ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.245 by root, Wed May 21 00:26:01 2008 UTC vs.
Revision 1.367 by root, Tue Jan 11 02:15:58 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
52# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
55# endif 65# endif
56# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
58# endif 68# endif
59# else 69# else
60# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
62# endif 72# endif
63# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
65# endif 75# endif
66# endif 76# endif
67 77
78# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
71# else 82# else
83# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
74# endif 94# endif
75 95
96# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 99# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 100# else
101# undef EV_USE_POLL
88# define EV_USE_POLL 0 102# define EV_USE_POLL 0
89# endif
90# endif 103# endif
91 104
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
95# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
98# endif 112# endif
99 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
106# endif 121# endif
107 122
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
111# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
114# endif 130# endif
115 131
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
122# endif 139# endif
123 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 142# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 143# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
130# endif 148# endif
131 149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
132#endif 159#endif
133 160
134#include <math.h> 161#include <math.h>
135#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
136#include <fcntl.h> 164#include <fcntl.h>
137#include <stddef.h> 165#include <stddef.h>
138 166
139#include <stdio.h> 167#include <stdio.h>
140 168
141#include <assert.h> 169#include <assert.h>
142#include <errno.h> 170#include <errno.h>
143#include <sys/types.h> 171#include <sys/types.h>
144#include <time.h> 172#include <time.h>
173#include <limits.h>
145 174
146#include <signal.h> 175#include <signal.h>
147 176
148#ifdef EV_H 177#ifdef EV_H
149# include EV_H 178# include EV_H
150#else 179#else
151# include "ev.h" 180# include "ev.h"
152#endif 181#endif
182
183EV_CPP(extern "C" {)
153 184
154#ifndef _WIN32 185#ifndef _WIN32
155# include <sys/time.h> 186# include <sys/time.h>
156# include <sys/wait.h> 187# include <sys/wait.h>
157# include <unistd.h> 188# include <unistd.h>
158#else 189#else
190# include <io.h>
159# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 192# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
163# endif 195# endif
196# undef EV_AVOID_STDIO
164#endif 197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
165 206
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 207/* this block tries to deduce configuration from header-defined symbols and defaults */
167 208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
244
168#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
169# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
170#endif 251#endif
171 252
172#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 255#endif
175 256
176#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
177# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
262# endif
178#endif 263#endif
179 264
180#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 267#endif
183 268
184#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
185# ifdef _WIN32 270# ifdef _WIN32
186# define EV_USE_POLL 0 271# define EV_USE_POLL 0
187# else 272# else
188# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 274# endif
190#endif 275#endif
191 276
192#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 280# else
196# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
197# endif 282# endif
198#endif 283#endif
199 284
205# define EV_USE_PORT 0 290# define EV_USE_PORT 0
206#endif 291#endif
207 292
208#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 295# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 296# else
212# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
213# endif 298# endif
214#endif 299#endif
215 300
216#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 303#endif
223 304
224#ifndef EV_INOTIFY_HASHSIZE 305#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 307#endif
231 308
232#ifndef EV_USE_EVENTFD 309#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 311# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 312# else
236# define EV_USE_EVENTFD 0 313# define EV_USE_EVENTFD 0
237# endif 314# endif
238#endif 315#endif
239 316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
240#ifndef EV_USE_4HEAP 335#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 336# define EV_USE_4HEAP EV_FEATURE_DATA
242#endif 337#endif
243 338
244#ifndef EV_HEAP_CACHE_AT 339#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
246#endif 355#endif
247 356
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
249 364
250#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
251# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
252# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
253#endif 368#endif
267# include <sys/select.h> 382# include <sys/select.h>
268# endif 383# endif
269#endif 384#endif
270 385
271#if EV_USE_INOTIFY 386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
272# include <sys/inotify.h> 388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
273#endif 394#endif
274 395
275#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h> 397# include <winsock.h>
277#endif 398#endif
278 399
279#if EV_USE_EVENTFD 400#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 402# include <stdint.h>
282# ifdef __cplusplus 403# ifndef EFD_NONBLOCK
283extern "C" { 404# define EFD_NONBLOCK O_NONBLOCK
284# endif 405# endif
285int eventfd (unsigned int initval, int flags); 406# ifndef EFD_CLOEXEC
286# ifdef __cplusplus 407# ifdef O_CLOEXEC
287} 408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
288# endif 412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
289#endif 436#endif
290 437
291/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
292 445
293/* 446/*
294 * This is used to avoid floating point rounding problems. 447 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics 448 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding 449 * to ensure progress, time-wise, even when rounding
300 */ 453 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
302 455
303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
306 461
307#if __GNUC__ >= 4 462#if __GNUC__ >= 4
308# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
309# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
310#else 465#else
317 472
318#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
319#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
320#define inline_size static inline 475#define inline_size static inline
321 476
322#if EV_MINIMAL 477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
323# define inline_speed static noinline 480# define inline_speed static noinline
481#endif
482
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
324#else 487#else
325# define inline_speed static inline
326#endif
327
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
330 490
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
333 493
334typedef ev_watcher *W; 494typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
337 497
338#define ev_active(w) ((W)(w))->active 498#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 499#define ev_at(w) ((WT)(w))->at
340 500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
341#if EV_USE_MONOTONIC 507#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
345#endif 519#endif
346 520
347#ifdef _WIN32 521#ifdef _WIN32
348# include "ev_win32.c" 522# include "ev_win32.c"
349#endif 523#endif
350 524
351/*****************************************************************************/ 525/*****************************************************************************/
352 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
353static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
354 578
355void 579void
356ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
357{ 581{
358 syserr_cb = cb; 582 syserr_cb = cb;
359} 583}
360 584
361static void noinline 585static void noinline
362syserr (const char *msg) 586ev_syserr (const char *msg)
363{ 587{
364 if (!msg) 588 if (!msg)
365 msg = "(libev) system error"; 589 msg = "(libev) system error";
366 590
367 if (syserr_cb) 591 if (syserr_cb)
368 syserr_cb (msg); 592 syserr_cb (msg);
369 else 593 else
370 { 594 {
595#if EV_AVOID_STDIO
596 ev_printerr (msg);
597 ev_printerr (": ");
598 ev_printerr (strerror (errno));
599 ev_printerr ("\n");
600#else
371 perror (msg); 601 perror (msg);
602#endif
372 abort (); 603 abort ();
373 } 604 }
374} 605}
375 606
376static void * 607static void *
377ev_realloc_emul (void *ptr, long size) 608ev_realloc_emul (void *ptr, long size)
378{ 609{
610#if __GLIBC__
611 return realloc (ptr, size);
612#else
379 /* some systems, notably openbsd and darwin, fail to properly 613 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and 614 * implement realloc (x, 0) (as required by both ansi c-89 and
381 * the single unix specification, so work around them here. 615 * the single unix specification, so work around them here.
382 */ 616 */
383 617
384 if (size) 618 if (size)
385 return realloc (ptr, size); 619 return realloc (ptr, size);
386 620
387 free (ptr); 621 free (ptr);
388 return 0; 622 return 0;
623#endif
389} 624}
390 625
391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 626static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
392 627
393void 628void
401{ 636{
402 ptr = alloc (ptr, size); 637 ptr = alloc (ptr, size);
403 638
404 if (!ptr && size) 639 if (!ptr && size)
405 { 640 {
641#if EV_AVOID_STDIO
642 ev_printerr ("(libev) memory allocation failed, aborting.\n");
643#else
406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 644 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
645#endif
407 abort (); 646 abort ();
408 } 647 }
409 648
410 return ptr; 649 return ptr;
411} 650}
413#define ev_malloc(size) ev_realloc (0, (size)) 652#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 653#define ev_free(ptr) ev_realloc ((ptr), 0)
415 654
416/*****************************************************************************/ 655/*****************************************************************************/
417 656
657/* set in reify when reification needed */
658#define EV_ANFD_REIFY 1
659
660/* file descriptor info structure */
418typedef struct 661typedef struct
419{ 662{
420 WL head; 663 WL head;
421 unsigned char events; 664 unsigned char events; /* the events watched for */
665 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
666 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 667 unsigned char unused;
668#if EV_USE_EPOLL
669 unsigned int egen; /* generation counter to counter epoll bugs */
670#endif
423#if EV_SELECT_IS_WINSOCKET 671#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
424 SOCKET handle; 672 SOCKET handle;
425#endif 673#endif
674#if EV_USE_IOCP
675 OVERLAPPED or, ow;
676#endif
426} ANFD; 677} ANFD;
427 678
679/* stores the pending event set for a given watcher */
428typedef struct 680typedef struct
429{ 681{
430 W w; 682 W w;
431 int events; 683 int events; /* the pending event set for the given watcher */
432} ANPENDING; 684} ANPENDING;
433 685
434#if EV_USE_INOTIFY 686#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 687/* hash table entry per inotify-id */
436typedef struct 688typedef struct
439} ANFS; 691} ANFS;
440#endif 692#endif
441 693
442/* Heap Entry */ 694/* Heap Entry */
443#if EV_HEAP_CACHE_AT 695#if EV_HEAP_CACHE_AT
696 /* a heap element */
444 typedef struct { 697 typedef struct {
445 ev_tstamp at; 698 ev_tstamp at;
446 WT w; 699 WT w;
447 } ANHE; 700 } ANHE;
448 701
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 702 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 703 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 704 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 705#else
706 /* a heap element */
453 typedef WT ANHE; 707 typedef WT ANHE;
454 708
455 #define ANHE_w(he) (he) 709 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 710 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 711 #define ANHE_at_cache(he)
458#endif 712#endif
459 713
460#if EV_MULTIPLICITY 714#if EV_MULTIPLICITY
461 715
462 struct ev_loop 716 struct ev_loop
481 735
482 static int ev_default_loop_ptr; 736 static int ev_default_loop_ptr;
483 737
484#endif 738#endif
485 739
740#if EV_FEATURE_API
741# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
742# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
743# define EV_INVOKE_PENDING invoke_cb (EV_A)
744#else
745# define EV_RELEASE_CB (void)0
746# define EV_ACQUIRE_CB (void)0
747# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
748#endif
749
750#define EVBREAK_RECURSE 0x80
751
486/*****************************************************************************/ 752/*****************************************************************************/
487 753
754#ifndef EV_HAVE_EV_TIME
488ev_tstamp 755ev_tstamp
489ev_time (void) 756ev_time (void)
490{ 757{
491#if EV_USE_REALTIME 758#if EV_USE_REALTIME
759 if (expect_true (have_realtime))
760 {
492 struct timespec ts; 761 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 762 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 763 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 764 }
765#endif
766
496 struct timeval tv; 767 struct timeval tv;
497 gettimeofday (&tv, 0); 768 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 769 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 770}
771#endif
501 772
502ev_tstamp inline_size 773inline_size ev_tstamp
503get_clock (void) 774get_clock (void)
504{ 775{
505#if EV_USE_MONOTONIC 776#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 777 if (expect_true (have_monotonic))
507 { 778 {
528 if (delay > 0.) 799 if (delay > 0.)
529 { 800 {
530#if EV_USE_NANOSLEEP 801#if EV_USE_NANOSLEEP
531 struct timespec ts; 802 struct timespec ts;
532 803
533 ts.tv_sec = (time_t)delay; 804 EV_TS_SET (ts, delay);
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0); 805 nanosleep (&ts, 0);
537#elif defined(_WIN32) 806#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3)); 807 Sleep ((unsigned long)(delay * 1e3));
539#else 808#else
540 struct timeval tv; 809 struct timeval tv;
541 810
542 tv.tv_sec = (time_t)delay; 811 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 812 /* something not guaranteed by newer posix versions, but guaranteed */
544 813 /* by older ones */
814 EV_TV_SET (tv, delay);
545 select (0, 0, 0, 0, &tv); 815 select (0, 0, 0, 0, &tv);
546#endif 816#endif
547 } 817 }
548} 818}
549 819
550/*****************************************************************************/ 820/*****************************************************************************/
551 821
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 822#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 823
554int inline_size 824/* find a suitable new size for the given array, */
825/* hopefully by rounding to a nice-to-malloc size */
826inline_size int
555array_nextsize (int elem, int cur, int cnt) 827array_nextsize (int elem, int cur, int cnt)
556{ 828{
557 int ncur = cur + 1; 829 int ncur = cur + 1;
558 830
559 do 831 do
576array_realloc (int elem, void *base, int *cur, int cnt) 848array_realloc (int elem, void *base, int *cur, int cnt)
577{ 849{
578 *cur = array_nextsize (elem, *cur, cnt); 850 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 851 return ev_realloc (base, elem * *cur);
580} 852}
853
854#define array_init_zero(base,count) \
855 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 856
582#define array_needsize(type,base,cur,cnt,init) \ 857#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 858 if (expect_false ((cnt) > (cur))) \
584 { \ 859 { \
585 int ocur_ = (cur); \ 860 int ocur_ = (cur); \
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 872 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 873 }
599#endif 874#endif
600 875
601#define array_free(stem, idx) \ 876#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 877 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 878
604/*****************************************************************************/ 879/*****************************************************************************/
880
881/* dummy callback for pending events */
882static void noinline
883pendingcb (EV_P_ ev_prepare *w, int revents)
884{
885}
605 886
606void noinline 887void noinline
607ev_feed_event (EV_P_ void *w, int revents) 888ev_feed_event (EV_P_ void *w, int revents)
608{ 889{
609 W w_ = (W)w; 890 W w_ = (W)w;
618 pendings [pri][w_->pending - 1].w = w_; 899 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 900 pendings [pri][w_->pending - 1].events = revents;
620 } 901 }
621} 902}
622 903
623void inline_speed 904inline_speed void
905feed_reverse (EV_P_ W w)
906{
907 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
908 rfeeds [rfeedcnt++] = w;
909}
910
911inline_size void
912feed_reverse_done (EV_P_ int revents)
913{
914 do
915 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
916 while (rfeedcnt);
917}
918
919inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 920queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 921{
626 int i; 922 int i;
627 923
628 for (i = 0; i < eventcnt; ++i) 924 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 925 ev_feed_event (EV_A_ events [i], type);
630} 926}
631 927
632/*****************************************************************************/ 928/*****************************************************************************/
633 929
634void inline_size 930inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 931fd_event_nocheck (EV_P_ int fd, int revents)
649{ 932{
650 ANFD *anfd = anfds + fd; 933 ANFD *anfd = anfds + fd;
651 ev_io *w; 934 ev_io *w;
652 935
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 936 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 940 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 941 ev_feed_event (EV_A_ (W)w, ev);
659 } 942 }
660} 943}
661 944
945/* do not submit kernel events for fds that have reify set */
946/* because that means they changed while we were polling for new events */
947inline_speed void
948fd_event (EV_P_ int fd, int revents)
949{
950 ANFD *anfd = anfds + fd;
951
952 if (expect_true (!anfd->reify))
953 fd_event_nocheck (EV_A_ fd, revents);
954}
955
662void 956void
663ev_feed_fd_event (EV_P_ int fd, int revents) 957ev_feed_fd_event (EV_P_ int fd, int revents)
664{ 958{
665 if (fd >= 0 && fd < anfdmax) 959 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 960 fd_event_nocheck (EV_A_ fd, revents);
667} 961}
668 962
669void inline_size 963/* make sure the external fd watch events are in-sync */
964/* with the kernel/libev internal state */
965inline_size void
670fd_reify (EV_P) 966fd_reify (EV_P)
671{ 967{
672 int i; 968 int i;
673 969
674 for (i = 0; i < fdchangecnt; ++i) 970 for (i = 0; i < fdchangecnt; ++i)
675 { 971 {
676 int fd = fdchanges [i]; 972 int fd = fdchanges [i];
677 ANFD *anfd = anfds + fd; 973 ANFD *anfd = anfds + fd;
678 ev_io *w; 974 ev_io *w;
679 975
680 unsigned char events = 0; 976 unsigned char o_events = anfd->events;
977 unsigned char o_reify = anfd->reify;
681 978
682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 979 anfd->reify = 0;
683 events |= (unsigned char)w->events;
684 980
685#if EV_SELECT_IS_WINSOCKET 981#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
686 if (events) 982 if (o_reify & EV__IOFDSET)
687 { 983 {
688 unsigned long argp; 984 unsigned long arg;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 985 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
692 anfd->handle = _get_osfhandle (fd);
693 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 986 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
987 printf ("oi %d %x\n", fd, anfd->handle);//D
695 } 988 }
696#endif 989#endif
697 990
991 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
698 { 992 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
702 anfd->reify = 0;
703 anfd->events = events; 993 anfd->events = 0;
704 994
705 if (o_events != events || o_reify & EV_IOFDSET) 995 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
996 anfd->events |= (unsigned char)w->events;
997
998 if (o_events != anfd->events)
999 o_reify = EV__IOFDSET; /* actually |= */
1000 }
1001
1002 if (o_reify & EV__IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 1003 backend_modify (EV_A_ fd, o_events, anfd->events);
707 }
708 } 1004 }
709 1005
710 fdchangecnt = 0; 1006 fdchangecnt = 0;
711} 1007}
712 1008
713void inline_size 1009/* something about the given fd changed */
1010inline_size void
714fd_change (EV_P_ int fd, int flags) 1011fd_change (EV_P_ int fd, int flags)
715{ 1012{
716 unsigned char reify = anfds [fd].reify; 1013 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 1014 anfds [fd].reify |= flags;
718 1015
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1019 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 1020 fdchanges [fdchangecnt - 1] = fd;
724 } 1021 }
725} 1022}
726 1023
727void inline_speed 1024/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1025inline_speed void
728fd_kill (EV_P_ int fd) 1026fd_kill (EV_P_ int fd)
729{ 1027{
730 ev_io *w; 1028 ev_io *w;
731 1029
732 while ((w = (ev_io *)anfds [fd].head)) 1030 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 1032 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1033 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 1034 }
737} 1035}
738 1036
739int inline_size 1037/* check whether the given fd is actually valid, for error recovery */
1038inline_size int
740fd_valid (int fd) 1039fd_valid (int fd)
741{ 1040{
742#ifdef _WIN32 1041#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 1042 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
744#else 1043#else
745 return fcntl (fd, F_GETFD) != -1; 1044 return fcntl (fd, F_GETFD) != -1;
746#endif 1045#endif
747} 1046}
748 1047
752{ 1051{
753 int fd; 1052 int fd;
754 1053
755 for (fd = 0; fd < anfdmax; ++fd) 1054 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 1055 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 1056 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 1057 fd_kill (EV_A_ fd);
759} 1058}
760 1059
761/* called on ENOMEM in select/poll to kill some fds and retry */ 1060/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 1061static void noinline
766 1065
767 for (fd = anfdmax; fd--; ) 1066 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events) 1067 if (anfds [fd].events)
769 { 1068 {
770 fd_kill (EV_A_ fd); 1069 fd_kill (EV_A_ fd);
771 return; 1070 break;
772 } 1071 }
773} 1072}
774 1073
775/* usually called after fork if backend needs to re-arm all fds from scratch */ 1074/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline 1075static void noinline
780 1079
781 for (fd = 0; fd < anfdmax; ++fd) 1080 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 1081 if (anfds [fd].events)
783 { 1082 {
784 anfds [fd].events = 0; 1083 anfds [fd].events = 0;
1084 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1085 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 1086 }
787} 1087}
788 1088
1089/* used to prepare libev internal fd's */
1090/* this is not fork-safe */
1091inline_speed void
1092fd_intern (int fd)
1093{
1094#ifdef _WIN32
1095 unsigned long arg = 1;
1096 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1097#else
1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
1099 fcntl (fd, F_SETFL, O_NONBLOCK);
1100#endif
1101}
1102
789/*****************************************************************************/ 1103/*****************************************************************************/
790 1104
791/* 1105/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not 1106 * the heap functions want a real array index. array index 0 is guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1107 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree. 1108 * the branching factor of the d-tree.
795 */ 1109 */
796 1110
797/* 1111/*
802 */ 1116 */
803#if EV_USE_4HEAP 1117#if EV_USE_4HEAP
804 1118
805#define DHEAP 4 1119#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1120#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807 1121#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808/* towards the root */ 1122#define UPHEAP_DONE(p,k) ((p) == (k))
809void inline_speed
810upheap (ANHE *heap, int k)
811{
812 ANHE he = heap [k];
813
814 for (;;)
815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
821 heap [k] = heap [p];
822 ev_active (ANHE_w (heap [k])) = k;
823 k = p;
824 }
825
826 ev_active (ANHE_w (he)) = k;
827 heap [k] = he;
828}
829 1123
830/* away from the root */ 1124/* away from the root */
831void inline_speed 1125inline_speed void
832downheap (ANHE *heap, int N, int k) 1126downheap (ANHE *heap, int N, int k)
833{ 1127{
834 ANHE he = heap [k]; 1128 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0; 1129 ANHE *E = heap + N + HEAP0;
836 1130
837 for (;;) 1131 for (;;)
838 { 1132 {
839 ev_tstamp minat; 1133 ev_tstamp minat;
840 ANHE *minpos; 1134 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1135 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
842 1136
843 // find minimum child 1137 /* find minimum child */
844 if (expect_true (pos + DHEAP - 1 < E)) 1138 if (expect_true (pos + DHEAP - 1 < E))
845 { 1139 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1140 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1141 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1142 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
859 break; 1153 break;
860 1154
861 if (ANHE_at (he) <= minat) 1155 if (ANHE_at (he) <= minat)
862 break; 1156 break;
863 1157
1158 heap [k] = *minpos;
864 ev_active (ANHE_w (*minpos)) = k; 1159 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866 1160
867 k = minpos - heap; 1161 k = minpos - heap;
868 } 1162 }
869 1163
1164 heap [k] = he;
870 ev_active (ANHE_w (he)) = k; 1165 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872} 1166}
873 1167
874#else // 4HEAP 1168#else /* 4HEAP */
875 1169
876#define HEAP0 1 1170#define HEAP0 1
1171#define HPARENT(k) ((k) >> 1)
1172#define UPHEAP_DONE(p,k) (!(p))
877 1173
878/* towards the root */ 1174/* away from the root */
879void inline_speed 1175inline_speed void
880upheap (ANHE *heap, int k) 1176downheap (ANHE *heap, int N, int k)
881{ 1177{
882 ANHE he = heap [k]; 1178 ANHE he = heap [k];
883 1179
884 for (;;) 1180 for (;;)
885 { 1181 {
886 int p = k >> 1; 1182 int c = k << 1;
887 1183
888 /* maybe we could use a dummy element at heap [0]? */ 1184 if (c >= N + HEAP0)
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break; 1185 break;
891 1186
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1187 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0; 1188 ? 1 : 0;
916 1189
917 if (ANHE_at (he) <= ANHE_at (heap [c])) 1190 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break; 1191 break;
919 1192
926 heap [k] = he; 1199 heap [k] = he;
927 ev_active (ANHE_w (he)) = k; 1200 ev_active (ANHE_w (he)) = k;
928} 1201}
929#endif 1202#endif
930 1203
931void inline_size 1204/* towards the root */
1205inline_speed void
1206upheap (ANHE *heap, int k)
1207{
1208 ANHE he = heap [k];
1209
1210 for (;;)
1211 {
1212 int p = HPARENT (k);
1213
1214 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1215 break;
1216
1217 heap [k] = heap [p];
1218 ev_active (ANHE_w (heap [k])) = k;
1219 k = p;
1220 }
1221
1222 heap [k] = he;
1223 ev_active (ANHE_w (he)) = k;
1224}
1225
1226/* move an element suitably so it is in a correct place */
1227inline_size void
932adjustheap (ANHE *heap, int N, int k) 1228adjustheap (ANHE *heap, int N, int k)
933{ 1229{
1230 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
934 upheap (heap, k); 1231 upheap (heap, k);
1232 else
935 downheap (heap, N, k); 1233 downheap (heap, N, k);
1234}
1235
1236/* rebuild the heap: this function is used only once and executed rarely */
1237inline_size void
1238reheap (ANHE *heap, int N)
1239{
1240 int i;
1241
1242 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1243 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1244 for (i = 0; i < N; ++i)
1245 upheap (heap, i + HEAP0);
936} 1246}
937 1247
938/*****************************************************************************/ 1248/*****************************************************************************/
939 1249
1250/* associate signal watchers to a signal signal */
940typedef struct 1251typedef struct
941{ 1252{
1253 EV_ATOMIC_T pending;
1254#if EV_MULTIPLICITY
1255 EV_P;
1256#endif
942 WL head; 1257 WL head;
943 EV_ATOMIC_T gotsig;
944} ANSIG; 1258} ANSIG;
945 1259
946static ANSIG *signals; 1260static ANSIG signals [EV_NSIG - 1];
947static int signalmax;
948
949static EV_ATOMIC_T gotsig;
950
951void inline_size
952signals_init (ANSIG *base, int count)
953{
954 while (count--)
955 {
956 base->head = 0;
957 base->gotsig = 0;
958
959 ++base;
960 }
961}
962 1261
963/*****************************************************************************/ 1262/*****************************************************************************/
964 1263
965void inline_speed 1264#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
966fd_intern (int fd)
967{
968#ifdef _WIN32
969 int arg = 1;
970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
971#else
972 fcntl (fd, F_SETFD, FD_CLOEXEC);
973 fcntl (fd, F_SETFL, O_NONBLOCK);
974#endif
975}
976 1265
977static void noinline 1266static void noinline
978evpipe_init (EV_P) 1267evpipe_init (EV_P)
979{ 1268{
980 if (!ev_is_active (&pipeev)) 1269 if (!ev_is_active (&pipe_w))
981 { 1270 {
982#if EV_USE_EVENTFD 1271# if EV_USE_EVENTFD
1272 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1273 if (evfd < 0 && errno == EINVAL)
983 if ((evfd = eventfd (0, 0)) >= 0) 1274 evfd = eventfd (0, 0);
1275
1276 if (evfd >= 0)
984 { 1277 {
985 evpipe [0] = -1; 1278 evpipe [0] = -1;
986 fd_intern (evfd); 1279 fd_intern (evfd); /* doing it twice doesn't hurt */
987 ev_io_set (&pipeev, evfd, EV_READ); 1280 ev_io_set (&pipe_w, evfd, EV_READ);
988 } 1281 }
989 else 1282 else
990#endif 1283# endif
991 { 1284 {
992 while (pipe (evpipe)) 1285 while (pipe (evpipe))
993 syserr ("(libev) error creating signal/async pipe"); 1286 ev_syserr ("(libev) error creating signal/async pipe");
994 1287
995 fd_intern (evpipe [0]); 1288 fd_intern (evpipe [0]);
996 fd_intern (evpipe [1]); 1289 fd_intern (evpipe [1]);
997 ev_io_set (&pipeev, evpipe [0], EV_READ); 1290 ev_io_set (&pipe_w, evpipe [0], EV_READ);
998 } 1291 }
999 1292
1000 ev_io_start (EV_A_ &pipeev); 1293 ev_io_start (EV_A_ &pipe_w);
1001 ev_unref (EV_A); /* watcher should not keep loop alive */ 1294 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 } 1295 }
1003} 1296}
1004 1297
1005void inline_size 1298inline_size void
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1299evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{ 1300{
1008 if (!*flag) 1301 if (!*flag)
1009 { 1302 {
1010 int old_errno = errno; /* save errno because write might clobber it */ 1303 int old_errno = errno; /* save errno because write might clobber it */
1304 char dummy;
1011 1305
1012 *flag = 1; 1306 *flag = 1;
1013 1307
1014#if EV_USE_EVENTFD 1308#if EV_USE_EVENTFD
1015 if (evfd >= 0) 1309 if (evfd >= 0)
1017 uint64_t counter = 1; 1311 uint64_t counter = 1;
1018 write (evfd, &counter, sizeof (uint64_t)); 1312 write (evfd, &counter, sizeof (uint64_t));
1019 } 1313 }
1020 else 1314 else
1021#endif 1315#endif
1316 /* win32 people keep sending patches that change this write() to send() */
1317 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1318 /* so when you think this write should be a send instead, please find out */
1319 /* where your send() is from - it's definitely not the microsoft send, and */
1320 /* tell me. thank you. */
1022 write (evpipe [1], &old_errno, 1); 1321 write (evpipe [1], &dummy, 1);
1023 1322
1024 errno = old_errno; 1323 errno = old_errno;
1025 } 1324 }
1026} 1325}
1027 1326
1327/* called whenever the libev signal pipe */
1328/* got some events (signal, async) */
1028static void 1329static void
1029pipecb (EV_P_ ev_io *iow, int revents) 1330pipecb (EV_P_ ev_io *iow, int revents)
1030{ 1331{
1332 int i;
1333
1031#if EV_USE_EVENTFD 1334#if EV_USE_EVENTFD
1032 if (evfd >= 0) 1335 if (evfd >= 0)
1033 { 1336 {
1034 uint64_t counter; 1337 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t)); 1338 read (evfd, &counter, sizeof (uint64_t));
1036 } 1339 }
1037 else 1340 else
1038#endif 1341#endif
1039 { 1342 {
1040 char dummy; 1343 char dummy;
1344 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1041 read (evpipe [0], &dummy, 1); 1345 read (evpipe [0], &dummy, 1);
1042 } 1346 }
1043 1347
1044 if (gotsig && ev_is_default_loop (EV_A)) 1348 if (sig_pending)
1045 { 1349 {
1046 int signum; 1350 sig_pending = 0;
1047 gotsig = 0;
1048 1351
1049 for (signum = signalmax; signum--; ) 1352 for (i = EV_NSIG - 1; i--; )
1050 if (signals [signum].gotsig) 1353 if (expect_false (signals [i].pending))
1051 ev_feed_signal_event (EV_A_ signum + 1); 1354 ev_feed_signal_event (EV_A_ i + 1);
1052 } 1355 }
1053 1356
1054#if EV_ASYNC_ENABLE 1357#if EV_ASYNC_ENABLE
1055 if (gotasync) 1358 if (async_pending)
1056 { 1359 {
1057 int i; 1360 async_pending = 0;
1058 gotasync = 0;
1059 1361
1060 for (i = asynccnt; i--; ) 1362 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent) 1363 if (asyncs [i]->sent)
1062 { 1364 {
1063 asyncs [i]->sent = 0; 1365 asyncs [i]->sent = 0;
1067#endif 1369#endif
1068} 1370}
1069 1371
1070/*****************************************************************************/ 1372/*****************************************************************************/
1071 1373
1374void
1375ev_feed_signal (int signum)
1376{
1377#if EV_MULTIPLICITY
1378 EV_P = signals [signum - 1].loop;
1379
1380 if (!EV_A)
1381 return;
1382#endif
1383
1384 signals [signum - 1].pending = 1;
1385 evpipe_write (EV_A_ &sig_pending);
1386}
1387
1072static void 1388static void
1073ev_sighandler (int signum) 1389ev_sighandler (int signum)
1074{ 1390{
1075#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct;
1077#endif
1078
1079#if _WIN32 1391#ifdef _WIN32
1080 signal (signum, ev_sighandler); 1392 signal (signum, ev_sighandler);
1081#endif 1393#endif
1082 1394
1083 signals [signum - 1].gotsig = 1; 1395 ev_feed_signal (signum);
1084 evpipe_write (EV_A_ &gotsig);
1085} 1396}
1086 1397
1087void noinline 1398void noinline
1088ev_feed_signal_event (EV_P_ int signum) 1399ev_feed_signal_event (EV_P_ int signum)
1089{ 1400{
1090 WL w; 1401 WL w;
1091 1402
1403 if (expect_false (signum <= 0 || signum > EV_NSIG))
1404 return;
1405
1406 --signum;
1407
1092#if EV_MULTIPLICITY 1408#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1409 /* it is permissible to try to feed a signal to the wrong loop */
1094#endif 1410 /* or, likely more useful, feeding a signal nobody is waiting for */
1095 1411
1096 --signum; 1412 if (expect_false (signals [signum].loop != EV_A))
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return; 1413 return;
1414#endif
1100 1415
1101 signals [signum].gotsig = 0; 1416 signals [signum].pending = 0;
1102 1417
1103 for (w = signals [signum].head; w; w = w->next) 1418 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1419 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105} 1420}
1106 1421
1422#if EV_USE_SIGNALFD
1423static void
1424sigfdcb (EV_P_ ev_io *iow, int revents)
1425{
1426 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1427
1428 for (;;)
1429 {
1430 ssize_t res = read (sigfd, si, sizeof (si));
1431
1432 /* not ISO-C, as res might be -1, but works with SuS */
1433 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1434 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1435
1436 if (res < (ssize_t)sizeof (si))
1437 break;
1438 }
1439}
1440#endif
1441
1442#endif
1443
1107/*****************************************************************************/ 1444/*****************************************************************************/
1108 1445
1446#if EV_CHILD_ENABLE
1109static WL childs [EV_PID_HASHSIZE]; 1447static WL childs [EV_PID_HASHSIZE];
1110
1111#ifndef _WIN32
1112 1448
1113static ev_signal childev; 1449static ev_signal childev;
1114 1450
1115#ifndef WIFCONTINUED 1451#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0 1452# define WIFCONTINUED(status) 0
1117#endif 1453#endif
1118 1454
1119void inline_speed 1455/* handle a single child status event */
1456inline_speed void
1120child_reap (EV_P_ int chain, int pid, int status) 1457child_reap (EV_P_ int chain, int pid, int status)
1121{ 1458{
1122 ev_child *w; 1459 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1460 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1124 1461
1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1462 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1126 { 1463 {
1127 if ((w->pid == pid || !w->pid) 1464 if ((w->pid == pid || !w->pid)
1128 && (!traced || (w->flags & 1))) 1465 && (!traced || (w->flags & 1)))
1129 { 1466 {
1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1467 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1137 1474
1138#ifndef WCONTINUED 1475#ifndef WCONTINUED
1139# define WCONTINUED 0 1476# define WCONTINUED 0
1140#endif 1477#endif
1141 1478
1479/* called on sigchld etc., calls waitpid */
1142static void 1480static void
1143childcb (EV_P_ ev_signal *sw, int revents) 1481childcb (EV_P_ ev_signal *sw, int revents)
1144{ 1482{
1145 int pid, status; 1483 int pid, status;
1146 1484
1154 /* make sure we are called again until all children have been reaped */ 1492 /* make sure we are called again until all children have been reaped */
1155 /* we need to do it this way so that the callback gets called before we continue */ 1493 /* we need to do it this way so that the callback gets called before we continue */
1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1494 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1157 1495
1158 child_reap (EV_A_ pid, pid, status); 1496 child_reap (EV_A_ pid, pid, status);
1159 if (EV_PID_HASHSIZE > 1) 1497 if ((EV_PID_HASHSIZE) > 1)
1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1498 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1161} 1499}
1162 1500
1163#endif 1501#endif
1164 1502
1165/*****************************************************************************/ 1503/*****************************************************************************/
1166 1504
1505#if EV_USE_IOCP
1506# include "ev_iocp.c"
1507#endif
1167#if EV_USE_PORT 1508#if EV_USE_PORT
1168# include "ev_port.c" 1509# include "ev_port.c"
1169#endif 1510#endif
1170#if EV_USE_KQUEUE 1511#if EV_USE_KQUEUE
1171# include "ev_kqueue.c" 1512# include "ev_kqueue.c"
1227 /* kqueue is borked on everything but netbsd apparently */ 1568 /* kqueue is borked on everything but netbsd apparently */
1228 /* it usually doesn't work correctly on anything but sockets and pipes */ 1569 /* it usually doesn't work correctly on anything but sockets and pipes */
1229 flags &= ~EVBACKEND_KQUEUE; 1570 flags &= ~EVBACKEND_KQUEUE;
1230#endif 1571#endif
1231#ifdef __APPLE__ 1572#ifdef __APPLE__
1232 // flags &= ~EVBACKEND_KQUEUE; for documentation 1573 /* only select works correctly on that "unix-certified" platform */
1233 flags &= ~EVBACKEND_POLL; 1574 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1575 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1576#endif
1577#ifdef __FreeBSD__
1578 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1234#endif 1579#endif
1235 1580
1236 return flags; 1581 return flags;
1237} 1582}
1238 1583
1240ev_embeddable_backends (void) 1585ev_embeddable_backends (void)
1241{ 1586{
1242 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1587 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1243 1588
1244 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1589 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1245 /* please fix it and tell me how to detect the fix */ 1590 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1246 flags &= ~EVBACKEND_EPOLL; 1591 flags &= ~EVBACKEND_EPOLL;
1247 1592
1248 return flags; 1593 return flags;
1249} 1594}
1250 1595
1251unsigned int 1596unsigned int
1252ev_backend (EV_P) 1597ev_backend (EV_P)
1253{ 1598{
1254 return backend; 1599 return backend;
1255} 1600}
1256 1601
1602#if EV_FEATURE_API
1257unsigned int 1603unsigned int
1258ev_loop_count (EV_P) 1604ev_iteration (EV_P)
1259{ 1605{
1260 return loop_count; 1606 return loop_count;
1261} 1607}
1262 1608
1609unsigned int
1610ev_depth (EV_P)
1611{
1612 return loop_depth;
1613}
1614
1263void 1615void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1616ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1265{ 1617{
1266 io_blocktime = interval; 1618 io_blocktime = interval;
1267} 1619}
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1622ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1271{ 1623{
1272 timeout_blocktime = interval; 1624 timeout_blocktime = interval;
1273} 1625}
1274 1626
1627void
1628ev_set_userdata (EV_P_ void *data)
1629{
1630 userdata = data;
1631}
1632
1633void *
1634ev_userdata (EV_P)
1635{
1636 return userdata;
1637}
1638
1639void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1640{
1641 invoke_cb = invoke_pending_cb;
1642}
1643
1644void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1645{
1646 release_cb = release;
1647 acquire_cb = acquire;
1648}
1649#endif
1650
1651/* initialise a loop structure, must be zero-initialised */
1275static void noinline 1652static void noinline
1276loop_init (EV_P_ unsigned int flags) 1653loop_init (EV_P_ unsigned int flags)
1277{ 1654{
1278 if (!backend) 1655 if (!backend)
1279 { 1656 {
1657 origflags = flags;
1658
1659#if EV_USE_REALTIME
1660 if (!have_realtime)
1661 {
1662 struct timespec ts;
1663
1664 if (!clock_gettime (CLOCK_REALTIME, &ts))
1665 have_realtime = 1;
1666 }
1667#endif
1668
1280#if EV_USE_MONOTONIC 1669#if EV_USE_MONOTONIC
1670 if (!have_monotonic)
1281 { 1671 {
1282 struct timespec ts; 1672 struct timespec ts;
1673
1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1674 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1284 have_monotonic = 1; 1675 have_monotonic = 1;
1285 } 1676 }
1286#endif 1677#endif
1678
1679 /* pid check not overridable via env */
1680#ifndef _WIN32
1681 if (flags & EVFLAG_FORKCHECK)
1682 curpid = getpid ();
1683#endif
1684
1685 if (!(flags & EVFLAG_NOENV)
1686 && !enable_secure ()
1687 && getenv ("LIBEV_FLAGS"))
1688 flags = atoi (getenv ("LIBEV_FLAGS"));
1287 1689
1288 ev_rt_now = ev_time (); 1690 ev_rt_now = ev_time ();
1289 mn_now = get_clock (); 1691 mn_now = get_clock ();
1290 now_floor = mn_now; 1692 now_floor = mn_now;
1291 rtmn_diff = ev_rt_now - mn_now; 1693 rtmn_diff = ev_rt_now - mn_now;
1694#if EV_FEATURE_API
1695 invoke_cb = ev_invoke_pending;
1696#endif
1292 1697
1293 io_blocktime = 0.; 1698 io_blocktime = 0.;
1294 timeout_blocktime = 0.; 1699 timeout_blocktime = 0.;
1295 backend = 0; 1700 backend = 0;
1296 backend_fd = -1; 1701 backend_fd = -1;
1297 gotasync = 0; 1702 sig_pending = 0;
1703#if EV_ASYNC_ENABLE
1704 async_pending = 0;
1705#endif
1298#if EV_USE_INOTIFY 1706#if EV_USE_INOTIFY
1299 fs_fd = -2; 1707 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1300#endif 1708#endif
1301 1709#if EV_USE_SIGNALFD
1302 /* pid check not overridable via env */ 1710 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1303#ifndef _WIN32
1304 if (flags & EVFLAG_FORKCHECK)
1305 curpid = getpid ();
1306#endif 1711#endif
1307 1712
1308 if (!(flags & EVFLAG_NOENV) 1713 if (!(flags & EVBACKEND_MASK))
1309 && !enable_secure ()
1310 && getenv ("LIBEV_FLAGS"))
1311 flags = atoi (getenv ("LIBEV_FLAGS"));
1312
1313 if (!(flags & 0x0000ffffU))
1314 flags |= ev_recommended_backends (); 1714 flags |= ev_recommended_backends ();
1315 1715
1716#if EV_USE_IOCP
1717 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1718#endif
1316#if EV_USE_PORT 1719#if EV_USE_PORT
1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1720 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1318#endif 1721#endif
1319#if EV_USE_KQUEUE 1722#if EV_USE_KQUEUE
1320 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1723 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1327#endif 1730#endif
1328#if EV_USE_SELECT 1731#if EV_USE_SELECT
1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1732 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1330#endif 1733#endif
1331 1734
1735 ev_prepare_init (&pending_w, pendingcb);
1736
1737#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1332 ev_init (&pipeev, pipecb); 1738 ev_init (&pipe_w, pipecb);
1333 ev_set_priority (&pipeev, EV_MAXPRI); 1739 ev_set_priority (&pipe_w, EV_MAXPRI);
1740#endif
1334 } 1741 }
1335} 1742}
1336 1743
1337static void noinline 1744/* free up a loop structure */
1745void
1338loop_destroy (EV_P) 1746ev_loop_destroy (EV_P)
1339{ 1747{
1340 int i; 1748 int i;
1341 1749
1750#if EV_MULTIPLICITY
1751 /* mimic free (0) */
1752 if (!EV_A)
1753 return;
1754#endif
1755
1756#if EV_CLEANUP_ENABLE
1757 /* queue cleanup watchers (and execute them) */
1758 if (expect_false (cleanupcnt))
1759 {
1760 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1761 EV_INVOKE_PENDING;
1762 }
1763#endif
1764
1765#if EV_CHILD_ENABLE
1766 if (ev_is_active (&childev))
1767 {
1768 ev_ref (EV_A); /* child watcher */
1769 ev_signal_stop (EV_A_ &childev);
1770 }
1771#endif
1772
1342 if (ev_is_active (&pipeev)) 1773 if (ev_is_active (&pipe_w))
1343 { 1774 {
1344 ev_ref (EV_A); /* signal watcher */ 1775 /*ev_ref (EV_A);*/
1345 ev_io_stop (EV_A_ &pipeev); 1776 /*ev_io_stop (EV_A_ &pipe_w);*/
1346 1777
1347#if EV_USE_EVENTFD 1778#if EV_USE_EVENTFD
1348 if (evfd >= 0) 1779 if (evfd >= 0)
1349 close (evfd); 1780 close (evfd);
1350#endif 1781#endif
1351 1782
1352 if (evpipe [0] >= 0) 1783 if (evpipe [0] >= 0)
1353 { 1784 {
1354 close (evpipe [0]); 1785 EV_WIN32_CLOSE_FD (evpipe [0]);
1355 close (evpipe [1]); 1786 EV_WIN32_CLOSE_FD (evpipe [1]);
1356 } 1787 }
1357 } 1788 }
1789
1790#if EV_USE_SIGNALFD
1791 if (ev_is_active (&sigfd_w))
1792 close (sigfd);
1793#endif
1358 1794
1359#if EV_USE_INOTIFY 1795#if EV_USE_INOTIFY
1360 if (fs_fd >= 0) 1796 if (fs_fd >= 0)
1361 close (fs_fd); 1797 close (fs_fd);
1362#endif 1798#endif
1363 1799
1364 if (backend_fd >= 0) 1800 if (backend_fd >= 0)
1365 close (backend_fd); 1801 close (backend_fd);
1366 1802
1803#if EV_USE_IOCP
1804 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1805#endif
1367#if EV_USE_PORT 1806#if EV_USE_PORT
1368 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1807 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1369#endif 1808#endif
1370#if EV_USE_KQUEUE 1809#if EV_USE_KQUEUE
1371 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1810 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1386#if EV_IDLE_ENABLE 1825#if EV_IDLE_ENABLE
1387 array_free (idle, [i]); 1826 array_free (idle, [i]);
1388#endif 1827#endif
1389 } 1828 }
1390 1829
1391 ev_free (anfds); anfdmax = 0; 1830 ev_free (anfds); anfds = 0; anfdmax = 0;
1392 1831
1393 /* have to use the microsoft-never-gets-it-right macro */ 1832 /* have to use the microsoft-never-gets-it-right macro */
1833 array_free (rfeed, EMPTY);
1394 array_free (fdchange, EMPTY); 1834 array_free (fdchange, EMPTY);
1395 array_free (timer, EMPTY); 1835 array_free (timer, EMPTY);
1396#if EV_PERIODIC_ENABLE 1836#if EV_PERIODIC_ENABLE
1397 array_free (periodic, EMPTY); 1837 array_free (periodic, EMPTY);
1398#endif 1838#endif
1399#if EV_FORK_ENABLE 1839#if EV_FORK_ENABLE
1400 array_free (fork, EMPTY); 1840 array_free (fork, EMPTY);
1401#endif 1841#endif
1842#if EV_CLEANUP_ENABLE
1843 array_free (cleanup, EMPTY);
1844#endif
1402 array_free (prepare, EMPTY); 1845 array_free (prepare, EMPTY);
1403 array_free (check, EMPTY); 1846 array_free (check, EMPTY);
1404#if EV_ASYNC_ENABLE 1847#if EV_ASYNC_ENABLE
1405 array_free (async, EMPTY); 1848 array_free (async, EMPTY);
1406#endif 1849#endif
1407 1850
1408 backend = 0; 1851 backend = 0;
1852
1853#if EV_MULTIPLICITY
1854 if (ev_is_default_loop (EV_A))
1855#endif
1856 ev_default_loop_ptr = 0;
1857#if EV_MULTIPLICITY
1858 else
1859 ev_free (EV_A);
1860#endif
1409} 1861}
1410 1862
1411#if EV_USE_INOTIFY 1863#if EV_USE_INOTIFY
1412void inline_size infy_fork (EV_P); 1864inline_size void infy_fork (EV_P);
1413#endif 1865#endif
1414 1866
1415void inline_size 1867inline_size void
1416loop_fork (EV_P) 1868loop_fork (EV_P)
1417{ 1869{
1418#if EV_USE_PORT 1870#if EV_USE_PORT
1419 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1871 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1420#endif 1872#endif
1426#endif 1878#endif
1427#if EV_USE_INOTIFY 1879#if EV_USE_INOTIFY
1428 infy_fork (EV_A); 1880 infy_fork (EV_A);
1429#endif 1881#endif
1430 1882
1431 if (ev_is_active (&pipeev)) 1883 if (ev_is_active (&pipe_w))
1432 { 1884 {
1433 /* this "locks" the handlers against writing to the pipe */ 1885 /* this "locks" the handlers against writing to the pipe */
1434 /* while we modify the fd vars */ 1886 /* while we modify the fd vars */
1435 gotsig = 1; 1887 sig_pending = 1;
1436#if EV_ASYNC_ENABLE 1888#if EV_ASYNC_ENABLE
1437 gotasync = 1; 1889 async_pending = 1;
1438#endif 1890#endif
1439 1891
1440 ev_ref (EV_A); 1892 ev_ref (EV_A);
1441 ev_io_stop (EV_A_ &pipeev); 1893 ev_io_stop (EV_A_ &pipe_w);
1442 1894
1443#if EV_USE_EVENTFD 1895#if EV_USE_EVENTFD
1444 if (evfd >= 0) 1896 if (evfd >= 0)
1445 close (evfd); 1897 close (evfd);
1446#endif 1898#endif
1447 1899
1448 if (evpipe [0] >= 0) 1900 if (evpipe [0] >= 0)
1449 { 1901 {
1450 close (evpipe [0]); 1902 EV_WIN32_CLOSE_FD (evpipe [0]);
1451 close (evpipe [1]); 1903 EV_WIN32_CLOSE_FD (evpipe [1]);
1452 } 1904 }
1453 1905
1906#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1454 evpipe_init (EV_A); 1907 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */ 1908 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ); 1909 pipecb (EV_A_ &pipe_w, EV_READ);
1910#endif
1457 } 1911 }
1458 1912
1459 postfork = 0; 1913 postfork = 0;
1460} 1914}
1915
1916#if EV_MULTIPLICITY
1917
1918struct ev_loop *
1919ev_loop_new (unsigned int flags)
1920{
1921 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1922
1923 memset (EV_A, 0, sizeof (struct ev_loop));
1924 loop_init (EV_A_ flags);
1925
1926 if (ev_backend (EV_A))
1927 return EV_A;
1928
1929 ev_free (EV_A);
1930 return 0;
1931}
1932
1933#endif /* multiplicity */
1934
1935#if EV_VERIFY
1936static void noinline
1937verify_watcher (EV_P_ W w)
1938{
1939 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1940
1941 if (w->pending)
1942 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1943}
1944
1945static void noinline
1946verify_heap (EV_P_ ANHE *heap, int N)
1947{
1948 int i;
1949
1950 for (i = HEAP0; i < N + HEAP0; ++i)
1951 {
1952 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1953 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1954 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1955
1956 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1957 }
1958}
1959
1960static void noinline
1961array_verify (EV_P_ W *ws, int cnt)
1962{
1963 while (cnt--)
1964 {
1965 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1966 verify_watcher (EV_A_ ws [cnt]);
1967 }
1968}
1969#endif
1970
1971#if EV_FEATURE_API
1972void
1973ev_verify (EV_P)
1974{
1975#if EV_VERIFY
1976 int i;
1977 WL w;
1978
1979 assert (activecnt >= -1);
1980
1981 assert (fdchangemax >= fdchangecnt);
1982 for (i = 0; i < fdchangecnt; ++i)
1983 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1984
1985 assert (anfdmax >= 0);
1986 for (i = 0; i < anfdmax; ++i)
1987 for (w = anfds [i].head; w; w = w->next)
1988 {
1989 verify_watcher (EV_A_ (W)w);
1990 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1991 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1992 }
1993
1994 assert (timermax >= timercnt);
1995 verify_heap (EV_A_ timers, timercnt);
1996
1997#if EV_PERIODIC_ENABLE
1998 assert (periodicmax >= periodiccnt);
1999 verify_heap (EV_A_ periodics, periodiccnt);
2000#endif
2001
2002 for (i = NUMPRI; i--; )
2003 {
2004 assert (pendingmax [i] >= pendingcnt [i]);
2005#if EV_IDLE_ENABLE
2006 assert (idleall >= 0);
2007 assert (idlemax [i] >= idlecnt [i]);
2008 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2009#endif
2010 }
2011
2012#if EV_FORK_ENABLE
2013 assert (forkmax >= forkcnt);
2014 array_verify (EV_A_ (W *)forks, forkcnt);
2015#endif
2016
2017#if EV_CLEANUP_ENABLE
2018 assert (cleanupmax >= cleanupcnt);
2019 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2020#endif
2021
2022#if EV_ASYNC_ENABLE
2023 assert (asyncmax >= asynccnt);
2024 array_verify (EV_A_ (W *)asyncs, asynccnt);
2025#endif
2026
2027#if EV_PREPARE_ENABLE
2028 assert (preparemax >= preparecnt);
2029 array_verify (EV_A_ (W *)prepares, preparecnt);
2030#endif
2031
2032#if EV_CHECK_ENABLE
2033 assert (checkmax >= checkcnt);
2034 array_verify (EV_A_ (W *)checks, checkcnt);
2035#endif
2036
2037# if 0
2038#if EV_CHILD_ENABLE
2039 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2040 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2041#endif
2042# endif
2043#endif
2044}
2045#endif
1461 2046
1462#if EV_MULTIPLICITY 2047#if EV_MULTIPLICITY
1463struct ev_loop * 2048struct ev_loop *
1464ev_loop_new (unsigned int flags)
1465{
1466 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1467
1468 memset (loop, 0, sizeof (struct ev_loop));
1469
1470 loop_init (EV_A_ flags);
1471
1472 if (ev_backend (EV_A))
1473 return loop;
1474
1475 return 0;
1476}
1477
1478void
1479ev_loop_destroy (EV_P)
1480{
1481 loop_destroy (EV_A);
1482 ev_free (loop);
1483}
1484
1485void
1486ev_loop_fork (EV_P)
1487{
1488 postfork = 1; /* must be in line with ev_default_fork */
1489}
1490#endif
1491
1492#if EV_MULTIPLICITY
1493struct ev_loop *
1494ev_default_loop_init (unsigned int flags)
1495#else 2049#else
1496int 2050int
2051#endif
1497ev_default_loop (unsigned int flags) 2052ev_default_loop (unsigned int flags)
1498#endif
1499{ 2053{
1500 if (!ev_default_loop_ptr) 2054 if (!ev_default_loop_ptr)
1501 { 2055 {
1502#if EV_MULTIPLICITY 2056#if EV_MULTIPLICITY
1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2057 EV_P = ev_default_loop_ptr = &default_loop_struct;
1504#else 2058#else
1505 ev_default_loop_ptr = 1; 2059 ev_default_loop_ptr = 1;
1506#endif 2060#endif
1507 2061
1508 loop_init (EV_A_ flags); 2062 loop_init (EV_A_ flags);
1509 2063
1510 if (ev_backend (EV_A)) 2064 if (ev_backend (EV_A))
1511 { 2065 {
1512#ifndef _WIN32 2066#if EV_CHILD_ENABLE
1513 ev_signal_init (&childev, childcb, SIGCHLD); 2067 ev_signal_init (&childev, childcb, SIGCHLD);
1514 ev_set_priority (&childev, EV_MAXPRI); 2068 ev_set_priority (&childev, EV_MAXPRI);
1515 ev_signal_start (EV_A_ &childev); 2069 ev_signal_start (EV_A_ &childev);
1516 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2070 ev_unref (EV_A); /* child watcher should not keep loop alive */
1517#endif 2071#endif
1522 2076
1523 return ev_default_loop_ptr; 2077 return ev_default_loop_ptr;
1524} 2078}
1525 2079
1526void 2080void
1527ev_default_destroy (void) 2081ev_loop_fork (EV_P)
1528{ 2082{
1529#if EV_MULTIPLICITY
1530 struct ev_loop *loop = ev_default_loop_ptr;
1531#endif
1532
1533#ifndef _WIN32
1534 ev_ref (EV_A); /* child watcher */
1535 ev_signal_stop (EV_A_ &childev);
1536#endif
1537
1538 loop_destroy (EV_A);
1539}
1540
1541void
1542ev_default_fork (void)
1543{
1544#if EV_MULTIPLICITY
1545 struct ev_loop *loop = ev_default_loop_ptr;
1546#endif
1547
1548 if (backend)
1549 postfork = 1; /* must be in line with ev_loop_fork */ 2083 postfork = 1; /* must be in line with ev_default_fork */
1550} 2084}
1551 2085
1552/*****************************************************************************/ 2086/*****************************************************************************/
1553 2087
1554void 2088void
1555ev_invoke (EV_P_ void *w, int revents) 2089ev_invoke (EV_P_ void *w, int revents)
1556{ 2090{
1557 EV_CB_INVOKE ((W)w, revents); 2091 EV_CB_INVOKE ((W)w, revents);
1558} 2092}
1559 2093
1560void inline_speed 2094unsigned int
1561call_pending (EV_P) 2095ev_pending_count (EV_P)
2096{
2097 int pri;
2098 unsigned int count = 0;
2099
2100 for (pri = NUMPRI; pri--; )
2101 count += pendingcnt [pri];
2102
2103 return count;
2104}
2105
2106void noinline
2107ev_invoke_pending (EV_P)
1562{ 2108{
1563 int pri; 2109 int pri;
1564 2110
1565 for (pri = NUMPRI; pri--; ) 2111 for (pri = NUMPRI; pri--; )
1566 while (pendingcnt [pri]) 2112 while (pendingcnt [pri])
1567 { 2113 {
1568 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2114 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1569 2115
1570 if (expect_true (p->w))
1571 {
1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1573
1574 p->w->pending = 0; 2116 p->w->pending = 0;
1575 EV_CB_INVOKE (p->w, p->events); 2117 EV_CB_INVOKE (p->w, p->events);
1576 } 2118 EV_FREQUENT_CHECK;
1577 } 2119 }
1578} 2120}
1579 2121
1580#if EV_IDLE_ENABLE 2122#if EV_IDLE_ENABLE
1581void inline_size 2123/* make idle watchers pending. this handles the "call-idle */
2124/* only when higher priorities are idle" logic */
2125inline_size void
1582idle_reify (EV_P) 2126idle_reify (EV_P)
1583{ 2127{
1584 if (expect_false (idleall)) 2128 if (expect_false (idleall))
1585 { 2129 {
1586 int pri; 2130 int pri;
1598 } 2142 }
1599 } 2143 }
1600} 2144}
1601#endif 2145#endif
1602 2146
1603void inline_size 2147/* make timers pending */
2148inline_size void
1604timers_reify (EV_P) 2149timers_reify (EV_P)
1605{ 2150{
2151 EV_FREQUENT_CHECK;
2152
1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2153 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1607 { 2154 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2155 do
1609
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1611
1612 /* first reschedule or stop timer */
1613 if (w->repeat)
1614 { 2156 {
2157 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2158
2159 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2160
2161 /* first reschedule or stop timer */
2162 if (w->repeat)
2163 {
1615 ev_at (w) += w->repeat; 2164 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now) 2165 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now; 2166 ev_at (w) = mn_now;
1618 2167
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2168 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620 2169
1621 ANHE_at_set (timers [HEAP0]); 2170 ANHE_at_cache (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0); 2171 downheap (timers, timercnt, HEAP0);
2172 }
2173 else
2174 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2175
2176 EV_FREQUENT_CHECK;
2177 feed_reverse (EV_A_ (W)w);
1623 } 2178 }
1624 else 2179 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 2180
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2181 feed_reverse_done (EV_A_ EV_TIMER);
1628 } 2182 }
1629} 2183}
1630 2184
1631#if EV_PERIODIC_ENABLE 2185#if EV_PERIODIC_ENABLE
1632void inline_size 2186/* make periodics pending */
2187inline_size void
1633periodics_reify (EV_P) 2188periodics_reify (EV_P)
1634{ 2189{
2190 EV_FREQUENT_CHECK;
2191
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2192 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1636 { 2193 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2194 int feed_count = 0;
1638 2195
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2196 do
1640
1641 /* first reschedule or stop timer */
1642 if (w->reschedule_cb)
1643 { 2197 {
2198 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2199
2200 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2201
2202 /* first reschedule or stop timer */
2203 if (w->reschedule_cb)
2204 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2205 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645 2206
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2207 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647 2208
1648 ANHE_at_set (periodics [HEAP0]); 2209 ANHE_at_cache (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0); 2210 downheap (periodics, periodiccnt, HEAP0);
2211 }
2212 else if (w->interval)
2213 {
2214 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2215 /* if next trigger time is not sufficiently in the future, put it there */
2216 /* this might happen because of floating point inexactness */
2217 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2218 {
2219 ev_at (w) += w->interval;
2220
2221 /* if interval is unreasonably low we might still have a time in the past */
2222 /* so correct this. this will make the periodic very inexact, but the user */
2223 /* has effectively asked to get triggered more often than possible */
2224 if (ev_at (w) < ev_rt_now)
2225 ev_at (w) = ev_rt_now;
2226 }
2227
2228 ANHE_at_cache (periodics [HEAP0]);
2229 downheap (periodics, periodiccnt, HEAP0);
2230 }
2231 else
2232 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2233
2234 EV_FREQUENT_CHECK;
2235 feed_reverse (EV_A_ (W)w);
1650 } 2236 }
1651 else if (w->interval) 2237 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1655 2238
1656 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) >= ev_rt_now));
1657
1658 ANHE_at_set (periodics [HEAP0]);
1659 downheap (periodics, periodiccnt, HEAP0);
1660 }
1661 else
1662 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1663
1664 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2239 feed_reverse_done (EV_A_ EV_PERIODIC);
1665 } 2240 }
1666} 2241}
1667 2242
2243/* simply recalculate all periodics */
2244/* TODO: maybe ensure that at least one event happens when jumping forward? */
1668static void noinline 2245static void noinline
1669periodics_reschedule (EV_P) 2246periodics_reschedule (EV_P)
1670{ 2247{
1671 int i; 2248 int i;
1672 2249
1678 if (w->reschedule_cb) 2255 if (w->reschedule_cb)
1679 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2256 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1680 else if (w->interval) 2257 else if (w->interval)
1681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2258 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1682 2259
1683 ANHE_at_set (periodics [i]); 2260 ANHE_at_cache (periodics [i]);
1684 } 2261 }
1685 2262
1686 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 2263 reheap (periodics, periodiccnt);
1687 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 2264}
2265#endif
2266
2267/* adjust all timers by a given offset */
2268static void noinline
2269timers_reschedule (EV_P_ ev_tstamp adjust)
2270{
2271 int i;
2272
1688 for (i = 0; i < periodiccnt; ++i) 2273 for (i = 0; i < timercnt; ++i)
1689 upheap (periodics, i + HEAP0); 2274 {
2275 ANHE *he = timers + i + HEAP0;
2276 ANHE_w (*he)->at += adjust;
2277 ANHE_at_cache (*he);
2278 }
1690} 2279}
1691#endif
1692 2280
1693void inline_speed 2281/* fetch new monotonic and realtime times from the kernel */
2282/* also detect if there was a timejump, and act accordingly */
2283inline_speed void
1694time_update (EV_P_ ev_tstamp max_block) 2284time_update (EV_P_ ev_tstamp max_block)
1695{ 2285{
1696 int i;
1697
1698#if EV_USE_MONOTONIC 2286#if EV_USE_MONOTONIC
1699 if (expect_true (have_monotonic)) 2287 if (expect_true (have_monotonic))
1700 { 2288 {
2289 int i;
1701 ev_tstamp odiff = rtmn_diff; 2290 ev_tstamp odiff = rtmn_diff;
1702 2291
1703 mn_now = get_clock (); 2292 mn_now = get_clock ();
1704 2293
1705 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2294 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1731 ev_rt_now = ev_time (); 2320 ev_rt_now = ev_time ();
1732 mn_now = get_clock (); 2321 mn_now = get_clock ();
1733 now_floor = mn_now; 2322 now_floor = mn_now;
1734 } 2323 }
1735 2324
2325 /* no timer adjustment, as the monotonic clock doesn't jump */
2326 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1736# if EV_PERIODIC_ENABLE 2327# if EV_PERIODIC_ENABLE
1737 periodics_reschedule (EV_A); 2328 periodics_reschedule (EV_A);
1738# endif 2329# endif
1739 /* no timer adjustment, as the monotonic clock doesn't jump */
1740 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1741 } 2330 }
1742 else 2331 else
1743#endif 2332#endif
1744 { 2333 {
1745 ev_rt_now = ev_time (); 2334 ev_rt_now = ev_time ();
1746 2335
1747 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2336 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1748 { 2337 {
2338 /* adjust timers. this is easy, as the offset is the same for all of them */
2339 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1749#if EV_PERIODIC_ENABLE 2340#if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A); 2341 periodics_reschedule (EV_A);
1751#endif 2342#endif
1752 /* adjust timers. this is easy, as the offset is the same for all of them */
1753 for (i = 0; i < timercnt; ++i)
1754 {
1755 ANHE *he = timers + i + HEAP0;
1756 ANHE_w (*he)->at += ev_rt_now - mn_now;
1757 ANHE_at_set (*he);
1758 }
1759 } 2343 }
1760 2344
1761 mn_now = ev_rt_now; 2345 mn_now = ev_rt_now;
1762 } 2346 }
1763} 2347}
1764 2348
1765void 2349void
1766ev_ref (EV_P)
1767{
1768 ++activecnt;
1769}
1770
1771void
1772ev_unref (EV_P)
1773{
1774 --activecnt;
1775}
1776
1777static int loop_done;
1778
1779void
1780ev_loop (EV_P_ int flags) 2350ev_run (EV_P_ int flags)
1781{ 2351{
2352#if EV_FEATURE_API
2353 ++loop_depth;
2354#endif
2355
2356 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2357
1782 loop_done = EVUNLOOP_CANCEL; 2358 loop_done = EVBREAK_CANCEL;
1783 2359
1784 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2360 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1785 2361
1786 do 2362 do
1787 { 2363 {
2364#if EV_VERIFY >= 2
2365 ev_verify (EV_A);
2366#endif
2367
1788#ifndef _WIN32 2368#ifndef _WIN32
1789 if (expect_false (curpid)) /* penalise the forking check even more */ 2369 if (expect_false (curpid)) /* penalise the forking check even more */
1790 if (expect_false (getpid () != curpid)) 2370 if (expect_false (getpid () != curpid))
1791 { 2371 {
1792 curpid = getpid (); 2372 curpid = getpid ();
1798 /* we might have forked, so queue fork handlers */ 2378 /* we might have forked, so queue fork handlers */
1799 if (expect_false (postfork)) 2379 if (expect_false (postfork))
1800 if (forkcnt) 2380 if (forkcnt)
1801 { 2381 {
1802 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2382 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1803 call_pending (EV_A); 2383 EV_INVOKE_PENDING;
1804 } 2384 }
1805#endif 2385#endif
1806 2386
2387#if EV_PREPARE_ENABLE
1807 /* queue prepare watchers (and execute them) */ 2388 /* queue prepare watchers (and execute them) */
1808 if (expect_false (preparecnt)) 2389 if (expect_false (preparecnt))
1809 { 2390 {
1810 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2391 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1811 call_pending (EV_A); 2392 EV_INVOKE_PENDING;
1812 } 2393 }
2394#endif
1813 2395
1814 if (expect_false (!activecnt)) 2396 if (expect_false (loop_done))
1815 break; 2397 break;
1816 2398
1817 /* we might have forked, so reify kernel state if necessary */ 2399 /* we might have forked, so reify kernel state if necessary */
1818 if (expect_false (postfork)) 2400 if (expect_false (postfork))
1819 loop_fork (EV_A); 2401 loop_fork (EV_A);
1824 /* calculate blocking time */ 2406 /* calculate blocking time */
1825 { 2407 {
1826 ev_tstamp waittime = 0.; 2408 ev_tstamp waittime = 0.;
1827 ev_tstamp sleeptime = 0.; 2409 ev_tstamp sleeptime = 0.;
1828 2410
2411 /* remember old timestamp for io_blocktime calculation */
2412 ev_tstamp prev_mn_now = mn_now;
2413
2414 /* update time to cancel out callback processing overhead */
2415 time_update (EV_A_ 1e100);
2416
1829 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2417 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1830 { 2418 {
1831 /* update time to cancel out callback processing overhead */
1832 time_update (EV_A_ 1e100);
1833
1834 waittime = MAX_BLOCKTIME; 2419 waittime = MAX_BLOCKTIME;
1835 2420
1836 if (timercnt) 2421 if (timercnt)
1837 { 2422 {
1838 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2423 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1845 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2430 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1846 if (waittime > to) waittime = to; 2431 if (waittime > to) waittime = to;
1847 } 2432 }
1848#endif 2433#endif
1849 2434
2435 /* don't let timeouts decrease the waittime below timeout_blocktime */
1850 if (expect_false (waittime < timeout_blocktime)) 2436 if (expect_false (waittime < timeout_blocktime))
1851 waittime = timeout_blocktime; 2437 waittime = timeout_blocktime;
1852 2438
1853 sleeptime = waittime - backend_fudge; 2439 /* extra check because io_blocktime is commonly 0 */
1854
1855 if (expect_true (sleeptime > io_blocktime)) 2440 if (expect_false (io_blocktime))
1856 sleeptime = io_blocktime;
1857
1858 if (sleeptime)
1859 { 2441 {
2442 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2443
2444 if (sleeptime > waittime - backend_fudge)
2445 sleeptime = waittime - backend_fudge;
2446
2447 if (expect_true (sleeptime > 0.))
2448 {
1860 ev_sleep (sleeptime); 2449 ev_sleep (sleeptime);
1861 waittime -= sleeptime; 2450 waittime -= sleeptime;
2451 }
1862 } 2452 }
1863 } 2453 }
1864 2454
2455#if EV_FEATURE_API
1865 ++loop_count; 2456 ++loop_count;
2457#endif
2458 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1866 backend_poll (EV_A_ waittime); 2459 backend_poll (EV_A_ waittime);
2460 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1867 2461
1868 /* update ev_rt_now, do magic */ 2462 /* update ev_rt_now, do magic */
1869 time_update (EV_A_ waittime + sleeptime); 2463 time_update (EV_A_ waittime + sleeptime);
1870 } 2464 }
1871 2465
1878#if EV_IDLE_ENABLE 2472#if EV_IDLE_ENABLE
1879 /* queue idle watchers unless other events are pending */ 2473 /* queue idle watchers unless other events are pending */
1880 idle_reify (EV_A); 2474 idle_reify (EV_A);
1881#endif 2475#endif
1882 2476
2477#if EV_CHECK_ENABLE
1883 /* queue check watchers, to be executed first */ 2478 /* queue check watchers, to be executed first */
1884 if (expect_false (checkcnt)) 2479 if (expect_false (checkcnt))
1885 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2480 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2481#endif
1886 2482
1887 call_pending (EV_A); 2483 EV_INVOKE_PENDING;
1888 } 2484 }
1889 while (expect_true ( 2485 while (expect_true (
1890 activecnt 2486 activecnt
1891 && !loop_done 2487 && !loop_done
1892 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2488 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1893 )); 2489 ));
1894 2490
1895 if (loop_done == EVUNLOOP_ONE) 2491 if (loop_done == EVBREAK_ONE)
1896 loop_done = EVUNLOOP_CANCEL; 2492 loop_done = EVBREAK_CANCEL;
1897}
1898 2493
2494#if EV_FEATURE_API
2495 --loop_depth;
2496#endif
2497}
2498
1899void 2499void
1900ev_unloop (EV_P_ int how) 2500ev_break (EV_P_ int how)
1901{ 2501{
1902 loop_done = how; 2502 loop_done = how;
1903} 2503}
1904 2504
2505void
2506ev_ref (EV_P)
2507{
2508 ++activecnt;
2509}
2510
2511void
2512ev_unref (EV_P)
2513{
2514 --activecnt;
2515}
2516
2517void
2518ev_now_update (EV_P)
2519{
2520 time_update (EV_A_ 1e100);
2521}
2522
2523void
2524ev_suspend (EV_P)
2525{
2526 ev_now_update (EV_A);
2527}
2528
2529void
2530ev_resume (EV_P)
2531{
2532 ev_tstamp mn_prev = mn_now;
2533
2534 ev_now_update (EV_A);
2535 timers_reschedule (EV_A_ mn_now - mn_prev);
2536#if EV_PERIODIC_ENABLE
2537 /* TODO: really do this? */
2538 periodics_reschedule (EV_A);
2539#endif
2540}
2541
1905/*****************************************************************************/ 2542/*****************************************************************************/
2543/* singly-linked list management, used when the expected list length is short */
1906 2544
1907void inline_size 2545inline_size void
1908wlist_add (WL *head, WL elem) 2546wlist_add (WL *head, WL elem)
1909{ 2547{
1910 elem->next = *head; 2548 elem->next = *head;
1911 *head = elem; 2549 *head = elem;
1912} 2550}
1913 2551
1914void inline_size 2552inline_size void
1915wlist_del (WL *head, WL elem) 2553wlist_del (WL *head, WL elem)
1916{ 2554{
1917 while (*head) 2555 while (*head)
1918 { 2556 {
1919 if (*head == elem) 2557 if (expect_true (*head == elem))
1920 { 2558 {
1921 *head = elem->next; 2559 *head = elem->next;
1922 return; 2560 break;
1923 } 2561 }
1924 2562
1925 head = &(*head)->next; 2563 head = &(*head)->next;
1926 } 2564 }
1927} 2565}
1928 2566
1929void inline_speed 2567/* internal, faster, version of ev_clear_pending */
2568inline_speed void
1930clear_pending (EV_P_ W w) 2569clear_pending (EV_P_ W w)
1931{ 2570{
1932 if (w->pending) 2571 if (w->pending)
1933 { 2572 {
1934 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2573 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1935 w->pending = 0; 2574 w->pending = 0;
1936 } 2575 }
1937} 2576}
1938 2577
1939int 2578int
1943 int pending = w_->pending; 2582 int pending = w_->pending;
1944 2583
1945 if (expect_true (pending)) 2584 if (expect_true (pending))
1946 { 2585 {
1947 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2586 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2587 p->w = (W)&pending_w;
1948 w_->pending = 0; 2588 w_->pending = 0;
1949 p->w = 0;
1950 return p->events; 2589 return p->events;
1951 } 2590 }
1952 else 2591 else
1953 return 0; 2592 return 0;
1954} 2593}
1955 2594
1956void inline_size 2595inline_size void
1957pri_adjust (EV_P_ W w) 2596pri_adjust (EV_P_ W w)
1958{ 2597{
1959 int pri = w->priority; 2598 int pri = ev_priority (w);
1960 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2599 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1961 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2600 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1962 w->priority = pri; 2601 ev_set_priority (w, pri);
1963} 2602}
1964 2603
1965void inline_speed 2604inline_speed void
1966ev_start (EV_P_ W w, int active) 2605ev_start (EV_P_ W w, int active)
1967{ 2606{
1968 pri_adjust (EV_A_ w); 2607 pri_adjust (EV_A_ w);
1969 w->active = active; 2608 w->active = active;
1970 ev_ref (EV_A); 2609 ev_ref (EV_A);
1971} 2610}
1972 2611
1973void inline_size 2612inline_size void
1974ev_stop (EV_P_ W w) 2613ev_stop (EV_P_ W w)
1975{ 2614{
1976 ev_unref (EV_A); 2615 ev_unref (EV_A);
1977 w->active = 0; 2616 w->active = 0;
1978} 2617}
1985 int fd = w->fd; 2624 int fd = w->fd;
1986 2625
1987 if (expect_false (ev_is_active (w))) 2626 if (expect_false (ev_is_active (w)))
1988 return; 2627 return;
1989 2628
1990 assert (("ev_io_start called with negative fd", fd >= 0)); 2629 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2630 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2631
2632 EV_FREQUENT_CHECK;
1991 2633
1992 ev_start (EV_A_ (W)w, 1); 2634 ev_start (EV_A_ (W)w, 1);
1993 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2635 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1994 wlist_add (&anfds[fd].head, (WL)w); 2636 wlist_add (&anfds[fd].head, (WL)w);
1995 2637
1996 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2638 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1997 w->events &= ~EV_IOFDSET; 2639 w->events &= ~EV__IOFDSET;
2640
2641 EV_FREQUENT_CHECK;
1998} 2642}
1999 2643
2000void noinline 2644void noinline
2001ev_io_stop (EV_P_ ev_io *w) 2645ev_io_stop (EV_P_ ev_io *w)
2002{ 2646{
2003 clear_pending (EV_A_ (W)w); 2647 clear_pending (EV_A_ (W)w);
2004 if (expect_false (!ev_is_active (w))) 2648 if (expect_false (!ev_is_active (w)))
2005 return; 2649 return;
2006 2650
2007 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2651 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2652
2653 EV_FREQUENT_CHECK;
2008 2654
2009 wlist_del (&anfds[w->fd].head, (WL)w); 2655 wlist_del (&anfds[w->fd].head, (WL)w);
2010 ev_stop (EV_A_ (W)w); 2656 ev_stop (EV_A_ (W)w);
2011 2657
2012 fd_change (EV_A_ w->fd, 1); 2658 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2659
2660 EV_FREQUENT_CHECK;
2013} 2661}
2014 2662
2015void noinline 2663void noinline
2016ev_timer_start (EV_P_ ev_timer *w) 2664ev_timer_start (EV_P_ ev_timer *w)
2017{ 2665{
2018 if (expect_false (ev_is_active (w))) 2666 if (expect_false (ev_is_active (w)))
2019 return; 2667 return;
2020 2668
2021 ev_at (w) += mn_now; 2669 ev_at (w) += mn_now;
2022 2670
2023 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2671 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2024 2672
2673 EV_FREQUENT_CHECK;
2674
2675 ++timercnt;
2025 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2676 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2026 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2677 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2027 ANHE_w (timers [ev_active (w)]) = (WT)w; 2678 ANHE_w (timers [ev_active (w)]) = (WT)w;
2028 ANHE_at_set (timers [ev_active (w)]); 2679 ANHE_at_cache (timers [ev_active (w)]);
2029 upheap (timers, ev_active (w)); 2680 upheap (timers, ev_active (w));
2030 2681
2682 EV_FREQUENT_CHECK;
2683
2031 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2684 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2032} 2685}
2033 2686
2034void noinline 2687void noinline
2035ev_timer_stop (EV_P_ ev_timer *w) 2688ev_timer_stop (EV_P_ ev_timer *w)
2036{ 2689{
2037 clear_pending (EV_A_ (W)w); 2690 clear_pending (EV_A_ (W)w);
2038 if (expect_false (!ev_is_active (w))) 2691 if (expect_false (!ev_is_active (w)))
2039 return; 2692 return;
2040 2693
2694 EV_FREQUENT_CHECK;
2695
2041 { 2696 {
2042 int active = ev_active (w); 2697 int active = ev_active (w);
2043 2698
2044 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2699 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2045 2700
2701 --timercnt;
2702
2046 if (expect_true (active < timercnt + HEAP0 - 1)) 2703 if (expect_true (active < timercnt + HEAP0))
2047 { 2704 {
2048 timers [active] = timers [timercnt + HEAP0 - 1]; 2705 timers [active] = timers [timercnt + HEAP0];
2049 adjustheap (timers, timercnt, active); 2706 adjustheap (timers, timercnt, active);
2050 } 2707 }
2051
2052 --timercnt;
2053 } 2708 }
2054 2709
2055 ev_at (w) -= mn_now; 2710 ev_at (w) -= mn_now;
2056 2711
2057 ev_stop (EV_A_ (W)w); 2712 ev_stop (EV_A_ (W)w);
2713
2714 EV_FREQUENT_CHECK;
2058} 2715}
2059 2716
2060void noinline 2717void noinline
2061ev_timer_again (EV_P_ ev_timer *w) 2718ev_timer_again (EV_P_ ev_timer *w)
2062{ 2719{
2720 EV_FREQUENT_CHECK;
2721
2063 if (ev_is_active (w)) 2722 if (ev_is_active (w))
2064 { 2723 {
2065 if (w->repeat) 2724 if (w->repeat)
2066 { 2725 {
2067 ev_at (w) = mn_now + w->repeat; 2726 ev_at (w) = mn_now + w->repeat;
2068 ANHE_at_set (timers [ev_active (w)]); 2727 ANHE_at_cache (timers [ev_active (w)]);
2069 adjustheap (timers, timercnt, ev_active (w)); 2728 adjustheap (timers, timercnt, ev_active (w));
2070 } 2729 }
2071 else 2730 else
2072 ev_timer_stop (EV_A_ w); 2731 ev_timer_stop (EV_A_ w);
2073 } 2732 }
2074 else if (w->repeat) 2733 else if (w->repeat)
2075 { 2734 {
2076 ev_at (w) = w->repeat; 2735 ev_at (w) = w->repeat;
2077 ev_timer_start (EV_A_ w); 2736 ev_timer_start (EV_A_ w);
2078 } 2737 }
2738
2739 EV_FREQUENT_CHECK;
2740}
2741
2742ev_tstamp
2743ev_timer_remaining (EV_P_ ev_timer *w)
2744{
2745 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2079} 2746}
2080 2747
2081#if EV_PERIODIC_ENABLE 2748#if EV_PERIODIC_ENABLE
2082void noinline 2749void noinline
2083ev_periodic_start (EV_P_ ev_periodic *w) 2750ev_periodic_start (EV_P_ ev_periodic *w)
2087 2754
2088 if (w->reschedule_cb) 2755 if (w->reschedule_cb)
2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2756 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2090 else if (w->interval) 2757 else if (w->interval)
2091 { 2758 {
2092 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2759 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2093 /* this formula differs from the one in periodic_reify because we do not always round up */ 2760 /* this formula differs from the one in periodic_reify because we do not always round up */
2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2761 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 } 2762 }
2096 else 2763 else
2097 ev_at (w) = w->offset; 2764 ev_at (w) = w->offset;
2098 2765
2766 EV_FREQUENT_CHECK;
2767
2768 ++periodiccnt;
2099 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2769 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2100 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2770 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2101 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2771 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2102 ANHE_at_set (periodics [ev_active (w)]); 2772 ANHE_at_cache (periodics [ev_active (w)]);
2103 upheap (periodics, ev_active (w)); 2773 upheap (periodics, ev_active (w));
2104 2774
2775 EV_FREQUENT_CHECK;
2776
2105 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2777 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2106} 2778}
2107 2779
2108void noinline 2780void noinline
2109ev_periodic_stop (EV_P_ ev_periodic *w) 2781ev_periodic_stop (EV_P_ ev_periodic *w)
2110{ 2782{
2111 clear_pending (EV_A_ (W)w); 2783 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w))) 2784 if (expect_false (!ev_is_active (w)))
2113 return; 2785 return;
2114 2786
2787 EV_FREQUENT_CHECK;
2788
2115 { 2789 {
2116 int active = ev_active (w); 2790 int active = ev_active (w);
2117 2791
2118 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2792 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2119 2793
2794 --periodiccnt;
2795
2120 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2796 if (expect_true (active < periodiccnt + HEAP0))
2121 { 2797 {
2122 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2798 periodics [active] = periodics [periodiccnt + HEAP0];
2123 adjustheap (periodics, periodiccnt, active); 2799 adjustheap (periodics, periodiccnt, active);
2124 } 2800 }
2125
2126 --periodiccnt;
2127 } 2801 }
2128 2802
2129 ev_stop (EV_A_ (W)w); 2803 ev_stop (EV_A_ (W)w);
2804
2805 EV_FREQUENT_CHECK;
2130} 2806}
2131 2807
2132void noinline 2808void noinline
2133ev_periodic_again (EV_P_ ev_periodic *w) 2809ev_periodic_again (EV_P_ ev_periodic *w)
2134{ 2810{
2140 2816
2141#ifndef SA_RESTART 2817#ifndef SA_RESTART
2142# define SA_RESTART 0 2818# define SA_RESTART 0
2143#endif 2819#endif
2144 2820
2821#if EV_SIGNAL_ENABLE
2822
2145void noinline 2823void noinline
2146ev_signal_start (EV_P_ ev_signal *w) 2824ev_signal_start (EV_P_ ev_signal *w)
2147{ 2825{
2148#if EV_MULTIPLICITY
2149 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2150#endif
2151 if (expect_false (ev_is_active (w))) 2826 if (expect_false (ev_is_active (w)))
2152 return; 2827 return;
2153 2828
2154 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2829 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2155 2830
2156 evpipe_init (EV_A); 2831#if EV_MULTIPLICITY
2832 assert (("libev: a signal must not be attached to two different loops",
2833 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2157 2834
2835 signals [w->signum - 1].loop = EV_A;
2836#endif
2837
2838 EV_FREQUENT_CHECK;
2839
2840#if EV_USE_SIGNALFD
2841 if (sigfd == -2)
2158 { 2842 {
2159#ifndef _WIN32 2843 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2160 sigset_t full, prev; 2844 if (sigfd < 0 && errno == EINVAL)
2161 sigfillset (&full); 2845 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2162 sigprocmask (SIG_SETMASK, &full, &prev);
2163#endif
2164 2846
2165 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2847 if (sigfd >= 0)
2848 {
2849 fd_intern (sigfd); /* doing it twice will not hurt */
2166 2850
2167#ifndef _WIN32 2851 sigemptyset (&sigfd_set);
2168 sigprocmask (SIG_SETMASK, &prev, 0); 2852
2169#endif 2853 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2854 ev_set_priority (&sigfd_w, EV_MAXPRI);
2855 ev_io_start (EV_A_ &sigfd_w);
2856 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2857 }
2170 } 2858 }
2859
2860 if (sigfd >= 0)
2861 {
2862 /* TODO: check .head */
2863 sigaddset (&sigfd_set, w->signum);
2864 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2865
2866 signalfd (sigfd, &sigfd_set, 0);
2867 }
2868#endif
2171 2869
2172 ev_start (EV_A_ (W)w, 1); 2870 ev_start (EV_A_ (W)w, 1);
2173 wlist_add (&signals [w->signum - 1].head, (WL)w); 2871 wlist_add (&signals [w->signum - 1].head, (WL)w);
2174 2872
2175 if (!((WL)w)->next) 2873 if (!((WL)w)->next)
2874# if EV_USE_SIGNALFD
2875 if (sigfd < 0) /*TODO*/
2876# endif
2176 { 2877 {
2177#if _WIN32 2878# ifdef _WIN32
2879 evpipe_init (EV_A);
2880
2178 signal (w->signum, ev_sighandler); 2881 signal (w->signum, ev_sighandler);
2179#else 2882# else
2180 struct sigaction sa; 2883 struct sigaction sa;
2884
2885 evpipe_init (EV_A);
2886
2181 sa.sa_handler = ev_sighandler; 2887 sa.sa_handler = ev_sighandler;
2182 sigfillset (&sa.sa_mask); 2888 sigfillset (&sa.sa_mask);
2183 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2889 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2184 sigaction (w->signum, &sa, 0); 2890 sigaction (w->signum, &sa, 0);
2891
2892 if (origflags & EVFLAG_NOSIGMASK)
2893 {
2894 sigemptyset (&sa.sa_mask);
2895 sigaddset (&sa.sa_mask, w->signum);
2896 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2897 }
2185#endif 2898#endif
2186 } 2899 }
2900
2901 EV_FREQUENT_CHECK;
2187} 2902}
2188 2903
2189void noinline 2904void noinline
2190ev_signal_stop (EV_P_ ev_signal *w) 2905ev_signal_stop (EV_P_ ev_signal *w)
2191{ 2906{
2192 clear_pending (EV_A_ (W)w); 2907 clear_pending (EV_A_ (W)w);
2193 if (expect_false (!ev_is_active (w))) 2908 if (expect_false (!ev_is_active (w)))
2194 return; 2909 return;
2195 2910
2911 EV_FREQUENT_CHECK;
2912
2196 wlist_del (&signals [w->signum - 1].head, (WL)w); 2913 wlist_del (&signals [w->signum - 1].head, (WL)w);
2197 ev_stop (EV_A_ (W)w); 2914 ev_stop (EV_A_ (W)w);
2198 2915
2199 if (!signals [w->signum - 1].head) 2916 if (!signals [w->signum - 1].head)
2917 {
2918#if EV_MULTIPLICITY
2919 signals [w->signum - 1].loop = 0; /* unattach from signal */
2920#endif
2921#if EV_USE_SIGNALFD
2922 if (sigfd >= 0)
2923 {
2924 sigset_t ss;
2925
2926 sigemptyset (&ss);
2927 sigaddset (&ss, w->signum);
2928 sigdelset (&sigfd_set, w->signum);
2929
2930 signalfd (sigfd, &sigfd_set, 0);
2931 sigprocmask (SIG_UNBLOCK, &ss, 0);
2932 }
2933 else
2934#endif
2200 signal (w->signum, SIG_DFL); 2935 signal (w->signum, SIG_DFL);
2936 }
2937
2938 EV_FREQUENT_CHECK;
2201} 2939}
2940
2941#endif
2942
2943#if EV_CHILD_ENABLE
2202 2944
2203void 2945void
2204ev_child_start (EV_P_ ev_child *w) 2946ev_child_start (EV_P_ ev_child *w)
2205{ 2947{
2206#if EV_MULTIPLICITY 2948#if EV_MULTIPLICITY
2207 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2949 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2208#endif 2950#endif
2209 if (expect_false (ev_is_active (w))) 2951 if (expect_false (ev_is_active (w)))
2210 return; 2952 return;
2211 2953
2954 EV_FREQUENT_CHECK;
2955
2212 ev_start (EV_A_ (W)w, 1); 2956 ev_start (EV_A_ (W)w, 1);
2213 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2957 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2958
2959 EV_FREQUENT_CHECK;
2214} 2960}
2215 2961
2216void 2962void
2217ev_child_stop (EV_P_ ev_child *w) 2963ev_child_stop (EV_P_ ev_child *w)
2218{ 2964{
2219 clear_pending (EV_A_ (W)w); 2965 clear_pending (EV_A_ (W)w);
2220 if (expect_false (!ev_is_active (w))) 2966 if (expect_false (!ev_is_active (w)))
2221 return; 2967 return;
2222 2968
2969 EV_FREQUENT_CHECK;
2970
2223 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2971 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2224 ev_stop (EV_A_ (W)w); 2972 ev_stop (EV_A_ (W)w);
2973
2974 EV_FREQUENT_CHECK;
2225} 2975}
2976
2977#endif
2226 2978
2227#if EV_STAT_ENABLE 2979#if EV_STAT_ENABLE
2228 2980
2229# ifdef _WIN32 2981# ifdef _WIN32
2230# undef lstat 2982# undef lstat
2231# define lstat(a,b) _stati64 (a,b) 2983# define lstat(a,b) _stati64 (a,b)
2232# endif 2984# endif
2233 2985
2234#define DEF_STAT_INTERVAL 5.0074891 2986#define DEF_STAT_INTERVAL 5.0074891
2987#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2235#define MIN_STAT_INTERVAL 0.1074891 2988#define MIN_STAT_INTERVAL 0.1074891
2236 2989
2237static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2990static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2238 2991
2239#if EV_USE_INOTIFY 2992#if EV_USE_INOTIFY
2240# define EV_INOTIFY_BUFSIZE 8192 2993
2994/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2995# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2241 2996
2242static void noinline 2997static void noinline
2243infy_add (EV_P_ ev_stat *w) 2998infy_add (EV_P_ ev_stat *w)
2244{ 2999{
2245 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3000 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2246 3001
2247 if (w->wd < 0) 3002 if (w->wd >= 0)
3003 {
3004 struct statfs sfs;
3005
3006 /* now local changes will be tracked by inotify, but remote changes won't */
3007 /* unless the filesystem is known to be local, we therefore still poll */
3008 /* also do poll on <2.6.25, but with normal frequency */
3009
3010 if (!fs_2625)
3011 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3012 else if (!statfs (w->path, &sfs)
3013 && (sfs.f_type == 0x1373 /* devfs */
3014 || sfs.f_type == 0xEF53 /* ext2/3 */
3015 || sfs.f_type == 0x3153464a /* jfs */
3016 || sfs.f_type == 0x52654973 /* reiser3 */
3017 || sfs.f_type == 0x01021994 /* tempfs */
3018 || sfs.f_type == 0x58465342 /* xfs */))
3019 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3020 else
3021 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2248 { 3022 }
2249 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3023 else
3024 {
3025 /* can't use inotify, continue to stat */
3026 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2250 3027
2251 /* monitor some parent directory for speedup hints */ 3028 /* if path is not there, monitor some parent directory for speedup hints */
2252 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3029 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2253 /* but an efficiency issue only */ 3030 /* but an efficiency issue only */
2254 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3031 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2255 { 3032 {
2256 char path [4096]; 3033 char path [4096];
2257 strcpy (path, w->path); 3034 strcpy (path, w->path);
2261 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3038 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2262 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3039 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2263 3040
2264 char *pend = strrchr (path, '/'); 3041 char *pend = strrchr (path, '/');
2265 3042
2266 if (!pend) 3043 if (!pend || pend == path)
2267 break; /* whoops, no '/', complain to your admin */ 3044 break;
2268 3045
2269 *pend = 0; 3046 *pend = 0;
2270 w->wd = inotify_add_watch (fs_fd, path, mask); 3047 w->wd = inotify_add_watch (fs_fd, path, mask);
2271 } 3048 }
2272 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3049 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2273 } 3050 }
2274 } 3051 }
2275 else
2276 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2277 3052
2278 if (w->wd >= 0) 3053 if (w->wd >= 0)
2279 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3054 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3055
3056 /* now re-arm timer, if required */
3057 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3058 ev_timer_again (EV_A_ &w->timer);
3059 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2280} 3060}
2281 3061
2282static void noinline 3062static void noinline
2283infy_del (EV_P_ ev_stat *w) 3063infy_del (EV_P_ ev_stat *w)
2284{ 3064{
2287 3067
2288 if (wd < 0) 3068 if (wd < 0)
2289 return; 3069 return;
2290 3070
2291 w->wd = -2; 3071 w->wd = -2;
2292 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3072 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2293 wlist_del (&fs_hash [slot].head, (WL)w); 3073 wlist_del (&fs_hash [slot].head, (WL)w);
2294 3074
2295 /* remove this watcher, if others are watching it, they will rearm */ 3075 /* remove this watcher, if others are watching it, they will rearm */
2296 inotify_rm_watch (fs_fd, wd); 3076 inotify_rm_watch (fs_fd, wd);
2297} 3077}
2298 3078
2299static void noinline 3079static void noinline
2300infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3080infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2301{ 3081{
2302 if (slot < 0) 3082 if (slot < 0)
2303 /* overflow, need to check for all hahs slots */ 3083 /* overflow, need to check for all hash slots */
2304 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3084 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2305 infy_wd (EV_A_ slot, wd, ev); 3085 infy_wd (EV_A_ slot, wd, ev);
2306 else 3086 else
2307 { 3087 {
2308 WL w_; 3088 WL w_;
2309 3089
2310 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3090 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2311 { 3091 {
2312 ev_stat *w = (ev_stat *)w_; 3092 ev_stat *w = (ev_stat *)w_;
2313 w_ = w_->next; /* lets us remove this watcher and all before it */ 3093 w_ = w_->next; /* lets us remove this watcher and all before it */
2314 3094
2315 if (w->wd == wd || wd == -1) 3095 if (w->wd == wd || wd == -1)
2316 { 3096 {
2317 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3097 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2318 { 3098 {
3099 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2319 w->wd = -1; 3100 w->wd = -1;
2320 infy_add (EV_A_ w); /* re-add, no matter what */ 3101 infy_add (EV_A_ w); /* re-add, no matter what */
2321 } 3102 }
2322 3103
2323 stat_timer_cb (EV_A_ &w->timer, 0); 3104 stat_timer_cb (EV_A_ &w->timer, 0);
2328 3109
2329static void 3110static void
2330infy_cb (EV_P_ ev_io *w, int revents) 3111infy_cb (EV_P_ ev_io *w, int revents)
2331{ 3112{
2332 char buf [EV_INOTIFY_BUFSIZE]; 3113 char buf [EV_INOTIFY_BUFSIZE];
2333 struct inotify_event *ev = (struct inotify_event *)buf;
2334 int ofs; 3114 int ofs;
2335 int len = read (fs_fd, buf, sizeof (buf)); 3115 int len = read (fs_fd, buf, sizeof (buf));
2336 3116
2337 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3117 for (ofs = 0; ofs < len; )
3118 {
3119 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2338 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3120 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3121 ofs += sizeof (struct inotify_event) + ev->len;
3122 }
2339} 3123}
2340 3124
2341void inline_size 3125inline_size void
3126ev_check_2625 (EV_P)
3127{
3128 /* kernels < 2.6.25 are borked
3129 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3130 */
3131 if (ev_linux_version () < 0x020619)
3132 return;
3133
3134 fs_2625 = 1;
3135}
3136
3137inline_size int
3138infy_newfd (void)
3139{
3140#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3141 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3142 if (fd >= 0)
3143 return fd;
3144#endif
3145 return inotify_init ();
3146}
3147
3148inline_size void
2342infy_init (EV_P) 3149infy_init (EV_P)
2343{ 3150{
2344 if (fs_fd != -2) 3151 if (fs_fd != -2)
2345 return; 3152 return;
2346 3153
3154 fs_fd = -1;
3155
3156 ev_check_2625 (EV_A);
3157
2347 fs_fd = inotify_init (); 3158 fs_fd = infy_newfd ();
2348 3159
2349 if (fs_fd >= 0) 3160 if (fs_fd >= 0)
2350 { 3161 {
3162 fd_intern (fs_fd);
2351 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3163 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2352 ev_set_priority (&fs_w, EV_MAXPRI); 3164 ev_set_priority (&fs_w, EV_MAXPRI);
2353 ev_io_start (EV_A_ &fs_w); 3165 ev_io_start (EV_A_ &fs_w);
3166 ev_unref (EV_A);
2354 } 3167 }
2355} 3168}
2356 3169
2357void inline_size 3170inline_size void
2358infy_fork (EV_P) 3171infy_fork (EV_P)
2359{ 3172{
2360 int slot; 3173 int slot;
2361 3174
2362 if (fs_fd < 0) 3175 if (fs_fd < 0)
2363 return; 3176 return;
2364 3177
3178 ev_ref (EV_A);
3179 ev_io_stop (EV_A_ &fs_w);
2365 close (fs_fd); 3180 close (fs_fd);
2366 fs_fd = inotify_init (); 3181 fs_fd = infy_newfd ();
2367 3182
3183 if (fs_fd >= 0)
3184 {
3185 fd_intern (fs_fd);
3186 ev_io_set (&fs_w, fs_fd, EV_READ);
3187 ev_io_start (EV_A_ &fs_w);
3188 ev_unref (EV_A);
3189 }
3190
2368 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3191 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2369 { 3192 {
2370 WL w_ = fs_hash [slot].head; 3193 WL w_ = fs_hash [slot].head;
2371 fs_hash [slot].head = 0; 3194 fs_hash [slot].head = 0;
2372 3195
2373 while (w_) 3196 while (w_)
2378 w->wd = -1; 3201 w->wd = -1;
2379 3202
2380 if (fs_fd >= 0) 3203 if (fs_fd >= 0)
2381 infy_add (EV_A_ w); /* re-add, no matter what */ 3204 infy_add (EV_A_ w); /* re-add, no matter what */
2382 else 3205 else
3206 {
3207 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3208 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2383 ev_timer_start (EV_A_ &w->timer); 3209 ev_timer_again (EV_A_ &w->timer);
3210 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3211 }
2384 } 3212 }
2385
2386 } 3213 }
2387} 3214}
2388 3215
3216#endif
3217
3218#ifdef _WIN32
3219# define EV_LSTAT(p,b) _stati64 (p, b)
3220#else
3221# define EV_LSTAT(p,b) lstat (p, b)
2389#endif 3222#endif
2390 3223
2391void 3224void
2392ev_stat_stat (EV_P_ ev_stat *w) 3225ev_stat_stat (EV_P_ ev_stat *w)
2393{ 3226{
2400static void noinline 3233static void noinline
2401stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3234stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2402{ 3235{
2403 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3236 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2404 3237
2405 /* we copy this here each the time so that */ 3238 ev_statdata prev = w->attr;
2406 /* prev has the old value when the callback gets invoked */
2407 w->prev = w->attr;
2408 ev_stat_stat (EV_A_ w); 3239 ev_stat_stat (EV_A_ w);
2409 3240
2410 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3241 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2411 if ( 3242 if (
2412 w->prev.st_dev != w->attr.st_dev 3243 prev.st_dev != w->attr.st_dev
2413 || w->prev.st_ino != w->attr.st_ino 3244 || prev.st_ino != w->attr.st_ino
2414 || w->prev.st_mode != w->attr.st_mode 3245 || prev.st_mode != w->attr.st_mode
2415 || w->prev.st_nlink != w->attr.st_nlink 3246 || prev.st_nlink != w->attr.st_nlink
2416 || w->prev.st_uid != w->attr.st_uid 3247 || prev.st_uid != w->attr.st_uid
2417 || w->prev.st_gid != w->attr.st_gid 3248 || prev.st_gid != w->attr.st_gid
2418 || w->prev.st_rdev != w->attr.st_rdev 3249 || prev.st_rdev != w->attr.st_rdev
2419 || w->prev.st_size != w->attr.st_size 3250 || prev.st_size != w->attr.st_size
2420 || w->prev.st_atime != w->attr.st_atime 3251 || prev.st_atime != w->attr.st_atime
2421 || w->prev.st_mtime != w->attr.st_mtime 3252 || prev.st_mtime != w->attr.st_mtime
2422 || w->prev.st_ctime != w->attr.st_ctime 3253 || prev.st_ctime != w->attr.st_ctime
2423 ) { 3254 ) {
3255 /* we only update w->prev on actual differences */
3256 /* in case we test more often than invoke the callback, */
3257 /* to ensure that prev is always different to attr */
3258 w->prev = prev;
3259
2424 #if EV_USE_INOTIFY 3260 #if EV_USE_INOTIFY
3261 if (fs_fd >= 0)
3262 {
2425 infy_del (EV_A_ w); 3263 infy_del (EV_A_ w);
2426 infy_add (EV_A_ w); 3264 infy_add (EV_A_ w);
2427 ev_stat_stat (EV_A_ w); /* avoid race... */ 3265 ev_stat_stat (EV_A_ w); /* avoid race... */
3266 }
2428 #endif 3267 #endif
2429 3268
2430 ev_feed_event (EV_A_ w, EV_STAT); 3269 ev_feed_event (EV_A_ w, EV_STAT);
2431 } 3270 }
2432} 3271}
2435ev_stat_start (EV_P_ ev_stat *w) 3274ev_stat_start (EV_P_ ev_stat *w)
2436{ 3275{
2437 if (expect_false (ev_is_active (w))) 3276 if (expect_false (ev_is_active (w)))
2438 return; 3277 return;
2439 3278
2440 /* since we use memcmp, we need to clear any padding data etc. */
2441 memset (&w->prev, 0, sizeof (ev_statdata));
2442 memset (&w->attr, 0, sizeof (ev_statdata));
2443
2444 ev_stat_stat (EV_A_ w); 3279 ev_stat_stat (EV_A_ w);
2445 3280
3281 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2446 if (w->interval < MIN_STAT_INTERVAL) 3282 w->interval = MIN_STAT_INTERVAL;
2447 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2448 3283
2449 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3284 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2450 ev_set_priority (&w->timer, ev_priority (w)); 3285 ev_set_priority (&w->timer, ev_priority (w));
2451 3286
2452#if EV_USE_INOTIFY 3287#if EV_USE_INOTIFY
2453 infy_init (EV_A); 3288 infy_init (EV_A);
2454 3289
2455 if (fs_fd >= 0) 3290 if (fs_fd >= 0)
2456 infy_add (EV_A_ w); 3291 infy_add (EV_A_ w);
2457 else 3292 else
2458#endif 3293#endif
3294 {
2459 ev_timer_start (EV_A_ &w->timer); 3295 ev_timer_again (EV_A_ &w->timer);
3296 ev_unref (EV_A);
3297 }
2460 3298
2461 ev_start (EV_A_ (W)w, 1); 3299 ev_start (EV_A_ (W)w, 1);
3300
3301 EV_FREQUENT_CHECK;
2462} 3302}
2463 3303
2464void 3304void
2465ev_stat_stop (EV_P_ ev_stat *w) 3305ev_stat_stop (EV_P_ ev_stat *w)
2466{ 3306{
2467 clear_pending (EV_A_ (W)w); 3307 clear_pending (EV_A_ (W)w);
2468 if (expect_false (!ev_is_active (w))) 3308 if (expect_false (!ev_is_active (w)))
2469 return; 3309 return;
2470 3310
3311 EV_FREQUENT_CHECK;
3312
2471#if EV_USE_INOTIFY 3313#if EV_USE_INOTIFY
2472 infy_del (EV_A_ w); 3314 infy_del (EV_A_ w);
2473#endif 3315#endif
3316
3317 if (ev_is_active (&w->timer))
3318 {
3319 ev_ref (EV_A);
2474 ev_timer_stop (EV_A_ &w->timer); 3320 ev_timer_stop (EV_A_ &w->timer);
3321 }
2475 3322
2476 ev_stop (EV_A_ (W)w); 3323 ev_stop (EV_A_ (W)w);
3324
3325 EV_FREQUENT_CHECK;
2477} 3326}
2478#endif 3327#endif
2479 3328
2480#if EV_IDLE_ENABLE 3329#if EV_IDLE_ENABLE
2481void 3330void
2483{ 3332{
2484 if (expect_false (ev_is_active (w))) 3333 if (expect_false (ev_is_active (w)))
2485 return; 3334 return;
2486 3335
2487 pri_adjust (EV_A_ (W)w); 3336 pri_adjust (EV_A_ (W)w);
3337
3338 EV_FREQUENT_CHECK;
2488 3339
2489 { 3340 {
2490 int active = ++idlecnt [ABSPRI (w)]; 3341 int active = ++idlecnt [ABSPRI (w)];
2491 3342
2492 ++idleall; 3343 ++idleall;
2493 ev_start (EV_A_ (W)w, active); 3344 ev_start (EV_A_ (W)w, active);
2494 3345
2495 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3346 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2496 idles [ABSPRI (w)][active - 1] = w; 3347 idles [ABSPRI (w)][active - 1] = w;
2497 } 3348 }
3349
3350 EV_FREQUENT_CHECK;
2498} 3351}
2499 3352
2500void 3353void
2501ev_idle_stop (EV_P_ ev_idle *w) 3354ev_idle_stop (EV_P_ ev_idle *w)
2502{ 3355{
2503 clear_pending (EV_A_ (W)w); 3356 clear_pending (EV_A_ (W)w);
2504 if (expect_false (!ev_is_active (w))) 3357 if (expect_false (!ev_is_active (w)))
2505 return; 3358 return;
2506 3359
3360 EV_FREQUENT_CHECK;
3361
2507 { 3362 {
2508 int active = ev_active (w); 3363 int active = ev_active (w);
2509 3364
2510 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3365 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2511 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3366 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2512 3367
2513 ev_stop (EV_A_ (W)w); 3368 ev_stop (EV_A_ (W)w);
2514 --idleall; 3369 --idleall;
2515 } 3370 }
2516}
2517#endif
2518 3371
3372 EV_FREQUENT_CHECK;
3373}
3374#endif
3375
3376#if EV_PREPARE_ENABLE
2519void 3377void
2520ev_prepare_start (EV_P_ ev_prepare *w) 3378ev_prepare_start (EV_P_ ev_prepare *w)
2521{ 3379{
2522 if (expect_false (ev_is_active (w))) 3380 if (expect_false (ev_is_active (w)))
2523 return; 3381 return;
3382
3383 EV_FREQUENT_CHECK;
2524 3384
2525 ev_start (EV_A_ (W)w, ++preparecnt); 3385 ev_start (EV_A_ (W)w, ++preparecnt);
2526 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3386 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2527 prepares [preparecnt - 1] = w; 3387 prepares [preparecnt - 1] = w;
3388
3389 EV_FREQUENT_CHECK;
2528} 3390}
2529 3391
2530void 3392void
2531ev_prepare_stop (EV_P_ ev_prepare *w) 3393ev_prepare_stop (EV_P_ ev_prepare *w)
2532{ 3394{
2533 clear_pending (EV_A_ (W)w); 3395 clear_pending (EV_A_ (W)w);
2534 if (expect_false (!ev_is_active (w))) 3396 if (expect_false (!ev_is_active (w)))
2535 return; 3397 return;
2536 3398
3399 EV_FREQUENT_CHECK;
3400
2537 { 3401 {
2538 int active = ev_active (w); 3402 int active = ev_active (w);
2539 3403
2540 prepares [active - 1] = prepares [--preparecnt]; 3404 prepares [active - 1] = prepares [--preparecnt];
2541 ev_active (prepares [active - 1]) = active; 3405 ev_active (prepares [active - 1]) = active;
2542 } 3406 }
2543 3407
2544 ev_stop (EV_A_ (W)w); 3408 ev_stop (EV_A_ (W)w);
2545}
2546 3409
3410 EV_FREQUENT_CHECK;
3411}
3412#endif
3413
3414#if EV_CHECK_ENABLE
2547void 3415void
2548ev_check_start (EV_P_ ev_check *w) 3416ev_check_start (EV_P_ ev_check *w)
2549{ 3417{
2550 if (expect_false (ev_is_active (w))) 3418 if (expect_false (ev_is_active (w)))
2551 return; 3419 return;
3420
3421 EV_FREQUENT_CHECK;
2552 3422
2553 ev_start (EV_A_ (W)w, ++checkcnt); 3423 ev_start (EV_A_ (W)w, ++checkcnt);
2554 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3424 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2555 checks [checkcnt - 1] = w; 3425 checks [checkcnt - 1] = w;
3426
3427 EV_FREQUENT_CHECK;
2556} 3428}
2557 3429
2558void 3430void
2559ev_check_stop (EV_P_ ev_check *w) 3431ev_check_stop (EV_P_ ev_check *w)
2560{ 3432{
2561 clear_pending (EV_A_ (W)w); 3433 clear_pending (EV_A_ (W)w);
2562 if (expect_false (!ev_is_active (w))) 3434 if (expect_false (!ev_is_active (w)))
2563 return; 3435 return;
2564 3436
3437 EV_FREQUENT_CHECK;
3438
2565 { 3439 {
2566 int active = ev_active (w); 3440 int active = ev_active (w);
2567 3441
2568 checks [active - 1] = checks [--checkcnt]; 3442 checks [active - 1] = checks [--checkcnt];
2569 ev_active (checks [active - 1]) = active; 3443 ev_active (checks [active - 1]) = active;
2570 } 3444 }
2571 3445
2572 ev_stop (EV_A_ (W)w); 3446 ev_stop (EV_A_ (W)w);
3447
3448 EV_FREQUENT_CHECK;
2573} 3449}
3450#endif
2574 3451
2575#if EV_EMBED_ENABLE 3452#if EV_EMBED_ENABLE
2576void noinline 3453void noinline
2577ev_embed_sweep (EV_P_ ev_embed *w) 3454ev_embed_sweep (EV_P_ ev_embed *w)
2578{ 3455{
2579 ev_loop (w->other, EVLOOP_NONBLOCK); 3456 ev_run (w->other, EVRUN_NOWAIT);
2580} 3457}
2581 3458
2582static void 3459static void
2583embed_io_cb (EV_P_ ev_io *io, int revents) 3460embed_io_cb (EV_P_ ev_io *io, int revents)
2584{ 3461{
2585 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3462 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2586 3463
2587 if (ev_cb (w)) 3464 if (ev_cb (w))
2588 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3465 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2589 else 3466 else
2590 ev_loop (w->other, EVLOOP_NONBLOCK); 3467 ev_run (w->other, EVRUN_NOWAIT);
2591} 3468}
2592 3469
2593static void 3470static void
2594embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3471embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2595{ 3472{
2596 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3473 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2597 3474
2598 { 3475 {
2599 struct ev_loop *loop = w->other; 3476 EV_P = w->other;
2600 3477
2601 while (fdchangecnt) 3478 while (fdchangecnt)
2602 { 3479 {
2603 fd_reify (EV_A); 3480 fd_reify (EV_A);
2604 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3481 ev_run (EV_A_ EVRUN_NOWAIT);
2605 } 3482 }
2606 } 3483 }
3484}
3485
3486static void
3487embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3488{
3489 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3490
3491 ev_embed_stop (EV_A_ w);
3492
3493 {
3494 EV_P = w->other;
3495
3496 ev_loop_fork (EV_A);
3497 ev_run (EV_A_ EVRUN_NOWAIT);
3498 }
3499
3500 ev_embed_start (EV_A_ w);
2607} 3501}
2608 3502
2609#if 0 3503#if 0
2610static void 3504static void
2611embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3505embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2619{ 3513{
2620 if (expect_false (ev_is_active (w))) 3514 if (expect_false (ev_is_active (w)))
2621 return; 3515 return;
2622 3516
2623 { 3517 {
2624 struct ev_loop *loop = w->other; 3518 EV_P = w->other;
2625 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3519 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2626 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3520 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2627 } 3521 }
3522
3523 EV_FREQUENT_CHECK;
2628 3524
2629 ev_set_priority (&w->io, ev_priority (w)); 3525 ev_set_priority (&w->io, ev_priority (w));
2630 ev_io_start (EV_A_ &w->io); 3526 ev_io_start (EV_A_ &w->io);
2631 3527
2632 ev_prepare_init (&w->prepare, embed_prepare_cb); 3528 ev_prepare_init (&w->prepare, embed_prepare_cb);
2633 ev_set_priority (&w->prepare, EV_MINPRI); 3529 ev_set_priority (&w->prepare, EV_MINPRI);
2634 ev_prepare_start (EV_A_ &w->prepare); 3530 ev_prepare_start (EV_A_ &w->prepare);
2635 3531
3532 ev_fork_init (&w->fork, embed_fork_cb);
3533 ev_fork_start (EV_A_ &w->fork);
3534
2636 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3535 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2637 3536
2638 ev_start (EV_A_ (W)w, 1); 3537 ev_start (EV_A_ (W)w, 1);
3538
3539 EV_FREQUENT_CHECK;
2639} 3540}
2640 3541
2641void 3542void
2642ev_embed_stop (EV_P_ ev_embed *w) 3543ev_embed_stop (EV_P_ ev_embed *w)
2643{ 3544{
2644 clear_pending (EV_A_ (W)w); 3545 clear_pending (EV_A_ (W)w);
2645 if (expect_false (!ev_is_active (w))) 3546 if (expect_false (!ev_is_active (w)))
2646 return; 3547 return;
2647 3548
3549 EV_FREQUENT_CHECK;
3550
2648 ev_io_stop (EV_A_ &w->io); 3551 ev_io_stop (EV_A_ &w->io);
2649 ev_prepare_stop (EV_A_ &w->prepare); 3552 ev_prepare_stop (EV_A_ &w->prepare);
3553 ev_fork_stop (EV_A_ &w->fork);
2650 3554
2651 ev_stop (EV_A_ (W)w); 3555 ev_stop (EV_A_ (W)w);
3556
3557 EV_FREQUENT_CHECK;
2652} 3558}
2653#endif 3559#endif
2654 3560
2655#if EV_FORK_ENABLE 3561#if EV_FORK_ENABLE
2656void 3562void
2657ev_fork_start (EV_P_ ev_fork *w) 3563ev_fork_start (EV_P_ ev_fork *w)
2658{ 3564{
2659 if (expect_false (ev_is_active (w))) 3565 if (expect_false (ev_is_active (w)))
2660 return; 3566 return;
3567
3568 EV_FREQUENT_CHECK;
2661 3569
2662 ev_start (EV_A_ (W)w, ++forkcnt); 3570 ev_start (EV_A_ (W)w, ++forkcnt);
2663 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3571 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2664 forks [forkcnt - 1] = w; 3572 forks [forkcnt - 1] = w;
3573
3574 EV_FREQUENT_CHECK;
2665} 3575}
2666 3576
2667void 3577void
2668ev_fork_stop (EV_P_ ev_fork *w) 3578ev_fork_stop (EV_P_ ev_fork *w)
2669{ 3579{
2670 clear_pending (EV_A_ (W)w); 3580 clear_pending (EV_A_ (W)w);
2671 if (expect_false (!ev_is_active (w))) 3581 if (expect_false (!ev_is_active (w)))
2672 return; 3582 return;
2673 3583
3584 EV_FREQUENT_CHECK;
3585
2674 { 3586 {
2675 int active = ev_active (w); 3587 int active = ev_active (w);
2676 3588
2677 forks [active - 1] = forks [--forkcnt]; 3589 forks [active - 1] = forks [--forkcnt];
2678 ev_active (forks [active - 1]) = active; 3590 ev_active (forks [active - 1]) = active;
2679 } 3591 }
2680 3592
2681 ev_stop (EV_A_ (W)w); 3593 ev_stop (EV_A_ (W)w);
2682}
2683#endif
2684 3594
3595 EV_FREQUENT_CHECK;
3596}
3597#endif
3598
2685#if EV_ASYNC_ENABLE 3599#if EV_CLEANUP_ENABLE
2686void 3600void
2687ev_async_start (EV_P_ ev_async *w) 3601ev_cleanup_start (EV_P_ ev_cleanup *w)
2688{ 3602{
2689 if (expect_false (ev_is_active (w))) 3603 if (expect_false (ev_is_active (w)))
2690 return; 3604 return;
2691 3605
3606 EV_FREQUENT_CHECK;
3607
3608 ev_start (EV_A_ (W)w, ++cleanupcnt);
3609 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3610 cleanups [cleanupcnt - 1] = w;
3611
3612 /* cleanup watchers should never keep a refcount on the loop */
3613 ev_unref (EV_A);
3614 EV_FREQUENT_CHECK;
3615}
3616
3617void
3618ev_cleanup_stop (EV_P_ ev_cleanup *w)
3619{
3620 clear_pending (EV_A_ (W)w);
3621 if (expect_false (!ev_is_active (w)))
3622 return;
3623
3624 EV_FREQUENT_CHECK;
3625 ev_ref (EV_A);
3626
3627 {
3628 int active = ev_active (w);
3629
3630 cleanups [active - 1] = cleanups [--cleanupcnt];
3631 ev_active (cleanups [active - 1]) = active;
3632 }
3633
3634 ev_stop (EV_A_ (W)w);
3635
3636 EV_FREQUENT_CHECK;
3637}
3638#endif
3639
3640#if EV_ASYNC_ENABLE
3641void
3642ev_async_start (EV_P_ ev_async *w)
3643{
3644 if (expect_false (ev_is_active (w)))
3645 return;
3646
3647 w->sent = 0;
3648
2692 evpipe_init (EV_A); 3649 evpipe_init (EV_A);
3650
3651 EV_FREQUENT_CHECK;
2693 3652
2694 ev_start (EV_A_ (W)w, ++asynccnt); 3653 ev_start (EV_A_ (W)w, ++asynccnt);
2695 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3654 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2696 asyncs [asynccnt - 1] = w; 3655 asyncs [asynccnt - 1] = w;
3656
3657 EV_FREQUENT_CHECK;
2697} 3658}
2698 3659
2699void 3660void
2700ev_async_stop (EV_P_ ev_async *w) 3661ev_async_stop (EV_P_ ev_async *w)
2701{ 3662{
2702 clear_pending (EV_A_ (W)w); 3663 clear_pending (EV_A_ (W)w);
2703 if (expect_false (!ev_is_active (w))) 3664 if (expect_false (!ev_is_active (w)))
2704 return; 3665 return;
2705 3666
3667 EV_FREQUENT_CHECK;
3668
2706 { 3669 {
2707 int active = ev_active (w); 3670 int active = ev_active (w);
2708 3671
2709 asyncs [active - 1] = asyncs [--asynccnt]; 3672 asyncs [active - 1] = asyncs [--asynccnt];
2710 ev_active (asyncs [active - 1]) = active; 3673 ev_active (asyncs [active - 1]) = active;
2711 } 3674 }
2712 3675
2713 ev_stop (EV_A_ (W)w); 3676 ev_stop (EV_A_ (W)w);
3677
3678 EV_FREQUENT_CHECK;
2714} 3679}
2715 3680
2716void 3681void
2717ev_async_send (EV_P_ ev_async *w) 3682ev_async_send (EV_P_ ev_async *w)
2718{ 3683{
2719 w->sent = 1; 3684 w->sent = 1;
2720 evpipe_write (EV_A_ &gotasync); 3685 evpipe_write (EV_A_ &async_pending);
2721} 3686}
2722#endif 3687#endif
2723 3688
2724/*****************************************************************************/ 3689/*****************************************************************************/
2725 3690
2735once_cb (EV_P_ struct ev_once *once, int revents) 3700once_cb (EV_P_ struct ev_once *once, int revents)
2736{ 3701{
2737 void (*cb)(int revents, void *arg) = once->cb; 3702 void (*cb)(int revents, void *arg) = once->cb;
2738 void *arg = once->arg; 3703 void *arg = once->arg;
2739 3704
2740 ev_io_stop (EV_A_ &once->io); 3705 ev_io_stop (EV_A_ &once->io);
2741 ev_timer_stop (EV_A_ &once->to); 3706 ev_timer_stop (EV_A_ &once->to);
2742 ev_free (once); 3707 ev_free (once);
2743 3708
2744 cb (revents, arg); 3709 cb (revents, arg);
2745} 3710}
2746 3711
2747static void 3712static void
2748once_cb_io (EV_P_ ev_io *w, int revents) 3713once_cb_io (EV_P_ ev_io *w, int revents)
2749{ 3714{
2750 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3715 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3716
3717 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2751} 3718}
2752 3719
2753static void 3720static void
2754once_cb_to (EV_P_ ev_timer *w, int revents) 3721once_cb_to (EV_P_ ev_timer *w, int revents)
2755{ 3722{
2756 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3723 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3724
3725 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2757} 3726}
2758 3727
2759void 3728void
2760ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3729ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2761{ 3730{
2762 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3731 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2763 3732
2764 if (expect_false (!once)) 3733 if (expect_false (!once))
2765 { 3734 {
2766 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3735 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2767 return; 3736 return;
2768 } 3737 }
2769 3738
2770 once->cb = cb; 3739 once->cb = cb;
2771 once->arg = arg; 3740 once->arg = arg;
2783 ev_timer_set (&once->to, timeout, 0.); 3752 ev_timer_set (&once->to, timeout, 0.);
2784 ev_timer_start (EV_A_ &once->to); 3753 ev_timer_start (EV_A_ &once->to);
2785 } 3754 }
2786} 3755}
2787 3756
3757/*****************************************************************************/
3758
3759#if EV_WALK_ENABLE
3760void
3761ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3762{
3763 int i, j;
3764 ev_watcher_list *wl, *wn;
3765
3766 if (types & (EV_IO | EV_EMBED))
3767 for (i = 0; i < anfdmax; ++i)
3768 for (wl = anfds [i].head; wl; )
3769 {
3770 wn = wl->next;
3771
3772#if EV_EMBED_ENABLE
3773 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3774 {
3775 if (types & EV_EMBED)
3776 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3777 }
3778 else
3779#endif
3780#if EV_USE_INOTIFY
3781 if (ev_cb ((ev_io *)wl) == infy_cb)
3782 ;
3783 else
3784#endif
3785 if ((ev_io *)wl != &pipe_w)
3786 if (types & EV_IO)
3787 cb (EV_A_ EV_IO, wl);
3788
3789 wl = wn;
3790 }
3791
3792 if (types & (EV_TIMER | EV_STAT))
3793 for (i = timercnt + HEAP0; i-- > HEAP0; )
3794#if EV_STAT_ENABLE
3795 /*TODO: timer is not always active*/
3796 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3797 {
3798 if (types & EV_STAT)
3799 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3800 }
3801 else
3802#endif
3803 if (types & EV_TIMER)
3804 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3805
3806#if EV_PERIODIC_ENABLE
3807 if (types & EV_PERIODIC)
3808 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3809 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3810#endif
3811
3812#if EV_IDLE_ENABLE
3813 if (types & EV_IDLE)
3814 for (j = NUMPRI; i--; )
3815 for (i = idlecnt [j]; i--; )
3816 cb (EV_A_ EV_IDLE, idles [j][i]);
3817#endif
3818
3819#if EV_FORK_ENABLE
3820 if (types & EV_FORK)
3821 for (i = forkcnt; i--; )
3822 if (ev_cb (forks [i]) != embed_fork_cb)
3823 cb (EV_A_ EV_FORK, forks [i]);
3824#endif
3825
3826#if EV_ASYNC_ENABLE
3827 if (types & EV_ASYNC)
3828 for (i = asynccnt; i--; )
3829 cb (EV_A_ EV_ASYNC, asyncs [i]);
3830#endif
3831
3832#if EV_PREPARE_ENABLE
3833 if (types & EV_PREPARE)
3834 for (i = preparecnt; i--; )
3835# if EV_EMBED_ENABLE
3836 if (ev_cb (prepares [i]) != embed_prepare_cb)
3837# endif
3838 cb (EV_A_ EV_PREPARE, prepares [i]);
3839#endif
3840
3841#if EV_CHECK_ENABLE
3842 if (types & EV_CHECK)
3843 for (i = checkcnt; i--; )
3844 cb (EV_A_ EV_CHECK, checks [i]);
3845#endif
3846
3847#if EV_SIGNAL_ENABLE
3848 if (types & EV_SIGNAL)
3849 for (i = 0; i < EV_NSIG - 1; ++i)
3850 for (wl = signals [i].head; wl; )
3851 {
3852 wn = wl->next;
3853 cb (EV_A_ EV_SIGNAL, wl);
3854 wl = wn;
3855 }
3856#endif
3857
3858#if EV_CHILD_ENABLE
3859 if (types & EV_CHILD)
3860 for (i = (EV_PID_HASHSIZE); i--; )
3861 for (wl = childs [i]; wl; )
3862 {
3863 wn = wl->next;
3864 cb (EV_A_ EV_CHILD, wl);
3865 wl = wn;
3866 }
3867#endif
3868/* EV_STAT 0x00001000 /* stat data changed */
3869/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3870}
3871#endif
3872
2788#if EV_MULTIPLICITY 3873#if EV_MULTIPLICITY
2789 #include "ev_wrap.h" 3874 #include "ev_wrap.h"
2790#endif 3875#endif
2791 3876
2792#ifdef __cplusplus 3877EV_CPP(})
2793}
2794#endif
2795 3878

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines