ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.246 by root, Wed May 21 12:51:38 2008 UTC vs.
Revision 1.259 by root, Mon Sep 8 13:14:23 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
154#ifndef _WIN32 154#ifndef _WIN32
155# include <sys/time.h> 155# include <sys/time.h>
156# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h> 157# include <unistd.h>
158#else 158#else
159# include <io.h>
159# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 161# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
163# endif 164# endif
164#endif 165#endif
165 166
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
167 168
168#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
169# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
170#endif 175#endif
171 176
172#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
174#endif 179#endif
175 180
176#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
177# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
178#endif 187#endif
179 188
180#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
182#endif 191#endif
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 243# define EV_USE_EVENTFD 1
235# else 244# else
236# define EV_USE_EVENTFD 0 245# define EV_USE_EVENTFD 0
237# endif 246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
238#endif 257#endif
239 258
240#ifndef EV_USE_4HEAP 259#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 260# define EV_USE_4HEAP !EV_MINIMAL
242#endif 261#endif
287} 306}
288# endif 307# endif
289#endif 308#endif
290 309
291/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
292 317
293/* 318/*
294 * This is used to avoid floating point rounding problems. 319 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics 320 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding 321 * to ensure progress, time-wise, even when rounding
444 typedef struct { 469 typedef struct {
445 ev_tstamp at; 470 ev_tstamp at;
446 WT w; 471 WT w;
447 } ANHE; 472 } ANHE;
448 473
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 474 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 475 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 477#else
453 typedef WT ANHE; 478 typedef WT ANHE;
454 479
455 #define ANHE_w(he) (he) 480 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 481 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 482 #define ANHE_at_cache(he)
458#endif 483#endif
459 484
460#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
461 486
462 struct ev_loop 487 struct ev_loop
540 struct timeval tv; 565 struct timeval tv;
541 566
542 tv.tv_sec = (time_t)delay; 567 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544 569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */
545 select (0, 0, 0, 0, &tv); 573 select (0, 0, 0, 0, &tv);
546#endif 574#endif
547 } 575 }
548} 576}
549 577
683 events |= (unsigned char)w->events; 711 events |= (unsigned char)w->events;
684 712
685#if EV_SELECT_IS_WINSOCKET 713#if EV_SELECT_IS_WINSOCKET
686 if (events) 714 if (events)
687 { 715 {
688 unsigned long argp; 716 unsigned long arg;
689 #ifdef EV_FD_TO_WIN32_HANDLE 717 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else 719 #else
692 anfd->handle = _get_osfhandle (fd); 720 anfd->handle = _get_osfhandle (fd);
693 #endif 721 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
695 } 723 }
696#endif 724#endif
697 725
698 { 726 {
699 unsigned char o_events = anfd->events; 727 unsigned char o_events = anfd->events;
752{ 780{
753 int fd; 781 int fd;
754 782
755 for (fd = 0; fd < anfdmax; ++fd) 783 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 784 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 785 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
759} 787}
760 788
761/* called on ENOMEM in select/poll to kill some fds and retry */ 789/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 790static void noinline
802 */ 830 */
803#if EV_USE_4HEAP 831#if EV_USE_4HEAP
804 832
805#define DHEAP 4 833#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 834#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807 835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808/* towards the root */ 836#define UPHEAP_DONE(p,k) ((p) == (k))
809void inline_speed
810upheap (ANHE *heap, int k)
811{
812 ANHE he = heap [k];
813
814 for (;;)
815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
821 heap [k] = heap [p];
822 ev_active (ANHE_w (heap [k])) = k;
823 k = p;
824 }
825
826 ev_active (ANHE_w (he)) = k;
827 heap [k] = he;
828}
829 837
830/* away from the root */ 838/* away from the root */
831void inline_speed 839void inline_speed
832downheap (ANHE *heap, int N, int k) 840downheap (ANHE *heap, int N, int k)
833{ 841{
836 844
837 for (;;) 845 for (;;)
838 { 846 {
839 ev_tstamp minat; 847 ev_tstamp minat;
840 ANHE *minpos; 848 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 849 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
842 850
843 // find minimum child 851 /* find minimum child */
844 if (expect_true (pos + DHEAP - 1 < E)) 852 if (expect_true (pos + DHEAP - 1 < E))
845 { 853 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 854 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 855 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 856 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
859 break; 867 break;
860 868
861 if (ANHE_at (he) <= minat) 869 if (ANHE_at (he) <= minat)
862 break; 870 break;
863 871
872 heap [k] = *minpos;
864 ev_active (ANHE_w (*minpos)) = k; 873 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866 874
867 k = minpos - heap; 875 k = minpos - heap;
868 } 876 }
869 877
878 heap [k] = he;
870 ev_active (ANHE_w (he)) = k; 879 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872} 880}
873 881
874#else // 4HEAP 882#else /* 4HEAP */
875 883
876#define HEAP0 1 884#define HEAP0 1
877 885#define HPARENT(k) ((k) >> 1)
878/* towards the root */ 886#define UPHEAP_DONE(p,k) (!(p))
879void inline_speed
880upheap (ANHE *heap, int k)
881{
882 ANHE he = heap [k];
883
884 for (;;)
885 {
886 int p = k >> 1;
887
888 /* maybe we could use a dummy element at heap [0]? */
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break;
891
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900 887
901/* away from the root */ 888/* away from the root */
902void inline_speed 889void inline_speed
903downheap (ANHE *heap, int N, int k) 890downheap (ANHE *heap, int N, int k)
904{ 891{
906 893
907 for (;;) 894 for (;;)
908 { 895 {
909 int c = k << 1; 896 int c = k << 1;
910 897
911 if (c > N) 898 if (c > N + HEAP0 - 1)
912 break; 899 break;
913 900
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0; 902 ? 1 : 0;
916 903
917 if (ANHE_at (he) <= ANHE_at (heap [c])) 904 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break; 905 break;
919 906
926 heap [k] = he; 913 heap [k] = he;
927 ev_active (ANHE_w (he)) = k; 914 ev_active (ANHE_w (he)) = k;
928} 915}
929#endif 916#endif
930 917
918/* towards the root */
919void inline_speed
920upheap (ANHE *heap, int k)
921{
922 ANHE he = heap [k];
923
924 for (;;)
925 {
926 int p = HPARENT (k);
927
928 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
929 break;
930
931 heap [k] = heap [p];
932 ev_active (ANHE_w (heap [k])) = k;
933 k = p;
934 }
935
936 heap [k] = he;
937 ev_active (ANHE_w (he)) = k;
938}
939
931void inline_size 940void inline_size
932adjustheap (ANHE *heap, int N, int k) 941adjustheap (ANHE *heap, int N, int k)
933{ 942{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
934 upheap (heap, k); 944 upheap (heap, k);
945 else
935 downheap (heap, N, k); 946 downheap (heap, N, k);
947}
948
949/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size
951reheap (ANHE *heap, int N)
952{
953 int i;
954
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
957 for (i = 0; i < N; ++i)
958 upheap (heap, i + HEAP0);
936} 959}
937 960
938/*****************************************************************************/ 961/*****************************************************************************/
939 962
940typedef struct 963typedef struct
964 987
965void inline_speed 988void inline_speed
966fd_intern (int fd) 989fd_intern (int fd)
967{ 990{
968#ifdef _WIN32 991#ifdef _WIN32
969 int arg = 1; 992 unsigned long arg = 1;
970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
971#else 994#else
972 fcntl (fd, F_SETFD, FD_CLOEXEC); 995 fcntl (fd, F_SETFD, FD_CLOEXEC);
973 fcntl (fd, F_SETFL, O_NONBLOCK); 996 fcntl (fd, F_SETFL, O_NONBLOCK);
974#endif 997#endif
1458 1481
1459 postfork = 0; 1482 postfork = 0;
1460} 1483}
1461 1484
1462#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
1486
1463struct ev_loop * 1487struct ev_loop *
1464ev_loop_new (unsigned int flags) 1488ev_loop_new (unsigned int flags)
1465{ 1489{
1466 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1467 1491
1485void 1509void
1486ev_loop_fork (EV_P) 1510ev_loop_fork (EV_P)
1487{ 1511{
1488 postfork = 1; /* must be in line with ev_default_fork */ 1512 postfork = 1; /* must be in line with ev_default_fork */
1489} 1513}
1514
1515#if EV_VERIFY
1516static void noinline
1517verify_watcher (EV_P_ W w)
1518{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520
1521 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523}
1524
1525static void noinline
1526verify_heap (EV_P_ ANHE *heap, int N)
1527{
1528 int i;
1529
1530 for (i = HEAP0; i < N + HEAP0; ++i)
1531 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 }
1538}
1539
1540static void noinline
1541array_verify (EV_P_ W *ws, int cnt)
1542{
1543 while (cnt--)
1544 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]);
1547 }
1548}
1549#endif
1550
1551void
1552ev_loop_verify (EV_P)
1553{
1554#if EV_VERIFY
1555 int i;
1556 WL w;
1557
1558 assert (activecnt >= -1);
1559
1560 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1563
1564 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next)
1567 {
1568 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 }
1572
1573 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt);
1575
1576#if EV_PERIODIC_ENABLE
1577 assert (periodicmax >= periodiccnt);
1578 verify_heap (EV_A_ periodics, periodiccnt);
1579#endif
1580
1581 for (i = NUMPRI; i--; )
1582 {
1583 assert (pendingmax [i] >= pendingcnt [i]);
1584#if EV_IDLE_ENABLE
1585 assert (idleall >= 0);
1586 assert (idlemax [i] >= idlecnt [i]);
1587 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1588#endif
1589 }
1590
1591#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif
1595
1596#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif
1600
1601 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt);
1603
1604 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt);
1606
1607# if 0
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1490#endif 1610# endif
1611#endif
1612}
1613
1614#endif /* multiplicity */
1491 1615
1492#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
1493struct ev_loop * 1617struct ev_loop *
1494ev_default_loop_init (unsigned int flags) 1618ev_default_loop_init (unsigned int flags)
1495#else 1619#else
1571 { 1695 {
1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1573 1697
1574 p->w->pending = 0; 1698 p->w->pending = 0;
1575 EV_CB_INVOKE (p->w, p->events); 1699 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK;
1576 } 1701 }
1577 } 1702 }
1578} 1703}
1579 1704
1580#if EV_IDLE_ENABLE 1705#if EV_IDLE_ENABLE
1601#endif 1726#endif
1602 1727
1603void inline_size 1728void inline_size
1604timers_reify (EV_P) 1729timers_reify (EV_P)
1605{ 1730{
1731 EV_FREQUENT_CHECK;
1732
1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1607 { 1734 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1609 1736
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1616 if (ev_at (w) < mn_now) 1743 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now; 1744 ev_at (w) = mn_now;
1618 1745
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620 1747
1621 ANHE_at_set (timers [HEAP0]); 1748 ANHE_at_cache (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0); 1749 downheap (timers, timercnt, HEAP0);
1623 } 1750 }
1624 else 1751 else
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 1753
1754 EV_FREQUENT_CHECK;
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1628 } 1756 }
1629} 1757}
1630 1758
1631#if EV_PERIODIC_ENABLE 1759#if EV_PERIODIC_ENABLE
1632void inline_size 1760void inline_size
1633periodics_reify (EV_P) 1761periodics_reify (EV_P)
1634{ 1762{
1763 EV_FREQUENT_CHECK;
1764
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1636 { 1766 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1638 1768
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1643 { 1773 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645 1775
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647 1777
1648 ANHE_at_set (periodics [HEAP0]); 1778 ANHE_at_cache (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0); 1779 downheap (periodics, periodiccnt, HEAP0);
1650 } 1780 }
1651 else if (w->interval) 1781 else if (w->interval)
1652 { 1782 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1662 /* has effectively asked to get triggered more often than possible */ 1792 /* has effectively asked to get triggered more often than possible */
1663 if (ev_at (w) < ev_rt_now) 1793 if (ev_at (w) < ev_rt_now)
1664 ev_at (w) = ev_rt_now; 1794 ev_at (w) = ev_rt_now;
1665 } 1795 }
1666 1796
1667 ANHE_at_set (periodics [HEAP0]); 1797 ANHE_at_cache (periodics [HEAP0]);
1668 downheap (periodics, periodiccnt, HEAP0); 1798 downheap (periodics, periodiccnt, HEAP0);
1669 } 1799 }
1670 else 1800 else
1671 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1672 1802
1803 EV_FREQUENT_CHECK;
1673 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1674 } 1805 }
1675} 1806}
1676 1807
1677static void noinline 1808static void noinline
1687 if (w->reschedule_cb) 1818 if (w->reschedule_cb)
1688 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval) 1820 else if (w->interval)
1690 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1691 1822
1692 ANHE_at_set (periodics [i]); 1823 ANHE_at_cache (periodics [i]);
1693 } 1824 }
1694 1825
1695 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 1826 reheap (periodics, periodiccnt);
1696 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1697 for (i = 0; i < periodiccnt; ++i)
1698 upheap (periodics, i + HEAP0);
1699} 1827}
1700#endif 1828#endif
1701 1829
1702void inline_speed 1830void inline_speed
1703time_update (EV_P_ ev_tstamp max_block) 1831time_update (EV_P_ ev_tstamp max_block)
1761 /* adjust timers. this is easy, as the offset is the same for all of them */ 1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1762 for (i = 0; i < timercnt; ++i) 1890 for (i = 0; i < timercnt; ++i)
1763 { 1891 {
1764 ANHE *he = timers + i + HEAP0; 1892 ANHE *he = timers + i + HEAP0;
1765 ANHE_w (*he)->at += ev_rt_now - mn_now; 1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1766 ANHE_at_set (*he); 1894 ANHE_at_cache (*he);
1767 } 1895 }
1768 } 1896 }
1769 1897
1770 mn_now = ev_rt_now; 1898 mn_now = ev_rt_now;
1771 } 1899 }
1792 1920
1793 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1921 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1794 1922
1795 do 1923 do
1796 { 1924 {
1925#if EV_VERIFY >= 2
1926 ev_loop_verify (EV_A);
1927#endif
1928
1797#ifndef _WIN32 1929#ifndef _WIN32
1798 if (expect_false (curpid)) /* penalise the forking check even more */ 1930 if (expect_false (curpid)) /* penalise the forking check even more */
1799 if (expect_false (getpid () != curpid)) 1931 if (expect_false (getpid () != curpid))
1800 { 1932 {
1801 curpid = getpid (); 1933 curpid = getpid ();
1996 if (expect_false (ev_is_active (w))) 2128 if (expect_false (ev_is_active (w)))
1997 return; 2129 return;
1998 2130
1999 assert (("ev_io_start called with negative fd", fd >= 0)); 2131 assert (("ev_io_start called with negative fd", fd >= 0));
2000 2132
2133 EV_FREQUENT_CHECK;
2134
2001 ev_start (EV_A_ (W)w, 1); 2135 ev_start (EV_A_ (W)w, 1);
2002 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2136 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
2003 wlist_add (&anfds[fd].head, (WL)w); 2137 wlist_add (&anfds[fd].head, (WL)w);
2004 2138
2005 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2139 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2006 w->events &= ~EV_IOFDSET; 2140 w->events &= ~EV_IOFDSET;
2141
2142 EV_FREQUENT_CHECK;
2007} 2143}
2008 2144
2009void noinline 2145void noinline
2010ev_io_stop (EV_P_ ev_io *w) 2146ev_io_stop (EV_P_ ev_io *w)
2011{ 2147{
2013 if (expect_false (!ev_is_active (w))) 2149 if (expect_false (!ev_is_active (w)))
2014 return; 2150 return;
2015 2151
2016 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2152 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2017 2153
2154 EV_FREQUENT_CHECK;
2155
2018 wlist_del (&anfds[w->fd].head, (WL)w); 2156 wlist_del (&anfds[w->fd].head, (WL)w);
2019 ev_stop (EV_A_ (W)w); 2157 ev_stop (EV_A_ (W)w);
2020 2158
2021 fd_change (EV_A_ w->fd, 1); 2159 fd_change (EV_A_ w->fd, 1);
2160
2161 EV_FREQUENT_CHECK;
2022} 2162}
2023 2163
2024void noinline 2164void noinline
2025ev_timer_start (EV_P_ ev_timer *w) 2165ev_timer_start (EV_P_ ev_timer *w)
2026{ 2166{
2029 2169
2030 ev_at (w) += mn_now; 2170 ev_at (w) += mn_now;
2031 2171
2032 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2172 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2033 2173
2174 EV_FREQUENT_CHECK;
2175
2176 ++timercnt;
2034 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2177 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2035 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2178 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2036 ANHE_w (timers [ev_active (w)]) = (WT)w; 2179 ANHE_w (timers [ev_active (w)]) = (WT)w;
2037 ANHE_at_set (timers [ev_active (w)]); 2180 ANHE_at_cache (timers [ev_active (w)]);
2038 upheap (timers, ev_active (w)); 2181 upheap (timers, ev_active (w));
2182
2183 EV_FREQUENT_CHECK;
2039 2184
2040 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2185 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2041} 2186}
2042 2187
2043void noinline 2188void noinline
2045{ 2190{
2046 clear_pending (EV_A_ (W)w); 2191 clear_pending (EV_A_ (W)w);
2047 if (expect_false (!ev_is_active (w))) 2192 if (expect_false (!ev_is_active (w)))
2048 return; 2193 return;
2049 2194
2195 EV_FREQUENT_CHECK;
2196
2050 { 2197 {
2051 int active = ev_active (w); 2198 int active = ev_active (w);
2052 2199
2053 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2200 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2054 2201
2202 --timercnt;
2203
2055 if (expect_true (active < timercnt + HEAP0 - 1)) 2204 if (expect_true (active < timercnt + HEAP0))
2056 { 2205 {
2057 timers [active] = timers [timercnt + HEAP0 - 1]; 2206 timers [active] = timers [timercnt + HEAP0];
2058 adjustheap (timers, timercnt, active); 2207 adjustheap (timers, timercnt, active);
2059 } 2208 }
2060
2061 --timercnt;
2062 } 2209 }
2210
2211 EV_FREQUENT_CHECK;
2063 2212
2064 ev_at (w) -= mn_now; 2213 ev_at (w) -= mn_now;
2065 2214
2066 ev_stop (EV_A_ (W)w); 2215 ev_stop (EV_A_ (W)w);
2067} 2216}
2068 2217
2069void noinline 2218void noinline
2070ev_timer_again (EV_P_ ev_timer *w) 2219ev_timer_again (EV_P_ ev_timer *w)
2071{ 2220{
2221 EV_FREQUENT_CHECK;
2222
2072 if (ev_is_active (w)) 2223 if (ev_is_active (w))
2073 { 2224 {
2074 if (w->repeat) 2225 if (w->repeat)
2075 { 2226 {
2076 ev_at (w) = mn_now + w->repeat; 2227 ev_at (w) = mn_now + w->repeat;
2077 ANHE_at_set (timers [ev_active (w)]); 2228 ANHE_at_cache (timers [ev_active (w)]);
2078 adjustheap (timers, timercnt, ev_active (w)); 2229 adjustheap (timers, timercnt, ev_active (w));
2079 } 2230 }
2080 else 2231 else
2081 ev_timer_stop (EV_A_ w); 2232 ev_timer_stop (EV_A_ w);
2082 } 2233 }
2083 else if (w->repeat) 2234 else if (w->repeat)
2084 { 2235 {
2085 ev_at (w) = w->repeat; 2236 ev_at (w) = w->repeat;
2086 ev_timer_start (EV_A_ w); 2237 ev_timer_start (EV_A_ w);
2087 } 2238 }
2239
2240 EV_FREQUENT_CHECK;
2088} 2241}
2089 2242
2090#if EV_PERIODIC_ENABLE 2243#if EV_PERIODIC_ENABLE
2091void noinline 2244void noinline
2092ev_periodic_start (EV_P_ ev_periodic *w) 2245ev_periodic_start (EV_P_ ev_periodic *w)
2103 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2256 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2104 } 2257 }
2105 else 2258 else
2106 ev_at (w) = w->offset; 2259 ev_at (w) = w->offset;
2107 2260
2261 EV_FREQUENT_CHECK;
2262
2263 ++periodiccnt;
2108 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2264 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2109 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2265 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2110 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2266 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2111 ANHE_at_set (periodics [ev_active (w)]); 2267 ANHE_at_cache (periodics [ev_active (w)]);
2112 upheap (periodics, ev_active (w)); 2268 upheap (periodics, ev_active (w));
2269
2270 EV_FREQUENT_CHECK;
2113 2271
2114 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2272 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2115} 2273}
2116 2274
2117void noinline 2275void noinline
2119{ 2277{
2120 clear_pending (EV_A_ (W)w); 2278 clear_pending (EV_A_ (W)w);
2121 if (expect_false (!ev_is_active (w))) 2279 if (expect_false (!ev_is_active (w)))
2122 return; 2280 return;
2123 2281
2282 EV_FREQUENT_CHECK;
2283
2124 { 2284 {
2125 int active = ev_active (w); 2285 int active = ev_active (w);
2126 2286
2127 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2287 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2128 2288
2289 --periodiccnt;
2290
2129 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2291 if (expect_true (active < periodiccnt + HEAP0))
2130 { 2292 {
2131 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2293 periodics [active] = periodics [periodiccnt + HEAP0];
2132 adjustheap (periodics, periodiccnt, active); 2294 adjustheap (periodics, periodiccnt, active);
2133 } 2295 }
2134
2135 --periodiccnt;
2136 } 2296 }
2297
2298 EV_FREQUENT_CHECK;
2137 2299
2138 ev_stop (EV_A_ (W)w); 2300 ev_stop (EV_A_ (W)w);
2139} 2301}
2140 2302
2141void noinline 2303void noinline
2161 return; 2323 return;
2162 2324
2163 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2325 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2164 2326
2165 evpipe_init (EV_A); 2327 evpipe_init (EV_A);
2328
2329 EV_FREQUENT_CHECK;
2166 2330
2167 { 2331 {
2168#ifndef _WIN32 2332#ifndef _WIN32
2169 sigset_t full, prev; 2333 sigset_t full, prev;
2170 sigfillset (&full); 2334 sigfillset (&full);
2191 sigfillset (&sa.sa_mask); 2355 sigfillset (&sa.sa_mask);
2192 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2356 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2193 sigaction (w->signum, &sa, 0); 2357 sigaction (w->signum, &sa, 0);
2194#endif 2358#endif
2195 } 2359 }
2360
2361 EV_FREQUENT_CHECK;
2196} 2362}
2197 2363
2198void noinline 2364void noinline
2199ev_signal_stop (EV_P_ ev_signal *w) 2365ev_signal_stop (EV_P_ ev_signal *w)
2200{ 2366{
2201 clear_pending (EV_A_ (W)w); 2367 clear_pending (EV_A_ (W)w);
2202 if (expect_false (!ev_is_active (w))) 2368 if (expect_false (!ev_is_active (w)))
2203 return; 2369 return;
2204 2370
2371 EV_FREQUENT_CHECK;
2372
2205 wlist_del (&signals [w->signum - 1].head, (WL)w); 2373 wlist_del (&signals [w->signum - 1].head, (WL)w);
2206 ev_stop (EV_A_ (W)w); 2374 ev_stop (EV_A_ (W)w);
2207 2375
2208 if (!signals [w->signum - 1].head) 2376 if (!signals [w->signum - 1].head)
2209 signal (w->signum, SIG_DFL); 2377 signal (w->signum, SIG_DFL);
2378
2379 EV_FREQUENT_CHECK;
2210} 2380}
2211 2381
2212void 2382void
2213ev_child_start (EV_P_ ev_child *w) 2383ev_child_start (EV_P_ ev_child *w)
2214{ 2384{
2216 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2386 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2217#endif 2387#endif
2218 if (expect_false (ev_is_active (w))) 2388 if (expect_false (ev_is_active (w)))
2219 return; 2389 return;
2220 2390
2391 EV_FREQUENT_CHECK;
2392
2221 ev_start (EV_A_ (W)w, 1); 2393 ev_start (EV_A_ (W)w, 1);
2222 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2394 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2395
2396 EV_FREQUENT_CHECK;
2223} 2397}
2224 2398
2225void 2399void
2226ev_child_stop (EV_P_ ev_child *w) 2400ev_child_stop (EV_P_ ev_child *w)
2227{ 2401{
2228 clear_pending (EV_A_ (W)w); 2402 clear_pending (EV_A_ (W)w);
2229 if (expect_false (!ev_is_active (w))) 2403 if (expect_false (!ev_is_active (w)))
2230 return; 2404 return;
2231 2405
2406 EV_FREQUENT_CHECK;
2407
2232 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2408 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2233 ev_stop (EV_A_ (W)w); 2409 ev_stop (EV_A_ (W)w);
2410
2411 EV_FREQUENT_CHECK;
2234} 2412}
2235 2413
2236#if EV_STAT_ENABLE 2414#if EV_STAT_ENABLE
2237 2415
2238# ifdef _WIN32 2416# ifdef _WIN32
2393 } 2571 }
2394 2572
2395 } 2573 }
2396} 2574}
2397 2575
2576#endif
2577
2578#ifdef _WIN32
2579# define EV_LSTAT(p,b) _stati64 (p, b)
2580#else
2581# define EV_LSTAT(p,b) lstat (p, b)
2398#endif 2582#endif
2399 2583
2400void 2584void
2401ev_stat_stat (EV_P_ ev_stat *w) 2585ev_stat_stat (EV_P_ ev_stat *w)
2402{ 2586{
2466 else 2650 else
2467#endif 2651#endif
2468 ev_timer_start (EV_A_ &w->timer); 2652 ev_timer_start (EV_A_ &w->timer);
2469 2653
2470 ev_start (EV_A_ (W)w, 1); 2654 ev_start (EV_A_ (W)w, 1);
2655
2656 EV_FREQUENT_CHECK;
2471} 2657}
2472 2658
2473void 2659void
2474ev_stat_stop (EV_P_ ev_stat *w) 2660ev_stat_stop (EV_P_ ev_stat *w)
2475{ 2661{
2476 clear_pending (EV_A_ (W)w); 2662 clear_pending (EV_A_ (W)w);
2477 if (expect_false (!ev_is_active (w))) 2663 if (expect_false (!ev_is_active (w)))
2478 return; 2664 return;
2479 2665
2666 EV_FREQUENT_CHECK;
2667
2480#if EV_USE_INOTIFY 2668#if EV_USE_INOTIFY
2481 infy_del (EV_A_ w); 2669 infy_del (EV_A_ w);
2482#endif 2670#endif
2483 ev_timer_stop (EV_A_ &w->timer); 2671 ev_timer_stop (EV_A_ &w->timer);
2484 2672
2485 ev_stop (EV_A_ (W)w); 2673 ev_stop (EV_A_ (W)w);
2674
2675 EV_FREQUENT_CHECK;
2486} 2676}
2487#endif 2677#endif
2488 2678
2489#if EV_IDLE_ENABLE 2679#if EV_IDLE_ENABLE
2490void 2680void
2492{ 2682{
2493 if (expect_false (ev_is_active (w))) 2683 if (expect_false (ev_is_active (w)))
2494 return; 2684 return;
2495 2685
2496 pri_adjust (EV_A_ (W)w); 2686 pri_adjust (EV_A_ (W)w);
2687
2688 EV_FREQUENT_CHECK;
2497 2689
2498 { 2690 {
2499 int active = ++idlecnt [ABSPRI (w)]; 2691 int active = ++idlecnt [ABSPRI (w)];
2500 2692
2501 ++idleall; 2693 ++idleall;
2502 ev_start (EV_A_ (W)w, active); 2694 ev_start (EV_A_ (W)w, active);
2503 2695
2504 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2696 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2505 idles [ABSPRI (w)][active - 1] = w; 2697 idles [ABSPRI (w)][active - 1] = w;
2506 } 2698 }
2699
2700 EV_FREQUENT_CHECK;
2507} 2701}
2508 2702
2509void 2703void
2510ev_idle_stop (EV_P_ ev_idle *w) 2704ev_idle_stop (EV_P_ ev_idle *w)
2511{ 2705{
2512 clear_pending (EV_A_ (W)w); 2706 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w))) 2707 if (expect_false (!ev_is_active (w)))
2514 return; 2708 return;
2515 2709
2710 EV_FREQUENT_CHECK;
2711
2516 { 2712 {
2517 int active = ev_active (w); 2713 int active = ev_active (w);
2518 2714
2519 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2715 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2520 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2716 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2521 2717
2522 ev_stop (EV_A_ (W)w); 2718 ev_stop (EV_A_ (W)w);
2523 --idleall; 2719 --idleall;
2524 } 2720 }
2721
2722 EV_FREQUENT_CHECK;
2525} 2723}
2526#endif 2724#endif
2527 2725
2528void 2726void
2529ev_prepare_start (EV_P_ ev_prepare *w) 2727ev_prepare_start (EV_P_ ev_prepare *w)
2530{ 2728{
2531 if (expect_false (ev_is_active (w))) 2729 if (expect_false (ev_is_active (w)))
2532 return; 2730 return;
2731
2732 EV_FREQUENT_CHECK;
2533 2733
2534 ev_start (EV_A_ (W)w, ++preparecnt); 2734 ev_start (EV_A_ (W)w, ++preparecnt);
2535 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2735 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2536 prepares [preparecnt - 1] = w; 2736 prepares [preparecnt - 1] = w;
2737
2738 EV_FREQUENT_CHECK;
2537} 2739}
2538 2740
2539void 2741void
2540ev_prepare_stop (EV_P_ ev_prepare *w) 2742ev_prepare_stop (EV_P_ ev_prepare *w)
2541{ 2743{
2542 clear_pending (EV_A_ (W)w); 2744 clear_pending (EV_A_ (W)w);
2543 if (expect_false (!ev_is_active (w))) 2745 if (expect_false (!ev_is_active (w)))
2544 return; 2746 return;
2545 2747
2748 EV_FREQUENT_CHECK;
2749
2546 { 2750 {
2547 int active = ev_active (w); 2751 int active = ev_active (w);
2548 2752
2549 prepares [active - 1] = prepares [--preparecnt]; 2753 prepares [active - 1] = prepares [--preparecnt];
2550 ev_active (prepares [active - 1]) = active; 2754 ev_active (prepares [active - 1]) = active;
2551 } 2755 }
2552 2756
2553 ev_stop (EV_A_ (W)w); 2757 ev_stop (EV_A_ (W)w);
2758
2759 EV_FREQUENT_CHECK;
2554} 2760}
2555 2761
2556void 2762void
2557ev_check_start (EV_P_ ev_check *w) 2763ev_check_start (EV_P_ ev_check *w)
2558{ 2764{
2559 if (expect_false (ev_is_active (w))) 2765 if (expect_false (ev_is_active (w)))
2560 return; 2766 return;
2767
2768 EV_FREQUENT_CHECK;
2561 2769
2562 ev_start (EV_A_ (W)w, ++checkcnt); 2770 ev_start (EV_A_ (W)w, ++checkcnt);
2563 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2771 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2564 checks [checkcnt - 1] = w; 2772 checks [checkcnt - 1] = w;
2773
2774 EV_FREQUENT_CHECK;
2565} 2775}
2566 2776
2567void 2777void
2568ev_check_stop (EV_P_ ev_check *w) 2778ev_check_stop (EV_P_ ev_check *w)
2569{ 2779{
2570 clear_pending (EV_A_ (W)w); 2780 clear_pending (EV_A_ (W)w);
2571 if (expect_false (!ev_is_active (w))) 2781 if (expect_false (!ev_is_active (w)))
2572 return; 2782 return;
2573 2783
2784 EV_FREQUENT_CHECK;
2785
2574 { 2786 {
2575 int active = ev_active (w); 2787 int active = ev_active (w);
2576 2788
2577 checks [active - 1] = checks [--checkcnt]; 2789 checks [active - 1] = checks [--checkcnt];
2578 ev_active (checks [active - 1]) = active; 2790 ev_active (checks [active - 1]) = active;
2579 } 2791 }
2580 2792
2581 ev_stop (EV_A_ (W)w); 2793 ev_stop (EV_A_ (W)w);
2794
2795 EV_FREQUENT_CHECK;
2582} 2796}
2583 2797
2584#if EV_EMBED_ENABLE 2798#if EV_EMBED_ENABLE
2585void noinline 2799void noinline
2586ev_embed_sweep (EV_P_ ev_embed *w) 2800ev_embed_sweep (EV_P_ ev_embed *w)
2633 struct ev_loop *loop = w->other; 2847 struct ev_loop *loop = w->other;
2634 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2848 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2635 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2849 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2636 } 2850 }
2637 2851
2852 EV_FREQUENT_CHECK;
2853
2638 ev_set_priority (&w->io, ev_priority (w)); 2854 ev_set_priority (&w->io, ev_priority (w));
2639 ev_io_start (EV_A_ &w->io); 2855 ev_io_start (EV_A_ &w->io);
2640 2856
2641 ev_prepare_init (&w->prepare, embed_prepare_cb); 2857 ev_prepare_init (&w->prepare, embed_prepare_cb);
2642 ev_set_priority (&w->prepare, EV_MINPRI); 2858 ev_set_priority (&w->prepare, EV_MINPRI);
2643 ev_prepare_start (EV_A_ &w->prepare); 2859 ev_prepare_start (EV_A_ &w->prepare);
2644 2860
2645 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2861 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2646 2862
2647 ev_start (EV_A_ (W)w, 1); 2863 ev_start (EV_A_ (W)w, 1);
2864
2865 EV_FREQUENT_CHECK;
2648} 2866}
2649 2867
2650void 2868void
2651ev_embed_stop (EV_P_ ev_embed *w) 2869ev_embed_stop (EV_P_ ev_embed *w)
2652{ 2870{
2653 clear_pending (EV_A_ (W)w); 2871 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w))) 2872 if (expect_false (!ev_is_active (w)))
2655 return; 2873 return;
2656 2874
2875 EV_FREQUENT_CHECK;
2876
2657 ev_io_stop (EV_A_ &w->io); 2877 ev_io_stop (EV_A_ &w->io);
2658 ev_prepare_stop (EV_A_ &w->prepare); 2878 ev_prepare_stop (EV_A_ &w->prepare);
2659 2879
2660 ev_stop (EV_A_ (W)w); 2880 ev_stop (EV_A_ (W)w);
2881
2882 EV_FREQUENT_CHECK;
2661} 2883}
2662#endif 2884#endif
2663 2885
2664#if EV_FORK_ENABLE 2886#if EV_FORK_ENABLE
2665void 2887void
2666ev_fork_start (EV_P_ ev_fork *w) 2888ev_fork_start (EV_P_ ev_fork *w)
2667{ 2889{
2668 if (expect_false (ev_is_active (w))) 2890 if (expect_false (ev_is_active (w)))
2669 return; 2891 return;
2892
2893 EV_FREQUENT_CHECK;
2670 2894
2671 ev_start (EV_A_ (W)w, ++forkcnt); 2895 ev_start (EV_A_ (W)w, ++forkcnt);
2672 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2896 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2673 forks [forkcnt - 1] = w; 2897 forks [forkcnt - 1] = w;
2898
2899 EV_FREQUENT_CHECK;
2674} 2900}
2675 2901
2676void 2902void
2677ev_fork_stop (EV_P_ ev_fork *w) 2903ev_fork_stop (EV_P_ ev_fork *w)
2678{ 2904{
2679 clear_pending (EV_A_ (W)w); 2905 clear_pending (EV_A_ (W)w);
2680 if (expect_false (!ev_is_active (w))) 2906 if (expect_false (!ev_is_active (w)))
2681 return; 2907 return;
2682 2908
2909 EV_FREQUENT_CHECK;
2910
2683 { 2911 {
2684 int active = ev_active (w); 2912 int active = ev_active (w);
2685 2913
2686 forks [active - 1] = forks [--forkcnt]; 2914 forks [active - 1] = forks [--forkcnt];
2687 ev_active (forks [active - 1]) = active; 2915 ev_active (forks [active - 1]) = active;
2688 } 2916 }
2689 2917
2690 ev_stop (EV_A_ (W)w); 2918 ev_stop (EV_A_ (W)w);
2919
2920 EV_FREQUENT_CHECK;
2691} 2921}
2692#endif 2922#endif
2693 2923
2694#if EV_ASYNC_ENABLE 2924#if EV_ASYNC_ENABLE
2695void 2925void
2697{ 2927{
2698 if (expect_false (ev_is_active (w))) 2928 if (expect_false (ev_is_active (w)))
2699 return; 2929 return;
2700 2930
2701 evpipe_init (EV_A); 2931 evpipe_init (EV_A);
2932
2933 EV_FREQUENT_CHECK;
2702 2934
2703 ev_start (EV_A_ (W)w, ++asynccnt); 2935 ev_start (EV_A_ (W)w, ++asynccnt);
2704 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2936 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2705 asyncs [asynccnt - 1] = w; 2937 asyncs [asynccnt - 1] = w;
2938
2939 EV_FREQUENT_CHECK;
2706} 2940}
2707 2941
2708void 2942void
2709ev_async_stop (EV_P_ ev_async *w) 2943ev_async_stop (EV_P_ ev_async *w)
2710{ 2944{
2711 clear_pending (EV_A_ (W)w); 2945 clear_pending (EV_A_ (W)w);
2712 if (expect_false (!ev_is_active (w))) 2946 if (expect_false (!ev_is_active (w)))
2713 return; 2947 return;
2714 2948
2949 EV_FREQUENT_CHECK;
2950
2715 { 2951 {
2716 int active = ev_active (w); 2952 int active = ev_active (w);
2717 2953
2718 asyncs [active - 1] = asyncs [--asynccnt]; 2954 asyncs [active - 1] = asyncs [--asynccnt];
2719 ev_active (asyncs [active - 1]) = active; 2955 ev_active (asyncs [active - 1]) = active;
2720 } 2956 }
2721 2957
2722 ev_stop (EV_A_ (W)w); 2958 ev_stop (EV_A_ (W)w);
2959
2960 EV_FREQUENT_CHECK;
2723} 2961}
2724 2962
2725void 2963void
2726ev_async_send (EV_P_ ev_async *w) 2964ev_async_send (EV_P_ ev_async *w)
2727{ 2965{
2744once_cb (EV_P_ struct ev_once *once, int revents) 2982once_cb (EV_P_ struct ev_once *once, int revents)
2745{ 2983{
2746 void (*cb)(int revents, void *arg) = once->cb; 2984 void (*cb)(int revents, void *arg) = once->cb;
2747 void *arg = once->arg; 2985 void *arg = once->arg;
2748 2986
2749 ev_io_stop (EV_A_ &once->io); 2987 ev_io_stop (EV_A_ &once->io);
2750 ev_timer_stop (EV_A_ &once->to); 2988 ev_timer_stop (EV_A_ &once->to);
2751 ev_free (once); 2989 ev_free (once);
2752 2990
2753 cb (revents, arg); 2991 cb (revents, arg);
2754} 2992}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines