ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.233 by root, Tue May 6 23:34:16 2008 UTC vs.
Revision 1.246 by root, Wed May 21 12:51:38 2008 UTC

235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 249
242#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
422 W w; 430 W w;
423 int events; 431 int events;
424} ANPENDING; 432} ANPENDING;
425 433
426#if EV_USE_INOTIFY 434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
427typedef struct 436typedef struct
428{ 437{
429 WL head; 438 WL head;
430} ANFS; 439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
431#endif 458#endif
432 459
433#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
434 461
435 struct ev_loop 462 struct ev_loop
759 } 786 }
760} 787}
761 788
762/*****************************************************************************/ 789/*****************************************************************************/
763 790
791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807
764/* towards the root */ 808/* towards the root */
765void inline_speed 809void inline_speed
766upheap (WT *heap, int k) 810upheap (ANHE *heap, int k)
767{ 811{
768 WT w = heap [k]; 812 ANHE he = heap [k];
769 813
770 for (;;) 814 for (;;)
771 { 815 {
772 int p = k >> 1; 816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
773 817
774 /* maybe we could use a dummy element at heap [0]? */ 818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
775 if (!p || heap [p]->at <= w->at)
776 break; 819 break;
777 820
778 heap [k] = heap [p]; 821 heap [k] = heap [p];
779 ev_active (heap [k]) = k; 822 ev_active (ANHE_w (heap [k])) = k;
780 k = p; 823 k = p;
781 } 824 }
782 825
826 ev_active (ANHE_w (he)) = k;
783 heap [k] = w; 827 heap [k] = he;
784 ev_active (heap [k]) = k;
785} 828}
786 829
787/* away from the root */ 830/* away from the root */
788void inline_speed 831void inline_speed
789downheap (WT *heap, int N, int k) 832downheap (ANHE *heap, int N, int k)
790{ 833{
791 WT w = heap [k]; 834 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0;
836
837 for (;;)
838 {
839 ev_tstamp minat;
840 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
842
843 // find minimum child
844 if (expect_true (pos + DHEAP - 1 < E))
845 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else if (pos < E)
852 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else
859 break;
860
861 if (ANHE_at (he) <= minat)
862 break;
863
864 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866
867 k = minpos - heap;
868 }
869
870 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872}
873
874#else // 4HEAP
875
876#define HEAP0 1
877
878/* towards the root */
879void inline_speed
880upheap (ANHE *heap, int k)
881{
882 ANHE he = heap [k];
883
884 for (;;)
885 {
886 int p = k >> 1;
887
888 /* maybe we could use a dummy element at heap [0]? */
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break;
891
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
792 906
793 for (;;) 907 for (;;)
794 { 908 {
795 int c = k << 1; 909 int c = k << 1;
796 910
797 if (c > N) 911 if (c > N)
798 break; 912 break;
799 913
800 c += c < N && heap [c]->at > heap [c + 1]->at 914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
801 ? 1 : 0; 915 ? 1 : 0;
802 916
803 if (w->at <= heap [c]->at) 917 if (ANHE_at (he) <= ANHE_at (heap [c]))
804 break; 918 break;
805 919
806 heap [k] = heap [c]; 920 heap [k] = heap [c];
807 ev_active (heap [k]) = k; 921 ev_active (ANHE_w (heap [k])) = k;
808 922
809 k = c; 923 k = c;
810 } 924 }
811 925
812 heap [k] = w; 926 heap [k] = he;
813 ev_active (heap [k]) = k; 927 ev_active (ANHE_w (he)) = k;
814} 928}
929#endif
815 930
816void inline_size 931void inline_size
817adjustheap (WT *heap, int N, int k) 932adjustheap (ANHE *heap, int N, int k)
818{ 933{
819 upheap (heap, k); 934 upheap (heap, k);
820 downheap (heap, N, k); 935 downheap (heap, N, k);
821} 936}
822 937
1370void 1485void
1371ev_loop_fork (EV_P) 1486ev_loop_fork (EV_P)
1372{ 1487{
1373 postfork = 1; /* must be in line with ev_default_fork */ 1488 postfork = 1; /* must be in line with ev_default_fork */
1374} 1489}
1375
1376#endif 1490#endif
1377 1491
1378#if EV_MULTIPLICITY 1492#if EV_MULTIPLICITY
1379struct ev_loop * 1493struct ev_loop *
1380ev_default_loop_init (unsigned int flags) 1494ev_default_loop_init (unsigned int flags)
1461 EV_CB_INVOKE (p->w, p->events); 1575 EV_CB_INVOKE (p->w, p->events);
1462 } 1576 }
1463 } 1577 }
1464} 1578}
1465 1579
1466void inline_size
1467timers_reify (EV_P)
1468{
1469 while (timercnt && ev_at (timers [1]) <= mn_now)
1470 {
1471 ev_timer *w = (ev_timer *)timers [1];
1472
1473 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1474
1475 /* first reschedule or stop timer */
1476 if (w->repeat)
1477 {
1478 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1479
1480 ev_at (w) += w->repeat;
1481 if (ev_at (w) < mn_now)
1482 ev_at (w) = mn_now;
1483
1484 downheap (timers, timercnt, 1);
1485 }
1486 else
1487 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1488
1489 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1490 }
1491}
1492
1493#if EV_PERIODIC_ENABLE
1494void inline_size
1495periodics_reify (EV_P)
1496{
1497 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1498 {
1499 ev_periodic *w = (ev_periodic *)periodics [1];
1500
1501 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1502
1503 /* first reschedule or stop timer */
1504 if (w->reschedule_cb)
1505 {
1506 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1507 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1508 downheap (periodics, periodiccnt, 1);
1509 }
1510 else if (w->interval)
1511 {
1512 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1513 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1514 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1515 downheap (periodics, periodiccnt, 1);
1516 }
1517 else
1518 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1519
1520 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1521 }
1522}
1523
1524static void noinline
1525periodics_reschedule (EV_P)
1526{
1527 int i;
1528
1529 /* adjust periodics after time jump */
1530 for (i = 1; i <= periodiccnt; ++i)
1531 {
1532 ev_periodic *w = (ev_periodic *)periodics [i];
1533
1534 if (w->reschedule_cb)
1535 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1536 else if (w->interval)
1537 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1538 }
1539
1540 /* now rebuild the heap */
1541 for (i = periodiccnt >> 1; i--; )
1542 downheap (periodics, periodiccnt, i);
1543}
1544#endif
1545
1546#if EV_IDLE_ENABLE 1580#if EV_IDLE_ENABLE
1547void inline_size 1581void inline_size
1548idle_reify (EV_P) 1582idle_reify (EV_P)
1549{ 1583{
1550 if (expect_false (idleall)) 1584 if (expect_false (idleall))
1561 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1595 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1562 break; 1596 break;
1563 } 1597 }
1564 } 1598 }
1565 } 1599 }
1600}
1601#endif
1602
1603void inline_size
1604timers_reify (EV_P)
1605{
1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1607 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1609
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1611
1612 /* first reschedule or stop timer */
1613 if (w->repeat)
1614 {
1615 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now;
1618
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620
1621 ANHE_at_set (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0);
1623 }
1624 else
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1628 }
1629}
1630
1631#if EV_PERIODIC_ENABLE
1632void inline_size
1633periodics_reify (EV_P)
1634{
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1636 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1638
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1640
1641 /* first reschedule or stop timer */
1642 if (w->reschedule_cb)
1643 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else if (w->interval)
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 /* if next trigger time is not sufficiently in the future, put it there */
1655 /* this might happen because of floating point inexactness */
1656 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1657 {
1658 ev_at (w) += w->interval;
1659
1660 /* if interval is unreasonably low we might still have a time in the past */
1661 /* so correct this. this will make the periodic very inexact, but the user */
1662 /* has effectively asked to get triggered more often than possible */
1663 if (ev_at (w) < ev_rt_now)
1664 ev_at (w) = ev_rt_now;
1665 }
1666
1667 ANHE_at_set (periodics [HEAP0]);
1668 downheap (periodics, periodiccnt, HEAP0);
1669 }
1670 else
1671 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1672
1673 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1674 }
1675}
1676
1677static void noinline
1678periodics_reschedule (EV_P)
1679{
1680 int i;
1681
1682 /* adjust periodics after time jump */
1683 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1684 {
1685 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1686
1687 if (w->reschedule_cb)
1688 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval)
1690 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1691
1692 ANHE_at_set (periodics [i]);
1693 }
1694
1695 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1696 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1697 for (i = 0; i < periodiccnt; ++i)
1698 upheap (periodics, i + HEAP0);
1566} 1699}
1567#endif 1700#endif
1568 1701
1569void inline_speed 1702void inline_speed
1570time_update (EV_P_ ev_tstamp max_block) 1703time_update (EV_P_ ev_tstamp max_block)
1599 */ 1732 */
1600 for (i = 4; --i; ) 1733 for (i = 4; --i; )
1601 { 1734 {
1602 rtmn_diff = ev_rt_now - mn_now; 1735 rtmn_diff = ev_rt_now - mn_now;
1603 1736
1604 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1737 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1605 return; /* all is well */ 1738 return; /* all is well */
1606 1739
1607 ev_rt_now = ev_time (); 1740 ev_rt_now = ev_time ();
1608 mn_now = get_clock (); 1741 mn_now = get_clock ();
1609 now_floor = mn_now; 1742 now_floor = mn_now;
1624 { 1757 {
1625#if EV_PERIODIC_ENABLE 1758#if EV_PERIODIC_ENABLE
1626 periodics_reschedule (EV_A); 1759 periodics_reschedule (EV_A);
1627#endif 1760#endif
1628 /* adjust timers. this is easy, as the offset is the same for all of them */ 1761 /* adjust timers. this is easy, as the offset is the same for all of them */
1629 for (i = 1; i <= timercnt; ++i) 1762 for (i = 0; i < timercnt; ++i)
1630 ev_at (timers [i]) += ev_rt_now - mn_now; 1763 {
1764 ANHE *he = timers + i + HEAP0;
1765 ANHE_w (*he)->at += ev_rt_now - mn_now;
1766 ANHE_at_set (*he);
1767 }
1631 } 1768 }
1632 1769
1633 mn_now = ev_rt_now; 1770 mn_now = ev_rt_now;
1634 } 1771 }
1635} 1772}
1705 1842
1706 waittime = MAX_BLOCKTIME; 1843 waittime = MAX_BLOCKTIME;
1707 1844
1708 if (timercnt) 1845 if (timercnt)
1709 { 1846 {
1710 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 1847 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1711 if (waittime > to) waittime = to; 1848 if (waittime > to) waittime = to;
1712 } 1849 }
1713 1850
1714#if EV_PERIODIC_ENABLE 1851#if EV_PERIODIC_ENABLE
1715 if (periodiccnt) 1852 if (periodiccnt)
1716 { 1853 {
1717 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 1854 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1718 if (waittime > to) waittime = to; 1855 if (waittime > to) waittime = to;
1719 } 1856 }
1720#endif 1857#endif
1721 1858
1722 if (expect_false (waittime < timeout_blocktime)) 1859 if (expect_false (waittime < timeout_blocktime))
1874{ 2011{
1875 clear_pending (EV_A_ (W)w); 2012 clear_pending (EV_A_ (W)w);
1876 if (expect_false (!ev_is_active (w))) 2013 if (expect_false (!ev_is_active (w)))
1877 return; 2014 return;
1878 2015
1879 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2016 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1880 2017
1881 wlist_del (&anfds[w->fd].head, (WL)w); 2018 wlist_del (&anfds[w->fd].head, (WL)w);
1882 ev_stop (EV_A_ (W)w); 2019 ev_stop (EV_A_ (W)w);
1883 2020
1884 fd_change (EV_A_ w->fd, 1); 2021 fd_change (EV_A_ w->fd, 1);
1892 2029
1893 ev_at (w) += mn_now; 2030 ev_at (w) += mn_now;
1894 2031
1895 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2032 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1896 2033
1897 ev_start (EV_A_ (W)w, ++timercnt); 2034 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1898 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2035 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1899 timers [timercnt] = (WT)w; 2036 ANHE_w (timers [ev_active (w)]) = (WT)w;
2037 ANHE_at_set (timers [ev_active (w)]);
1900 upheap (timers, timercnt); 2038 upheap (timers, ev_active (w));
1901 2039
1902 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2040 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1903} 2041}
1904 2042
1905void noinline 2043void noinline
1906ev_timer_stop (EV_P_ ev_timer *w) 2044ev_timer_stop (EV_P_ ev_timer *w)
1907{ 2045{
1910 return; 2048 return;
1911 2049
1912 { 2050 {
1913 int active = ev_active (w); 2051 int active = ev_active (w);
1914 2052
1915 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2053 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1916 2054
1917 if (expect_true (active < timercnt)) 2055 if (expect_true (active < timercnt + HEAP0 - 1))
1918 { 2056 {
1919 timers [active] = timers [timercnt]; 2057 timers [active] = timers [timercnt + HEAP0 - 1];
1920 adjustheap (timers, timercnt, active); 2058 adjustheap (timers, timercnt, active);
1921 } 2059 }
1922 2060
1923 --timercnt; 2061 --timercnt;
1924 } 2062 }
1934 if (ev_is_active (w)) 2072 if (ev_is_active (w))
1935 { 2073 {
1936 if (w->repeat) 2074 if (w->repeat)
1937 { 2075 {
1938 ev_at (w) = mn_now + w->repeat; 2076 ev_at (w) = mn_now + w->repeat;
2077 ANHE_at_set (timers [ev_active (w)]);
1939 adjustheap (timers, timercnt, ev_active (w)); 2078 adjustheap (timers, timercnt, ev_active (w));
1940 } 2079 }
1941 else 2080 else
1942 ev_timer_stop (EV_A_ w); 2081 ev_timer_stop (EV_A_ w);
1943 } 2082 }
1964 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2103 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1965 } 2104 }
1966 else 2105 else
1967 ev_at (w) = w->offset; 2106 ev_at (w) = w->offset;
1968 2107
1969 ev_start (EV_A_ (W)w, ++periodiccnt); 2108 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1970 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2109 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1971 periodics [periodiccnt] = (WT)w; 2110 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1972 upheap (periodics, periodiccnt); 2111 ANHE_at_set (periodics [ev_active (w)]);
2112 upheap (periodics, ev_active (w));
1973 2113
1974 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2114 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1975} 2115}
1976 2116
1977void noinline 2117void noinline
1978ev_periodic_stop (EV_P_ ev_periodic *w) 2118ev_periodic_stop (EV_P_ ev_periodic *w)
1979{ 2119{
1982 return; 2122 return;
1983 2123
1984 { 2124 {
1985 int active = ev_active (w); 2125 int active = ev_active (w);
1986 2126
1987 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2127 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1988 2128
1989 if (expect_true (active < periodiccnt)) 2129 if (expect_true (active < periodiccnt + HEAP0 - 1))
1990 { 2130 {
1991 periodics [active] = periodics [periodiccnt]; 2131 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1992 adjustheap (periodics, periodiccnt, active); 2132 adjustheap (periodics, periodiccnt, active);
1993 } 2133 }
1994 2134
1995 --periodiccnt; 2135 --periodiccnt;
1996 } 2136 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines