ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.245 by root, Wed May 21 00:26:01 2008 UTC vs.
Revision 1.356 by root, Fri Oct 22 11:21:52 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
52# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
55# endif 65# endif
56# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
58# endif 68# endif
59# else 69# else
60# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
62# endif 72# endif
63# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
65# endif 75# endif
66# endif 76# endif
67 77
78# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
71# else 82# else
83# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
74# endif 94# endif
75 95
96# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 99# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 100# else
101# undef EV_USE_POLL
88# define EV_USE_POLL 0 102# define EV_USE_POLL 0
89# endif
90# endif 103# endif
91 104
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
95# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
98# endif 112# endif
99 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
106# endif 121# endif
107 122
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
111# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
114# endif 130# endif
115 131
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
122# endif 139# endif
123 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 142# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 143# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
130# endif 148# endif
131 149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
132#endif 159#endif
133 160
134#include <math.h> 161#include <math.h>
135#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
136#include <fcntl.h> 164#include <fcntl.h>
137#include <stddef.h> 165#include <stddef.h>
138 166
139#include <stdio.h> 167#include <stdio.h>
140 168
141#include <assert.h> 169#include <assert.h>
142#include <errno.h> 170#include <errno.h>
143#include <sys/types.h> 171#include <sys/types.h>
144#include <time.h> 172#include <time.h>
173#include <limits.h>
145 174
146#include <signal.h> 175#include <signal.h>
147 176
148#ifdef EV_H 177#ifdef EV_H
149# include EV_H 178# include EV_H
150#else 179#else
151# include "ev.h" 180# include "ev.h"
152#endif 181#endif
182
183EV_CPP(extern "C" {)
153 184
154#ifndef _WIN32 185#ifndef _WIN32
155# include <sys/time.h> 186# include <sys/time.h>
156# include <sys/wait.h> 187# include <sys/wait.h>
157# include <unistd.h> 188# include <unistd.h>
158#else 189#else
190# include <io.h>
159# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 192# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
163# endif 195# endif
196# undef EV_AVOID_STDIO
164#endif 197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
165 206
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 207/* this block tries to deduce configuration from header-defined symbols and defaults */
167 208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
244
168#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
169# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
170#endif 251#endif
171 252
172#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 255#endif
175 256
176#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
177# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
262# endif
178#endif 263#endif
179 264
180#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 267#endif
183 268
184#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
185# ifdef _WIN32 270# ifdef _WIN32
186# define EV_USE_POLL 0 271# define EV_USE_POLL 0
187# else 272# else
188# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 274# endif
190#endif 275#endif
191 276
192#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 280# else
196# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
197# endif 282# endif
198#endif 283#endif
199 284
205# define EV_USE_PORT 0 290# define EV_USE_PORT 0
206#endif 291#endif
207 292
208#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 295# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 296# else
212# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
213# endif 298# endif
214#endif 299#endif
215 300
216#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 303#endif
223 304
224#ifndef EV_INOTIFY_HASHSIZE 305#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 307#endif
231 308
232#ifndef EV_USE_EVENTFD 309#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 311# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 312# else
236# define EV_USE_EVENTFD 0 313# define EV_USE_EVENTFD 0
237# endif 314# endif
238#endif 315#endif
239 316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
240#ifndef EV_USE_4HEAP 335#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 336# define EV_USE_4HEAP EV_FEATURE_DATA
242#endif 337#endif
243 338
244#ifndef EV_HEAP_CACHE_AT 339#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
246#endif 355#endif
247 356
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
249 364
250#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
251# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
252# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
253#endif 368#endif
267# include <sys/select.h> 382# include <sys/select.h>
268# endif 383# endif
269#endif 384#endif
270 385
271#if EV_USE_INOTIFY 386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
272# include <sys/inotify.h> 388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
273#endif 394#endif
274 395
275#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h> 397# include <winsock.h>
277#endif 398#endif
278 399
279#if EV_USE_EVENTFD 400#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 402# include <stdint.h>
282# ifdef __cplusplus 403# ifndef EFD_NONBLOCK
283extern "C" { 404# define EFD_NONBLOCK O_NONBLOCK
284# endif 405# endif
285int eventfd (unsigned int initval, int flags); 406# ifndef EFD_CLOEXEC
286# ifdef __cplusplus 407# ifdef O_CLOEXEC
287} 408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
288# endif 412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
289#endif 436#endif
290 437
291/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
292 445
293/* 446/*
294 * This is used to avoid floating point rounding problems. 447 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics 448 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding 449 * to ensure progress, time-wise, even when rounding
300 */ 453 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
302 455
303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
306 461
307#if __GNUC__ >= 4 462#if __GNUC__ >= 4
308# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
309# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
310#else 465#else
317 472
318#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
319#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
320#define inline_size static inline 475#define inline_size static inline
321 476
322#if EV_MINIMAL 477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
323# define inline_speed static noinline 480# define inline_speed static noinline
481#endif
482
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
324#else 487#else
325# define inline_speed static inline
326#endif
327
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
330 490
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
333 493
334typedef ev_watcher *W; 494typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
337 497
338#define ev_active(w) ((W)(w))->active 498#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 499#define ev_at(w) ((WT)(w))->at
340 500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
341#if EV_USE_MONOTONIC 507#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
345#endif 519#endif
346 520
347#ifdef _WIN32 521#ifdef _WIN32
348# include "ev_win32.c" 522# include "ev_win32.c"
349#endif 523#endif
350 524
351/*****************************************************************************/ 525/*****************************************************************************/
352 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 struct utsname buf;
536 unsigned int v;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
353static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
354 578
355void 579void
356ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
357{ 581{
358 syserr_cb = cb; 582 syserr_cb = cb;
359} 583}
360 584
361static void noinline 585static void noinline
362syserr (const char *msg) 586ev_syserr (const char *msg)
363{ 587{
364 if (!msg) 588 if (!msg)
365 msg = "(libev) system error"; 589 msg = "(libev) system error";
366 590
367 if (syserr_cb) 591 if (syserr_cb)
368 syserr_cb (msg); 592 syserr_cb (msg);
369 else 593 else
370 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
371 perror (msg); 603 perror (msg);
604#endif
372 abort (); 605 abort ();
373 } 606 }
374} 607}
375 608
376static void * 609static void *
377ev_realloc_emul (void *ptr, long size) 610ev_realloc_emul (void *ptr, long size)
378{ 611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
379 /* some systems, notably openbsd and darwin, fail to properly 615 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and 616 * implement realloc (x, 0) (as required by both ansi c-89 and
381 * the single unix specification, so work around them here. 617 * the single unix specification, so work around them here.
382 */ 618 */
383 619
384 if (size) 620 if (size)
385 return realloc (ptr, size); 621 return realloc (ptr, size);
386 622
387 free (ptr); 623 free (ptr);
388 return 0; 624 return 0;
625#endif
389} 626}
390 627
391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
392 629
393void 630void
401{ 638{
402 ptr = alloc (ptr, size); 639 ptr = alloc (ptr, size);
403 640
404 if (!ptr && size) 641 if (!ptr && size)
405 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
407 abort (); 648 abort ();
408 } 649 }
409 650
410 return ptr; 651 return ptr;
411} 652}
413#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
415 656
416/*****************************************************************************/ 657/*****************************************************************************/
417 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
418typedef struct 663typedef struct
419{ 664{
420 WL head; 665 WL head;
421 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
423#if EV_SELECT_IS_WINSOCKET 673#if EV_SELECT_IS_WINSOCKET
424 SOCKET handle; 674 SOCKET handle;
425#endif 675#endif
426} ANFD; 676} ANFD;
427 677
678/* stores the pending event set for a given watcher */
428typedef struct 679typedef struct
429{ 680{
430 W w; 681 W w;
431 int events; 682 int events; /* the pending event set for the given watcher */
432} ANPENDING; 683} ANPENDING;
433 684
434#if EV_USE_INOTIFY 685#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 686/* hash table entry per inotify-id */
436typedef struct 687typedef struct
439} ANFS; 690} ANFS;
440#endif 691#endif
441 692
442/* Heap Entry */ 693/* Heap Entry */
443#if EV_HEAP_CACHE_AT 694#if EV_HEAP_CACHE_AT
695 /* a heap element */
444 typedef struct { 696 typedef struct {
445 ev_tstamp at; 697 ev_tstamp at;
446 WT w; 698 WT w;
447 } ANHE; 699 } ANHE;
448 700
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 701 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 702 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 703 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 704#else
705 /* a heap element */
453 typedef WT ANHE; 706 typedef WT ANHE;
454 707
455 #define ANHE_w(he) (he) 708 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 709 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 710 #define ANHE_at_cache(he)
458#endif 711#endif
459 712
460#if EV_MULTIPLICITY 713#if EV_MULTIPLICITY
461 714
462 struct ev_loop 715 struct ev_loop
481 734
482 static int ev_default_loop_ptr; 735 static int ev_default_loop_ptr;
483 736
484#endif 737#endif
485 738
739#if EV_FEATURE_API
740# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
741# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
742# define EV_INVOKE_PENDING invoke_cb (EV_A)
743#else
744# define EV_RELEASE_CB (void)0
745# define EV_ACQUIRE_CB (void)0
746# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
747#endif
748
749#define EVBREAK_RECURSE 0x80
750
486/*****************************************************************************/ 751/*****************************************************************************/
487 752
753#ifndef EV_HAVE_EV_TIME
488ev_tstamp 754ev_tstamp
489ev_time (void) 755ev_time (void)
490{ 756{
491#if EV_USE_REALTIME 757#if EV_USE_REALTIME
758 if (expect_true (have_realtime))
759 {
492 struct timespec ts; 760 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 761 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 762 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 763 }
764#endif
765
496 struct timeval tv; 766 struct timeval tv;
497 gettimeofday (&tv, 0); 767 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 768 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 769}
770#endif
501 771
502ev_tstamp inline_size 772inline_size ev_tstamp
503get_clock (void) 773get_clock (void)
504{ 774{
505#if EV_USE_MONOTONIC 775#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 776 if (expect_true (have_monotonic))
507 { 777 {
528 if (delay > 0.) 798 if (delay > 0.)
529 { 799 {
530#if EV_USE_NANOSLEEP 800#if EV_USE_NANOSLEEP
531 struct timespec ts; 801 struct timespec ts;
532 802
533 ts.tv_sec = (time_t)delay; 803 EV_TS_SET (ts, delay);
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0); 804 nanosleep (&ts, 0);
537#elif defined(_WIN32) 805#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3)); 806 Sleep ((unsigned long)(delay * 1e3));
539#else 807#else
540 struct timeval tv; 808 struct timeval tv;
541 809
542 tv.tv_sec = (time_t)delay; 810 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 811 /* something not guaranteed by newer posix versions, but guaranteed */
544 812 /* by older ones */
813 EV_TV_SET (tv, delay);
545 select (0, 0, 0, 0, &tv); 814 select (0, 0, 0, 0, &tv);
546#endif 815#endif
547 } 816 }
548} 817}
549 818
550/*****************************************************************************/ 819/*****************************************************************************/
551 820
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 821#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 822
554int inline_size 823/* find a suitable new size for the given array, */
824/* hopefully by rounding to a nice-to-malloc size */
825inline_size int
555array_nextsize (int elem, int cur, int cnt) 826array_nextsize (int elem, int cur, int cnt)
556{ 827{
557 int ncur = cur + 1; 828 int ncur = cur + 1;
558 829
559 do 830 do
576array_realloc (int elem, void *base, int *cur, int cnt) 847array_realloc (int elem, void *base, int *cur, int cnt)
577{ 848{
578 *cur = array_nextsize (elem, *cur, cnt); 849 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 850 return ev_realloc (base, elem * *cur);
580} 851}
852
853#define array_init_zero(base,count) \
854 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 855
582#define array_needsize(type,base,cur,cnt,init) \ 856#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 857 if (expect_false ((cnt) > (cur))) \
584 { \ 858 { \
585 int ocur_ = (cur); \ 859 int ocur_ = (cur); \
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 871 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 872 }
599#endif 873#endif
600 874
601#define array_free(stem, idx) \ 875#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 876 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 877
604/*****************************************************************************/ 878/*****************************************************************************/
879
880/* dummy callback for pending events */
881static void noinline
882pendingcb (EV_P_ ev_prepare *w, int revents)
883{
884}
605 885
606void noinline 886void noinline
607ev_feed_event (EV_P_ void *w, int revents) 887ev_feed_event (EV_P_ void *w, int revents)
608{ 888{
609 W w_ = (W)w; 889 W w_ = (W)w;
618 pendings [pri][w_->pending - 1].w = w_; 898 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 899 pendings [pri][w_->pending - 1].events = revents;
620 } 900 }
621} 901}
622 902
623void inline_speed 903inline_speed void
904feed_reverse (EV_P_ W w)
905{
906 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
907 rfeeds [rfeedcnt++] = w;
908}
909
910inline_size void
911feed_reverse_done (EV_P_ int revents)
912{
913 do
914 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
915 while (rfeedcnt);
916}
917
918inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 919queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 920{
626 int i; 921 int i;
627 922
628 for (i = 0; i < eventcnt; ++i) 923 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 924 ev_feed_event (EV_A_ events [i], type);
630} 925}
631 926
632/*****************************************************************************/ 927/*****************************************************************************/
633 928
634void inline_size 929inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 930fd_event_nocheck (EV_P_ int fd, int revents)
649{ 931{
650 ANFD *anfd = anfds + fd; 932 ANFD *anfd = anfds + fd;
651 ev_io *w; 933 ev_io *w;
652 934
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 935 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 939 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 940 ev_feed_event (EV_A_ (W)w, ev);
659 } 941 }
660} 942}
661 943
944/* do not submit kernel events for fds that have reify set */
945/* because that means they changed while we were polling for new events */
946inline_speed void
947fd_event (EV_P_ int fd, int revents)
948{
949 ANFD *anfd = anfds + fd;
950
951 if (expect_true (!anfd->reify))
952 fd_event_nocheck (EV_A_ fd, revents);
953}
954
662void 955void
663ev_feed_fd_event (EV_P_ int fd, int revents) 956ev_feed_fd_event (EV_P_ int fd, int revents)
664{ 957{
665 if (fd >= 0 && fd < anfdmax) 958 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 959 fd_event_nocheck (EV_A_ fd, revents);
667} 960}
668 961
669void inline_size 962/* make sure the external fd watch events are in-sync */
963/* with the kernel/libev internal state */
964inline_size void
670fd_reify (EV_P) 965fd_reify (EV_P)
671{ 966{
672 int i; 967 int i;
673 968
674 for (i = 0; i < fdchangecnt; ++i) 969 for (i = 0; i < fdchangecnt; ++i)
675 { 970 {
676 int fd = fdchanges [i]; 971 int fd = fdchanges [i];
677 ANFD *anfd = anfds + fd; 972 ANFD *anfd = anfds + fd;
678 ev_io *w; 973 ev_io *w;
679 974
680 unsigned char events = 0; 975 unsigned char o_events = anfd->events;
976 unsigned char o_reify = anfd->reify;
681 977
682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 978 anfd->reify = 0;
683 events |= (unsigned char)w->events;
684 979
685#if EV_SELECT_IS_WINSOCKET 980#if EV_SELECT_IS_WINSOCKET
686 if (events) 981 if (o_reify & EV__IOFDSET)
687 { 982 {
688 unsigned long argp; 983 unsigned long arg;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 984 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
692 anfd->handle = _get_osfhandle (fd);
693 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 985 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
695 } 986 }
696#endif 987#endif
697 988
989 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
698 { 990 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
702 anfd->reify = 0;
703 anfd->events = events; 991 anfd->events = 0;
704 992
705 if (o_events != events || o_reify & EV_IOFDSET) 993 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
994 anfd->events |= (unsigned char)w->events;
995
996 if (o_events != anfd->events)
997 o_reify = EV__IOFDSET; /* actually |= */
998 }
999
1000 if (o_reify & EV__IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 1001 backend_modify (EV_A_ fd, o_events, anfd->events);
707 }
708 } 1002 }
709 1003
710 fdchangecnt = 0; 1004 fdchangecnt = 0;
711} 1005}
712 1006
713void inline_size 1007/* something about the given fd changed */
1008inline_size void
714fd_change (EV_P_ int fd, int flags) 1009fd_change (EV_P_ int fd, int flags)
715{ 1010{
716 unsigned char reify = anfds [fd].reify; 1011 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 1012 anfds [fd].reify |= flags;
718 1013
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1017 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 1018 fdchanges [fdchangecnt - 1] = fd;
724 } 1019 }
725} 1020}
726 1021
727void inline_speed 1022/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1023inline_speed void
728fd_kill (EV_P_ int fd) 1024fd_kill (EV_P_ int fd)
729{ 1025{
730 ev_io *w; 1026 ev_io *w;
731 1027
732 while ((w = (ev_io *)anfds [fd].head)) 1028 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 1030 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1031 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 1032 }
737} 1033}
738 1034
739int inline_size 1035/* check whether the given fd is actually valid, for error recovery */
1036inline_size int
740fd_valid (int fd) 1037fd_valid (int fd)
741{ 1038{
742#ifdef _WIN32 1039#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 1040 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
744#else 1041#else
745 return fcntl (fd, F_GETFD) != -1; 1042 return fcntl (fd, F_GETFD) != -1;
746#endif 1043#endif
747} 1044}
748 1045
752{ 1049{
753 int fd; 1050 int fd;
754 1051
755 for (fd = 0; fd < anfdmax; ++fd) 1052 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 1053 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 1054 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 1055 fd_kill (EV_A_ fd);
759} 1056}
760 1057
761/* called on ENOMEM in select/poll to kill some fds and retry */ 1058/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 1059static void noinline
766 1063
767 for (fd = anfdmax; fd--; ) 1064 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events) 1065 if (anfds [fd].events)
769 { 1066 {
770 fd_kill (EV_A_ fd); 1067 fd_kill (EV_A_ fd);
771 return; 1068 break;
772 } 1069 }
773} 1070}
774 1071
775/* usually called after fork if backend needs to re-arm all fds from scratch */ 1072/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline 1073static void noinline
780 1077
781 for (fd = 0; fd < anfdmax; ++fd) 1078 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 1079 if (anfds [fd].events)
783 { 1080 {
784 anfds [fd].events = 0; 1081 anfds [fd].events = 0;
1082 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1083 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 1084 }
787} 1085}
788 1086
1087/* used to prepare libev internal fd's */
1088/* this is not fork-safe */
1089inline_speed void
1090fd_intern (int fd)
1091{
1092#ifdef _WIN32
1093 unsigned long arg = 1;
1094 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1095#else
1096 fcntl (fd, F_SETFD, FD_CLOEXEC);
1097 fcntl (fd, F_SETFL, O_NONBLOCK);
1098#endif
1099}
1100
789/*****************************************************************************/ 1101/*****************************************************************************/
790 1102
791/* 1103/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not 1104 * the heap functions want a real array index. array index 0 is guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1105 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree. 1106 * the branching factor of the d-tree.
795 */ 1107 */
796 1108
797/* 1109/*
802 */ 1114 */
803#if EV_USE_4HEAP 1115#if EV_USE_4HEAP
804 1116
805#define DHEAP 4 1117#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1118#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807 1119#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808/* towards the root */ 1120#define UPHEAP_DONE(p,k) ((p) == (k))
809void inline_speed
810upheap (ANHE *heap, int k)
811{
812 ANHE he = heap [k];
813
814 for (;;)
815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
821 heap [k] = heap [p];
822 ev_active (ANHE_w (heap [k])) = k;
823 k = p;
824 }
825
826 ev_active (ANHE_w (he)) = k;
827 heap [k] = he;
828}
829 1121
830/* away from the root */ 1122/* away from the root */
831void inline_speed 1123inline_speed void
832downheap (ANHE *heap, int N, int k) 1124downheap (ANHE *heap, int N, int k)
833{ 1125{
834 ANHE he = heap [k]; 1126 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0; 1127 ANHE *E = heap + N + HEAP0;
836 1128
837 for (;;) 1129 for (;;)
838 { 1130 {
839 ev_tstamp minat; 1131 ev_tstamp minat;
840 ANHE *minpos; 1132 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1133 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
842 1134
843 // find minimum child 1135 /* find minimum child */
844 if (expect_true (pos + DHEAP - 1 < E)) 1136 if (expect_true (pos + DHEAP - 1 < E))
845 { 1137 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1138 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1139 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1140 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
859 break; 1151 break;
860 1152
861 if (ANHE_at (he) <= minat) 1153 if (ANHE_at (he) <= minat)
862 break; 1154 break;
863 1155
1156 heap [k] = *minpos;
864 ev_active (ANHE_w (*minpos)) = k; 1157 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866 1158
867 k = minpos - heap; 1159 k = minpos - heap;
868 } 1160 }
869 1161
1162 heap [k] = he;
870 ev_active (ANHE_w (he)) = k; 1163 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872} 1164}
873 1165
874#else // 4HEAP 1166#else /* 4HEAP */
875 1167
876#define HEAP0 1 1168#define HEAP0 1
1169#define HPARENT(k) ((k) >> 1)
1170#define UPHEAP_DONE(p,k) (!(p))
877 1171
878/* towards the root */ 1172/* away from the root */
879void inline_speed 1173inline_speed void
880upheap (ANHE *heap, int k) 1174downheap (ANHE *heap, int N, int k)
881{ 1175{
882 ANHE he = heap [k]; 1176 ANHE he = heap [k];
883 1177
884 for (;;) 1178 for (;;)
885 { 1179 {
886 int p = k >> 1; 1180 int c = k << 1;
887 1181
888 /* maybe we could use a dummy element at heap [0]? */ 1182 if (c >= N + HEAP0)
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break; 1183 break;
891 1184
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1185 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0; 1186 ? 1 : 0;
916 1187
917 if (ANHE_at (he) <= ANHE_at (heap [c])) 1188 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break; 1189 break;
919 1190
926 heap [k] = he; 1197 heap [k] = he;
927 ev_active (ANHE_w (he)) = k; 1198 ev_active (ANHE_w (he)) = k;
928} 1199}
929#endif 1200#endif
930 1201
931void inline_size 1202/* towards the root */
1203inline_speed void
1204upheap (ANHE *heap, int k)
1205{
1206 ANHE he = heap [k];
1207
1208 for (;;)
1209 {
1210 int p = HPARENT (k);
1211
1212 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1213 break;
1214
1215 heap [k] = heap [p];
1216 ev_active (ANHE_w (heap [k])) = k;
1217 k = p;
1218 }
1219
1220 heap [k] = he;
1221 ev_active (ANHE_w (he)) = k;
1222}
1223
1224/* move an element suitably so it is in a correct place */
1225inline_size void
932adjustheap (ANHE *heap, int N, int k) 1226adjustheap (ANHE *heap, int N, int k)
933{ 1227{
1228 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
934 upheap (heap, k); 1229 upheap (heap, k);
1230 else
935 downheap (heap, N, k); 1231 downheap (heap, N, k);
1232}
1233
1234/* rebuild the heap: this function is used only once and executed rarely */
1235inline_size void
1236reheap (ANHE *heap, int N)
1237{
1238 int i;
1239
1240 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1241 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1242 for (i = 0; i < N; ++i)
1243 upheap (heap, i + HEAP0);
936} 1244}
937 1245
938/*****************************************************************************/ 1246/*****************************************************************************/
939 1247
1248/* associate signal watchers to a signal signal */
940typedef struct 1249typedef struct
941{ 1250{
1251 EV_ATOMIC_T pending;
1252#if EV_MULTIPLICITY
1253 EV_P;
1254#endif
942 WL head; 1255 WL head;
943 EV_ATOMIC_T gotsig;
944} ANSIG; 1256} ANSIG;
945 1257
946static ANSIG *signals; 1258static ANSIG signals [EV_NSIG - 1];
947static int signalmax;
948
949static EV_ATOMIC_T gotsig;
950
951void inline_size
952signals_init (ANSIG *base, int count)
953{
954 while (count--)
955 {
956 base->head = 0;
957 base->gotsig = 0;
958
959 ++base;
960 }
961}
962 1259
963/*****************************************************************************/ 1260/*****************************************************************************/
964 1261
965void inline_speed 1262#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
966fd_intern (int fd)
967{
968#ifdef _WIN32
969 int arg = 1;
970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
971#else
972 fcntl (fd, F_SETFD, FD_CLOEXEC);
973 fcntl (fd, F_SETFL, O_NONBLOCK);
974#endif
975}
976 1263
977static void noinline 1264static void noinline
978evpipe_init (EV_P) 1265evpipe_init (EV_P)
979{ 1266{
980 if (!ev_is_active (&pipeev)) 1267 if (!ev_is_active (&pipe_w))
981 { 1268 {
982#if EV_USE_EVENTFD 1269# if EV_USE_EVENTFD
1270 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1271 if (evfd < 0 && errno == EINVAL)
983 if ((evfd = eventfd (0, 0)) >= 0) 1272 evfd = eventfd (0, 0);
1273
1274 if (evfd >= 0)
984 { 1275 {
985 evpipe [0] = -1; 1276 evpipe [0] = -1;
986 fd_intern (evfd); 1277 fd_intern (evfd); /* doing it twice doesn't hurt */
987 ev_io_set (&pipeev, evfd, EV_READ); 1278 ev_io_set (&pipe_w, evfd, EV_READ);
988 } 1279 }
989 else 1280 else
990#endif 1281# endif
991 { 1282 {
992 while (pipe (evpipe)) 1283 while (pipe (evpipe))
993 syserr ("(libev) error creating signal/async pipe"); 1284 ev_syserr ("(libev) error creating signal/async pipe");
994 1285
995 fd_intern (evpipe [0]); 1286 fd_intern (evpipe [0]);
996 fd_intern (evpipe [1]); 1287 fd_intern (evpipe [1]);
997 ev_io_set (&pipeev, evpipe [0], EV_READ); 1288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
998 } 1289 }
999 1290
1000 ev_io_start (EV_A_ &pipeev); 1291 ev_io_start (EV_A_ &pipe_w);
1001 ev_unref (EV_A); /* watcher should not keep loop alive */ 1292 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 } 1293 }
1003} 1294}
1004 1295
1005void inline_size 1296inline_size void
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1297evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{ 1298{
1008 if (!*flag) 1299 if (!*flag)
1009 { 1300 {
1010 int old_errno = errno; /* save errno because write might clobber it */ 1301 int old_errno = errno; /* save errno because write might clobber it */
1302 char dummy;
1011 1303
1012 *flag = 1; 1304 *flag = 1;
1013 1305
1014#if EV_USE_EVENTFD 1306#if EV_USE_EVENTFD
1015 if (evfd >= 0) 1307 if (evfd >= 0)
1017 uint64_t counter = 1; 1309 uint64_t counter = 1;
1018 write (evfd, &counter, sizeof (uint64_t)); 1310 write (evfd, &counter, sizeof (uint64_t));
1019 } 1311 }
1020 else 1312 else
1021#endif 1313#endif
1314 /* win32 people keep sending patches that change this write() to send() */
1315 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1316 /* so when you think this write should be a send instead, please find out */
1317 /* where your send() is from - it's definitely not the microsoft send, and */
1318 /* tell me. thank you. */
1022 write (evpipe [1], &old_errno, 1); 1319 write (evpipe [1], &dummy, 1);
1023 1320
1024 errno = old_errno; 1321 errno = old_errno;
1025 } 1322 }
1026} 1323}
1027 1324
1325/* called whenever the libev signal pipe */
1326/* got some events (signal, async) */
1028static void 1327static void
1029pipecb (EV_P_ ev_io *iow, int revents) 1328pipecb (EV_P_ ev_io *iow, int revents)
1030{ 1329{
1330 int i;
1331
1031#if EV_USE_EVENTFD 1332#if EV_USE_EVENTFD
1032 if (evfd >= 0) 1333 if (evfd >= 0)
1033 { 1334 {
1034 uint64_t counter; 1335 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t)); 1336 read (evfd, &counter, sizeof (uint64_t));
1036 } 1337 }
1037 else 1338 else
1038#endif 1339#endif
1039 { 1340 {
1040 char dummy; 1341 char dummy;
1342 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1041 read (evpipe [0], &dummy, 1); 1343 read (evpipe [0], &dummy, 1);
1042 } 1344 }
1043 1345
1044 if (gotsig && ev_is_default_loop (EV_A)) 1346 if (sig_pending)
1045 { 1347 {
1046 int signum; 1348 sig_pending = 0;
1047 gotsig = 0;
1048 1349
1049 for (signum = signalmax; signum--; ) 1350 for (i = EV_NSIG - 1; i--; )
1050 if (signals [signum].gotsig) 1351 if (expect_false (signals [i].pending))
1051 ev_feed_signal_event (EV_A_ signum + 1); 1352 ev_feed_signal_event (EV_A_ i + 1);
1052 } 1353 }
1053 1354
1054#if EV_ASYNC_ENABLE 1355#if EV_ASYNC_ENABLE
1055 if (gotasync) 1356 if (async_pending)
1056 { 1357 {
1057 int i; 1358 async_pending = 0;
1058 gotasync = 0;
1059 1359
1060 for (i = asynccnt; i--; ) 1360 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent) 1361 if (asyncs [i]->sent)
1062 { 1362 {
1063 asyncs [i]->sent = 0; 1363 asyncs [i]->sent = 0;
1071 1371
1072static void 1372static void
1073ev_sighandler (int signum) 1373ev_sighandler (int signum)
1074{ 1374{
1075#if EV_MULTIPLICITY 1375#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct; 1376 EV_P = signals [signum - 1].loop;
1077#endif 1377#endif
1078 1378
1079#if _WIN32 1379#ifdef _WIN32
1080 signal (signum, ev_sighandler); 1380 signal (signum, ev_sighandler);
1081#endif 1381#endif
1082 1382
1083 signals [signum - 1].gotsig = 1; 1383 signals [signum - 1].pending = 1;
1084 evpipe_write (EV_A_ &gotsig); 1384 evpipe_write (EV_A_ &sig_pending);
1085} 1385}
1086 1386
1087void noinline 1387void noinline
1088ev_feed_signal_event (EV_P_ int signum) 1388ev_feed_signal_event (EV_P_ int signum)
1089{ 1389{
1090 WL w; 1390 WL w;
1091 1391
1392 if (expect_false (signum <= 0 || signum > EV_NSIG))
1393 return;
1394
1395 --signum;
1396
1092#if EV_MULTIPLICITY 1397#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1398 /* it is permissible to try to feed a signal to the wrong loop */
1094#endif 1399 /* or, likely more useful, feeding a signal nobody is waiting for */
1095 1400
1096 --signum; 1401 if (expect_false (signals [signum].loop != EV_A))
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return; 1402 return;
1403#endif
1100 1404
1101 signals [signum].gotsig = 0; 1405 signals [signum].pending = 0;
1102 1406
1103 for (w = signals [signum].head; w; w = w->next) 1407 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1408 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105} 1409}
1106 1410
1411#if EV_USE_SIGNALFD
1412static void
1413sigfdcb (EV_P_ ev_io *iow, int revents)
1414{
1415 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1416
1417 for (;;)
1418 {
1419 ssize_t res = read (sigfd, si, sizeof (si));
1420
1421 /* not ISO-C, as res might be -1, but works with SuS */
1422 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1423 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1424
1425 if (res < (ssize_t)sizeof (si))
1426 break;
1427 }
1428}
1429#endif
1430
1431#endif
1432
1107/*****************************************************************************/ 1433/*****************************************************************************/
1108 1434
1435#if EV_CHILD_ENABLE
1109static WL childs [EV_PID_HASHSIZE]; 1436static WL childs [EV_PID_HASHSIZE];
1110
1111#ifndef _WIN32
1112 1437
1113static ev_signal childev; 1438static ev_signal childev;
1114 1439
1115#ifndef WIFCONTINUED 1440#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0 1441# define WIFCONTINUED(status) 0
1117#endif 1442#endif
1118 1443
1119void inline_speed 1444/* handle a single child status event */
1445inline_speed void
1120child_reap (EV_P_ int chain, int pid, int status) 1446child_reap (EV_P_ int chain, int pid, int status)
1121{ 1447{
1122 ev_child *w; 1448 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1449 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1124 1450
1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1451 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1126 { 1452 {
1127 if ((w->pid == pid || !w->pid) 1453 if ((w->pid == pid || !w->pid)
1128 && (!traced || (w->flags & 1))) 1454 && (!traced || (w->flags & 1)))
1129 { 1455 {
1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1456 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1137 1463
1138#ifndef WCONTINUED 1464#ifndef WCONTINUED
1139# define WCONTINUED 0 1465# define WCONTINUED 0
1140#endif 1466#endif
1141 1467
1468/* called on sigchld etc., calls waitpid */
1142static void 1469static void
1143childcb (EV_P_ ev_signal *sw, int revents) 1470childcb (EV_P_ ev_signal *sw, int revents)
1144{ 1471{
1145 int pid, status; 1472 int pid, status;
1146 1473
1154 /* make sure we are called again until all children have been reaped */ 1481 /* make sure we are called again until all children have been reaped */
1155 /* we need to do it this way so that the callback gets called before we continue */ 1482 /* we need to do it this way so that the callback gets called before we continue */
1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1483 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1157 1484
1158 child_reap (EV_A_ pid, pid, status); 1485 child_reap (EV_A_ pid, pid, status);
1159 if (EV_PID_HASHSIZE > 1) 1486 if ((EV_PID_HASHSIZE) > 1)
1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1487 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1161} 1488}
1162 1489
1163#endif 1490#endif
1164 1491
1227 /* kqueue is borked on everything but netbsd apparently */ 1554 /* kqueue is borked on everything but netbsd apparently */
1228 /* it usually doesn't work correctly on anything but sockets and pipes */ 1555 /* it usually doesn't work correctly on anything but sockets and pipes */
1229 flags &= ~EVBACKEND_KQUEUE; 1556 flags &= ~EVBACKEND_KQUEUE;
1230#endif 1557#endif
1231#ifdef __APPLE__ 1558#ifdef __APPLE__
1232 // flags &= ~EVBACKEND_KQUEUE; for documentation 1559 /* only select works correctly on that "unix-certified" platform */
1233 flags &= ~EVBACKEND_POLL; 1560 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1561 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1562#endif
1563#ifdef __FreeBSD__
1564 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1234#endif 1565#endif
1235 1566
1236 return flags; 1567 return flags;
1237} 1568}
1238 1569
1240ev_embeddable_backends (void) 1571ev_embeddable_backends (void)
1241{ 1572{
1242 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1573 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1243 1574
1244 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1575 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1245 /* please fix it and tell me how to detect the fix */ 1576 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1246 flags &= ~EVBACKEND_EPOLL; 1577 flags &= ~EVBACKEND_EPOLL;
1247 1578
1248 return flags; 1579 return flags;
1249} 1580}
1250 1581
1251unsigned int 1582unsigned int
1252ev_backend (EV_P) 1583ev_backend (EV_P)
1253{ 1584{
1254 return backend; 1585 return backend;
1255} 1586}
1256 1587
1588#if EV_FEATURE_API
1257unsigned int 1589unsigned int
1258ev_loop_count (EV_P) 1590ev_iteration (EV_P)
1259{ 1591{
1260 return loop_count; 1592 return loop_count;
1261} 1593}
1262 1594
1595unsigned int
1596ev_depth (EV_P)
1597{
1598 return loop_depth;
1599}
1600
1263void 1601void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1602ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1265{ 1603{
1266 io_blocktime = interval; 1604 io_blocktime = interval;
1267} 1605}
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1608ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1271{ 1609{
1272 timeout_blocktime = interval; 1610 timeout_blocktime = interval;
1273} 1611}
1274 1612
1613void
1614ev_set_userdata (EV_P_ void *data)
1615{
1616 userdata = data;
1617}
1618
1619void *
1620ev_userdata (EV_P)
1621{
1622 return userdata;
1623}
1624
1625void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1626{
1627 invoke_cb = invoke_pending_cb;
1628}
1629
1630void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1631{
1632 release_cb = release;
1633 acquire_cb = acquire;
1634}
1635#endif
1636
1637/* initialise a loop structure, must be zero-initialised */
1275static void noinline 1638static void noinline
1276loop_init (EV_P_ unsigned int flags) 1639loop_init (EV_P_ unsigned int flags)
1277{ 1640{
1278 if (!backend) 1641 if (!backend)
1279 { 1642 {
1643#if EV_USE_REALTIME
1644 if (!have_realtime)
1645 {
1646 struct timespec ts;
1647
1648 if (!clock_gettime (CLOCK_REALTIME, &ts))
1649 have_realtime = 1;
1650 }
1651#endif
1652
1280#if EV_USE_MONOTONIC 1653#if EV_USE_MONOTONIC
1654 if (!have_monotonic)
1281 { 1655 {
1282 struct timespec ts; 1656 struct timespec ts;
1657
1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1658 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1284 have_monotonic = 1; 1659 have_monotonic = 1;
1285 } 1660 }
1286#endif 1661#endif
1662
1663 /* pid check not overridable via env */
1664#ifndef _WIN32
1665 if (flags & EVFLAG_FORKCHECK)
1666 curpid = getpid ();
1667#endif
1668
1669 if (!(flags & EVFLAG_NOENV)
1670 && !enable_secure ()
1671 && getenv ("LIBEV_FLAGS"))
1672 flags = atoi (getenv ("LIBEV_FLAGS"));
1287 1673
1288 ev_rt_now = ev_time (); 1674 ev_rt_now = ev_time ();
1289 mn_now = get_clock (); 1675 mn_now = get_clock ();
1290 now_floor = mn_now; 1676 now_floor = mn_now;
1291 rtmn_diff = ev_rt_now - mn_now; 1677 rtmn_diff = ev_rt_now - mn_now;
1678#if EV_FEATURE_API
1679 invoke_cb = ev_invoke_pending;
1680#endif
1292 1681
1293 io_blocktime = 0.; 1682 io_blocktime = 0.;
1294 timeout_blocktime = 0.; 1683 timeout_blocktime = 0.;
1295 backend = 0; 1684 backend = 0;
1296 backend_fd = -1; 1685 backend_fd = -1;
1297 gotasync = 0; 1686 sig_pending = 0;
1687#if EV_ASYNC_ENABLE
1688 async_pending = 0;
1689#endif
1298#if EV_USE_INOTIFY 1690#if EV_USE_INOTIFY
1299 fs_fd = -2; 1691 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1300#endif 1692#endif
1301 1693#if EV_USE_SIGNALFD
1302 /* pid check not overridable via env */ 1694 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1303#ifndef _WIN32
1304 if (flags & EVFLAG_FORKCHECK)
1305 curpid = getpid ();
1306#endif 1695#endif
1307
1308 if (!(flags & EVFLAG_NOENV)
1309 && !enable_secure ()
1310 && getenv ("LIBEV_FLAGS"))
1311 flags = atoi (getenv ("LIBEV_FLAGS"));
1312 1696
1313 if (!(flags & 0x0000ffffU)) 1697 if (!(flags & 0x0000ffffU))
1314 flags |= ev_recommended_backends (); 1698 flags |= ev_recommended_backends ();
1315 1699
1316#if EV_USE_PORT 1700#if EV_USE_PORT
1327#endif 1711#endif
1328#if EV_USE_SELECT 1712#if EV_USE_SELECT
1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1713 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1330#endif 1714#endif
1331 1715
1716 ev_prepare_init (&pending_w, pendingcb);
1717
1718#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1332 ev_init (&pipeev, pipecb); 1719 ev_init (&pipe_w, pipecb);
1333 ev_set_priority (&pipeev, EV_MAXPRI); 1720 ev_set_priority (&pipe_w, EV_MAXPRI);
1721#endif
1334 } 1722 }
1335} 1723}
1336 1724
1725/* free up a loop structure */
1337static void noinline 1726static void noinline
1338loop_destroy (EV_P) 1727loop_destroy (EV_P)
1339{ 1728{
1340 int i; 1729 int i;
1341 1730
1342 if (ev_is_active (&pipeev)) 1731 if (ev_is_active (&pipe_w))
1343 { 1732 {
1344 ev_ref (EV_A); /* signal watcher */ 1733 /*ev_ref (EV_A);*/
1345 ev_io_stop (EV_A_ &pipeev); 1734 /*ev_io_stop (EV_A_ &pipe_w);*/
1346 1735
1347#if EV_USE_EVENTFD 1736#if EV_USE_EVENTFD
1348 if (evfd >= 0) 1737 if (evfd >= 0)
1349 close (evfd); 1738 close (evfd);
1350#endif 1739#endif
1351 1740
1352 if (evpipe [0] >= 0) 1741 if (evpipe [0] >= 0)
1353 { 1742 {
1354 close (evpipe [0]); 1743 EV_WIN32_CLOSE_FD (evpipe [0]);
1355 close (evpipe [1]); 1744 EV_WIN32_CLOSE_FD (evpipe [1]);
1356 } 1745 }
1357 } 1746 }
1747
1748#if EV_USE_SIGNALFD
1749 if (ev_is_active (&sigfd_w))
1750 close (sigfd);
1751#endif
1358 1752
1359#if EV_USE_INOTIFY 1753#if EV_USE_INOTIFY
1360 if (fs_fd >= 0) 1754 if (fs_fd >= 0)
1361 close (fs_fd); 1755 close (fs_fd);
1362#endif 1756#endif
1386#if EV_IDLE_ENABLE 1780#if EV_IDLE_ENABLE
1387 array_free (idle, [i]); 1781 array_free (idle, [i]);
1388#endif 1782#endif
1389 } 1783 }
1390 1784
1391 ev_free (anfds); anfdmax = 0; 1785 ev_free (anfds); anfds = 0; anfdmax = 0;
1392 1786
1393 /* have to use the microsoft-never-gets-it-right macro */ 1787 /* have to use the microsoft-never-gets-it-right macro */
1788 array_free (rfeed, EMPTY);
1394 array_free (fdchange, EMPTY); 1789 array_free (fdchange, EMPTY);
1395 array_free (timer, EMPTY); 1790 array_free (timer, EMPTY);
1396#if EV_PERIODIC_ENABLE 1791#if EV_PERIODIC_ENABLE
1397 array_free (periodic, EMPTY); 1792 array_free (periodic, EMPTY);
1398#endif 1793#endif
1407 1802
1408 backend = 0; 1803 backend = 0;
1409} 1804}
1410 1805
1411#if EV_USE_INOTIFY 1806#if EV_USE_INOTIFY
1412void inline_size infy_fork (EV_P); 1807inline_size void infy_fork (EV_P);
1413#endif 1808#endif
1414 1809
1415void inline_size 1810inline_size void
1416loop_fork (EV_P) 1811loop_fork (EV_P)
1417{ 1812{
1418#if EV_USE_PORT 1813#if EV_USE_PORT
1419 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1814 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1420#endif 1815#endif
1426#endif 1821#endif
1427#if EV_USE_INOTIFY 1822#if EV_USE_INOTIFY
1428 infy_fork (EV_A); 1823 infy_fork (EV_A);
1429#endif 1824#endif
1430 1825
1431 if (ev_is_active (&pipeev)) 1826 if (ev_is_active (&pipe_w))
1432 { 1827 {
1433 /* this "locks" the handlers against writing to the pipe */ 1828 /* this "locks" the handlers against writing to the pipe */
1434 /* while we modify the fd vars */ 1829 /* while we modify the fd vars */
1435 gotsig = 1; 1830 sig_pending = 1;
1436#if EV_ASYNC_ENABLE 1831#if EV_ASYNC_ENABLE
1437 gotasync = 1; 1832 async_pending = 1;
1438#endif 1833#endif
1439 1834
1440 ev_ref (EV_A); 1835 ev_ref (EV_A);
1441 ev_io_stop (EV_A_ &pipeev); 1836 ev_io_stop (EV_A_ &pipe_w);
1442 1837
1443#if EV_USE_EVENTFD 1838#if EV_USE_EVENTFD
1444 if (evfd >= 0) 1839 if (evfd >= 0)
1445 close (evfd); 1840 close (evfd);
1446#endif 1841#endif
1447 1842
1448 if (evpipe [0] >= 0) 1843 if (evpipe [0] >= 0)
1449 { 1844 {
1450 close (evpipe [0]); 1845 EV_WIN32_CLOSE_FD (evpipe [0]);
1451 close (evpipe [1]); 1846 EV_WIN32_CLOSE_FD (evpipe [1]);
1452 } 1847 }
1453 1848
1849#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1454 evpipe_init (EV_A); 1850 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */ 1851 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ); 1852 pipecb (EV_A_ &pipe_w, EV_READ);
1853#endif
1457 } 1854 }
1458 1855
1459 postfork = 0; 1856 postfork = 0;
1460} 1857}
1461 1858
1462#if EV_MULTIPLICITY 1859#if EV_MULTIPLICITY
1860
1463struct ev_loop * 1861struct ev_loop *
1464ev_loop_new (unsigned int flags) 1862ev_loop_new (unsigned int flags)
1465{ 1863{
1466 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1864 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1467 1865
1468 memset (loop, 0, sizeof (struct ev_loop)); 1866 memset (EV_A, 0, sizeof (struct ev_loop));
1469
1470 loop_init (EV_A_ flags); 1867 loop_init (EV_A_ flags);
1471 1868
1472 if (ev_backend (EV_A)) 1869 if (ev_backend (EV_A))
1473 return loop; 1870 return EV_A;
1474 1871
1475 return 0; 1872 return 0;
1476} 1873}
1477 1874
1478void 1875void
1484 1881
1485void 1882void
1486ev_loop_fork (EV_P) 1883ev_loop_fork (EV_P)
1487{ 1884{
1488 postfork = 1; /* must be in line with ev_default_fork */ 1885 postfork = 1; /* must be in line with ev_default_fork */
1886}
1887#endif /* multiplicity */
1888
1889#if EV_VERIFY
1890static void noinline
1891verify_watcher (EV_P_ W w)
1892{
1893 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1894
1895 if (w->pending)
1896 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1897}
1898
1899static void noinline
1900verify_heap (EV_P_ ANHE *heap, int N)
1901{
1902 int i;
1903
1904 for (i = HEAP0; i < N + HEAP0; ++i)
1905 {
1906 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1907 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1908 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1909
1910 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1911 }
1912}
1913
1914static void noinline
1915array_verify (EV_P_ W *ws, int cnt)
1916{
1917 while (cnt--)
1918 {
1919 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1920 verify_watcher (EV_A_ ws [cnt]);
1921 }
1922}
1923#endif
1924
1925#if EV_FEATURE_API
1926void
1927ev_verify (EV_P)
1928{
1929#if EV_VERIFY
1930 int i;
1931 WL w;
1932
1933 assert (activecnt >= -1);
1934
1935 assert (fdchangemax >= fdchangecnt);
1936 for (i = 0; i < fdchangecnt; ++i)
1937 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1938
1939 assert (anfdmax >= 0);
1940 for (i = 0; i < anfdmax; ++i)
1941 for (w = anfds [i].head; w; w = w->next)
1942 {
1943 verify_watcher (EV_A_ (W)w);
1944 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1945 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1946 }
1947
1948 assert (timermax >= timercnt);
1949 verify_heap (EV_A_ timers, timercnt);
1950
1951#if EV_PERIODIC_ENABLE
1952 assert (periodicmax >= periodiccnt);
1953 verify_heap (EV_A_ periodics, periodiccnt);
1954#endif
1955
1956 for (i = NUMPRI; i--; )
1957 {
1958 assert (pendingmax [i] >= pendingcnt [i]);
1959#if EV_IDLE_ENABLE
1960 assert (idleall >= 0);
1961 assert (idlemax [i] >= idlecnt [i]);
1962 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1963#endif
1964 }
1965
1966#if EV_FORK_ENABLE
1967 assert (forkmax >= forkcnt);
1968 array_verify (EV_A_ (W *)forks, forkcnt);
1969#endif
1970
1971#if EV_ASYNC_ENABLE
1972 assert (asyncmax >= asynccnt);
1973 array_verify (EV_A_ (W *)asyncs, asynccnt);
1974#endif
1975
1976#if EV_PREPARE_ENABLE
1977 assert (preparemax >= preparecnt);
1978 array_verify (EV_A_ (W *)prepares, preparecnt);
1979#endif
1980
1981#if EV_CHECK_ENABLE
1982 assert (checkmax >= checkcnt);
1983 array_verify (EV_A_ (W *)checks, checkcnt);
1984#endif
1985
1986# if 0
1987#if EV_CHILD_ENABLE
1988 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1989 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1990#endif
1991# endif
1992#endif
1489} 1993}
1490#endif 1994#endif
1491 1995
1492#if EV_MULTIPLICITY 1996#if EV_MULTIPLICITY
1493struct ev_loop * 1997struct ev_loop *
1498#endif 2002#endif
1499{ 2003{
1500 if (!ev_default_loop_ptr) 2004 if (!ev_default_loop_ptr)
1501 { 2005 {
1502#if EV_MULTIPLICITY 2006#if EV_MULTIPLICITY
1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2007 EV_P = ev_default_loop_ptr = &default_loop_struct;
1504#else 2008#else
1505 ev_default_loop_ptr = 1; 2009 ev_default_loop_ptr = 1;
1506#endif 2010#endif
1507 2011
1508 loop_init (EV_A_ flags); 2012 loop_init (EV_A_ flags);
1509 2013
1510 if (ev_backend (EV_A)) 2014 if (ev_backend (EV_A))
1511 { 2015 {
1512#ifndef _WIN32 2016#if EV_CHILD_ENABLE
1513 ev_signal_init (&childev, childcb, SIGCHLD); 2017 ev_signal_init (&childev, childcb, SIGCHLD);
1514 ev_set_priority (&childev, EV_MAXPRI); 2018 ev_set_priority (&childev, EV_MAXPRI);
1515 ev_signal_start (EV_A_ &childev); 2019 ev_signal_start (EV_A_ &childev);
1516 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2020 ev_unref (EV_A); /* child watcher should not keep loop alive */
1517#endif 2021#endif
1525 2029
1526void 2030void
1527ev_default_destroy (void) 2031ev_default_destroy (void)
1528{ 2032{
1529#if EV_MULTIPLICITY 2033#if EV_MULTIPLICITY
1530 struct ev_loop *loop = ev_default_loop_ptr; 2034 EV_P = ev_default_loop_ptr;
1531#endif 2035#endif
1532 2036
1533#ifndef _WIN32 2037 ev_default_loop_ptr = 0;
2038
2039#if EV_CHILD_ENABLE
1534 ev_ref (EV_A); /* child watcher */ 2040 ev_ref (EV_A); /* child watcher */
1535 ev_signal_stop (EV_A_ &childev); 2041 ev_signal_stop (EV_A_ &childev);
1536#endif 2042#endif
1537 2043
1538 loop_destroy (EV_A); 2044 loop_destroy (EV_A);
1540 2046
1541void 2047void
1542ev_default_fork (void) 2048ev_default_fork (void)
1543{ 2049{
1544#if EV_MULTIPLICITY 2050#if EV_MULTIPLICITY
1545 struct ev_loop *loop = ev_default_loop_ptr; 2051 EV_P = ev_default_loop_ptr;
1546#endif 2052#endif
1547 2053
1548 if (backend)
1549 postfork = 1; /* must be in line with ev_loop_fork */ 2054 postfork = 1; /* must be in line with ev_loop_fork */
1550} 2055}
1551 2056
1552/*****************************************************************************/ 2057/*****************************************************************************/
1553 2058
1554void 2059void
1555ev_invoke (EV_P_ void *w, int revents) 2060ev_invoke (EV_P_ void *w, int revents)
1556{ 2061{
1557 EV_CB_INVOKE ((W)w, revents); 2062 EV_CB_INVOKE ((W)w, revents);
1558} 2063}
1559 2064
1560void inline_speed 2065unsigned int
1561call_pending (EV_P) 2066ev_pending_count (EV_P)
2067{
2068 int pri;
2069 unsigned int count = 0;
2070
2071 for (pri = NUMPRI; pri--; )
2072 count += pendingcnt [pri];
2073
2074 return count;
2075}
2076
2077void noinline
2078ev_invoke_pending (EV_P)
1562{ 2079{
1563 int pri; 2080 int pri;
1564 2081
1565 for (pri = NUMPRI; pri--; ) 2082 for (pri = NUMPRI; pri--; )
1566 while (pendingcnt [pri]) 2083 while (pendingcnt [pri])
1567 { 2084 {
1568 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2085 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1569 2086
1570 if (expect_true (p->w))
1571 {
1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2087 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2088 /* ^ this is no longer true, as pending_w could be here */
1573 2089
1574 p->w->pending = 0; 2090 p->w->pending = 0;
1575 EV_CB_INVOKE (p->w, p->events); 2091 EV_CB_INVOKE (p->w, p->events);
1576 } 2092 EV_FREQUENT_CHECK;
1577 } 2093 }
1578} 2094}
1579 2095
1580#if EV_IDLE_ENABLE 2096#if EV_IDLE_ENABLE
1581void inline_size 2097/* make idle watchers pending. this handles the "call-idle */
2098/* only when higher priorities are idle" logic */
2099inline_size void
1582idle_reify (EV_P) 2100idle_reify (EV_P)
1583{ 2101{
1584 if (expect_false (idleall)) 2102 if (expect_false (idleall))
1585 { 2103 {
1586 int pri; 2104 int pri;
1598 } 2116 }
1599 } 2117 }
1600} 2118}
1601#endif 2119#endif
1602 2120
1603void inline_size 2121/* make timers pending */
2122inline_size void
1604timers_reify (EV_P) 2123timers_reify (EV_P)
1605{ 2124{
2125 EV_FREQUENT_CHECK;
2126
1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2127 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1607 { 2128 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2129 do
1609
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1611
1612 /* first reschedule or stop timer */
1613 if (w->repeat)
1614 { 2130 {
2131 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2132
2133 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2134
2135 /* first reschedule or stop timer */
2136 if (w->repeat)
2137 {
1615 ev_at (w) += w->repeat; 2138 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now) 2139 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now; 2140 ev_at (w) = mn_now;
1618 2141
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2142 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620 2143
1621 ANHE_at_set (timers [HEAP0]); 2144 ANHE_at_cache (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0); 2145 downheap (timers, timercnt, HEAP0);
2146 }
2147 else
2148 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2149
2150 EV_FREQUENT_CHECK;
2151 feed_reverse (EV_A_ (W)w);
1623 } 2152 }
1624 else 2153 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 2154
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2155 feed_reverse_done (EV_A_ EV_TIMER);
1628 } 2156 }
1629} 2157}
1630 2158
1631#if EV_PERIODIC_ENABLE 2159#if EV_PERIODIC_ENABLE
1632void inline_size 2160/* make periodics pending */
2161inline_size void
1633periodics_reify (EV_P) 2162periodics_reify (EV_P)
1634{ 2163{
2164 EV_FREQUENT_CHECK;
2165
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2166 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1636 { 2167 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2168 int feed_count = 0;
1638 2169
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2170 do
1640
1641 /* first reschedule or stop timer */
1642 if (w->reschedule_cb)
1643 { 2171 {
2172 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2173
2174 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2175
2176 /* first reschedule or stop timer */
2177 if (w->reschedule_cb)
2178 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2179 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645 2180
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2181 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647 2182
1648 ANHE_at_set (periodics [HEAP0]); 2183 ANHE_at_cache (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0); 2184 downheap (periodics, periodiccnt, HEAP0);
2185 }
2186 else if (w->interval)
2187 {
2188 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2189 /* if next trigger time is not sufficiently in the future, put it there */
2190 /* this might happen because of floating point inexactness */
2191 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2192 {
2193 ev_at (w) += w->interval;
2194
2195 /* if interval is unreasonably low we might still have a time in the past */
2196 /* so correct this. this will make the periodic very inexact, but the user */
2197 /* has effectively asked to get triggered more often than possible */
2198 if (ev_at (w) < ev_rt_now)
2199 ev_at (w) = ev_rt_now;
2200 }
2201
2202 ANHE_at_cache (periodics [HEAP0]);
2203 downheap (periodics, periodiccnt, HEAP0);
2204 }
2205 else
2206 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2207
2208 EV_FREQUENT_CHECK;
2209 feed_reverse (EV_A_ (W)w);
1650 } 2210 }
1651 else if (w->interval) 2211 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1655 2212
1656 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) >= ev_rt_now));
1657
1658 ANHE_at_set (periodics [HEAP0]);
1659 downheap (periodics, periodiccnt, HEAP0);
1660 }
1661 else
1662 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1663
1664 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2213 feed_reverse_done (EV_A_ EV_PERIODIC);
1665 } 2214 }
1666} 2215}
1667 2216
2217/* simply recalculate all periodics */
2218/* TODO: maybe ensure that at least one event happens when jumping forward? */
1668static void noinline 2219static void noinline
1669periodics_reschedule (EV_P) 2220periodics_reschedule (EV_P)
1670{ 2221{
1671 int i; 2222 int i;
1672 2223
1678 if (w->reschedule_cb) 2229 if (w->reschedule_cb)
1679 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2230 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1680 else if (w->interval) 2231 else if (w->interval)
1681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2232 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1682 2233
1683 ANHE_at_set (periodics [i]); 2234 ANHE_at_cache (periodics [i]);
1684 } 2235 }
1685 2236
1686 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 2237 reheap (periodics, periodiccnt);
1687 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 2238}
2239#endif
2240
2241/* adjust all timers by a given offset */
2242static void noinline
2243timers_reschedule (EV_P_ ev_tstamp adjust)
2244{
2245 int i;
2246
1688 for (i = 0; i < periodiccnt; ++i) 2247 for (i = 0; i < timercnt; ++i)
1689 upheap (periodics, i + HEAP0); 2248 {
2249 ANHE *he = timers + i + HEAP0;
2250 ANHE_w (*he)->at += adjust;
2251 ANHE_at_cache (*he);
2252 }
1690} 2253}
1691#endif
1692 2254
1693void inline_speed 2255/* fetch new monotonic and realtime times from the kernel */
2256/* also detect if there was a timejump, and act accordingly */
2257inline_speed void
1694time_update (EV_P_ ev_tstamp max_block) 2258time_update (EV_P_ ev_tstamp max_block)
1695{ 2259{
1696 int i;
1697
1698#if EV_USE_MONOTONIC 2260#if EV_USE_MONOTONIC
1699 if (expect_true (have_monotonic)) 2261 if (expect_true (have_monotonic))
1700 { 2262 {
2263 int i;
1701 ev_tstamp odiff = rtmn_diff; 2264 ev_tstamp odiff = rtmn_diff;
1702 2265
1703 mn_now = get_clock (); 2266 mn_now = get_clock ();
1704 2267
1705 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2268 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1731 ev_rt_now = ev_time (); 2294 ev_rt_now = ev_time ();
1732 mn_now = get_clock (); 2295 mn_now = get_clock ();
1733 now_floor = mn_now; 2296 now_floor = mn_now;
1734 } 2297 }
1735 2298
2299 /* no timer adjustment, as the monotonic clock doesn't jump */
2300 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1736# if EV_PERIODIC_ENABLE 2301# if EV_PERIODIC_ENABLE
1737 periodics_reschedule (EV_A); 2302 periodics_reschedule (EV_A);
1738# endif 2303# endif
1739 /* no timer adjustment, as the monotonic clock doesn't jump */
1740 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1741 } 2304 }
1742 else 2305 else
1743#endif 2306#endif
1744 { 2307 {
1745 ev_rt_now = ev_time (); 2308 ev_rt_now = ev_time ();
1746 2309
1747 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2310 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1748 { 2311 {
2312 /* adjust timers. this is easy, as the offset is the same for all of them */
2313 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1749#if EV_PERIODIC_ENABLE 2314#if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A); 2315 periodics_reschedule (EV_A);
1751#endif 2316#endif
1752 /* adjust timers. this is easy, as the offset is the same for all of them */
1753 for (i = 0; i < timercnt; ++i)
1754 {
1755 ANHE *he = timers + i + HEAP0;
1756 ANHE_w (*he)->at += ev_rt_now - mn_now;
1757 ANHE_at_set (*he);
1758 }
1759 } 2317 }
1760 2318
1761 mn_now = ev_rt_now; 2319 mn_now = ev_rt_now;
1762 } 2320 }
1763} 2321}
1764 2322
1765void 2323void
1766ev_ref (EV_P)
1767{
1768 ++activecnt;
1769}
1770
1771void
1772ev_unref (EV_P)
1773{
1774 --activecnt;
1775}
1776
1777static int loop_done;
1778
1779void
1780ev_loop (EV_P_ int flags) 2324ev_run (EV_P_ int flags)
1781{ 2325{
2326#if EV_FEATURE_API
2327 ++loop_depth;
2328#endif
2329
2330 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2331
1782 loop_done = EVUNLOOP_CANCEL; 2332 loop_done = EVBREAK_CANCEL;
1783 2333
1784 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2334 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1785 2335
1786 do 2336 do
1787 { 2337 {
2338#if EV_VERIFY >= 2
2339 ev_verify (EV_A);
2340#endif
2341
1788#ifndef _WIN32 2342#ifndef _WIN32
1789 if (expect_false (curpid)) /* penalise the forking check even more */ 2343 if (expect_false (curpid)) /* penalise the forking check even more */
1790 if (expect_false (getpid () != curpid)) 2344 if (expect_false (getpid () != curpid))
1791 { 2345 {
1792 curpid = getpid (); 2346 curpid = getpid ();
1798 /* we might have forked, so queue fork handlers */ 2352 /* we might have forked, so queue fork handlers */
1799 if (expect_false (postfork)) 2353 if (expect_false (postfork))
1800 if (forkcnt) 2354 if (forkcnt)
1801 { 2355 {
1802 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2356 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1803 call_pending (EV_A); 2357 EV_INVOKE_PENDING;
1804 } 2358 }
1805#endif 2359#endif
1806 2360
2361#if EV_PREPARE_ENABLE
1807 /* queue prepare watchers (and execute them) */ 2362 /* queue prepare watchers (and execute them) */
1808 if (expect_false (preparecnt)) 2363 if (expect_false (preparecnt))
1809 { 2364 {
1810 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2365 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1811 call_pending (EV_A); 2366 EV_INVOKE_PENDING;
1812 } 2367 }
2368#endif
1813 2369
1814 if (expect_false (!activecnt)) 2370 if (expect_false (loop_done))
1815 break; 2371 break;
1816 2372
1817 /* we might have forked, so reify kernel state if necessary */ 2373 /* we might have forked, so reify kernel state if necessary */
1818 if (expect_false (postfork)) 2374 if (expect_false (postfork))
1819 loop_fork (EV_A); 2375 loop_fork (EV_A);
1824 /* calculate blocking time */ 2380 /* calculate blocking time */
1825 { 2381 {
1826 ev_tstamp waittime = 0.; 2382 ev_tstamp waittime = 0.;
1827 ev_tstamp sleeptime = 0.; 2383 ev_tstamp sleeptime = 0.;
1828 2384
2385 /* remember old timestamp for io_blocktime calculation */
2386 ev_tstamp prev_mn_now = mn_now;
2387
2388 /* update time to cancel out callback processing overhead */
2389 time_update (EV_A_ 1e100);
2390
1829 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2391 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1830 { 2392 {
1831 /* update time to cancel out callback processing overhead */
1832 time_update (EV_A_ 1e100);
1833
1834 waittime = MAX_BLOCKTIME; 2393 waittime = MAX_BLOCKTIME;
1835 2394
1836 if (timercnt) 2395 if (timercnt)
1837 { 2396 {
1838 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2397 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1845 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2404 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1846 if (waittime > to) waittime = to; 2405 if (waittime > to) waittime = to;
1847 } 2406 }
1848#endif 2407#endif
1849 2408
2409 /* don't let timeouts decrease the waittime below timeout_blocktime */
1850 if (expect_false (waittime < timeout_blocktime)) 2410 if (expect_false (waittime < timeout_blocktime))
1851 waittime = timeout_blocktime; 2411 waittime = timeout_blocktime;
1852 2412
1853 sleeptime = waittime - backend_fudge; 2413 /* extra check because io_blocktime is commonly 0 */
1854
1855 if (expect_true (sleeptime > io_blocktime)) 2414 if (expect_false (io_blocktime))
1856 sleeptime = io_blocktime;
1857
1858 if (sleeptime)
1859 { 2415 {
2416 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2417
2418 if (sleeptime > waittime - backend_fudge)
2419 sleeptime = waittime - backend_fudge;
2420
2421 if (expect_true (sleeptime > 0.))
2422 {
1860 ev_sleep (sleeptime); 2423 ev_sleep (sleeptime);
1861 waittime -= sleeptime; 2424 waittime -= sleeptime;
2425 }
1862 } 2426 }
1863 } 2427 }
1864 2428
2429#if EV_FEATURE_API
1865 ++loop_count; 2430 ++loop_count;
2431#endif
2432 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1866 backend_poll (EV_A_ waittime); 2433 backend_poll (EV_A_ waittime);
2434 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1867 2435
1868 /* update ev_rt_now, do magic */ 2436 /* update ev_rt_now, do magic */
1869 time_update (EV_A_ waittime + sleeptime); 2437 time_update (EV_A_ waittime + sleeptime);
1870 } 2438 }
1871 2439
1878#if EV_IDLE_ENABLE 2446#if EV_IDLE_ENABLE
1879 /* queue idle watchers unless other events are pending */ 2447 /* queue idle watchers unless other events are pending */
1880 idle_reify (EV_A); 2448 idle_reify (EV_A);
1881#endif 2449#endif
1882 2450
2451#if EV_CHECK_ENABLE
1883 /* queue check watchers, to be executed first */ 2452 /* queue check watchers, to be executed first */
1884 if (expect_false (checkcnt)) 2453 if (expect_false (checkcnt))
1885 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2454 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2455#endif
1886 2456
1887 call_pending (EV_A); 2457 EV_INVOKE_PENDING;
1888 } 2458 }
1889 while (expect_true ( 2459 while (expect_true (
1890 activecnt 2460 activecnt
1891 && !loop_done 2461 && !loop_done
1892 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2462 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1893 )); 2463 ));
1894 2464
1895 if (loop_done == EVUNLOOP_ONE) 2465 if (loop_done == EVBREAK_ONE)
1896 loop_done = EVUNLOOP_CANCEL; 2466 loop_done = EVBREAK_CANCEL;
1897}
1898 2467
2468#if EV_FEATURE_API
2469 --loop_depth;
2470#endif
2471}
2472
1899void 2473void
1900ev_unloop (EV_P_ int how) 2474ev_break (EV_P_ int how)
1901{ 2475{
1902 loop_done = how; 2476 loop_done = how;
1903} 2477}
1904 2478
2479void
2480ev_ref (EV_P)
2481{
2482 ++activecnt;
2483}
2484
2485void
2486ev_unref (EV_P)
2487{
2488 --activecnt;
2489}
2490
2491void
2492ev_now_update (EV_P)
2493{
2494 time_update (EV_A_ 1e100);
2495}
2496
2497void
2498ev_suspend (EV_P)
2499{
2500 ev_now_update (EV_A);
2501}
2502
2503void
2504ev_resume (EV_P)
2505{
2506 ev_tstamp mn_prev = mn_now;
2507
2508 ev_now_update (EV_A);
2509 timers_reschedule (EV_A_ mn_now - mn_prev);
2510#if EV_PERIODIC_ENABLE
2511 /* TODO: really do this? */
2512 periodics_reschedule (EV_A);
2513#endif
2514}
2515
1905/*****************************************************************************/ 2516/*****************************************************************************/
2517/* singly-linked list management, used when the expected list length is short */
1906 2518
1907void inline_size 2519inline_size void
1908wlist_add (WL *head, WL elem) 2520wlist_add (WL *head, WL elem)
1909{ 2521{
1910 elem->next = *head; 2522 elem->next = *head;
1911 *head = elem; 2523 *head = elem;
1912} 2524}
1913 2525
1914void inline_size 2526inline_size void
1915wlist_del (WL *head, WL elem) 2527wlist_del (WL *head, WL elem)
1916{ 2528{
1917 while (*head) 2529 while (*head)
1918 { 2530 {
1919 if (*head == elem) 2531 if (expect_true (*head == elem))
1920 { 2532 {
1921 *head = elem->next; 2533 *head = elem->next;
1922 return; 2534 break;
1923 } 2535 }
1924 2536
1925 head = &(*head)->next; 2537 head = &(*head)->next;
1926 } 2538 }
1927} 2539}
1928 2540
1929void inline_speed 2541/* internal, faster, version of ev_clear_pending */
2542inline_speed void
1930clear_pending (EV_P_ W w) 2543clear_pending (EV_P_ W w)
1931{ 2544{
1932 if (w->pending) 2545 if (w->pending)
1933 { 2546 {
1934 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2547 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1935 w->pending = 0; 2548 w->pending = 0;
1936 } 2549 }
1937} 2550}
1938 2551
1939int 2552int
1943 int pending = w_->pending; 2556 int pending = w_->pending;
1944 2557
1945 if (expect_true (pending)) 2558 if (expect_true (pending))
1946 { 2559 {
1947 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2560 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2561 p->w = (W)&pending_w;
1948 w_->pending = 0; 2562 w_->pending = 0;
1949 p->w = 0;
1950 return p->events; 2563 return p->events;
1951 } 2564 }
1952 else 2565 else
1953 return 0; 2566 return 0;
1954} 2567}
1955 2568
1956void inline_size 2569inline_size void
1957pri_adjust (EV_P_ W w) 2570pri_adjust (EV_P_ W w)
1958{ 2571{
1959 int pri = w->priority; 2572 int pri = ev_priority (w);
1960 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2573 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1961 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2574 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1962 w->priority = pri; 2575 ev_set_priority (w, pri);
1963} 2576}
1964 2577
1965void inline_speed 2578inline_speed void
1966ev_start (EV_P_ W w, int active) 2579ev_start (EV_P_ W w, int active)
1967{ 2580{
1968 pri_adjust (EV_A_ w); 2581 pri_adjust (EV_A_ w);
1969 w->active = active; 2582 w->active = active;
1970 ev_ref (EV_A); 2583 ev_ref (EV_A);
1971} 2584}
1972 2585
1973void inline_size 2586inline_size void
1974ev_stop (EV_P_ W w) 2587ev_stop (EV_P_ W w)
1975{ 2588{
1976 ev_unref (EV_A); 2589 ev_unref (EV_A);
1977 w->active = 0; 2590 w->active = 0;
1978} 2591}
1985 int fd = w->fd; 2598 int fd = w->fd;
1986 2599
1987 if (expect_false (ev_is_active (w))) 2600 if (expect_false (ev_is_active (w)))
1988 return; 2601 return;
1989 2602
1990 assert (("ev_io_start called with negative fd", fd >= 0)); 2603 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2604 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2605
2606 EV_FREQUENT_CHECK;
1991 2607
1992 ev_start (EV_A_ (W)w, 1); 2608 ev_start (EV_A_ (W)w, 1);
1993 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2609 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1994 wlist_add (&anfds[fd].head, (WL)w); 2610 wlist_add (&anfds[fd].head, (WL)w);
1995 2611
1996 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2612 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1997 w->events &= ~EV_IOFDSET; 2613 w->events &= ~EV__IOFDSET;
2614
2615 EV_FREQUENT_CHECK;
1998} 2616}
1999 2617
2000void noinline 2618void noinline
2001ev_io_stop (EV_P_ ev_io *w) 2619ev_io_stop (EV_P_ ev_io *w)
2002{ 2620{
2003 clear_pending (EV_A_ (W)w); 2621 clear_pending (EV_A_ (W)w);
2004 if (expect_false (!ev_is_active (w))) 2622 if (expect_false (!ev_is_active (w)))
2005 return; 2623 return;
2006 2624
2007 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2625 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2626
2627 EV_FREQUENT_CHECK;
2008 2628
2009 wlist_del (&anfds[w->fd].head, (WL)w); 2629 wlist_del (&anfds[w->fd].head, (WL)w);
2010 ev_stop (EV_A_ (W)w); 2630 ev_stop (EV_A_ (W)w);
2011 2631
2012 fd_change (EV_A_ w->fd, 1); 2632 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2633
2634 EV_FREQUENT_CHECK;
2013} 2635}
2014 2636
2015void noinline 2637void noinline
2016ev_timer_start (EV_P_ ev_timer *w) 2638ev_timer_start (EV_P_ ev_timer *w)
2017{ 2639{
2018 if (expect_false (ev_is_active (w))) 2640 if (expect_false (ev_is_active (w)))
2019 return; 2641 return;
2020 2642
2021 ev_at (w) += mn_now; 2643 ev_at (w) += mn_now;
2022 2644
2023 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2645 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2024 2646
2647 EV_FREQUENT_CHECK;
2648
2649 ++timercnt;
2025 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2650 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2026 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2651 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2027 ANHE_w (timers [ev_active (w)]) = (WT)w; 2652 ANHE_w (timers [ev_active (w)]) = (WT)w;
2028 ANHE_at_set (timers [ev_active (w)]); 2653 ANHE_at_cache (timers [ev_active (w)]);
2029 upheap (timers, ev_active (w)); 2654 upheap (timers, ev_active (w));
2030 2655
2656 EV_FREQUENT_CHECK;
2657
2031 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2658 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2032} 2659}
2033 2660
2034void noinline 2661void noinline
2035ev_timer_stop (EV_P_ ev_timer *w) 2662ev_timer_stop (EV_P_ ev_timer *w)
2036{ 2663{
2037 clear_pending (EV_A_ (W)w); 2664 clear_pending (EV_A_ (W)w);
2038 if (expect_false (!ev_is_active (w))) 2665 if (expect_false (!ev_is_active (w)))
2039 return; 2666 return;
2040 2667
2668 EV_FREQUENT_CHECK;
2669
2041 { 2670 {
2042 int active = ev_active (w); 2671 int active = ev_active (w);
2043 2672
2044 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2673 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2045 2674
2675 --timercnt;
2676
2046 if (expect_true (active < timercnt + HEAP0 - 1)) 2677 if (expect_true (active < timercnt + HEAP0))
2047 { 2678 {
2048 timers [active] = timers [timercnt + HEAP0 - 1]; 2679 timers [active] = timers [timercnt + HEAP0];
2049 adjustheap (timers, timercnt, active); 2680 adjustheap (timers, timercnt, active);
2050 } 2681 }
2051
2052 --timercnt;
2053 } 2682 }
2054 2683
2055 ev_at (w) -= mn_now; 2684 ev_at (w) -= mn_now;
2056 2685
2057 ev_stop (EV_A_ (W)w); 2686 ev_stop (EV_A_ (W)w);
2687
2688 EV_FREQUENT_CHECK;
2058} 2689}
2059 2690
2060void noinline 2691void noinline
2061ev_timer_again (EV_P_ ev_timer *w) 2692ev_timer_again (EV_P_ ev_timer *w)
2062{ 2693{
2694 EV_FREQUENT_CHECK;
2695
2063 if (ev_is_active (w)) 2696 if (ev_is_active (w))
2064 { 2697 {
2065 if (w->repeat) 2698 if (w->repeat)
2066 { 2699 {
2067 ev_at (w) = mn_now + w->repeat; 2700 ev_at (w) = mn_now + w->repeat;
2068 ANHE_at_set (timers [ev_active (w)]); 2701 ANHE_at_cache (timers [ev_active (w)]);
2069 adjustheap (timers, timercnt, ev_active (w)); 2702 adjustheap (timers, timercnt, ev_active (w));
2070 } 2703 }
2071 else 2704 else
2072 ev_timer_stop (EV_A_ w); 2705 ev_timer_stop (EV_A_ w);
2073 } 2706 }
2074 else if (w->repeat) 2707 else if (w->repeat)
2075 { 2708 {
2076 ev_at (w) = w->repeat; 2709 ev_at (w) = w->repeat;
2077 ev_timer_start (EV_A_ w); 2710 ev_timer_start (EV_A_ w);
2078 } 2711 }
2712
2713 EV_FREQUENT_CHECK;
2714}
2715
2716ev_tstamp
2717ev_timer_remaining (EV_P_ ev_timer *w)
2718{
2719 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2079} 2720}
2080 2721
2081#if EV_PERIODIC_ENABLE 2722#if EV_PERIODIC_ENABLE
2082void noinline 2723void noinline
2083ev_periodic_start (EV_P_ ev_periodic *w) 2724ev_periodic_start (EV_P_ ev_periodic *w)
2087 2728
2088 if (w->reschedule_cb) 2729 if (w->reschedule_cb)
2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2730 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2090 else if (w->interval) 2731 else if (w->interval)
2091 { 2732 {
2092 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2733 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2093 /* this formula differs from the one in periodic_reify because we do not always round up */ 2734 /* this formula differs from the one in periodic_reify because we do not always round up */
2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2735 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 } 2736 }
2096 else 2737 else
2097 ev_at (w) = w->offset; 2738 ev_at (w) = w->offset;
2098 2739
2740 EV_FREQUENT_CHECK;
2741
2742 ++periodiccnt;
2099 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2743 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2100 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2744 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2101 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2745 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2102 ANHE_at_set (periodics [ev_active (w)]); 2746 ANHE_at_cache (periodics [ev_active (w)]);
2103 upheap (periodics, ev_active (w)); 2747 upheap (periodics, ev_active (w));
2104 2748
2749 EV_FREQUENT_CHECK;
2750
2105 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2751 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2106} 2752}
2107 2753
2108void noinline 2754void noinline
2109ev_periodic_stop (EV_P_ ev_periodic *w) 2755ev_periodic_stop (EV_P_ ev_periodic *w)
2110{ 2756{
2111 clear_pending (EV_A_ (W)w); 2757 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w))) 2758 if (expect_false (!ev_is_active (w)))
2113 return; 2759 return;
2114 2760
2761 EV_FREQUENT_CHECK;
2762
2115 { 2763 {
2116 int active = ev_active (w); 2764 int active = ev_active (w);
2117 2765
2118 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2766 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2119 2767
2768 --periodiccnt;
2769
2120 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2770 if (expect_true (active < periodiccnt + HEAP0))
2121 { 2771 {
2122 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2772 periodics [active] = periodics [periodiccnt + HEAP0];
2123 adjustheap (periodics, periodiccnt, active); 2773 adjustheap (periodics, periodiccnt, active);
2124 } 2774 }
2125
2126 --periodiccnt;
2127 } 2775 }
2128 2776
2129 ev_stop (EV_A_ (W)w); 2777 ev_stop (EV_A_ (W)w);
2778
2779 EV_FREQUENT_CHECK;
2130} 2780}
2131 2781
2132void noinline 2782void noinline
2133ev_periodic_again (EV_P_ ev_periodic *w) 2783ev_periodic_again (EV_P_ ev_periodic *w)
2134{ 2784{
2140 2790
2141#ifndef SA_RESTART 2791#ifndef SA_RESTART
2142# define SA_RESTART 0 2792# define SA_RESTART 0
2143#endif 2793#endif
2144 2794
2795#if EV_SIGNAL_ENABLE
2796
2145void noinline 2797void noinline
2146ev_signal_start (EV_P_ ev_signal *w) 2798ev_signal_start (EV_P_ ev_signal *w)
2147{ 2799{
2148#if EV_MULTIPLICITY
2149 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2150#endif
2151 if (expect_false (ev_is_active (w))) 2800 if (expect_false (ev_is_active (w)))
2152 return; 2801 return;
2153 2802
2154 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2803 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2155 2804
2156 evpipe_init (EV_A); 2805#if EV_MULTIPLICITY
2806 assert (("libev: a signal must not be attached to two different loops",
2807 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2157 2808
2809 signals [w->signum - 1].loop = EV_A;
2810#endif
2811
2812 EV_FREQUENT_CHECK;
2813
2814#if EV_USE_SIGNALFD
2815 if (sigfd == -2)
2158 { 2816 {
2159#ifndef _WIN32 2817 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2160 sigset_t full, prev; 2818 if (sigfd < 0 && errno == EINVAL)
2161 sigfillset (&full); 2819 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2162 sigprocmask (SIG_SETMASK, &full, &prev);
2163#endif
2164 2820
2165 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2821 if (sigfd >= 0)
2822 {
2823 fd_intern (sigfd); /* doing it twice will not hurt */
2166 2824
2167#ifndef _WIN32 2825 sigemptyset (&sigfd_set);
2168 sigprocmask (SIG_SETMASK, &prev, 0); 2826
2169#endif 2827 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2828 ev_set_priority (&sigfd_w, EV_MAXPRI);
2829 ev_io_start (EV_A_ &sigfd_w);
2830 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2831 }
2170 } 2832 }
2833
2834 if (sigfd >= 0)
2835 {
2836 /* TODO: check .head */
2837 sigaddset (&sigfd_set, w->signum);
2838 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2839
2840 signalfd (sigfd, &sigfd_set, 0);
2841 }
2842#endif
2171 2843
2172 ev_start (EV_A_ (W)w, 1); 2844 ev_start (EV_A_ (W)w, 1);
2173 wlist_add (&signals [w->signum - 1].head, (WL)w); 2845 wlist_add (&signals [w->signum - 1].head, (WL)w);
2174 2846
2175 if (!((WL)w)->next) 2847 if (!((WL)w)->next)
2848# if EV_USE_SIGNALFD
2849 if (sigfd < 0) /*TODO*/
2850# endif
2176 { 2851 {
2177#if _WIN32 2852# ifdef _WIN32
2853 evpipe_init (EV_A);
2854
2178 signal (w->signum, ev_sighandler); 2855 signal (w->signum, ev_sighandler);
2179#else 2856# else
2180 struct sigaction sa; 2857 struct sigaction sa;
2858
2859 evpipe_init (EV_A);
2860
2181 sa.sa_handler = ev_sighandler; 2861 sa.sa_handler = ev_sighandler;
2182 sigfillset (&sa.sa_mask); 2862 sigfillset (&sa.sa_mask);
2183 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2863 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2184 sigaction (w->signum, &sa, 0); 2864 sigaction (w->signum, &sa, 0);
2865
2866 sigemptyset (&sa.sa_mask);
2867 sigaddset (&sa.sa_mask, w->signum);
2868 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2185#endif 2869#endif
2186 } 2870 }
2871
2872 EV_FREQUENT_CHECK;
2187} 2873}
2188 2874
2189void noinline 2875void noinline
2190ev_signal_stop (EV_P_ ev_signal *w) 2876ev_signal_stop (EV_P_ ev_signal *w)
2191{ 2877{
2192 clear_pending (EV_A_ (W)w); 2878 clear_pending (EV_A_ (W)w);
2193 if (expect_false (!ev_is_active (w))) 2879 if (expect_false (!ev_is_active (w)))
2194 return; 2880 return;
2195 2881
2882 EV_FREQUENT_CHECK;
2883
2196 wlist_del (&signals [w->signum - 1].head, (WL)w); 2884 wlist_del (&signals [w->signum - 1].head, (WL)w);
2197 ev_stop (EV_A_ (W)w); 2885 ev_stop (EV_A_ (W)w);
2198 2886
2199 if (!signals [w->signum - 1].head) 2887 if (!signals [w->signum - 1].head)
2888 {
2889#if EV_MULTIPLICITY
2890 signals [w->signum - 1].loop = 0; /* unattach from signal */
2891#endif
2892#if EV_USE_SIGNALFD
2893 if (sigfd >= 0)
2894 {
2895 sigset_t ss;
2896
2897 sigemptyset (&ss);
2898 sigaddset (&ss, w->signum);
2899 sigdelset (&sigfd_set, w->signum);
2900
2901 signalfd (sigfd, &sigfd_set, 0);
2902 sigprocmask (SIG_UNBLOCK, &ss, 0);
2903 }
2904 else
2905#endif
2200 signal (w->signum, SIG_DFL); 2906 signal (w->signum, SIG_DFL);
2907 }
2908
2909 EV_FREQUENT_CHECK;
2201} 2910}
2911
2912#endif
2913
2914#if EV_CHILD_ENABLE
2202 2915
2203void 2916void
2204ev_child_start (EV_P_ ev_child *w) 2917ev_child_start (EV_P_ ev_child *w)
2205{ 2918{
2206#if EV_MULTIPLICITY 2919#if EV_MULTIPLICITY
2207 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2920 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2208#endif 2921#endif
2209 if (expect_false (ev_is_active (w))) 2922 if (expect_false (ev_is_active (w)))
2210 return; 2923 return;
2211 2924
2925 EV_FREQUENT_CHECK;
2926
2212 ev_start (EV_A_ (W)w, 1); 2927 ev_start (EV_A_ (W)w, 1);
2213 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2928 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2929
2930 EV_FREQUENT_CHECK;
2214} 2931}
2215 2932
2216void 2933void
2217ev_child_stop (EV_P_ ev_child *w) 2934ev_child_stop (EV_P_ ev_child *w)
2218{ 2935{
2219 clear_pending (EV_A_ (W)w); 2936 clear_pending (EV_A_ (W)w);
2220 if (expect_false (!ev_is_active (w))) 2937 if (expect_false (!ev_is_active (w)))
2221 return; 2938 return;
2222 2939
2940 EV_FREQUENT_CHECK;
2941
2223 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2942 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2224 ev_stop (EV_A_ (W)w); 2943 ev_stop (EV_A_ (W)w);
2944
2945 EV_FREQUENT_CHECK;
2225} 2946}
2947
2948#endif
2226 2949
2227#if EV_STAT_ENABLE 2950#if EV_STAT_ENABLE
2228 2951
2229# ifdef _WIN32 2952# ifdef _WIN32
2230# undef lstat 2953# undef lstat
2231# define lstat(a,b) _stati64 (a,b) 2954# define lstat(a,b) _stati64 (a,b)
2232# endif 2955# endif
2233 2956
2234#define DEF_STAT_INTERVAL 5.0074891 2957#define DEF_STAT_INTERVAL 5.0074891
2958#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2235#define MIN_STAT_INTERVAL 0.1074891 2959#define MIN_STAT_INTERVAL 0.1074891
2236 2960
2237static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2961static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2238 2962
2239#if EV_USE_INOTIFY 2963#if EV_USE_INOTIFY
2240# define EV_INOTIFY_BUFSIZE 8192 2964
2965/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2966# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2241 2967
2242static void noinline 2968static void noinline
2243infy_add (EV_P_ ev_stat *w) 2969infy_add (EV_P_ ev_stat *w)
2244{ 2970{
2245 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2971 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2246 2972
2247 if (w->wd < 0) 2973 if (w->wd >= 0)
2974 {
2975 struct statfs sfs;
2976
2977 /* now local changes will be tracked by inotify, but remote changes won't */
2978 /* unless the filesystem is known to be local, we therefore still poll */
2979 /* also do poll on <2.6.25, but with normal frequency */
2980
2981 if (!fs_2625)
2982 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2983 else if (!statfs (w->path, &sfs)
2984 && (sfs.f_type == 0x1373 /* devfs */
2985 || sfs.f_type == 0xEF53 /* ext2/3 */
2986 || sfs.f_type == 0x3153464a /* jfs */
2987 || sfs.f_type == 0x52654973 /* reiser3 */
2988 || sfs.f_type == 0x01021994 /* tempfs */
2989 || sfs.f_type == 0x58465342 /* xfs */))
2990 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2991 else
2992 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2248 { 2993 }
2249 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2994 else
2995 {
2996 /* can't use inotify, continue to stat */
2997 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2250 2998
2251 /* monitor some parent directory for speedup hints */ 2999 /* if path is not there, monitor some parent directory for speedup hints */
2252 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3000 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2253 /* but an efficiency issue only */ 3001 /* but an efficiency issue only */
2254 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3002 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2255 { 3003 {
2256 char path [4096]; 3004 char path [4096];
2257 strcpy (path, w->path); 3005 strcpy (path, w->path);
2261 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3009 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2262 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3010 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2263 3011
2264 char *pend = strrchr (path, '/'); 3012 char *pend = strrchr (path, '/');
2265 3013
2266 if (!pend) 3014 if (!pend || pend == path)
2267 break; /* whoops, no '/', complain to your admin */ 3015 break;
2268 3016
2269 *pend = 0; 3017 *pend = 0;
2270 w->wd = inotify_add_watch (fs_fd, path, mask); 3018 w->wd = inotify_add_watch (fs_fd, path, mask);
2271 } 3019 }
2272 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3020 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2273 } 3021 }
2274 } 3022 }
2275 else
2276 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2277 3023
2278 if (w->wd >= 0) 3024 if (w->wd >= 0)
2279 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3025 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3026
3027 /* now re-arm timer, if required */
3028 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3029 ev_timer_again (EV_A_ &w->timer);
3030 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2280} 3031}
2281 3032
2282static void noinline 3033static void noinline
2283infy_del (EV_P_ ev_stat *w) 3034infy_del (EV_P_ ev_stat *w)
2284{ 3035{
2287 3038
2288 if (wd < 0) 3039 if (wd < 0)
2289 return; 3040 return;
2290 3041
2291 w->wd = -2; 3042 w->wd = -2;
2292 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3043 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2293 wlist_del (&fs_hash [slot].head, (WL)w); 3044 wlist_del (&fs_hash [slot].head, (WL)w);
2294 3045
2295 /* remove this watcher, if others are watching it, they will rearm */ 3046 /* remove this watcher, if others are watching it, they will rearm */
2296 inotify_rm_watch (fs_fd, wd); 3047 inotify_rm_watch (fs_fd, wd);
2297} 3048}
2298 3049
2299static void noinline 3050static void noinline
2300infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3051infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2301{ 3052{
2302 if (slot < 0) 3053 if (slot < 0)
2303 /* overflow, need to check for all hahs slots */ 3054 /* overflow, need to check for all hash slots */
2304 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3055 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2305 infy_wd (EV_A_ slot, wd, ev); 3056 infy_wd (EV_A_ slot, wd, ev);
2306 else 3057 else
2307 { 3058 {
2308 WL w_; 3059 WL w_;
2309 3060
2310 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3061 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2311 { 3062 {
2312 ev_stat *w = (ev_stat *)w_; 3063 ev_stat *w = (ev_stat *)w_;
2313 w_ = w_->next; /* lets us remove this watcher and all before it */ 3064 w_ = w_->next; /* lets us remove this watcher and all before it */
2314 3065
2315 if (w->wd == wd || wd == -1) 3066 if (w->wd == wd || wd == -1)
2316 { 3067 {
2317 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3068 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2318 { 3069 {
3070 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2319 w->wd = -1; 3071 w->wd = -1;
2320 infy_add (EV_A_ w); /* re-add, no matter what */ 3072 infy_add (EV_A_ w); /* re-add, no matter what */
2321 } 3073 }
2322 3074
2323 stat_timer_cb (EV_A_ &w->timer, 0); 3075 stat_timer_cb (EV_A_ &w->timer, 0);
2328 3080
2329static void 3081static void
2330infy_cb (EV_P_ ev_io *w, int revents) 3082infy_cb (EV_P_ ev_io *w, int revents)
2331{ 3083{
2332 char buf [EV_INOTIFY_BUFSIZE]; 3084 char buf [EV_INOTIFY_BUFSIZE];
2333 struct inotify_event *ev = (struct inotify_event *)buf;
2334 int ofs; 3085 int ofs;
2335 int len = read (fs_fd, buf, sizeof (buf)); 3086 int len = read (fs_fd, buf, sizeof (buf));
2336 3087
2337 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3088 for (ofs = 0; ofs < len; )
3089 {
3090 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2338 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3091 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3092 ofs += sizeof (struct inotify_event) + ev->len;
3093 }
2339} 3094}
2340 3095
2341void inline_size 3096inline_size void
3097ev_check_2625 (EV_P)
3098{
3099 /* kernels < 2.6.25 are borked
3100 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3101 */
3102 if (ev_linux_version () < 0x020619)
3103 return;
3104
3105 fs_2625 = 1;
3106}
3107
3108inline_size int
3109infy_newfd (void)
3110{
3111#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3112 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3113 if (fd >= 0)
3114 return fd;
3115#endif
3116 return inotify_init ();
3117}
3118
3119inline_size void
2342infy_init (EV_P) 3120infy_init (EV_P)
2343{ 3121{
2344 if (fs_fd != -2) 3122 if (fs_fd != -2)
2345 return; 3123 return;
2346 3124
3125 fs_fd = -1;
3126
3127 ev_check_2625 (EV_A);
3128
2347 fs_fd = inotify_init (); 3129 fs_fd = infy_newfd ();
2348 3130
2349 if (fs_fd >= 0) 3131 if (fs_fd >= 0)
2350 { 3132 {
3133 fd_intern (fs_fd);
2351 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3134 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2352 ev_set_priority (&fs_w, EV_MAXPRI); 3135 ev_set_priority (&fs_w, EV_MAXPRI);
2353 ev_io_start (EV_A_ &fs_w); 3136 ev_io_start (EV_A_ &fs_w);
3137 ev_unref (EV_A);
2354 } 3138 }
2355} 3139}
2356 3140
2357void inline_size 3141inline_size void
2358infy_fork (EV_P) 3142infy_fork (EV_P)
2359{ 3143{
2360 int slot; 3144 int slot;
2361 3145
2362 if (fs_fd < 0) 3146 if (fs_fd < 0)
2363 return; 3147 return;
2364 3148
3149 ev_ref (EV_A);
3150 ev_io_stop (EV_A_ &fs_w);
2365 close (fs_fd); 3151 close (fs_fd);
2366 fs_fd = inotify_init (); 3152 fs_fd = infy_newfd ();
2367 3153
3154 if (fs_fd >= 0)
3155 {
3156 fd_intern (fs_fd);
3157 ev_io_set (&fs_w, fs_fd, EV_READ);
3158 ev_io_start (EV_A_ &fs_w);
3159 ev_unref (EV_A);
3160 }
3161
2368 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3162 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2369 { 3163 {
2370 WL w_ = fs_hash [slot].head; 3164 WL w_ = fs_hash [slot].head;
2371 fs_hash [slot].head = 0; 3165 fs_hash [slot].head = 0;
2372 3166
2373 while (w_) 3167 while (w_)
2378 w->wd = -1; 3172 w->wd = -1;
2379 3173
2380 if (fs_fd >= 0) 3174 if (fs_fd >= 0)
2381 infy_add (EV_A_ w); /* re-add, no matter what */ 3175 infy_add (EV_A_ w); /* re-add, no matter what */
2382 else 3176 else
3177 {
3178 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3179 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2383 ev_timer_start (EV_A_ &w->timer); 3180 ev_timer_again (EV_A_ &w->timer);
3181 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3182 }
2384 } 3183 }
2385
2386 } 3184 }
2387} 3185}
2388 3186
3187#endif
3188
3189#ifdef _WIN32
3190# define EV_LSTAT(p,b) _stati64 (p, b)
3191#else
3192# define EV_LSTAT(p,b) lstat (p, b)
2389#endif 3193#endif
2390 3194
2391void 3195void
2392ev_stat_stat (EV_P_ ev_stat *w) 3196ev_stat_stat (EV_P_ ev_stat *w)
2393{ 3197{
2400static void noinline 3204static void noinline
2401stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3205stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2402{ 3206{
2403 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3207 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2404 3208
2405 /* we copy this here each the time so that */ 3209 ev_statdata prev = w->attr;
2406 /* prev has the old value when the callback gets invoked */
2407 w->prev = w->attr;
2408 ev_stat_stat (EV_A_ w); 3210 ev_stat_stat (EV_A_ w);
2409 3211
2410 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3212 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2411 if ( 3213 if (
2412 w->prev.st_dev != w->attr.st_dev 3214 prev.st_dev != w->attr.st_dev
2413 || w->prev.st_ino != w->attr.st_ino 3215 || prev.st_ino != w->attr.st_ino
2414 || w->prev.st_mode != w->attr.st_mode 3216 || prev.st_mode != w->attr.st_mode
2415 || w->prev.st_nlink != w->attr.st_nlink 3217 || prev.st_nlink != w->attr.st_nlink
2416 || w->prev.st_uid != w->attr.st_uid 3218 || prev.st_uid != w->attr.st_uid
2417 || w->prev.st_gid != w->attr.st_gid 3219 || prev.st_gid != w->attr.st_gid
2418 || w->prev.st_rdev != w->attr.st_rdev 3220 || prev.st_rdev != w->attr.st_rdev
2419 || w->prev.st_size != w->attr.st_size 3221 || prev.st_size != w->attr.st_size
2420 || w->prev.st_atime != w->attr.st_atime 3222 || prev.st_atime != w->attr.st_atime
2421 || w->prev.st_mtime != w->attr.st_mtime 3223 || prev.st_mtime != w->attr.st_mtime
2422 || w->prev.st_ctime != w->attr.st_ctime 3224 || prev.st_ctime != w->attr.st_ctime
2423 ) { 3225 ) {
3226 /* we only update w->prev on actual differences */
3227 /* in case we test more often than invoke the callback, */
3228 /* to ensure that prev is always different to attr */
3229 w->prev = prev;
3230
2424 #if EV_USE_INOTIFY 3231 #if EV_USE_INOTIFY
3232 if (fs_fd >= 0)
3233 {
2425 infy_del (EV_A_ w); 3234 infy_del (EV_A_ w);
2426 infy_add (EV_A_ w); 3235 infy_add (EV_A_ w);
2427 ev_stat_stat (EV_A_ w); /* avoid race... */ 3236 ev_stat_stat (EV_A_ w); /* avoid race... */
3237 }
2428 #endif 3238 #endif
2429 3239
2430 ev_feed_event (EV_A_ w, EV_STAT); 3240 ev_feed_event (EV_A_ w, EV_STAT);
2431 } 3241 }
2432} 3242}
2435ev_stat_start (EV_P_ ev_stat *w) 3245ev_stat_start (EV_P_ ev_stat *w)
2436{ 3246{
2437 if (expect_false (ev_is_active (w))) 3247 if (expect_false (ev_is_active (w)))
2438 return; 3248 return;
2439 3249
2440 /* since we use memcmp, we need to clear any padding data etc. */
2441 memset (&w->prev, 0, sizeof (ev_statdata));
2442 memset (&w->attr, 0, sizeof (ev_statdata));
2443
2444 ev_stat_stat (EV_A_ w); 3250 ev_stat_stat (EV_A_ w);
2445 3251
3252 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2446 if (w->interval < MIN_STAT_INTERVAL) 3253 w->interval = MIN_STAT_INTERVAL;
2447 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2448 3254
2449 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3255 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2450 ev_set_priority (&w->timer, ev_priority (w)); 3256 ev_set_priority (&w->timer, ev_priority (w));
2451 3257
2452#if EV_USE_INOTIFY 3258#if EV_USE_INOTIFY
2453 infy_init (EV_A); 3259 infy_init (EV_A);
2454 3260
2455 if (fs_fd >= 0) 3261 if (fs_fd >= 0)
2456 infy_add (EV_A_ w); 3262 infy_add (EV_A_ w);
2457 else 3263 else
2458#endif 3264#endif
3265 {
2459 ev_timer_start (EV_A_ &w->timer); 3266 ev_timer_again (EV_A_ &w->timer);
3267 ev_unref (EV_A);
3268 }
2460 3269
2461 ev_start (EV_A_ (W)w, 1); 3270 ev_start (EV_A_ (W)w, 1);
3271
3272 EV_FREQUENT_CHECK;
2462} 3273}
2463 3274
2464void 3275void
2465ev_stat_stop (EV_P_ ev_stat *w) 3276ev_stat_stop (EV_P_ ev_stat *w)
2466{ 3277{
2467 clear_pending (EV_A_ (W)w); 3278 clear_pending (EV_A_ (W)w);
2468 if (expect_false (!ev_is_active (w))) 3279 if (expect_false (!ev_is_active (w)))
2469 return; 3280 return;
2470 3281
3282 EV_FREQUENT_CHECK;
3283
2471#if EV_USE_INOTIFY 3284#if EV_USE_INOTIFY
2472 infy_del (EV_A_ w); 3285 infy_del (EV_A_ w);
2473#endif 3286#endif
3287
3288 if (ev_is_active (&w->timer))
3289 {
3290 ev_ref (EV_A);
2474 ev_timer_stop (EV_A_ &w->timer); 3291 ev_timer_stop (EV_A_ &w->timer);
3292 }
2475 3293
2476 ev_stop (EV_A_ (W)w); 3294 ev_stop (EV_A_ (W)w);
3295
3296 EV_FREQUENT_CHECK;
2477} 3297}
2478#endif 3298#endif
2479 3299
2480#if EV_IDLE_ENABLE 3300#if EV_IDLE_ENABLE
2481void 3301void
2483{ 3303{
2484 if (expect_false (ev_is_active (w))) 3304 if (expect_false (ev_is_active (w)))
2485 return; 3305 return;
2486 3306
2487 pri_adjust (EV_A_ (W)w); 3307 pri_adjust (EV_A_ (W)w);
3308
3309 EV_FREQUENT_CHECK;
2488 3310
2489 { 3311 {
2490 int active = ++idlecnt [ABSPRI (w)]; 3312 int active = ++idlecnt [ABSPRI (w)];
2491 3313
2492 ++idleall; 3314 ++idleall;
2493 ev_start (EV_A_ (W)w, active); 3315 ev_start (EV_A_ (W)w, active);
2494 3316
2495 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3317 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2496 idles [ABSPRI (w)][active - 1] = w; 3318 idles [ABSPRI (w)][active - 1] = w;
2497 } 3319 }
3320
3321 EV_FREQUENT_CHECK;
2498} 3322}
2499 3323
2500void 3324void
2501ev_idle_stop (EV_P_ ev_idle *w) 3325ev_idle_stop (EV_P_ ev_idle *w)
2502{ 3326{
2503 clear_pending (EV_A_ (W)w); 3327 clear_pending (EV_A_ (W)w);
2504 if (expect_false (!ev_is_active (w))) 3328 if (expect_false (!ev_is_active (w)))
2505 return; 3329 return;
2506 3330
3331 EV_FREQUENT_CHECK;
3332
2507 { 3333 {
2508 int active = ev_active (w); 3334 int active = ev_active (w);
2509 3335
2510 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3336 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2511 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3337 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2512 3338
2513 ev_stop (EV_A_ (W)w); 3339 ev_stop (EV_A_ (W)w);
2514 --idleall; 3340 --idleall;
2515 } 3341 }
2516}
2517#endif
2518 3342
3343 EV_FREQUENT_CHECK;
3344}
3345#endif
3346
3347#if EV_PREPARE_ENABLE
2519void 3348void
2520ev_prepare_start (EV_P_ ev_prepare *w) 3349ev_prepare_start (EV_P_ ev_prepare *w)
2521{ 3350{
2522 if (expect_false (ev_is_active (w))) 3351 if (expect_false (ev_is_active (w)))
2523 return; 3352 return;
3353
3354 EV_FREQUENT_CHECK;
2524 3355
2525 ev_start (EV_A_ (W)w, ++preparecnt); 3356 ev_start (EV_A_ (W)w, ++preparecnt);
2526 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3357 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2527 prepares [preparecnt - 1] = w; 3358 prepares [preparecnt - 1] = w;
3359
3360 EV_FREQUENT_CHECK;
2528} 3361}
2529 3362
2530void 3363void
2531ev_prepare_stop (EV_P_ ev_prepare *w) 3364ev_prepare_stop (EV_P_ ev_prepare *w)
2532{ 3365{
2533 clear_pending (EV_A_ (W)w); 3366 clear_pending (EV_A_ (W)w);
2534 if (expect_false (!ev_is_active (w))) 3367 if (expect_false (!ev_is_active (w)))
2535 return; 3368 return;
2536 3369
3370 EV_FREQUENT_CHECK;
3371
2537 { 3372 {
2538 int active = ev_active (w); 3373 int active = ev_active (w);
2539 3374
2540 prepares [active - 1] = prepares [--preparecnt]; 3375 prepares [active - 1] = prepares [--preparecnt];
2541 ev_active (prepares [active - 1]) = active; 3376 ev_active (prepares [active - 1]) = active;
2542 } 3377 }
2543 3378
2544 ev_stop (EV_A_ (W)w); 3379 ev_stop (EV_A_ (W)w);
2545}
2546 3380
3381 EV_FREQUENT_CHECK;
3382}
3383#endif
3384
3385#if EV_CHECK_ENABLE
2547void 3386void
2548ev_check_start (EV_P_ ev_check *w) 3387ev_check_start (EV_P_ ev_check *w)
2549{ 3388{
2550 if (expect_false (ev_is_active (w))) 3389 if (expect_false (ev_is_active (w)))
2551 return; 3390 return;
3391
3392 EV_FREQUENT_CHECK;
2552 3393
2553 ev_start (EV_A_ (W)w, ++checkcnt); 3394 ev_start (EV_A_ (W)w, ++checkcnt);
2554 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3395 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2555 checks [checkcnt - 1] = w; 3396 checks [checkcnt - 1] = w;
3397
3398 EV_FREQUENT_CHECK;
2556} 3399}
2557 3400
2558void 3401void
2559ev_check_stop (EV_P_ ev_check *w) 3402ev_check_stop (EV_P_ ev_check *w)
2560{ 3403{
2561 clear_pending (EV_A_ (W)w); 3404 clear_pending (EV_A_ (W)w);
2562 if (expect_false (!ev_is_active (w))) 3405 if (expect_false (!ev_is_active (w)))
2563 return; 3406 return;
2564 3407
3408 EV_FREQUENT_CHECK;
3409
2565 { 3410 {
2566 int active = ev_active (w); 3411 int active = ev_active (w);
2567 3412
2568 checks [active - 1] = checks [--checkcnt]; 3413 checks [active - 1] = checks [--checkcnt];
2569 ev_active (checks [active - 1]) = active; 3414 ev_active (checks [active - 1]) = active;
2570 } 3415 }
2571 3416
2572 ev_stop (EV_A_ (W)w); 3417 ev_stop (EV_A_ (W)w);
3418
3419 EV_FREQUENT_CHECK;
2573} 3420}
3421#endif
2574 3422
2575#if EV_EMBED_ENABLE 3423#if EV_EMBED_ENABLE
2576void noinline 3424void noinline
2577ev_embed_sweep (EV_P_ ev_embed *w) 3425ev_embed_sweep (EV_P_ ev_embed *w)
2578{ 3426{
2579 ev_loop (w->other, EVLOOP_NONBLOCK); 3427 ev_run (w->other, EVRUN_NOWAIT);
2580} 3428}
2581 3429
2582static void 3430static void
2583embed_io_cb (EV_P_ ev_io *io, int revents) 3431embed_io_cb (EV_P_ ev_io *io, int revents)
2584{ 3432{
2585 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3433 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2586 3434
2587 if (ev_cb (w)) 3435 if (ev_cb (w))
2588 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3436 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2589 else 3437 else
2590 ev_loop (w->other, EVLOOP_NONBLOCK); 3438 ev_run (w->other, EVRUN_NOWAIT);
2591} 3439}
2592 3440
2593static void 3441static void
2594embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3442embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2595{ 3443{
2596 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3444 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2597 3445
2598 { 3446 {
2599 struct ev_loop *loop = w->other; 3447 EV_P = w->other;
2600 3448
2601 while (fdchangecnt) 3449 while (fdchangecnt)
2602 { 3450 {
2603 fd_reify (EV_A); 3451 fd_reify (EV_A);
2604 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3452 ev_run (EV_A_ EVRUN_NOWAIT);
2605 } 3453 }
2606 } 3454 }
3455}
3456
3457static void
3458embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3459{
3460 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3461
3462 ev_embed_stop (EV_A_ w);
3463
3464 {
3465 EV_P = w->other;
3466
3467 ev_loop_fork (EV_A);
3468 ev_run (EV_A_ EVRUN_NOWAIT);
3469 }
3470
3471 ev_embed_start (EV_A_ w);
2607} 3472}
2608 3473
2609#if 0 3474#if 0
2610static void 3475static void
2611embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3476embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2619{ 3484{
2620 if (expect_false (ev_is_active (w))) 3485 if (expect_false (ev_is_active (w)))
2621 return; 3486 return;
2622 3487
2623 { 3488 {
2624 struct ev_loop *loop = w->other; 3489 EV_P = w->other;
2625 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3490 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2626 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3491 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2627 } 3492 }
3493
3494 EV_FREQUENT_CHECK;
2628 3495
2629 ev_set_priority (&w->io, ev_priority (w)); 3496 ev_set_priority (&w->io, ev_priority (w));
2630 ev_io_start (EV_A_ &w->io); 3497 ev_io_start (EV_A_ &w->io);
2631 3498
2632 ev_prepare_init (&w->prepare, embed_prepare_cb); 3499 ev_prepare_init (&w->prepare, embed_prepare_cb);
2633 ev_set_priority (&w->prepare, EV_MINPRI); 3500 ev_set_priority (&w->prepare, EV_MINPRI);
2634 ev_prepare_start (EV_A_ &w->prepare); 3501 ev_prepare_start (EV_A_ &w->prepare);
2635 3502
3503 ev_fork_init (&w->fork, embed_fork_cb);
3504 ev_fork_start (EV_A_ &w->fork);
3505
2636 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3506 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2637 3507
2638 ev_start (EV_A_ (W)w, 1); 3508 ev_start (EV_A_ (W)w, 1);
3509
3510 EV_FREQUENT_CHECK;
2639} 3511}
2640 3512
2641void 3513void
2642ev_embed_stop (EV_P_ ev_embed *w) 3514ev_embed_stop (EV_P_ ev_embed *w)
2643{ 3515{
2644 clear_pending (EV_A_ (W)w); 3516 clear_pending (EV_A_ (W)w);
2645 if (expect_false (!ev_is_active (w))) 3517 if (expect_false (!ev_is_active (w)))
2646 return; 3518 return;
2647 3519
3520 EV_FREQUENT_CHECK;
3521
2648 ev_io_stop (EV_A_ &w->io); 3522 ev_io_stop (EV_A_ &w->io);
2649 ev_prepare_stop (EV_A_ &w->prepare); 3523 ev_prepare_stop (EV_A_ &w->prepare);
3524 ev_fork_stop (EV_A_ &w->fork);
2650 3525
2651 ev_stop (EV_A_ (W)w); 3526 ev_stop (EV_A_ (W)w);
3527
3528 EV_FREQUENT_CHECK;
2652} 3529}
2653#endif 3530#endif
2654 3531
2655#if EV_FORK_ENABLE 3532#if EV_FORK_ENABLE
2656void 3533void
2657ev_fork_start (EV_P_ ev_fork *w) 3534ev_fork_start (EV_P_ ev_fork *w)
2658{ 3535{
2659 if (expect_false (ev_is_active (w))) 3536 if (expect_false (ev_is_active (w)))
2660 return; 3537 return;
3538
3539 EV_FREQUENT_CHECK;
2661 3540
2662 ev_start (EV_A_ (W)w, ++forkcnt); 3541 ev_start (EV_A_ (W)w, ++forkcnt);
2663 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3542 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2664 forks [forkcnt - 1] = w; 3543 forks [forkcnt - 1] = w;
3544
3545 EV_FREQUENT_CHECK;
2665} 3546}
2666 3547
2667void 3548void
2668ev_fork_stop (EV_P_ ev_fork *w) 3549ev_fork_stop (EV_P_ ev_fork *w)
2669{ 3550{
2670 clear_pending (EV_A_ (W)w); 3551 clear_pending (EV_A_ (W)w);
2671 if (expect_false (!ev_is_active (w))) 3552 if (expect_false (!ev_is_active (w)))
2672 return; 3553 return;
2673 3554
3555 EV_FREQUENT_CHECK;
3556
2674 { 3557 {
2675 int active = ev_active (w); 3558 int active = ev_active (w);
2676 3559
2677 forks [active - 1] = forks [--forkcnt]; 3560 forks [active - 1] = forks [--forkcnt];
2678 ev_active (forks [active - 1]) = active; 3561 ev_active (forks [active - 1]) = active;
2679 } 3562 }
2680 3563
2681 ev_stop (EV_A_ (W)w); 3564 ev_stop (EV_A_ (W)w);
3565
3566 EV_FREQUENT_CHECK;
2682} 3567}
2683#endif 3568#endif
2684 3569
2685#if EV_ASYNC_ENABLE 3570#if EV_ASYNC_ENABLE
2686void 3571void
2687ev_async_start (EV_P_ ev_async *w) 3572ev_async_start (EV_P_ ev_async *w)
2688{ 3573{
2689 if (expect_false (ev_is_active (w))) 3574 if (expect_false (ev_is_active (w)))
2690 return; 3575 return;
2691 3576
3577 w->sent = 0;
3578
2692 evpipe_init (EV_A); 3579 evpipe_init (EV_A);
3580
3581 EV_FREQUENT_CHECK;
2693 3582
2694 ev_start (EV_A_ (W)w, ++asynccnt); 3583 ev_start (EV_A_ (W)w, ++asynccnt);
2695 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3584 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2696 asyncs [asynccnt - 1] = w; 3585 asyncs [asynccnt - 1] = w;
3586
3587 EV_FREQUENT_CHECK;
2697} 3588}
2698 3589
2699void 3590void
2700ev_async_stop (EV_P_ ev_async *w) 3591ev_async_stop (EV_P_ ev_async *w)
2701{ 3592{
2702 clear_pending (EV_A_ (W)w); 3593 clear_pending (EV_A_ (W)w);
2703 if (expect_false (!ev_is_active (w))) 3594 if (expect_false (!ev_is_active (w)))
2704 return; 3595 return;
2705 3596
3597 EV_FREQUENT_CHECK;
3598
2706 { 3599 {
2707 int active = ev_active (w); 3600 int active = ev_active (w);
2708 3601
2709 asyncs [active - 1] = asyncs [--asynccnt]; 3602 asyncs [active - 1] = asyncs [--asynccnt];
2710 ev_active (asyncs [active - 1]) = active; 3603 ev_active (asyncs [active - 1]) = active;
2711 } 3604 }
2712 3605
2713 ev_stop (EV_A_ (W)w); 3606 ev_stop (EV_A_ (W)w);
3607
3608 EV_FREQUENT_CHECK;
2714} 3609}
2715 3610
2716void 3611void
2717ev_async_send (EV_P_ ev_async *w) 3612ev_async_send (EV_P_ ev_async *w)
2718{ 3613{
2719 w->sent = 1; 3614 w->sent = 1;
2720 evpipe_write (EV_A_ &gotasync); 3615 evpipe_write (EV_A_ &async_pending);
2721} 3616}
2722#endif 3617#endif
2723 3618
2724/*****************************************************************************/ 3619/*****************************************************************************/
2725 3620
2735once_cb (EV_P_ struct ev_once *once, int revents) 3630once_cb (EV_P_ struct ev_once *once, int revents)
2736{ 3631{
2737 void (*cb)(int revents, void *arg) = once->cb; 3632 void (*cb)(int revents, void *arg) = once->cb;
2738 void *arg = once->arg; 3633 void *arg = once->arg;
2739 3634
2740 ev_io_stop (EV_A_ &once->io); 3635 ev_io_stop (EV_A_ &once->io);
2741 ev_timer_stop (EV_A_ &once->to); 3636 ev_timer_stop (EV_A_ &once->to);
2742 ev_free (once); 3637 ev_free (once);
2743 3638
2744 cb (revents, arg); 3639 cb (revents, arg);
2745} 3640}
2746 3641
2747static void 3642static void
2748once_cb_io (EV_P_ ev_io *w, int revents) 3643once_cb_io (EV_P_ ev_io *w, int revents)
2749{ 3644{
2750 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3645 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3646
3647 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2751} 3648}
2752 3649
2753static void 3650static void
2754once_cb_to (EV_P_ ev_timer *w, int revents) 3651once_cb_to (EV_P_ ev_timer *w, int revents)
2755{ 3652{
2756 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3653 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3654
3655 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2757} 3656}
2758 3657
2759void 3658void
2760ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3659ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2761{ 3660{
2762 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3661 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2763 3662
2764 if (expect_false (!once)) 3663 if (expect_false (!once))
2765 { 3664 {
2766 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3665 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2767 return; 3666 return;
2768 } 3667 }
2769 3668
2770 once->cb = cb; 3669 once->cb = cb;
2771 once->arg = arg; 3670 once->arg = arg;
2783 ev_timer_set (&once->to, timeout, 0.); 3682 ev_timer_set (&once->to, timeout, 0.);
2784 ev_timer_start (EV_A_ &once->to); 3683 ev_timer_start (EV_A_ &once->to);
2785 } 3684 }
2786} 3685}
2787 3686
3687/*****************************************************************************/
3688
3689#if EV_WALK_ENABLE
3690void
3691ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3692{
3693 int i, j;
3694 ev_watcher_list *wl, *wn;
3695
3696 if (types & (EV_IO | EV_EMBED))
3697 for (i = 0; i < anfdmax; ++i)
3698 for (wl = anfds [i].head; wl; )
3699 {
3700 wn = wl->next;
3701
3702#if EV_EMBED_ENABLE
3703 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3704 {
3705 if (types & EV_EMBED)
3706 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3707 }
3708 else
3709#endif
3710#if EV_USE_INOTIFY
3711 if (ev_cb ((ev_io *)wl) == infy_cb)
3712 ;
3713 else
3714#endif
3715 if ((ev_io *)wl != &pipe_w)
3716 if (types & EV_IO)
3717 cb (EV_A_ EV_IO, wl);
3718
3719 wl = wn;
3720 }
3721
3722 if (types & (EV_TIMER | EV_STAT))
3723 for (i = timercnt + HEAP0; i-- > HEAP0; )
3724#if EV_STAT_ENABLE
3725 /*TODO: timer is not always active*/
3726 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3727 {
3728 if (types & EV_STAT)
3729 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3730 }
3731 else
3732#endif
3733 if (types & EV_TIMER)
3734 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3735
3736#if EV_PERIODIC_ENABLE
3737 if (types & EV_PERIODIC)
3738 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3739 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3740#endif
3741
3742#if EV_IDLE_ENABLE
3743 if (types & EV_IDLE)
3744 for (j = NUMPRI; i--; )
3745 for (i = idlecnt [j]; i--; )
3746 cb (EV_A_ EV_IDLE, idles [j][i]);
3747#endif
3748
3749#if EV_FORK_ENABLE
3750 if (types & EV_FORK)
3751 for (i = forkcnt; i--; )
3752 if (ev_cb (forks [i]) != embed_fork_cb)
3753 cb (EV_A_ EV_FORK, forks [i]);
3754#endif
3755
3756#if EV_ASYNC_ENABLE
3757 if (types & EV_ASYNC)
3758 for (i = asynccnt; i--; )
3759 cb (EV_A_ EV_ASYNC, asyncs [i]);
3760#endif
3761
3762#if EV_PREPARE_ENABLE
3763 if (types & EV_PREPARE)
3764 for (i = preparecnt; i--; )
3765# if EV_EMBED_ENABLE
3766 if (ev_cb (prepares [i]) != embed_prepare_cb)
3767# endif
3768 cb (EV_A_ EV_PREPARE, prepares [i]);
3769#endif
3770
3771#if EV_CHECK_ENABLE
3772 if (types & EV_CHECK)
3773 for (i = checkcnt; i--; )
3774 cb (EV_A_ EV_CHECK, checks [i]);
3775#endif
3776
3777#if EV_SIGNAL_ENABLE
3778 if (types & EV_SIGNAL)
3779 for (i = 0; i < EV_NSIG - 1; ++i)
3780 for (wl = signals [i].head; wl; )
3781 {
3782 wn = wl->next;
3783 cb (EV_A_ EV_SIGNAL, wl);
3784 wl = wn;
3785 }
3786#endif
3787
3788#if EV_CHILD_ENABLE
3789 if (types & EV_CHILD)
3790 for (i = (EV_PID_HASHSIZE); i--; )
3791 for (wl = childs [i]; wl; )
3792 {
3793 wn = wl->next;
3794 cb (EV_A_ EV_CHILD, wl);
3795 wl = wn;
3796 }
3797#endif
3798/* EV_STAT 0x00001000 /* stat data changed */
3799/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3800}
3801#endif
3802
2788#if EV_MULTIPLICITY 3803#if EV_MULTIPLICITY
2789 #include "ev_wrap.h" 3804 #include "ev_wrap.h"
2790#endif 3805#endif
2791 3806
2792#ifdef __cplusplus 3807EV_CPP(})
2793}
2794#endif
2795 3808

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines