ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.75 by root, Tue Nov 6 19:29:20 2007 UTC vs.
Revision 1.244 by root, Tue May 20 23:49:41 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
33 51
34# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
37# endif 66# endif
38 67
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
41# endif 74# endif
42 75
43# if HAVE_POLL && HAVE_POLL_H 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
45# endif 82# endif
46 83
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
49# endif 90# endif
50 91
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
53# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
54 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
55#endif 132#endif
56 133
57#include <math.h> 134#include <math.h>
58#include <stdlib.h> 135#include <stdlib.h>
59#include <fcntl.h> 136#include <fcntl.h>
66#include <sys/types.h> 143#include <sys/types.h>
67#include <time.h> 144#include <time.h>
68 145
69#include <signal.h> 146#include <signal.h>
70 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
71#ifndef WIN32 154#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 155# include <sys/time.h>
74# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
75#endif 163# endif
76/**/ 164#endif
165
166/* this block tries to deduce configuration from header-defined symbols and defaults */
77 167
78#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
80#endif 178#endif
81 179
82#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
84#endif 182#endif
85 183
86#ifndef EV_USE_POLL 184#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
88#endif 190#endif
89 191
90#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
91# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
92#endif 198#endif
93 199
94#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
96#endif 202#endif
97 203
204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
98#ifndef EV_USE_WIN32 208#ifndef EV_USE_INOTIFY
99# ifdef WIN32 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1 210# define EV_USE_INOTIFY 1
103# else 211# else
104# define EV_USE_WIN32 0 212# define EV_USE_INOTIFY 0
105# endif 213# endif
106#endif 214#endif
107 215
108#ifndef EV_USE_REALTIME 216#ifndef EV_PID_HASHSIZE
109# define EV_USE_REALTIME 1 217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
110#endif 221# endif
222#endif
111 223
112/**/ 224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
113 249
114#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
117#endif 253#endif
119#ifndef CLOCK_REALTIME 255#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 256# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 257# define EV_USE_REALTIME 0
122#endif 258#endif
123 259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
275#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h>
277#endif
278
279#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
289#endif
290
124/**/ 291/**/
125 292
293/*
294 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
302
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
130 306
131#include "ev.h"
132
133#if __GNUC__ >= 3 307#if __GNUC__ >= 4
134# define expect(expr,value) __builtin_expect ((expr),(value)) 308# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 309# define noinline __attribute__ ((noinline))
136#else 310#else
137# define expect(expr,value) (expr) 311# define expect(expr,value) (expr)
138# define inline static 312# define noinline
313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
314# define inline
315# endif
139#endif 316#endif
140 317
141#define expect_false(expr) expect ((expr) != 0, 0) 318#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1) 319#define expect_true(expr) expect ((expr) != 0, 1)
320#define inline_size static inline
321
322#if EV_MINIMAL
323# define inline_speed static noinline
324#else
325# define inline_speed static inline
326#endif
143 327
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
146 330
331#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */
333
147typedef struct ev_watcher *W; 334typedef ev_watcher *W;
148typedef struct ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
150 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
341#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
345#endif
152 346
347#ifdef _WIN32
153#include "ev_win32.c" 348# include "ev_win32.c"
349#endif
154 350
155/*****************************************************************************/ 351/*****************************************************************************/
156 352
157static void (*syserr_cb)(const char *msg); 353static void (*syserr_cb)(const char *msg);
158 354
355void
159void ev_set_syserr_cb (void (*cb)(const char *msg)) 356ev_set_syserr_cb (void (*cb)(const char *msg))
160{ 357{
161 syserr_cb = cb; 358 syserr_cb = cb;
162} 359}
163 360
164static void 361static void noinline
165syserr (const char *msg) 362syserr (const char *msg)
166{ 363{
167 if (!msg) 364 if (!msg)
168 msg = "(libev) system error"; 365 msg = "(libev) system error";
169 366
174 perror (msg); 371 perror (msg);
175 abort (); 372 abort ();
176 } 373 }
177} 374}
178 375
376static void *
377ev_realloc_emul (void *ptr, long size)
378{
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389}
390
179static void *(*alloc)(void *ptr, long size); 391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
180 392
393void
181void ev_set_allocator (void *(*cb)(void *ptr, long size)) 394ev_set_allocator (void *(*cb)(void *ptr, long size))
182{ 395{
183 alloc = cb; 396 alloc = cb;
184} 397}
185 398
186static void * 399inline_speed void *
187ev_realloc (void *ptr, long size) 400ev_realloc (void *ptr, long size)
188{ 401{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 402 ptr = alloc (ptr, size);
190 403
191 if (!ptr && size) 404 if (!ptr && size)
192 { 405 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort (); 407 abort ();
205typedef struct 418typedef struct
206{ 419{
207 WL head; 420 WL head;
208 unsigned char events; 421 unsigned char events;
209 unsigned char reify; 422 unsigned char reify;
423#if EV_SELECT_IS_WINSOCKET
424 SOCKET handle;
425#endif
210} ANFD; 426} ANFD;
211 427
212typedef struct 428typedef struct
213{ 429{
214 W w; 430 W w;
215 int events; 431 int events;
216} ANPENDING; 432} ANPENDING;
217 433
434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
436typedef struct
437{
438 WL head;
439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
458#endif
459
218#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
219 461
220struct ev_loop 462 struct ev_loop
221{ 463 {
464 ev_tstamp ev_rt_now;
465 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 466 #define VAR(name,decl) decl;
223# include "ev_vars.h" 467 #include "ev_vars.h"
224};
225# undef VAR 468 #undef VAR
469 };
226# include "ev_wrap.h" 470 #include "ev_wrap.h"
471
472 static struct ev_loop default_loop_struct;
473 struct ev_loop *ev_default_loop_ptr;
227 474
228#else 475#else
229 476
477 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 478 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 479 #include "ev_vars.h"
232# undef VAR 480 #undef VAR
481
482 static int ev_default_loop_ptr;
233 483
234#endif 484#endif
235 485
236/*****************************************************************************/ 486/*****************************************************************************/
237 487
238inline ev_tstamp 488ev_tstamp
239ev_time (void) 489ev_time (void)
240{ 490{
241#if EV_USE_REALTIME 491#if EV_USE_REALTIME
242 struct timespec ts; 492 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 493 clock_gettime (CLOCK_REALTIME, &ts);
247 gettimeofday (&tv, 0); 497 gettimeofday (&tv, 0);
248 return tv.tv_sec + tv.tv_usec * 1e-6; 498 return tv.tv_sec + tv.tv_usec * 1e-6;
249#endif 499#endif
250} 500}
251 501
252inline ev_tstamp 502ev_tstamp inline_size
253get_clock (void) 503get_clock (void)
254{ 504{
255#if EV_USE_MONOTONIC 505#if EV_USE_MONOTONIC
256 if (expect_true (have_monotonic)) 506 if (expect_true (have_monotonic))
257 { 507 {
262#endif 512#endif
263 513
264 return ev_time (); 514 return ev_time ();
265} 515}
266 516
517#if EV_MULTIPLICITY
267ev_tstamp 518ev_tstamp
268ev_now (EV_P) 519ev_now (EV_P)
269{ 520{
270 return rt_now; 521 return ev_rt_now;
271} 522}
523#endif
272 524
273#define array_roundsize(type,n) ((n) | 4 & ~3) 525void
526ev_sleep (ev_tstamp delay)
527{
528 if (delay > 0.)
529 {
530#if EV_USE_NANOSLEEP
531 struct timespec ts;
532
533 ts.tv_sec = (time_t)delay;
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0);
537#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3));
539#else
540 struct timeval tv;
541
542 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544
545 select (0, 0, 0, 0, &tv);
546#endif
547 }
548}
549
550/*****************************************************************************/
551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
554int inline_size
555array_nextsize (int elem, int cur, int cnt)
556{
557 int ncur = cur + 1;
558
559 do
560 ncur <<= 1;
561 while (cnt > ncur);
562
563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
565 {
566 ncur *= elem;
567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
568 ncur = ncur - sizeof (void *) * 4;
569 ncur /= elem;
570 }
571
572 return ncur;
573}
574
575static noinline void *
576array_realloc (int elem, void *base, int *cur, int cnt)
577{
578 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur);
580}
274 581
275#define array_needsize(type,base,cur,cnt,init) \ 582#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 583 if (expect_false ((cnt) > (cur))) \
277 { \ 584 { \
278 int newcnt = cur; \ 585 int ocur_ = (cur); \
279 do \ 586 (base) = (type *)array_realloc \
280 { \ 587 (sizeof (type), (base), &(cur), (cnt)); \
281 newcnt = array_roundsize (type, newcnt << 1); \ 588 init ((base) + (ocur_), (cur) - ocur_); \
282 } \
283 while ((cnt) > newcnt); \
284 \
285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \
287 cur = newcnt; \
288 } 589 }
289 590
591#if 0
290#define array_slim(type,stem) \ 592#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 593 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 594 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 595 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 596 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 598 }
297 599#endif
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302 600
303#define array_free(stem, idx) \ 601#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
305 603
306/*****************************************************************************/ 604/*****************************************************************************/
307 605
308static void 606void noinline
607ev_feed_event (EV_P_ void *w, int revents)
608{
609 W w_ = (W)w;
610 int pri = ABSPRI (w_);
611
612 if (expect_false (w_->pending))
613 pendings [pri][w_->pending - 1].events |= revents;
614 else
615 {
616 w_->pending = ++pendingcnt [pri];
617 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
618 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents;
620 }
621}
622
623void inline_speed
624queue_events (EV_P_ W *events, int eventcnt, int type)
625{
626 int i;
627
628 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type);
630}
631
632/*****************************************************************************/
633
634void inline_size
309anfds_init (ANFD *base, int count) 635anfds_init (ANFD *base, int count)
310{ 636{
311 while (count--) 637 while (count--)
312 { 638 {
313 base->head = 0; 639 base->head = 0;
316 642
317 ++base; 643 ++base;
318 } 644 }
319} 645}
320 646
321static void 647void inline_speed
322event (EV_P_ W w, int events)
323{
324 if (w->pending)
325 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events;
327 return;
328 }
329
330 w->pending = ++pendingcnt [ABSPRI (w)];
331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w;
333 pendings [ABSPRI (w)][w->pending - 1].events = events;
334}
335
336static void
337queue_events (EV_P_ W *events, int eventcnt, int type)
338{
339 int i;
340
341 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type);
343}
344
345static void
346fd_event (EV_P_ int fd, int events) 648fd_event (EV_P_ int fd, int revents)
347{ 649{
348 ANFD *anfd = anfds + fd; 650 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 651 ev_io *w;
350 652
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
352 { 654 {
353 int ev = w->events & events; 655 int ev = w->events & revents;
354 656
355 if (ev) 657 if (ev)
356 event (EV_A_ (W)w, ev); 658 ev_feed_event (EV_A_ (W)w, ev);
357 } 659 }
358} 660}
359 661
360/*****************************************************************************/ 662void
663ev_feed_fd_event (EV_P_ int fd, int revents)
664{
665 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents);
667}
361 668
362static void 669void inline_size
363fd_reify (EV_P) 670fd_reify (EV_P)
364{ 671{
365 int i; 672 int i;
366 673
367 for (i = 0; i < fdchangecnt; ++i) 674 for (i = 0; i < fdchangecnt; ++i)
368 { 675 {
369 int fd = fdchanges [i]; 676 int fd = fdchanges [i];
370 ANFD *anfd = anfds + fd; 677 ANFD *anfd = anfds + fd;
371 struct ev_io *w; 678 ev_io *w;
372 679
373 int events = 0; 680 unsigned char events = 0;
374 681
375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
376 events |= w->events; 683 events |= (unsigned char)w->events;
377 684
685#if EV_SELECT_IS_WINSOCKET
686 if (events)
687 {
688 unsigned long argp;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
692 anfd->handle = _get_osfhandle (fd);
693 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
695 }
696#endif
697
698 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
378 anfd->reify = 0; 702 anfd->reify = 0;
379
380 method_modify (EV_A_ fd, anfd->events, events);
381 anfd->events = events; 703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events);
707 }
382 } 708 }
383 709
384 fdchangecnt = 0; 710 fdchangecnt = 0;
385} 711}
386 712
387static void 713void inline_size
388fd_change (EV_P_ int fd) 714fd_change (EV_P_ int fd, int flags)
389{ 715{
390 if (anfds [fd].reify) 716 unsigned char reify = anfds [fd].reify;
391 return;
392
393 anfds [fd].reify = 1; 717 anfds [fd].reify |= flags;
394 718
719 if (expect_true (!reify))
720 {
395 ++fdchangecnt; 721 ++fdchangecnt;
396 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
397 fdchanges [fdchangecnt - 1] = fd; 723 fdchanges [fdchangecnt - 1] = fd;
724 }
398} 725}
399 726
400static void 727void inline_speed
401fd_kill (EV_P_ int fd) 728fd_kill (EV_P_ int fd)
402{ 729{
403 struct ev_io *w; 730 ev_io *w;
404 731
405 while ((w = (struct ev_io *)anfds [fd].head)) 732 while ((w = (ev_io *)anfds [fd].head))
406 { 733 {
407 ev_io_stop (EV_A_ w); 734 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 736 }
410} 737}
411 738
412static int 739int inline_size
413fd_valid (int fd) 740fd_valid (int fd)
414{ 741{
415#ifdef WIN32 742#ifdef _WIN32
416 return !!win32_get_osfhandle (fd); 743 return _get_osfhandle (fd) != -1;
417#else 744#else
418 return fcntl (fd, F_GETFD) != -1; 745 return fcntl (fd, F_GETFD) != -1;
419#endif 746#endif
420} 747}
421 748
422/* called on EBADF to verify fds */ 749/* called on EBADF to verify fds */
423static void 750static void noinline
424fd_ebadf (EV_P) 751fd_ebadf (EV_P)
425{ 752{
426 int fd; 753 int fd;
427 754
428 for (fd = 0; fd < anfdmax; ++fd) 755 for (fd = 0; fd < anfdmax; ++fd)
430 if (!fd_valid (fd) == -1 && errno == EBADF) 757 if (!fd_valid (fd) == -1 && errno == EBADF)
431 fd_kill (EV_A_ fd); 758 fd_kill (EV_A_ fd);
432} 759}
433 760
434/* called on ENOMEM in select/poll to kill some fds and retry */ 761/* called on ENOMEM in select/poll to kill some fds and retry */
435static void 762static void noinline
436fd_enomem (EV_P) 763fd_enomem (EV_P)
437{ 764{
438 int fd; 765 int fd;
439 766
440 for (fd = anfdmax; fd--; ) 767 for (fd = anfdmax; fd--; )
443 fd_kill (EV_A_ fd); 770 fd_kill (EV_A_ fd);
444 return; 771 return;
445 } 772 }
446} 773}
447 774
448/* usually called after fork if method needs to re-arm all fds from scratch */ 775/* usually called after fork if backend needs to re-arm all fds from scratch */
449static void 776static void noinline
450fd_rearm_all (EV_P) 777fd_rearm_all (EV_P)
451{ 778{
452 int fd; 779 int fd;
453 780
454 /* this should be highly optimised to not do anything but set a flag */
455 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
456 if (anfds [fd].events) 782 if (anfds [fd].events)
457 { 783 {
458 anfds [fd].events = 0; 784 anfds [fd].events = 0;
459 fd_change (EV_A_ fd); 785 fd_change (EV_A_ fd, EV_IOFDSET | 1);
460 } 786 }
461} 787}
462 788
463/*****************************************************************************/ 789/*****************************************************************************/
464 790
465static void 791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807
808/* towards the root */
809void inline_speed
466upheap (WT *heap, int k) 810upheap (ANHE *heap, int k)
467{ 811{
468 WT w = heap [k]; 812 ANHE he = heap [k];
469 813
470 while (k && heap [k >> 1]->at > w->at) 814 for (;;)
471 {
472 heap [k] = heap [k >> 1];
473 ((W)heap [k])->active = k + 1;
474 k >>= 1;
475 } 815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
476 817
477 heap [k] = w; 818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
478 ((W)heap [k])->active = k + 1;
479
480}
481
482static void
483downheap (WT *heap, int N, int k)
484{
485 WT w = heap [k];
486
487 while (k < (N >> 1))
488 {
489 int j = k << 1;
490
491 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
492 ++j;
493
494 if (w->at <= heap [j]->at)
495 break; 819 break;
496 820
497 heap [k] = heap [j]; 821 heap [k] = heap [p];
498 ((W)heap [k])->active = k + 1; 822 ev_active (ANHE_w (heap [k])) = k;
499 k = j; 823 k = p;
500 } 824 }
501 825
826 ev_active (ANHE_w (he)) = k;
502 heap [k] = w; 827 heap [k] = he;
503 ((W)heap [k])->active = k + 1; 828}
829
830/* away from the root */
831void inline_speed
832downheap (ANHE *heap, int N, int k)
833{
834 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0;
836
837 for (;;)
838 {
839 ev_tstamp minat;
840 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
842
843 // find minimum child
844 if (expect_true (pos + DHEAP - 1 < E))
845 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else if (pos < E)
852 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else
859 break;
860
861 if (ANHE_at (he) <= minat)
862 break;
863
864 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866
867 k = minpos - heap;
868 }
869
870 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872}
873
874#else // 4HEAP
875
876#define HEAP0 1
877
878/* towards the root */
879void inline_speed
880upheap (ANHE *heap, int k)
881{
882 ANHE he = heap [k];
883
884 for (;;)
885 {
886 int p = k >> 1;
887
888 /* maybe we could use a dummy element at heap [0]? */
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break;
891
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0;
916
917 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break;
919
920 heap [k] = heap [c];
921 ev_active (ANHE_w (heap [k])) = k;
922
923 k = c;
924 }
925
926 heap [k] = he;
927 ev_active (ANHE_w (he)) = k;
928}
929#endif
930
931void inline_size
932adjustheap (ANHE *heap, int N, int k)
933{
934 upheap (heap, k);
935 downheap (heap, N, k);
504} 936}
505 937
506/*****************************************************************************/ 938/*****************************************************************************/
507 939
508typedef struct 940typedef struct
509{ 941{
510 WL head; 942 WL head;
511 sig_atomic_t volatile gotsig; 943 EV_ATOMIC_T gotsig;
512} ANSIG; 944} ANSIG;
513 945
514static ANSIG *signals; 946static ANSIG *signals;
515static int signalmax; 947static int signalmax;
516 948
517static int sigpipe [2]; 949static EV_ATOMIC_T gotsig;
518static sig_atomic_t volatile gotsig;
519static struct ev_io sigev;
520 950
521static void 951void inline_size
522signals_init (ANSIG *base, int count) 952signals_init (ANSIG *base, int count)
523{ 953{
524 while (count--) 954 while (count--)
525 { 955 {
526 base->head = 0; 956 base->head = 0;
528 958
529 ++base; 959 ++base;
530 } 960 }
531} 961}
532 962
963/*****************************************************************************/
964
965void inline_speed
966fd_intern (int fd)
967{
968#ifdef _WIN32
969 int arg = 1;
970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
971#else
972 fcntl (fd, F_SETFD, FD_CLOEXEC);
973 fcntl (fd, F_SETFL, O_NONBLOCK);
974#endif
975}
976
977static void noinline
978evpipe_init (EV_P)
979{
980 if (!ev_is_active (&pipeev))
981 {
982#if EV_USE_EVENTFD
983 if ((evfd = eventfd (0, 0)) >= 0)
984 {
985 evpipe [0] = -1;
986 fd_intern (evfd);
987 ev_io_set (&pipeev, evfd, EV_READ);
988 }
989 else
990#endif
991 {
992 while (pipe (evpipe))
993 syserr ("(libev) error creating signal/async pipe");
994
995 fd_intern (evpipe [0]);
996 fd_intern (evpipe [1]);
997 ev_io_set (&pipeev, evpipe [0], EV_READ);
998 }
999
1000 ev_io_start (EV_A_ &pipeev);
1001 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 }
1003}
1004
1005void inline_size
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{
1008 if (!*flag)
1009 {
1010 int old_errno = errno; /* save errno because write might clobber it */
1011
1012 *flag = 1;
1013
1014#if EV_USE_EVENTFD
1015 if (evfd >= 0)
1016 {
1017 uint64_t counter = 1;
1018 write (evfd, &counter, sizeof (uint64_t));
1019 }
1020 else
1021#endif
1022 write (evpipe [1], &old_errno, 1);
1023
1024 errno = old_errno;
1025 }
1026}
1027
533static void 1028static void
1029pipecb (EV_P_ ev_io *iow, int revents)
1030{
1031#if EV_USE_EVENTFD
1032 if (evfd >= 0)
1033 {
1034 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t));
1036 }
1037 else
1038#endif
1039 {
1040 char dummy;
1041 read (evpipe [0], &dummy, 1);
1042 }
1043
1044 if (gotsig && ev_is_default_loop (EV_A))
1045 {
1046 int signum;
1047 gotsig = 0;
1048
1049 for (signum = signalmax; signum--; )
1050 if (signals [signum].gotsig)
1051 ev_feed_signal_event (EV_A_ signum + 1);
1052 }
1053
1054#if EV_ASYNC_ENABLE
1055 if (gotasync)
1056 {
1057 int i;
1058 gotasync = 0;
1059
1060 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent)
1062 {
1063 asyncs [i]->sent = 0;
1064 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1065 }
1066 }
1067#endif
1068}
1069
1070/*****************************************************************************/
1071
1072static void
534sighandler (int signum) 1073ev_sighandler (int signum)
535{ 1074{
1075#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct;
1077#endif
1078
536#if WIN32 1079#if _WIN32
537 signal (signum, sighandler); 1080 signal (signum, ev_sighandler);
538#endif 1081#endif
539 1082
540 signals [signum - 1].gotsig = 1; 1083 signals [signum - 1].gotsig = 1;
541 1084 evpipe_write (EV_A_ &gotsig);
542 if (!gotsig)
543 {
544 int old_errno = errno;
545 gotsig = 1;
546#ifdef WIN32
547 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
548#else
549 write (sigpipe [1], &signum, 1);
550#endif
551 errno = old_errno;
552 }
553} 1085}
554 1086
555static void 1087void noinline
556sigcb (EV_P_ struct ev_io *iow, int revents) 1088ev_feed_signal_event (EV_P_ int signum)
557{ 1089{
558 WL w; 1090 WL w;
1091
1092#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1094#endif
1095
559 int signum; 1096 --signum;
560 1097
561#ifdef WIN32 1098 if (signum < 0 || signum >= signalmax)
562 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 1099 return;
563#else
564 read (sigpipe [0], &revents, 1);
565#endif
566 gotsig = 0;
567 1100
568 for (signum = signalmax; signum--; )
569 if (signals [signum].gotsig)
570 {
571 signals [signum].gotsig = 0; 1101 signals [signum].gotsig = 0;
572 1102
573 for (w = signals [signum].head; w; w = w->next) 1103 for (w = signals [signum].head; w; w = w->next)
574 event (EV_A_ (W)w, EV_SIGNAL); 1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
575 }
576}
577
578static void
579siginit (EV_P)
580{
581#ifndef WIN32
582 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
583 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
584
585 /* rather than sort out wether we really need nb, set it */
586 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
587 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
588#endif
589
590 ev_io_set (&sigev, sigpipe [0], EV_READ);
591 ev_io_start (EV_A_ &sigev);
592 ev_unref (EV_A); /* child watcher should not keep loop alive */
593} 1105}
594 1106
595/*****************************************************************************/ 1107/*****************************************************************************/
596 1108
597static struct ev_child *childs [PID_HASHSIZE]; 1109static WL childs [EV_PID_HASHSIZE];
598 1110
599#ifndef WIN32 1111#ifndef _WIN32
600 1112
601static struct ev_signal childev; 1113static ev_signal childev;
1114
1115#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0
1117#endif
1118
1119void inline_speed
1120child_reap (EV_P_ int chain, int pid, int status)
1121{
1122 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1124
1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1126 {
1127 if ((w->pid == pid || !w->pid)
1128 && (!traced || (w->flags & 1)))
1129 {
1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1131 w->rpid = pid;
1132 w->rstatus = status;
1133 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1134 }
1135 }
1136}
602 1137
603#ifndef WCONTINUED 1138#ifndef WCONTINUED
604# define WCONTINUED 0 1139# define WCONTINUED 0
605#endif 1140#endif
606 1141
607static void 1142static void
608child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
609{
610 struct ev_child *w;
611
612 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
613 if (w->pid == pid || !w->pid)
614 {
615 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
616 w->rpid = pid;
617 w->rstatus = status;
618 event (EV_A_ (W)w, EV_CHILD);
619 }
620}
621
622static void
623childcb (EV_P_ struct ev_signal *sw, int revents) 1143childcb (EV_P_ ev_signal *sw, int revents)
624{ 1144{
625 int pid, status; 1145 int pid, status;
626 1146
1147 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
627 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1148 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
628 { 1149 if (!WCONTINUED
1150 || errno != EINVAL
1151 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1152 return;
1153
629 /* make sure we are called again until all childs have been reaped */ 1154 /* make sure we are called again until all children have been reaped */
1155 /* we need to do it this way so that the callback gets called before we continue */
630 event (EV_A_ (W)sw, EV_SIGNAL); 1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
631 1157
632 child_reap (EV_A_ sw, pid, pid, status); 1158 child_reap (EV_A_ pid, pid, status);
1159 if (EV_PID_HASHSIZE > 1)
633 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
634 }
635} 1161}
636 1162
637#endif 1163#endif
638 1164
639/*****************************************************************************/ 1165/*****************************************************************************/
640 1166
1167#if EV_USE_PORT
1168# include "ev_port.c"
1169#endif
641#if EV_USE_KQUEUE 1170#if EV_USE_KQUEUE
642# include "ev_kqueue.c" 1171# include "ev_kqueue.c"
643#endif 1172#endif
644#if EV_USE_EPOLL 1173#if EV_USE_EPOLL
645# include "ev_epoll.c" 1174# include "ev_epoll.c"
662{ 1191{
663 return EV_VERSION_MINOR; 1192 return EV_VERSION_MINOR;
664} 1193}
665 1194
666/* return true if we are running with elevated privileges and should ignore env variables */ 1195/* return true if we are running with elevated privileges and should ignore env variables */
667static int 1196int inline_size
668enable_secure (void) 1197enable_secure (void)
669{ 1198{
670#ifdef WIN32 1199#ifdef _WIN32
671 return 0; 1200 return 0;
672#else 1201#else
673 return getuid () != geteuid () 1202 return getuid () != geteuid ()
674 || getgid () != getegid (); 1203 || getgid () != getegid ();
675#endif 1204#endif
676} 1205}
677 1206
678int 1207unsigned int
679ev_method (EV_P) 1208ev_supported_backends (void)
680{ 1209{
681 return method; 1210 unsigned int flags = 0;
682}
683 1211
684static void 1212 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
685loop_init (EV_P_ int methods) 1213 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1214 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1215 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1216 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1217
1218 return flags;
1219}
1220
1221unsigned int
1222ev_recommended_backends (void)
686{ 1223{
687 if (!method) 1224 unsigned int flags = ev_supported_backends ();
1225
1226#ifndef __NetBSD__
1227 /* kqueue is borked on everything but netbsd apparently */
1228 /* it usually doesn't work correctly on anything but sockets and pipes */
1229 flags &= ~EVBACKEND_KQUEUE;
1230#endif
1231#ifdef __APPLE__
1232 // flags &= ~EVBACKEND_KQUEUE; for documentation
1233 flags &= ~EVBACKEND_POLL;
1234#endif
1235
1236 return flags;
1237}
1238
1239unsigned int
1240ev_embeddable_backends (void)
1241{
1242 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1243
1244 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1245 /* please fix it and tell me how to detect the fix */
1246 flags &= ~EVBACKEND_EPOLL;
1247
1248 return flags;
1249}
1250
1251unsigned int
1252ev_backend (EV_P)
1253{
1254 return backend;
1255}
1256
1257unsigned int
1258ev_loop_count (EV_P)
1259{
1260 return loop_count;
1261}
1262
1263void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1265{
1266 io_blocktime = interval;
1267}
1268
1269void
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1271{
1272 timeout_blocktime = interval;
1273}
1274
1275static void noinline
1276loop_init (EV_P_ unsigned int flags)
1277{
1278 if (!backend)
688 { 1279 {
689#if EV_USE_MONOTONIC 1280#if EV_USE_MONOTONIC
690 { 1281 {
691 struct timespec ts; 1282 struct timespec ts;
692 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
693 have_monotonic = 1; 1284 have_monotonic = 1;
694 } 1285 }
695#endif 1286#endif
696 1287
697 rt_now = ev_time (); 1288 ev_rt_now = ev_time ();
698 mn_now = get_clock (); 1289 mn_now = get_clock ();
699 now_floor = mn_now; 1290 now_floor = mn_now;
700 rtmn_diff = rt_now - mn_now; 1291 rtmn_diff = ev_rt_now - mn_now;
701 1292
702 if (methods == EVMETHOD_AUTO) 1293 io_blocktime = 0.;
703 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1294 timeout_blocktime = 0.;
1295 backend = 0;
1296 backend_fd = -1;
1297 gotasync = 0;
1298#if EV_USE_INOTIFY
1299 fs_fd = -2;
1300#endif
1301
1302 /* pid check not overridable via env */
1303#ifndef _WIN32
1304 if (flags & EVFLAG_FORKCHECK)
1305 curpid = getpid ();
1306#endif
1307
1308 if (!(flags & EVFLAG_NOENV)
1309 && !enable_secure ()
1310 && getenv ("LIBEV_FLAGS"))
704 methods = atoi (getenv ("LIBEV_METHODS")); 1311 flags = atoi (getenv ("LIBEV_FLAGS"));
705 else
706 methods = EVMETHOD_ANY;
707 1312
708 method = 0; 1313 if (!(flags & 0x0000ffffU))
709#if EV_USE_WIN32 1314 flags |= ev_recommended_backends ();
710 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1315
1316#if EV_USE_PORT
1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
711#endif 1318#endif
712#if EV_USE_KQUEUE 1319#if EV_USE_KQUEUE
713 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1320 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
714#endif 1321#endif
715#if EV_USE_EPOLL 1322#if EV_USE_EPOLL
716 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1323 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
717#endif 1324#endif
718#if EV_USE_POLL 1325#if EV_USE_POLL
719 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1326 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
720#endif 1327#endif
721#if EV_USE_SELECT 1328#if EV_USE_SELECT
722 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
723#endif 1330#endif
724 1331
725 ev_watcher_init (&sigev, sigcb); 1332 ev_init (&pipeev, pipecb);
726 ev_set_priority (&sigev, EV_MAXPRI); 1333 ev_set_priority (&pipeev, EV_MAXPRI);
727 } 1334 }
728} 1335}
729 1336
730void 1337static void noinline
731loop_destroy (EV_P) 1338loop_destroy (EV_P)
732{ 1339{
733 int i; 1340 int i;
734 1341
1342 if (ev_is_active (&pipeev))
1343 {
1344 ev_ref (EV_A); /* signal watcher */
1345 ev_io_stop (EV_A_ &pipeev);
1346
1347#if EV_USE_EVENTFD
1348 if (evfd >= 0)
1349 close (evfd);
1350#endif
1351
1352 if (evpipe [0] >= 0)
1353 {
1354 close (evpipe [0]);
1355 close (evpipe [1]);
1356 }
1357 }
1358
735#if EV_USE_WIN32 1359#if EV_USE_INOTIFY
736 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1360 if (fs_fd >= 0)
1361 close (fs_fd);
1362#endif
1363
1364 if (backend_fd >= 0)
1365 close (backend_fd);
1366
1367#if EV_USE_PORT
1368 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
737#endif 1369#endif
738#if EV_USE_KQUEUE 1370#if EV_USE_KQUEUE
739 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1371 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
740#endif 1372#endif
741#if EV_USE_EPOLL 1373#if EV_USE_EPOLL
742 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1374 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
743#endif 1375#endif
744#if EV_USE_POLL 1376#if EV_USE_POLL
745 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1377 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
746#endif 1378#endif
747#if EV_USE_SELECT 1379#if EV_USE_SELECT
748 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1380 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
749#endif 1381#endif
750 1382
751 for (i = NUMPRI; i--; ) 1383 for (i = NUMPRI; i--; )
1384 {
752 array_free (pending, [i]); 1385 array_free (pending, [i]);
1386#if EV_IDLE_ENABLE
1387 array_free (idle, [i]);
1388#endif
1389 }
1390
1391 ev_free (anfds); anfdmax = 0;
753 1392
754 /* have to use the microsoft-never-gets-it-right macro */ 1393 /* have to use the microsoft-never-gets-it-right macro */
755 array_free_microshit (fdchange); 1394 array_free (fdchange, EMPTY);
756 array_free_microshit (timer); 1395 array_free (timer, EMPTY);
757 array_free_microshit (periodic); 1396#if EV_PERIODIC_ENABLE
758 array_free_microshit (idle); 1397 array_free (periodic, EMPTY);
759 array_free_microshit (prepare); 1398#endif
760 array_free_microshit (check); 1399#if EV_FORK_ENABLE
1400 array_free (fork, EMPTY);
1401#endif
1402 array_free (prepare, EMPTY);
1403 array_free (check, EMPTY);
1404#if EV_ASYNC_ENABLE
1405 array_free (async, EMPTY);
1406#endif
761 1407
762 method = 0; 1408 backend = 0;
763} 1409}
764 1410
765static void 1411#if EV_USE_INOTIFY
1412void inline_size infy_fork (EV_P);
1413#endif
1414
1415void inline_size
766loop_fork (EV_P) 1416loop_fork (EV_P)
767{ 1417{
1418#if EV_USE_PORT
1419 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1420#endif
1421#if EV_USE_KQUEUE
1422 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1423#endif
768#if EV_USE_EPOLL 1424#if EV_USE_EPOLL
769 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1425 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
770#endif 1426#endif
771#if EV_USE_KQUEUE 1427#if EV_USE_INOTIFY
772 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1428 infy_fork (EV_A);
773#endif 1429#endif
774 1430
775 if (ev_is_active (&sigev)) 1431 if (ev_is_active (&pipeev))
776 { 1432 {
777 /* default loop */ 1433 /* this "locks" the handlers against writing to the pipe */
1434 /* while we modify the fd vars */
1435 gotsig = 1;
1436#if EV_ASYNC_ENABLE
1437 gotasync = 1;
1438#endif
778 1439
779 ev_ref (EV_A); 1440 ev_ref (EV_A);
780 ev_io_stop (EV_A_ &sigev); 1441 ev_io_stop (EV_A_ &pipeev);
1442
1443#if EV_USE_EVENTFD
1444 if (evfd >= 0)
1445 close (evfd);
1446#endif
1447
1448 if (evpipe [0] >= 0)
1449 {
781 close (sigpipe [0]); 1450 close (evpipe [0]);
782 close (sigpipe [1]); 1451 close (evpipe [1]);
1452 }
783 1453
784 while (pipe (sigpipe))
785 syserr ("(libev) error creating pipe");
786
787 siginit (EV_A); 1454 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ);
788 } 1457 }
789 1458
790 postfork = 0; 1459 postfork = 0;
791} 1460}
792 1461
793#if EV_MULTIPLICITY 1462#if EV_MULTIPLICITY
794struct ev_loop * 1463struct ev_loop *
795ev_loop_new (int methods) 1464ev_loop_new (unsigned int flags)
796{ 1465{
797 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1466 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
798 1467
799 memset (loop, 0, sizeof (struct ev_loop)); 1468 memset (loop, 0, sizeof (struct ev_loop));
800 1469
801 loop_init (EV_A_ methods); 1470 loop_init (EV_A_ flags);
802 1471
803 if (ev_method (EV_A)) 1472 if (ev_backend (EV_A))
804 return loop; 1473 return loop;
805 1474
806 return 0; 1475 return 0;
807} 1476}
808 1477
814} 1483}
815 1484
816void 1485void
817ev_loop_fork (EV_P) 1486ev_loop_fork (EV_P)
818{ 1487{
819 postfork = 1; 1488 postfork = 1; /* must be in line with ev_default_fork */
820} 1489}
821
822#endif 1490#endif
823 1491
824#if EV_MULTIPLICITY 1492#if EV_MULTIPLICITY
825struct ev_loop default_loop_struct;
826static struct ev_loop *default_loop;
827
828struct ev_loop * 1493struct ev_loop *
1494ev_default_loop_init (unsigned int flags)
829#else 1495#else
830static int default_loop;
831
832int 1496int
1497ev_default_loop (unsigned int flags)
833#endif 1498#endif
834ev_default_loop (int methods)
835{ 1499{
836 if (sigpipe [0] == sigpipe [1])
837 if (pipe (sigpipe))
838 return 0;
839
840 if (!default_loop) 1500 if (!ev_default_loop_ptr)
841 { 1501 {
842#if EV_MULTIPLICITY 1502#if EV_MULTIPLICITY
843 struct ev_loop *loop = default_loop = &default_loop_struct; 1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
844#else 1504#else
845 default_loop = 1; 1505 ev_default_loop_ptr = 1;
846#endif 1506#endif
847 1507
848 loop_init (EV_A_ methods); 1508 loop_init (EV_A_ flags);
849 1509
850 if (ev_method (EV_A)) 1510 if (ev_backend (EV_A))
851 { 1511 {
852 siginit (EV_A);
853
854#ifndef WIN32 1512#ifndef _WIN32
855 ev_signal_init (&childev, childcb, SIGCHLD); 1513 ev_signal_init (&childev, childcb, SIGCHLD);
856 ev_set_priority (&childev, EV_MAXPRI); 1514 ev_set_priority (&childev, EV_MAXPRI);
857 ev_signal_start (EV_A_ &childev); 1515 ev_signal_start (EV_A_ &childev);
858 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1516 ev_unref (EV_A); /* child watcher should not keep loop alive */
859#endif 1517#endif
860 } 1518 }
861 else 1519 else
862 default_loop = 0; 1520 ev_default_loop_ptr = 0;
863 } 1521 }
864 1522
865 return default_loop; 1523 return ev_default_loop_ptr;
866} 1524}
867 1525
868void 1526void
869ev_default_destroy (void) 1527ev_default_destroy (void)
870{ 1528{
871#if EV_MULTIPLICITY 1529#if EV_MULTIPLICITY
872 struct ev_loop *loop = default_loop; 1530 struct ev_loop *loop = ev_default_loop_ptr;
873#endif 1531#endif
874 1532
875#ifndef WIN32 1533#ifndef _WIN32
876 ev_ref (EV_A); /* child watcher */ 1534 ev_ref (EV_A); /* child watcher */
877 ev_signal_stop (EV_A_ &childev); 1535 ev_signal_stop (EV_A_ &childev);
878#endif 1536#endif
879 1537
880 ev_ref (EV_A); /* signal watcher */
881 ev_io_stop (EV_A_ &sigev);
882
883 close (sigpipe [0]); sigpipe [0] = 0;
884 close (sigpipe [1]); sigpipe [1] = 0;
885
886 loop_destroy (EV_A); 1538 loop_destroy (EV_A);
887} 1539}
888 1540
889void 1541void
890ev_default_fork (void) 1542ev_default_fork (void)
891{ 1543{
892#if EV_MULTIPLICITY 1544#if EV_MULTIPLICITY
893 struct ev_loop *loop = default_loop; 1545 struct ev_loop *loop = ev_default_loop_ptr;
894#endif 1546#endif
895 1547
896 if (method) 1548 if (backend)
897 postfork = 1; 1549 postfork = 1; /* must be in line with ev_loop_fork */
898} 1550}
899 1551
900/*****************************************************************************/ 1552/*****************************************************************************/
901 1553
902static void 1554void
1555ev_invoke (EV_P_ void *w, int revents)
1556{
1557 EV_CB_INVOKE ((W)w, revents);
1558}
1559
1560void inline_speed
903call_pending (EV_P) 1561call_pending (EV_P)
904{ 1562{
905 int pri; 1563 int pri;
906 1564
907 for (pri = NUMPRI; pri--; ) 1565 for (pri = NUMPRI; pri--; )
908 while (pendingcnt [pri]) 1566 while (pendingcnt [pri])
909 { 1567 {
910 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1568 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
911 1569
912 if (p->w) 1570 if (expect_true (p->w))
913 { 1571 {
1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1573
914 p->w->pending = 0; 1574 p->w->pending = 0;
915 p->w->cb (EV_A_ p->w, p->events); 1575 EV_CB_INVOKE (p->w, p->events);
916 } 1576 }
917 } 1577 }
918} 1578}
919 1579
920static void 1580#if EV_IDLE_ENABLE
1581void inline_size
1582idle_reify (EV_P)
1583{
1584 if (expect_false (idleall))
1585 {
1586 int pri;
1587
1588 for (pri = NUMPRI; pri--; )
1589 {
1590 if (pendingcnt [pri])
1591 break;
1592
1593 if (idlecnt [pri])
1594 {
1595 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1596 break;
1597 }
1598 }
1599 }
1600}
1601#endif
1602
1603void inline_size
921timers_reify (EV_P) 1604timers_reify (EV_P)
922{ 1605{
923 while (timercnt && ((WT)timers [0])->at <= mn_now) 1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
924 { 1607 {
925 struct ev_timer *w = timers [0]; 1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
926 1609
927 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
928 1611
929 /* first reschedule or stop timer */ 1612 /* first reschedule or stop timer */
930 if (w->repeat) 1613 if (w->repeat)
931 { 1614 {
1615 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now;
1618
932 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
933 ((WT)w)->at = mn_now + w->repeat; 1620
1621 ANHE_at_set (timers [HEAP0]);
934 downheap ((WT *)timers, timercnt, 0); 1622 downheap (timers, timercnt, HEAP0);
935 } 1623 }
936 else 1624 else
937 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
938 1626
939 event (EV_A_ (W)w, EV_TIMEOUT); 1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
940 } 1628 }
941} 1629}
942 1630
943static void 1631#if EV_PERIODIC_ENABLE
1632void inline_size
944periodics_reify (EV_P) 1633periodics_reify (EV_P)
945{ 1634{
946 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
947 { 1636 {
948 struct ev_periodic *w = periodics [0]; 1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
949 1638
950 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
951 1640
952 /* first reschedule or stop timer */ 1641 /* first reschedule or stop timer */
953 if (w->interval) 1642 if (w->reschedule_cb)
954 { 1643 {
955 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else if (w->interval)
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1655
956 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1656 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) >= ev_rt_now));
1657
1658 ANHE_at_set (periodics [HEAP0]);
957 downheap ((WT *)periodics, periodiccnt, 0); 1659 downheap (periodics, periodiccnt, HEAP0);
958 } 1660 }
959 else 1661 else
960 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1662 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
961 1663
962 event (EV_A_ (W)w, EV_PERIODIC); 1664 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
963 } 1665 }
964} 1666}
965 1667
966static void 1668static void noinline
967periodics_reschedule (EV_P) 1669periodics_reschedule (EV_P)
968{ 1670{
969 int i; 1671 int i;
970 1672
971 /* adjust periodics after time jump */ 1673 /* adjust periodics after time jump */
1674 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1675 {
1676 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1677
1678 if (w->reschedule_cb)
1679 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1680 else if (w->interval)
1681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1682
1683 ANHE_at_set (periodics [i]);
1684 }
1685
1686 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1687 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
972 for (i = 0; i < periodiccnt; ++i) 1688 for (i = 0; i < periodiccnt; ++i)
973 { 1689 upheap (periodics, i + HEAP0);
974 struct ev_periodic *w = periodics [i]; 1690}
1691#endif
975 1692
976 if (w->interval) 1693void inline_speed
1694time_update (EV_P_ ev_tstamp max_block)
1695{
1696 int i;
1697
1698#if EV_USE_MONOTONIC
1699 if (expect_true (have_monotonic))
1700 {
1701 ev_tstamp odiff = rtmn_diff;
1702
1703 mn_now = get_clock ();
1704
1705 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1706 /* interpolate in the meantime */
1707 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
977 { 1708 {
978 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1709 ev_rt_now = rtmn_diff + mn_now;
1710 return;
1711 }
979 1712
980 if (fabs (diff) >= 1e-4) 1713 now_floor = mn_now;
1714 ev_rt_now = ev_time ();
1715
1716 /* loop a few times, before making important decisions.
1717 * on the choice of "4": one iteration isn't enough,
1718 * in case we get preempted during the calls to
1719 * ev_time and get_clock. a second call is almost guaranteed
1720 * to succeed in that case, though. and looping a few more times
1721 * doesn't hurt either as we only do this on time-jumps or
1722 * in the unlikely event of having been preempted here.
1723 */
1724 for (i = 4; --i; )
1725 {
1726 rtmn_diff = ev_rt_now - mn_now;
1727
1728 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1729 return; /* all is well */
1730
1731 ev_rt_now = ev_time ();
1732 mn_now = get_clock ();
1733 now_floor = mn_now;
1734 }
1735
1736# if EV_PERIODIC_ENABLE
1737 periodics_reschedule (EV_A);
1738# endif
1739 /* no timer adjustment, as the monotonic clock doesn't jump */
1740 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1741 }
1742 else
1743#endif
1744 {
1745 ev_rt_now = ev_time ();
1746
1747 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1748 {
1749#if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A);
1751#endif
1752 /* adjust timers. this is easy, as the offset is the same for all of them */
1753 for (i = 0; i < timercnt; ++i)
981 { 1754 {
982 ev_periodic_stop (EV_A_ w); 1755 ANHE *he = timers + i + HEAP0;
983 ev_periodic_start (EV_A_ w); 1756 ANHE_w (*he)->at += ev_rt_now - mn_now;
984 1757 ANHE_at_set (*he);
985 i = 0; /* restart loop, inefficient, but time jumps should be rare */
986 } 1758 }
987 } 1759 }
988 }
989}
990 1760
991inline int
992time_update_monotonic (EV_P)
993{
994 mn_now = get_clock ();
995
996 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
997 {
998 rt_now = rtmn_diff + mn_now;
999 return 0;
1000 }
1001 else
1002 {
1003 now_floor = mn_now;
1004 rt_now = ev_time ();
1005 return 1;
1006 }
1007}
1008
1009static void
1010time_update (EV_P)
1011{
1012 int i;
1013
1014#if EV_USE_MONOTONIC
1015 if (expect_true (have_monotonic))
1016 {
1017 if (time_update_monotonic (EV_A))
1018 {
1019 ev_tstamp odiff = rtmn_diff;
1020
1021 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1022 {
1023 rtmn_diff = rt_now - mn_now;
1024
1025 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1026 return; /* all is well */
1027
1028 rt_now = ev_time ();
1029 mn_now = get_clock ();
1030 now_floor = mn_now;
1031 }
1032
1033 periodics_reschedule (EV_A);
1034 /* no timer adjustment, as the monotonic clock doesn't jump */
1035 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1036 }
1037 }
1038 else
1039#endif
1040 {
1041 rt_now = ev_time ();
1042
1043 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1044 {
1045 periodics_reschedule (EV_A);
1046
1047 /* adjust timers. this is easy, as the offset is the same for all */
1048 for (i = 0; i < timercnt; ++i)
1049 ((WT)timers [i])->at += rt_now - mn_now;
1050 }
1051
1052 mn_now = rt_now; 1761 mn_now = ev_rt_now;
1053 } 1762 }
1054} 1763}
1055 1764
1056void 1765void
1057ev_ref (EV_P) 1766ev_ref (EV_P)
1068static int loop_done; 1777static int loop_done;
1069 1778
1070void 1779void
1071ev_loop (EV_P_ int flags) 1780ev_loop (EV_P_ int flags)
1072{ 1781{
1073 double block; 1782 loop_done = EVUNLOOP_CANCEL;
1074 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1783
1784 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1075 1785
1076 do 1786 do
1077 { 1787 {
1788#ifndef _WIN32
1789 if (expect_false (curpid)) /* penalise the forking check even more */
1790 if (expect_false (getpid () != curpid))
1791 {
1792 curpid = getpid ();
1793 postfork = 1;
1794 }
1795#endif
1796
1797#if EV_FORK_ENABLE
1798 /* we might have forked, so queue fork handlers */
1799 if (expect_false (postfork))
1800 if (forkcnt)
1801 {
1802 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1803 call_pending (EV_A);
1804 }
1805#endif
1806
1078 /* queue check watchers (and execute them) */ 1807 /* queue prepare watchers (and execute them) */
1079 if (expect_false (preparecnt)) 1808 if (expect_false (preparecnt))
1080 { 1809 {
1081 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1810 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1082 call_pending (EV_A); 1811 call_pending (EV_A);
1083 } 1812 }
1084 1813
1814 if (expect_false (!activecnt))
1815 break;
1816
1085 /* we might have forked, so reify kernel state if necessary */ 1817 /* we might have forked, so reify kernel state if necessary */
1086 if (expect_false (postfork)) 1818 if (expect_false (postfork))
1087 loop_fork (EV_A); 1819 loop_fork (EV_A);
1088 1820
1089 /* update fd-related kernel structures */ 1821 /* update fd-related kernel structures */
1090 fd_reify (EV_A); 1822 fd_reify (EV_A);
1091 1823
1092 /* calculate blocking time */ 1824 /* calculate blocking time */
1825 {
1826 ev_tstamp waittime = 0.;
1827 ev_tstamp sleeptime = 0.;
1093 1828
1094 /* we only need this for !monotonic clockor timers, but as we basically 1829 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1095 always have timers, we just calculate it always */
1096#if EV_USE_MONOTONIC
1097 if (expect_true (have_monotonic))
1098 time_update_monotonic (EV_A);
1099 else
1100#endif
1101 { 1830 {
1102 rt_now = ev_time (); 1831 /* update time to cancel out callback processing overhead */
1103 mn_now = rt_now; 1832 time_update (EV_A_ 1e100);
1104 }
1105 1833
1106 if (flags & EVLOOP_NONBLOCK || idlecnt)
1107 block = 0.;
1108 else
1109 {
1110 block = MAX_BLOCKTIME; 1834 waittime = MAX_BLOCKTIME;
1111 1835
1112 if (timercnt) 1836 if (timercnt)
1113 { 1837 {
1114 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1838 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1115 if (block > to) block = to; 1839 if (waittime > to) waittime = to;
1116 } 1840 }
1117 1841
1842#if EV_PERIODIC_ENABLE
1118 if (periodiccnt) 1843 if (periodiccnt)
1119 { 1844 {
1120 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1845 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1121 if (block > to) block = to; 1846 if (waittime > to) waittime = to;
1122 } 1847 }
1848#endif
1123 1849
1124 if (block < 0.) block = 0.; 1850 if (expect_false (waittime < timeout_blocktime))
1851 waittime = timeout_blocktime;
1852
1853 sleeptime = waittime - backend_fudge;
1854
1855 if (expect_true (sleeptime > io_blocktime))
1856 sleeptime = io_blocktime;
1857
1858 if (sleeptime)
1859 {
1860 ev_sleep (sleeptime);
1861 waittime -= sleeptime;
1862 }
1125 } 1863 }
1126 1864
1127 method_poll (EV_A_ block); 1865 ++loop_count;
1866 backend_poll (EV_A_ waittime);
1128 1867
1129 /* update rt_now, do magic */ 1868 /* update ev_rt_now, do magic */
1130 time_update (EV_A); 1869 time_update (EV_A_ waittime + sleeptime);
1870 }
1131 1871
1132 /* queue pending timers and reschedule them */ 1872 /* queue pending timers and reschedule them */
1133 timers_reify (EV_A); /* relative timers called last */ 1873 timers_reify (EV_A); /* relative timers called last */
1874#if EV_PERIODIC_ENABLE
1134 periodics_reify (EV_A); /* absolute timers called first */ 1875 periodics_reify (EV_A); /* absolute timers called first */
1876#endif
1135 1877
1878#if EV_IDLE_ENABLE
1136 /* queue idle watchers unless io or timers are pending */ 1879 /* queue idle watchers unless other events are pending */
1137 if (!pendingcnt) 1880 idle_reify (EV_A);
1138 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1881#endif
1139 1882
1140 /* queue check watchers, to be executed first */ 1883 /* queue check watchers, to be executed first */
1141 if (checkcnt) 1884 if (expect_false (checkcnt))
1142 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1885 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1143 1886
1144 call_pending (EV_A); 1887 call_pending (EV_A);
1145 } 1888 }
1146 while (activecnt && !loop_done); 1889 while (expect_true (
1890 activecnt
1891 && !loop_done
1892 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1893 ));
1147 1894
1148 if (loop_done != 2) 1895 if (loop_done == EVUNLOOP_ONE)
1149 loop_done = 0; 1896 loop_done = EVUNLOOP_CANCEL;
1150} 1897}
1151 1898
1152void 1899void
1153ev_unloop (EV_P_ int how) 1900ev_unloop (EV_P_ int how)
1154{ 1901{
1155 loop_done = how; 1902 loop_done = how;
1156} 1903}
1157 1904
1158/*****************************************************************************/ 1905/*****************************************************************************/
1159 1906
1160inline void 1907void inline_size
1161wlist_add (WL *head, WL elem) 1908wlist_add (WL *head, WL elem)
1162{ 1909{
1163 elem->next = *head; 1910 elem->next = *head;
1164 *head = elem; 1911 *head = elem;
1165} 1912}
1166 1913
1167inline void 1914void inline_size
1168wlist_del (WL *head, WL elem) 1915wlist_del (WL *head, WL elem)
1169{ 1916{
1170 while (*head) 1917 while (*head)
1171 { 1918 {
1172 if (*head == elem) 1919 if (*head == elem)
1177 1924
1178 head = &(*head)->next; 1925 head = &(*head)->next;
1179 } 1926 }
1180} 1927}
1181 1928
1182inline void 1929void inline_speed
1183ev_clear_pending (EV_P_ W w) 1930clear_pending (EV_P_ W w)
1184{ 1931{
1185 if (w->pending) 1932 if (w->pending)
1186 { 1933 {
1187 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1934 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1188 w->pending = 0; 1935 w->pending = 0;
1189 } 1936 }
1190} 1937}
1191 1938
1192inline void 1939int
1940ev_clear_pending (EV_P_ void *w)
1941{
1942 W w_ = (W)w;
1943 int pending = w_->pending;
1944
1945 if (expect_true (pending))
1946 {
1947 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1948 w_->pending = 0;
1949 p->w = 0;
1950 return p->events;
1951 }
1952 else
1953 return 0;
1954}
1955
1956void inline_size
1957pri_adjust (EV_P_ W w)
1958{
1959 int pri = w->priority;
1960 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1961 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1962 w->priority = pri;
1963}
1964
1965void inline_speed
1193ev_start (EV_P_ W w, int active) 1966ev_start (EV_P_ W w, int active)
1194{ 1967{
1195 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1968 pri_adjust (EV_A_ w);
1196 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1197
1198 w->active = active; 1969 w->active = active;
1199 ev_ref (EV_A); 1970 ev_ref (EV_A);
1200} 1971}
1201 1972
1202inline void 1973void inline_size
1203ev_stop (EV_P_ W w) 1974ev_stop (EV_P_ W w)
1204{ 1975{
1205 ev_unref (EV_A); 1976 ev_unref (EV_A);
1206 w->active = 0; 1977 w->active = 0;
1207} 1978}
1208 1979
1209/*****************************************************************************/ 1980/*****************************************************************************/
1210 1981
1211void 1982void noinline
1212ev_io_start (EV_P_ struct ev_io *w) 1983ev_io_start (EV_P_ ev_io *w)
1213{ 1984{
1214 int fd = w->fd; 1985 int fd = w->fd;
1215 1986
1216 if (ev_is_active (w)) 1987 if (expect_false (ev_is_active (w)))
1217 return; 1988 return;
1218 1989
1219 assert (("ev_io_start called with negative fd", fd >= 0)); 1990 assert (("ev_io_start called with negative fd", fd >= 0));
1220 1991
1221 ev_start (EV_A_ (W)w, 1); 1992 ev_start (EV_A_ (W)w, 1);
1222 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1993 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1223 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1994 wlist_add (&anfds[fd].head, (WL)w);
1224 1995
1225 fd_change (EV_A_ fd); 1996 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1997 w->events &= ~EV_IOFDSET;
1226} 1998}
1227 1999
1228void 2000void noinline
1229ev_io_stop (EV_P_ struct ev_io *w) 2001ev_io_stop (EV_P_ ev_io *w)
1230{ 2002{
1231 ev_clear_pending (EV_A_ (W)w); 2003 clear_pending (EV_A_ (W)w);
1232 if (!ev_is_active (w)) 2004 if (expect_false (!ev_is_active (w)))
1233 return; 2005 return;
1234 2006
2007 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2008
1235 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2009 wlist_del (&anfds[w->fd].head, (WL)w);
1236 ev_stop (EV_A_ (W)w); 2010 ev_stop (EV_A_ (W)w);
1237 2011
1238 fd_change (EV_A_ w->fd); 2012 fd_change (EV_A_ w->fd, 1);
1239} 2013}
1240 2014
1241void 2015void noinline
1242ev_timer_start (EV_P_ struct ev_timer *w) 2016ev_timer_start (EV_P_ ev_timer *w)
1243{ 2017{
1244 if (ev_is_active (w)) 2018 if (expect_false (ev_is_active (w)))
1245 return; 2019 return;
1246 2020
1247 ((WT)w)->at += mn_now; 2021 ev_at (w) += mn_now;
1248 2022
1249 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2023 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1250 2024
1251 ev_start (EV_A_ (W)w, ++timercnt); 2025 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1252 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2026 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1253 timers [timercnt - 1] = w; 2027 ANHE_w (timers [ev_active (w)]) = (WT)w;
1254 upheap ((WT *)timers, timercnt - 1); 2028 ANHE_at_set (timers [ev_active (w)]);
2029 upheap (timers, ev_active (w));
1255 2030
1256 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2031 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1257} 2032}
1258 2033
1259void 2034void noinline
1260ev_timer_stop (EV_P_ struct ev_timer *w) 2035ev_timer_stop (EV_P_ ev_timer *w)
1261{ 2036{
1262 ev_clear_pending (EV_A_ (W)w); 2037 clear_pending (EV_A_ (W)w);
1263 if (!ev_is_active (w)) 2038 if (expect_false (!ev_is_active (w)))
1264 return; 2039 return;
1265 2040
2041 {
2042 int active = ev_active (w);
2043
1266 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2044 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1267 2045
1268 if (((W)w)->active < timercnt--) 2046 if (expect_true (active < timercnt + HEAP0 - 1))
1269 { 2047 {
1270 timers [((W)w)->active - 1] = timers [timercnt]; 2048 timers [active] = timers [timercnt + HEAP0 - 1];
1271 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2049 adjustheap (timers, timercnt, active);
1272 } 2050 }
1273 2051
1274 ((WT)w)->at = w->repeat; 2052 --timercnt;
2053 }
2054
2055 ev_at (w) -= mn_now;
1275 2056
1276 ev_stop (EV_A_ (W)w); 2057 ev_stop (EV_A_ (W)w);
1277} 2058}
1278 2059
1279void 2060void noinline
1280ev_timer_again (EV_P_ struct ev_timer *w) 2061ev_timer_again (EV_P_ ev_timer *w)
1281{ 2062{
1282 if (ev_is_active (w)) 2063 if (ev_is_active (w))
1283 { 2064 {
1284 if (w->repeat) 2065 if (w->repeat)
1285 { 2066 {
1286 ((WT)w)->at = mn_now + w->repeat; 2067 ev_at (w) = mn_now + w->repeat;
1287 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2068 ANHE_at_set (timers [ev_active (w)]);
2069 adjustheap (timers, timercnt, ev_active (w));
1288 } 2070 }
1289 else 2071 else
1290 ev_timer_stop (EV_A_ w); 2072 ev_timer_stop (EV_A_ w);
1291 } 2073 }
1292 else if (w->repeat) 2074 else if (w->repeat)
2075 {
2076 ev_at (w) = w->repeat;
1293 ev_timer_start (EV_A_ w); 2077 ev_timer_start (EV_A_ w);
2078 }
1294} 2079}
1295 2080
1296void 2081#if EV_PERIODIC_ENABLE
2082void noinline
1297ev_periodic_start (EV_P_ struct ev_periodic *w) 2083ev_periodic_start (EV_P_ ev_periodic *w)
1298{ 2084{
1299 if (ev_is_active (w)) 2085 if (expect_false (ev_is_active (w)))
1300 return; 2086 return;
1301 2087
2088 if (w->reschedule_cb)
2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2090 else if (w->interval)
2091 {
1302 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2092 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1303
1304 /* this formula differs from the one in periodic_reify because we do not always round up */ 2093 /* this formula differs from the one in periodic_reify because we do not always round up */
1305 if (w->interval)
1306 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 }
2096 else
2097 ev_at (w) = w->offset;
1307 2098
1308 ev_start (EV_A_ (W)w, ++periodiccnt); 2099 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1309 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2100 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1310 periodics [periodiccnt - 1] = w; 2101 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1311 upheap ((WT *)periodics, periodiccnt - 1); 2102 ANHE_at_set (periodics [ev_active (w)]);
2103 upheap (periodics, ev_active (w));
1312 2104
1313 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2105 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1314} 2106}
1315 2107
1316void 2108void noinline
1317ev_periodic_stop (EV_P_ struct ev_periodic *w) 2109ev_periodic_stop (EV_P_ ev_periodic *w)
1318{ 2110{
1319 ev_clear_pending (EV_A_ (W)w); 2111 clear_pending (EV_A_ (W)w);
1320 if (!ev_is_active (w)) 2112 if (expect_false (!ev_is_active (w)))
1321 return; 2113 return;
1322 2114
2115 {
2116 int active = ev_active (w);
2117
1323 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2118 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1324 2119
1325 if (((W)w)->active < periodiccnt--) 2120 if (expect_true (active < periodiccnt + HEAP0 - 1))
1326 { 2121 {
1327 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2122 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1328 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2123 adjustheap (periodics, periodiccnt, active);
1329 } 2124 }
2125
2126 --periodiccnt;
2127 }
1330 2128
1331 ev_stop (EV_A_ (W)w); 2129 ev_stop (EV_A_ (W)w);
1332} 2130}
1333 2131
1334void 2132void noinline
1335ev_idle_start (EV_P_ struct ev_idle *w) 2133ev_periodic_again (EV_P_ ev_periodic *w)
1336{ 2134{
1337 if (ev_is_active (w)) 2135 /* TODO: use adjustheap and recalculation */
1338 return;
1339
1340 ev_start (EV_A_ (W)w, ++idlecnt);
1341 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1342 idles [idlecnt - 1] = w;
1343}
1344
1345void
1346ev_idle_stop (EV_P_ struct ev_idle *w)
1347{
1348 ev_clear_pending (EV_A_ (W)w);
1349 if (ev_is_active (w))
1350 return;
1351
1352 idles [((W)w)->active - 1] = idles [--idlecnt];
1353 ev_stop (EV_A_ (W)w); 2136 ev_periodic_stop (EV_A_ w);
2137 ev_periodic_start (EV_A_ w);
1354} 2138}
1355 2139#endif
1356void
1357ev_prepare_start (EV_P_ struct ev_prepare *w)
1358{
1359 if (ev_is_active (w))
1360 return;
1361
1362 ev_start (EV_A_ (W)w, ++preparecnt);
1363 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1364 prepares [preparecnt - 1] = w;
1365}
1366
1367void
1368ev_prepare_stop (EV_P_ struct ev_prepare *w)
1369{
1370 ev_clear_pending (EV_A_ (W)w);
1371 if (ev_is_active (w))
1372 return;
1373
1374 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1375 ev_stop (EV_A_ (W)w);
1376}
1377
1378void
1379ev_check_start (EV_P_ struct ev_check *w)
1380{
1381 if (ev_is_active (w))
1382 return;
1383
1384 ev_start (EV_A_ (W)w, ++checkcnt);
1385 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1386 checks [checkcnt - 1] = w;
1387}
1388
1389void
1390ev_check_stop (EV_P_ struct ev_check *w)
1391{
1392 ev_clear_pending (EV_A_ (W)w);
1393 if (ev_is_active (w))
1394 return;
1395
1396 checks [((W)w)->active - 1] = checks [--checkcnt];
1397 ev_stop (EV_A_ (W)w);
1398}
1399 2140
1400#ifndef SA_RESTART 2141#ifndef SA_RESTART
1401# define SA_RESTART 0 2142# define SA_RESTART 0
1402#endif 2143#endif
1403 2144
1404void 2145void noinline
1405ev_signal_start (EV_P_ struct ev_signal *w) 2146ev_signal_start (EV_P_ ev_signal *w)
1406{ 2147{
1407#if EV_MULTIPLICITY 2148#if EV_MULTIPLICITY
1408 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2149 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1409#endif 2150#endif
1410 if (ev_is_active (w)) 2151 if (expect_false (ev_is_active (w)))
1411 return; 2152 return;
1412 2153
1413 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2154 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1414 2155
2156 evpipe_init (EV_A);
2157
2158 {
2159#ifndef _WIN32
2160 sigset_t full, prev;
2161 sigfillset (&full);
2162 sigprocmask (SIG_SETMASK, &full, &prev);
2163#endif
2164
2165 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2166
2167#ifndef _WIN32
2168 sigprocmask (SIG_SETMASK, &prev, 0);
2169#endif
2170 }
2171
1415 ev_start (EV_A_ (W)w, 1); 2172 ev_start (EV_A_ (W)w, 1);
1416 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1417 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2173 wlist_add (&signals [w->signum - 1].head, (WL)w);
1418 2174
1419 if (!((WL)w)->next) 2175 if (!((WL)w)->next)
1420 { 2176 {
1421#if WIN32 2177#if _WIN32
1422 signal (w->signum, sighandler); 2178 signal (w->signum, ev_sighandler);
1423#else 2179#else
1424 struct sigaction sa; 2180 struct sigaction sa;
1425 sa.sa_handler = sighandler; 2181 sa.sa_handler = ev_sighandler;
1426 sigfillset (&sa.sa_mask); 2182 sigfillset (&sa.sa_mask);
1427 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2183 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1428 sigaction (w->signum, &sa, 0); 2184 sigaction (w->signum, &sa, 0);
1429#endif 2185#endif
1430 } 2186 }
1431} 2187}
1432 2188
1433void 2189void noinline
1434ev_signal_stop (EV_P_ struct ev_signal *w) 2190ev_signal_stop (EV_P_ ev_signal *w)
1435{ 2191{
1436 ev_clear_pending (EV_A_ (W)w); 2192 clear_pending (EV_A_ (W)w);
1437 if (!ev_is_active (w)) 2193 if (expect_false (!ev_is_active (w)))
1438 return; 2194 return;
1439 2195
1440 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2196 wlist_del (&signals [w->signum - 1].head, (WL)w);
1441 ev_stop (EV_A_ (W)w); 2197 ev_stop (EV_A_ (W)w);
1442 2198
1443 if (!signals [w->signum - 1].head) 2199 if (!signals [w->signum - 1].head)
1444 signal (w->signum, SIG_DFL); 2200 signal (w->signum, SIG_DFL);
1445} 2201}
1446 2202
1447void 2203void
1448ev_child_start (EV_P_ struct ev_child *w) 2204ev_child_start (EV_P_ ev_child *w)
1449{ 2205{
1450#if EV_MULTIPLICITY 2206#if EV_MULTIPLICITY
1451 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2207 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1452#endif 2208#endif
1453 if (ev_is_active (w)) 2209 if (expect_false (ev_is_active (w)))
1454 return; 2210 return;
1455 2211
1456 ev_start (EV_A_ (W)w, 1); 2212 ev_start (EV_A_ (W)w, 1);
1457 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2213 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1458} 2214}
1459 2215
1460void 2216void
1461ev_child_stop (EV_P_ struct ev_child *w) 2217ev_child_stop (EV_P_ ev_child *w)
1462{ 2218{
1463 ev_clear_pending (EV_A_ (W)w); 2219 clear_pending (EV_A_ (W)w);
1464 if (ev_is_active (w)) 2220 if (expect_false (!ev_is_active (w)))
1465 return; 2221 return;
1466 2222
1467 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2223 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1468 ev_stop (EV_A_ (W)w); 2224 ev_stop (EV_A_ (W)w);
1469} 2225}
1470 2226
2227#if EV_STAT_ENABLE
2228
2229# ifdef _WIN32
2230# undef lstat
2231# define lstat(a,b) _stati64 (a,b)
2232# endif
2233
2234#define DEF_STAT_INTERVAL 5.0074891
2235#define MIN_STAT_INTERVAL 0.1074891
2236
2237static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2238
2239#if EV_USE_INOTIFY
2240# define EV_INOTIFY_BUFSIZE 8192
2241
2242static void noinline
2243infy_add (EV_P_ ev_stat *w)
2244{
2245 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2246
2247 if (w->wd < 0)
2248 {
2249 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2250
2251 /* monitor some parent directory for speedup hints */
2252 /* note that exceeding the hardcoded limit is not a correctness issue, */
2253 /* but an efficiency issue only */
2254 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2255 {
2256 char path [4096];
2257 strcpy (path, w->path);
2258
2259 do
2260 {
2261 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2262 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2263
2264 char *pend = strrchr (path, '/');
2265
2266 if (!pend)
2267 break; /* whoops, no '/', complain to your admin */
2268
2269 *pend = 0;
2270 w->wd = inotify_add_watch (fs_fd, path, mask);
2271 }
2272 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2273 }
2274 }
2275 else
2276 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2277
2278 if (w->wd >= 0)
2279 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2280}
2281
2282static void noinline
2283infy_del (EV_P_ ev_stat *w)
2284{
2285 int slot;
2286 int wd = w->wd;
2287
2288 if (wd < 0)
2289 return;
2290
2291 w->wd = -2;
2292 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2293 wlist_del (&fs_hash [slot].head, (WL)w);
2294
2295 /* remove this watcher, if others are watching it, they will rearm */
2296 inotify_rm_watch (fs_fd, wd);
2297}
2298
2299static void noinline
2300infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2301{
2302 if (slot < 0)
2303 /* overflow, need to check for all hahs slots */
2304 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2305 infy_wd (EV_A_ slot, wd, ev);
2306 else
2307 {
2308 WL w_;
2309
2310 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2311 {
2312 ev_stat *w = (ev_stat *)w_;
2313 w_ = w_->next; /* lets us remove this watcher and all before it */
2314
2315 if (w->wd == wd || wd == -1)
2316 {
2317 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2318 {
2319 w->wd = -1;
2320 infy_add (EV_A_ w); /* re-add, no matter what */
2321 }
2322
2323 stat_timer_cb (EV_A_ &w->timer, 0);
2324 }
2325 }
2326 }
2327}
2328
2329static void
2330infy_cb (EV_P_ ev_io *w, int revents)
2331{
2332 char buf [EV_INOTIFY_BUFSIZE];
2333 struct inotify_event *ev = (struct inotify_event *)buf;
2334 int ofs;
2335 int len = read (fs_fd, buf, sizeof (buf));
2336
2337 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2338 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2339}
2340
2341void inline_size
2342infy_init (EV_P)
2343{
2344 if (fs_fd != -2)
2345 return;
2346
2347 fs_fd = inotify_init ();
2348
2349 if (fs_fd >= 0)
2350 {
2351 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2352 ev_set_priority (&fs_w, EV_MAXPRI);
2353 ev_io_start (EV_A_ &fs_w);
2354 }
2355}
2356
2357void inline_size
2358infy_fork (EV_P)
2359{
2360 int slot;
2361
2362 if (fs_fd < 0)
2363 return;
2364
2365 close (fs_fd);
2366 fs_fd = inotify_init ();
2367
2368 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2369 {
2370 WL w_ = fs_hash [slot].head;
2371 fs_hash [slot].head = 0;
2372
2373 while (w_)
2374 {
2375 ev_stat *w = (ev_stat *)w_;
2376 w_ = w_->next; /* lets us add this watcher */
2377
2378 w->wd = -1;
2379
2380 if (fs_fd >= 0)
2381 infy_add (EV_A_ w); /* re-add, no matter what */
2382 else
2383 ev_timer_start (EV_A_ &w->timer);
2384 }
2385
2386 }
2387}
2388
2389#endif
2390
2391void
2392ev_stat_stat (EV_P_ ev_stat *w)
2393{
2394 if (lstat (w->path, &w->attr) < 0)
2395 w->attr.st_nlink = 0;
2396 else if (!w->attr.st_nlink)
2397 w->attr.st_nlink = 1;
2398}
2399
2400static void noinline
2401stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2402{
2403 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2404
2405 /* we copy this here each the time so that */
2406 /* prev has the old value when the callback gets invoked */
2407 w->prev = w->attr;
2408 ev_stat_stat (EV_A_ w);
2409
2410 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2411 if (
2412 w->prev.st_dev != w->attr.st_dev
2413 || w->prev.st_ino != w->attr.st_ino
2414 || w->prev.st_mode != w->attr.st_mode
2415 || w->prev.st_nlink != w->attr.st_nlink
2416 || w->prev.st_uid != w->attr.st_uid
2417 || w->prev.st_gid != w->attr.st_gid
2418 || w->prev.st_rdev != w->attr.st_rdev
2419 || w->prev.st_size != w->attr.st_size
2420 || w->prev.st_atime != w->attr.st_atime
2421 || w->prev.st_mtime != w->attr.st_mtime
2422 || w->prev.st_ctime != w->attr.st_ctime
2423 ) {
2424 #if EV_USE_INOTIFY
2425 infy_del (EV_A_ w);
2426 infy_add (EV_A_ w);
2427 ev_stat_stat (EV_A_ w); /* avoid race... */
2428 #endif
2429
2430 ev_feed_event (EV_A_ w, EV_STAT);
2431 }
2432}
2433
2434void
2435ev_stat_start (EV_P_ ev_stat *w)
2436{
2437 if (expect_false (ev_is_active (w)))
2438 return;
2439
2440 /* since we use memcmp, we need to clear any padding data etc. */
2441 memset (&w->prev, 0, sizeof (ev_statdata));
2442 memset (&w->attr, 0, sizeof (ev_statdata));
2443
2444 ev_stat_stat (EV_A_ w);
2445
2446 if (w->interval < MIN_STAT_INTERVAL)
2447 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2448
2449 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2450 ev_set_priority (&w->timer, ev_priority (w));
2451
2452#if EV_USE_INOTIFY
2453 infy_init (EV_A);
2454
2455 if (fs_fd >= 0)
2456 infy_add (EV_A_ w);
2457 else
2458#endif
2459 ev_timer_start (EV_A_ &w->timer);
2460
2461 ev_start (EV_A_ (W)w, 1);
2462}
2463
2464void
2465ev_stat_stop (EV_P_ ev_stat *w)
2466{
2467 clear_pending (EV_A_ (W)w);
2468 if (expect_false (!ev_is_active (w)))
2469 return;
2470
2471#if EV_USE_INOTIFY
2472 infy_del (EV_A_ w);
2473#endif
2474 ev_timer_stop (EV_A_ &w->timer);
2475
2476 ev_stop (EV_A_ (W)w);
2477}
2478#endif
2479
2480#if EV_IDLE_ENABLE
2481void
2482ev_idle_start (EV_P_ ev_idle *w)
2483{
2484 if (expect_false (ev_is_active (w)))
2485 return;
2486
2487 pri_adjust (EV_A_ (W)w);
2488
2489 {
2490 int active = ++idlecnt [ABSPRI (w)];
2491
2492 ++idleall;
2493 ev_start (EV_A_ (W)w, active);
2494
2495 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2496 idles [ABSPRI (w)][active - 1] = w;
2497 }
2498}
2499
2500void
2501ev_idle_stop (EV_P_ ev_idle *w)
2502{
2503 clear_pending (EV_A_ (W)w);
2504 if (expect_false (!ev_is_active (w)))
2505 return;
2506
2507 {
2508 int active = ev_active (w);
2509
2510 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2511 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2512
2513 ev_stop (EV_A_ (W)w);
2514 --idleall;
2515 }
2516}
2517#endif
2518
2519void
2520ev_prepare_start (EV_P_ ev_prepare *w)
2521{
2522 if (expect_false (ev_is_active (w)))
2523 return;
2524
2525 ev_start (EV_A_ (W)w, ++preparecnt);
2526 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2527 prepares [preparecnt - 1] = w;
2528}
2529
2530void
2531ev_prepare_stop (EV_P_ ev_prepare *w)
2532{
2533 clear_pending (EV_A_ (W)w);
2534 if (expect_false (!ev_is_active (w)))
2535 return;
2536
2537 {
2538 int active = ev_active (w);
2539
2540 prepares [active - 1] = prepares [--preparecnt];
2541 ev_active (prepares [active - 1]) = active;
2542 }
2543
2544 ev_stop (EV_A_ (W)w);
2545}
2546
2547void
2548ev_check_start (EV_P_ ev_check *w)
2549{
2550 if (expect_false (ev_is_active (w)))
2551 return;
2552
2553 ev_start (EV_A_ (W)w, ++checkcnt);
2554 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2555 checks [checkcnt - 1] = w;
2556}
2557
2558void
2559ev_check_stop (EV_P_ ev_check *w)
2560{
2561 clear_pending (EV_A_ (W)w);
2562 if (expect_false (!ev_is_active (w)))
2563 return;
2564
2565 {
2566 int active = ev_active (w);
2567
2568 checks [active - 1] = checks [--checkcnt];
2569 ev_active (checks [active - 1]) = active;
2570 }
2571
2572 ev_stop (EV_A_ (W)w);
2573}
2574
2575#if EV_EMBED_ENABLE
2576void noinline
2577ev_embed_sweep (EV_P_ ev_embed *w)
2578{
2579 ev_loop (w->other, EVLOOP_NONBLOCK);
2580}
2581
2582static void
2583embed_io_cb (EV_P_ ev_io *io, int revents)
2584{
2585 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2586
2587 if (ev_cb (w))
2588 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2589 else
2590 ev_loop (w->other, EVLOOP_NONBLOCK);
2591}
2592
2593static void
2594embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2595{
2596 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2597
2598 {
2599 struct ev_loop *loop = w->other;
2600
2601 while (fdchangecnt)
2602 {
2603 fd_reify (EV_A);
2604 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2605 }
2606 }
2607}
2608
2609#if 0
2610static void
2611embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2612{
2613 ev_idle_stop (EV_A_ idle);
2614}
2615#endif
2616
2617void
2618ev_embed_start (EV_P_ ev_embed *w)
2619{
2620 if (expect_false (ev_is_active (w)))
2621 return;
2622
2623 {
2624 struct ev_loop *loop = w->other;
2625 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2626 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2627 }
2628
2629 ev_set_priority (&w->io, ev_priority (w));
2630 ev_io_start (EV_A_ &w->io);
2631
2632 ev_prepare_init (&w->prepare, embed_prepare_cb);
2633 ev_set_priority (&w->prepare, EV_MINPRI);
2634 ev_prepare_start (EV_A_ &w->prepare);
2635
2636 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2637
2638 ev_start (EV_A_ (W)w, 1);
2639}
2640
2641void
2642ev_embed_stop (EV_P_ ev_embed *w)
2643{
2644 clear_pending (EV_A_ (W)w);
2645 if (expect_false (!ev_is_active (w)))
2646 return;
2647
2648 ev_io_stop (EV_A_ &w->io);
2649 ev_prepare_stop (EV_A_ &w->prepare);
2650
2651 ev_stop (EV_A_ (W)w);
2652}
2653#endif
2654
2655#if EV_FORK_ENABLE
2656void
2657ev_fork_start (EV_P_ ev_fork *w)
2658{
2659 if (expect_false (ev_is_active (w)))
2660 return;
2661
2662 ev_start (EV_A_ (W)w, ++forkcnt);
2663 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2664 forks [forkcnt - 1] = w;
2665}
2666
2667void
2668ev_fork_stop (EV_P_ ev_fork *w)
2669{
2670 clear_pending (EV_A_ (W)w);
2671 if (expect_false (!ev_is_active (w)))
2672 return;
2673
2674 {
2675 int active = ev_active (w);
2676
2677 forks [active - 1] = forks [--forkcnt];
2678 ev_active (forks [active - 1]) = active;
2679 }
2680
2681 ev_stop (EV_A_ (W)w);
2682}
2683#endif
2684
2685#if EV_ASYNC_ENABLE
2686void
2687ev_async_start (EV_P_ ev_async *w)
2688{
2689 if (expect_false (ev_is_active (w)))
2690 return;
2691
2692 evpipe_init (EV_A);
2693
2694 ev_start (EV_A_ (W)w, ++asynccnt);
2695 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2696 asyncs [asynccnt - 1] = w;
2697}
2698
2699void
2700ev_async_stop (EV_P_ ev_async *w)
2701{
2702 clear_pending (EV_A_ (W)w);
2703 if (expect_false (!ev_is_active (w)))
2704 return;
2705
2706 {
2707 int active = ev_active (w);
2708
2709 asyncs [active - 1] = asyncs [--asynccnt];
2710 ev_active (asyncs [active - 1]) = active;
2711 }
2712
2713 ev_stop (EV_A_ (W)w);
2714}
2715
2716void
2717ev_async_send (EV_P_ ev_async *w)
2718{
2719 w->sent = 1;
2720 evpipe_write (EV_A_ &gotasync);
2721}
2722#endif
2723
1471/*****************************************************************************/ 2724/*****************************************************************************/
1472 2725
1473struct ev_once 2726struct ev_once
1474{ 2727{
1475 struct ev_io io; 2728 ev_io io;
1476 struct ev_timer to; 2729 ev_timer to;
1477 void (*cb)(int revents, void *arg); 2730 void (*cb)(int revents, void *arg);
1478 void *arg; 2731 void *arg;
1479}; 2732};
1480 2733
1481static void 2734static void
1490 2743
1491 cb (revents, arg); 2744 cb (revents, arg);
1492} 2745}
1493 2746
1494static void 2747static void
1495once_cb_io (EV_P_ struct ev_io *w, int revents) 2748once_cb_io (EV_P_ ev_io *w, int revents)
1496{ 2749{
1497 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2750 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1498} 2751}
1499 2752
1500static void 2753static void
1501once_cb_to (EV_P_ struct ev_timer *w, int revents) 2754once_cb_to (EV_P_ ev_timer *w, int revents)
1502{ 2755{
1503 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2756 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1504} 2757}
1505 2758
1506void 2759void
1507ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2760ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1508{ 2761{
1509 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2762 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1510 2763
1511 if (!once) 2764 if (expect_false (!once))
2765 {
1512 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2766 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1513 else 2767 return;
1514 { 2768 }
2769
1515 once->cb = cb; 2770 once->cb = cb;
1516 once->arg = arg; 2771 once->arg = arg;
1517 2772
1518 ev_watcher_init (&once->io, once_cb_io); 2773 ev_init (&once->io, once_cb_io);
1519 if (fd >= 0) 2774 if (fd >= 0)
1520 { 2775 {
1521 ev_io_set (&once->io, fd, events); 2776 ev_io_set (&once->io, fd, events);
1522 ev_io_start (EV_A_ &once->io); 2777 ev_io_start (EV_A_ &once->io);
1523 } 2778 }
1524 2779
1525 ev_watcher_init (&once->to, once_cb_to); 2780 ev_init (&once->to, once_cb_to);
1526 if (timeout >= 0.) 2781 if (timeout >= 0.)
1527 { 2782 {
1528 ev_timer_set (&once->to, timeout, 0.); 2783 ev_timer_set (&once->to, timeout, 0.);
1529 ev_timer_start (EV_A_ &once->to); 2784 ev_timer_start (EV_A_ &once->to);
1530 }
1531 } 2785 }
1532} 2786}
1533 2787
2788#if EV_MULTIPLICITY
2789 #include "ev_wrap.h"
2790#endif
2791
2792#ifdef __cplusplus
2793}
2794#endif
2795

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines