ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.246 by root, Wed May 21 12:51:38 2008 UTC vs.
Revision 1.254 by root, Wed Jun 4 20:26:55 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
164#endif 164#endif
165 165
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
167 167
168#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
170# define EV_USE_MONOTONIC 1
171# else
169# define EV_USE_MONOTONIC 0 172# define EV_USE_MONOTONIC 0
173# endif
170#endif 174#endif
171 175
172#ifndef EV_USE_REALTIME 176#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 177# define EV_USE_REALTIME 0
174#endif 178#endif
175 179
176#ifndef EV_USE_NANOSLEEP 180#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1
183# else
177# define EV_USE_NANOSLEEP 0 184# define EV_USE_NANOSLEEP 0
185# endif
178#endif 186#endif
179 187
180#ifndef EV_USE_SELECT 188#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 189# define EV_USE_SELECT 1
182#endif 190#endif
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 241# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 242# define EV_USE_EVENTFD 1
235# else 243# else
236# define EV_USE_EVENTFD 0 244# define EV_USE_EVENTFD 0
237# endif 245# endif
246#endif
247
248#if 0 /* debugging */
249# define EV_VERIFY 3
250# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1
252#endif
253
254#ifndef EV_VERIFY
255# define EV_VERIFY !EV_MINIMAL
238#endif 256#endif
239 257
240#ifndef EV_USE_4HEAP 258#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 259# define EV_USE_4HEAP !EV_MINIMAL
242#endif 260#endif
287} 305}
288# endif 306# endif
289#endif 307#endif
290 308
291/**/ 309/**/
310
311#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
313#else
314# define EV_FREQUENT_CHECK do { } while (0)
315#endif
292 316
293/* 317/*
294 * This is used to avoid floating point rounding problems. 318 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics 319 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding 320 * to ensure progress, time-wise, even when rounding
444 typedef struct { 468 typedef struct {
445 ev_tstamp at; 469 ev_tstamp at;
446 WT w; 470 WT w;
447 } ANHE; 471 } ANHE;
448 472
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 473 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 474 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 476#else
453 typedef WT ANHE; 477 typedef WT ANHE;
454 478
455 #define ANHE_w(he) (he) 479 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 480 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 481 #define ANHE_at_cache(he)
458#endif 482#endif
459 483
460#if EV_MULTIPLICITY 484#if EV_MULTIPLICITY
461 485
462 struct ev_loop 486 struct ev_loop
683 events |= (unsigned char)w->events; 707 events |= (unsigned char)w->events;
684 708
685#if EV_SELECT_IS_WINSOCKET 709#if EV_SELECT_IS_WINSOCKET
686 if (events) 710 if (events)
687 { 711 {
688 unsigned long argp; 712 unsigned long arg;
689 #ifdef EV_FD_TO_WIN32_HANDLE 713 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 714 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else 715 #else
692 anfd->handle = _get_osfhandle (fd); 716 anfd->handle = _get_osfhandle (fd);
693 #endif 717 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 718 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
695 } 719 }
696#endif 720#endif
697 721
698 { 722 {
699 unsigned char o_events = anfd->events; 723 unsigned char o_events = anfd->events;
752{ 776{
753 int fd; 777 int fd;
754 778
755 for (fd = 0; fd < anfdmax; ++fd) 779 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 780 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 781 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 782 fd_kill (EV_A_ fd);
759} 783}
760 784
761/* called on ENOMEM in select/poll to kill some fds and retry */ 785/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 786static void noinline
802 */ 826 */
803#if EV_USE_4HEAP 827#if EV_USE_4HEAP
804 828
805#define DHEAP 4 829#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 830#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807 831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808/* towards the root */ 832#define UPHEAP_DONE(p,k) ((p) == (k))
809void inline_speed
810upheap (ANHE *heap, int k)
811{
812 ANHE he = heap [k];
813
814 for (;;)
815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
821 heap [k] = heap [p];
822 ev_active (ANHE_w (heap [k])) = k;
823 k = p;
824 }
825
826 ev_active (ANHE_w (he)) = k;
827 heap [k] = he;
828}
829 833
830/* away from the root */ 834/* away from the root */
831void inline_speed 835void inline_speed
832downheap (ANHE *heap, int N, int k) 836downheap (ANHE *heap, int N, int k)
833{ 837{
836 840
837 for (;;) 841 for (;;)
838 { 842 {
839 ev_tstamp minat; 843 ev_tstamp minat;
840 ANHE *minpos; 844 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 845 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
842 846
843 // find minimum child 847 /* find minimum child */
844 if (expect_true (pos + DHEAP - 1 < E)) 848 if (expect_true (pos + DHEAP - 1 < E))
845 { 849 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 850 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 851 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 852 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
859 break; 863 break;
860 864
861 if (ANHE_at (he) <= minat) 865 if (ANHE_at (he) <= minat)
862 break; 866 break;
863 867
868 heap [k] = *minpos;
864 ev_active (ANHE_w (*minpos)) = k; 869 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866 870
867 k = minpos - heap; 871 k = minpos - heap;
868 } 872 }
869 873
874 heap [k] = he;
870 ev_active (ANHE_w (he)) = k; 875 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872} 876}
873 877
874#else // 4HEAP 878#else /* 4HEAP */
875 879
876#define HEAP0 1 880#define HEAP0 1
877 881#define HPARENT(k) ((k) >> 1)
878/* towards the root */ 882#define UPHEAP_DONE(p,k) (!(p))
879void inline_speed
880upheap (ANHE *heap, int k)
881{
882 ANHE he = heap [k];
883
884 for (;;)
885 {
886 int p = k >> 1;
887
888 /* maybe we could use a dummy element at heap [0]? */
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break;
891
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900 883
901/* away from the root */ 884/* away from the root */
902void inline_speed 885void inline_speed
903downheap (ANHE *heap, int N, int k) 886downheap (ANHE *heap, int N, int k)
904{ 887{
906 889
907 for (;;) 890 for (;;)
908 { 891 {
909 int c = k << 1; 892 int c = k << 1;
910 893
911 if (c > N) 894 if (c > N + HEAP0 - 1)
912 break; 895 break;
913 896
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0; 898 ? 1 : 0;
916 899
917 if (ANHE_at (he) <= ANHE_at (heap [c])) 900 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break; 901 break;
919 902
926 heap [k] = he; 909 heap [k] = he;
927 ev_active (ANHE_w (he)) = k; 910 ev_active (ANHE_w (he)) = k;
928} 911}
929#endif 912#endif
930 913
914/* towards the root */
915void inline_speed
916upheap (ANHE *heap, int k)
917{
918 ANHE he = heap [k];
919
920 for (;;)
921 {
922 int p = HPARENT (k);
923
924 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
925 break;
926
927 heap [k] = heap [p];
928 ev_active (ANHE_w (heap [k])) = k;
929 k = p;
930 }
931
932 heap [k] = he;
933 ev_active (ANHE_w (he)) = k;
934}
935
931void inline_size 936void inline_size
932adjustheap (ANHE *heap, int N, int k) 937adjustheap (ANHE *heap, int N, int k)
933{ 938{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
934 upheap (heap, k); 940 upheap (heap, k);
941 else
935 downheap (heap, N, k); 942 downheap (heap, N, k);
943}
944
945/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size
947reheap (ANHE *heap, int N)
948{
949 int i;
950
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
952 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
953 for (i = 0; i < N; ++i)
954 upheap (heap, i + HEAP0);
936} 955}
937 956
938/*****************************************************************************/ 957/*****************************************************************************/
939 958
940typedef struct 959typedef struct
964 983
965void inline_speed 984void inline_speed
966fd_intern (int fd) 985fd_intern (int fd)
967{ 986{
968#ifdef _WIN32 987#ifdef _WIN32
969 int arg = 1; 988 unsigned long arg = 1;
970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 989 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
971#else 990#else
972 fcntl (fd, F_SETFD, FD_CLOEXEC); 991 fcntl (fd, F_SETFD, FD_CLOEXEC);
973 fcntl (fd, F_SETFL, O_NONBLOCK); 992 fcntl (fd, F_SETFL, O_NONBLOCK);
974#endif 993#endif
1458 1477
1459 postfork = 0; 1478 postfork = 0;
1460} 1479}
1461 1480
1462#if EV_MULTIPLICITY 1481#if EV_MULTIPLICITY
1482
1463struct ev_loop * 1483struct ev_loop *
1464ev_loop_new (unsigned int flags) 1484ev_loop_new (unsigned int flags)
1465{ 1485{
1466 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1467 1487
1485void 1505void
1486ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1487{ 1507{
1488 postfork = 1; /* must be in line with ev_default_fork */ 1508 postfork = 1; /* must be in line with ev_default_fork */
1489} 1509}
1510
1511#if EV_VERIFY
1512void noinline
1513verify_watcher (EV_P_ W w)
1514{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516
1517 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519}
1520
1521static void noinline
1522verify_heap (EV_P_ ANHE *heap, int N)
1523{
1524 int i;
1525
1526 for (i = HEAP0; i < N + HEAP0; ++i)
1527 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 }
1534}
1535
1536static void noinline
1537array_verify (EV_P_ W *ws, int cnt)
1538{
1539 while (cnt--)
1540 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]);
1543 }
1544}
1545#endif
1546
1547void
1548ev_loop_verify (EV_P)
1549{
1550#if EV_VERIFY
1551 int i;
1552 WL w;
1553
1554 assert (activecnt >= -1);
1555
1556 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1559
1560 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i)
1562 for (w = anfds [i].head; w; w = w->next)
1563 {
1564 verify_watcher (EV_A_ (W)w);
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 }
1568
1569 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt);
1571
1572#if EV_PERIODIC_ENABLE
1573 assert (periodicmax >= periodiccnt);
1574 verify_heap (EV_A_ periodics, periodiccnt);
1575#endif
1576
1577 for (i = NUMPRI; i--; )
1578 {
1579 assert (pendingmax [i] >= pendingcnt [i]);
1580#if EV_IDLE_ENABLE
1581 assert (idleall >= 0);
1582 assert (idlemax [i] >= idlecnt [i]);
1583 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1584#endif
1585 }
1586
1587#if EV_FORK_ENABLE
1588 assert (forkmax >= forkcnt);
1589 array_verify (EV_A_ (W *)forks, forkcnt);
1590#endif
1591
1592#if EV_ASYNC_ENABLE
1593 assert (asyncmax >= asynccnt);
1594 array_verify (EV_A_ (W *)asyncs, asynccnt);
1595#endif
1596
1597 assert (preparemax >= preparecnt);
1598 array_verify (EV_A_ (W *)prepares, preparecnt);
1599
1600 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt);
1602
1603# if 0
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1490#endif 1606# endif
1607#endif
1608}
1609
1610#endif /* multiplicity */
1491 1611
1492#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
1493struct ev_loop * 1613struct ev_loop *
1494ev_default_loop_init (unsigned int flags) 1614ev_default_loop_init (unsigned int flags)
1495#else 1615#else
1571 { 1691 {
1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1573 1693
1574 p->w->pending = 0; 1694 p->w->pending = 0;
1575 EV_CB_INVOKE (p->w, p->events); 1695 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK;
1576 } 1697 }
1577 } 1698 }
1578} 1699}
1579 1700
1580#if EV_IDLE_ENABLE 1701#if EV_IDLE_ENABLE
1601#endif 1722#endif
1602 1723
1603void inline_size 1724void inline_size
1604timers_reify (EV_P) 1725timers_reify (EV_P)
1605{ 1726{
1727 EV_FREQUENT_CHECK;
1728
1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1607 { 1730 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1609 1732
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1616 if (ev_at (w) < mn_now) 1739 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now; 1740 ev_at (w) = mn_now;
1618 1741
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620 1743
1621 ANHE_at_set (timers [HEAP0]); 1744 ANHE_at_cache (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0); 1745 downheap (timers, timercnt, HEAP0);
1623 } 1746 }
1624 else 1747 else
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 1749
1750 EV_FREQUENT_CHECK;
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1628 } 1752 }
1629} 1753}
1630 1754
1631#if EV_PERIODIC_ENABLE 1755#if EV_PERIODIC_ENABLE
1632void inline_size 1756void inline_size
1633periodics_reify (EV_P) 1757periodics_reify (EV_P)
1634{ 1758{
1759 EV_FREQUENT_CHECK;
1760
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1636 { 1762 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1638 1764
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1643 { 1769 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645 1771
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647 1773
1648 ANHE_at_set (periodics [HEAP0]); 1774 ANHE_at_cache (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0); 1775 downheap (periodics, periodiccnt, HEAP0);
1650 } 1776 }
1651 else if (w->interval) 1777 else if (w->interval)
1652 { 1778 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1662 /* has effectively asked to get triggered more often than possible */ 1788 /* has effectively asked to get triggered more often than possible */
1663 if (ev_at (w) < ev_rt_now) 1789 if (ev_at (w) < ev_rt_now)
1664 ev_at (w) = ev_rt_now; 1790 ev_at (w) = ev_rt_now;
1665 } 1791 }
1666 1792
1667 ANHE_at_set (periodics [HEAP0]); 1793 ANHE_at_cache (periodics [HEAP0]);
1668 downheap (periodics, periodiccnt, HEAP0); 1794 downheap (periodics, periodiccnt, HEAP0);
1669 } 1795 }
1670 else 1796 else
1671 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1672 1798
1799 EV_FREQUENT_CHECK;
1673 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1674 } 1801 }
1675} 1802}
1676 1803
1677static void noinline 1804static void noinline
1687 if (w->reschedule_cb) 1814 if (w->reschedule_cb)
1688 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval) 1816 else if (w->interval)
1690 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1817 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1691 1818
1692 ANHE_at_set (periodics [i]); 1819 ANHE_at_cache (periodics [i]);
1693 } 1820 }
1694 1821
1695 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 1822 reheap (periodics, periodiccnt);
1696 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1697 for (i = 0; i < periodiccnt; ++i)
1698 upheap (periodics, i + HEAP0);
1699} 1823}
1700#endif 1824#endif
1701 1825
1702void inline_speed 1826void inline_speed
1703time_update (EV_P_ ev_tstamp max_block) 1827time_update (EV_P_ ev_tstamp max_block)
1761 /* adjust timers. this is easy, as the offset is the same for all of them */ 1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1762 for (i = 0; i < timercnt; ++i) 1886 for (i = 0; i < timercnt; ++i)
1763 { 1887 {
1764 ANHE *he = timers + i + HEAP0; 1888 ANHE *he = timers + i + HEAP0;
1765 ANHE_w (*he)->at += ev_rt_now - mn_now; 1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1766 ANHE_at_set (*he); 1890 ANHE_at_cache (*he);
1767 } 1891 }
1768 } 1892 }
1769 1893
1770 mn_now = ev_rt_now; 1894 mn_now = ev_rt_now;
1771 } 1895 }
1792 1916
1793 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1794 1918
1795 do 1919 do
1796 { 1920 {
1921#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A);
1923#endif
1924
1797#ifndef _WIN32 1925#ifndef _WIN32
1798 if (expect_false (curpid)) /* penalise the forking check even more */ 1926 if (expect_false (curpid)) /* penalise the forking check even more */
1799 if (expect_false (getpid () != curpid)) 1927 if (expect_false (getpid () != curpid))
1800 { 1928 {
1801 curpid = getpid (); 1929 curpid = getpid ();
1996 if (expect_false (ev_is_active (w))) 2124 if (expect_false (ev_is_active (w)))
1997 return; 2125 return;
1998 2126
1999 assert (("ev_io_start called with negative fd", fd >= 0)); 2127 assert (("ev_io_start called with negative fd", fd >= 0));
2000 2128
2129 EV_FREQUENT_CHECK;
2130
2001 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
2002 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
2003 wlist_add (&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
2004 2134
2005 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2006 w->events &= ~EV_IOFDSET; 2136 w->events &= ~EV_IOFDSET;
2137
2138 EV_FREQUENT_CHECK;
2007} 2139}
2008 2140
2009void noinline 2141void noinline
2010ev_io_stop (EV_P_ ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
2011{ 2143{
2013 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
2014 return; 2146 return;
2015 2147
2016 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2017 2149
2150 EV_FREQUENT_CHECK;
2151
2018 wlist_del (&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
2019 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
2020 2154
2021 fd_change (EV_A_ w->fd, 1); 2155 fd_change (EV_A_ w->fd, 1);
2156
2157 EV_FREQUENT_CHECK;
2022} 2158}
2023 2159
2024void noinline 2160void noinline
2025ev_timer_start (EV_P_ ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
2026{ 2162{
2029 2165
2030 ev_at (w) += mn_now; 2166 ev_at (w) += mn_now;
2031 2167
2032 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2033 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
2034 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2035 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2036 ANHE_w (timers [ev_active (w)]) = (WT)w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
2037 ANHE_at_set (timers [ev_active (w)]); 2176 ANHE_at_cache (timers [ev_active (w)]);
2038 upheap (timers, ev_active (w)); 2177 upheap (timers, ev_active (w));
2178
2179 EV_FREQUENT_CHECK;
2039 2180
2040 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2041} 2182}
2042 2183
2043void noinline 2184void noinline
2045{ 2186{
2046 clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
2047 if (expect_false (!ev_is_active (w))) 2188 if (expect_false (!ev_is_active (w)))
2048 return; 2189 return;
2049 2190
2191 EV_FREQUENT_CHECK;
2192
2050 { 2193 {
2051 int active = ev_active (w); 2194 int active = ev_active (w);
2052 2195
2053 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2054 2197
2198 --timercnt;
2199
2055 if (expect_true (active < timercnt + HEAP0 - 1)) 2200 if (expect_true (active < timercnt + HEAP0))
2056 { 2201 {
2057 timers [active] = timers [timercnt + HEAP0 - 1]; 2202 timers [active] = timers [timercnt + HEAP0];
2058 adjustheap (timers, timercnt, active); 2203 adjustheap (timers, timercnt, active);
2059 } 2204 }
2060
2061 --timercnt;
2062 } 2205 }
2206
2207 EV_FREQUENT_CHECK;
2063 2208
2064 ev_at (w) -= mn_now; 2209 ev_at (w) -= mn_now;
2065 2210
2066 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
2067} 2212}
2068 2213
2069void noinline 2214void noinline
2070ev_timer_again (EV_P_ ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
2071{ 2216{
2217 EV_FREQUENT_CHECK;
2218
2072 if (ev_is_active (w)) 2219 if (ev_is_active (w))
2073 { 2220 {
2074 if (w->repeat) 2221 if (w->repeat)
2075 { 2222 {
2076 ev_at (w) = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2077 ANHE_at_set (timers [ev_active (w)]); 2224 ANHE_at_cache (timers [ev_active (w)]);
2078 adjustheap (timers, timercnt, ev_active (w)); 2225 adjustheap (timers, timercnt, ev_active (w));
2079 } 2226 }
2080 else 2227 else
2081 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
2082 } 2229 }
2083 else if (w->repeat) 2230 else if (w->repeat)
2084 { 2231 {
2085 ev_at (w) = w->repeat; 2232 ev_at (w) = w->repeat;
2086 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
2087 } 2234 }
2235
2236 EV_FREQUENT_CHECK;
2088} 2237}
2089 2238
2090#if EV_PERIODIC_ENABLE 2239#if EV_PERIODIC_ENABLE
2091void noinline 2240void noinline
2092ev_periodic_start (EV_P_ ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
2103 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2104 } 2253 }
2105 else 2254 else
2106 ev_at (w) = w->offset; 2255 ev_at (w) = w->offset;
2107 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
2108 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2109 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2110 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2111 ANHE_at_set (periodics [ev_active (w)]); 2263 ANHE_at_cache (periodics [ev_active (w)]);
2112 upheap (periodics, ev_active (w)); 2264 upheap (periodics, ev_active (w));
2265
2266 EV_FREQUENT_CHECK;
2113 2267
2114 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2115} 2269}
2116 2270
2117void noinline 2271void noinline
2119{ 2273{
2120 clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
2121 if (expect_false (!ev_is_active (w))) 2275 if (expect_false (!ev_is_active (w)))
2122 return; 2276 return;
2123 2277
2278 EV_FREQUENT_CHECK;
2279
2124 { 2280 {
2125 int active = ev_active (w); 2281 int active = ev_active (w);
2126 2282
2127 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2128 2284
2285 --periodiccnt;
2286
2129 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2287 if (expect_true (active < periodiccnt + HEAP0))
2130 { 2288 {
2131 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
2132 adjustheap (periodics, periodiccnt, active); 2290 adjustheap (periodics, periodiccnt, active);
2133 } 2291 }
2134
2135 --periodiccnt;
2136 } 2292 }
2293
2294 EV_FREQUENT_CHECK;
2137 2295
2138 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
2139} 2297}
2140 2298
2141void noinline 2299void noinline
2161 return; 2319 return;
2162 2320
2163 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2164 2322
2165 evpipe_init (EV_A); 2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
2166 2326
2167 { 2327 {
2168#ifndef _WIN32 2328#ifndef _WIN32
2169 sigset_t full, prev; 2329 sigset_t full, prev;
2170 sigfillset (&full); 2330 sigfillset (&full);
2191 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
2192 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2193 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
2194#endif 2354#endif
2195 } 2355 }
2356
2357 EV_FREQUENT_CHECK;
2196} 2358}
2197 2359
2198void noinline 2360void noinline
2199ev_signal_stop (EV_P_ ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
2200{ 2362{
2201 clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
2202 if (expect_false (!ev_is_active (w))) 2364 if (expect_false (!ev_is_active (w)))
2203 return; 2365 return;
2204 2366
2367 EV_FREQUENT_CHECK;
2368
2205 wlist_del (&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
2206 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
2207 2371
2208 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
2209 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
2374
2375 EV_FREQUENT_CHECK;
2210} 2376}
2211 2377
2212void 2378void
2213ev_child_start (EV_P_ ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
2214{ 2380{
2216 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2217#endif 2383#endif
2218 if (expect_false (ev_is_active (w))) 2384 if (expect_false (ev_is_active (w)))
2219 return; 2385 return;
2220 2386
2387 EV_FREQUENT_CHECK;
2388
2221 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
2222 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2391
2392 EV_FREQUENT_CHECK;
2223} 2393}
2224 2394
2225void 2395void
2226ev_child_stop (EV_P_ ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
2227{ 2397{
2228 clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
2229 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
2230 return; 2400 return;
2231 2401
2402 EV_FREQUENT_CHECK;
2403
2232 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2233 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
2234} 2408}
2235 2409
2236#if EV_STAT_ENABLE 2410#if EV_STAT_ENABLE
2237 2411
2238# ifdef _WIN32 2412# ifdef _WIN32
2466 else 2640 else
2467#endif 2641#endif
2468 ev_timer_start (EV_A_ &w->timer); 2642 ev_timer_start (EV_A_ &w->timer);
2469 2643
2470 ev_start (EV_A_ (W)w, 1); 2644 ev_start (EV_A_ (W)w, 1);
2645
2646 EV_FREQUENT_CHECK;
2471} 2647}
2472 2648
2473void 2649void
2474ev_stat_stop (EV_P_ ev_stat *w) 2650ev_stat_stop (EV_P_ ev_stat *w)
2475{ 2651{
2476 clear_pending (EV_A_ (W)w); 2652 clear_pending (EV_A_ (W)w);
2477 if (expect_false (!ev_is_active (w))) 2653 if (expect_false (!ev_is_active (w)))
2478 return; 2654 return;
2479 2655
2656 EV_FREQUENT_CHECK;
2657
2480#if EV_USE_INOTIFY 2658#if EV_USE_INOTIFY
2481 infy_del (EV_A_ w); 2659 infy_del (EV_A_ w);
2482#endif 2660#endif
2483 ev_timer_stop (EV_A_ &w->timer); 2661 ev_timer_stop (EV_A_ &w->timer);
2484 2662
2485 ev_stop (EV_A_ (W)w); 2663 ev_stop (EV_A_ (W)w);
2664
2665 EV_FREQUENT_CHECK;
2486} 2666}
2487#endif 2667#endif
2488 2668
2489#if EV_IDLE_ENABLE 2669#if EV_IDLE_ENABLE
2490void 2670void
2492{ 2672{
2493 if (expect_false (ev_is_active (w))) 2673 if (expect_false (ev_is_active (w)))
2494 return; 2674 return;
2495 2675
2496 pri_adjust (EV_A_ (W)w); 2676 pri_adjust (EV_A_ (W)w);
2677
2678 EV_FREQUENT_CHECK;
2497 2679
2498 { 2680 {
2499 int active = ++idlecnt [ABSPRI (w)]; 2681 int active = ++idlecnt [ABSPRI (w)];
2500 2682
2501 ++idleall; 2683 ++idleall;
2502 ev_start (EV_A_ (W)w, active); 2684 ev_start (EV_A_ (W)w, active);
2503 2685
2504 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2686 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2505 idles [ABSPRI (w)][active - 1] = w; 2687 idles [ABSPRI (w)][active - 1] = w;
2506 } 2688 }
2689
2690 EV_FREQUENT_CHECK;
2507} 2691}
2508 2692
2509void 2693void
2510ev_idle_stop (EV_P_ ev_idle *w) 2694ev_idle_stop (EV_P_ ev_idle *w)
2511{ 2695{
2512 clear_pending (EV_A_ (W)w); 2696 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w))) 2697 if (expect_false (!ev_is_active (w)))
2514 return; 2698 return;
2515 2699
2700 EV_FREQUENT_CHECK;
2701
2516 { 2702 {
2517 int active = ev_active (w); 2703 int active = ev_active (w);
2518 2704
2519 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2705 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2520 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2706 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2521 2707
2522 ev_stop (EV_A_ (W)w); 2708 ev_stop (EV_A_ (W)w);
2523 --idleall; 2709 --idleall;
2524 } 2710 }
2711
2712 EV_FREQUENT_CHECK;
2525} 2713}
2526#endif 2714#endif
2527 2715
2528void 2716void
2529ev_prepare_start (EV_P_ ev_prepare *w) 2717ev_prepare_start (EV_P_ ev_prepare *w)
2530{ 2718{
2531 if (expect_false (ev_is_active (w))) 2719 if (expect_false (ev_is_active (w)))
2532 return; 2720 return;
2721
2722 EV_FREQUENT_CHECK;
2533 2723
2534 ev_start (EV_A_ (W)w, ++preparecnt); 2724 ev_start (EV_A_ (W)w, ++preparecnt);
2535 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2725 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2536 prepares [preparecnt - 1] = w; 2726 prepares [preparecnt - 1] = w;
2727
2728 EV_FREQUENT_CHECK;
2537} 2729}
2538 2730
2539void 2731void
2540ev_prepare_stop (EV_P_ ev_prepare *w) 2732ev_prepare_stop (EV_P_ ev_prepare *w)
2541{ 2733{
2542 clear_pending (EV_A_ (W)w); 2734 clear_pending (EV_A_ (W)w);
2543 if (expect_false (!ev_is_active (w))) 2735 if (expect_false (!ev_is_active (w)))
2544 return; 2736 return;
2545 2737
2738 EV_FREQUENT_CHECK;
2739
2546 { 2740 {
2547 int active = ev_active (w); 2741 int active = ev_active (w);
2548 2742
2549 prepares [active - 1] = prepares [--preparecnt]; 2743 prepares [active - 1] = prepares [--preparecnt];
2550 ev_active (prepares [active - 1]) = active; 2744 ev_active (prepares [active - 1]) = active;
2551 } 2745 }
2552 2746
2553 ev_stop (EV_A_ (W)w); 2747 ev_stop (EV_A_ (W)w);
2748
2749 EV_FREQUENT_CHECK;
2554} 2750}
2555 2751
2556void 2752void
2557ev_check_start (EV_P_ ev_check *w) 2753ev_check_start (EV_P_ ev_check *w)
2558{ 2754{
2559 if (expect_false (ev_is_active (w))) 2755 if (expect_false (ev_is_active (w)))
2560 return; 2756 return;
2757
2758 EV_FREQUENT_CHECK;
2561 2759
2562 ev_start (EV_A_ (W)w, ++checkcnt); 2760 ev_start (EV_A_ (W)w, ++checkcnt);
2563 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2761 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2564 checks [checkcnt - 1] = w; 2762 checks [checkcnt - 1] = w;
2763
2764 EV_FREQUENT_CHECK;
2565} 2765}
2566 2766
2567void 2767void
2568ev_check_stop (EV_P_ ev_check *w) 2768ev_check_stop (EV_P_ ev_check *w)
2569{ 2769{
2570 clear_pending (EV_A_ (W)w); 2770 clear_pending (EV_A_ (W)w);
2571 if (expect_false (!ev_is_active (w))) 2771 if (expect_false (!ev_is_active (w)))
2572 return; 2772 return;
2573 2773
2774 EV_FREQUENT_CHECK;
2775
2574 { 2776 {
2575 int active = ev_active (w); 2777 int active = ev_active (w);
2576 2778
2577 checks [active - 1] = checks [--checkcnt]; 2779 checks [active - 1] = checks [--checkcnt];
2578 ev_active (checks [active - 1]) = active; 2780 ev_active (checks [active - 1]) = active;
2579 } 2781 }
2580 2782
2581 ev_stop (EV_A_ (W)w); 2783 ev_stop (EV_A_ (W)w);
2784
2785 EV_FREQUENT_CHECK;
2582} 2786}
2583 2787
2584#if EV_EMBED_ENABLE 2788#if EV_EMBED_ENABLE
2585void noinline 2789void noinline
2586ev_embed_sweep (EV_P_ ev_embed *w) 2790ev_embed_sweep (EV_P_ ev_embed *w)
2633 struct ev_loop *loop = w->other; 2837 struct ev_loop *loop = w->other;
2634 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2838 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2635 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2839 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2636 } 2840 }
2637 2841
2842 EV_FREQUENT_CHECK;
2843
2638 ev_set_priority (&w->io, ev_priority (w)); 2844 ev_set_priority (&w->io, ev_priority (w));
2639 ev_io_start (EV_A_ &w->io); 2845 ev_io_start (EV_A_ &w->io);
2640 2846
2641 ev_prepare_init (&w->prepare, embed_prepare_cb); 2847 ev_prepare_init (&w->prepare, embed_prepare_cb);
2642 ev_set_priority (&w->prepare, EV_MINPRI); 2848 ev_set_priority (&w->prepare, EV_MINPRI);
2643 ev_prepare_start (EV_A_ &w->prepare); 2849 ev_prepare_start (EV_A_ &w->prepare);
2644 2850
2645 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2851 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2646 2852
2647 ev_start (EV_A_ (W)w, 1); 2853 ev_start (EV_A_ (W)w, 1);
2854
2855 EV_FREQUENT_CHECK;
2648} 2856}
2649 2857
2650void 2858void
2651ev_embed_stop (EV_P_ ev_embed *w) 2859ev_embed_stop (EV_P_ ev_embed *w)
2652{ 2860{
2653 clear_pending (EV_A_ (W)w); 2861 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w))) 2862 if (expect_false (!ev_is_active (w)))
2655 return; 2863 return;
2656 2864
2865 EV_FREQUENT_CHECK;
2866
2657 ev_io_stop (EV_A_ &w->io); 2867 ev_io_stop (EV_A_ &w->io);
2658 ev_prepare_stop (EV_A_ &w->prepare); 2868 ev_prepare_stop (EV_A_ &w->prepare);
2659 2869
2660 ev_stop (EV_A_ (W)w); 2870 ev_stop (EV_A_ (W)w);
2871
2872 EV_FREQUENT_CHECK;
2661} 2873}
2662#endif 2874#endif
2663 2875
2664#if EV_FORK_ENABLE 2876#if EV_FORK_ENABLE
2665void 2877void
2666ev_fork_start (EV_P_ ev_fork *w) 2878ev_fork_start (EV_P_ ev_fork *w)
2667{ 2879{
2668 if (expect_false (ev_is_active (w))) 2880 if (expect_false (ev_is_active (w)))
2669 return; 2881 return;
2882
2883 EV_FREQUENT_CHECK;
2670 2884
2671 ev_start (EV_A_ (W)w, ++forkcnt); 2885 ev_start (EV_A_ (W)w, ++forkcnt);
2672 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2886 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2673 forks [forkcnt - 1] = w; 2887 forks [forkcnt - 1] = w;
2888
2889 EV_FREQUENT_CHECK;
2674} 2890}
2675 2891
2676void 2892void
2677ev_fork_stop (EV_P_ ev_fork *w) 2893ev_fork_stop (EV_P_ ev_fork *w)
2678{ 2894{
2679 clear_pending (EV_A_ (W)w); 2895 clear_pending (EV_A_ (W)w);
2680 if (expect_false (!ev_is_active (w))) 2896 if (expect_false (!ev_is_active (w)))
2681 return; 2897 return;
2682 2898
2899 EV_FREQUENT_CHECK;
2900
2683 { 2901 {
2684 int active = ev_active (w); 2902 int active = ev_active (w);
2685 2903
2686 forks [active - 1] = forks [--forkcnt]; 2904 forks [active - 1] = forks [--forkcnt];
2687 ev_active (forks [active - 1]) = active; 2905 ev_active (forks [active - 1]) = active;
2688 } 2906 }
2689 2907
2690 ev_stop (EV_A_ (W)w); 2908 ev_stop (EV_A_ (W)w);
2909
2910 EV_FREQUENT_CHECK;
2691} 2911}
2692#endif 2912#endif
2693 2913
2694#if EV_ASYNC_ENABLE 2914#if EV_ASYNC_ENABLE
2695void 2915void
2697{ 2917{
2698 if (expect_false (ev_is_active (w))) 2918 if (expect_false (ev_is_active (w)))
2699 return; 2919 return;
2700 2920
2701 evpipe_init (EV_A); 2921 evpipe_init (EV_A);
2922
2923 EV_FREQUENT_CHECK;
2702 2924
2703 ev_start (EV_A_ (W)w, ++asynccnt); 2925 ev_start (EV_A_ (W)w, ++asynccnt);
2704 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2926 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2705 asyncs [asynccnt - 1] = w; 2927 asyncs [asynccnt - 1] = w;
2928
2929 EV_FREQUENT_CHECK;
2706} 2930}
2707 2931
2708void 2932void
2709ev_async_stop (EV_P_ ev_async *w) 2933ev_async_stop (EV_P_ ev_async *w)
2710{ 2934{
2711 clear_pending (EV_A_ (W)w); 2935 clear_pending (EV_A_ (W)w);
2712 if (expect_false (!ev_is_active (w))) 2936 if (expect_false (!ev_is_active (w)))
2713 return; 2937 return;
2714 2938
2939 EV_FREQUENT_CHECK;
2940
2715 { 2941 {
2716 int active = ev_active (w); 2942 int active = ev_active (w);
2717 2943
2718 asyncs [active - 1] = asyncs [--asynccnt]; 2944 asyncs [active - 1] = asyncs [--asynccnt];
2719 ev_active (asyncs [active - 1]) = active; 2945 ev_active (asyncs [active - 1]) = active;
2720 } 2946 }
2721 2947
2722 ev_stop (EV_A_ (W)w); 2948 ev_stop (EV_A_ (W)w);
2949
2950 EV_FREQUENT_CHECK;
2723} 2951}
2724 2952
2725void 2953void
2726ev_async_send (EV_P_ ev_async *w) 2954ev_async_send (EV_P_ ev_async *w)
2727{ 2955{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines