ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.244 by root, Tue May 20 23:49:41 2008 UTC vs.
Revision 1.450 by root, Mon Oct 8 15:43:35 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
160# include <windows.h> 207# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
163# endif 210# endif
211# undef EV_AVOID_STDIO
164#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
165 221
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
167 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
263
168#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
169# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
170#endif 270#endif
171 271
172#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 274#endif
175 275
176#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
177# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
281# endif
178#endif 282#endif
179 283
180#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 286#endif
183 287
184#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
185# ifdef _WIN32 289# ifdef _WIN32
186# define EV_USE_POLL 0 290# define EV_USE_POLL 0
187# else 291# else
188# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 293# endif
190#endif 294#endif
191 295
192#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 299# else
196# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
197# endif 301# endif
198#endif 302#endif
199 303
205# define EV_USE_PORT 0 309# define EV_USE_PORT 0
206#endif 310#endif
207 311
208#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 314# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 315# else
212# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
213# endif 317# endif
214#endif 318#endif
215 319
216#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 322#endif
223 323
224#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 326#endif
231 327
232#ifndef EV_USE_EVENTFD 328#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 330# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 331# else
236# define EV_USE_EVENTFD 0 332# define EV_USE_EVENTFD 0
237# endif 333# endif
238#endif 334#endif
239 335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
341# endif
342#endif
343
344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
240#ifndef EV_USE_4HEAP 354#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 355# define EV_USE_4HEAP EV_FEATURE_DATA
242#endif 356#endif
243 357
244#ifndef EV_HEAP_CACHE_AT 358#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
246#endif 374#endif
247 375
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
249 383
250#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
251# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
252# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
253#endif 387#endif
261# undef EV_USE_INOTIFY 395# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0 396# define EV_USE_INOTIFY 0
263#endif 397#endif
264 398
265#if !EV_USE_NANOSLEEP 399#if !EV_USE_NANOSLEEP
266# ifndef _WIN32 400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
267# include <sys/select.h> 402# include <sys/select.h>
268# endif 403# endif
269#endif 404#endif
270 405
271#if EV_USE_INOTIFY 406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
272# include <sys/inotify.h> 408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
273#endif 413# endif
274
275#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h>
277#endif 414#endif
278 415
279#if EV_USE_EVENTFD 416#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 418# include <stdint.h>
282# ifdef __cplusplus 419# ifndef EFD_NONBLOCK
283extern "C" { 420# define EFD_NONBLOCK O_NONBLOCK
284# endif 421# endif
285int eventfd (unsigned int initval, int flags); 422# ifndef EFD_CLOEXEC
286# ifdef __cplusplus 423# ifdef O_CLOEXEC
287} 424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
288# endif 428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
289#endif 452#endif
290 453
291/**/ 454/**/
292 455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
293/* 462/*
294 * This is used to avoid floating point rounding problems. 463 * This is used to work around floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000. 464 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */ 465 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
302 468
303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
306 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509/* 16 bits major, 16 bits minor */
510#define ECB_VERSION 0x00010002
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
307#if __GNUC__ >= 4 519 #if __GNUC__
308# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
309# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
310#else 535#else
311# define expect(expr,value) (expr) 536 #include <inttypes.h>
312# define noinline 537 #if UINTMAX_MAX > 0xffffffffU
313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 538 #define ECB_PTRSIZE 8
314# define inline 539 #else
540 #define ECB_PTRSIZE 4
541 #endif
315# endif 542#endif
543
544/* many compilers define _GNUC_ to some versions but then only implement
545 * what their idiot authors think are the "more important" extensions,
546 * causing enormous grief in return for some better fake benchmark numbers.
547 * or so.
548 * we try to detect these and simply assume they are not gcc - if they have
549 * an issue with that they should have done it right in the first place.
550 */
551#ifndef ECB_GCC_VERSION
552 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
553 #define ECB_GCC_VERSION(major,minor) 0
554 #else
555 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
316#endif 556 #endif
557#endif
317 558
559#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
560#define ECB_C99 (__STDC_VERSION__ >= 199901L)
561#define ECB_C11 (__STDC_VERSION__ >= 201112L)
562#define ECB_CPP (__cplusplus+0)
563#define ECB_CPP11 (__cplusplus >= 201103L)
564
565#if ECB_CPP
566 #define ECB_EXTERN_C extern "C"
567 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
568 #define ECB_EXTERN_C_END }
569#else
570 #define ECB_EXTERN_C extern
571 #define ECB_EXTERN_C_BEG
572 #define ECB_EXTERN_C_END
573#endif
574
575/*****************************************************************************/
576
577/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
578/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
579
580#if ECB_NO_THREADS
581 #define ECB_NO_SMP 1
582#endif
583
584#if ECB_NO_SMP
585 #define ECB_MEMORY_FENCE do { } while (0)
586#endif
587
588#ifndef ECB_MEMORY_FENCE
589 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
590 #if __i386 || __i386__
591 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
592 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
593 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
594 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
595 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
596 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
597 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
598 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
599 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
600 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
601 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
602 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
603 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
604 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
605 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
606 #elif __sparc || __sparc__
607 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
608 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
610 #elif defined __s390__ || defined __s390x__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
612 #elif defined __mips__
613 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
614 #elif defined __alpha__
615 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
616 #elif defined __hppa__
617 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
618 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
619 #elif defined __ia64__
620 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
621 #endif
622 #endif
623#endif
624
625#ifndef ECB_MEMORY_FENCE
626 #if ECB_GCC_VERSION(4,7)
627 /* see comment below (stdatomic.h) about the C11 memory model. */
628 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
629
630 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
631 * without risking compile time errors with other compilers. We *could*
632 * define our own ecb_clang_has_feature, but I just can't be bothered to work
633 * around this shit time and again.
634 * #elif defined __clang && __has_feature (cxx_atomic)
635 * // see comment below (stdatomic.h) about the C11 memory model.
636 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
637 */
638
639 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
640 #define ECB_MEMORY_FENCE __sync_synchronize ()
641 #elif _MSC_VER >= 1400 /* VC++ 2005 */
642 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
643 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
644 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
645 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
646 #elif defined _WIN32
647 #include <WinNT.h>
648 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
649 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
650 #include <mbarrier.h>
651 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
652 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
653 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
654 #elif __xlC__
655 #define ECB_MEMORY_FENCE __sync ()
656 #endif
657#endif
658
659#ifndef ECB_MEMORY_FENCE
660 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
661 /* we assume that these memory fences work on all variables/all memory accesses, */
662 /* not just C11 atomics and atomic accesses */
663 #include <stdatomic.h>
664 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
665 /* any fence other than seq_cst, which isn't very efficient for us. */
666 /* Why that is, we don't know - either the C11 memory model is quite useless */
667 /* for most usages, or gcc and clang have a bug */
668 /* I *currently* lean towards the latter, and inefficiently implement */
669 /* all three of ecb's fences as a seq_cst fence */
670 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
671 #endif
672#endif
673
674#ifndef ECB_MEMORY_FENCE
675 #if !ECB_AVOID_PTHREADS
676 /*
677 * if you get undefined symbol references to pthread_mutex_lock,
678 * or failure to find pthread.h, then you should implement
679 * the ECB_MEMORY_FENCE operations for your cpu/compiler
680 * OR provide pthread.h and link against the posix thread library
681 * of your system.
682 */
683 #include <pthread.h>
684 #define ECB_NEEDS_PTHREADS 1
685 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
686
687 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
688 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
689 #endif
690#endif
691
692#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
693 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
694#endif
695
696#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
697 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
698#endif
699
700/*****************************************************************************/
701
702#if __cplusplus
703 #define ecb_inline static inline
704#elif ECB_GCC_VERSION(2,5)
705 #define ecb_inline static __inline__
706#elif ECB_C99
707 #define ecb_inline static inline
708#else
709 #define ecb_inline static
710#endif
711
712#if ECB_GCC_VERSION(3,3)
713 #define ecb_restrict __restrict__
714#elif ECB_C99
715 #define ecb_restrict restrict
716#else
717 #define ecb_restrict
718#endif
719
720typedef int ecb_bool;
721
722#define ECB_CONCAT_(a, b) a ## b
723#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
724#define ECB_STRINGIFY_(a) # a
725#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
726
727#define ecb_function_ ecb_inline
728
729#if ECB_GCC_VERSION(3,1)
730 #define ecb_attribute(attrlist) __attribute__(attrlist)
731 #define ecb_is_constant(expr) __builtin_constant_p (expr)
732 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
733 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
734#else
735 #define ecb_attribute(attrlist)
736 #define ecb_is_constant(expr) 0
737 #define ecb_expect(expr,value) (expr)
738 #define ecb_prefetch(addr,rw,locality)
739#endif
740
741/* no emulation for ecb_decltype */
742#if ECB_GCC_VERSION(4,5)
743 #define ecb_decltype(x) __decltype(x)
744#elif ECB_GCC_VERSION(3,0)
745 #define ecb_decltype(x) __typeof(x)
746#endif
747
748#define ecb_noinline ecb_attribute ((__noinline__))
749#define ecb_unused ecb_attribute ((__unused__))
750#define ecb_const ecb_attribute ((__const__))
751#define ecb_pure ecb_attribute ((__pure__))
752
753#if ECB_C11
754 #define ecb_noreturn _Noreturn
755#else
756 #define ecb_noreturn ecb_attribute ((__noreturn__))
757#endif
758
759#if ECB_GCC_VERSION(4,3)
760 #define ecb_artificial ecb_attribute ((__artificial__))
761 #define ecb_hot ecb_attribute ((__hot__))
762 #define ecb_cold ecb_attribute ((__cold__))
763#else
764 #define ecb_artificial
765 #define ecb_hot
766 #define ecb_cold
767#endif
768
769/* put around conditional expressions if you are very sure that the */
770/* expression is mostly true or mostly false. note that these return */
771/* booleans, not the expression. */
318#define expect_false(expr) expect ((expr) != 0, 0) 772#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
319#define expect_true(expr) expect ((expr) != 0, 1) 773#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
774/* for compatibility to the rest of the world */
775#define ecb_likely(expr) ecb_expect_true (expr)
776#define ecb_unlikely(expr) ecb_expect_false (expr)
777
778/* count trailing zero bits and count # of one bits */
779#if ECB_GCC_VERSION(3,4)
780 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
781 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
782 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
783 #define ecb_ctz32(x) __builtin_ctz (x)
784 #define ecb_ctz64(x) __builtin_ctzll (x)
785 #define ecb_popcount32(x) __builtin_popcount (x)
786 /* no popcountll */
787#else
788 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
789 ecb_function_ int
790 ecb_ctz32 (uint32_t x)
791 {
792 int r = 0;
793
794 x &= ~x + 1; /* this isolates the lowest bit */
795
796#if ECB_branchless_on_i386
797 r += !!(x & 0xaaaaaaaa) << 0;
798 r += !!(x & 0xcccccccc) << 1;
799 r += !!(x & 0xf0f0f0f0) << 2;
800 r += !!(x & 0xff00ff00) << 3;
801 r += !!(x & 0xffff0000) << 4;
802#else
803 if (x & 0xaaaaaaaa) r += 1;
804 if (x & 0xcccccccc) r += 2;
805 if (x & 0xf0f0f0f0) r += 4;
806 if (x & 0xff00ff00) r += 8;
807 if (x & 0xffff0000) r += 16;
808#endif
809
810 return r;
811 }
812
813 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
814 ecb_function_ int
815 ecb_ctz64 (uint64_t x)
816 {
817 int shift = x & 0xffffffffU ? 0 : 32;
818 return ecb_ctz32 (x >> shift) + shift;
819 }
820
821 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
822 ecb_function_ int
823 ecb_popcount32 (uint32_t x)
824 {
825 x -= (x >> 1) & 0x55555555;
826 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
827 x = ((x >> 4) + x) & 0x0f0f0f0f;
828 x *= 0x01010101;
829
830 return x >> 24;
831 }
832
833 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
834 ecb_function_ int ecb_ld32 (uint32_t x)
835 {
836 int r = 0;
837
838 if (x >> 16) { x >>= 16; r += 16; }
839 if (x >> 8) { x >>= 8; r += 8; }
840 if (x >> 4) { x >>= 4; r += 4; }
841 if (x >> 2) { x >>= 2; r += 2; }
842 if (x >> 1) { r += 1; }
843
844 return r;
845 }
846
847 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
848 ecb_function_ int ecb_ld64 (uint64_t x)
849 {
850 int r = 0;
851
852 if (x >> 32) { x >>= 32; r += 32; }
853
854 return r + ecb_ld32 (x);
855 }
856#endif
857
858ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
859ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
860ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
861ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
862
863ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
864ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
865{
866 return ( (x * 0x0802U & 0x22110U)
867 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
868}
869
870ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
871ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
872{
873 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
874 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
875 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
876 x = ( x >> 8 ) | ( x << 8);
877
878 return x;
879}
880
881ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
882ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
883{
884 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
885 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
886 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
887 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
888 x = ( x >> 16 ) | ( x << 16);
889
890 return x;
891}
892
893/* popcount64 is only available on 64 bit cpus as gcc builtin */
894/* so for this version we are lazy */
895ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
896ecb_function_ int
897ecb_popcount64 (uint64_t x)
898{
899 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
900}
901
902ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
903ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
904ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
905ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
906ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
907ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
908ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
909ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
910
911ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
912ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
913ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
914ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
915ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
916ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
917ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
918ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
919
920#if ECB_GCC_VERSION(4,3)
921 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
922 #define ecb_bswap32(x) __builtin_bswap32 (x)
923 #define ecb_bswap64(x) __builtin_bswap64 (x)
924#else
925 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
926 ecb_function_ uint16_t
927 ecb_bswap16 (uint16_t x)
928 {
929 return ecb_rotl16 (x, 8);
930 }
931
932 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
933 ecb_function_ uint32_t
934 ecb_bswap32 (uint32_t x)
935 {
936 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
937 }
938
939 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
940 ecb_function_ uint64_t
941 ecb_bswap64 (uint64_t x)
942 {
943 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
944 }
945#endif
946
947#if ECB_GCC_VERSION(4,5)
948 #define ecb_unreachable() __builtin_unreachable ()
949#else
950 /* this seems to work fine, but gcc always emits a warning for it :/ */
951 ecb_inline void ecb_unreachable (void) ecb_noreturn;
952 ecb_inline void ecb_unreachable (void) { }
953#endif
954
955/* try to tell the compiler that some condition is definitely true */
956#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
957
958ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
959ecb_inline unsigned char
960ecb_byteorder_helper (void)
961{
962 /* the union code still generates code under pressure in gcc, */
963 /* but less than using pointers, and always seems to */
964 /* successfully return a constant. */
965 /* the reason why we have this horrible preprocessor mess */
966 /* is to avoid it in all cases, at least on common architectures */
967 /* or when using a recent enough gcc version (>= 4.6) */
968#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
969 return 0x44;
970#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
971 return 0x44;
972#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
973 return 0x11;
974#else
975 union
976 {
977 uint32_t i;
978 uint8_t c;
979 } u = { 0x11223344 };
980 return u.c;
981#endif
982}
983
984ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
985ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
986ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
987ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
988
989#if ECB_GCC_VERSION(3,0) || ECB_C99
990 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
991#else
992 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
993#endif
994
995#if __cplusplus
996 template<typename T>
997 static inline T ecb_div_rd (T val, T div)
998 {
999 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1000 }
1001 template<typename T>
1002 static inline T ecb_div_ru (T val, T div)
1003 {
1004 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1005 }
1006#else
1007 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1008 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1009#endif
1010
1011#if ecb_cplusplus_does_not_suck
1012 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1013 template<typename T, int N>
1014 static inline int ecb_array_length (const T (&arr)[N])
1015 {
1016 return N;
1017 }
1018#else
1019 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1020#endif
1021
1022/*******************************************************************************/
1023/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1024
1025/* basically, everything uses "ieee pure-endian" floating point numbers */
1026/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1027#if 0 \
1028 || __i386 || __i386__ \
1029 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1030 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1031 || defined __arm__ && defined __ARM_EABI__ \
1032 || defined __s390__ || defined __s390x__ \
1033 || defined __mips__ \
1034 || defined __alpha__ \
1035 || defined __hppa__ \
1036 || defined __ia64__ \
1037 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1038 #define ECB_STDFP 1
1039 #include <string.h> /* for memcpy */
1040#else
1041 #define ECB_STDFP 0
1042 #include <math.h> /* for frexp*, ldexp* */
1043#endif
1044
1045#ifndef ECB_NO_LIBM
1046
1047 /* convert a float to ieee single/binary32 */
1048 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1049 ecb_function_ uint32_t
1050 ecb_float_to_binary32 (float x)
1051 {
1052 uint32_t r;
1053
1054 #if ECB_STDFP
1055 memcpy (&r, &x, 4);
1056 #else
1057 /* slow emulation, works for anything but -0 */
1058 uint32_t m;
1059 int e;
1060
1061 if (x == 0e0f ) return 0x00000000U;
1062 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1063 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1064 if (x != x ) return 0x7fbfffffU;
1065
1066 m = frexpf (x, &e) * 0x1000000U;
1067
1068 r = m & 0x80000000U;
1069
1070 if (r)
1071 m = -m;
1072
1073 if (e <= -126)
1074 {
1075 m &= 0xffffffU;
1076 m >>= (-125 - e);
1077 e = -126;
1078 }
1079
1080 r |= (e + 126) << 23;
1081 r |= m & 0x7fffffU;
1082 #endif
1083
1084 return r;
1085 }
1086
1087 /* converts an ieee single/binary32 to a float */
1088 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1089 ecb_function_ float
1090 ecb_binary32_to_float (uint32_t x)
1091 {
1092 float r;
1093
1094 #if ECB_STDFP
1095 memcpy (&r, &x, 4);
1096 #else
1097 /* emulation, only works for normals and subnormals and +0 */
1098 int neg = x >> 31;
1099 int e = (x >> 23) & 0xffU;
1100
1101 x &= 0x7fffffU;
1102
1103 if (e)
1104 x |= 0x800000U;
1105 else
1106 e = 1;
1107
1108 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1109 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1110
1111 r = neg ? -r : r;
1112 #endif
1113
1114 return r;
1115 }
1116
1117 /* convert a double to ieee double/binary64 */
1118 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1119 ecb_function_ uint64_t
1120 ecb_double_to_binary64 (double x)
1121 {
1122 uint64_t r;
1123
1124 #if ECB_STDFP
1125 memcpy (&r, &x, 8);
1126 #else
1127 /* slow emulation, works for anything but -0 */
1128 uint64_t m;
1129 int e;
1130
1131 if (x == 0e0 ) return 0x0000000000000000U;
1132 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1133 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1134 if (x != x ) return 0X7ff7ffffffffffffU;
1135
1136 m = frexp (x, &e) * 0x20000000000000U;
1137
1138 r = m & 0x8000000000000000;;
1139
1140 if (r)
1141 m = -m;
1142
1143 if (e <= -1022)
1144 {
1145 m &= 0x1fffffffffffffU;
1146 m >>= (-1021 - e);
1147 e = -1022;
1148 }
1149
1150 r |= ((uint64_t)(e + 1022)) << 52;
1151 r |= m & 0xfffffffffffffU;
1152 #endif
1153
1154 return r;
1155 }
1156
1157 /* converts an ieee double/binary64 to a double */
1158 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1159 ecb_function_ double
1160 ecb_binary64_to_double (uint64_t x)
1161 {
1162 double r;
1163
1164 #if ECB_STDFP
1165 memcpy (&r, &x, 8);
1166 #else
1167 /* emulation, only works for normals and subnormals and +0 */
1168 int neg = x >> 63;
1169 int e = (x >> 52) & 0x7ffU;
1170
1171 x &= 0xfffffffffffffU;
1172
1173 if (e)
1174 x |= 0x10000000000000U;
1175 else
1176 e = 1;
1177
1178 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1179 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1180
1181 r = neg ? -r : r;
1182 #endif
1183
1184 return r;
1185 }
1186
1187#endif
1188
1189#endif
1190
1191/* ECB.H END */
1192
1193#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1194/* if your architecture doesn't need memory fences, e.g. because it is
1195 * single-cpu/core, or if you use libev in a project that doesn't use libev
1196 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1197 * libev, in which cases the memory fences become nops.
1198 * alternatively, you can remove this #error and link against libpthread,
1199 * which will then provide the memory fences.
1200 */
1201# error "memory fences not defined for your architecture, please report"
1202#endif
1203
1204#ifndef ECB_MEMORY_FENCE
1205# define ECB_MEMORY_FENCE do { } while (0)
1206# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1207# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1208#endif
1209
1210#define expect_false(cond) ecb_expect_false (cond)
1211#define expect_true(cond) ecb_expect_true (cond)
1212#define noinline ecb_noinline
1213
320#define inline_size static inline 1214#define inline_size ecb_inline
321 1215
322#if EV_MINIMAL 1216#if EV_FEATURE_CODE
1217# define inline_speed ecb_inline
1218#else
323# define inline_speed static noinline 1219# define inline_speed static noinline
1220#endif
1221
1222#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1223
1224#if EV_MINPRI == EV_MAXPRI
1225# define ABSPRI(w) (((W)w), 0)
324#else 1226#else
325# define inline_speed static inline
326#endif
327
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1227# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1228#endif
330 1229
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1230#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 1231#define EMPTY2(a,b) /* used to suppress some warnings */
333 1232
334typedef ev_watcher *W; 1233typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 1235typedef ev_watcher_time *WT;
337 1236
338#define ev_active(w) ((W)(w))->active 1237#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 1238#define ev_at(w) ((WT)(w))->at
340 1239
1240#if EV_USE_REALTIME
1241/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1242/* giving it a reasonably high chance of working on typical architectures */
1243static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1244#endif
1245
341#if EV_USE_MONOTONIC 1246#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1247static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1248#endif
1249
1250#ifndef EV_FD_TO_WIN32_HANDLE
1251# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1252#endif
1253#ifndef EV_WIN32_HANDLE_TO_FD
1254# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1255#endif
1256#ifndef EV_WIN32_CLOSE_FD
1257# define EV_WIN32_CLOSE_FD(fd) close (fd)
345#endif 1258#endif
346 1259
347#ifdef _WIN32 1260#ifdef _WIN32
348# include "ev_win32.c" 1261# include "ev_win32.c"
349#endif 1262#endif
350 1263
351/*****************************************************************************/ 1264/*****************************************************************************/
352 1265
1266/* define a suitable floor function (only used by periodics atm) */
1267
1268#if EV_USE_FLOOR
1269# include <math.h>
1270# define ev_floor(v) floor (v)
1271#else
1272
1273#include <float.h>
1274
1275/* a floor() replacement function, should be independent of ev_tstamp type */
1276static ev_tstamp noinline
1277ev_floor (ev_tstamp v)
1278{
1279 /* the choice of shift factor is not terribly important */
1280#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1281 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1282#else
1283 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1284#endif
1285
1286 /* argument too large for an unsigned long? */
1287 if (expect_false (v >= shift))
1288 {
1289 ev_tstamp f;
1290
1291 if (v == v - 1.)
1292 return v; /* very large number */
1293
1294 f = shift * ev_floor (v * (1. / shift));
1295 return f + ev_floor (v - f);
1296 }
1297
1298 /* special treatment for negative args? */
1299 if (expect_false (v < 0.))
1300 {
1301 ev_tstamp f = -ev_floor (-v);
1302
1303 return f - (f == v ? 0 : 1);
1304 }
1305
1306 /* fits into an unsigned long */
1307 return (unsigned long)v;
1308}
1309
1310#endif
1311
1312/*****************************************************************************/
1313
1314#ifdef __linux
1315# include <sys/utsname.h>
1316#endif
1317
1318static unsigned int noinline ecb_cold
1319ev_linux_version (void)
1320{
1321#ifdef __linux
1322 unsigned int v = 0;
1323 struct utsname buf;
1324 int i;
1325 char *p = buf.release;
1326
1327 if (uname (&buf))
1328 return 0;
1329
1330 for (i = 3+1; --i; )
1331 {
1332 unsigned int c = 0;
1333
1334 for (;;)
1335 {
1336 if (*p >= '0' && *p <= '9')
1337 c = c * 10 + *p++ - '0';
1338 else
1339 {
1340 p += *p == '.';
1341 break;
1342 }
1343 }
1344
1345 v = (v << 8) | c;
1346 }
1347
1348 return v;
1349#else
1350 return 0;
1351#endif
1352}
1353
1354/*****************************************************************************/
1355
1356#if EV_AVOID_STDIO
1357static void noinline ecb_cold
1358ev_printerr (const char *msg)
1359{
1360 write (STDERR_FILENO, msg, strlen (msg));
1361}
1362#endif
1363
353static void (*syserr_cb)(const char *msg); 1364static void (*syserr_cb)(const char *msg) EV_THROW;
354 1365
355void 1366void ecb_cold
356ev_set_syserr_cb (void (*cb)(const char *msg)) 1367ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
357{ 1368{
358 syserr_cb = cb; 1369 syserr_cb = cb;
359} 1370}
360 1371
361static void noinline 1372static void noinline ecb_cold
362syserr (const char *msg) 1373ev_syserr (const char *msg)
363{ 1374{
364 if (!msg) 1375 if (!msg)
365 msg = "(libev) system error"; 1376 msg = "(libev) system error";
366 1377
367 if (syserr_cb) 1378 if (syserr_cb)
368 syserr_cb (msg); 1379 syserr_cb (msg);
369 else 1380 else
370 { 1381 {
1382#if EV_AVOID_STDIO
1383 ev_printerr (msg);
1384 ev_printerr (": ");
1385 ev_printerr (strerror (errno));
1386 ev_printerr ("\n");
1387#else
371 perror (msg); 1388 perror (msg);
1389#endif
372 abort (); 1390 abort ();
373 } 1391 }
374} 1392}
375 1393
376static void * 1394static void *
377ev_realloc_emul (void *ptr, long size) 1395ev_realloc_emul (void *ptr, long size) EV_THROW
378{ 1396{
379 /* some systems, notably openbsd and darwin, fail to properly 1397 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and 1398 * implement realloc (x, 0) (as required by both ansi c-89 and
381 * the single unix specification, so work around them here. 1399 * the single unix specification, so work around them here.
1400 * recently, also (at least) fedora and debian started breaking it,
1401 * despite documenting it otherwise.
382 */ 1402 */
383 1403
384 if (size) 1404 if (size)
385 return realloc (ptr, size); 1405 return realloc (ptr, size);
386 1406
387 free (ptr); 1407 free (ptr);
388 return 0; 1408 return 0;
389} 1409}
390 1410
391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1411static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
392 1412
393void 1413void ecb_cold
394ev_set_allocator (void *(*cb)(void *ptr, long size)) 1414ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
395{ 1415{
396 alloc = cb; 1416 alloc = cb;
397} 1417}
398 1418
399inline_speed void * 1419inline_speed void *
401{ 1421{
402 ptr = alloc (ptr, size); 1422 ptr = alloc (ptr, size);
403 1423
404 if (!ptr && size) 1424 if (!ptr && size)
405 { 1425 {
1426#if EV_AVOID_STDIO
1427 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1428#else
406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1429 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1430#endif
407 abort (); 1431 abort ();
408 } 1432 }
409 1433
410 return ptr; 1434 return ptr;
411} 1435}
413#define ev_malloc(size) ev_realloc (0, (size)) 1437#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 1438#define ev_free(ptr) ev_realloc ((ptr), 0)
415 1439
416/*****************************************************************************/ 1440/*****************************************************************************/
417 1441
1442/* set in reify when reification needed */
1443#define EV_ANFD_REIFY 1
1444
1445/* file descriptor info structure */
418typedef struct 1446typedef struct
419{ 1447{
420 WL head; 1448 WL head;
421 unsigned char events; 1449 unsigned char events; /* the events watched for */
1450 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1451 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 1452 unsigned char unused;
1453#if EV_USE_EPOLL
1454 unsigned int egen; /* generation counter to counter epoll bugs */
1455#endif
423#if EV_SELECT_IS_WINSOCKET 1456#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
424 SOCKET handle; 1457 SOCKET handle;
425#endif 1458#endif
1459#if EV_USE_IOCP
1460 OVERLAPPED or, ow;
1461#endif
426} ANFD; 1462} ANFD;
427 1463
1464/* stores the pending event set for a given watcher */
428typedef struct 1465typedef struct
429{ 1466{
430 W w; 1467 W w;
431 int events; 1468 int events; /* the pending event set for the given watcher */
432} ANPENDING; 1469} ANPENDING;
433 1470
434#if EV_USE_INOTIFY 1471#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 1472/* hash table entry per inotify-id */
436typedef struct 1473typedef struct
439} ANFS; 1476} ANFS;
440#endif 1477#endif
441 1478
442/* Heap Entry */ 1479/* Heap Entry */
443#if EV_HEAP_CACHE_AT 1480#if EV_HEAP_CACHE_AT
1481 /* a heap element */
444 typedef struct { 1482 typedef struct {
445 ev_tstamp at; 1483 ev_tstamp at;
446 WT w; 1484 WT w;
447 } ANHE; 1485 } ANHE;
448 1486
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1487 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1488 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 1489 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 1490#else
1491 /* a heap element */
453 typedef WT ANHE; 1492 typedef WT ANHE;
454 1493
455 #define ANHE_w(he) (he) 1494 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 1495 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 1496 #define ANHE_at_cache(he)
458#endif 1497#endif
459 1498
460#if EV_MULTIPLICITY 1499#if EV_MULTIPLICITY
461 1500
462 struct ev_loop 1501 struct ev_loop
468 #undef VAR 1507 #undef VAR
469 }; 1508 };
470 #include "ev_wrap.h" 1509 #include "ev_wrap.h"
471 1510
472 static struct ev_loop default_loop_struct; 1511 static struct ev_loop default_loop_struct;
473 struct ev_loop *ev_default_loop_ptr; 1512 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
474 1513
475#else 1514#else
476 1515
477 ev_tstamp ev_rt_now; 1516 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
478 #define VAR(name,decl) static decl; 1517 #define VAR(name,decl) static decl;
479 #include "ev_vars.h" 1518 #include "ev_vars.h"
480 #undef VAR 1519 #undef VAR
481 1520
482 static int ev_default_loop_ptr; 1521 static int ev_default_loop_ptr;
483 1522
484#endif 1523#endif
485 1524
1525#if EV_FEATURE_API
1526# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1527# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1528# define EV_INVOKE_PENDING invoke_cb (EV_A)
1529#else
1530# define EV_RELEASE_CB (void)0
1531# define EV_ACQUIRE_CB (void)0
1532# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1533#endif
1534
1535#define EVBREAK_RECURSE 0x80
1536
486/*****************************************************************************/ 1537/*****************************************************************************/
487 1538
1539#ifndef EV_HAVE_EV_TIME
488ev_tstamp 1540ev_tstamp
489ev_time (void) 1541ev_time (void) EV_THROW
490{ 1542{
491#if EV_USE_REALTIME 1543#if EV_USE_REALTIME
1544 if (expect_true (have_realtime))
1545 {
492 struct timespec ts; 1546 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 1547 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 1548 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 1549 }
1550#endif
1551
496 struct timeval tv; 1552 struct timeval tv;
497 gettimeofday (&tv, 0); 1553 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 1554 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 1555}
1556#endif
501 1557
502ev_tstamp inline_size 1558inline_size ev_tstamp
503get_clock (void) 1559get_clock (void)
504{ 1560{
505#if EV_USE_MONOTONIC 1561#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 1562 if (expect_true (have_monotonic))
507 { 1563 {
514 return ev_time (); 1570 return ev_time ();
515} 1571}
516 1572
517#if EV_MULTIPLICITY 1573#if EV_MULTIPLICITY
518ev_tstamp 1574ev_tstamp
519ev_now (EV_P) 1575ev_now (EV_P) EV_THROW
520{ 1576{
521 return ev_rt_now; 1577 return ev_rt_now;
522} 1578}
523#endif 1579#endif
524 1580
525void 1581void
526ev_sleep (ev_tstamp delay) 1582ev_sleep (ev_tstamp delay) EV_THROW
527{ 1583{
528 if (delay > 0.) 1584 if (delay > 0.)
529 { 1585 {
530#if EV_USE_NANOSLEEP 1586#if EV_USE_NANOSLEEP
531 struct timespec ts; 1587 struct timespec ts;
532 1588
533 ts.tv_sec = (time_t)delay; 1589 EV_TS_SET (ts, delay);
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0); 1590 nanosleep (&ts, 0);
537#elif defined(_WIN32) 1591#elif defined _WIN32
538 Sleep ((unsigned long)(delay * 1e3)); 1592 Sleep ((unsigned long)(delay * 1e3));
539#else 1593#else
540 struct timeval tv; 1594 struct timeval tv;
541 1595
542 tv.tv_sec = (time_t)delay; 1596 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1597 /* something not guaranteed by newer posix versions, but guaranteed */
544 1598 /* by older ones */
1599 EV_TV_SET (tv, delay);
545 select (0, 0, 0, 0, &tv); 1600 select (0, 0, 0, 0, &tv);
546#endif 1601#endif
547 } 1602 }
548} 1603}
549 1604
550/*****************************************************************************/ 1605/*****************************************************************************/
551 1606
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1607#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 1608
554int inline_size 1609/* find a suitable new size for the given array, */
1610/* hopefully by rounding to a nice-to-malloc size */
1611inline_size int
555array_nextsize (int elem, int cur, int cnt) 1612array_nextsize (int elem, int cur, int cnt)
556{ 1613{
557 int ncur = cur + 1; 1614 int ncur = cur + 1;
558 1615
559 do 1616 do
560 ncur <<= 1; 1617 ncur <<= 1;
561 while (cnt > ncur); 1618 while (cnt > ncur);
562 1619
563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1620 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1621 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
565 { 1622 {
566 ncur *= elem; 1623 ncur *= elem;
567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1624 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
568 ncur = ncur - sizeof (void *) * 4; 1625 ncur = ncur - sizeof (void *) * 4;
570 } 1627 }
571 1628
572 return ncur; 1629 return ncur;
573} 1630}
574 1631
575static noinline void * 1632static void * noinline ecb_cold
576array_realloc (int elem, void *base, int *cur, int cnt) 1633array_realloc (int elem, void *base, int *cur, int cnt)
577{ 1634{
578 *cur = array_nextsize (elem, *cur, cnt); 1635 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 1636 return ev_realloc (base, elem * *cur);
580} 1637}
1638
1639#define array_init_zero(base,count) \
1640 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 1641
582#define array_needsize(type,base,cur,cnt,init) \ 1642#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 1643 if (expect_false ((cnt) > (cur))) \
584 { \ 1644 { \
585 int ocur_ = (cur); \ 1645 int ecb_unused ocur_ = (cur); \
586 (base) = (type *)array_realloc \ 1646 (base) = (type *)array_realloc \
587 (sizeof (type), (base), &(cur), (cnt)); \ 1647 (sizeof (type), (base), &(cur), (cnt)); \
588 init ((base) + (ocur_), (cur) - ocur_); \ 1648 init ((base) + (ocur_), (cur) - ocur_); \
589 } 1649 }
590 1650
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1657 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 1658 }
599#endif 1659#endif
600 1660
601#define array_free(stem, idx) \ 1661#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1662 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 1663
604/*****************************************************************************/ 1664/*****************************************************************************/
605 1665
1666/* dummy callback for pending events */
1667static void noinline
1668pendingcb (EV_P_ ev_prepare *w, int revents)
1669{
1670}
1671
606void noinline 1672void noinline
607ev_feed_event (EV_P_ void *w, int revents) 1673ev_feed_event (EV_P_ void *w, int revents) EV_THROW
608{ 1674{
609 W w_ = (W)w; 1675 W w_ = (W)w;
610 int pri = ABSPRI (w_); 1676 int pri = ABSPRI (w_);
611 1677
612 if (expect_false (w_->pending)) 1678 if (expect_false (w_->pending))
616 w_->pending = ++pendingcnt [pri]; 1682 w_->pending = ++pendingcnt [pri];
617 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1683 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
618 pendings [pri][w_->pending - 1].w = w_; 1684 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 1685 pendings [pri][w_->pending - 1].events = revents;
620 } 1686 }
621}
622 1687
623void inline_speed 1688 pendingpri = NUMPRI - 1;
1689}
1690
1691inline_speed void
1692feed_reverse (EV_P_ W w)
1693{
1694 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1695 rfeeds [rfeedcnt++] = w;
1696}
1697
1698inline_size void
1699feed_reverse_done (EV_P_ int revents)
1700{
1701 do
1702 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1703 while (rfeedcnt);
1704}
1705
1706inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 1707queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 1708{
626 int i; 1709 int i;
627 1710
628 for (i = 0; i < eventcnt; ++i) 1711 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 1712 ev_feed_event (EV_A_ events [i], type);
630} 1713}
631 1714
632/*****************************************************************************/ 1715/*****************************************************************************/
633 1716
634void inline_size 1717inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 1718fd_event_nocheck (EV_P_ int fd, int revents)
649{ 1719{
650 ANFD *anfd = anfds + fd; 1720 ANFD *anfd = anfds + fd;
651 ev_io *w; 1721 ev_io *w;
652 1722
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1723 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 1727 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 1728 ev_feed_event (EV_A_ (W)w, ev);
659 } 1729 }
660} 1730}
661 1731
1732/* do not submit kernel events for fds that have reify set */
1733/* because that means they changed while we were polling for new events */
1734inline_speed void
1735fd_event (EV_P_ int fd, int revents)
1736{
1737 ANFD *anfd = anfds + fd;
1738
1739 if (expect_true (!anfd->reify))
1740 fd_event_nocheck (EV_A_ fd, revents);
1741}
1742
662void 1743void
663ev_feed_fd_event (EV_P_ int fd, int revents) 1744ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
664{ 1745{
665 if (fd >= 0 && fd < anfdmax) 1746 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 1747 fd_event_nocheck (EV_A_ fd, revents);
667} 1748}
668 1749
669void inline_size 1750/* make sure the external fd watch events are in-sync */
1751/* with the kernel/libev internal state */
1752inline_size void
670fd_reify (EV_P) 1753fd_reify (EV_P)
671{ 1754{
672 int i; 1755 int i;
1756
1757#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1758 for (i = 0; i < fdchangecnt; ++i)
1759 {
1760 int fd = fdchanges [i];
1761 ANFD *anfd = anfds + fd;
1762
1763 if (anfd->reify & EV__IOFDSET && anfd->head)
1764 {
1765 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1766
1767 if (handle != anfd->handle)
1768 {
1769 unsigned long arg;
1770
1771 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1772
1773 /* handle changed, but fd didn't - we need to do it in two steps */
1774 backend_modify (EV_A_ fd, anfd->events, 0);
1775 anfd->events = 0;
1776 anfd->handle = handle;
1777 }
1778 }
1779 }
1780#endif
673 1781
674 for (i = 0; i < fdchangecnt; ++i) 1782 for (i = 0; i < fdchangecnt; ++i)
675 { 1783 {
676 int fd = fdchanges [i]; 1784 int fd = fdchanges [i];
677 ANFD *anfd = anfds + fd; 1785 ANFD *anfd = anfds + fd;
678 ev_io *w; 1786 ev_io *w;
679 1787
680 unsigned char events = 0; 1788 unsigned char o_events = anfd->events;
1789 unsigned char o_reify = anfd->reify;
681 1790
682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1791 anfd->reify = 0;
683 events |= (unsigned char)w->events;
684 1792
685#if EV_SELECT_IS_WINSOCKET 1793 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
686 if (events)
687 { 1794 {
688 unsigned long argp; 1795 anfd->events = 0;
689 #ifdef EV_FD_TO_WIN32_HANDLE 1796
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1797 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
691 #else 1798 anfd->events |= (unsigned char)w->events;
692 anfd->handle = _get_osfhandle (fd); 1799
693 #endif 1800 if (o_events != anfd->events)
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1801 o_reify = EV__IOFDSET; /* actually |= */
695 } 1802 }
696#endif
697 1803
698 { 1804 if (o_reify & EV__IOFDSET)
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
702 anfd->reify = 0;
703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 1805 backend_modify (EV_A_ fd, o_events, anfd->events);
707 }
708 } 1806 }
709 1807
710 fdchangecnt = 0; 1808 fdchangecnt = 0;
711} 1809}
712 1810
713void inline_size 1811/* something about the given fd changed */
1812inline_size void
714fd_change (EV_P_ int fd, int flags) 1813fd_change (EV_P_ int fd, int flags)
715{ 1814{
716 unsigned char reify = anfds [fd].reify; 1815 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 1816 anfds [fd].reify |= flags;
718 1817
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1821 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 1822 fdchanges [fdchangecnt - 1] = fd;
724 } 1823 }
725} 1824}
726 1825
727void inline_speed 1826/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1827inline_speed void ecb_cold
728fd_kill (EV_P_ int fd) 1828fd_kill (EV_P_ int fd)
729{ 1829{
730 ev_io *w; 1830 ev_io *w;
731 1831
732 while ((w = (ev_io *)anfds [fd].head)) 1832 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 1834 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1835 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 1836 }
737} 1837}
738 1838
739int inline_size 1839/* check whether the given fd is actually valid, for error recovery */
1840inline_size int ecb_cold
740fd_valid (int fd) 1841fd_valid (int fd)
741{ 1842{
742#ifdef _WIN32 1843#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 1844 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
744#else 1845#else
745 return fcntl (fd, F_GETFD) != -1; 1846 return fcntl (fd, F_GETFD) != -1;
746#endif 1847#endif
747} 1848}
748 1849
749/* called on EBADF to verify fds */ 1850/* called on EBADF to verify fds */
750static void noinline 1851static void noinline ecb_cold
751fd_ebadf (EV_P) 1852fd_ebadf (EV_P)
752{ 1853{
753 int fd; 1854 int fd;
754 1855
755 for (fd = 0; fd < anfdmax; ++fd) 1856 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 1857 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 1858 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 1859 fd_kill (EV_A_ fd);
759} 1860}
760 1861
761/* called on ENOMEM in select/poll to kill some fds and retry */ 1862/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 1863static void noinline ecb_cold
763fd_enomem (EV_P) 1864fd_enomem (EV_P)
764{ 1865{
765 int fd; 1866 int fd;
766 1867
767 for (fd = anfdmax; fd--; ) 1868 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events) 1869 if (anfds [fd].events)
769 { 1870 {
770 fd_kill (EV_A_ fd); 1871 fd_kill (EV_A_ fd);
771 return; 1872 break;
772 } 1873 }
773} 1874}
774 1875
775/* usually called after fork if backend needs to re-arm all fds from scratch */ 1876/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline 1877static void noinline
780 1881
781 for (fd = 0; fd < anfdmax; ++fd) 1882 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 1883 if (anfds [fd].events)
783 { 1884 {
784 anfds [fd].events = 0; 1885 anfds [fd].events = 0;
1886 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1887 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 1888 }
787} 1889}
788 1890
1891/* used to prepare libev internal fd's */
1892/* this is not fork-safe */
1893inline_speed void
1894fd_intern (int fd)
1895{
1896#ifdef _WIN32
1897 unsigned long arg = 1;
1898 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1899#else
1900 fcntl (fd, F_SETFD, FD_CLOEXEC);
1901 fcntl (fd, F_SETFL, O_NONBLOCK);
1902#endif
1903}
1904
789/*****************************************************************************/ 1905/*****************************************************************************/
790 1906
791/* 1907/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not 1908 * the heap functions want a real array index. array index 0 is guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1909 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree. 1910 * the branching factor of the d-tree.
795 */ 1911 */
796 1912
797/* 1913/*
802 */ 1918 */
803#if EV_USE_4HEAP 1919#if EV_USE_4HEAP
804 1920
805#define DHEAP 4 1921#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1922#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807 1923#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808/* towards the root */ 1924#define UPHEAP_DONE(p,k) ((p) == (k))
809void inline_speed
810upheap (ANHE *heap, int k)
811{
812 ANHE he = heap [k];
813
814 for (;;)
815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
821 heap [k] = heap [p];
822 ev_active (ANHE_w (heap [k])) = k;
823 k = p;
824 }
825
826 ev_active (ANHE_w (he)) = k;
827 heap [k] = he;
828}
829 1925
830/* away from the root */ 1926/* away from the root */
831void inline_speed 1927inline_speed void
832downheap (ANHE *heap, int N, int k) 1928downheap (ANHE *heap, int N, int k)
833{ 1929{
834 ANHE he = heap [k]; 1930 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0; 1931 ANHE *E = heap + N + HEAP0;
836 1932
837 for (;;) 1933 for (;;)
838 { 1934 {
839 ev_tstamp minat; 1935 ev_tstamp minat;
840 ANHE *minpos; 1936 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1937 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
842 1938
843 // find minimum child 1939 /* find minimum child */
844 if (expect_true (pos + DHEAP - 1 < E)) 1940 if (expect_true (pos + DHEAP - 1 < E))
845 { 1941 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1942 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1943 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1944 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 1945 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 } 1946 }
851 else if (pos < E) 1947 else if (pos < E)
852 { 1948 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1949 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1950 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 break; 1955 break;
860 1956
861 if (ANHE_at (he) <= minat) 1957 if (ANHE_at (he) <= minat)
862 break; 1958 break;
863 1959
1960 heap [k] = *minpos;
864 ev_active (ANHE_w (*minpos)) = k; 1961 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866 1962
867 k = minpos - heap; 1963 k = minpos - heap;
868 } 1964 }
869 1965
1966 heap [k] = he;
870 ev_active (ANHE_w (he)) = k; 1967 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872} 1968}
873 1969
874#else // 4HEAP 1970#else /* 4HEAP */
875 1971
876#define HEAP0 1 1972#define HEAP0 1
1973#define HPARENT(k) ((k) >> 1)
1974#define UPHEAP_DONE(p,k) (!(p))
877 1975
878/* towards the root */ 1976/* away from the root */
879void inline_speed 1977inline_speed void
880upheap (ANHE *heap, int k) 1978downheap (ANHE *heap, int N, int k)
881{ 1979{
882 ANHE he = heap [k]; 1980 ANHE he = heap [k];
883 1981
884 for (;;) 1982 for (;;)
885 { 1983 {
886 int p = k >> 1; 1984 int c = k << 1;
887 1985
888 /* maybe we could use a dummy element at heap [0]? */ 1986 if (c >= N + HEAP0)
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break; 1987 break;
891 1988
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1989 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0; 1990 ? 1 : 0;
916 1991
917 if (ANHE_at (he) <= ANHE_at (heap [c])) 1992 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break; 1993 break;
919 1994
926 heap [k] = he; 2001 heap [k] = he;
927 ev_active (ANHE_w (he)) = k; 2002 ev_active (ANHE_w (he)) = k;
928} 2003}
929#endif 2004#endif
930 2005
931void inline_size 2006/* towards the root */
2007inline_speed void
2008upheap (ANHE *heap, int k)
2009{
2010 ANHE he = heap [k];
2011
2012 for (;;)
2013 {
2014 int p = HPARENT (k);
2015
2016 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2017 break;
2018
2019 heap [k] = heap [p];
2020 ev_active (ANHE_w (heap [k])) = k;
2021 k = p;
2022 }
2023
2024 heap [k] = he;
2025 ev_active (ANHE_w (he)) = k;
2026}
2027
2028/* move an element suitably so it is in a correct place */
2029inline_size void
932adjustheap (ANHE *heap, int N, int k) 2030adjustheap (ANHE *heap, int N, int k)
933{ 2031{
2032 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
934 upheap (heap, k); 2033 upheap (heap, k);
2034 else
935 downheap (heap, N, k); 2035 downheap (heap, N, k);
2036}
2037
2038/* rebuild the heap: this function is used only once and executed rarely */
2039inline_size void
2040reheap (ANHE *heap, int N)
2041{
2042 int i;
2043
2044 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2045 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2046 for (i = 0; i < N; ++i)
2047 upheap (heap, i + HEAP0);
936} 2048}
937 2049
938/*****************************************************************************/ 2050/*****************************************************************************/
939 2051
2052/* associate signal watchers to a signal signal */
940typedef struct 2053typedef struct
941{ 2054{
2055 EV_ATOMIC_T pending;
2056#if EV_MULTIPLICITY
2057 EV_P;
2058#endif
942 WL head; 2059 WL head;
943 EV_ATOMIC_T gotsig;
944} ANSIG; 2060} ANSIG;
945 2061
946static ANSIG *signals; 2062static ANSIG signals [EV_NSIG - 1];
947static int signalmax;
948
949static EV_ATOMIC_T gotsig;
950
951void inline_size
952signals_init (ANSIG *base, int count)
953{
954 while (count--)
955 {
956 base->head = 0;
957 base->gotsig = 0;
958
959 ++base;
960 }
961}
962 2063
963/*****************************************************************************/ 2064/*****************************************************************************/
964 2065
965void inline_speed 2066#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
966fd_intern (int fd)
967{
968#ifdef _WIN32
969 int arg = 1;
970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
971#else
972 fcntl (fd, F_SETFD, FD_CLOEXEC);
973 fcntl (fd, F_SETFL, O_NONBLOCK);
974#endif
975}
976 2067
977static void noinline 2068static void noinline ecb_cold
978evpipe_init (EV_P) 2069evpipe_init (EV_P)
979{ 2070{
980 if (!ev_is_active (&pipeev)) 2071 if (!ev_is_active (&pipe_w))
2072 {
2073 int fds [2];
2074
2075# if EV_USE_EVENTFD
2076 fds [0] = -1;
2077 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2078 if (fds [1] < 0 && errno == EINVAL)
2079 fds [1] = eventfd (0, 0);
2080
2081 if (fds [1] < 0)
2082# endif
2083 {
2084 while (pipe (fds))
2085 ev_syserr ("(libev) error creating signal/async pipe");
2086
2087 fd_intern (fds [0]);
2088 }
2089
2090 fd_intern (fds [1]);
2091
2092 evpipe [0] = fds [0];
2093
2094 if (evpipe [1] < 0)
2095 evpipe [1] = fds [1]; /* first call, set write fd */
2096 else
2097 {
2098 /* on subsequent calls, do not change evpipe [1] */
2099 /* so that evpipe_write can always rely on its value. */
2100 /* this branch does not do anything sensible on windows, */
2101 /* so must not be executed on windows */
2102
2103 dup2 (fds [1], evpipe [1]);
2104 close (fds [1]);
2105 }
2106
2107 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2108 ev_io_start (EV_A_ &pipe_w);
2109 ev_unref (EV_A); /* watcher should not keep loop alive */
981 { 2110 }
2111}
2112
2113inline_speed void
2114evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2115{
2116 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2117
2118 if (expect_true (*flag))
2119 return;
2120
2121 *flag = 1;
2122 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2123
2124 pipe_write_skipped = 1;
2125
2126 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2127
2128 if (pipe_write_wanted)
2129 {
2130 int old_errno;
2131
2132 pipe_write_skipped = 0;
2133 ECB_MEMORY_FENCE_RELEASE;
2134
2135 old_errno = errno; /* save errno because write will clobber it */
2136
982#if EV_USE_EVENTFD 2137#if EV_USE_EVENTFD
983 if ((evfd = eventfd (0, 0)) >= 0) 2138 if (evpipe [0] < 0)
984 { 2139 {
985 evpipe [0] = -1; 2140 uint64_t counter = 1;
986 fd_intern (evfd); 2141 write (evpipe [1], &counter, sizeof (uint64_t));
987 ev_io_set (&pipeev, evfd, EV_READ);
988 } 2142 }
989 else 2143 else
990#endif 2144#endif
991 { 2145 {
992 while (pipe (evpipe)) 2146#ifdef _WIN32
993 syserr ("(libev) error creating signal/async pipe"); 2147 WSABUF buf;
994 2148 DWORD sent;
995 fd_intern (evpipe [0]); 2149 buf.buf = &buf;
996 fd_intern (evpipe [1]); 2150 buf.len = 1;
997 ev_io_set (&pipeev, evpipe [0], EV_READ); 2151 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2152#else
2153 write (evpipe [1], &(evpipe [1]), 1);
2154#endif
998 } 2155 }
999 2156
1000 ev_io_start (EV_A_ &pipeev); 2157 errno = old_errno;
1001 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 }
1003}
1004
1005void inline_size
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{
1008 if (!*flag)
1009 { 2158 }
1010 int old_errno = errno; /* save errno because write might clobber it */ 2159}
1011 2160
1012 *flag = 1; 2161/* called whenever the libev signal pipe */
2162/* got some events (signal, async) */
2163static void
2164pipecb (EV_P_ ev_io *iow, int revents)
2165{
2166 int i;
1013 2167
2168 if (revents & EV_READ)
2169 {
1014#if EV_USE_EVENTFD 2170#if EV_USE_EVENTFD
1015 if (evfd >= 0) 2171 if (evpipe [0] < 0)
1016 { 2172 {
1017 uint64_t counter = 1; 2173 uint64_t counter;
1018 write (evfd, &counter, sizeof (uint64_t)); 2174 read (evpipe [1], &counter, sizeof (uint64_t));
1019 } 2175 }
1020 else 2176 else
1021#endif 2177#endif
1022 write (evpipe [1], &old_errno, 1); 2178 {
1023
1024 errno = old_errno;
1025 }
1026}
1027
1028static void
1029pipecb (EV_P_ ev_io *iow, int revents)
1030{
1031#if EV_USE_EVENTFD
1032 if (evfd >= 0)
1033 {
1034 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t));
1036 }
1037 else
1038#endif
1039 {
1040 char dummy; 2179 char dummy[4];
2180#ifdef _WIN32
2181 WSABUF buf;
2182 DWORD recvd;
2183 DWORD flags = 0;
2184 buf.buf = dummy;
2185 buf.len = sizeof (dummy);
2186 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2187#else
1041 read (evpipe [0], &dummy, 1); 2188 read (evpipe [0], &dummy, sizeof (dummy));
2189#endif
2190 }
2191 }
2192
2193 pipe_write_skipped = 0;
2194
2195 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2196
2197#if EV_SIGNAL_ENABLE
2198 if (sig_pending)
1042 } 2199 {
2200 sig_pending = 0;
1043 2201
1044 if (gotsig && ev_is_default_loop (EV_A)) 2202 ECB_MEMORY_FENCE;
1045 {
1046 int signum;
1047 gotsig = 0;
1048 2203
1049 for (signum = signalmax; signum--; ) 2204 for (i = EV_NSIG - 1; i--; )
1050 if (signals [signum].gotsig) 2205 if (expect_false (signals [i].pending))
1051 ev_feed_signal_event (EV_A_ signum + 1); 2206 ev_feed_signal_event (EV_A_ i + 1);
1052 } 2207 }
2208#endif
1053 2209
1054#if EV_ASYNC_ENABLE 2210#if EV_ASYNC_ENABLE
1055 if (gotasync) 2211 if (async_pending)
1056 { 2212 {
1057 int i; 2213 async_pending = 0;
1058 gotasync = 0; 2214
2215 ECB_MEMORY_FENCE;
1059 2216
1060 for (i = asynccnt; i--; ) 2217 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent) 2218 if (asyncs [i]->sent)
1062 { 2219 {
1063 asyncs [i]->sent = 0; 2220 asyncs [i]->sent = 0;
2221 ECB_MEMORY_FENCE_RELEASE;
1064 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2222 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1065 } 2223 }
1066 } 2224 }
1067#endif 2225#endif
1068} 2226}
1069 2227
1070/*****************************************************************************/ 2228/*****************************************************************************/
1071 2229
2230void
2231ev_feed_signal (int signum) EV_THROW
2232{
2233#if EV_MULTIPLICITY
2234 ECB_MEMORY_FENCE_ACQUIRE;
2235 EV_P = signals [signum - 1].loop;
2236
2237 if (!EV_A)
2238 return;
2239#endif
2240
2241 signals [signum - 1].pending = 1;
2242 evpipe_write (EV_A_ &sig_pending);
2243}
2244
1072static void 2245static void
1073ev_sighandler (int signum) 2246ev_sighandler (int signum)
1074{ 2247{
2248#ifdef _WIN32
2249 signal (signum, ev_sighandler);
2250#endif
2251
2252 ev_feed_signal (signum);
2253}
2254
2255void noinline
2256ev_feed_signal_event (EV_P_ int signum) EV_THROW
2257{
2258 WL w;
2259
2260 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2261 return;
2262
2263 --signum;
2264
1075#if EV_MULTIPLICITY 2265#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct; 2266 /* it is permissible to try to feed a signal to the wrong loop */
1077#endif 2267 /* or, likely more useful, feeding a signal nobody is waiting for */
1078 2268
1079#if _WIN32 2269 if (expect_false (signals [signum].loop != EV_A))
1080 signal (signum, ev_sighandler);
1081#endif
1082
1083 signals [signum - 1].gotsig = 1;
1084 evpipe_write (EV_A_ &gotsig);
1085}
1086
1087void noinline
1088ev_feed_signal_event (EV_P_ int signum)
1089{
1090 WL w;
1091
1092#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1094#endif
1095
1096 --signum;
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return; 2270 return;
2271#endif
1100 2272
1101 signals [signum].gotsig = 0; 2273 signals [signum].pending = 0;
2274 ECB_MEMORY_FENCE_RELEASE;
1102 2275
1103 for (w = signals [signum].head; w; w = w->next) 2276 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2277 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105} 2278}
1106 2279
2280#if EV_USE_SIGNALFD
2281static void
2282sigfdcb (EV_P_ ev_io *iow, int revents)
2283{
2284 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2285
2286 for (;;)
2287 {
2288 ssize_t res = read (sigfd, si, sizeof (si));
2289
2290 /* not ISO-C, as res might be -1, but works with SuS */
2291 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2292 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2293
2294 if (res < (ssize_t)sizeof (si))
2295 break;
2296 }
2297}
2298#endif
2299
2300#endif
2301
1107/*****************************************************************************/ 2302/*****************************************************************************/
1108 2303
2304#if EV_CHILD_ENABLE
1109static WL childs [EV_PID_HASHSIZE]; 2305static WL childs [EV_PID_HASHSIZE];
1110
1111#ifndef _WIN32
1112 2306
1113static ev_signal childev; 2307static ev_signal childev;
1114 2308
1115#ifndef WIFCONTINUED 2309#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0 2310# define WIFCONTINUED(status) 0
1117#endif 2311#endif
1118 2312
1119void inline_speed 2313/* handle a single child status event */
2314inline_speed void
1120child_reap (EV_P_ int chain, int pid, int status) 2315child_reap (EV_P_ int chain, int pid, int status)
1121{ 2316{
1122 ev_child *w; 2317 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2318 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1124 2319
1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2320 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1126 { 2321 {
1127 if ((w->pid == pid || !w->pid) 2322 if ((w->pid == pid || !w->pid)
1128 && (!traced || (w->flags & 1))) 2323 && (!traced || (w->flags & 1)))
1129 { 2324 {
1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2325 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1137 2332
1138#ifndef WCONTINUED 2333#ifndef WCONTINUED
1139# define WCONTINUED 0 2334# define WCONTINUED 0
1140#endif 2335#endif
1141 2336
2337/* called on sigchld etc., calls waitpid */
1142static void 2338static void
1143childcb (EV_P_ ev_signal *sw, int revents) 2339childcb (EV_P_ ev_signal *sw, int revents)
1144{ 2340{
1145 int pid, status; 2341 int pid, status;
1146 2342
1154 /* make sure we are called again until all children have been reaped */ 2350 /* make sure we are called again until all children have been reaped */
1155 /* we need to do it this way so that the callback gets called before we continue */ 2351 /* we need to do it this way so that the callback gets called before we continue */
1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2352 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1157 2353
1158 child_reap (EV_A_ pid, pid, status); 2354 child_reap (EV_A_ pid, pid, status);
1159 if (EV_PID_HASHSIZE > 1) 2355 if ((EV_PID_HASHSIZE) > 1)
1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2356 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1161} 2357}
1162 2358
1163#endif 2359#endif
1164 2360
1165/*****************************************************************************/ 2361/*****************************************************************************/
1166 2362
2363#if EV_USE_IOCP
2364# include "ev_iocp.c"
2365#endif
1167#if EV_USE_PORT 2366#if EV_USE_PORT
1168# include "ev_port.c" 2367# include "ev_port.c"
1169#endif 2368#endif
1170#if EV_USE_KQUEUE 2369#if EV_USE_KQUEUE
1171# include "ev_kqueue.c" 2370# include "ev_kqueue.c"
1178#endif 2377#endif
1179#if EV_USE_SELECT 2378#if EV_USE_SELECT
1180# include "ev_select.c" 2379# include "ev_select.c"
1181#endif 2380#endif
1182 2381
1183int 2382int ecb_cold
1184ev_version_major (void) 2383ev_version_major (void) EV_THROW
1185{ 2384{
1186 return EV_VERSION_MAJOR; 2385 return EV_VERSION_MAJOR;
1187} 2386}
1188 2387
1189int 2388int ecb_cold
1190ev_version_minor (void) 2389ev_version_minor (void) EV_THROW
1191{ 2390{
1192 return EV_VERSION_MINOR; 2391 return EV_VERSION_MINOR;
1193} 2392}
1194 2393
1195/* return true if we are running with elevated privileges and should ignore env variables */ 2394/* return true if we are running with elevated privileges and should ignore env variables */
1196int inline_size 2395int inline_size ecb_cold
1197enable_secure (void) 2396enable_secure (void)
1198{ 2397{
1199#ifdef _WIN32 2398#ifdef _WIN32
1200 return 0; 2399 return 0;
1201#else 2400#else
1202 return getuid () != geteuid () 2401 return getuid () != geteuid ()
1203 || getgid () != getegid (); 2402 || getgid () != getegid ();
1204#endif 2403#endif
1205} 2404}
1206 2405
1207unsigned int 2406unsigned int ecb_cold
1208ev_supported_backends (void) 2407ev_supported_backends (void) EV_THROW
1209{ 2408{
1210 unsigned int flags = 0; 2409 unsigned int flags = 0;
1211 2410
1212 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2411 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1213 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2412 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1216 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2415 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1217 2416
1218 return flags; 2417 return flags;
1219} 2418}
1220 2419
1221unsigned int 2420unsigned int ecb_cold
1222ev_recommended_backends (void) 2421ev_recommended_backends (void) EV_THROW
1223{ 2422{
1224 unsigned int flags = ev_supported_backends (); 2423 unsigned int flags = ev_supported_backends ();
1225 2424
1226#ifndef __NetBSD__ 2425#ifndef __NetBSD__
1227 /* kqueue is borked on everything but netbsd apparently */ 2426 /* kqueue is borked on everything but netbsd apparently */
1228 /* it usually doesn't work correctly on anything but sockets and pipes */ 2427 /* it usually doesn't work correctly on anything but sockets and pipes */
1229 flags &= ~EVBACKEND_KQUEUE; 2428 flags &= ~EVBACKEND_KQUEUE;
1230#endif 2429#endif
1231#ifdef __APPLE__ 2430#ifdef __APPLE__
1232 // flags &= ~EVBACKEND_KQUEUE; for documentation 2431 /* only select works correctly on that "unix-certified" platform */
1233 flags &= ~EVBACKEND_POLL; 2432 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2433 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2434#endif
2435#ifdef __FreeBSD__
2436 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1234#endif 2437#endif
1235 2438
1236 return flags; 2439 return flags;
1237} 2440}
1238 2441
2442unsigned int ecb_cold
2443ev_embeddable_backends (void) EV_THROW
2444{
2445 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2446
2447 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2448 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2449 flags &= ~EVBACKEND_EPOLL;
2450
2451 return flags;
2452}
2453
1239unsigned int 2454unsigned int
1240ev_embeddable_backends (void) 2455ev_backend (EV_P) EV_THROW
1241{ 2456{
1242 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2457 return backend;
1243
1244 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1245 /* please fix it and tell me how to detect the fix */
1246 flags &= ~EVBACKEND_EPOLL;
1247
1248 return flags;
1249} 2458}
1250 2459
2460#if EV_FEATURE_API
1251unsigned int 2461unsigned int
1252ev_backend (EV_P) 2462ev_iteration (EV_P) EV_THROW
1253{ 2463{
1254 return backend; 2464 return loop_count;
1255} 2465}
1256 2466
1257unsigned int 2467unsigned int
1258ev_loop_count (EV_P) 2468ev_depth (EV_P) EV_THROW
1259{ 2469{
1260 return loop_count; 2470 return loop_depth;
1261} 2471}
1262 2472
1263void 2473void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2474ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1265{ 2475{
1266 io_blocktime = interval; 2476 io_blocktime = interval;
1267} 2477}
1268 2478
1269void 2479void
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2480ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1271{ 2481{
1272 timeout_blocktime = interval; 2482 timeout_blocktime = interval;
1273} 2483}
1274 2484
2485void
2486ev_set_userdata (EV_P_ void *data) EV_THROW
2487{
2488 userdata = data;
2489}
2490
2491void *
2492ev_userdata (EV_P) EV_THROW
2493{
2494 return userdata;
2495}
2496
2497void
2498ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2499{
2500 invoke_cb = invoke_pending_cb;
2501}
2502
2503void
2504ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2505{
2506 release_cb = release;
2507 acquire_cb = acquire;
2508}
2509#endif
2510
2511/* initialise a loop structure, must be zero-initialised */
1275static void noinline 2512static void noinline ecb_cold
1276loop_init (EV_P_ unsigned int flags) 2513loop_init (EV_P_ unsigned int flags) EV_THROW
1277{ 2514{
1278 if (!backend) 2515 if (!backend)
1279 { 2516 {
2517 origflags = flags;
2518
2519#if EV_USE_REALTIME
2520 if (!have_realtime)
2521 {
2522 struct timespec ts;
2523
2524 if (!clock_gettime (CLOCK_REALTIME, &ts))
2525 have_realtime = 1;
2526 }
2527#endif
2528
1280#if EV_USE_MONOTONIC 2529#if EV_USE_MONOTONIC
2530 if (!have_monotonic)
1281 { 2531 {
1282 struct timespec ts; 2532 struct timespec ts;
2533
1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2534 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1284 have_monotonic = 1; 2535 have_monotonic = 1;
1285 } 2536 }
1286#endif
1287
1288 ev_rt_now = ev_time ();
1289 mn_now = get_clock ();
1290 now_floor = mn_now;
1291 rtmn_diff = ev_rt_now - mn_now;
1292
1293 io_blocktime = 0.;
1294 timeout_blocktime = 0.;
1295 backend = 0;
1296 backend_fd = -1;
1297 gotasync = 0;
1298#if EV_USE_INOTIFY
1299 fs_fd = -2;
1300#endif 2537#endif
1301 2538
1302 /* pid check not overridable via env */ 2539 /* pid check not overridable via env */
1303#ifndef _WIN32 2540#ifndef _WIN32
1304 if (flags & EVFLAG_FORKCHECK) 2541 if (flags & EVFLAG_FORKCHECK)
1308 if (!(flags & EVFLAG_NOENV) 2545 if (!(flags & EVFLAG_NOENV)
1309 && !enable_secure () 2546 && !enable_secure ()
1310 && getenv ("LIBEV_FLAGS")) 2547 && getenv ("LIBEV_FLAGS"))
1311 flags = atoi (getenv ("LIBEV_FLAGS")); 2548 flags = atoi (getenv ("LIBEV_FLAGS"));
1312 2549
1313 if (!(flags & 0x0000ffffU)) 2550 ev_rt_now = ev_time ();
2551 mn_now = get_clock ();
2552 now_floor = mn_now;
2553 rtmn_diff = ev_rt_now - mn_now;
2554#if EV_FEATURE_API
2555 invoke_cb = ev_invoke_pending;
2556#endif
2557
2558 io_blocktime = 0.;
2559 timeout_blocktime = 0.;
2560 backend = 0;
2561 backend_fd = -1;
2562 sig_pending = 0;
2563#if EV_ASYNC_ENABLE
2564 async_pending = 0;
2565#endif
2566 pipe_write_skipped = 0;
2567 pipe_write_wanted = 0;
2568 evpipe [0] = -1;
2569 evpipe [1] = -1;
2570#if EV_USE_INOTIFY
2571 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2572#endif
2573#if EV_USE_SIGNALFD
2574 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2575#endif
2576
2577 if (!(flags & EVBACKEND_MASK))
1314 flags |= ev_recommended_backends (); 2578 flags |= ev_recommended_backends ();
1315 2579
2580#if EV_USE_IOCP
2581 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2582#endif
1316#if EV_USE_PORT 2583#if EV_USE_PORT
1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2584 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1318#endif 2585#endif
1319#if EV_USE_KQUEUE 2586#if EV_USE_KQUEUE
1320 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2587 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1327#endif 2594#endif
1328#if EV_USE_SELECT 2595#if EV_USE_SELECT
1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2596 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1330#endif 2597#endif
1331 2598
2599 ev_prepare_init (&pending_w, pendingcb);
2600
2601#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1332 ev_init (&pipeev, pipecb); 2602 ev_init (&pipe_w, pipecb);
1333 ev_set_priority (&pipeev, EV_MAXPRI); 2603 ev_set_priority (&pipe_w, EV_MAXPRI);
2604#endif
1334 } 2605 }
1335} 2606}
1336 2607
1337static void noinline 2608/* free up a loop structure */
2609void ecb_cold
1338loop_destroy (EV_P) 2610ev_loop_destroy (EV_P)
1339{ 2611{
1340 int i; 2612 int i;
1341 2613
2614#if EV_MULTIPLICITY
2615 /* mimic free (0) */
2616 if (!EV_A)
2617 return;
2618#endif
2619
2620#if EV_CLEANUP_ENABLE
2621 /* queue cleanup watchers (and execute them) */
2622 if (expect_false (cleanupcnt))
2623 {
2624 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2625 EV_INVOKE_PENDING;
2626 }
2627#endif
2628
2629#if EV_CHILD_ENABLE
2630 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2631 {
2632 ev_ref (EV_A); /* child watcher */
2633 ev_signal_stop (EV_A_ &childev);
2634 }
2635#endif
2636
1342 if (ev_is_active (&pipeev)) 2637 if (ev_is_active (&pipe_w))
1343 { 2638 {
1344 ev_ref (EV_A); /* signal watcher */ 2639 /*ev_ref (EV_A);*/
1345 ev_io_stop (EV_A_ &pipeev); 2640 /*ev_io_stop (EV_A_ &pipe_w);*/
1346 2641
2642 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2643 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2644 }
2645
1347#if EV_USE_EVENTFD 2646#if EV_USE_SIGNALFD
1348 if (evfd >= 0) 2647 if (ev_is_active (&sigfd_w))
1349 close (evfd); 2648 close (sigfd);
1350#endif 2649#endif
1351
1352 if (evpipe [0] >= 0)
1353 {
1354 close (evpipe [0]);
1355 close (evpipe [1]);
1356 }
1357 }
1358 2650
1359#if EV_USE_INOTIFY 2651#if EV_USE_INOTIFY
1360 if (fs_fd >= 0) 2652 if (fs_fd >= 0)
1361 close (fs_fd); 2653 close (fs_fd);
1362#endif 2654#endif
1363 2655
1364 if (backend_fd >= 0) 2656 if (backend_fd >= 0)
1365 close (backend_fd); 2657 close (backend_fd);
1366 2658
2659#if EV_USE_IOCP
2660 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2661#endif
1367#if EV_USE_PORT 2662#if EV_USE_PORT
1368 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2663 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1369#endif 2664#endif
1370#if EV_USE_KQUEUE 2665#if EV_USE_KQUEUE
1371 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2666 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1386#if EV_IDLE_ENABLE 2681#if EV_IDLE_ENABLE
1387 array_free (idle, [i]); 2682 array_free (idle, [i]);
1388#endif 2683#endif
1389 } 2684 }
1390 2685
1391 ev_free (anfds); anfdmax = 0; 2686 ev_free (anfds); anfds = 0; anfdmax = 0;
1392 2687
1393 /* have to use the microsoft-never-gets-it-right macro */ 2688 /* have to use the microsoft-never-gets-it-right macro */
2689 array_free (rfeed, EMPTY);
1394 array_free (fdchange, EMPTY); 2690 array_free (fdchange, EMPTY);
1395 array_free (timer, EMPTY); 2691 array_free (timer, EMPTY);
1396#if EV_PERIODIC_ENABLE 2692#if EV_PERIODIC_ENABLE
1397 array_free (periodic, EMPTY); 2693 array_free (periodic, EMPTY);
1398#endif 2694#endif
1399#if EV_FORK_ENABLE 2695#if EV_FORK_ENABLE
1400 array_free (fork, EMPTY); 2696 array_free (fork, EMPTY);
1401#endif 2697#endif
2698#if EV_CLEANUP_ENABLE
2699 array_free (cleanup, EMPTY);
2700#endif
1402 array_free (prepare, EMPTY); 2701 array_free (prepare, EMPTY);
1403 array_free (check, EMPTY); 2702 array_free (check, EMPTY);
1404#if EV_ASYNC_ENABLE 2703#if EV_ASYNC_ENABLE
1405 array_free (async, EMPTY); 2704 array_free (async, EMPTY);
1406#endif 2705#endif
1407 2706
1408 backend = 0; 2707 backend = 0;
2708
2709#if EV_MULTIPLICITY
2710 if (ev_is_default_loop (EV_A))
2711#endif
2712 ev_default_loop_ptr = 0;
2713#if EV_MULTIPLICITY
2714 else
2715 ev_free (EV_A);
2716#endif
1409} 2717}
1410 2718
1411#if EV_USE_INOTIFY 2719#if EV_USE_INOTIFY
1412void inline_size infy_fork (EV_P); 2720inline_size void infy_fork (EV_P);
1413#endif 2721#endif
1414 2722
1415void inline_size 2723inline_size void
1416loop_fork (EV_P) 2724loop_fork (EV_P)
1417{ 2725{
1418#if EV_USE_PORT 2726#if EV_USE_PORT
1419 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2727 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1420#endif 2728#endif
1426#endif 2734#endif
1427#if EV_USE_INOTIFY 2735#if EV_USE_INOTIFY
1428 infy_fork (EV_A); 2736 infy_fork (EV_A);
1429#endif 2737#endif
1430 2738
2739#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1431 if (ev_is_active (&pipeev)) 2740 if (ev_is_active (&pipe_w))
2741 {
2742 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2743
2744 ev_ref (EV_A);
2745 ev_io_stop (EV_A_ &pipe_w);
2746
2747 if (evpipe [0] >= 0)
2748 EV_WIN32_CLOSE_FD (evpipe [0]);
2749
2750 evpipe_init (EV_A);
2751 /* iterate over everything, in case we missed something before */
2752 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1432 { 2753 }
1433 /* this "locks" the handlers against writing to the pipe */ 2754#endif
1434 /* while we modify the fd vars */ 2755
1435 gotsig = 1; 2756 postfork = 0;
2757}
2758
2759#if EV_MULTIPLICITY
2760
2761struct ev_loop * ecb_cold
2762ev_loop_new (unsigned int flags) EV_THROW
2763{
2764 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2765
2766 memset (EV_A, 0, sizeof (struct ev_loop));
2767 loop_init (EV_A_ flags);
2768
2769 if (ev_backend (EV_A))
2770 return EV_A;
2771
2772 ev_free (EV_A);
2773 return 0;
2774}
2775
2776#endif /* multiplicity */
2777
2778#if EV_VERIFY
2779static void noinline ecb_cold
2780verify_watcher (EV_P_ W w)
2781{
2782 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2783
2784 if (w->pending)
2785 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2786}
2787
2788static void noinline ecb_cold
2789verify_heap (EV_P_ ANHE *heap, int N)
2790{
2791 int i;
2792
2793 for (i = HEAP0; i < N + HEAP0; ++i)
2794 {
2795 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2796 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2797 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2798
2799 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2800 }
2801}
2802
2803static void noinline ecb_cold
2804array_verify (EV_P_ W *ws, int cnt)
2805{
2806 while (cnt--)
2807 {
2808 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2809 verify_watcher (EV_A_ ws [cnt]);
2810 }
2811}
2812#endif
2813
2814#if EV_FEATURE_API
2815void ecb_cold
2816ev_verify (EV_P) EV_THROW
2817{
2818#if EV_VERIFY
2819 int i;
2820 WL w, w2;
2821
2822 assert (activecnt >= -1);
2823
2824 assert (fdchangemax >= fdchangecnt);
2825 for (i = 0; i < fdchangecnt; ++i)
2826 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2827
2828 assert (anfdmax >= 0);
2829 for (i = 0; i < anfdmax; ++i)
2830 {
2831 int j = 0;
2832
2833 for (w = w2 = anfds [i].head; w; w = w->next)
2834 {
2835 verify_watcher (EV_A_ (W)w);
2836
2837 if (j++ & 1)
2838 {
2839 assert (("libev: io watcher list contains a loop", w != w2));
2840 w2 = w2->next;
2841 }
2842
2843 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2844 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2845 }
2846 }
2847
2848 assert (timermax >= timercnt);
2849 verify_heap (EV_A_ timers, timercnt);
2850
2851#if EV_PERIODIC_ENABLE
2852 assert (periodicmax >= periodiccnt);
2853 verify_heap (EV_A_ periodics, periodiccnt);
2854#endif
2855
2856 for (i = NUMPRI; i--; )
2857 {
2858 assert (pendingmax [i] >= pendingcnt [i]);
2859#if EV_IDLE_ENABLE
2860 assert (idleall >= 0);
2861 assert (idlemax [i] >= idlecnt [i]);
2862 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2863#endif
2864 }
2865
2866#if EV_FORK_ENABLE
2867 assert (forkmax >= forkcnt);
2868 array_verify (EV_A_ (W *)forks, forkcnt);
2869#endif
2870
2871#if EV_CLEANUP_ENABLE
2872 assert (cleanupmax >= cleanupcnt);
2873 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2874#endif
2875
1436#if EV_ASYNC_ENABLE 2876#if EV_ASYNC_ENABLE
1437 gotasync = 1; 2877 assert (asyncmax >= asynccnt);
2878 array_verify (EV_A_ (W *)asyncs, asynccnt);
2879#endif
2880
2881#if EV_PREPARE_ENABLE
2882 assert (preparemax >= preparecnt);
2883 array_verify (EV_A_ (W *)prepares, preparecnt);
2884#endif
2885
2886#if EV_CHECK_ENABLE
2887 assert (checkmax >= checkcnt);
2888 array_verify (EV_A_ (W *)checks, checkcnt);
2889#endif
2890
2891# if 0
2892#if EV_CHILD_ENABLE
2893 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2894 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2895#endif
1438#endif 2896# endif
1439
1440 ev_ref (EV_A);
1441 ev_io_stop (EV_A_ &pipeev);
1442
1443#if EV_USE_EVENTFD
1444 if (evfd >= 0)
1445 close (evfd);
1446#endif 2897#endif
1447
1448 if (evpipe [0] >= 0)
1449 {
1450 close (evpipe [0]);
1451 close (evpipe [1]);
1452 }
1453
1454 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ);
1457 }
1458
1459 postfork = 0;
1460} 2898}
2899#endif
1461 2900
1462#if EV_MULTIPLICITY 2901#if EV_MULTIPLICITY
1463struct ev_loop * 2902struct ev_loop * ecb_cold
1464ev_loop_new (unsigned int flags)
1465{
1466 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1467
1468 memset (loop, 0, sizeof (struct ev_loop));
1469
1470 loop_init (EV_A_ flags);
1471
1472 if (ev_backend (EV_A))
1473 return loop;
1474
1475 return 0;
1476}
1477
1478void
1479ev_loop_destroy (EV_P)
1480{
1481 loop_destroy (EV_A);
1482 ev_free (loop);
1483}
1484
1485void
1486ev_loop_fork (EV_P)
1487{
1488 postfork = 1; /* must be in line with ev_default_fork */
1489}
1490#endif
1491
1492#if EV_MULTIPLICITY
1493struct ev_loop *
1494ev_default_loop_init (unsigned int flags)
1495#else 2903#else
1496int 2904int
2905#endif
1497ev_default_loop (unsigned int flags) 2906ev_default_loop (unsigned int flags) EV_THROW
1498#endif
1499{ 2907{
1500 if (!ev_default_loop_ptr) 2908 if (!ev_default_loop_ptr)
1501 { 2909 {
1502#if EV_MULTIPLICITY 2910#if EV_MULTIPLICITY
1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2911 EV_P = ev_default_loop_ptr = &default_loop_struct;
1504#else 2912#else
1505 ev_default_loop_ptr = 1; 2913 ev_default_loop_ptr = 1;
1506#endif 2914#endif
1507 2915
1508 loop_init (EV_A_ flags); 2916 loop_init (EV_A_ flags);
1509 2917
1510 if (ev_backend (EV_A)) 2918 if (ev_backend (EV_A))
1511 { 2919 {
1512#ifndef _WIN32 2920#if EV_CHILD_ENABLE
1513 ev_signal_init (&childev, childcb, SIGCHLD); 2921 ev_signal_init (&childev, childcb, SIGCHLD);
1514 ev_set_priority (&childev, EV_MAXPRI); 2922 ev_set_priority (&childev, EV_MAXPRI);
1515 ev_signal_start (EV_A_ &childev); 2923 ev_signal_start (EV_A_ &childev);
1516 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2924 ev_unref (EV_A); /* child watcher should not keep loop alive */
1517#endif 2925#endif
1522 2930
1523 return ev_default_loop_ptr; 2931 return ev_default_loop_ptr;
1524} 2932}
1525 2933
1526void 2934void
1527ev_default_destroy (void) 2935ev_loop_fork (EV_P) EV_THROW
1528{ 2936{
1529#if EV_MULTIPLICITY 2937 postfork = 1;
1530 struct ev_loop *loop = ev_default_loop_ptr;
1531#endif
1532
1533#ifndef _WIN32
1534 ev_ref (EV_A); /* child watcher */
1535 ev_signal_stop (EV_A_ &childev);
1536#endif
1537
1538 loop_destroy (EV_A);
1539}
1540
1541void
1542ev_default_fork (void)
1543{
1544#if EV_MULTIPLICITY
1545 struct ev_loop *loop = ev_default_loop_ptr;
1546#endif
1547
1548 if (backend)
1549 postfork = 1; /* must be in line with ev_loop_fork */
1550} 2938}
1551 2939
1552/*****************************************************************************/ 2940/*****************************************************************************/
1553 2941
1554void 2942void
1555ev_invoke (EV_P_ void *w, int revents) 2943ev_invoke (EV_P_ void *w, int revents)
1556{ 2944{
1557 EV_CB_INVOKE ((W)w, revents); 2945 EV_CB_INVOKE ((W)w, revents);
1558} 2946}
1559 2947
1560void inline_speed 2948unsigned int
1561call_pending (EV_P) 2949ev_pending_count (EV_P) EV_THROW
1562{ 2950{
1563 int pri; 2951 int pri;
2952 unsigned int count = 0;
1564 2953
1565 for (pri = NUMPRI; pri--; ) 2954 for (pri = NUMPRI; pri--; )
2955 count += pendingcnt [pri];
2956
2957 return count;
2958}
2959
2960void noinline
2961ev_invoke_pending (EV_P)
2962{
2963 pendingpri = NUMPRI;
2964
2965 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2966 {
2967 --pendingpri;
2968
1566 while (pendingcnt [pri]) 2969 while (pendingcnt [pendingpri])
1567 {
1568 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1569
1570 if (expect_true (p->w))
1571 { 2970 {
1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2971 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1573 2972
1574 p->w->pending = 0; 2973 p->w->pending = 0;
1575 EV_CB_INVOKE (p->w, p->events); 2974 EV_CB_INVOKE (p->w, p->events);
2975 EV_FREQUENT_CHECK;
1576 } 2976 }
1577 } 2977 }
1578} 2978}
1579 2979
1580#if EV_IDLE_ENABLE 2980#if EV_IDLE_ENABLE
1581void inline_size 2981/* make idle watchers pending. this handles the "call-idle */
2982/* only when higher priorities are idle" logic */
2983inline_size void
1582idle_reify (EV_P) 2984idle_reify (EV_P)
1583{ 2985{
1584 if (expect_false (idleall)) 2986 if (expect_false (idleall))
1585 { 2987 {
1586 int pri; 2988 int pri;
1598 } 3000 }
1599 } 3001 }
1600} 3002}
1601#endif 3003#endif
1602 3004
1603void inline_size 3005/* make timers pending */
3006inline_size void
1604timers_reify (EV_P) 3007timers_reify (EV_P)
1605{ 3008{
3009 EV_FREQUENT_CHECK;
3010
1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3011 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1607 { 3012 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3013 do
1609
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1611
1612 /* first reschedule or stop timer */
1613 if (w->repeat)
1614 { 3014 {
3015 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3016
3017 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3018
3019 /* first reschedule or stop timer */
3020 if (w->repeat)
3021 {
1615 ev_at (w) += w->repeat; 3022 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now) 3023 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now; 3024 ev_at (w) = mn_now;
1618 3025
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3026 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620 3027
1621 ANHE_at_set (timers [HEAP0]); 3028 ANHE_at_cache (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0); 3029 downheap (timers, timercnt, HEAP0);
3030 }
3031 else
3032 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3033
3034 EV_FREQUENT_CHECK;
3035 feed_reverse (EV_A_ (W)w);
1623 } 3036 }
1624 else 3037 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 3038
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3039 feed_reverse_done (EV_A_ EV_TIMER);
1628 } 3040 }
1629} 3041}
1630 3042
1631#if EV_PERIODIC_ENABLE 3043#if EV_PERIODIC_ENABLE
1632void inline_size 3044
3045static void noinline
3046periodic_recalc (EV_P_ ev_periodic *w)
3047{
3048 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3049 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3050
3051 /* the above almost always errs on the low side */
3052 while (at <= ev_rt_now)
3053 {
3054 ev_tstamp nat = at + w->interval;
3055
3056 /* when resolution fails us, we use ev_rt_now */
3057 if (expect_false (nat == at))
3058 {
3059 at = ev_rt_now;
3060 break;
3061 }
3062
3063 at = nat;
3064 }
3065
3066 ev_at (w) = at;
3067}
3068
3069/* make periodics pending */
3070inline_size void
1633periodics_reify (EV_P) 3071periodics_reify (EV_P)
1634{ 3072{
3073 EV_FREQUENT_CHECK;
3074
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3075 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1636 { 3076 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3077 do
1638
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1640
1641 /* first reschedule or stop timer */
1642 if (w->reschedule_cb)
1643 { 3078 {
3079 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3080
3081 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3082
3083 /* first reschedule or stop timer */
3084 if (w->reschedule_cb)
3085 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3086 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645 3087
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3088 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647 3089
1648 ANHE_at_set (periodics [HEAP0]); 3090 ANHE_at_cache (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0); 3091 downheap (periodics, periodiccnt, HEAP0);
3092 }
3093 else if (w->interval)
3094 {
3095 periodic_recalc (EV_A_ w);
3096 ANHE_at_cache (periodics [HEAP0]);
3097 downheap (periodics, periodiccnt, HEAP0);
3098 }
3099 else
3100 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3101
3102 EV_FREQUENT_CHECK;
3103 feed_reverse (EV_A_ (W)w);
1650 } 3104 }
1651 else if (w->interval) 3105 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1655 3106
1656 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) >= ev_rt_now));
1657
1658 ANHE_at_set (periodics [HEAP0]);
1659 downheap (periodics, periodiccnt, HEAP0);
1660 }
1661 else
1662 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1663
1664 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3107 feed_reverse_done (EV_A_ EV_PERIODIC);
1665 } 3108 }
1666} 3109}
1667 3110
3111/* simply recalculate all periodics */
3112/* TODO: maybe ensure that at least one event happens when jumping forward? */
1668static void noinline 3113static void noinline ecb_cold
1669periodics_reschedule (EV_P) 3114periodics_reschedule (EV_P)
1670{ 3115{
1671 int i; 3116 int i;
1672 3117
1673 /* adjust periodics after time jump */ 3118 /* adjust periodics after time jump */
1676 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3121 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1677 3122
1678 if (w->reschedule_cb) 3123 if (w->reschedule_cb)
1679 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3124 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1680 else if (w->interval) 3125 else if (w->interval)
1681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3126 periodic_recalc (EV_A_ w);
1682 3127
1683 ANHE_at_set (periodics [i]); 3128 ANHE_at_cache (periodics [i]);
1684 } 3129 }
1685 3130
1686 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 3131 reheap (periodics, periodiccnt);
1687 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 3132}
3133#endif
3134
3135/* adjust all timers by a given offset */
3136static void noinline ecb_cold
3137timers_reschedule (EV_P_ ev_tstamp adjust)
3138{
3139 int i;
3140
1688 for (i = 0; i < periodiccnt; ++i) 3141 for (i = 0; i < timercnt; ++i)
1689 upheap (periodics, i + HEAP0); 3142 {
3143 ANHE *he = timers + i + HEAP0;
3144 ANHE_w (*he)->at += adjust;
3145 ANHE_at_cache (*he);
3146 }
1690} 3147}
1691#endif
1692 3148
1693void inline_speed 3149/* fetch new monotonic and realtime times from the kernel */
3150/* also detect if there was a timejump, and act accordingly */
3151inline_speed void
1694time_update (EV_P_ ev_tstamp max_block) 3152time_update (EV_P_ ev_tstamp max_block)
1695{ 3153{
1696 int i;
1697
1698#if EV_USE_MONOTONIC 3154#if EV_USE_MONOTONIC
1699 if (expect_true (have_monotonic)) 3155 if (expect_true (have_monotonic))
1700 { 3156 {
3157 int i;
1701 ev_tstamp odiff = rtmn_diff; 3158 ev_tstamp odiff = rtmn_diff;
1702 3159
1703 mn_now = get_clock (); 3160 mn_now = get_clock ();
1704 3161
1705 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3162 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1721 * doesn't hurt either as we only do this on time-jumps or 3178 * doesn't hurt either as we only do this on time-jumps or
1722 * in the unlikely event of having been preempted here. 3179 * in the unlikely event of having been preempted here.
1723 */ 3180 */
1724 for (i = 4; --i; ) 3181 for (i = 4; --i; )
1725 { 3182 {
3183 ev_tstamp diff;
1726 rtmn_diff = ev_rt_now - mn_now; 3184 rtmn_diff = ev_rt_now - mn_now;
1727 3185
3186 diff = odiff - rtmn_diff;
3187
1728 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3188 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1729 return; /* all is well */ 3189 return; /* all is well */
1730 3190
1731 ev_rt_now = ev_time (); 3191 ev_rt_now = ev_time ();
1732 mn_now = get_clock (); 3192 mn_now = get_clock ();
1733 now_floor = mn_now; 3193 now_floor = mn_now;
1734 } 3194 }
1735 3195
3196 /* no timer adjustment, as the monotonic clock doesn't jump */
3197 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1736# if EV_PERIODIC_ENABLE 3198# if EV_PERIODIC_ENABLE
1737 periodics_reschedule (EV_A); 3199 periodics_reschedule (EV_A);
1738# endif 3200# endif
1739 /* no timer adjustment, as the monotonic clock doesn't jump */
1740 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1741 } 3201 }
1742 else 3202 else
1743#endif 3203#endif
1744 { 3204 {
1745 ev_rt_now = ev_time (); 3205 ev_rt_now = ev_time ();
1746 3206
1747 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3207 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1748 { 3208 {
3209 /* adjust timers. this is easy, as the offset is the same for all of them */
3210 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1749#if EV_PERIODIC_ENABLE 3211#if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A); 3212 periodics_reschedule (EV_A);
1751#endif 3213#endif
1752 /* adjust timers. this is easy, as the offset is the same for all of them */
1753 for (i = 0; i < timercnt; ++i)
1754 {
1755 ANHE *he = timers + i + HEAP0;
1756 ANHE_w (*he)->at += ev_rt_now - mn_now;
1757 ANHE_at_set (*he);
1758 }
1759 } 3214 }
1760 3215
1761 mn_now = ev_rt_now; 3216 mn_now = ev_rt_now;
1762 } 3217 }
1763} 3218}
1764 3219
1765void 3220int
1766ev_ref (EV_P)
1767{
1768 ++activecnt;
1769}
1770
1771void
1772ev_unref (EV_P)
1773{
1774 --activecnt;
1775}
1776
1777static int loop_done;
1778
1779void
1780ev_loop (EV_P_ int flags) 3221ev_run (EV_P_ int flags)
1781{ 3222{
3223#if EV_FEATURE_API
3224 ++loop_depth;
3225#endif
3226
3227 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3228
1782 loop_done = EVUNLOOP_CANCEL; 3229 loop_done = EVBREAK_CANCEL;
1783 3230
1784 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3231 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1785 3232
1786 do 3233 do
1787 { 3234 {
3235#if EV_VERIFY >= 2
3236 ev_verify (EV_A);
3237#endif
3238
1788#ifndef _WIN32 3239#ifndef _WIN32
1789 if (expect_false (curpid)) /* penalise the forking check even more */ 3240 if (expect_false (curpid)) /* penalise the forking check even more */
1790 if (expect_false (getpid () != curpid)) 3241 if (expect_false (getpid () != curpid))
1791 { 3242 {
1792 curpid = getpid (); 3243 curpid = getpid ();
1798 /* we might have forked, so queue fork handlers */ 3249 /* we might have forked, so queue fork handlers */
1799 if (expect_false (postfork)) 3250 if (expect_false (postfork))
1800 if (forkcnt) 3251 if (forkcnt)
1801 { 3252 {
1802 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3253 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1803 call_pending (EV_A); 3254 EV_INVOKE_PENDING;
1804 } 3255 }
1805#endif 3256#endif
1806 3257
3258#if EV_PREPARE_ENABLE
1807 /* queue prepare watchers (and execute them) */ 3259 /* queue prepare watchers (and execute them) */
1808 if (expect_false (preparecnt)) 3260 if (expect_false (preparecnt))
1809 { 3261 {
1810 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3262 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1811 call_pending (EV_A); 3263 EV_INVOKE_PENDING;
1812 } 3264 }
3265#endif
1813 3266
1814 if (expect_false (!activecnt)) 3267 if (expect_false (loop_done))
1815 break; 3268 break;
1816 3269
1817 /* we might have forked, so reify kernel state if necessary */ 3270 /* we might have forked, so reify kernel state if necessary */
1818 if (expect_false (postfork)) 3271 if (expect_false (postfork))
1819 loop_fork (EV_A); 3272 loop_fork (EV_A);
1824 /* calculate blocking time */ 3277 /* calculate blocking time */
1825 { 3278 {
1826 ev_tstamp waittime = 0.; 3279 ev_tstamp waittime = 0.;
1827 ev_tstamp sleeptime = 0.; 3280 ev_tstamp sleeptime = 0.;
1828 3281
3282 /* remember old timestamp for io_blocktime calculation */
3283 ev_tstamp prev_mn_now = mn_now;
3284
3285 /* update time to cancel out callback processing overhead */
3286 time_update (EV_A_ 1e100);
3287
3288 /* from now on, we want a pipe-wake-up */
3289 pipe_write_wanted = 1;
3290
3291 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3292
1829 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3293 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1830 { 3294 {
1831 /* update time to cancel out callback processing overhead */
1832 time_update (EV_A_ 1e100);
1833
1834 waittime = MAX_BLOCKTIME; 3295 waittime = MAX_BLOCKTIME;
1835 3296
1836 if (timercnt) 3297 if (timercnt)
1837 { 3298 {
1838 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3299 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1839 if (waittime > to) waittime = to; 3300 if (waittime > to) waittime = to;
1840 } 3301 }
1841 3302
1842#if EV_PERIODIC_ENABLE 3303#if EV_PERIODIC_ENABLE
1843 if (periodiccnt) 3304 if (periodiccnt)
1844 { 3305 {
1845 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3306 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1846 if (waittime > to) waittime = to; 3307 if (waittime > to) waittime = to;
1847 } 3308 }
1848#endif 3309#endif
1849 3310
3311 /* don't let timeouts decrease the waittime below timeout_blocktime */
1850 if (expect_false (waittime < timeout_blocktime)) 3312 if (expect_false (waittime < timeout_blocktime))
1851 waittime = timeout_blocktime; 3313 waittime = timeout_blocktime;
1852 3314
1853 sleeptime = waittime - backend_fudge; 3315 /* at this point, we NEED to wait, so we have to ensure */
3316 /* to pass a minimum nonzero value to the backend */
3317 if (expect_false (waittime < backend_mintime))
3318 waittime = backend_mintime;
1854 3319
3320 /* extra check because io_blocktime is commonly 0 */
1855 if (expect_true (sleeptime > io_blocktime)) 3321 if (expect_false (io_blocktime))
1856 sleeptime = io_blocktime;
1857
1858 if (sleeptime)
1859 { 3322 {
3323 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3324
3325 if (sleeptime > waittime - backend_mintime)
3326 sleeptime = waittime - backend_mintime;
3327
3328 if (expect_true (sleeptime > 0.))
3329 {
1860 ev_sleep (sleeptime); 3330 ev_sleep (sleeptime);
1861 waittime -= sleeptime; 3331 waittime -= sleeptime;
3332 }
1862 } 3333 }
1863 } 3334 }
1864 3335
3336#if EV_FEATURE_API
1865 ++loop_count; 3337 ++loop_count;
3338#endif
3339 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1866 backend_poll (EV_A_ waittime); 3340 backend_poll (EV_A_ waittime);
3341 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3342
3343 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3344
3345 ECB_MEMORY_FENCE_ACQUIRE;
3346 if (pipe_write_skipped)
3347 {
3348 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3349 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3350 }
3351
1867 3352
1868 /* update ev_rt_now, do magic */ 3353 /* update ev_rt_now, do magic */
1869 time_update (EV_A_ waittime + sleeptime); 3354 time_update (EV_A_ waittime + sleeptime);
1870 } 3355 }
1871 3356
1878#if EV_IDLE_ENABLE 3363#if EV_IDLE_ENABLE
1879 /* queue idle watchers unless other events are pending */ 3364 /* queue idle watchers unless other events are pending */
1880 idle_reify (EV_A); 3365 idle_reify (EV_A);
1881#endif 3366#endif
1882 3367
3368#if EV_CHECK_ENABLE
1883 /* queue check watchers, to be executed first */ 3369 /* queue check watchers, to be executed first */
1884 if (expect_false (checkcnt)) 3370 if (expect_false (checkcnt))
1885 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3371 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3372#endif
1886 3373
1887 call_pending (EV_A); 3374 EV_INVOKE_PENDING;
1888 } 3375 }
1889 while (expect_true ( 3376 while (expect_true (
1890 activecnt 3377 activecnt
1891 && !loop_done 3378 && !loop_done
1892 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3379 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1893 )); 3380 ));
1894 3381
1895 if (loop_done == EVUNLOOP_ONE) 3382 if (loop_done == EVBREAK_ONE)
1896 loop_done = EVUNLOOP_CANCEL; 3383 loop_done = EVBREAK_CANCEL;
3384
3385#if EV_FEATURE_API
3386 --loop_depth;
3387#endif
3388
3389 return activecnt;
1897} 3390}
1898 3391
1899void 3392void
1900ev_unloop (EV_P_ int how) 3393ev_break (EV_P_ int how) EV_THROW
1901{ 3394{
1902 loop_done = how; 3395 loop_done = how;
1903} 3396}
1904 3397
3398void
3399ev_ref (EV_P) EV_THROW
3400{
3401 ++activecnt;
3402}
3403
3404void
3405ev_unref (EV_P) EV_THROW
3406{
3407 --activecnt;
3408}
3409
3410void
3411ev_now_update (EV_P) EV_THROW
3412{
3413 time_update (EV_A_ 1e100);
3414}
3415
3416void
3417ev_suspend (EV_P) EV_THROW
3418{
3419 ev_now_update (EV_A);
3420}
3421
3422void
3423ev_resume (EV_P) EV_THROW
3424{
3425 ev_tstamp mn_prev = mn_now;
3426
3427 ev_now_update (EV_A);
3428 timers_reschedule (EV_A_ mn_now - mn_prev);
3429#if EV_PERIODIC_ENABLE
3430 /* TODO: really do this? */
3431 periodics_reschedule (EV_A);
3432#endif
3433}
3434
1905/*****************************************************************************/ 3435/*****************************************************************************/
3436/* singly-linked list management, used when the expected list length is short */
1906 3437
1907void inline_size 3438inline_size void
1908wlist_add (WL *head, WL elem) 3439wlist_add (WL *head, WL elem)
1909{ 3440{
1910 elem->next = *head; 3441 elem->next = *head;
1911 *head = elem; 3442 *head = elem;
1912} 3443}
1913 3444
1914void inline_size 3445inline_size void
1915wlist_del (WL *head, WL elem) 3446wlist_del (WL *head, WL elem)
1916{ 3447{
1917 while (*head) 3448 while (*head)
1918 { 3449 {
1919 if (*head == elem) 3450 if (expect_true (*head == elem))
1920 { 3451 {
1921 *head = elem->next; 3452 *head = elem->next;
1922 return; 3453 break;
1923 } 3454 }
1924 3455
1925 head = &(*head)->next; 3456 head = &(*head)->next;
1926 } 3457 }
1927} 3458}
1928 3459
1929void inline_speed 3460/* internal, faster, version of ev_clear_pending */
3461inline_speed void
1930clear_pending (EV_P_ W w) 3462clear_pending (EV_P_ W w)
1931{ 3463{
1932 if (w->pending) 3464 if (w->pending)
1933 { 3465 {
1934 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3466 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1935 w->pending = 0; 3467 w->pending = 0;
1936 } 3468 }
1937} 3469}
1938 3470
1939int 3471int
1940ev_clear_pending (EV_P_ void *w) 3472ev_clear_pending (EV_P_ void *w) EV_THROW
1941{ 3473{
1942 W w_ = (W)w; 3474 W w_ = (W)w;
1943 int pending = w_->pending; 3475 int pending = w_->pending;
1944 3476
1945 if (expect_true (pending)) 3477 if (expect_true (pending))
1946 { 3478 {
1947 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3479 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3480 p->w = (W)&pending_w;
1948 w_->pending = 0; 3481 w_->pending = 0;
1949 p->w = 0;
1950 return p->events; 3482 return p->events;
1951 } 3483 }
1952 else 3484 else
1953 return 0; 3485 return 0;
1954} 3486}
1955 3487
1956void inline_size 3488inline_size void
1957pri_adjust (EV_P_ W w) 3489pri_adjust (EV_P_ W w)
1958{ 3490{
1959 int pri = w->priority; 3491 int pri = ev_priority (w);
1960 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3492 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1961 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3493 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1962 w->priority = pri; 3494 ev_set_priority (w, pri);
1963} 3495}
1964 3496
1965void inline_speed 3497inline_speed void
1966ev_start (EV_P_ W w, int active) 3498ev_start (EV_P_ W w, int active)
1967{ 3499{
1968 pri_adjust (EV_A_ w); 3500 pri_adjust (EV_A_ w);
1969 w->active = active; 3501 w->active = active;
1970 ev_ref (EV_A); 3502 ev_ref (EV_A);
1971} 3503}
1972 3504
1973void inline_size 3505inline_size void
1974ev_stop (EV_P_ W w) 3506ev_stop (EV_P_ W w)
1975{ 3507{
1976 ev_unref (EV_A); 3508 ev_unref (EV_A);
1977 w->active = 0; 3509 w->active = 0;
1978} 3510}
1979 3511
1980/*****************************************************************************/ 3512/*****************************************************************************/
1981 3513
1982void noinline 3514void noinline
1983ev_io_start (EV_P_ ev_io *w) 3515ev_io_start (EV_P_ ev_io *w) EV_THROW
1984{ 3516{
1985 int fd = w->fd; 3517 int fd = w->fd;
1986 3518
1987 if (expect_false (ev_is_active (w))) 3519 if (expect_false (ev_is_active (w)))
1988 return; 3520 return;
1989 3521
1990 assert (("ev_io_start called with negative fd", fd >= 0)); 3522 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3523 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3524
3525 EV_FREQUENT_CHECK;
1991 3526
1992 ev_start (EV_A_ (W)w, 1); 3527 ev_start (EV_A_ (W)w, 1);
1993 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3528 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1994 wlist_add (&anfds[fd].head, (WL)w); 3529 wlist_add (&anfds[fd].head, (WL)w);
1995 3530
3531 /* common bug, apparently */
3532 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3533
1996 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3534 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1997 w->events &= ~EV_IOFDSET; 3535 w->events &= ~EV__IOFDSET;
3536
3537 EV_FREQUENT_CHECK;
1998} 3538}
1999 3539
2000void noinline 3540void noinline
2001ev_io_stop (EV_P_ ev_io *w) 3541ev_io_stop (EV_P_ ev_io *w) EV_THROW
2002{ 3542{
2003 clear_pending (EV_A_ (W)w); 3543 clear_pending (EV_A_ (W)w);
2004 if (expect_false (!ev_is_active (w))) 3544 if (expect_false (!ev_is_active (w)))
2005 return; 3545 return;
2006 3546
2007 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3547 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3548
3549 EV_FREQUENT_CHECK;
2008 3550
2009 wlist_del (&anfds[w->fd].head, (WL)w); 3551 wlist_del (&anfds[w->fd].head, (WL)w);
2010 ev_stop (EV_A_ (W)w); 3552 ev_stop (EV_A_ (W)w);
2011 3553
2012 fd_change (EV_A_ w->fd, 1); 3554 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3555
3556 EV_FREQUENT_CHECK;
2013} 3557}
2014 3558
2015void noinline 3559void noinline
2016ev_timer_start (EV_P_ ev_timer *w) 3560ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2017{ 3561{
2018 if (expect_false (ev_is_active (w))) 3562 if (expect_false (ev_is_active (w)))
2019 return; 3563 return;
2020 3564
2021 ev_at (w) += mn_now; 3565 ev_at (w) += mn_now;
2022 3566
2023 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3567 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2024 3568
3569 EV_FREQUENT_CHECK;
3570
3571 ++timercnt;
2025 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 3572 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2026 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 3573 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2027 ANHE_w (timers [ev_active (w)]) = (WT)w; 3574 ANHE_w (timers [ev_active (w)]) = (WT)w;
2028 ANHE_at_set (timers [ev_active (w)]); 3575 ANHE_at_cache (timers [ev_active (w)]);
2029 upheap (timers, ev_active (w)); 3576 upheap (timers, ev_active (w));
2030 3577
3578 EV_FREQUENT_CHECK;
3579
2031 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3580 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2032} 3581}
2033 3582
2034void noinline 3583void noinline
2035ev_timer_stop (EV_P_ ev_timer *w) 3584ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2036{ 3585{
2037 clear_pending (EV_A_ (W)w); 3586 clear_pending (EV_A_ (W)w);
2038 if (expect_false (!ev_is_active (w))) 3587 if (expect_false (!ev_is_active (w)))
2039 return; 3588 return;
2040 3589
3590 EV_FREQUENT_CHECK;
3591
2041 { 3592 {
2042 int active = ev_active (w); 3593 int active = ev_active (w);
2043 3594
2044 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3595 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2045 3596
3597 --timercnt;
3598
2046 if (expect_true (active < timercnt + HEAP0 - 1)) 3599 if (expect_true (active < timercnt + HEAP0))
2047 { 3600 {
2048 timers [active] = timers [timercnt + HEAP0 - 1]; 3601 timers [active] = timers [timercnt + HEAP0];
2049 adjustheap (timers, timercnt, active); 3602 adjustheap (timers, timercnt, active);
2050 } 3603 }
2051
2052 --timercnt;
2053 } 3604 }
2054 3605
2055 ev_at (w) -= mn_now; 3606 ev_at (w) -= mn_now;
2056 3607
2057 ev_stop (EV_A_ (W)w); 3608 ev_stop (EV_A_ (W)w);
3609
3610 EV_FREQUENT_CHECK;
2058} 3611}
2059 3612
2060void noinline 3613void noinline
2061ev_timer_again (EV_P_ ev_timer *w) 3614ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2062{ 3615{
3616 EV_FREQUENT_CHECK;
3617
3618 clear_pending (EV_A_ (W)w);
3619
2063 if (ev_is_active (w)) 3620 if (ev_is_active (w))
2064 { 3621 {
2065 if (w->repeat) 3622 if (w->repeat)
2066 { 3623 {
2067 ev_at (w) = mn_now + w->repeat; 3624 ev_at (w) = mn_now + w->repeat;
2068 ANHE_at_set (timers [ev_active (w)]); 3625 ANHE_at_cache (timers [ev_active (w)]);
2069 adjustheap (timers, timercnt, ev_active (w)); 3626 adjustheap (timers, timercnt, ev_active (w));
2070 } 3627 }
2071 else 3628 else
2072 ev_timer_stop (EV_A_ w); 3629 ev_timer_stop (EV_A_ w);
2073 } 3630 }
2074 else if (w->repeat) 3631 else if (w->repeat)
2075 { 3632 {
2076 ev_at (w) = w->repeat; 3633 ev_at (w) = w->repeat;
2077 ev_timer_start (EV_A_ w); 3634 ev_timer_start (EV_A_ w);
2078 } 3635 }
3636
3637 EV_FREQUENT_CHECK;
3638}
3639
3640ev_tstamp
3641ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3642{
3643 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2079} 3644}
2080 3645
2081#if EV_PERIODIC_ENABLE 3646#if EV_PERIODIC_ENABLE
2082void noinline 3647void noinline
2083ev_periodic_start (EV_P_ ev_periodic *w) 3648ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2084{ 3649{
2085 if (expect_false (ev_is_active (w))) 3650 if (expect_false (ev_is_active (w)))
2086 return; 3651 return;
2087 3652
2088 if (w->reschedule_cb) 3653 if (w->reschedule_cb)
2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3654 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2090 else if (w->interval) 3655 else if (w->interval)
2091 { 3656 {
2092 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3657 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2093 /* this formula differs from the one in periodic_reify because we do not always round up */ 3658 periodic_recalc (EV_A_ w);
2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 } 3659 }
2096 else 3660 else
2097 ev_at (w) = w->offset; 3661 ev_at (w) = w->offset;
2098 3662
3663 EV_FREQUENT_CHECK;
3664
3665 ++periodiccnt;
2099 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 3666 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2100 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 3667 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2101 ANHE_w (periodics [ev_active (w)]) = (WT)w; 3668 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2102 ANHE_at_set (periodics [ev_active (w)]); 3669 ANHE_at_cache (periodics [ev_active (w)]);
2103 upheap (periodics, ev_active (w)); 3670 upheap (periodics, ev_active (w));
2104 3671
3672 EV_FREQUENT_CHECK;
3673
2105 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3674 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2106} 3675}
2107 3676
2108void noinline 3677void noinline
2109ev_periodic_stop (EV_P_ ev_periodic *w) 3678ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2110{ 3679{
2111 clear_pending (EV_A_ (W)w); 3680 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w))) 3681 if (expect_false (!ev_is_active (w)))
2113 return; 3682 return;
2114 3683
3684 EV_FREQUENT_CHECK;
3685
2115 { 3686 {
2116 int active = ev_active (w); 3687 int active = ev_active (w);
2117 3688
2118 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3689 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2119 3690
3691 --periodiccnt;
3692
2120 if (expect_true (active < periodiccnt + HEAP0 - 1)) 3693 if (expect_true (active < periodiccnt + HEAP0))
2121 { 3694 {
2122 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 3695 periodics [active] = periodics [periodiccnt + HEAP0];
2123 adjustheap (periodics, periodiccnt, active); 3696 adjustheap (periodics, periodiccnt, active);
2124 } 3697 }
2125
2126 --periodiccnt;
2127 } 3698 }
2128 3699
2129 ev_stop (EV_A_ (W)w); 3700 ev_stop (EV_A_ (W)w);
3701
3702 EV_FREQUENT_CHECK;
2130} 3703}
2131 3704
2132void noinline 3705void noinline
2133ev_periodic_again (EV_P_ ev_periodic *w) 3706ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2134{ 3707{
2135 /* TODO: use adjustheap and recalculation */ 3708 /* TODO: use adjustheap and recalculation */
2136 ev_periodic_stop (EV_A_ w); 3709 ev_periodic_stop (EV_A_ w);
2137 ev_periodic_start (EV_A_ w); 3710 ev_periodic_start (EV_A_ w);
2138} 3711}
2140 3713
2141#ifndef SA_RESTART 3714#ifndef SA_RESTART
2142# define SA_RESTART 0 3715# define SA_RESTART 0
2143#endif 3716#endif
2144 3717
3718#if EV_SIGNAL_ENABLE
3719
2145void noinline 3720void noinline
2146ev_signal_start (EV_P_ ev_signal *w) 3721ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2147{ 3722{
2148#if EV_MULTIPLICITY
2149 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2150#endif
2151 if (expect_false (ev_is_active (w))) 3723 if (expect_false (ev_is_active (w)))
2152 return; 3724 return;
2153 3725
2154 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3726 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2155 3727
2156 evpipe_init (EV_A); 3728#if EV_MULTIPLICITY
3729 assert (("libev: a signal must not be attached to two different loops",
3730 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2157 3731
3732 signals [w->signum - 1].loop = EV_A;
3733 ECB_MEMORY_FENCE_RELEASE;
3734#endif
3735
3736 EV_FREQUENT_CHECK;
3737
3738#if EV_USE_SIGNALFD
3739 if (sigfd == -2)
2158 { 3740 {
2159#ifndef _WIN32 3741 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2160 sigset_t full, prev; 3742 if (sigfd < 0 && errno == EINVAL)
2161 sigfillset (&full); 3743 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2162 sigprocmask (SIG_SETMASK, &full, &prev);
2163#endif
2164 3744
2165 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3745 if (sigfd >= 0)
3746 {
3747 fd_intern (sigfd); /* doing it twice will not hurt */
2166 3748
2167#ifndef _WIN32 3749 sigemptyset (&sigfd_set);
2168 sigprocmask (SIG_SETMASK, &prev, 0); 3750
2169#endif 3751 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3752 ev_set_priority (&sigfd_w, EV_MAXPRI);
3753 ev_io_start (EV_A_ &sigfd_w);
3754 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3755 }
2170 } 3756 }
3757
3758 if (sigfd >= 0)
3759 {
3760 /* TODO: check .head */
3761 sigaddset (&sigfd_set, w->signum);
3762 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3763
3764 signalfd (sigfd, &sigfd_set, 0);
3765 }
3766#endif
2171 3767
2172 ev_start (EV_A_ (W)w, 1); 3768 ev_start (EV_A_ (W)w, 1);
2173 wlist_add (&signals [w->signum - 1].head, (WL)w); 3769 wlist_add (&signals [w->signum - 1].head, (WL)w);
2174 3770
2175 if (!((WL)w)->next) 3771 if (!((WL)w)->next)
3772# if EV_USE_SIGNALFD
3773 if (sigfd < 0) /*TODO*/
3774# endif
2176 { 3775 {
2177#if _WIN32 3776# ifdef _WIN32
3777 evpipe_init (EV_A);
3778
2178 signal (w->signum, ev_sighandler); 3779 signal (w->signum, ev_sighandler);
2179#else 3780# else
2180 struct sigaction sa; 3781 struct sigaction sa;
3782
3783 evpipe_init (EV_A);
3784
2181 sa.sa_handler = ev_sighandler; 3785 sa.sa_handler = ev_sighandler;
2182 sigfillset (&sa.sa_mask); 3786 sigfillset (&sa.sa_mask);
2183 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3787 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2184 sigaction (w->signum, &sa, 0); 3788 sigaction (w->signum, &sa, 0);
3789
3790 if (origflags & EVFLAG_NOSIGMASK)
3791 {
3792 sigemptyset (&sa.sa_mask);
3793 sigaddset (&sa.sa_mask, w->signum);
3794 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3795 }
2185#endif 3796#endif
2186 } 3797 }
3798
3799 EV_FREQUENT_CHECK;
2187} 3800}
2188 3801
2189void noinline 3802void noinline
2190ev_signal_stop (EV_P_ ev_signal *w) 3803ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2191{ 3804{
2192 clear_pending (EV_A_ (W)w); 3805 clear_pending (EV_A_ (W)w);
2193 if (expect_false (!ev_is_active (w))) 3806 if (expect_false (!ev_is_active (w)))
2194 return; 3807 return;
2195 3808
3809 EV_FREQUENT_CHECK;
3810
2196 wlist_del (&signals [w->signum - 1].head, (WL)w); 3811 wlist_del (&signals [w->signum - 1].head, (WL)w);
2197 ev_stop (EV_A_ (W)w); 3812 ev_stop (EV_A_ (W)w);
2198 3813
2199 if (!signals [w->signum - 1].head) 3814 if (!signals [w->signum - 1].head)
3815 {
3816#if EV_MULTIPLICITY
3817 signals [w->signum - 1].loop = 0; /* unattach from signal */
3818#endif
3819#if EV_USE_SIGNALFD
3820 if (sigfd >= 0)
3821 {
3822 sigset_t ss;
3823
3824 sigemptyset (&ss);
3825 sigaddset (&ss, w->signum);
3826 sigdelset (&sigfd_set, w->signum);
3827
3828 signalfd (sigfd, &sigfd_set, 0);
3829 sigprocmask (SIG_UNBLOCK, &ss, 0);
3830 }
3831 else
3832#endif
2200 signal (w->signum, SIG_DFL); 3833 signal (w->signum, SIG_DFL);
3834 }
3835
3836 EV_FREQUENT_CHECK;
2201} 3837}
3838
3839#endif
3840
3841#if EV_CHILD_ENABLE
2202 3842
2203void 3843void
2204ev_child_start (EV_P_ ev_child *w) 3844ev_child_start (EV_P_ ev_child *w) EV_THROW
2205{ 3845{
2206#if EV_MULTIPLICITY 3846#if EV_MULTIPLICITY
2207 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3847 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2208#endif 3848#endif
2209 if (expect_false (ev_is_active (w))) 3849 if (expect_false (ev_is_active (w)))
2210 return; 3850 return;
2211 3851
3852 EV_FREQUENT_CHECK;
3853
2212 ev_start (EV_A_ (W)w, 1); 3854 ev_start (EV_A_ (W)w, 1);
2213 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3855 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3856
3857 EV_FREQUENT_CHECK;
2214} 3858}
2215 3859
2216void 3860void
2217ev_child_stop (EV_P_ ev_child *w) 3861ev_child_stop (EV_P_ ev_child *w) EV_THROW
2218{ 3862{
2219 clear_pending (EV_A_ (W)w); 3863 clear_pending (EV_A_ (W)w);
2220 if (expect_false (!ev_is_active (w))) 3864 if (expect_false (!ev_is_active (w)))
2221 return; 3865 return;
2222 3866
3867 EV_FREQUENT_CHECK;
3868
2223 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3869 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2224 ev_stop (EV_A_ (W)w); 3870 ev_stop (EV_A_ (W)w);
3871
3872 EV_FREQUENT_CHECK;
2225} 3873}
3874
3875#endif
2226 3876
2227#if EV_STAT_ENABLE 3877#if EV_STAT_ENABLE
2228 3878
2229# ifdef _WIN32 3879# ifdef _WIN32
2230# undef lstat 3880# undef lstat
2231# define lstat(a,b) _stati64 (a,b) 3881# define lstat(a,b) _stati64 (a,b)
2232# endif 3882# endif
2233 3883
2234#define DEF_STAT_INTERVAL 5.0074891 3884#define DEF_STAT_INTERVAL 5.0074891
3885#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2235#define MIN_STAT_INTERVAL 0.1074891 3886#define MIN_STAT_INTERVAL 0.1074891
2236 3887
2237static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3888static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2238 3889
2239#if EV_USE_INOTIFY 3890#if EV_USE_INOTIFY
2240# define EV_INOTIFY_BUFSIZE 8192 3891
3892/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3893# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2241 3894
2242static void noinline 3895static void noinline
2243infy_add (EV_P_ ev_stat *w) 3896infy_add (EV_P_ ev_stat *w)
2244{ 3897{
2245 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3898 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2246 3899
2247 if (w->wd < 0) 3900 if (w->wd >= 0)
3901 {
3902 struct statfs sfs;
3903
3904 /* now local changes will be tracked by inotify, but remote changes won't */
3905 /* unless the filesystem is known to be local, we therefore still poll */
3906 /* also do poll on <2.6.25, but with normal frequency */
3907
3908 if (!fs_2625)
3909 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3910 else if (!statfs (w->path, &sfs)
3911 && (sfs.f_type == 0x1373 /* devfs */
3912 || sfs.f_type == 0xEF53 /* ext2/3 */
3913 || sfs.f_type == 0x3153464a /* jfs */
3914 || sfs.f_type == 0x52654973 /* reiser3 */
3915 || sfs.f_type == 0x01021994 /* tempfs */
3916 || sfs.f_type == 0x58465342 /* xfs */))
3917 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3918 else
3919 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2248 { 3920 }
2249 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3921 else
3922 {
3923 /* can't use inotify, continue to stat */
3924 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2250 3925
2251 /* monitor some parent directory for speedup hints */ 3926 /* if path is not there, monitor some parent directory for speedup hints */
2252 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3927 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2253 /* but an efficiency issue only */ 3928 /* but an efficiency issue only */
2254 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3929 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2255 { 3930 {
2256 char path [4096]; 3931 char path [4096];
2257 strcpy (path, w->path); 3932 strcpy (path, w->path);
2261 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3936 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2262 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3937 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2263 3938
2264 char *pend = strrchr (path, '/'); 3939 char *pend = strrchr (path, '/');
2265 3940
2266 if (!pend) 3941 if (!pend || pend == path)
2267 break; /* whoops, no '/', complain to your admin */ 3942 break;
2268 3943
2269 *pend = 0; 3944 *pend = 0;
2270 w->wd = inotify_add_watch (fs_fd, path, mask); 3945 w->wd = inotify_add_watch (fs_fd, path, mask);
2271 } 3946 }
2272 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3947 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2273 } 3948 }
2274 } 3949 }
2275 else
2276 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2277 3950
2278 if (w->wd >= 0) 3951 if (w->wd >= 0)
2279 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3952 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3953
3954 /* now re-arm timer, if required */
3955 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3956 ev_timer_again (EV_A_ &w->timer);
3957 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2280} 3958}
2281 3959
2282static void noinline 3960static void noinline
2283infy_del (EV_P_ ev_stat *w) 3961infy_del (EV_P_ ev_stat *w)
2284{ 3962{
2287 3965
2288 if (wd < 0) 3966 if (wd < 0)
2289 return; 3967 return;
2290 3968
2291 w->wd = -2; 3969 w->wd = -2;
2292 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3970 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2293 wlist_del (&fs_hash [slot].head, (WL)w); 3971 wlist_del (&fs_hash [slot].head, (WL)w);
2294 3972
2295 /* remove this watcher, if others are watching it, they will rearm */ 3973 /* remove this watcher, if others are watching it, they will rearm */
2296 inotify_rm_watch (fs_fd, wd); 3974 inotify_rm_watch (fs_fd, wd);
2297} 3975}
2298 3976
2299static void noinline 3977static void noinline
2300infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3978infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2301{ 3979{
2302 if (slot < 0) 3980 if (slot < 0)
2303 /* overflow, need to check for all hahs slots */ 3981 /* overflow, need to check for all hash slots */
2304 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3982 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2305 infy_wd (EV_A_ slot, wd, ev); 3983 infy_wd (EV_A_ slot, wd, ev);
2306 else 3984 else
2307 { 3985 {
2308 WL w_; 3986 WL w_;
2309 3987
2310 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3988 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2311 { 3989 {
2312 ev_stat *w = (ev_stat *)w_; 3990 ev_stat *w = (ev_stat *)w_;
2313 w_ = w_->next; /* lets us remove this watcher and all before it */ 3991 w_ = w_->next; /* lets us remove this watcher and all before it */
2314 3992
2315 if (w->wd == wd || wd == -1) 3993 if (w->wd == wd || wd == -1)
2316 { 3994 {
2317 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3995 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2318 { 3996 {
3997 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2319 w->wd = -1; 3998 w->wd = -1;
2320 infy_add (EV_A_ w); /* re-add, no matter what */ 3999 infy_add (EV_A_ w); /* re-add, no matter what */
2321 } 4000 }
2322 4001
2323 stat_timer_cb (EV_A_ &w->timer, 0); 4002 stat_timer_cb (EV_A_ &w->timer, 0);
2328 4007
2329static void 4008static void
2330infy_cb (EV_P_ ev_io *w, int revents) 4009infy_cb (EV_P_ ev_io *w, int revents)
2331{ 4010{
2332 char buf [EV_INOTIFY_BUFSIZE]; 4011 char buf [EV_INOTIFY_BUFSIZE];
2333 struct inotify_event *ev = (struct inotify_event *)buf;
2334 int ofs; 4012 int ofs;
2335 int len = read (fs_fd, buf, sizeof (buf)); 4013 int len = read (fs_fd, buf, sizeof (buf));
2336 4014
2337 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4015 for (ofs = 0; ofs < len; )
4016 {
4017 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2338 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4018 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4019 ofs += sizeof (struct inotify_event) + ev->len;
4020 }
2339} 4021}
2340 4022
2341void inline_size 4023inline_size void ecb_cold
4024ev_check_2625 (EV_P)
4025{
4026 /* kernels < 2.6.25 are borked
4027 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4028 */
4029 if (ev_linux_version () < 0x020619)
4030 return;
4031
4032 fs_2625 = 1;
4033}
4034
4035inline_size int
4036infy_newfd (void)
4037{
4038#if defined IN_CLOEXEC && defined IN_NONBLOCK
4039 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4040 if (fd >= 0)
4041 return fd;
4042#endif
4043 return inotify_init ();
4044}
4045
4046inline_size void
2342infy_init (EV_P) 4047infy_init (EV_P)
2343{ 4048{
2344 if (fs_fd != -2) 4049 if (fs_fd != -2)
2345 return; 4050 return;
2346 4051
4052 fs_fd = -1;
4053
4054 ev_check_2625 (EV_A);
4055
2347 fs_fd = inotify_init (); 4056 fs_fd = infy_newfd ();
2348 4057
2349 if (fs_fd >= 0) 4058 if (fs_fd >= 0)
2350 { 4059 {
4060 fd_intern (fs_fd);
2351 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4061 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2352 ev_set_priority (&fs_w, EV_MAXPRI); 4062 ev_set_priority (&fs_w, EV_MAXPRI);
2353 ev_io_start (EV_A_ &fs_w); 4063 ev_io_start (EV_A_ &fs_w);
4064 ev_unref (EV_A);
2354 } 4065 }
2355} 4066}
2356 4067
2357void inline_size 4068inline_size void
2358infy_fork (EV_P) 4069infy_fork (EV_P)
2359{ 4070{
2360 int slot; 4071 int slot;
2361 4072
2362 if (fs_fd < 0) 4073 if (fs_fd < 0)
2363 return; 4074 return;
2364 4075
4076 ev_ref (EV_A);
4077 ev_io_stop (EV_A_ &fs_w);
2365 close (fs_fd); 4078 close (fs_fd);
2366 fs_fd = inotify_init (); 4079 fs_fd = infy_newfd ();
2367 4080
4081 if (fs_fd >= 0)
4082 {
4083 fd_intern (fs_fd);
4084 ev_io_set (&fs_w, fs_fd, EV_READ);
4085 ev_io_start (EV_A_ &fs_w);
4086 ev_unref (EV_A);
4087 }
4088
2368 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4089 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2369 { 4090 {
2370 WL w_ = fs_hash [slot].head; 4091 WL w_ = fs_hash [slot].head;
2371 fs_hash [slot].head = 0; 4092 fs_hash [slot].head = 0;
2372 4093
2373 while (w_) 4094 while (w_)
2378 w->wd = -1; 4099 w->wd = -1;
2379 4100
2380 if (fs_fd >= 0) 4101 if (fs_fd >= 0)
2381 infy_add (EV_A_ w); /* re-add, no matter what */ 4102 infy_add (EV_A_ w); /* re-add, no matter what */
2382 else 4103 else
4104 {
4105 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4106 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2383 ev_timer_start (EV_A_ &w->timer); 4107 ev_timer_again (EV_A_ &w->timer);
4108 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4109 }
2384 } 4110 }
2385
2386 } 4111 }
2387} 4112}
2388 4113
4114#endif
4115
4116#ifdef _WIN32
4117# define EV_LSTAT(p,b) _stati64 (p, b)
4118#else
4119# define EV_LSTAT(p,b) lstat (p, b)
2389#endif 4120#endif
2390 4121
2391void 4122void
2392ev_stat_stat (EV_P_ ev_stat *w) 4123ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2393{ 4124{
2394 if (lstat (w->path, &w->attr) < 0) 4125 if (lstat (w->path, &w->attr) < 0)
2395 w->attr.st_nlink = 0; 4126 w->attr.st_nlink = 0;
2396 else if (!w->attr.st_nlink) 4127 else if (!w->attr.st_nlink)
2397 w->attr.st_nlink = 1; 4128 w->attr.st_nlink = 1;
2400static void noinline 4131static void noinline
2401stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4132stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2402{ 4133{
2403 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4134 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2404 4135
2405 /* we copy this here each the time so that */ 4136 ev_statdata prev = w->attr;
2406 /* prev has the old value when the callback gets invoked */
2407 w->prev = w->attr;
2408 ev_stat_stat (EV_A_ w); 4137 ev_stat_stat (EV_A_ w);
2409 4138
2410 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4139 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2411 if ( 4140 if (
2412 w->prev.st_dev != w->attr.st_dev 4141 prev.st_dev != w->attr.st_dev
2413 || w->prev.st_ino != w->attr.st_ino 4142 || prev.st_ino != w->attr.st_ino
2414 || w->prev.st_mode != w->attr.st_mode 4143 || prev.st_mode != w->attr.st_mode
2415 || w->prev.st_nlink != w->attr.st_nlink 4144 || prev.st_nlink != w->attr.st_nlink
2416 || w->prev.st_uid != w->attr.st_uid 4145 || prev.st_uid != w->attr.st_uid
2417 || w->prev.st_gid != w->attr.st_gid 4146 || prev.st_gid != w->attr.st_gid
2418 || w->prev.st_rdev != w->attr.st_rdev 4147 || prev.st_rdev != w->attr.st_rdev
2419 || w->prev.st_size != w->attr.st_size 4148 || prev.st_size != w->attr.st_size
2420 || w->prev.st_atime != w->attr.st_atime 4149 || prev.st_atime != w->attr.st_atime
2421 || w->prev.st_mtime != w->attr.st_mtime 4150 || prev.st_mtime != w->attr.st_mtime
2422 || w->prev.st_ctime != w->attr.st_ctime 4151 || prev.st_ctime != w->attr.st_ctime
2423 ) { 4152 ) {
4153 /* we only update w->prev on actual differences */
4154 /* in case we test more often than invoke the callback, */
4155 /* to ensure that prev is always different to attr */
4156 w->prev = prev;
4157
2424 #if EV_USE_INOTIFY 4158 #if EV_USE_INOTIFY
4159 if (fs_fd >= 0)
4160 {
2425 infy_del (EV_A_ w); 4161 infy_del (EV_A_ w);
2426 infy_add (EV_A_ w); 4162 infy_add (EV_A_ w);
2427 ev_stat_stat (EV_A_ w); /* avoid race... */ 4163 ev_stat_stat (EV_A_ w); /* avoid race... */
4164 }
2428 #endif 4165 #endif
2429 4166
2430 ev_feed_event (EV_A_ w, EV_STAT); 4167 ev_feed_event (EV_A_ w, EV_STAT);
2431 } 4168 }
2432} 4169}
2433 4170
2434void 4171void
2435ev_stat_start (EV_P_ ev_stat *w) 4172ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2436{ 4173{
2437 if (expect_false (ev_is_active (w))) 4174 if (expect_false (ev_is_active (w)))
2438 return; 4175 return;
2439 4176
2440 /* since we use memcmp, we need to clear any padding data etc. */
2441 memset (&w->prev, 0, sizeof (ev_statdata));
2442 memset (&w->attr, 0, sizeof (ev_statdata));
2443
2444 ev_stat_stat (EV_A_ w); 4177 ev_stat_stat (EV_A_ w);
2445 4178
4179 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2446 if (w->interval < MIN_STAT_INTERVAL) 4180 w->interval = MIN_STAT_INTERVAL;
2447 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2448 4181
2449 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4182 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2450 ev_set_priority (&w->timer, ev_priority (w)); 4183 ev_set_priority (&w->timer, ev_priority (w));
2451 4184
2452#if EV_USE_INOTIFY 4185#if EV_USE_INOTIFY
2453 infy_init (EV_A); 4186 infy_init (EV_A);
2454 4187
2455 if (fs_fd >= 0) 4188 if (fs_fd >= 0)
2456 infy_add (EV_A_ w); 4189 infy_add (EV_A_ w);
2457 else 4190 else
2458#endif 4191#endif
4192 {
2459 ev_timer_start (EV_A_ &w->timer); 4193 ev_timer_again (EV_A_ &w->timer);
4194 ev_unref (EV_A);
4195 }
2460 4196
2461 ev_start (EV_A_ (W)w, 1); 4197 ev_start (EV_A_ (W)w, 1);
4198
4199 EV_FREQUENT_CHECK;
2462} 4200}
2463 4201
2464void 4202void
2465ev_stat_stop (EV_P_ ev_stat *w) 4203ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2466{ 4204{
2467 clear_pending (EV_A_ (W)w); 4205 clear_pending (EV_A_ (W)w);
2468 if (expect_false (!ev_is_active (w))) 4206 if (expect_false (!ev_is_active (w)))
2469 return; 4207 return;
2470 4208
4209 EV_FREQUENT_CHECK;
4210
2471#if EV_USE_INOTIFY 4211#if EV_USE_INOTIFY
2472 infy_del (EV_A_ w); 4212 infy_del (EV_A_ w);
2473#endif 4213#endif
4214
4215 if (ev_is_active (&w->timer))
4216 {
4217 ev_ref (EV_A);
2474 ev_timer_stop (EV_A_ &w->timer); 4218 ev_timer_stop (EV_A_ &w->timer);
4219 }
2475 4220
2476 ev_stop (EV_A_ (W)w); 4221 ev_stop (EV_A_ (W)w);
4222
4223 EV_FREQUENT_CHECK;
2477} 4224}
2478#endif 4225#endif
2479 4226
2480#if EV_IDLE_ENABLE 4227#if EV_IDLE_ENABLE
2481void 4228void
2482ev_idle_start (EV_P_ ev_idle *w) 4229ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2483{ 4230{
2484 if (expect_false (ev_is_active (w))) 4231 if (expect_false (ev_is_active (w)))
2485 return; 4232 return;
2486 4233
2487 pri_adjust (EV_A_ (W)w); 4234 pri_adjust (EV_A_ (W)w);
4235
4236 EV_FREQUENT_CHECK;
2488 4237
2489 { 4238 {
2490 int active = ++idlecnt [ABSPRI (w)]; 4239 int active = ++idlecnt [ABSPRI (w)];
2491 4240
2492 ++idleall; 4241 ++idleall;
2493 ev_start (EV_A_ (W)w, active); 4242 ev_start (EV_A_ (W)w, active);
2494 4243
2495 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4244 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2496 idles [ABSPRI (w)][active - 1] = w; 4245 idles [ABSPRI (w)][active - 1] = w;
2497 } 4246 }
4247
4248 EV_FREQUENT_CHECK;
2498} 4249}
2499 4250
2500void 4251void
2501ev_idle_stop (EV_P_ ev_idle *w) 4252ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2502{ 4253{
2503 clear_pending (EV_A_ (W)w); 4254 clear_pending (EV_A_ (W)w);
2504 if (expect_false (!ev_is_active (w))) 4255 if (expect_false (!ev_is_active (w)))
2505 return; 4256 return;
2506 4257
4258 EV_FREQUENT_CHECK;
4259
2507 { 4260 {
2508 int active = ev_active (w); 4261 int active = ev_active (w);
2509 4262
2510 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4263 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2511 ev_active (idles [ABSPRI (w)][active - 1]) = active; 4264 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2512 4265
2513 ev_stop (EV_A_ (W)w); 4266 ev_stop (EV_A_ (W)w);
2514 --idleall; 4267 --idleall;
2515 } 4268 }
2516}
2517#endif
2518 4269
4270 EV_FREQUENT_CHECK;
4271}
4272#endif
4273
4274#if EV_PREPARE_ENABLE
2519void 4275void
2520ev_prepare_start (EV_P_ ev_prepare *w) 4276ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2521{ 4277{
2522 if (expect_false (ev_is_active (w))) 4278 if (expect_false (ev_is_active (w)))
2523 return; 4279 return;
4280
4281 EV_FREQUENT_CHECK;
2524 4282
2525 ev_start (EV_A_ (W)w, ++preparecnt); 4283 ev_start (EV_A_ (W)w, ++preparecnt);
2526 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4284 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2527 prepares [preparecnt - 1] = w; 4285 prepares [preparecnt - 1] = w;
4286
4287 EV_FREQUENT_CHECK;
2528} 4288}
2529 4289
2530void 4290void
2531ev_prepare_stop (EV_P_ ev_prepare *w) 4291ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2532{ 4292{
2533 clear_pending (EV_A_ (W)w); 4293 clear_pending (EV_A_ (W)w);
2534 if (expect_false (!ev_is_active (w))) 4294 if (expect_false (!ev_is_active (w)))
2535 return; 4295 return;
2536 4296
4297 EV_FREQUENT_CHECK;
4298
2537 { 4299 {
2538 int active = ev_active (w); 4300 int active = ev_active (w);
2539 4301
2540 prepares [active - 1] = prepares [--preparecnt]; 4302 prepares [active - 1] = prepares [--preparecnt];
2541 ev_active (prepares [active - 1]) = active; 4303 ev_active (prepares [active - 1]) = active;
2542 } 4304 }
2543 4305
2544 ev_stop (EV_A_ (W)w); 4306 ev_stop (EV_A_ (W)w);
2545}
2546 4307
4308 EV_FREQUENT_CHECK;
4309}
4310#endif
4311
4312#if EV_CHECK_ENABLE
2547void 4313void
2548ev_check_start (EV_P_ ev_check *w) 4314ev_check_start (EV_P_ ev_check *w) EV_THROW
2549{ 4315{
2550 if (expect_false (ev_is_active (w))) 4316 if (expect_false (ev_is_active (w)))
2551 return; 4317 return;
4318
4319 EV_FREQUENT_CHECK;
2552 4320
2553 ev_start (EV_A_ (W)w, ++checkcnt); 4321 ev_start (EV_A_ (W)w, ++checkcnt);
2554 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4322 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2555 checks [checkcnt - 1] = w; 4323 checks [checkcnt - 1] = w;
4324
4325 EV_FREQUENT_CHECK;
2556} 4326}
2557 4327
2558void 4328void
2559ev_check_stop (EV_P_ ev_check *w) 4329ev_check_stop (EV_P_ ev_check *w) EV_THROW
2560{ 4330{
2561 clear_pending (EV_A_ (W)w); 4331 clear_pending (EV_A_ (W)w);
2562 if (expect_false (!ev_is_active (w))) 4332 if (expect_false (!ev_is_active (w)))
2563 return; 4333 return;
2564 4334
4335 EV_FREQUENT_CHECK;
4336
2565 { 4337 {
2566 int active = ev_active (w); 4338 int active = ev_active (w);
2567 4339
2568 checks [active - 1] = checks [--checkcnt]; 4340 checks [active - 1] = checks [--checkcnt];
2569 ev_active (checks [active - 1]) = active; 4341 ev_active (checks [active - 1]) = active;
2570 } 4342 }
2571 4343
2572 ev_stop (EV_A_ (W)w); 4344 ev_stop (EV_A_ (W)w);
4345
4346 EV_FREQUENT_CHECK;
2573} 4347}
4348#endif
2574 4349
2575#if EV_EMBED_ENABLE 4350#if EV_EMBED_ENABLE
2576void noinline 4351void noinline
2577ev_embed_sweep (EV_P_ ev_embed *w) 4352ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2578{ 4353{
2579 ev_loop (w->other, EVLOOP_NONBLOCK); 4354 ev_run (w->other, EVRUN_NOWAIT);
2580} 4355}
2581 4356
2582static void 4357static void
2583embed_io_cb (EV_P_ ev_io *io, int revents) 4358embed_io_cb (EV_P_ ev_io *io, int revents)
2584{ 4359{
2585 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4360 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2586 4361
2587 if (ev_cb (w)) 4362 if (ev_cb (w))
2588 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4363 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2589 else 4364 else
2590 ev_loop (w->other, EVLOOP_NONBLOCK); 4365 ev_run (w->other, EVRUN_NOWAIT);
2591} 4366}
2592 4367
2593static void 4368static void
2594embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4369embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2595{ 4370{
2596 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4371 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2597 4372
2598 { 4373 {
2599 struct ev_loop *loop = w->other; 4374 EV_P = w->other;
2600 4375
2601 while (fdchangecnt) 4376 while (fdchangecnt)
2602 { 4377 {
2603 fd_reify (EV_A); 4378 fd_reify (EV_A);
2604 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4379 ev_run (EV_A_ EVRUN_NOWAIT);
2605 } 4380 }
2606 } 4381 }
4382}
4383
4384static void
4385embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4386{
4387 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4388
4389 ev_embed_stop (EV_A_ w);
4390
4391 {
4392 EV_P = w->other;
4393
4394 ev_loop_fork (EV_A);
4395 ev_run (EV_A_ EVRUN_NOWAIT);
4396 }
4397
4398 ev_embed_start (EV_A_ w);
2607} 4399}
2608 4400
2609#if 0 4401#if 0
2610static void 4402static void
2611embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4403embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2613 ev_idle_stop (EV_A_ idle); 4405 ev_idle_stop (EV_A_ idle);
2614} 4406}
2615#endif 4407#endif
2616 4408
2617void 4409void
2618ev_embed_start (EV_P_ ev_embed *w) 4410ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2619{ 4411{
2620 if (expect_false (ev_is_active (w))) 4412 if (expect_false (ev_is_active (w)))
2621 return; 4413 return;
2622 4414
2623 { 4415 {
2624 struct ev_loop *loop = w->other; 4416 EV_P = w->other;
2625 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4417 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2626 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4418 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2627 } 4419 }
4420
4421 EV_FREQUENT_CHECK;
2628 4422
2629 ev_set_priority (&w->io, ev_priority (w)); 4423 ev_set_priority (&w->io, ev_priority (w));
2630 ev_io_start (EV_A_ &w->io); 4424 ev_io_start (EV_A_ &w->io);
2631 4425
2632 ev_prepare_init (&w->prepare, embed_prepare_cb); 4426 ev_prepare_init (&w->prepare, embed_prepare_cb);
2633 ev_set_priority (&w->prepare, EV_MINPRI); 4427 ev_set_priority (&w->prepare, EV_MINPRI);
2634 ev_prepare_start (EV_A_ &w->prepare); 4428 ev_prepare_start (EV_A_ &w->prepare);
2635 4429
4430 ev_fork_init (&w->fork, embed_fork_cb);
4431 ev_fork_start (EV_A_ &w->fork);
4432
2636 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4433 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2637 4434
2638 ev_start (EV_A_ (W)w, 1); 4435 ev_start (EV_A_ (W)w, 1);
4436
4437 EV_FREQUENT_CHECK;
2639} 4438}
2640 4439
2641void 4440void
2642ev_embed_stop (EV_P_ ev_embed *w) 4441ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2643{ 4442{
2644 clear_pending (EV_A_ (W)w); 4443 clear_pending (EV_A_ (W)w);
2645 if (expect_false (!ev_is_active (w))) 4444 if (expect_false (!ev_is_active (w)))
2646 return; 4445 return;
2647 4446
4447 EV_FREQUENT_CHECK;
4448
2648 ev_io_stop (EV_A_ &w->io); 4449 ev_io_stop (EV_A_ &w->io);
2649 ev_prepare_stop (EV_A_ &w->prepare); 4450 ev_prepare_stop (EV_A_ &w->prepare);
4451 ev_fork_stop (EV_A_ &w->fork);
2650 4452
2651 ev_stop (EV_A_ (W)w); 4453 ev_stop (EV_A_ (W)w);
4454
4455 EV_FREQUENT_CHECK;
2652} 4456}
2653#endif 4457#endif
2654 4458
2655#if EV_FORK_ENABLE 4459#if EV_FORK_ENABLE
2656void 4460void
2657ev_fork_start (EV_P_ ev_fork *w) 4461ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2658{ 4462{
2659 if (expect_false (ev_is_active (w))) 4463 if (expect_false (ev_is_active (w)))
2660 return; 4464 return;
4465
4466 EV_FREQUENT_CHECK;
2661 4467
2662 ev_start (EV_A_ (W)w, ++forkcnt); 4468 ev_start (EV_A_ (W)w, ++forkcnt);
2663 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4469 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2664 forks [forkcnt - 1] = w; 4470 forks [forkcnt - 1] = w;
4471
4472 EV_FREQUENT_CHECK;
2665} 4473}
2666 4474
2667void 4475void
2668ev_fork_stop (EV_P_ ev_fork *w) 4476ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2669{ 4477{
2670 clear_pending (EV_A_ (W)w); 4478 clear_pending (EV_A_ (W)w);
2671 if (expect_false (!ev_is_active (w))) 4479 if (expect_false (!ev_is_active (w)))
2672 return; 4480 return;
2673 4481
4482 EV_FREQUENT_CHECK;
4483
2674 { 4484 {
2675 int active = ev_active (w); 4485 int active = ev_active (w);
2676 4486
2677 forks [active - 1] = forks [--forkcnt]; 4487 forks [active - 1] = forks [--forkcnt];
2678 ev_active (forks [active - 1]) = active; 4488 ev_active (forks [active - 1]) = active;
2679 } 4489 }
2680 4490
2681 ev_stop (EV_A_ (W)w); 4491 ev_stop (EV_A_ (W)w);
4492
4493 EV_FREQUENT_CHECK;
4494}
4495#endif
4496
4497#if EV_CLEANUP_ENABLE
4498void
4499ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4500{
4501 if (expect_false (ev_is_active (w)))
4502 return;
4503
4504 EV_FREQUENT_CHECK;
4505
4506 ev_start (EV_A_ (W)w, ++cleanupcnt);
4507 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4508 cleanups [cleanupcnt - 1] = w;
4509
4510 /* cleanup watchers should never keep a refcount on the loop */
4511 ev_unref (EV_A);
4512 EV_FREQUENT_CHECK;
4513}
4514
4515void
4516ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4517{
4518 clear_pending (EV_A_ (W)w);
4519 if (expect_false (!ev_is_active (w)))
4520 return;
4521
4522 EV_FREQUENT_CHECK;
4523 ev_ref (EV_A);
4524
4525 {
4526 int active = ev_active (w);
4527
4528 cleanups [active - 1] = cleanups [--cleanupcnt];
4529 ev_active (cleanups [active - 1]) = active;
4530 }
4531
4532 ev_stop (EV_A_ (W)w);
4533
4534 EV_FREQUENT_CHECK;
2682} 4535}
2683#endif 4536#endif
2684 4537
2685#if EV_ASYNC_ENABLE 4538#if EV_ASYNC_ENABLE
2686void 4539void
2687ev_async_start (EV_P_ ev_async *w) 4540ev_async_start (EV_P_ ev_async *w) EV_THROW
2688{ 4541{
2689 if (expect_false (ev_is_active (w))) 4542 if (expect_false (ev_is_active (w)))
2690 return; 4543 return;
2691 4544
4545 w->sent = 0;
4546
2692 evpipe_init (EV_A); 4547 evpipe_init (EV_A);
4548
4549 EV_FREQUENT_CHECK;
2693 4550
2694 ev_start (EV_A_ (W)w, ++asynccnt); 4551 ev_start (EV_A_ (W)w, ++asynccnt);
2695 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4552 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2696 asyncs [asynccnt - 1] = w; 4553 asyncs [asynccnt - 1] = w;
4554
4555 EV_FREQUENT_CHECK;
2697} 4556}
2698 4557
2699void 4558void
2700ev_async_stop (EV_P_ ev_async *w) 4559ev_async_stop (EV_P_ ev_async *w) EV_THROW
2701{ 4560{
2702 clear_pending (EV_A_ (W)w); 4561 clear_pending (EV_A_ (W)w);
2703 if (expect_false (!ev_is_active (w))) 4562 if (expect_false (!ev_is_active (w)))
2704 return; 4563 return;
2705 4564
4565 EV_FREQUENT_CHECK;
4566
2706 { 4567 {
2707 int active = ev_active (w); 4568 int active = ev_active (w);
2708 4569
2709 asyncs [active - 1] = asyncs [--asynccnt]; 4570 asyncs [active - 1] = asyncs [--asynccnt];
2710 ev_active (asyncs [active - 1]) = active; 4571 ev_active (asyncs [active - 1]) = active;
2711 } 4572 }
2712 4573
2713 ev_stop (EV_A_ (W)w); 4574 ev_stop (EV_A_ (W)w);
4575
4576 EV_FREQUENT_CHECK;
2714} 4577}
2715 4578
2716void 4579void
2717ev_async_send (EV_P_ ev_async *w) 4580ev_async_send (EV_P_ ev_async *w) EV_THROW
2718{ 4581{
2719 w->sent = 1; 4582 w->sent = 1;
2720 evpipe_write (EV_A_ &gotasync); 4583 evpipe_write (EV_A_ &async_pending);
2721} 4584}
2722#endif 4585#endif
2723 4586
2724/*****************************************************************************/ 4587/*****************************************************************************/
2725 4588
2735once_cb (EV_P_ struct ev_once *once, int revents) 4598once_cb (EV_P_ struct ev_once *once, int revents)
2736{ 4599{
2737 void (*cb)(int revents, void *arg) = once->cb; 4600 void (*cb)(int revents, void *arg) = once->cb;
2738 void *arg = once->arg; 4601 void *arg = once->arg;
2739 4602
2740 ev_io_stop (EV_A_ &once->io); 4603 ev_io_stop (EV_A_ &once->io);
2741 ev_timer_stop (EV_A_ &once->to); 4604 ev_timer_stop (EV_A_ &once->to);
2742 ev_free (once); 4605 ev_free (once);
2743 4606
2744 cb (revents, arg); 4607 cb (revents, arg);
2745} 4608}
2746 4609
2747static void 4610static void
2748once_cb_io (EV_P_ ev_io *w, int revents) 4611once_cb_io (EV_P_ ev_io *w, int revents)
2749{ 4612{
2750 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4613 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4614
4615 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2751} 4616}
2752 4617
2753static void 4618static void
2754once_cb_to (EV_P_ ev_timer *w, int revents) 4619once_cb_to (EV_P_ ev_timer *w, int revents)
2755{ 4620{
2756 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4621 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4622
4623 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2757} 4624}
2758 4625
2759void 4626void
2760ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4627ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2761{ 4628{
2762 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4629 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2763 4630
2764 if (expect_false (!once)) 4631 if (expect_false (!once))
2765 { 4632 {
2766 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4633 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2767 return; 4634 return;
2768 } 4635 }
2769 4636
2770 once->cb = cb; 4637 once->cb = cb;
2771 once->arg = arg; 4638 once->arg = arg;
2783 ev_timer_set (&once->to, timeout, 0.); 4650 ev_timer_set (&once->to, timeout, 0.);
2784 ev_timer_start (EV_A_ &once->to); 4651 ev_timer_start (EV_A_ &once->to);
2785 } 4652 }
2786} 4653}
2787 4654
4655/*****************************************************************************/
4656
4657#if EV_WALK_ENABLE
4658void ecb_cold
4659ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4660{
4661 int i, j;
4662 ev_watcher_list *wl, *wn;
4663
4664 if (types & (EV_IO | EV_EMBED))
4665 for (i = 0; i < anfdmax; ++i)
4666 for (wl = anfds [i].head; wl; )
4667 {
4668 wn = wl->next;
4669
4670#if EV_EMBED_ENABLE
4671 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4672 {
4673 if (types & EV_EMBED)
4674 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4675 }
4676 else
4677#endif
4678#if EV_USE_INOTIFY
4679 if (ev_cb ((ev_io *)wl) == infy_cb)
4680 ;
4681 else
4682#endif
4683 if ((ev_io *)wl != &pipe_w)
4684 if (types & EV_IO)
4685 cb (EV_A_ EV_IO, wl);
4686
4687 wl = wn;
4688 }
4689
4690 if (types & (EV_TIMER | EV_STAT))
4691 for (i = timercnt + HEAP0; i-- > HEAP0; )
4692#if EV_STAT_ENABLE
4693 /*TODO: timer is not always active*/
4694 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4695 {
4696 if (types & EV_STAT)
4697 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4698 }
4699 else
4700#endif
4701 if (types & EV_TIMER)
4702 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4703
4704#if EV_PERIODIC_ENABLE
4705 if (types & EV_PERIODIC)
4706 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4707 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4708#endif
4709
4710#if EV_IDLE_ENABLE
4711 if (types & EV_IDLE)
4712 for (j = NUMPRI; j--; )
4713 for (i = idlecnt [j]; i--; )
4714 cb (EV_A_ EV_IDLE, idles [j][i]);
4715#endif
4716
4717#if EV_FORK_ENABLE
4718 if (types & EV_FORK)
4719 for (i = forkcnt; i--; )
4720 if (ev_cb (forks [i]) != embed_fork_cb)
4721 cb (EV_A_ EV_FORK, forks [i]);
4722#endif
4723
4724#if EV_ASYNC_ENABLE
4725 if (types & EV_ASYNC)
4726 for (i = asynccnt; i--; )
4727 cb (EV_A_ EV_ASYNC, asyncs [i]);
4728#endif
4729
4730#if EV_PREPARE_ENABLE
4731 if (types & EV_PREPARE)
4732 for (i = preparecnt; i--; )
4733# if EV_EMBED_ENABLE
4734 if (ev_cb (prepares [i]) != embed_prepare_cb)
4735# endif
4736 cb (EV_A_ EV_PREPARE, prepares [i]);
4737#endif
4738
4739#if EV_CHECK_ENABLE
4740 if (types & EV_CHECK)
4741 for (i = checkcnt; i--; )
4742 cb (EV_A_ EV_CHECK, checks [i]);
4743#endif
4744
4745#if EV_SIGNAL_ENABLE
4746 if (types & EV_SIGNAL)
4747 for (i = 0; i < EV_NSIG - 1; ++i)
4748 for (wl = signals [i].head; wl; )
4749 {
4750 wn = wl->next;
4751 cb (EV_A_ EV_SIGNAL, wl);
4752 wl = wn;
4753 }
4754#endif
4755
4756#if EV_CHILD_ENABLE
4757 if (types & EV_CHILD)
4758 for (i = (EV_PID_HASHSIZE); i--; )
4759 for (wl = childs [i]; wl; )
4760 {
4761 wn = wl->next;
4762 cb (EV_A_ EV_CHILD, wl);
4763 wl = wn;
4764 }
4765#endif
4766/* EV_STAT 0x00001000 /* stat data changed */
4767/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4768}
4769#endif
4770
2788#if EV_MULTIPLICITY 4771#if EV_MULTIPLICITY
2789 #include "ev_wrap.h" 4772 #include "ev_wrap.h"
2790#endif 4773#endif
2791 4774
2792#ifdef __cplusplus
2793}
2794#endif
2795

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines