ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.215 by ayin, Thu Feb 21 10:34:15 2008 UTC vs.
Revision 1.246 by root, Wed May 21 12:51:38 2008 UTC

39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
118# else 119# else
119# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
120# endif 121# endif
121# endif 122# endif
122 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
123#endif 132#endif
124 133
125#include <math.h> 134#include <math.h>
126#include <stdlib.h> 135#include <stdlib.h>
127#include <fcntl.h> 136#include <fcntl.h>
152# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
154# endif 163# endif
155#endif 164#endif
156 165
157/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
158 167
159#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
160# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
161#endif 170#endif
162 171
179# define EV_USE_POLL 1 188# define EV_USE_POLL 1
180# endif 189# endif
181#endif 190#endif
182 191
183#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
184# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
185#endif 198#endif
186 199
187#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
189#endif 202#endif
191#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 205# define EV_USE_PORT 0
193#endif 206#endif
194 207
195#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
196# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
197#endif 214#endif
198 215
199#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 217# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
210# else 227# else
211# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
212# endif 229# endif
213#endif 230#endif
214 231
215/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 249
217#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
220#endif 253#endif
239# include <sys/inotify.h> 272# include <sys/inotify.h>
240#endif 273#endif
241 274
242#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 276# include <winsock.h>
277#endif
278
279#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
244#endif 289#endif
245 290
246/**/ 291/**/
247 292
248/* 293/*
263# define expect(expr,value) __builtin_expect ((expr),(value)) 308# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 309# define noinline __attribute__ ((noinline))
265#else 310#else
266# define expect(expr,value) (expr) 311# define expect(expr,value) (expr)
267# define noinline 312# define noinline
268# if __STDC_VERSION__ < 199901L 313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 314# define inline
270# endif 315# endif
271#endif 316#endif
272 317
273#define expect_false(expr) expect ((expr) != 0, 0) 318#define expect_false(expr) expect ((expr) != 0, 0)
288 333
289typedef ev_watcher *W; 334typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
292 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
293#if EV_USE_MONOTONIC 341#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 343/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 345#endif
323 perror (msg); 371 perror (msg);
324 abort (); 372 abort ();
325 } 373 }
326} 374}
327 375
376static void *
377ev_realloc_emul (void *ptr, long size)
378{
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389}
390
328static void *(*alloc)(void *ptr, long size); 391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 392
330void 393void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 394ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 395{
333 alloc = cb; 396 alloc = cb;
334} 397}
335 398
336inline_speed void * 399inline_speed void *
337ev_realloc (void *ptr, long size) 400ev_realloc (void *ptr, long size)
338{ 401{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 402 ptr = alloc (ptr, size);
340 403
341 if (!ptr && size) 404 if (!ptr && size)
342 { 405 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 407 abort ();
367 W w; 430 W w;
368 int events; 431 int events;
369} ANPENDING; 432} ANPENDING;
370 433
371#if EV_USE_INOTIFY 434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
372typedef struct 436typedef struct
373{ 437{
374 WL head; 438 WL head;
375} ANFS; 439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
376#endif 458#endif
377 459
378#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
379 461
380 struct ev_loop 462 struct ev_loop
451 ts.tv_sec = (time_t)delay; 533 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 535
454 nanosleep (&ts, 0); 536 nanosleep (&ts, 0);
455#elif defined(_WIN32) 537#elif defined(_WIN32)
456 Sleep (delay * 1e3); 538 Sleep ((unsigned long)(delay * 1e3));
457#else 539#else
458 struct timeval tv; 540 struct timeval tv;
459 541
460 tv.tv_sec = (time_t)delay; 542 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
464#endif 546#endif
465 } 547 }
466} 548}
467 549
468/*****************************************************************************/ 550/*****************************************************************************/
551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 553
470int inline_size 554int inline_size
471array_nextsize (int elem, int cur, int cnt) 555array_nextsize (int elem, int cur, int cnt)
472{ 556{
473 int ncur = cur + 1; 557 int ncur = cur + 1;
474 558
475 do 559 do
476 ncur <<= 1; 560 ncur <<= 1;
477 while (cnt > ncur); 561 while (cnt > ncur);
478 562
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 565 {
482 ncur *= elem; 566 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 568 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 569 ncur /= elem;
486 } 570 }
487 571
488 return ncur; 572 return ncur;
702 } 786 }
703} 787}
704 788
705/*****************************************************************************/ 789/*****************************************************************************/
706 790
791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807
808/* towards the root */
707void inline_speed 809void inline_speed
708upheap (WT *heap, int k) 810upheap (ANHE *heap, int k)
709{ 811{
710 WT w = heap [k]; 812 ANHE he = heap [k];
711 813
712 while (k) 814 for (;;)
713 { 815 {
714 int p = (k - 1) >> 1; 816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
715 817
716 if (heap [p]->at <= w->at) 818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
717 break; 819 break;
718 820
719 heap [k] = heap [p]; 821 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 822 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 823 k = p;
722 } 824 }
723 825
826 ev_active (ANHE_w (he)) = k;
724 heap [k] = w; 827 heap [k] = he;
725 ((W)heap [k])->active = k + 1;
726} 828}
727 829
830/* away from the root */
728void inline_speed 831void inline_speed
729downheap (WT *heap, int N, int k) 832downheap (ANHE *heap, int N, int k)
730{ 833{
731 WT w = heap [k]; 834 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0;
732 836
733 for (;;) 837 for (;;)
734 { 838 {
735 int c = (k << 1) + 1; 839 ev_tstamp minat;
840 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
736 842
737 if (c >= N) 843 // find minimum child
844 if (expect_true (pos + DHEAP - 1 < E))
845 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else if (pos < E)
852 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else
738 break; 859 break;
739 860
861 if (ANHE_at (he) <= minat)
862 break;
863
864 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866
867 k = minpos - heap;
868 }
869
870 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872}
873
874#else // 4HEAP
875
876#define HEAP0 1
877
878/* towards the root */
879void inline_speed
880upheap (ANHE *heap, int k)
881{
882 ANHE he = heap [k];
883
884 for (;;)
885 {
886 int p = k >> 1;
887
888 /* maybe we could use a dummy element at heap [0]? */
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break;
891
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
741 ? 1 : 0; 915 ? 1 : 0;
742 916
743 if (w->at <= heap [c]->at) 917 if (ANHE_at (he) <= ANHE_at (heap [c]))
744 break; 918 break;
745 919
746 heap [k] = heap [c]; 920 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1; 921 ev_active (ANHE_w (heap [k])) = k;
748 922
749 k = c; 923 k = c;
750 } 924 }
751 925
752 heap [k] = w; 926 heap [k] = he;
753 ((W)heap [k])->active = k + 1; 927 ev_active (ANHE_w (he)) = k;
754} 928}
929#endif
755 930
756void inline_size 931void inline_size
757adjustheap (WT *heap, int N, int k) 932adjustheap (ANHE *heap, int N, int k)
758{ 933{
759 upheap (heap, k); 934 upheap (heap, k);
760 downheap (heap, N, k); 935 downheap (heap, N, k);
761} 936}
762 937
802static void noinline 977static void noinline
803evpipe_init (EV_P) 978evpipe_init (EV_P)
804{ 979{
805 if (!ev_is_active (&pipeev)) 980 if (!ev_is_active (&pipeev))
806 { 981 {
982#if EV_USE_EVENTFD
983 if ((evfd = eventfd (0, 0)) >= 0)
984 {
985 evpipe [0] = -1;
986 fd_intern (evfd);
987 ev_io_set (&pipeev, evfd, EV_READ);
988 }
989 else
990#endif
991 {
807 while (pipe (evpipe)) 992 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 993 syserr ("(libev) error creating signal/async pipe");
809 994
810 fd_intern (evpipe [0]); 995 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 996 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 997 ev_io_set (&pipeev, evpipe [0], EV_READ);
998 }
999
814 ev_io_start (EV_A_ &pipeev); 1000 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1001 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1002 }
817} 1003}
818 1004
822 if (!*flag) 1008 if (!*flag)
823 { 1009 {
824 int old_errno = errno; /* save errno because write might clobber it */ 1010 int old_errno = errno; /* save errno because write might clobber it */
825 1011
826 *flag = 1; 1012 *flag = 1;
1013
1014#if EV_USE_EVENTFD
1015 if (evfd >= 0)
1016 {
1017 uint64_t counter = 1;
1018 write (evfd, &counter, sizeof (uint64_t));
1019 }
1020 else
1021#endif
827 write (evpipe [1], &old_errno, 1); 1022 write (evpipe [1], &old_errno, 1);
828 1023
829 errno = old_errno; 1024 errno = old_errno;
830 } 1025 }
831} 1026}
832 1027
833static void 1028static void
834pipecb (EV_P_ ev_io *iow, int revents) 1029pipecb (EV_P_ ev_io *iow, int revents)
835{ 1030{
1031#if EV_USE_EVENTFD
1032 if (evfd >= 0)
836 { 1033 {
837 int dummy; 1034 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t));
1036 }
1037 else
1038#endif
1039 {
1040 char dummy;
838 read (evpipe [0], &dummy, 1); 1041 read (evpipe [0], &dummy, 1);
839 } 1042 }
840 1043
841 if (gotsig && ev_is_default_loop (EV_A)) 1044 if (gotsig && ev_is_default_loop (EV_A))
842 { 1045 {
843 int signum; 1046 int signum;
844 gotsig = 0; 1047 gotsig = 0;
865} 1068}
866 1069
867/*****************************************************************************/ 1070/*****************************************************************************/
868 1071
869static void 1072static void
870sighandler (int signum) 1073ev_sighandler (int signum)
871{ 1074{
872#if EV_MULTIPLICITY 1075#if EV_MULTIPLICITY
873 struct ev_loop *loop = &default_loop_struct; 1076 struct ev_loop *loop = &default_loop_struct;
874#endif 1077#endif
875 1078
876#if _WIN32 1079#if _WIN32
877 signal (signum, sighandler); 1080 signal (signum, ev_sighandler);
878#endif 1081#endif
879 1082
880 signals [signum - 1].gotsig = 1; 1083 signals [signum - 1].gotsig = 1;
881 evpipe_write (EV_A_ &gotsig); 1084 evpipe_write (EV_A_ &gotsig);
882} 1085}
912#ifndef WIFCONTINUED 1115#ifndef WIFCONTINUED
913# define WIFCONTINUED(status) 0 1116# define WIFCONTINUED(status) 0
914#endif 1117#endif
915 1118
916void inline_speed 1119void inline_speed
917child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1120child_reap (EV_P_ int chain, int pid, int status)
918{ 1121{
919 ev_child *w; 1122 ev_child *w;
920 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
921 1124
922 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
923 { 1126 {
924 if ((w->pid == pid || !w->pid) 1127 if ((w->pid == pid || !w->pid)
925 && (!traced || (w->flags & 1))) 1128 && (!traced || (w->flags & 1)))
926 { 1129 {
927 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
928 w->rpid = pid; 1131 w->rpid = pid;
929 w->rstatus = status; 1132 w->rstatus = status;
930 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1133 ev_feed_event (EV_A_ (W)w, EV_CHILD);
931 } 1134 }
932 } 1135 }
946 if (!WCONTINUED 1149 if (!WCONTINUED
947 || errno != EINVAL 1150 || errno != EINVAL
948 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1151 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
949 return; 1152 return;
950 1153
951 /* make sure we are called again until all childs have been reaped */ 1154 /* make sure we are called again until all children have been reaped */
952 /* we need to do it this way so that the callback gets called before we continue */ 1155 /* we need to do it this way so that the callback gets called before we continue */
953 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
954 1157
955 child_reap (EV_A_ sw, pid, pid, status); 1158 child_reap (EV_A_ pid, pid, status);
956 if (EV_PID_HASHSIZE > 1) 1159 if (EV_PID_HASHSIZE > 1)
957 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
958} 1161}
959 1162
960#endif 1163#endif
961 1164
962/*****************************************************************************/ 1165/*****************************************************************************/
1105 if (!(flags & EVFLAG_NOENV) 1308 if (!(flags & EVFLAG_NOENV)
1106 && !enable_secure () 1309 && !enable_secure ()
1107 && getenv ("LIBEV_FLAGS")) 1310 && getenv ("LIBEV_FLAGS"))
1108 flags = atoi (getenv ("LIBEV_FLAGS")); 1311 flags = atoi (getenv ("LIBEV_FLAGS"));
1109 1312
1110 if (!(flags & 0x0000ffffUL)) 1313 if (!(flags & 0x0000ffffU))
1111 flags |= ev_recommended_backends (); 1314 flags |= ev_recommended_backends ();
1112 1315
1113#if EV_USE_PORT 1316#if EV_USE_PORT
1114 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1115#endif 1318#endif
1139 if (ev_is_active (&pipeev)) 1342 if (ev_is_active (&pipeev))
1140 { 1343 {
1141 ev_ref (EV_A); /* signal watcher */ 1344 ev_ref (EV_A); /* signal watcher */
1142 ev_io_stop (EV_A_ &pipeev); 1345 ev_io_stop (EV_A_ &pipeev);
1143 1346
1144 close (evpipe [0]); evpipe [0] = 0; 1347#if EV_USE_EVENTFD
1145 close (evpipe [1]); evpipe [1] = 0; 1348 if (evfd >= 0)
1349 close (evfd);
1350#endif
1351
1352 if (evpipe [0] >= 0)
1353 {
1354 close (evpipe [0]);
1355 close (evpipe [1]);
1356 }
1146 } 1357 }
1147 1358
1148#if EV_USE_INOTIFY 1359#if EV_USE_INOTIFY
1149 if (fs_fd >= 0) 1360 if (fs_fd >= 0)
1150 close (fs_fd); 1361 close (fs_fd);
1195#endif 1406#endif
1196 1407
1197 backend = 0; 1408 backend = 0;
1198} 1409}
1199 1410
1411#if EV_USE_INOTIFY
1200void inline_size infy_fork (EV_P); 1412void inline_size infy_fork (EV_P);
1413#endif
1201 1414
1202void inline_size 1415void inline_size
1203loop_fork (EV_P) 1416loop_fork (EV_P)
1204{ 1417{
1205#if EV_USE_PORT 1418#if EV_USE_PORT
1224 gotasync = 1; 1437 gotasync = 1;
1225#endif 1438#endif
1226 1439
1227 ev_ref (EV_A); 1440 ev_ref (EV_A);
1228 ev_io_stop (EV_A_ &pipeev); 1441 ev_io_stop (EV_A_ &pipeev);
1442
1443#if EV_USE_EVENTFD
1444 if (evfd >= 0)
1445 close (evfd);
1446#endif
1447
1448 if (evpipe [0] >= 0)
1449 {
1229 close (evpipe [0]); 1450 close (evpipe [0]);
1230 close (evpipe [1]); 1451 close (evpipe [1]);
1452 }
1231 1453
1232 evpipe_init (EV_A); 1454 evpipe_init (EV_A);
1233 /* now iterate over everything, in case we missed something */ 1455 /* now iterate over everything, in case we missed something */
1234 pipecb (EV_A_ &pipeev, EV_READ); 1456 pipecb (EV_A_ &pipeev, EV_READ);
1235 } 1457 }
1263void 1485void
1264ev_loop_fork (EV_P) 1486ev_loop_fork (EV_P)
1265{ 1487{
1266 postfork = 1; /* must be in line with ev_default_fork */ 1488 postfork = 1; /* must be in line with ev_default_fork */
1267} 1489}
1268
1269#endif 1490#endif
1270 1491
1271#if EV_MULTIPLICITY 1492#if EV_MULTIPLICITY
1272struct ev_loop * 1493struct ev_loop *
1273ev_default_loop_init (unsigned int flags) 1494ev_default_loop_init (unsigned int flags)
1354 EV_CB_INVOKE (p->w, p->events); 1575 EV_CB_INVOKE (p->w, p->events);
1355 } 1576 }
1356 } 1577 }
1357} 1578}
1358 1579
1359void inline_size
1360timers_reify (EV_P)
1361{
1362 while (timercnt && ((WT)timers [0])->at <= mn_now)
1363 {
1364 ev_timer *w = (ev_timer *)timers [0];
1365
1366 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1367
1368 /* first reschedule or stop timer */
1369 if (w->repeat)
1370 {
1371 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1372
1373 ((WT)w)->at += w->repeat;
1374 if (((WT)w)->at < mn_now)
1375 ((WT)w)->at = mn_now;
1376
1377 downheap (timers, timercnt, 0);
1378 }
1379 else
1380 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1381
1382 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1383 }
1384}
1385
1386#if EV_PERIODIC_ENABLE
1387void inline_size
1388periodics_reify (EV_P)
1389{
1390 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1391 {
1392 ev_periodic *w = (ev_periodic *)periodics [0];
1393
1394 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1395
1396 /* first reschedule or stop timer */
1397 if (w->reschedule_cb)
1398 {
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1400 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1401 downheap (periodics, periodiccnt, 0);
1402 }
1403 else if (w->interval)
1404 {
1405 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1406 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1407 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1408 downheap (periodics, periodiccnt, 0);
1409 }
1410 else
1411 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1412
1413 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1414 }
1415}
1416
1417static void noinline
1418periodics_reschedule (EV_P)
1419{
1420 int i;
1421
1422 /* adjust periodics after time jump */
1423 for (i = 0; i < periodiccnt; ++i)
1424 {
1425 ev_periodic *w = (ev_periodic *)periodics [i];
1426
1427 if (w->reschedule_cb)
1428 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1429 else if (w->interval)
1430 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 }
1432
1433 /* now rebuild the heap */
1434 for (i = periodiccnt >> 1; i--; )
1435 downheap (periodics, periodiccnt, i);
1436}
1437#endif
1438
1439#if EV_IDLE_ENABLE 1580#if EV_IDLE_ENABLE
1440void inline_size 1581void inline_size
1441idle_reify (EV_P) 1582idle_reify (EV_P)
1442{ 1583{
1443 if (expect_false (idleall)) 1584 if (expect_false (idleall))
1454 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1595 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1455 break; 1596 break;
1456 } 1597 }
1457 } 1598 }
1458 } 1599 }
1600}
1601#endif
1602
1603void inline_size
1604timers_reify (EV_P)
1605{
1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1607 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1609
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1611
1612 /* first reschedule or stop timer */
1613 if (w->repeat)
1614 {
1615 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now;
1618
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620
1621 ANHE_at_set (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0);
1623 }
1624 else
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1628 }
1629}
1630
1631#if EV_PERIODIC_ENABLE
1632void inline_size
1633periodics_reify (EV_P)
1634{
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1636 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1638
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1640
1641 /* first reschedule or stop timer */
1642 if (w->reschedule_cb)
1643 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else if (w->interval)
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 /* if next trigger time is not sufficiently in the future, put it there */
1655 /* this might happen because of floating point inexactness */
1656 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1657 {
1658 ev_at (w) += w->interval;
1659
1660 /* if interval is unreasonably low we might still have a time in the past */
1661 /* so correct this. this will make the periodic very inexact, but the user */
1662 /* has effectively asked to get triggered more often than possible */
1663 if (ev_at (w) < ev_rt_now)
1664 ev_at (w) = ev_rt_now;
1665 }
1666
1667 ANHE_at_set (periodics [HEAP0]);
1668 downheap (periodics, periodiccnt, HEAP0);
1669 }
1670 else
1671 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1672
1673 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1674 }
1675}
1676
1677static void noinline
1678periodics_reschedule (EV_P)
1679{
1680 int i;
1681
1682 /* adjust periodics after time jump */
1683 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1684 {
1685 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1686
1687 if (w->reschedule_cb)
1688 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval)
1690 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1691
1692 ANHE_at_set (periodics [i]);
1693 }
1694
1695 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1696 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1697 for (i = 0; i < periodiccnt; ++i)
1698 upheap (periodics, i + HEAP0);
1459} 1699}
1460#endif 1700#endif
1461 1701
1462void inline_speed 1702void inline_speed
1463time_update (EV_P_ ev_tstamp max_block) 1703time_update (EV_P_ ev_tstamp max_block)
1492 */ 1732 */
1493 for (i = 4; --i; ) 1733 for (i = 4; --i; )
1494 { 1734 {
1495 rtmn_diff = ev_rt_now - mn_now; 1735 rtmn_diff = ev_rt_now - mn_now;
1496 1736
1497 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1737 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1498 return; /* all is well */ 1738 return; /* all is well */
1499 1739
1500 ev_rt_now = ev_time (); 1740 ev_rt_now = ev_time ();
1501 mn_now = get_clock (); 1741 mn_now = get_clock ();
1502 now_floor = mn_now; 1742 now_floor = mn_now;
1518#if EV_PERIODIC_ENABLE 1758#if EV_PERIODIC_ENABLE
1519 periodics_reschedule (EV_A); 1759 periodics_reschedule (EV_A);
1520#endif 1760#endif
1521 /* adjust timers. this is easy, as the offset is the same for all of them */ 1761 /* adjust timers. this is easy, as the offset is the same for all of them */
1522 for (i = 0; i < timercnt; ++i) 1762 for (i = 0; i < timercnt; ++i)
1763 {
1764 ANHE *he = timers + i + HEAP0;
1523 ((WT)timers [i])->at += ev_rt_now - mn_now; 1765 ANHE_w (*he)->at += ev_rt_now - mn_now;
1766 ANHE_at_set (*he);
1767 }
1524 } 1768 }
1525 1769
1526 mn_now = ev_rt_now; 1770 mn_now = ev_rt_now;
1527 } 1771 }
1528} 1772}
1542static int loop_done; 1786static int loop_done;
1543 1787
1544void 1788void
1545ev_loop (EV_P_ int flags) 1789ev_loop (EV_P_ int flags)
1546{ 1790{
1547 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1791 loop_done = EVUNLOOP_CANCEL;
1548 ? EVUNLOOP_ONE
1549 : EVUNLOOP_CANCEL;
1550 1792
1551 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1793 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1552 1794
1553 do 1795 do
1554 { 1796 {
1600 1842
1601 waittime = MAX_BLOCKTIME; 1843 waittime = MAX_BLOCKTIME;
1602 1844
1603 if (timercnt) 1845 if (timercnt)
1604 { 1846 {
1605 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1847 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1606 if (waittime > to) waittime = to; 1848 if (waittime > to) waittime = to;
1607 } 1849 }
1608 1850
1609#if EV_PERIODIC_ENABLE 1851#if EV_PERIODIC_ENABLE
1610 if (periodiccnt) 1852 if (periodiccnt)
1611 { 1853 {
1612 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1854 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1613 if (waittime > to) waittime = to; 1855 if (waittime > to) waittime = to;
1614 } 1856 }
1615#endif 1857#endif
1616 1858
1617 if (expect_false (waittime < timeout_blocktime)) 1859 if (expect_false (waittime < timeout_blocktime))
1650 /* queue check watchers, to be executed first */ 1892 /* queue check watchers, to be executed first */
1651 if (expect_false (checkcnt)) 1893 if (expect_false (checkcnt))
1652 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1894 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1653 1895
1654 call_pending (EV_A); 1896 call_pending (EV_A);
1655
1656 } 1897 }
1657 while (expect_true (activecnt && !loop_done)); 1898 while (expect_true (
1899 activecnt
1900 && !loop_done
1901 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1902 ));
1658 1903
1659 if (loop_done == EVUNLOOP_ONE) 1904 if (loop_done == EVUNLOOP_ONE)
1660 loop_done = EVUNLOOP_CANCEL; 1905 loop_done = EVUNLOOP_CANCEL;
1661} 1906}
1662 1907
1766{ 2011{
1767 clear_pending (EV_A_ (W)w); 2012 clear_pending (EV_A_ (W)w);
1768 if (expect_false (!ev_is_active (w))) 2013 if (expect_false (!ev_is_active (w)))
1769 return; 2014 return;
1770 2015
1771 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2016 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1772 2017
1773 wlist_del (&anfds[w->fd].head, (WL)w); 2018 wlist_del (&anfds[w->fd].head, (WL)w);
1774 ev_stop (EV_A_ (W)w); 2019 ev_stop (EV_A_ (W)w);
1775 2020
1776 fd_change (EV_A_ w->fd, 1); 2021 fd_change (EV_A_ w->fd, 1);
1780ev_timer_start (EV_P_ ev_timer *w) 2025ev_timer_start (EV_P_ ev_timer *w)
1781{ 2026{
1782 if (expect_false (ev_is_active (w))) 2027 if (expect_false (ev_is_active (w)))
1783 return; 2028 return;
1784 2029
1785 ((WT)w)->at += mn_now; 2030 ev_at (w) += mn_now;
1786 2031
1787 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2032 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1788 2033
1789 ev_start (EV_A_ (W)w, ++timercnt); 2034 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1790 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2035 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1791 timers [timercnt - 1] = (WT)w; 2036 ANHE_w (timers [ev_active (w)]) = (WT)w;
1792 upheap (timers, timercnt - 1); 2037 ANHE_at_set (timers [ev_active (w)]);
2038 upheap (timers, ev_active (w));
1793 2039
1794 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2040 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1795} 2041}
1796 2042
1797void noinline 2043void noinline
1798ev_timer_stop (EV_P_ ev_timer *w) 2044ev_timer_stop (EV_P_ ev_timer *w)
1799{ 2045{
1800 clear_pending (EV_A_ (W)w); 2046 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 2047 if (expect_false (!ev_is_active (w)))
1802 return; 2048 return;
1803 2049
1804 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1805
1806 { 2050 {
1807 int active = ((W)w)->active; 2051 int active = ev_active (w);
1808 2052
2053 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2054
1809 if (expect_true (--active < --timercnt)) 2055 if (expect_true (active < timercnt + HEAP0 - 1))
1810 { 2056 {
1811 timers [active] = timers [timercnt]; 2057 timers [active] = timers [timercnt + HEAP0 - 1];
1812 adjustheap (timers, timercnt, active); 2058 adjustheap (timers, timercnt, active);
1813 } 2059 }
2060
2061 --timercnt;
1814 } 2062 }
1815 2063
1816 ((WT)w)->at -= mn_now; 2064 ev_at (w) -= mn_now;
1817 2065
1818 ev_stop (EV_A_ (W)w); 2066 ev_stop (EV_A_ (W)w);
1819} 2067}
1820 2068
1821void noinline 2069void noinline
1823{ 2071{
1824 if (ev_is_active (w)) 2072 if (ev_is_active (w))
1825 { 2073 {
1826 if (w->repeat) 2074 if (w->repeat)
1827 { 2075 {
1828 ((WT)w)->at = mn_now + w->repeat; 2076 ev_at (w) = mn_now + w->repeat;
2077 ANHE_at_set (timers [ev_active (w)]);
1829 adjustheap (timers, timercnt, ((W)w)->active - 1); 2078 adjustheap (timers, timercnt, ev_active (w));
1830 } 2079 }
1831 else 2080 else
1832 ev_timer_stop (EV_A_ w); 2081 ev_timer_stop (EV_A_ w);
1833 } 2082 }
1834 else if (w->repeat) 2083 else if (w->repeat)
1835 { 2084 {
1836 w->at = w->repeat; 2085 ev_at (w) = w->repeat;
1837 ev_timer_start (EV_A_ w); 2086 ev_timer_start (EV_A_ w);
1838 } 2087 }
1839} 2088}
1840 2089
1841#if EV_PERIODIC_ENABLE 2090#if EV_PERIODIC_ENABLE
1844{ 2093{
1845 if (expect_false (ev_is_active (w))) 2094 if (expect_false (ev_is_active (w)))
1846 return; 2095 return;
1847 2096
1848 if (w->reschedule_cb) 2097 if (w->reschedule_cb)
1849 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2098 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1850 else if (w->interval) 2099 else if (w->interval)
1851 { 2100 {
1852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2101 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1853 /* this formula differs from the one in periodic_reify because we do not always round up */ 2102 /* this formula differs from the one in periodic_reify because we do not always round up */
1854 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2103 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1855 } 2104 }
1856 else 2105 else
1857 ((WT)w)->at = w->offset; 2106 ev_at (w) = w->offset;
1858 2107
1859 ev_start (EV_A_ (W)w, ++periodiccnt); 2108 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1860 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2109 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1861 periodics [periodiccnt - 1] = (WT)w; 2110 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1862 upheap (periodics, periodiccnt - 1); 2111 ANHE_at_set (periodics [ev_active (w)]);
2112 upheap (periodics, ev_active (w));
1863 2113
1864 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2114 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1865} 2115}
1866 2116
1867void noinline 2117void noinline
1868ev_periodic_stop (EV_P_ ev_periodic *w) 2118ev_periodic_stop (EV_P_ ev_periodic *w)
1869{ 2119{
1870 clear_pending (EV_A_ (W)w); 2120 clear_pending (EV_A_ (W)w);
1871 if (expect_false (!ev_is_active (w))) 2121 if (expect_false (!ev_is_active (w)))
1872 return; 2122 return;
1873 2123
1874 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1875
1876 { 2124 {
1877 int active = ((W)w)->active; 2125 int active = ev_active (w);
1878 2126
2127 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2128
1879 if (expect_true (--active < --periodiccnt)) 2129 if (expect_true (active < periodiccnt + HEAP0 - 1))
1880 { 2130 {
1881 periodics [active] = periodics [periodiccnt]; 2131 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1882 adjustheap (periodics, periodiccnt, active); 2132 adjustheap (periodics, periodiccnt, active);
1883 } 2133 }
2134
2135 --periodiccnt;
1884 } 2136 }
1885 2137
1886 ev_stop (EV_A_ (W)w); 2138 ev_stop (EV_A_ (W)w);
1887} 2139}
1888 2140
1930 wlist_add (&signals [w->signum - 1].head, (WL)w); 2182 wlist_add (&signals [w->signum - 1].head, (WL)w);
1931 2183
1932 if (!((WL)w)->next) 2184 if (!((WL)w)->next)
1933 { 2185 {
1934#if _WIN32 2186#if _WIN32
1935 signal (w->signum, sighandler); 2187 signal (w->signum, ev_sighandler);
1936#else 2188#else
1937 struct sigaction sa; 2189 struct sigaction sa;
1938 sa.sa_handler = sighandler; 2190 sa.sa_handler = ev_sighandler;
1939 sigfillset (&sa.sa_mask); 2191 sigfillset (&sa.sa_mask);
1940 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2192 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1941 sigaction (w->signum, &sa, 0); 2193 sigaction (w->signum, &sa, 0);
1942#endif 2194#endif
1943 } 2195 }
2004 if (w->wd < 0) 2256 if (w->wd < 0)
2005 { 2257 {
2006 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2258 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2007 2259
2008 /* monitor some parent directory for speedup hints */ 2260 /* monitor some parent directory for speedup hints */
2261 /* note that exceeding the hardcoded limit is not a correctness issue, */
2262 /* but an efficiency issue only */
2009 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2263 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2010 { 2264 {
2011 char path [4096]; 2265 char path [4096];
2012 strcpy (path, w->path); 2266 strcpy (path, w->path);
2013 2267
2258 clear_pending (EV_A_ (W)w); 2512 clear_pending (EV_A_ (W)w);
2259 if (expect_false (!ev_is_active (w))) 2513 if (expect_false (!ev_is_active (w)))
2260 return; 2514 return;
2261 2515
2262 { 2516 {
2263 int active = ((W)w)->active; 2517 int active = ev_active (w);
2264 2518
2265 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2519 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2266 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2520 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2267 2521
2268 ev_stop (EV_A_ (W)w); 2522 ev_stop (EV_A_ (W)w);
2269 --idleall; 2523 --idleall;
2270 } 2524 }
2271} 2525}
2288 clear_pending (EV_A_ (W)w); 2542 clear_pending (EV_A_ (W)w);
2289 if (expect_false (!ev_is_active (w))) 2543 if (expect_false (!ev_is_active (w)))
2290 return; 2544 return;
2291 2545
2292 { 2546 {
2293 int active = ((W)w)->active; 2547 int active = ev_active (w);
2548
2294 prepares [active - 1] = prepares [--preparecnt]; 2549 prepares [active - 1] = prepares [--preparecnt];
2295 ((W)prepares [active - 1])->active = active; 2550 ev_active (prepares [active - 1]) = active;
2296 } 2551 }
2297 2552
2298 ev_stop (EV_A_ (W)w); 2553 ev_stop (EV_A_ (W)w);
2299} 2554}
2300 2555
2315 clear_pending (EV_A_ (W)w); 2570 clear_pending (EV_A_ (W)w);
2316 if (expect_false (!ev_is_active (w))) 2571 if (expect_false (!ev_is_active (w)))
2317 return; 2572 return;
2318 2573
2319 { 2574 {
2320 int active = ((W)w)->active; 2575 int active = ev_active (w);
2576
2321 checks [active - 1] = checks [--checkcnt]; 2577 checks [active - 1] = checks [--checkcnt];
2322 ((W)checks [active - 1])->active = active; 2578 ev_active (checks [active - 1]) = active;
2323 } 2579 }
2324 2580
2325 ev_stop (EV_A_ (W)w); 2581 ev_stop (EV_A_ (W)w);
2326} 2582}
2327 2583
2423 clear_pending (EV_A_ (W)w); 2679 clear_pending (EV_A_ (W)w);
2424 if (expect_false (!ev_is_active (w))) 2680 if (expect_false (!ev_is_active (w)))
2425 return; 2681 return;
2426 2682
2427 { 2683 {
2428 int active = ((W)w)->active; 2684 int active = ev_active (w);
2685
2429 forks [active - 1] = forks [--forkcnt]; 2686 forks [active - 1] = forks [--forkcnt];
2430 ((W)forks [active - 1])->active = active; 2687 ev_active (forks [active - 1]) = active;
2431 } 2688 }
2432 2689
2433 ev_stop (EV_A_ (W)w); 2690 ev_stop (EV_A_ (W)w);
2434} 2691}
2435#endif 2692#endif
2454 clear_pending (EV_A_ (W)w); 2711 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 2712 if (expect_false (!ev_is_active (w)))
2456 return; 2713 return;
2457 2714
2458 { 2715 {
2459 int active = ((W)w)->active; 2716 int active = ev_active (w);
2717
2460 asyncs [active - 1] = asyncs [--asynccnt]; 2718 asyncs [active - 1] = asyncs [--asynccnt];
2461 ((W)asyncs [active - 1])->active = active; 2719 ev_active (asyncs [active - 1]) = active;
2462 } 2720 }
2463 2721
2464 ev_stop (EV_A_ (W)w); 2722 ev_stop (EV_A_ (W)w);
2465} 2723}
2466 2724

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines