ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.158 by root, Thu Nov 29 17:28:13 2007 UTC vs.
Revision 1.246 by root, Wed May 21 12:51:38 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 249
197#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
200#endif 253#endif
202#ifndef CLOCK_REALTIME 255#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 256# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 257# define EV_USE_REALTIME 0
205#endif 258#endif
206 259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
207#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 276# include <winsock.h>
209#endif 277#endif
210 278
211#if !EV_STAT_ENABLE 279#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
213#endif 284# endif
214 285int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 286# ifdef __cplusplus
216# include <sys/inotify.h> 287}
288# endif
217#endif 289#endif
218 290
219/**/ 291/**/
292
293/*
294 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 302
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 306
225#if __GNUC__ >= 3 307#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 308# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 309# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 310#else
236# define expect(expr,value) (expr) 311# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 312# define noinline
313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
314# define inline
315# endif
240#endif 316#endif
241 317
242#define expect_false(expr) expect ((expr) != 0, 0) 318#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 319#define expect_true(expr) expect ((expr) != 0, 1)
320#define inline_size static inline
321
322#if EV_MINIMAL
323# define inline_speed static noinline
324#else
325# define inline_speed static inline
326#endif
244 327
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 330
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 331#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 332#define EMPTY2(a,b) /* used to suppress some warnings */
250 333
251typedef ev_watcher *W; 334typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
254 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
341#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
345#endif
256 346
257#ifdef _WIN32 347#ifdef _WIN32
258# include "ev_win32.c" 348# include "ev_win32.c"
259#endif 349#endif
260 350
281 perror (msg); 371 perror (msg);
282 abort (); 372 abort ();
283 } 373 }
284} 374}
285 375
376static void *
377ev_realloc_emul (void *ptr, long size)
378{
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389}
390
286static void *(*alloc)(void *ptr, long size); 391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 392
288void 393void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 394ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 395{
291 alloc = cb; 396 alloc = cb;
292} 397}
293 398
294inline_speed void * 399inline_speed void *
295ev_realloc (void *ptr, long size) 400ev_realloc (void *ptr, long size)
296{ 401{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 402 ptr = alloc (ptr, size);
298 403
299 if (!ptr && size) 404 if (!ptr && size)
300 { 405 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 407 abort ();
325 W w; 430 W w;
326 int events; 431 int events;
327} ANPENDING; 432} ANPENDING;
328 433
329#if EV_USE_INOTIFY 434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
330typedef struct 436typedef struct
331{ 437{
332 WL head; 438 WL head;
333} ANFS; 439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
334#endif 458#endif
335 459
336#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
337 461
338 struct ev_loop 462 struct ev_loop
396{ 520{
397 return ev_rt_now; 521 return ev_rt_now;
398} 522}
399#endif 523#endif
400 524
401#define array_roundsize(type,n) (((n) | 4) & ~3) 525void
526ev_sleep (ev_tstamp delay)
527{
528 if (delay > 0.)
529 {
530#if EV_USE_NANOSLEEP
531 struct timespec ts;
532
533 ts.tv_sec = (time_t)delay;
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0);
537#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3));
539#else
540 struct timeval tv;
541
542 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544
545 select (0, 0, 0, 0, &tv);
546#endif
547 }
548}
549
550/*****************************************************************************/
551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
554int inline_size
555array_nextsize (int elem, int cur, int cnt)
556{
557 int ncur = cur + 1;
558
559 do
560 ncur <<= 1;
561 while (cnt > ncur);
562
563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
565 {
566 ncur *= elem;
567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
568 ncur = ncur - sizeof (void *) * 4;
569 ncur /= elem;
570 }
571
572 return ncur;
573}
574
575static noinline void *
576array_realloc (int elem, void *base, int *cur, int cnt)
577{
578 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur);
580}
402 581
403#define array_needsize(type,base,cur,cnt,init) \ 582#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 583 if (expect_false ((cnt) > (cur))) \
405 { \ 584 { \
406 int newcnt = cur; \ 585 int ocur_ = (cur); \
407 do \ 586 (base) = (type *)array_realloc \
408 { \ 587 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 588 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 589 }
417 590
591#if 0
418#define array_slim(type,stem) \ 592#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 593 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 594 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 595 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 596 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 598 }
599#endif
425 600
426#define array_free(stem, idx) \ 601#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 603
429/*****************************************************************************/ 604/*****************************************************************************/
430 605
431void noinline 606void noinline
432ev_feed_event (EV_P_ void *w, int revents) 607ev_feed_event (EV_P_ void *w, int revents)
433{ 608{
434 W w_ = (W)w; 609 W w_ = (W)w;
610 int pri = ABSPRI (w_);
435 611
436 if (expect_false (w_->pending)) 612 if (expect_false (w_->pending))
613 pendings [pri][w_->pending - 1].events |= revents;
614 else
437 { 615 {
616 w_->pending = ++pendingcnt [pri];
617 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
618 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 619 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 620 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 621}
447 622
448void inline_size 623void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 624queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 625{
451 int i; 626 int i;
452 627
453 for (i = 0; i < eventcnt; ++i) 628 for (i = 0; i < eventcnt; ++i)
485} 660}
486 661
487void 662void
488ev_feed_fd_event (EV_P_ int fd, int revents) 663ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 664{
665 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 666 fd_event (EV_A_ fd, revents);
491} 667}
492 668
493void inline_size 669void inline_size
494fd_reify (EV_P) 670fd_reify (EV_P)
495{ 671{
499 { 675 {
500 int fd = fdchanges [i]; 676 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 677 ANFD *anfd = anfds + fd;
502 ev_io *w; 678 ev_io *w;
503 679
504 int events = 0; 680 unsigned char events = 0;
505 681
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 683 events |= (unsigned char)w->events;
508 684
509#if EV_SELECT_IS_WINSOCKET 685#if EV_SELECT_IS_WINSOCKET
510 if (events) 686 if (events)
511 { 687 {
512 unsigned long argp; 688 unsigned long argp;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
513 anfd->handle = _get_osfhandle (fd); 692 anfd->handle = _get_osfhandle (fd);
693 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 695 }
516#endif 696#endif
517 697
698 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
518 anfd->reify = 0; 702 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events);
707 }
522 } 708 }
523 709
524 fdchangecnt = 0; 710 fdchangecnt = 0;
525} 711}
526 712
527void inline_size 713void inline_size
528fd_change (EV_P_ int fd) 714fd_change (EV_P_ int fd, int flags)
529{ 715{
530 if (expect_false (anfds [fd].reify)) 716 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 717 anfds [fd].reify |= flags;
534 718
719 if (expect_true (!reify))
720 {
535 ++fdchangecnt; 721 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 723 fdchanges [fdchangecnt - 1] = fd;
724 }
538} 725}
539 726
540void inline_speed 727void inline_speed
541fd_kill (EV_P_ int fd) 728fd_kill (EV_P_ int fd)
542{ 729{
593 780
594 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 782 if (anfds [fd].events)
596 { 783 {
597 anfds [fd].events = 0; 784 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 785 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 786 }
600} 787}
601 788
602/*****************************************************************************/ 789/*****************************************************************************/
603 790
791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807
808/* towards the root */
604void inline_speed 809void inline_speed
605upheap (WT *heap, int k) 810upheap (ANHE *heap, int k)
606{ 811{
607 WT w = heap [k]; 812 ANHE he = heap [k];
608 813
609 while (k && heap [k >> 1]->at > w->at) 814 for (;;)
610 { 815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
611 heap [k] = heap [k >> 1]; 821 heap [k] = heap [p];
612 ((W)heap [k])->active = k + 1; 822 ev_active (ANHE_w (heap [k])) = k;
613 k >>= 1; 823 k = p;
614 } 824 }
615 825
826 ev_active (ANHE_w (he)) = k;
616 heap [k] = w; 827 heap [k] = he;
617 ((W)heap [k])->active = k + 1;
618
619} 828}
620 829
830/* away from the root */
621void inline_speed 831void inline_speed
622downheap (WT *heap, int N, int k) 832downheap (ANHE *heap, int N, int k)
623{ 833{
624 WT w = heap [k]; 834 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0;
625 836
626 while (k < (N >> 1)) 837 for (;;)
627 { 838 {
628 int j = k << 1; 839 ev_tstamp minat;
840 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
629 842
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 843 // find minimum child
844 if (expect_true (pos + DHEAP - 1 < E))
631 ++j; 845 {
632 846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
633 if (w->at <= heap [j]->at) 847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else if (pos < E)
852 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else
634 break; 859 break;
635 860
861 if (ANHE_at (he) <= minat)
862 break;
863
864 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866
867 k = minpos - heap;
868 }
869
870 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872}
873
874#else // 4HEAP
875
876#define HEAP0 1
877
878/* towards the root */
879void inline_speed
880upheap (ANHE *heap, int k)
881{
882 ANHE he = heap [k];
883
884 for (;;)
885 {
886 int p = k >> 1;
887
888 /* maybe we could use a dummy element at heap [0]? */
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break;
891
636 heap [k] = heap [j]; 892 heap [k] = heap [p];
637 ((W)heap [k])->active = k + 1; 893 ev_active (ANHE_w (heap [k])) = k;
638 k = j; 894 k = p;
639 } 895 }
640 896
641 heap [k] = w; 897 heap [k] = he;
642 ((W)heap [k])->active = k + 1; 898 ev_active (ANHE_w (heap [k])) = k;
643} 899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0;
916
917 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break;
919
920 heap [k] = heap [c];
921 ev_active (ANHE_w (heap [k])) = k;
922
923 k = c;
924 }
925
926 heap [k] = he;
927 ev_active (ANHE_w (he)) = k;
928}
929#endif
644 930
645void inline_size 931void inline_size
646adjustheap (WT *heap, int N, int k) 932adjustheap (ANHE *heap, int N, int k)
647{ 933{
648 upheap (heap, k); 934 upheap (heap, k);
649 downheap (heap, N, k); 935 downheap (heap, N, k);
650} 936}
651 937
652/*****************************************************************************/ 938/*****************************************************************************/
653 939
654typedef struct 940typedef struct
655{ 941{
656 WL head; 942 WL head;
657 sig_atomic_t volatile gotsig; 943 EV_ATOMIC_T gotsig;
658} ANSIG; 944} ANSIG;
659 945
660static ANSIG *signals; 946static ANSIG *signals;
661static int signalmax; 947static int signalmax;
662 948
663static int sigpipe [2]; 949static EV_ATOMIC_T gotsig;
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 950
667void inline_size 951void inline_size
668signals_init (ANSIG *base, int count) 952signals_init (ANSIG *base, int count)
669{ 953{
670 while (count--) 954 while (count--)
674 958
675 ++base; 959 ++base;
676 } 960 }
677} 961}
678 962
679static void 963/*****************************************************************************/
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685 964
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size 965void inline_speed
731fd_intern (int fd) 966fd_intern (int fd)
732{ 967{
733#ifdef _WIN32 968#ifdef _WIN32
734 int arg = 1; 969 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 973 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 974#endif
740} 975}
741 976
742static void noinline 977static void noinline
743siginit (EV_P) 978evpipe_init (EV_P)
744{ 979{
980 if (!ev_is_active (&pipeev))
981 {
982#if EV_USE_EVENTFD
983 if ((evfd = eventfd (0, 0)) >= 0)
984 {
985 evpipe [0] = -1;
986 fd_intern (evfd);
987 ev_io_set (&pipeev, evfd, EV_READ);
988 }
989 else
990#endif
991 {
992 while (pipe (evpipe))
993 syserr ("(libev) error creating signal/async pipe");
994
745 fd_intern (sigpipe [0]); 995 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 996 fd_intern (evpipe [1]);
997 ev_io_set (&pipeev, evpipe [0], EV_READ);
998 }
747 999
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 1000 ev_io_start (EV_A_ &pipeev);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1001 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 }
1003}
1004
1005void inline_size
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{
1008 if (!*flag)
1009 {
1010 int old_errno = errno; /* save errno because write might clobber it */
1011
1012 *flag = 1;
1013
1014#if EV_USE_EVENTFD
1015 if (evfd >= 0)
1016 {
1017 uint64_t counter = 1;
1018 write (evfd, &counter, sizeof (uint64_t));
1019 }
1020 else
1021#endif
1022 write (evpipe [1], &old_errno, 1);
1023
1024 errno = old_errno;
1025 }
1026}
1027
1028static void
1029pipecb (EV_P_ ev_io *iow, int revents)
1030{
1031#if EV_USE_EVENTFD
1032 if (evfd >= 0)
1033 {
1034 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t));
1036 }
1037 else
1038#endif
1039 {
1040 char dummy;
1041 read (evpipe [0], &dummy, 1);
1042 }
1043
1044 if (gotsig && ev_is_default_loop (EV_A))
1045 {
1046 int signum;
1047 gotsig = 0;
1048
1049 for (signum = signalmax; signum--; )
1050 if (signals [signum].gotsig)
1051 ev_feed_signal_event (EV_A_ signum + 1);
1052 }
1053
1054#if EV_ASYNC_ENABLE
1055 if (gotasync)
1056 {
1057 int i;
1058 gotasync = 0;
1059
1060 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent)
1062 {
1063 asyncs [i]->sent = 0;
1064 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1065 }
1066 }
1067#endif
751} 1068}
752 1069
753/*****************************************************************************/ 1070/*****************************************************************************/
754 1071
1072static void
1073ev_sighandler (int signum)
1074{
1075#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct;
1077#endif
1078
1079#if _WIN32
1080 signal (signum, ev_sighandler);
1081#endif
1082
1083 signals [signum - 1].gotsig = 1;
1084 evpipe_write (EV_A_ &gotsig);
1085}
1086
1087void noinline
1088ev_feed_signal_event (EV_P_ int signum)
1089{
1090 WL w;
1091
1092#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1094#endif
1095
1096 --signum;
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return;
1100
1101 signals [signum].gotsig = 0;
1102
1103 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105}
1106
1107/*****************************************************************************/
1108
755static ev_child *childs [EV_PID_HASHSIZE]; 1109static WL childs [EV_PID_HASHSIZE];
756 1110
757#ifndef _WIN32 1111#ifndef _WIN32
758 1112
759static ev_signal childev; 1113static ev_signal childev;
760 1114
1115#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0
1117#endif
1118
761void inline_speed 1119void inline_speed
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1120child_reap (EV_P_ int chain, int pid, int status)
763{ 1121{
764 ev_child *w; 1122 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1124
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1126 {
767 if (w->pid == pid || !w->pid) 1127 if ((w->pid == pid || !w->pid)
1128 && (!traced || (w->flags & 1)))
768 { 1129 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1131 w->rpid = pid;
771 w->rstatus = status; 1132 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1133 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1134 }
1135 }
774} 1136}
775 1137
776#ifndef WCONTINUED 1138#ifndef WCONTINUED
777# define WCONTINUED 0 1139# define WCONTINUED 0
778#endif 1140#endif
787 if (!WCONTINUED 1149 if (!WCONTINUED
788 || errno != EINVAL 1150 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1151 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1152 return;
791 1153
792 /* make sure we are called again until all childs have been reaped */ 1154 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1155 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1157
796 child_reap (EV_A_ sw, pid, pid, status); 1158 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1159 if (EV_PID_HASHSIZE > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1161}
800 1162
801#endif 1163#endif
802 1164
803/*****************************************************************************/ 1165/*****************************************************************************/
875} 1237}
876 1238
877unsigned int 1239unsigned int
878ev_embeddable_backends (void) 1240ev_embeddable_backends (void)
879{ 1241{
880 return EVBACKEND_EPOLL 1242 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1243
882 | EVBACKEND_PORT; 1244 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1245 /* please fix it and tell me how to detect the fix */
1246 flags &= ~EVBACKEND_EPOLL;
1247
1248 return flags;
883} 1249}
884 1250
885unsigned int 1251unsigned int
886ev_backend (EV_P) 1252ev_backend (EV_P)
887{ 1253{
888 return backend; 1254 return backend;
1255}
1256
1257unsigned int
1258ev_loop_count (EV_P)
1259{
1260 return loop_count;
1261}
1262
1263void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1265{
1266 io_blocktime = interval;
1267}
1268
1269void
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1271{
1272 timeout_blocktime = interval;
889} 1273}
890 1274
891static void noinline 1275static void noinline
892loop_init (EV_P_ unsigned int flags) 1276loop_init (EV_P_ unsigned int flags)
893{ 1277{
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1284 have_monotonic = 1;
901 } 1285 }
902#endif 1286#endif
903 1287
904 ev_rt_now = ev_time (); 1288 ev_rt_now = ev_time ();
905 mn_now = get_clock (); 1289 mn_now = get_clock ();
906 now_floor = mn_now; 1290 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now; 1291 rtmn_diff = ev_rt_now - mn_now;
1292
1293 io_blocktime = 0.;
1294 timeout_blocktime = 0.;
1295 backend = 0;
1296 backend_fd = -1;
1297 gotasync = 0;
1298#if EV_USE_INOTIFY
1299 fs_fd = -2;
1300#endif
908 1301
909 /* pid check not overridable via env */ 1302 /* pid check not overridable via env */
910#ifndef _WIN32 1303#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 1304 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 1305 curpid = getpid ();
915 if (!(flags & EVFLAG_NOENV) 1308 if (!(flags & EVFLAG_NOENV)
916 && !enable_secure () 1309 && !enable_secure ()
917 && getenv ("LIBEV_FLAGS")) 1310 && getenv ("LIBEV_FLAGS"))
918 flags = atoi (getenv ("LIBEV_FLAGS")); 1311 flags = atoi (getenv ("LIBEV_FLAGS"));
919 1312
920 if (!(flags & 0x0000ffffUL)) 1313 if (!(flags & 0x0000ffffU))
921 flags |= ev_recommended_backends (); 1314 flags |= ev_recommended_backends ();
922
923 backend = 0;
924 backend_fd = -1;
925#if EV_USE_INOTIFY
926 fs_fd = -2;
927#endif
928 1315
929#if EV_USE_PORT 1316#if EV_USE_PORT
930 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
931#endif 1318#endif
932#if EV_USE_KQUEUE 1319#if EV_USE_KQUEUE
940#endif 1327#endif
941#if EV_USE_SELECT 1328#if EV_USE_SELECT
942 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
943#endif 1330#endif
944 1331
945 ev_init (&sigev, sigcb); 1332 ev_init (&pipeev, pipecb);
946 ev_set_priority (&sigev, EV_MAXPRI); 1333 ev_set_priority (&pipeev, EV_MAXPRI);
947 } 1334 }
948} 1335}
949 1336
950static void noinline 1337static void noinline
951loop_destroy (EV_P) 1338loop_destroy (EV_P)
952{ 1339{
953 int i; 1340 int i;
1341
1342 if (ev_is_active (&pipeev))
1343 {
1344 ev_ref (EV_A); /* signal watcher */
1345 ev_io_stop (EV_A_ &pipeev);
1346
1347#if EV_USE_EVENTFD
1348 if (evfd >= 0)
1349 close (evfd);
1350#endif
1351
1352 if (evpipe [0] >= 0)
1353 {
1354 close (evpipe [0]);
1355 close (evpipe [1]);
1356 }
1357 }
954 1358
955#if EV_USE_INOTIFY 1359#if EV_USE_INOTIFY
956 if (fs_fd >= 0) 1360 if (fs_fd >= 0)
957 close (fs_fd); 1361 close (fs_fd);
958#endif 1362#endif
975#if EV_USE_SELECT 1379#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1380 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1381#endif
978 1382
979 for (i = NUMPRI; i--; ) 1383 for (i = NUMPRI; i--; )
1384 {
980 array_free (pending, [i]); 1385 array_free (pending, [i]);
1386#if EV_IDLE_ENABLE
1387 array_free (idle, [i]);
1388#endif
1389 }
1390
1391 ev_free (anfds); anfdmax = 0;
981 1392
982 /* have to use the microsoft-never-gets-it-right macro */ 1393 /* have to use the microsoft-never-gets-it-right macro */
983 array_free (fdchange, EMPTY0); 1394 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1395 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1396#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1397 array_free (periodic, EMPTY);
987#endif 1398#endif
1399#if EV_FORK_ENABLE
988 array_free (idle, EMPTY0); 1400 array_free (fork, EMPTY);
1401#endif
989 array_free (prepare, EMPTY0); 1402 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1403 array_free (check, EMPTY);
1404#if EV_ASYNC_ENABLE
1405 array_free (async, EMPTY);
1406#endif
991 1407
992 backend = 0; 1408 backend = 0;
993} 1409}
994 1410
1411#if EV_USE_INOTIFY
995void inline_size infy_fork (EV_P); 1412void inline_size infy_fork (EV_P);
1413#endif
996 1414
997void inline_size 1415void inline_size
998loop_fork (EV_P) 1416loop_fork (EV_P)
999{ 1417{
1000#if EV_USE_PORT 1418#if EV_USE_PORT
1008#endif 1426#endif
1009#if EV_USE_INOTIFY 1427#if EV_USE_INOTIFY
1010 infy_fork (EV_A); 1428 infy_fork (EV_A);
1011#endif 1429#endif
1012 1430
1013 if (ev_is_active (&sigev)) 1431 if (ev_is_active (&pipeev))
1014 { 1432 {
1015 /* default loop */ 1433 /* this "locks" the handlers against writing to the pipe */
1434 /* while we modify the fd vars */
1435 gotsig = 1;
1436#if EV_ASYNC_ENABLE
1437 gotasync = 1;
1438#endif
1016 1439
1017 ev_ref (EV_A); 1440 ev_ref (EV_A);
1018 ev_io_stop (EV_A_ &sigev); 1441 ev_io_stop (EV_A_ &pipeev);
1442
1443#if EV_USE_EVENTFD
1444 if (evfd >= 0)
1445 close (evfd);
1446#endif
1447
1448 if (evpipe [0] >= 0)
1449 {
1019 close (sigpipe [0]); 1450 close (evpipe [0]);
1020 close (sigpipe [1]); 1451 close (evpipe [1]);
1452 }
1021 1453
1022 while (pipe (sigpipe))
1023 syserr ("(libev) error creating pipe");
1024
1025 siginit (EV_A); 1454 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ);
1026 } 1457 }
1027 1458
1028 postfork = 0; 1459 postfork = 0;
1029} 1460}
1030 1461
1052} 1483}
1053 1484
1054void 1485void
1055ev_loop_fork (EV_P) 1486ev_loop_fork (EV_P)
1056{ 1487{
1057 postfork = 1; 1488 postfork = 1; /* must be in line with ev_default_fork */
1058} 1489}
1059
1060#endif 1490#endif
1061 1491
1062#if EV_MULTIPLICITY 1492#if EV_MULTIPLICITY
1063struct ev_loop * 1493struct ev_loop *
1064ev_default_loop_init (unsigned int flags) 1494ev_default_loop_init (unsigned int flags)
1065#else 1495#else
1066int 1496int
1067ev_default_loop (unsigned int flags) 1497ev_default_loop (unsigned int flags)
1068#endif 1498#endif
1069{ 1499{
1070 if (sigpipe [0] == sigpipe [1])
1071 if (pipe (sigpipe))
1072 return 0;
1073
1074 if (!ev_default_loop_ptr) 1500 if (!ev_default_loop_ptr)
1075 { 1501 {
1076#if EV_MULTIPLICITY 1502#if EV_MULTIPLICITY
1077 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1078#else 1504#else
1081 1507
1082 loop_init (EV_A_ flags); 1508 loop_init (EV_A_ flags);
1083 1509
1084 if (ev_backend (EV_A)) 1510 if (ev_backend (EV_A))
1085 { 1511 {
1086 siginit (EV_A);
1087
1088#ifndef _WIN32 1512#ifndef _WIN32
1089 ev_signal_init (&childev, childcb, SIGCHLD); 1513 ev_signal_init (&childev, childcb, SIGCHLD);
1090 ev_set_priority (&childev, EV_MAXPRI); 1514 ev_set_priority (&childev, EV_MAXPRI);
1091 ev_signal_start (EV_A_ &childev); 1515 ev_signal_start (EV_A_ &childev);
1092 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1516 ev_unref (EV_A); /* child watcher should not keep loop alive */
1109#ifndef _WIN32 1533#ifndef _WIN32
1110 ev_ref (EV_A); /* child watcher */ 1534 ev_ref (EV_A); /* child watcher */
1111 ev_signal_stop (EV_A_ &childev); 1535 ev_signal_stop (EV_A_ &childev);
1112#endif 1536#endif
1113 1537
1114 ev_ref (EV_A); /* signal watcher */
1115 ev_io_stop (EV_A_ &sigev);
1116
1117 close (sigpipe [0]); sigpipe [0] = 0;
1118 close (sigpipe [1]); sigpipe [1] = 0;
1119
1120 loop_destroy (EV_A); 1538 loop_destroy (EV_A);
1121} 1539}
1122 1540
1123void 1541void
1124ev_default_fork (void) 1542ev_default_fork (void)
1126#if EV_MULTIPLICITY 1544#if EV_MULTIPLICITY
1127 struct ev_loop *loop = ev_default_loop_ptr; 1545 struct ev_loop *loop = ev_default_loop_ptr;
1128#endif 1546#endif
1129 1547
1130 if (backend) 1548 if (backend)
1131 postfork = 1; 1549 postfork = 1; /* must be in line with ev_loop_fork */
1132} 1550}
1133 1551
1134/*****************************************************************************/ 1552/*****************************************************************************/
1135 1553
1136int inline_size 1554void
1137any_pending (EV_P) 1555ev_invoke (EV_P_ void *w, int revents)
1138{ 1556{
1139 int pri; 1557 EV_CB_INVOKE ((W)w, revents);
1140
1141 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri])
1143 return 1;
1144
1145 return 0;
1146} 1558}
1147 1559
1148void inline_speed 1560void inline_speed
1149call_pending (EV_P) 1561call_pending (EV_P)
1150{ 1562{
1163 EV_CB_INVOKE (p->w, p->events); 1575 EV_CB_INVOKE (p->w, p->events);
1164 } 1576 }
1165 } 1577 }
1166} 1578}
1167 1579
1580#if EV_IDLE_ENABLE
1581void inline_size
1582idle_reify (EV_P)
1583{
1584 if (expect_false (idleall))
1585 {
1586 int pri;
1587
1588 for (pri = NUMPRI; pri--; )
1589 {
1590 if (pendingcnt [pri])
1591 break;
1592
1593 if (idlecnt [pri])
1594 {
1595 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1596 break;
1597 }
1598 }
1599 }
1600}
1601#endif
1602
1168void inline_size 1603void inline_size
1169timers_reify (EV_P) 1604timers_reify (EV_P)
1170{ 1605{
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1172 { 1607 {
1173 ev_timer *w = timers [0]; 1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1174 1609
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176 1611
1177 /* first reschedule or stop timer */ 1612 /* first reschedule or stop timer */
1178 if (w->repeat) 1613 if (w->repeat)
1179 { 1614 {
1615 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now;
1618
1180 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1181 1620
1182 ((WT)w)->at += w->repeat; 1621 ANHE_at_set (timers [HEAP0]);
1183 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now;
1185
1186 downheap ((WT *)timers, timercnt, 0); 1622 downheap (timers, timercnt, HEAP0);
1187 } 1623 }
1188 else 1624 else
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 1626
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1194 1630
1195#if EV_PERIODIC_ENABLE 1631#if EV_PERIODIC_ENABLE
1196void inline_size 1632void inline_size
1197periodics_reify (EV_P) 1633periodics_reify (EV_P)
1198{ 1634{
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1200 { 1636 {
1201 ev_periodic *w = periodics [0]; 1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1202 1638
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1204 1640
1205 /* first reschedule or stop timer */ 1641 /* first reschedule or stop timer */
1206 if (w->reschedule_cb) 1642 if (w->reschedule_cb)
1207 { 1643 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647
1648 ANHE_at_set (periodics [HEAP0]);
1210 downheap ((WT *)periodics, periodiccnt, 0); 1649 downheap (periodics, periodiccnt, HEAP0);
1211 } 1650 }
1212 else if (w->interval) 1651 else if (w->interval)
1213 { 1652 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1654 /* if next trigger time is not sufficiently in the future, put it there */
1655 /* this might happen because of floating point inexactness */
1656 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1657 {
1658 ev_at (w) += w->interval;
1659
1660 /* if interval is unreasonably low we might still have a time in the past */
1661 /* so correct this. this will make the periodic very inexact, but the user */
1662 /* has effectively asked to get triggered more often than possible */
1663 if (ev_at (w) < ev_rt_now)
1664 ev_at (w) = ev_rt_now;
1665 }
1666
1667 ANHE_at_set (periodics [HEAP0]);
1216 downheap ((WT *)periodics, periodiccnt, 0); 1668 downheap (periodics, periodiccnt, HEAP0);
1217 } 1669 }
1218 else 1670 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1671 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 1672
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1673 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1226periodics_reschedule (EV_P) 1678periodics_reschedule (EV_P)
1227{ 1679{
1228 int i; 1680 int i;
1229 1681
1230 /* adjust periodics after time jump */ 1682 /* adjust periodics after time jump */
1683 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1684 {
1685 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1686
1687 if (w->reschedule_cb)
1688 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval)
1690 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1691
1692 ANHE_at_set (periodics [i]);
1693 }
1694
1695 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1696 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1231 for (i = 0; i < periodiccnt; ++i) 1697 for (i = 0; i < periodiccnt; ++i)
1232 { 1698 upheap (periodics, i + HEAP0);
1233 ev_periodic *w = periodics [i]; 1699}
1700#endif
1234 1701
1235 if (w->reschedule_cb) 1702void inline_speed
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1703time_update (EV_P_ ev_tstamp max_block)
1237 else if (w->interval) 1704{
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1705 int i;
1706
1707#if EV_USE_MONOTONIC
1708 if (expect_true (have_monotonic))
1239 } 1709 {
1710 ev_tstamp odiff = rtmn_diff;
1240 1711
1241 /* now rebuild the heap */
1242 for (i = periodiccnt >> 1; i--; )
1243 downheap ((WT *)periodics, periodiccnt, i);
1244}
1245#endif
1246
1247int inline_size
1248time_update_monotonic (EV_P)
1249{
1250 mn_now = get_clock (); 1712 mn_now = get_clock ();
1251 1713
1714 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1715 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1716 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 1717 {
1254 ev_rt_now = rtmn_diff + mn_now; 1718 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 1719 return;
1256 } 1720 }
1257 else 1721
1258 {
1259 now_floor = mn_now; 1722 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 1723 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 1724
1265void inline_size 1725 /* loop a few times, before making important decisions.
1266time_update (EV_P) 1726 * on the choice of "4": one iteration isn't enough,
1267{ 1727 * in case we get preempted during the calls to
1268 int i; 1728 * ev_time and get_clock. a second call is almost guaranteed
1269 1729 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 1730 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 1731 * in the unlikely event of having been preempted here.
1272 { 1732 */
1273 if (time_update_monotonic (EV_A)) 1733 for (i = 4; --i; )
1274 { 1734 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 1735 rtmn_diff = ev_rt_now - mn_now;
1288 1736
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1737 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1290 return; /* all is well */ 1738 return; /* all is well */
1291 1739
1292 ev_rt_now = ev_time (); 1740 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1741 mn_now = get_clock ();
1294 now_floor = mn_now; 1742 now_floor = mn_now;
1295 } 1743 }
1296 1744
1297# if EV_PERIODIC_ENABLE 1745# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 1746 periodics_reschedule (EV_A);
1299# endif 1747# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */ 1748 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1749 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 1750 }
1304 else 1751 else
1305#endif 1752#endif
1306 { 1753 {
1307 ev_rt_now = ev_time (); 1754 ev_rt_now = ev_time ();
1308 1755
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1756 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 1757 {
1311#if EV_PERIODIC_ENABLE 1758#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 1759 periodics_reschedule (EV_A);
1313#endif 1760#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */ 1761 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i) 1762 for (i = 0; i < timercnt; ++i)
1763 {
1764 ANHE *he = timers + i + HEAP0;
1317 ((WT)timers [i])->at += ev_rt_now - mn_now; 1765 ANHE_w (*he)->at += ev_rt_now - mn_now;
1766 ANHE_at_set (*he);
1767 }
1318 } 1768 }
1319 1769
1320 mn_now = ev_rt_now; 1770 mn_now = ev_rt_now;
1321 } 1771 }
1322} 1772}
1336static int loop_done; 1786static int loop_done;
1337 1787
1338void 1788void
1339ev_loop (EV_P_ int flags) 1789ev_loop (EV_P_ int flags)
1340{ 1790{
1341 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1791 loop_done = EVUNLOOP_CANCEL;
1342 ? EVUNLOOP_ONE
1343 : EVUNLOOP_CANCEL;
1344 1792
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1793 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1346 1794
1347 while (activecnt) 1795 do
1348 { 1796 {
1349#ifndef _WIN32 1797#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 1798 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 1799 if (expect_false (getpid () != curpid))
1352 { 1800 {
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1811 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 1812 call_pending (EV_A);
1365 } 1813 }
1366#endif 1814#endif
1367 1815
1368 /* queue check watchers (and execute them) */ 1816 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 1817 if (expect_false (preparecnt))
1370 { 1818 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1819 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 1820 call_pending (EV_A);
1373 } 1821 }
1374 1822
1823 if (expect_false (!activecnt))
1824 break;
1825
1375 /* we might have forked, so reify kernel state if necessary */ 1826 /* we might have forked, so reify kernel state if necessary */
1376 if (expect_false (postfork)) 1827 if (expect_false (postfork))
1377 loop_fork (EV_A); 1828 loop_fork (EV_A);
1378 1829
1379 /* update fd-related kernel structures */ 1830 /* update fd-related kernel structures */
1380 fd_reify (EV_A); 1831 fd_reify (EV_A);
1381 1832
1382 /* calculate blocking time */ 1833 /* calculate blocking time */
1383 { 1834 {
1384 ev_tstamp block; 1835 ev_tstamp waittime = 0.;
1836 ev_tstamp sleeptime = 0.;
1385 1837
1386 if (flags & EVLOOP_NONBLOCK || idlecnt) 1838 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1387 block = 0.; /* do not block at all */
1388 else
1389 { 1839 {
1390 /* update time to cancel out callback processing overhead */ 1840 /* update time to cancel out callback processing overhead */
1391#if EV_USE_MONOTONIC
1392 if (expect_true (have_monotonic))
1393 time_update_monotonic (EV_A); 1841 time_update (EV_A_ 1e100);
1394 else
1395#endif
1396 {
1397 ev_rt_now = ev_time ();
1398 mn_now = ev_rt_now;
1399 }
1400 1842
1401 block = MAX_BLOCKTIME; 1843 waittime = MAX_BLOCKTIME;
1402 1844
1403 if (timercnt) 1845 if (timercnt)
1404 { 1846 {
1405 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1847 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1406 if (block > to) block = to; 1848 if (waittime > to) waittime = to;
1407 } 1849 }
1408 1850
1409#if EV_PERIODIC_ENABLE 1851#if EV_PERIODIC_ENABLE
1410 if (periodiccnt) 1852 if (periodiccnt)
1411 { 1853 {
1412 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1854 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1413 if (block > to) block = to; 1855 if (waittime > to) waittime = to;
1414 } 1856 }
1415#endif 1857#endif
1416 1858
1417 if (expect_false (block < 0.)) block = 0.; 1859 if (expect_false (waittime < timeout_blocktime))
1860 waittime = timeout_blocktime;
1861
1862 sleeptime = waittime - backend_fudge;
1863
1864 if (expect_true (sleeptime > io_blocktime))
1865 sleeptime = io_blocktime;
1866
1867 if (sleeptime)
1868 {
1869 ev_sleep (sleeptime);
1870 waittime -= sleeptime;
1871 }
1418 } 1872 }
1419 1873
1874 ++loop_count;
1420 backend_poll (EV_A_ block); 1875 backend_poll (EV_A_ waittime);
1876
1877 /* update ev_rt_now, do magic */
1878 time_update (EV_A_ waittime + sleeptime);
1421 } 1879 }
1422
1423 /* update ev_rt_now, do magic */
1424 time_update (EV_A);
1425 1880
1426 /* queue pending timers and reschedule them */ 1881 /* queue pending timers and reschedule them */
1427 timers_reify (EV_A); /* relative timers called last */ 1882 timers_reify (EV_A); /* relative timers called last */
1428#if EV_PERIODIC_ENABLE 1883#if EV_PERIODIC_ENABLE
1429 periodics_reify (EV_A); /* absolute timers called first */ 1884 periodics_reify (EV_A); /* absolute timers called first */
1430#endif 1885#endif
1431 1886
1887#if EV_IDLE_ENABLE
1432 /* queue idle watchers unless other events are pending */ 1888 /* queue idle watchers unless other events are pending */
1433 if (idlecnt && !any_pending (EV_A)) 1889 idle_reify (EV_A);
1434 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1890#endif
1435 1891
1436 /* queue check watchers, to be executed first */ 1892 /* queue check watchers, to be executed first */
1437 if (expect_false (checkcnt)) 1893 if (expect_false (checkcnt))
1438 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1894 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1439 1895
1440 call_pending (EV_A); 1896 call_pending (EV_A);
1441
1442 if (expect_false (loop_done))
1443 break;
1444 } 1897 }
1898 while (expect_true (
1899 activecnt
1900 && !loop_done
1901 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1902 ));
1445 1903
1446 if (loop_done == EVUNLOOP_ONE) 1904 if (loop_done == EVUNLOOP_ONE)
1447 loop_done = EVUNLOOP_CANCEL; 1905 loop_done = EVUNLOOP_CANCEL;
1448} 1906}
1449 1907
1476 head = &(*head)->next; 1934 head = &(*head)->next;
1477 } 1935 }
1478} 1936}
1479 1937
1480void inline_speed 1938void inline_speed
1481ev_clear_pending (EV_P_ W w) 1939clear_pending (EV_P_ W w)
1482{ 1940{
1483 if (w->pending) 1941 if (w->pending)
1484 { 1942 {
1485 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1943 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1486 w->pending = 0; 1944 w->pending = 0;
1487 } 1945 }
1488} 1946}
1489 1947
1948int
1949ev_clear_pending (EV_P_ void *w)
1950{
1951 W w_ = (W)w;
1952 int pending = w_->pending;
1953
1954 if (expect_true (pending))
1955 {
1956 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1957 w_->pending = 0;
1958 p->w = 0;
1959 return p->events;
1960 }
1961 else
1962 return 0;
1963}
1964
1965void inline_size
1966pri_adjust (EV_P_ W w)
1967{
1968 int pri = w->priority;
1969 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1970 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1971 w->priority = pri;
1972}
1973
1490void inline_speed 1974void inline_speed
1491ev_start (EV_P_ W w, int active) 1975ev_start (EV_P_ W w, int active)
1492{ 1976{
1493 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1977 pri_adjust (EV_A_ w);
1494 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1495
1496 w->active = active; 1978 w->active = active;
1497 ev_ref (EV_A); 1979 ev_ref (EV_A);
1498} 1980}
1499 1981
1500void inline_size 1982void inline_size
1504 w->active = 0; 1986 w->active = 0;
1505} 1987}
1506 1988
1507/*****************************************************************************/ 1989/*****************************************************************************/
1508 1990
1509void 1991void noinline
1510ev_io_start (EV_P_ ev_io *w) 1992ev_io_start (EV_P_ ev_io *w)
1511{ 1993{
1512 int fd = w->fd; 1994 int fd = w->fd;
1513 1995
1514 if (expect_false (ev_is_active (w))) 1996 if (expect_false (ev_is_active (w)))
1516 1998
1517 assert (("ev_io_start called with negative fd", fd >= 0)); 1999 assert (("ev_io_start called with negative fd", fd >= 0));
1518 2000
1519 ev_start (EV_A_ (W)w, 1); 2001 ev_start (EV_A_ (W)w, 1);
1520 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2002 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1521 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2003 wlist_add (&anfds[fd].head, (WL)w);
1522 2004
1523 fd_change (EV_A_ fd); 2005 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2006 w->events &= ~EV_IOFDSET;
1524} 2007}
1525 2008
1526void 2009void noinline
1527ev_io_stop (EV_P_ ev_io *w) 2010ev_io_stop (EV_P_ ev_io *w)
1528{ 2011{
1529 ev_clear_pending (EV_A_ (W)w); 2012 clear_pending (EV_A_ (W)w);
1530 if (expect_false (!ev_is_active (w))) 2013 if (expect_false (!ev_is_active (w)))
1531 return; 2014 return;
1532 2015
1533 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2016 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1534 2017
1535 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2018 wlist_del (&anfds[w->fd].head, (WL)w);
1536 ev_stop (EV_A_ (W)w); 2019 ev_stop (EV_A_ (W)w);
1537 2020
1538 fd_change (EV_A_ w->fd); 2021 fd_change (EV_A_ w->fd, 1);
1539} 2022}
1540 2023
1541void 2024void noinline
1542ev_timer_start (EV_P_ ev_timer *w) 2025ev_timer_start (EV_P_ ev_timer *w)
1543{ 2026{
1544 if (expect_false (ev_is_active (w))) 2027 if (expect_false (ev_is_active (w)))
1545 return; 2028 return;
1546 2029
1547 ((WT)w)->at += mn_now; 2030 ev_at (w) += mn_now;
1548 2031
1549 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2032 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1550 2033
1551 ev_start (EV_A_ (W)w, ++timercnt); 2034 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1552 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2035 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1553 timers [timercnt - 1] = w; 2036 ANHE_w (timers [ev_active (w)]) = (WT)w;
1554 upheap ((WT *)timers, timercnt - 1); 2037 ANHE_at_set (timers [ev_active (w)]);
2038 upheap (timers, ev_active (w));
1555 2039
1556 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2040 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1557} 2041}
1558 2042
1559void 2043void noinline
1560ev_timer_stop (EV_P_ ev_timer *w) 2044ev_timer_stop (EV_P_ ev_timer *w)
1561{ 2045{
1562 ev_clear_pending (EV_A_ (W)w); 2046 clear_pending (EV_A_ (W)w);
1563 if (expect_false (!ev_is_active (w))) 2047 if (expect_false (!ev_is_active (w)))
1564 return; 2048 return;
1565 2049
1566 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1567
1568 { 2050 {
1569 int active = ((W)w)->active; 2051 int active = ev_active (w);
1570 2052
2053 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2054
1571 if (expect_true (--active < --timercnt)) 2055 if (expect_true (active < timercnt + HEAP0 - 1))
1572 { 2056 {
1573 timers [active] = timers [timercnt]; 2057 timers [active] = timers [timercnt + HEAP0 - 1];
1574 adjustheap ((WT *)timers, timercnt, active); 2058 adjustheap (timers, timercnt, active);
1575 } 2059 }
2060
2061 --timercnt;
1576 } 2062 }
1577 2063
1578 ((WT)w)->at -= mn_now; 2064 ev_at (w) -= mn_now;
1579 2065
1580 ev_stop (EV_A_ (W)w); 2066 ev_stop (EV_A_ (W)w);
1581} 2067}
1582 2068
1583void 2069void noinline
1584ev_timer_again (EV_P_ ev_timer *w) 2070ev_timer_again (EV_P_ ev_timer *w)
1585{ 2071{
1586 if (ev_is_active (w)) 2072 if (ev_is_active (w))
1587 { 2073 {
1588 if (w->repeat) 2074 if (w->repeat)
1589 { 2075 {
1590 ((WT)w)->at = mn_now + w->repeat; 2076 ev_at (w) = mn_now + w->repeat;
2077 ANHE_at_set (timers [ev_active (w)]);
1591 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2078 adjustheap (timers, timercnt, ev_active (w));
1592 } 2079 }
1593 else 2080 else
1594 ev_timer_stop (EV_A_ w); 2081 ev_timer_stop (EV_A_ w);
1595 } 2082 }
1596 else if (w->repeat) 2083 else if (w->repeat)
1597 { 2084 {
1598 w->at = w->repeat; 2085 ev_at (w) = w->repeat;
1599 ev_timer_start (EV_A_ w); 2086 ev_timer_start (EV_A_ w);
1600 } 2087 }
1601} 2088}
1602 2089
1603#if EV_PERIODIC_ENABLE 2090#if EV_PERIODIC_ENABLE
1604void 2091void noinline
1605ev_periodic_start (EV_P_ ev_periodic *w) 2092ev_periodic_start (EV_P_ ev_periodic *w)
1606{ 2093{
1607 if (expect_false (ev_is_active (w))) 2094 if (expect_false (ev_is_active (w)))
1608 return; 2095 return;
1609 2096
1610 if (w->reschedule_cb) 2097 if (w->reschedule_cb)
1611 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2098 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1612 else if (w->interval) 2099 else if (w->interval)
1613 { 2100 {
1614 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2101 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1615 /* this formula differs from the one in periodic_reify because we do not always round up */ 2102 /* this formula differs from the one in periodic_reify because we do not always round up */
1616 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2103 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1617 } 2104 }
2105 else
2106 ev_at (w) = w->offset;
1618 2107
1619 ev_start (EV_A_ (W)w, ++periodiccnt); 2108 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1620 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2109 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1621 periodics [periodiccnt - 1] = w; 2110 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1622 upheap ((WT *)periodics, periodiccnt - 1); 2111 ANHE_at_set (periodics [ev_active (w)]);
2112 upheap (periodics, ev_active (w));
1623 2113
1624 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2114 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1625} 2115}
1626 2116
1627void 2117void noinline
1628ev_periodic_stop (EV_P_ ev_periodic *w) 2118ev_periodic_stop (EV_P_ ev_periodic *w)
1629{ 2119{
1630 ev_clear_pending (EV_A_ (W)w); 2120 clear_pending (EV_A_ (W)w);
1631 if (expect_false (!ev_is_active (w))) 2121 if (expect_false (!ev_is_active (w)))
1632 return; 2122 return;
1633 2123
1634 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1635
1636 { 2124 {
1637 int active = ((W)w)->active; 2125 int active = ev_active (w);
1638 2126
2127 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2128
1639 if (expect_true (--active < --periodiccnt)) 2129 if (expect_true (active < periodiccnt + HEAP0 - 1))
1640 { 2130 {
1641 periodics [active] = periodics [periodiccnt]; 2131 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1642 adjustheap ((WT *)periodics, periodiccnt, active); 2132 adjustheap (periodics, periodiccnt, active);
1643 } 2133 }
2134
2135 --periodiccnt;
1644 } 2136 }
1645 2137
1646 ev_stop (EV_A_ (W)w); 2138 ev_stop (EV_A_ (W)w);
1647} 2139}
1648 2140
1649void 2141void noinline
1650ev_periodic_again (EV_P_ ev_periodic *w) 2142ev_periodic_again (EV_P_ ev_periodic *w)
1651{ 2143{
1652 /* TODO: use adjustheap and recalculation */ 2144 /* TODO: use adjustheap and recalculation */
1653 ev_periodic_stop (EV_A_ w); 2145 ev_periodic_stop (EV_A_ w);
1654 ev_periodic_start (EV_A_ w); 2146 ev_periodic_start (EV_A_ w);
1657 2149
1658#ifndef SA_RESTART 2150#ifndef SA_RESTART
1659# define SA_RESTART 0 2151# define SA_RESTART 0
1660#endif 2152#endif
1661 2153
1662void 2154void noinline
1663ev_signal_start (EV_P_ ev_signal *w) 2155ev_signal_start (EV_P_ ev_signal *w)
1664{ 2156{
1665#if EV_MULTIPLICITY 2157#if EV_MULTIPLICITY
1666 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2158 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1667#endif 2159#endif
1668 if (expect_false (ev_is_active (w))) 2160 if (expect_false (ev_is_active (w)))
1669 return; 2161 return;
1670 2162
1671 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2163 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1672 2164
2165 evpipe_init (EV_A);
2166
2167 {
2168#ifndef _WIN32
2169 sigset_t full, prev;
2170 sigfillset (&full);
2171 sigprocmask (SIG_SETMASK, &full, &prev);
2172#endif
2173
2174 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2175
2176#ifndef _WIN32
2177 sigprocmask (SIG_SETMASK, &prev, 0);
2178#endif
2179 }
2180
1673 ev_start (EV_A_ (W)w, 1); 2181 ev_start (EV_A_ (W)w, 1);
1674 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1675 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2182 wlist_add (&signals [w->signum - 1].head, (WL)w);
1676 2183
1677 if (!((WL)w)->next) 2184 if (!((WL)w)->next)
1678 { 2185 {
1679#if _WIN32 2186#if _WIN32
1680 signal (w->signum, sighandler); 2187 signal (w->signum, ev_sighandler);
1681#else 2188#else
1682 struct sigaction sa; 2189 struct sigaction sa;
1683 sa.sa_handler = sighandler; 2190 sa.sa_handler = ev_sighandler;
1684 sigfillset (&sa.sa_mask); 2191 sigfillset (&sa.sa_mask);
1685 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2192 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1686 sigaction (w->signum, &sa, 0); 2193 sigaction (w->signum, &sa, 0);
1687#endif 2194#endif
1688 } 2195 }
1689} 2196}
1690 2197
1691void 2198void noinline
1692ev_signal_stop (EV_P_ ev_signal *w) 2199ev_signal_stop (EV_P_ ev_signal *w)
1693{ 2200{
1694 ev_clear_pending (EV_A_ (W)w); 2201 clear_pending (EV_A_ (W)w);
1695 if (expect_false (!ev_is_active (w))) 2202 if (expect_false (!ev_is_active (w)))
1696 return; 2203 return;
1697 2204
1698 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2205 wlist_del (&signals [w->signum - 1].head, (WL)w);
1699 ev_stop (EV_A_ (W)w); 2206 ev_stop (EV_A_ (W)w);
1700 2207
1701 if (!signals [w->signum - 1].head) 2208 if (!signals [w->signum - 1].head)
1702 signal (w->signum, SIG_DFL); 2209 signal (w->signum, SIG_DFL);
1703} 2210}
1710#endif 2217#endif
1711 if (expect_false (ev_is_active (w))) 2218 if (expect_false (ev_is_active (w)))
1712 return; 2219 return;
1713 2220
1714 ev_start (EV_A_ (W)w, 1); 2221 ev_start (EV_A_ (W)w, 1);
1715 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2222 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1716} 2223}
1717 2224
1718void 2225void
1719ev_child_stop (EV_P_ ev_child *w) 2226ev_child_stop (EV_P_ ev_child *w)
1720{ 2227{
1721 ev_clear_pending (EV_A_ (W)w); 2228 clear_pending (EV_A_ (W)w);
1722 if (expect_false (!ev_is_active (w))) 2229 if (expect_false (!ev_is_active (w)))
1723 return; 2230 return;
1724 2231
1725 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2232 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1726 ev_stop (EV_A_ (W)w); 2233 ev_stop (EV_A_ (W)w);
1727} 2234}
1728 2235
1729#if EV_STAT_ENABLE 2236#if EV_STAT_ENABLE
1730 2237
1749 if (w->wd < 0) 2256 if (w->wd < 0)
1750 { 2257 {
1751 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2258 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1752 2259
1753 /* monitor some parent directory for speedup hints */ 2260 /* monitor some parent directory for speedup hints */
2261 /* note that exceeding the hardcoded limit is not a correctness issue, */
2262 /* but an efficiency issue only */
1754 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2263 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1755 { 2264 {
1756 char path [4096]; 2265 char path [4096];
1757 strcpy (path, w->path); 2266 strcpy (path, w->path);
1758 2267
1962} 2471}
1963 2472
1964void 2473void
1965ev_stat_stop (EV_P_ ev_stat *w) 2474ev_stat_stop (EV_P_ ev_stat *w)
1966{ 2475{
1967 ev_clear_pending (EV_A_ (W)w); 2476 clear_pending (EV_A_ (W)w);
1968 if (expect_false (!ev_is_active (w))) 2477 if (expect_false (!ev_is_active (w)))
1969 return; 2478 return;
1970 2479
1971#if EV_USE_INOTIFY 2480#if EV_USE_INOTIFY
1972 infy_del (EV_A_ w); 2481 infy_del (EV_A_ w);
1975 2484
1976 ev_stop (EV_A_ (W)w); 2485 ev_stop (EV_A_ (W)w);
1977} 2486}
1978#endif 2487#endif
1979 2488
2489#if EV_IDLE_ENABLE
1980void 2490void
1981ev_idle_start (EV_P_ ev_idle *w) 2491ev_idle_start (EV_P_ ev_idle *w)
1982{ 2492{
1983 if (expect_false (ev_is_active (w))) 2493 if (expect_false (ev_is_active (w)))
1984 return; 2494 return;
1985 2495
2496 pri_adjust (EV_A_ (W)w);
2497
2498 {
2499 int active = ++idlecnt [ABSPRI (w)];
2500
2501 ++idleall;
1986 ev_start (EV_A_ (W)w, ++idlecnt); 2502 ev_start (EV_A_ (W)w, active);
2503
1987 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2504 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1988 idles [idlecnt - 1] = w; 2505 idles [ABSPRI (w)][active - 1] = w;
2506 }
1989} 2507}
1990 2508
1991void 2509void
1992ev_idle_stop (EV_P_ ev_idle *w) 2510ev_idle_stop (EV_P_ ev_idle *w)
1993{ 2511{
1994 ev_clear_pending (EV_A_ (W)w); 2512 clear_pending (EV_A_ (W)w);
1995 if (expect_false (!ev_is_active (w))) 2513 if (expect_false (!ev_is_active (w)))
1996 return; 2514 return;
1997 2515
1998 { 2516 {
1999 int active = ((W)w)->active; 2517 int active = ev_active (w);
2000 idles [active - 1] = idles [--idlecnt]; 2518
2001 ((W)idles [active - 1])->active = active; 2519 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2520 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2521
2522 ev_stop (EV_A_ (W)w);
2523 --idleall;
2002 } 2524 }
2003
2004 ev_stop (EV_A_ (W)w);
2005} 2525}
2526#endif
2006 2527
2007void 2528void
2008ev_prepare_start (EV_P_ ev_prepare *w) 2529ev_prepare_start (EV_P_ ev_prepare *w)
2009{ 2530{
2010 if (expect_false (ev_is_active (w))) 2531 if (expect_false (ev_is_active (w)))
2016} 2537}
2017 2538
2018void 2539void
2019ev_prepare_stop (EV_P_ ev_prepare *w) 2540ev_prepare_stop (EV_P_ ev_prepare *w)
2020{ 2541{
2021 ev_clear_pending (EV_A_ (W)w); 2542 clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w))) 2543 if (expect_false (!ev_is_active (w)))
2023 return; 2544 return;
2024 2545
2025 { 2546 {
2026 int active = ((W)w)->active; 2547 int active = ev_active (w);
2548
2027 prepares [active - 1] = prepares [--preparecnt]; 2549 prepares [active - 1] = prepares [--preparecnt];
2028 ((W)prepares [active - 1])->active = active; 2550 ev_active (prepares [active - 1]) = active;
2029 } 2551 }
2030 2552
2031 ev_stop (EV_A_ (W)w); 2553 ev_stop (EV_A_ (W)w);
2032} 2554}
2033 2555
2043} 2565}
2044 2566
2045void 2567void
2046ev_check_stop (EV_P_ ev_check *w) 2568ev_check_stop (EV_P_ ev_check *w)
2047{ 2569{
2048 ev_clear_pending (EV_A_ (W)w); 2570 clear_pending (EV_A_ (W)w);
2049 if (expect_false (!ev_is_active (w))) 2571 if (expect_false (!ev_is_active (w)))
2050 return; 2572 return;
2051 2573
2052 { 2574 {
2053 int active = ((W)w)->active; 2575 int active = ev_active (w);
2576
2054 checks [active - 1] = checks [--checkcnt]; 2577 checks [active - 1] = checks [--checkcnt];
2055 ((W)checks [active - 1])->active = active; 2578 ev_active (checks [active - 1]) = active;
2056 } 2579 }
2057 2580
2058 ev_stop (EV_A_ (W)w); 2581 ev_stop (EV_A_ (W)w);
2059} 2582}
2060 2583
2061#if EV_EMBED_ENABLE 2584#if EV_EMBED_ENABLE
2062void noinline 2585void noinline
2063ev_embed_sweep (EV_P_ ev_embed *w) 2586ev_embed_sweep (EV_P_ ev_embed *w)
2064{ 2587{
2065 ev_loop (w->loop, EVLOOP_NONBLOCK); 2588 ev_loop (w->other, EVLOOP_NONBLOCK);
2066} 2589}
2067 2590
2068static void 2591static void
2069embed_cb (EV_P_ ev_io *io, int revents) 2592embed_io_cb (EV_P_ ev_io *io, int revents)
2070{ 2593{
2071 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2594 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2072 2595
2073 if (ev_cb (w)) 2596 if (ev_cb (w))
2074 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2597 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2075 else 2598 else
2076 ev_embed_sweep (loop, w); 2599 ev_loop (w->other, EVLOOP_NONBLOCK);
2077} 2600}
2601
2602static void
2603embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2604{
2605 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2606
2607 {
2608 struct ev_loop *loop = w->other;
2609
2610 while (fdchangecnt)
2611 {
2612 fd_reify (EV_A);
2613 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2614 }
2615 }
2616}
2617
2618#if 0
2619static void
2620embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2621{
2622 ev_idle_stop (EV_A_ idle);
2623}
2624#endif
2078 2625
2079void 2626void
2080ev_embed_start (EV_P_ ev_embed *w) 2627ev_embed_start (EV_P_ ev_embed *w)
2081{ 2628{
2082 if (expect_false (ev_is_active (w))) 2629 if (expect_false (ev_is_active (w)))
2083 return; 2630 return;
2084 2631
2085 { 2632 {
2086 struct ev_loop *loop = w->loop; 2633 struct ev_loop *loop = w->other;
2087 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2634 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2088 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2635 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2089 } 2636 }
2090 2637
2091 ev_set_priority (&w->io, ev_priority (w)); 2638 ev_set_priority (&w->io, ev_priority (w));
2092 ev_io_start (EV_A_ &w->io); 2639 ev_io_start (EV_A_ &w->io);
2093 2640
2641 ev_prepare_init (&w->prepare, embed_prepare_cb);
2642 ev_set_priority (&w->prepare, EV_MINPRI);
2643 ev_prepare_start (EV_A_ &w->prepare);
2644
2645 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2646
2094 ev_start (EV_A_ (W)w, 1); 2647 ev_start (EV_A_ (W)w, 1);
2095} 2648}
2096 2649
2097void 2650void
2098ev_embed_stop (EV_P_ ev_embed *w) 2651ev_embed_stop (EV_P_ ev_embed *w)
2099{ 2652{
2100 ev_clear_pending (EV_A_ (W)w); 2653 clear_pending (EV_A_ (W)w);
2101 if (expect_false (!ev_is_active (w))) 2654 if (expect_false (!ev_is_active (w)))
2102 return; 2655 return;
2103 2656
2104 ev_io_stop (EV_A_ &w->io); 2657 ev_io_stop (EV_A_ &w->io);
2658 ev_prepare_stop (EV_A_ &w->prepare);
2105 2659
2106 ev_stop (EV_A_ (W)w); 2660 ev_stop (EV_A_ (W)w);
2107} 2661}
2108#endif 2662#endif
2109 2663
2120} 2674}
2121 2675
2122void 2676void
2123ev_fork_stop (EV_P_ ev_fork *w) 2677ev_fork_stop (EV_P_ ev_fork *w)
2124{ 2678{
2125 ev_clear_pending (EV_A_ (W)w); 2679 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 2680 if (expect_false (!ev_is_active (w)))
2127 return; 2681 return;
2128 2682
2129 { 2683 {
2130 int active = ((W)w)->active; 2684 int active = ev_active (w);
2685
2131 forks [active - 1] = forks [--forkcnt]; 2686 forks [active - 1] = forks [--forkcnt];
2132 ((W)forks [active - 1])->active = active; 2687 ev_active (forks [active - 1]) = active;
2133 } 2688 }
2134 2689
2135 ev_stop (EV_A_ (W)w); 2690 ev_stop (EV_A_ (W)w);
2691}
2692#endif
2693
2694#if EV_ASYNC_ENABLE
2695void
2696ev_async_start (EV_P_ ev_async *w)
2697{
2698 if (expect_false (ev_is_active (w)))
2699 return;
2700
2701 evpipe_init (EV_A);
2702
2703 ev_start (EV_A_ (W)w, ++asynccnt);
2704 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2705 asyncs [asynccnt - 1] = w;
2706}
2707
2708void
2709ev_async_stop (EV_P_ ev_async *w)
2710{
2711 clear_pending (EV_A_ (W)w);
2712 if (expect_false (!ev_is_active (w)))
2713 return;
2714
2715 {
2716 int active = ev_active (w);
2717
2718 asyncs [active - 1] = asyncs [--asynccnt];
2719 ev_active (asyncs [active - 1]) = active;
2720 }
2721
2722 ev_stop (EV_A_ (W)w);
2723}
2724
2725void
2726ev_async_send (EV_P_ ev_async *w)
2727{
2728 w->sent = 1;
2729 evpipe_write (EV_A_ &gotasync);
2136} 2730}
2137#endif 2731#endif
2138 2732
2139/*****************************************************************************/ 2733/*****************************************************************************/
2140 2734
2198 ev_timer_set (&once->to, timeout, 0.); 2792 ev_timer_set (&once->to, timeout, 0.);
2199 ev_timer_start (EV_A_ &once->to); 2793 ev_timer_start (EV_A_ &once->to);
2200 } 2794 }
2201} 2795}
2202 2796
2797#if EV_MULTIPLICITY
2798 #include "ev_wrap.h"
2799#endif
2800
2203#ifdef __cplusplus 2801#ifdef __cplusplus
2204} 2802}
2205#endif 2803#endif
2206 2804

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines