ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.227 by root, Fri May 2 07:20:01 2008 UTC vs.
Revision 1.245 by root, Wed May 21 00:26:01 2008 UTC

235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 249
242#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
325 333
326typedef ev_watcher *W; 334typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
329 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
330#if EV_USE_MONOTONIC 341#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */ 343/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif 345#endif
419 W w; 430 W w;
420 int events; 431 int events;
421} ANPENDING; 432} ANPENDING;
422 433
423#if EV_USE_INOTIFY 434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
424typedef struct 436typedef struct
425{ 437{
426 WL head; 438 WL head;
427} ANFS; 439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
428#endif 458#endif
429 459
430#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
431 461
432 struct ev_loop 462 struct ev_loop
517 } 547 }
518} 548}
519 549
520/*****************************************************************************/ 550/*****************************************************************************/
521 551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
522int inline_size 554int inline_size
523array_nextsize (int elem, int cur, int cnt) 555array_nextsize (int elem, int cur, int cnt)
524{ 556{
525 int ncur = cur + 1; 557 int ncur = cur + 1;
526 558
527 do 559 do
528 ncur <<= 1; 560 ncur <<= 1;
529 while (cnt > ncur); 561 while (cnt > ncur);
530 562
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096) 564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 565 {
534 ncur *= elem; 566 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 568 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 569 ncur /= elem;
538 } 570 }
539 571
540 return ncur; 572 return ncur;
754 } 786 }
755} 787}
756 788
757/*****************************************************************************/ 789/*****************************************************************************/
758 790
791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807
759/* towards the root */ 808/* towards the root */
760void inline_speed 809void inline_speed
761upheap (WT *heap, int k) 810upheap (ANHE *heap, int k)
762{ 811{
763 WT w = heap [k]; 812 ANHE he = heap [k];
764 813
765 while (k) 814 for (;;)
766 { 815 {
767 int p = (k - 1) >> 1; 816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
768 817
769 if (heap [p]->at <= w->at) 818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
770 break; 819 break;
771 820
772 heap [k] = heap [p]; 821 heap [k] = heap [p];
773 ((W)heap [k])->active = k + 1; 822 ev_active (ANHE_w (heap [k])) = k;
774 k = p; 823 k = p;
775 } 824 }
776 825
826 ev_active (ANHE_w (he)) = k;
777 heap [k] = w; 827 heap [k] = he;
778 ((W)heap [k])->active = k + 1;
779} 828}
780 829
781/* away from the root */ 830/* away from the root */
782void inline_speed 831void inline_speed
783downheap (WT *heap, int N, int k) 832downheap (ANHE *heap, int N, int k)
784{ 833{
785 WT w = heap [k]; 834 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0;
786 836
787 for (;;) 837 for (;;)
788 { 838 {
789 int c = (k << 1) + 1; 839 ev_tstamp minat;
840 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
790 842
791 if (c >= N) 843 // find minimum child
844 if (expect_true (pos + DHEAP - 1 < E))
845 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else if (pos < E)
852 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else
792 break; 859 break;
793 860
861 if (ANHE_at (he) <= minat)
862 break;
863
864 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866
867 k = minpos - heap;
868 }
869
870 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872}
873
874#else // 4HEAP
875
876#define HEAP0 1
877
878/* towards the root */
879void inline_speed
880upheap (ANHE *heap, int k)
881{
882 ANHE he = heap [k];
883
884 for (;;)
885 {
886 int p = k >> 1;
887
888 /* maybe we could use a dummy element at heap [0]? */
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break;
891
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
794 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
795 ? 1 : 0; 915 ? 1 : 0;
796 916
797 if (w->at <= heap [c]->at) 917 if (ANHE_at (he) <= ANHE_at (heap [c]))
798 break; 918 break;
799 919
800 heap [k] = heap [c]; 920 heap [k] = heap [c];
801 ((W)heap [k])->active = k + 1; 921 ev_active (ANHE_w (heap [k])) = k;
802 922
803 k = c; 923 k = c;
804 } 924 }
805 925
806 heap [k] = w; 926 heap [k] = he;
807 ((W)heap [k])->active = k + 1; 927 ev_active (ANHE_w (he)) = k;
808} 928}
929#endif
809 930
810void inline_size 931void inline_size
811adjustheap (WT *heap, int N, int k) 932adjustheap (ANHE *heap, int N, int k)
812{ 933{
813 upheap (heap, k); 934 upheap (heap, k);
814 downheap (heap, N, k); 935 downheap (heap, N, k);
815} 936}
816 937
908pipecb (EV_P_ ev_io *iow, int revents) 1029pipecb (EV_P_ ev_io *iow, int revents)
909{ 1030{
910#if EV_USE_EVENTFD 1031#if EV_USE_EVENTFD
911 if (evfd >= 0) 1032 if (evfd >= 0)
912 { 1033 {
913 uint64_t counter = 1; 1034 uint64_t counter;
914 read (evfd, &counter, sizeof (uint64_t)); 1035 read (evfd, &counter, sizeof (uint64_t));
915 } 1036 }
916 else 1037 else
917#endif 1038#endif
918 { 1039 {
1364void 1485void
1365ev_loop_fork (EV_P) 1486ev_loop_fork (EV_P)
1366{ 1487{
1367 postfork = 1; /* must be in line with ev_default_fork */ 1488 postfork = 1; /* must be in line with ev_default_fork */
1368} 1489}
1369
1370#endif 1490#endif
1371 1491
1372#if EV_MULTIPLICITY 1492#if EV_MULTIPLICITY
1373struct ev_loop * 1493struct ev_loop *
1374ev_default_loop_init (unsigned int flags) 1494ev_default_loop_init (unsigned int flags)
1455 EV_CB_INVOKE (p->w, p->events); 1575 EV_CB_INVOKE (p->w, p->events);
1456 } 1576 }
1457 } 1577 }
1458} 1578}
1459 1579
1460void inline_size
1461timers_reify (EV_P)
1462{
1463 while (timercnt && ((WT)timers [0])->at <= mn_now)
1464 {
1465 ev_timer *w = (ev_timer *)timers [0];
1466
1467 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1468
1469 /* first reschedule or stop timer */
1470 if (w->repeat)
1471 {
1472 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1473
1474 ((WT)w)->at += w->repeat;
1475 if (((WT)w)->at < mn_now)
1476 ((WT)w)->at = mn_now;
1477
1478 downheap (timers, timercnt, 0);
1479 }
1480 else
1481 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1482
1483 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1484 }
1485}
1486
1487#if EV_PERIODIC_ENABLE
1488void inline_size
1489periodics_reify (EV_P)
1490{
1491 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1492 {
1493 ev_periodic *w = (ev_periodic *)periodics [0];
1494
1495 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1496
1497 /* first reschedule or stop timer */
1498 if (w->reschedule_cb)
1499 {
1500 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1501 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1502 downheap (periodics, periodiccnt, 0);
1503 }
1504 else if (w->interval)
1505 {
1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1507 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1508 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1509 downheap (periodics, periodiccnt, 0);
1510 }
1511 else
1512 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1513
1514 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1515 }
1516}
1517
1518static void noinline
1519periodics_reschedule (EV_P)
1520{
1521 int i;
1522
1523 /* adjust periodics after time jump */
1524 for (i = 0; i < periodiccnt; ++i)
1525 {
1526 ev_periodic *w = (ev_periodic *)periodics [i];
1527
1528 if (w->reschedule_cb)
1529 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1530 else if (w->interval)
1531 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1532 }
1533
1534 /* now rebuild the heap */
1535 for (i = periodiccnt >> 1; i--; )
1536 downheap (periodics, periodiccnt, i);
1537}
1538#endif
1539
1540#if EV_IDLE_ENABLE 1580#if EV_IDLE_ENABLE
1541void inline_size 1581void inline_size
1542idle_reify (EV_P) 1582idle_reify (EV_P)
1543{ 1583{
1544 if (expect_false (idleall)) 1584 if (expect_false (idleall))
1555 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1595 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1556 break; 1596 break;
1557 } 1597 }
1558 } 1598 }
1559 } 1599 }
1600}
1601#endif
1602
1603void inline_size
1604timers_reify (EV_P)
1605{
1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1607 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1609
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1611
1612 /* first reschedule or stop timer */
1613 if (w->repeat)
1614 {
1615 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now;
1618
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620
1621 ANHE_at_set (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0);
1623 }
1624 else
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1628 }
1629}
1630
1631#if EV_PERIODIC_ENABLE
1632void inline_size
1633periodics_reify (EV_P)
1634{
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1636 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1638
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1640
1641 /* first reschedule or stop timer */
1642 if (w->reschedule_cb)
1643 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else if (w->interval)
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1655
1656 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) >= ev_rt_now));
1657
1658 ANHE_at_set (periodics [HEAP0]);
1659 downheap (periodics, periodiccnt, HEAP0);
1660 }
1661 else
1662 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1663
1664 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1665 }
1666}
1667
1668static void noinline
1669periodics_reschedule (EV_P)
1670{
1671 int i;
1672
1673 /* adjust periodics after time jump */
1674 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1675 {
1676 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1677
1678 if (w->reschedule_cb)
1679 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1680 else if (w->interval)
1681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1682
1683 ANHE_at_set (periodics [i]);
1684 }
1685
1686 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1687 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1688 for (i = 0; i < periodiccnt; ++i)
1689 upheap (periodics, i + HEAP0);
1560} 1690}
1561#endif 1691#endif
1562 1692
1563void inline_speed 1693void inline_speed
1564time_update (EV_P_ ev_tstamp max_block) 1694time_update (EV_P_ ev_tstamp max_block)
1593 */ 1723 */
1594 for (i = 4; --i; ) 1724 for (i = 4; --i; )
1595 { 1725 {
1596 rtmn_diff = ev_rt_now - mn_now; 1726 rtmn_diff = ev_rt_now - mn_now;
1597 1727
1598 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1728 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1599 return; /* all is well */ 1729 return; /* all is well */
1600 1730
1601 ev_rt_now = ev_time (); 1731 ev_rt_now = ev_time ();
1602 mn_now = get_clock (); 1732 mn_now = get_clock ();
1603 now_floor = mn_now; 1733 now_floor = mn_now;
1619#if EV_PERIODIC_ENABLE 1749#if EV_PERIODIC_ENABLE
1620 periodics_reschedule (EV_A); 1750 periodics_reschedule (EV_A);
1621#endif 1751#endif
1622 /* adjust timers. this is easy, as the offset is the same for all of them */ 1752 /* adjust timers. this is easy, as the offset is the same for all of them */
1623 for (i = 0; i < timercnt; ++i) 1753 for (i = 0; i < timercnt; ++i)
1754 {
1755 ANHE *he = timers + i + HEAP0;
1624 ((WT)timers [i])->at += ev_rt_now - mn_now; 1756 ANHE_w (*he)->at += ev_rt_now - mn_now;
1757 ANHE_at_set (*he);
1758 }
1625 } 1759 }
1626 1760
1627 mn_now = ev_rt_now; 1761 mn_now = ev_rt_now;
1628 } 1762 }
1629} 1763}
1699 1833
1700 waittime = MAX_BLOCKTIME; 1834 waittime = MAX_BLOCKTIME;
1701 1835
1702 if (timercnt) 1836 if (timercnt)
1703 { 1837 {
1704 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1838 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1705 if (waittime > to) waittime = to; 1839 if (waittime > to) waittime = to;
1706 } 1840 }
1707 1841
1708#if EV_PERIODIC_ENABLE 1842#if EV_PERIODIC_ENABLE
1709 if (periodiccnt) 1843 if (periodiccnt)
1710 { 1844 {
1711 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1845 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1712 if (waittime > to) waittime = to; 1846 if (waittime > to) waittime = to;
1713 } 1847 }
1714#endif 1848#endif
1715 1849
1716 if (expect_false (waittime < timeout_blocktime)) 1850 if (expect_false (waittime < timeout_blocktime))
1868{ 2002{
1869 clear_pending (EV_A_ (W)w); 2003 clear_pending (EV_A_ (W)w);
1870 if (expect_false (!ev_is_active (w))) 2004 if (expect_false (!ev_is_active (w)))
1871 return; 2005 return;
1872 2006
1873 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2007 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1874 2008
1875 wlist_del (&anfds[w->fd].head, (WL)w); 2009 wlist_del (&anfds[w->fd].head, (WL)w);
1876 ev_stop (EV_A_ (W)w); 2010 ev_stop (EV_A_ (W)w);
1877 2011
1878 fd_change (EV_A_ w->fd, 1); 2012 fd_change (EV_A_ w->fd, 1);
1882ev_timer_start (EV_P_ ev_timer *w) 2016ev_timer_start (EV_P_ ev_timer *w)
1883{ 2017{
1884 if (expect_false (ev_is_active (w))) 2018 if (expect_false (ev_is_active (w)))
1885 return; 2019 return;
1886 2020
1887 ((WT)w)->at += mn_now; 2021 ev_at (w) += mn_now;
1888 2022
1889 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2023 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1890 2024
1891 ev_start (EV_A_ (W)w, ++timercnt); 2025 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1892 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2026 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1893 timers [timercnt - 1] = (WT)w; 2027 ANHE_w (timers [ev_active (w)]) = (WT)w;
1894 upheap (timers, timercnt - 1); 2028 ANHE_at_set (timers [ev_active (w)]);
2029 upheap (timers, ev_active (w));
1895 2030
1896 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2031 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1897} 2032}
1898 2033
1899void noinline 2034void noinline
1900ev_timer_stop (EV_P_ ev_timer *w) 2035ev_timer_stop (EV_P_ ev_timer *w)
1901{ 2036{
1902 clear_pending (EV_A_ (W)w); 2037 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 2038 if (expect_false (!ev_is_active (w)))
1904 return; 2039 return;
1905 2040
1906 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1907
1908 { 2041 {
1909 int active = ((W)w)->active; 2042 int active = ev_active (w);
1910 2043
2044 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2045
1911 if (expect_true (--active < --timercnt)) 2046 if (expect_true (active < timercnt + HEAP0 - 1))
1912 { 2047 {
1913 timers [active] = timers [timercnt]; 2048 timers [active] = timers [timercnt + HEAP0 - 1];
1914 adjustheap (timers, timercnt, active); 2049 adjustheap (timers, timercnt, active);
1915 } 2050 }
2051
2052 --timercnt;
1916 } 2053 }
1917 2054
1918 ((WT)w)->at -= mn_now; 2055 ev_at (w) -= mn_now;
1919 2056
1920 ev_stop (EV_A_ (W)w); 2057 ev_stop (EV_A_ (W)w);
1921} 2058}
1922 2059
1923void noinline 2060void noinline
1925{ 2062{
1926 if (ev_is_active (w)) 2063 if (ev_is_active (w))
1927 { 2064 {
1928 if (w->repeat) 2065 if (w->repeat)
1929 { 2066 {
1930 ((WT)w)->at = mn_now + w->repeat; 2067 ev_at (w) = mn_now + w->repeat;
2068 ANHE_at_set (timers [ev_active (w)]);
1931 adjustheap (timers, timercnt, ((W)w)->active - 1); 2069 adjustheap (timers, timercnt, ev_active (w));
1932 } 2070 }
1933 else 2071 else
1934 ev_timer_stop (EV_A_ w); 2072 ev_timer_stop (EV_A_ w);
1935 } 2073 }
1936 else if (w->repeat) 2074 else if (w->repeat)
1937 { 2075 {
1938 w->at = w->repeat; 2076 ev_at (w) = w->repeat;
1939 ev_timer_start (EV_A_ w); 2077 ev_timer_start (EV_A_ w);
1940 } 2078 }
1941} 2079}
1942 2080
1943#if EV_PERIODIC_ENABLE 2081#if EV_PERIODIC_ENABLE
1946{ 2084{
1947 if (expect_false (ev_is_active (w))) 2085 if (expect_false (ev_is_active (w)))
1948 return; 2086 return;
1949 2087
1950 if (w->reschedule_cb) 2088 if (w->reschedule_cb)
1951 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1952 else if (w->interval) 2090 else if (w->interval)
1953 { 2091 {
1954 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2092 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1955 /* this formula differs from the one in periodic_reify because we do not always round up */ 2093 /* this formula differs from the one in periodic_reify because we do not always round up */
1956 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1957 } 2095 }
1958 else 2096 else
1959 ((WT)w)->at = w->offset; 2097 ev_at (w) = w->offset;
1960 2098
1961 ev_start (EV_A_ (W)w, ++periodiccnt); 2099 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1962 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2100 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1963 periodics [periodiccnt - 1] = (WT)w; 2101 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1964 upheap (periodics, periodiccnt - 1); 2102 ANHE_at_set (periodics [ev_active (w)]);
2103 upheap (periodics, ev_active (w));
1965 2104
1966 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2105 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1967} 2106}
1968 2107
1969void noinline 2108void noinline
1970ev_periodic_stop (EV_P_ ev_periodic *w) 2109ev_periodic_stop (EV_P_ ev_periodic *w)
1971{ 2110{
1972 clear_pending (EV_A_ (W)w); 2111 clear_pending (EV_A_ (W)w);
1973 if (expect_false (!ev_is_active (w))) 2112 if (expect_false (!ev_is_active (w)))
1974 return; 2113 return;
1975 2114
1976 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1977
1978 { 2115 {
1979 int active = ((W)w)->active; 2116 int active = ev_active (w);
1980 2117
2118 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2119
1981 if (expect_true (--active < --periodiccnt)) 2120 if (expect_true (active < periodiccnt + HEAP0 - 1))
1982 { 2121 {
1983 periodics [active] = periodics [periodiccnt]; 2122 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1984 adjustheap (periodics, periodiccnt, active); 2123 adjustheap (periodics, periodiccnt, active);
1985 } 2124 }
2125
2126 --periodiccnt;
1986 } 2127 }
1987 2128
1988 ev_stop (EV_A_ (W)w); 2129 ev_stop (EV_A_ (W)w);
1989} 2130}
1990 2131
2106 if (w->wd < 0) 2247 if (w->wd < 0)
2107 { 2248 {
2108 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2249 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2109 2250
2110 /* monitor some parent directory for speedup hints */ 2251 /* monitor some parent directory for speedup hints */
2252 /* note that exceeding the hardcoded limit is not a correctness issue, */
2253 /* but an efficiency issue only */
2111 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2254 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2112 { 2255 {
2113 char path [4096]; 2256 char path [4096];
2114 strcpy (path, w->path); 2257 strcpy (path, w->path);
2115 2258
2360 clear_pending (EV_A_ (W)w); 2503 clear_pending (EV_A_ (W)w);
2361 if (expect_false (!ev_is_active (w))) 2504 if (expect_false (!ev_is_active (w)))
2362 return; 2505 return;
2363 2506
2364 { 2507 {
2365 int active = ((W)w)->active; 2508 int active = ev_active (w);
2366 2509
2367 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2510 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2368 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2511 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2369 2512
2370 ev_stop (EV_A_ (W)w); 2513 ev_stop (EV_A_ (W)w);
2371 --idleall; 2514 --idleall;
2372 } 2515 }
2373} 2516}
2390 clear_pending (EV_A_ (W)w); 2533 clear_pending (EV_A_ (W)w);
2391 if (expect_false (!ev_is_active (w))) 2534 if (expect_false (!ev_is_active (w)))
2392 return; 2535 return;
2393 2536
2394 { 2537 {
2395 int active = ((W)w)->active; 2538 int active = ev_active (w);
2539
2396 prepares [active - 1] = prepares [--preparecnt]; 2540 prepares [active - 1] = prepares [--preparecnt];
2397 ((W)prepares [active - 1])->active = active; 2541 ev_active (prepares [active - 1]) = active;
2398 } 2542 }
2399 2543
2400 ev_stop (EV_A_ (W)w); 2544 ev_stop (EV_A_ (W)w);
2401} 2545}
2402 2546
2417 clear_pending (EV_A_ (W)w); 2561 clear_pending (EV_A_ (W)w);
2418 if (expect_false (!ev_is_active (w))) 2562 if (expect_false (!ev_is_active (w)))
2419 return; 2563 return;
2420 2564
2421 { 2565 {
2422 int active = ((W)w)->active; 2566 int active = ev_active (w);
2567
2423 checks [active - 1] = checks [--checkcnt]; 2568 checks [active - 1] = checks [--checkcnt];
2424 ((W)checks [active - 1])->active = active; 2569 ev_active (checks [active - 1]) = active;
2425 } 2570 }
2426 2571
2427 ev_stop (EV_A_ (W)w); 2572 ev_stop (EV_A_ (W)w);
2428} 2573}
2429 2574
2525 clear_pending (EV_A_ (W)w); 2670 clear_pending (EV_A_ (W)w);
2526 if (expect_false (!ev_is_active (w))) 2671 if (expect_false (!ev_is_active (w)))
2527 return; 2672 return;
2528 2673
2529 { 2674 {
2530 int active = ((W)w)->active; 2675 int active = ev_active (w);
2676
2531 forks [active - 1] = forks [--forkcnt]; 2677 forks [active - 1] = forks [--forkcnt];
2532 ((W)forks [active - 1])->active = active; 2678 ev_active (forks [active - 1]) = active;
2533 } 2679 }
2534 2680
2535 ev_stop (EV_A_ (W)w); 2681 ev_stop (EV_A_ (W)w);
2536} 2682}
2537#endif 2683#endif
2556 clear_pending (EV_A_ (W)w); 2702 clear_pending (EV_A_ (W)w);
2557 if (expect_false (!ev_is_active (w))) 2703 if (expect_false (!ev_is_active (w)))
2558 return; 2704 return;
2559 2705
2560 { 2706 {
2561 int active = ((W)w)->active; 2707 int active = ev_active (w);
2708
2562 asyncs [active - 1] = asyncs [--asynccnt]; 2709 asyncs [active - 1] = asyncs [--asynccnt];
2563 ((W)asyncs [active - 1])->active = active; 2710 ev_active (asyncs [active - 1]) = active;
2564 } 2711 }
2565 2712
2566 ev_stop (EV_A_ (W)w); 2713 ev_stop (EV_A_ (W)w);
2567} 2714}
2568 2715

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines