
3975void ecb_cold
3976ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3977{
3978 int i, j;
3979 ev_watcher_list *wl, *wn;
3980
3981 if (types & (EV_IO | EV_EMBED))
3982 for (i = 0; i < anfdmax; ++i)
3983 for (wl = anfds [i].head; wl; )
3984 {
3985 wn = wl->next;
3986
3987#if EV_EMBED_ENABLE
3988 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3989 {
3990 if (types & EV_EMBED)
3991 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3992 }
3993 else
3994#endif
3995#if EV_USE_INOTIFY
3996 if (ev_cb ((ev_io *)wl) == infy_cb)
3997 ;
3998 else
3999#endif
4000 if ((ev_io *)wl != &pipe_w)
4001 if (types & EV_IO)
4002 cb (EV_A_ EV_IO, wl);
4003
4004 wl = wn;
4005 }
4006
4007 if (types & (EV_TIMER | EV_STAT))
4008 for (i = timercnt + HEAP0; i-- > HEAP0; )
4009#if EV_STAT_ENABLE
4010 /*TODO: timer is not always active*/
4011 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4012 {
4013 if (types & EV_STAT)
4014 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4015 }
4016 else
4017#endif
4018 if (types & EV_TIMER)
4019 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4020
4021#if EV_PERIODIC_ENABLE
4022 if (types & EV_PERIODIC)
4023 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4024 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4025#endif
4026
4027#if EV_IDLE_ENABLE
4028 if (types & EV_IDLE)
4029 for (j = NUMPRI; i--; )
4030 for (i = idlecnt [j]; i--; )
4031 cb (EV_A_ EV_IDLE, idles [j][i]);
4032#endif
4033
4034#if EV_FORK_ENABLE
4035 if (types & EV_FORK)
4036 for (i = forkcnt; i--; )
4037 if (ev_cb (forks [i]) != embed_fork_cb)
4038 cb (EV_A_ EV_FORK, forks [i]);
4039#endif
4040
4041#if EV_ASYNC_ENABLE
4042 if (types & EV_ASYNC)
4043 for (i = asynccnt; i--; )
4044 cb (EV_A_ EV_ASYNC, asyncs [i]);
4045#endif
4046
4047#if EV_PREPARE_ENABLE
4048 if (types & EV_PREPARE)
4049 for (i = preparecnt; i--; )
4050# if EV_EMBED_ENABLE
4051 if (ev_cb (prepares [i]) != embed_prepare_cb)
4052# endif
4053 cb (EV_A_ EV_PREPARE, prepares [i]);
4054#endif
4055
4056#if EV_CHECK_ENABLE
4057 if (types & EV_CHECK)
4058 for (i = checkcnt; i--; )
4059 cb (EV_A_ EV_CHECK, checks [i]);
4060#endif
4061
4062#if EV_SIGNAL_ENABLE
4063 if (types & EV_SIGNAL)
4064 for (i = 0; i < EV_NSIG - 1; ++i)
4065 for (wl = signals [i].head; wl; )
4066 {
4067 wn = wl->next;
4068 cb (EV_A_ EV_SIGNAL, wl);
4069 wl = wn;
4070 }
4071#endif
4072
4073#if EV_CHILD_ENABLE
4074 if (types & EV_CHILD)
4075 for (i = (EV_PID_HASHSIZE); i--; )
4076 for (wl = childs [i]; wl; )
4077 {
4078 wn = wl->next;
4079 cb (EV_A_ EV_CHILD, wl);
4080 wl = wn;
4081 }
4082#endif
4083/* EV_STAT 0x00001000 /* stat data changed */
4084/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4085}
4086#endif
4087
2788#if EV_MULTIPLICITY 4088#if EV_MULTIPLICITY
2789 #include "ev_wrap.h" 4089 #include "ev_wrap.h"
2790#endif 4090#endif
2791 4091
2792#ifdef __cplusplus 4092EV_CPP(})
2793}
2794#endif
2795 4093

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines