ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.226 by root, Fri Apr 18 17:16:44 2008 UTC vs.
Revision 1.246 by root, Wed May 21 12:51:38 2008 UTC

235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 249
242#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
325 333
326typedef ev_watcher *W; 334typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
329 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
330#if EV_USE_MONOTONIC 341#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */ 343/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif 345#endif
419 W w; 430 W w;
420 int events; 431 int events;
421} ANPENDING; 432} ANPENDING;
422 433
423#if EV_USE_INOTIFY 434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
424typedef struct 436typedef struct
425{ 437{
426 WL head; 438 WL head;
427} ANFS; 439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
428#endif 458#endif
429 459
430#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
431 461
432 struct ev_loop 462 struct ev_loop
517 } 547 }
518} 548}
519 549
520/*****************************************************************************/ 550/*****************************************************************************/
521 551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
522int inline_size 554int inline_size
523array_nextsize (int elem, int cur, int cnt) 555array_nextsize (int elem, int cur, int cnt)
524{ 556{
525 int ncur = cur + 1; 557 int ncur = cur + 1;
526 558
527 do 559 do
528 ncur <<= 1; 560 ncur <<= 1;
529 while (cnt > ncur); 561 while (cnt > ncur);
530 562
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096) 564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 565 {
534 ncur *= elem; 566 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 568 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 569 ncur /= elem;
538 } 570 }
539 571
540 return ncur; 572 return ncur;
754 } 786 }
755} 787}
756 788
757/*****************************************************************************/ 789/*****************************************************************************/
758 790
791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807
808/* towards the root */
759void inline_speed 809void inline_speed
760upheap (WT *heap, int k) 810upheap (ANHE *heap, int k)
761{ 811{
762 WT w = heap [k]; 812 ANHE he = heap [k];
763 813
764 while (k) 814 for (;;)
765 { 815 {
766 int p = (k - 1) >> 1; 816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
767 817
768 if (heap [p]->at <= w->at) 818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
769 break; 819 break;
770 820
771 heap [k] = heap [p]; 821 heap [k] = heap [p];
772 ((W)heap [k])->active = k + 1; 822 ev_active (ANHE_w (heap [k])) = k;
773 k = p; 823 k = p;
774 } 824 }
775 825
826 ev_active (ANHE_w (he)) = k;
776 heap [k] = w; 827 heap [k] = he;
777 ((W)heap [k])->active = k + 1;
778} 828}
779 829
830/* away from the root */
780void inline_speed 831void inline_speed
781downheap (WT *heap, int N, int k) 832downheap (ANHE *heap, int N, int k)
782{ 833{
783 WT w = heap [k]; 834 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0;
784 836
785 for (;;) 837 for (;;)
786 { 838 {
787 int c = (k << 1) + 1; 839 ev_tstamp minat;
840 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
788 842
789 if (c >= N) 843 // find minimum child
844 if (expect_true (pos + DHEAP - 1 < E))
845 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else if (pos < E)
852 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else
790 break; 859 break;
791 860
861 if (ANHE_at (he) <= minat)
862 break;
863
864 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866
867 k = minpos - heap;
868 }
869
870 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872}
873
874#else // 4HEAP
875
876#define HEAP0 1
877
878/* towards the root */
879void inline_speed
880upheap (ANHE *heap, int k)
881{
882 ANHE he = heap [k];
883
884 for (;;)
885 {
886 int p = k >> 1;
887
888 /* maybe we could use a dummy element at heap [0]? */
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break;
891
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
792 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
793 ? 1 : 0; 915 ? 1 : 0;
794 916
795 if (w->at <= heap [c]->at) 917 if (ANHE_at (he) <= ANHE_at (heap [c]))
796 break; 918 break;
797 919
798 heap [k] = heap [c]; 920 heap [k] = heap [c];
799 ((W)heap [k])->active = k + 1; 921 ev_active (ANHE_w (heap [k])) = k;
800 922
801 k = c; 923 k = c;
802 } 924 }
803 925
804 heap [k] = w; 926 heap [k] = he;
805 ((W)heap [k])->active = k + 1; 927 ev_active (ANHE_w (he)) = k;
806} 928}
929#endif
807 930
808void inline_size 931void inline_size
809adjustheap (WT *heap, int N, int k) 932adjustheap (ANHE *heap, int N, int k)
810{ 933{
811 upheap (heap, k); 934 upheap (heap, k);
812 downheap (heap, N, k); 935 downheap (heap, N, k);
813} 936}
814 937
906pipecb (EV_P_ ev_io *iow, int revents) 1029pipecb (EV_P_ ev_io *iow, int revents)
907{ 1030{
908#if EV_USE_EVENTFD 1031#if EV_USE_EVENTFD
909 if (evfd >= 0) 1032 if (evfd >= 0)
910 { 1033 {
911 uint64_t counter = 1; 1034 uint64_t counter;
912 read (evfd, &counter, sizeof (uint64_t)); 1035 read (evfd, &counter, sizeof (uint64_t));
913 } 1036 }
914 else 1037 else
915#endif 1038#endif
916 { 1039 {
1362void 1485void
1363ev_loop_fork (EV_P) 1486ev_loop_fork (EV_P)
1364{ 1487{
1365 postfork = 1; /* must be in line with ev_default_fork */ 1488 postfork = 1; /* must be in line with ev_default_fork */
1366} 1489}
1367
1368#endif 1490#endif
1369 1491
1370#if EV_MULTIPLICITY 1492#if EV_MULTIPLICITY
1371struct ev_loop * 1493struct ev_loop *
1372ev_default_loop_init (unsigned int flags) 1494ev_default_loop_init (unsigned int flags)
1453 EV_CB_INVOKE (p->w, p->events); 1575 EV_CB_INVOKE (p->w, p->events);
1454 } 1576 }
1455 } 1577 }
1456} 1578}
1457 1579
1458void inline_size
1459timers_reify (EV_P)
1460{
1461 while (timercnt && ((WT)timers [0])->at <= mn_now)
1462 {
1463 ev_timer *w = (ev_timer *)timers [0];
1464
1465 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1466
1467 /* first reschedule or stop timer */
1468 if (w->repeat)
1469 {
1470 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1471
1472 ((WT)w)->at += w->repeat;
1473 if (((WT)w)->at < mn_now)
1474 ((WT)w)->at = mn_now;
1475
1476 downheap (timers, timercnt, 0);
1477 }
1478 else
1479 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1480
1481 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1482 }
1483}
1484
1485#if EV_PERIODIC_ENABLE
1486void inline_size
1487periodics_reify (EV_P)
1488{
1489 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1490 {
1491 ev_periodic *w = (ev_periodic *)periodics [0];
1492
1493 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1494
1495 /* first reschedule or stop timer */
1496 if (w->reschedule_cb)
1497 {
1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1499 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1500 downheap (periodics, periodiccnt, 0);
1501 }
1502 else if (w->interval)
1503 {
1504 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1505 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1506 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1507 downheap (periodics, periodiccnt, 0);
1508 }
1509 else
1510 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1511
1512 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1513 }
1514}
1515
1516static void noinline
1517periodics_reschedule (EV_P)
1518{
1519 int i;
1520
1521 /* adjust periodics after time jump */
1522 for (i = 0; i < periodiccnt; ++i)
1523 {
1524 ev_periodic *w = (ev_periodic *)periodics [i];
1525
1526 if (w->reschedule_cb)
1527 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1528 else if (w->interval)
1529 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1530 }
1531
1532 /* now rebuild the heap */
1533 for (i = periodiccnt >> 1; i--; )
1534 downheap (periodics, periodiccnt, i);
1535}
1536#endif
1537
1538#if EV_IDLE_ENABLE 1580#if EV_IDLE_ENABLE
1539void inline_size 1581void inline_size
1540idle_reify (EV_P) 1582idle_reify (EV_P)
1541{ 1583{
1542 if (expect_false (idleall)) 1584 if (expect_false (idleall))
1553 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1595 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1554 break; 1596 break;
1555 } 1597 }
1556 } 1598 }
1557 } 1599 }
1600}
1601#endif
1602
1603void inline_size
1604timers_reify (EV_P)
1605{
1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1607 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1609
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1611
1612 /* first reschedule or stop timer */
1613 if (w->repeat)
1614 {
1615 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now;
1618
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620
1621 ANHE_at_set (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0);
1623 }
1624 else
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1628 }
1629}
1630
1631#if EV_PERIODIC_ENABLE
1632void inline_size
1633periodics_reify (EV_P)
1634{
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1636 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1638
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1640
1641 /* first reschedule or stop timer */
1642 if (w->reschedule_cb)
1643 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else if (w->interval)
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 /* if next trigger time is not sufficiently in the future, put it there */
1655 /* this might happen because of floating point inexactness */
1656 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1657 {
1658 ev_at (w) += w->interval;
1659
1660 /* if interval is unreasonably low we might still have a time in the past */
1661 /* so correct this. this will make the periodic very inexact, but the user */
1662 /* has effectively asked to get triggered more often than possible */
1663 if (ev_at (w) < ev_rt_now)
1664 ev_at (w) = ev_rt_now;
1665 }
1666
1667 ANHE_at_set (periodics [HEAP0]);
1668 downheap (periodics, periodiccnt, HEAP0);
1669 }
1670 else
1671 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1672
1673 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1674 }
1675}
1676
1677static void noinline
1678periodics_reschedule (EV_P)
1679{
1680 int i;
1681
1682 /* adjust periodics after time jump */
1683 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1684 {
1685 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1686
1687 if (w->reschedule_cb)
1688 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval)
1690 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1691
1692 ANHE_at_set (periodics [i]);
1693 }
1694
1695 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1696 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1697 for (i = 0; i < periodiccnt; ++i)
1698 upheap (periodics, i + HEAP0);
1558} 1699}
1559#endif 1700#endif
1560 1701
1561void inline_speed 1702void inline_speed
1562time_update (EV_P_ ev_tstamp max_block) 1703time_update (EV_P_ ev_tstamp max_block)
1591 */ 1732 */
1592 for (i = 4; --i; ) 1733 for (i = 4; --i; )
1593 { 1734 {
1594 rtmn_diff = ev_rt_now - mn_now; 1735 rtmn_diff = ev_rt_now - mn_now;
1595 1736
1596 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1737 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1597 return; /* all is well */ 1738 return; /* all is well */
1598 1739
1599 ev_rt_now = ev_time (); 1740 ev_rt_now = ev_time ();
1600 mn_now = get_clock (); 1741 mn_now = get_clock ();
1601 now_floor = mn_now; 1742 now_floor = mn_now;
1617#if EV_PERIODIC_ENABLE 1758#if EV_PERIODIC_ENABLE
1618 periodics_reschedule (EV_A); 1759 periodics_reschedule (EV_A);
1619#endif 1760#endif
1620 /* adjust timers. this is easy, as the offset is the same for all of them */ 1761 /* adjust timers. this is easy, as the offset is the same for all of them */
1621 for (i = 0; i < timercnt; ++i) 1762 for (i = 0; i < timercnt; ++i)
1763 {
1764 ANHE *he = timers + i + HEAP0;
1622 ((WT)timers [i])->at += ev_rt_now - mn_now; 1765 ANHE_w (*he)->at += ev_rt_now - mn_now;
1766 ANHE_at_set (*he);
1767 }
1623 } 1768 }
1624 1769
1625 mn_now = ev_rt_now; 1770 mn_now = ev_rt_now;
1626 } 1771 }
1627} 1772}
1697 1842
1698 waittime = MAX_BLOCKTIME; 1843 waittime = MAX_BLOCKTIME;
1699 1844
1700 if (timercnt) 1845 if (timercnt)
1701 { 1846 {
1702 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1847 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1703 if (waittime > to) waittime = to; 1848 if (waittime > to) waittime = to;
1704 } 1849 }
1705 1850
1706#if EV_PERIODIC_ENABLE 1851#if EV_PERIODIC_ENABLE
1707 if (periodiccnt) 1852 if (periodiccnt)
1708 { 1853 {
1709 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1854 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1710 if (waittime > to) waittime = to; 1855 if (waittime > to) waittime = to;
1711 } 1856 }
1712#endif 1857#endif
1713 1858
1714 if (expect_false (waittime < timeout_blocktime)) 1859 if (expect_false (waittime < timeout_blocktime))
1866{ 2011{
1867 clear_pending (EV_A_ (W)w); 2012 clear_pending (EV_A_ (W)w);
1868 if (expect_false (!ev_is_active (w))) 2013 if (expect_false (!ev_is_active (w)))
1869 return; 2014 return;
1870 2015
1871 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2016 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1872 2017
1873 wlist_del (&anfds[w->fd].head, (WL)w); 2018 wlist_del (&anfds[w->fd].head, (WL)w);
1874 ev_stop (EV_A_ (W)w); 2019 ev_stop (EV_A_ (W)w);
1875 2020
1876 fd_change (EV_A_ w->fd, 1); 2021 fd_change (EV_A_ w->fd, 1);
1880ev_timer_start (EV_P_ ev_timer *w) 2025ev_timer_start (EV_P_ ev_timer *w)
1881{ 2026{
1882 if (expect_false (ev_is_active (w))) 2027 if (expect_false (ev_is_active (w)))
1883 return; 2028 return;
1884 2029
1885 ((WT)w)->at += mn_now; 2030 ev_at (w) += mn_now;
1886 2031
1887 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2032 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1888 2033
1889 ev_start (EV_A_ (W)w, ++timercnt); 2034 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1890 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2035 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1891 timers [timercnt - 1] = (WT)w; 2036 ANHE_w (timers [ev_active (w)]) = (WT)w;
1892 upheap (timers, timercnt - 1); 2037 ANHE_at_set (timers [ev_active (w)]);
2038 upheap (timers, ev_active (w));
1893 2039
1894 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2040 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1895} 2041}
1896 2042
1897void noinline 2043void noinline
1898ev_timer_stop (EV_P_ ev_timer *w) 2044ev_timer_stop (EV_P_ ev_timer *w)
1899{ 2045{
1900 clear_pending (EV_A_ (W)w); 2046 clear_pending (EV_A_ (W)w);
1901 if (expect_false (!ev_is_active (w))) 2047 if (expect_false (!ev_is_active (w)))
1902 return; 2048 return;
1903 2049
1904 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1905
1906 { 2050 {
1907 int active = ((W)w)->active; 2051 int active = ev_active (w);
1908 2052
2053 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2054
1909 if (expect_true (--active < --timercnt)) 2055 if (expect_true (active < timercnt + HEAP0 - 1))
1910 { 2056 {
1911 timers [active] = timers [timercnt]; 2057 timers [active] = timers [timercnt + HEAP0 - 1];
1912 adjustheap (timers, timercnt, active); 2058 adjustheap (timers, timercnt, active);
1913 } 2059 }
2060
2061 --timercnt;
1914 } 2062 }
1915 2063
1916 ((WT)w)->at -= mn_now; 2064 ev_at (w) -= mn_now;
1917 2065
1918 ev_stop (EV_A_ (W)w); 2066 ev_stop (EV_A_ (W)w);
1919} 2067}
1920 2068
1921void noinline 2069void noinline
1923{ 2071{
1924 if (ev_is_active (w)) 2072 if (ev_is_active (w))
1925 { 2073 {
1926 if (w->repeat) 2074 if (w->repeat)
1927 { 2075 {
1928 ((WT)w)->at = mn_now + w->repeat; 2076 ev_at (w) = mn_now + w->repeat;
2077 ANHE_at_set (timers [ev_active (w)]);
1929 adjustheap (timers, timercnt, ((W)w)->active - 1); 2078 adjustheap (timers, timercnt, ev_active (w));
1930 } 2079 }
1931 else 2080 else
1932 ev_timer_stop (EV_A_ w); 2081 ev_timer_stop (EV_A_ w);
1933 } 2082 }
1934 else if (w->repeat) 2083 else if (w->repeat)
1935 { 2084 {
1936 w->at = w->repeat; 2085 ev_at (w) = w->repeat;
1937 ev_timer_start (EV_A_ w); 2086 ev_timer_start (EV_A_ w);
1938 } 2087 }
1939} 2088}
1940 2089
1941#if EV_PERIODIC_ENABLE 2090#if EV_PERIODIC_ENABLE
1944{ 2093{
1945 if (expect_false (ev_is_active (w))) 2094 if (expect_false (ev_is_active (w)))
1946 return; 2095 return;
1947 2096
1948 if (w->reschedule_cb) 2097 if (w->reschedule_cb)
1949 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2098 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1950 else if (w->interval) 2099 else if (w->interval)
1951 { 2100 {
1952 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2101 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1953 /* this formula differs from the one in periodic_reify because we do not always round up */ 2102 /* this formula differs from the one in periodic_reify because we do not always round up */
1954 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2103 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1955 } 2104 }
1956 else 2105 else
1957 ((WT)w)->at = w->offset; 2106 ev_at (w) = w->offset;
1958 2107
1959 ev_start (EV_A_ (W)w, ++periodiccnt); 2108 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1960 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2109 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1961 periodics [periodiccnt - 1] = (WT)w; 2110 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1962 upheap (periodics, periodiccnt - 1); 2111 ANHE_at_set (periodics [ev_active (w)]);
2112 upheap (periodics, ev_active (w));
1963 2113
1964 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2114 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1965} 2115}
1966 2116
1967void noinline 2117void noinline
1968ev_periodic_stop (EV_P_ ev_periodic *w) 2118ev_periodic_stop (EV_P_ ev_periodic *w)
1969{ 2119{
1970 clear_pending (EV_A_ (W)w); 2120 clear_pending (EV_A_ (W)w);
1971 if (expect_false (!ev_is_active (w))) 2121 if (expect_false (!ev_is_active (w)))
1972 return; 2122 return;
1973 2123
1974 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1975
1976 { 2124 {
1977 int active = ((W)w)->active; 2125 int active = ev_active (w);
1978 2126
2127 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2128
1979 if (expect_true (--active < --periodiccnt)) 2129 if (expect_true (active < periodiccnt + HEAP0 - 1))
1980 { 2130 {
1981 periodics [active] = periodics [periodiccnt]; 2131 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1982 adjustheap (periodics, periodiccnt, active); 2132 adjustheap (periodics, periodiccnt, active);
1983 } 2133 }
2134
2135 --periodiccnt;
1984 } 2136 }
1985 2137
1986 ev_stop (EV_A_ (W)w); 2138 ev_stop (EV_A_ (W)w);
1987} 2139}
1988 2140
2104 if (w->wd < 0) 2256 if (w->wd < 0)
2105 { 2257 {
2106 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2258 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2107 2259
2108 /* monitor some parent directory for speedup hints */ 2260 /* monitor some parent directory for speedup hints */
2261 /* note that exceeding the hardcoded limit is not a correctness issue, */
2262 /* but an efficiency issue only */
2109 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2263 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2110 { 2264 {
2111 char path [4096]; 2265 char path [4096];
2112 strcpy (path, w->path); 2266 strcpy (path, w->path);
2113 2267
2358 clear_pending (EV_A_ (W)w); 2512 clear_pending (EV_A_ (W)w);
2359 if (expect_false (!ev_is_active (w))) 2513 if (expect_false (!ev_is_active (w)))
2360 return; 2514 return;
2361 2515
2362 { 2516 {
2363 int active = ((W)w)->active; 2517 int active = ev_active (w);
2364 2518
2365 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2519 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2366 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2520 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2367 2521
2368 ev_stop (EV_A_ (W)w); 2522 ev_stop (EV_A_ (W)w);
2369 --idleall; 2523 --idleall;
2370 } 2524 }
2371} 2525}
2388 clear_pending (EV_A_ (W)w); 2542 clear_pending (EV_A_ (W)w);
2389 if (expect_false (!ev_is_active (w))) 2543 if (expect_false (!ev_is_active (w)))
2390 return; 2544 return;
2391 2545
2392 { 2546 {
2393 int active = ((W)w)->active; 2547 int active = ev_active (w);
2548
2394 prepares [active - 1] = prepares [--preparecnt]; 2549 prepares [active - 1] = prepares [--preparecnt];
2395 ((W)prepares [active - 1])->active = active; 2550 ev_active (prepares [active - 1]) = active;
2396 } 2551 }
2397 2552
2398 ev_stop (EV_A_ (W)w); 2553 ev_stop (EV_A_ (W)w);
2399} 2554}
2400 2555
2415 clear_pending (EV_A_ (W)w); 2570 clear_pending (EV_A_ (W)w);
2416 if (expect_false (!ev_is_active (w))) 2571 if (expect_false (!ev_is_active (w)))
2417 return; 2572 return;
2418 2573
2419 { 2574 {
2420 int active = ((W)w)->active; 2575 int active = ev_active (w);
2576
2421 checks [active - 1] = checks [--checkcnt]; 2577 checks [active - 1] = checks [--checkcnt];
2422 ((W)checks [active - 1])->active = active; 2578 ev_active (checks [active - 1]) = active;
2423 } 2579 }
2424 2580
2425 ev_stop (EV_A_ (W)w); 2581 ev_stop (EV_A_ (W)w);
2426} 2582}
2427 2583
2523 clear_pending (EV_A_ (W)w); 2679 clear_pending (EV_A_ (W)w);
2524 if (expect_false (!ev_is_active (w))) 2680 if (expect_false (!ev_is_active (w)))
2525 return; 2681 return;
2526 2682
2527 { 2683 {
2528 int active = ((W)w)->active; 2684 int active = ev_active (w);
2685
2529 forks [active - 1] = forks [--forkcnt]; 2686 forks [active - 1] = forks [--forkcnt];
2530 ((W)forks [active - 1])->active = active; 2687 ev_active (forks [active - 1]) = active;
2531 } 2688 }
2532 2689
2533 ev_stop (EV_A_ (W)w); 2690 ev_stop (EV_A_ (W)w);
2534} 2691}
2535#endif 2692#endif
2554 clear_pending (EV_A_ (W)w); 2711 clear_pending (EV_A_ (W)w);
2555 if (expect_false (!ev_is_active (w))) 2712 if (expect_false (!ev_is_active (w)))
2556 return; 2713 return;
2557 2714
2558 { 2715 {
2559 int active = ((W)w)->active; 2716 int active = ev_active (w);
2717
2560 asyncs [active - 1] = asyncs [--asynccnt]; 2718 asyncs [active - 1] = asyncs [--asynccnt];
2561 ((W)asyncs [active - 1])->active = active; 2719 ev_active (asyncs [active - 1]) = active;
2562 } 2720 }
2563 2721
2564 ev_stop (EV_A_ (W)w); 2722 ev_stop (EV_A_ (W)w);
2565} 2723}
2566 2724

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines