ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.246 by root, Wed May 21 12:51:38 2008 UTC vs.
Revision 1.331 by root, Tue Mar 9 08:55:03 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
96# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
97# endif 111# endif
98# endif 112# endif
99 113
100# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
102# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
103# else 117# else
104# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
105# endif 119# endif
106# endif 120# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
136#include <fcntl.h> 159#include <fcntl.h>
137#include <stddef.h> 160#include <stddef.h>
138 161
139#include <stdio.h> 162#include <stdio.h>
140 163
141#include <assert.h> 164#include <assert.h>
142#include <errno.h> 165#include <errno.h>
143#include <sys/types.h> 166#include <sys/types.h>
144#include <time.h> 167#include <time.h>
168#include <limits.h>
145 169
146#include <signal.h> 170#include <signal.h>
147 171
148#ifdef EV_H 172#ifdef EV_H
149# include EV_H 173# include EV_H
154#ifndef _WIN32 178#ifndef _WIN32
155# include <sys/time.h> 179# include <sys/time.h>
156# include <sys/wait.h> 180# include <sys/wait.h>
157# include <unistd.h> 181# include <unistd.h>
158#else 182#else
183# include <io.h>
159# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 185# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
163# endif 188# endif
189# undef EV_AVOID_STDIO
164#endif 190#endif
165 191
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 192/* this block tries to deduce configuration from header-defined symbols and defaults */
167 193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line */
218# define EV_NSIG 65
219#endif
220
221#ifndef EV_USE_CLOCK_SYSCALL
222# if __linux && __GLIBC__ >= 2
223# define EV_USE_CLOCK_SYSCALL 1
224# else
225# define EV_USE_CLOCK_SYSCALL 0
226# endif
227#endif
228
168#ifndef EV_USE_MONOTONIC 229#ifndef EV_USE_MONOTONIC
230# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
231# define EV_USE_MONOTONIC 1
232# else
169# define EV_USE_MONOTONIC 0 233# define EV_USE_MONOTONIC 0
234# endif
170#endif 235#endif
171 236
172#ifndef EV_USE_REALTIME 237#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 238# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 239#endif
175 240
176#ifndef EV_USE_NANOSLEEP 241#ifndef EV_USE_NANOSLEEP
242# if _POSIX_C_SOURCE >= 199309L
243# define EV_USE_NANOSLEEP 1
244# else
177# define EV_USE_NANOSLEEP 0 245# define EV_USE_NANOSLEEP 0
246# endif
178#endif 247#endif
179 248
180#ifndef EV_USE_SELECT 249#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 250# define EV_USE_SELECT 1
182#endif 251#endif
235# else 304# else
236# define EV_USE_EVENTFD 0 305# define EV_USE_EVENTFD 0
237# endif 306# endif
238#endif 307#endif
239 308
309#ifndef EV_USE_SIGNALFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_SIGNALFD 1
312# else
313# define EV_USE_SIGNALFD 0
314# endif
315#endif
316
317#if 0 /* debugging */
318# define EV_VERIFY 3
319# define EV_USE_4HEAP 1
320# define EV_HEAP_CACHE_AT 1
321#endif
322
323#ifndef EV_VERIFY
324# define EV_VERIFY !EV_MINIMAL
325#endif
326
240#ifndef EV_USE_4HEAP 327#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 328# define EV_USE_4HEAP !EV_MINIMAL
242#endif 329#endif
243 330
244#ifndef EV_HEAP_CACHE_AT 331#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 332# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif 333#endif
247 334
335/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
336/* which makes programs even slower. might work on other unices, too. */
337#if EV_USE_CLOCK_SYSCALL
338# include <syscall.h>
339# ifdef SYS_clock_gettime
340# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
341# undef EV_USE_MONOTONIC
342# define EV_USE_MONOTONIC 1
343# else
344# undef EV_USE_CLOCK_SYSCALL
345# define EV_USE_CLOCK_SYSCALL 0
346# endif
347#endif
348
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 349/* this block fixes any misconfiguration where we know we run into trouble otherwise */
350
351#ifdef _AIX
352/* AIX has a completely broken poll.h header */
353# undef EV_USE_POLL
354# define EV_USE_POLL 0
355#endif
249 356
250#ifndef CLOCK_MONOTONIC 357#ifndef CLOCK_MONOTONIC
251# undef EV_USE_MONOTONIC 358# undef EV_USE_MONOTONIC
252# define EV_USE_MONOTONIC 0 359# define EV_USE_MONOTONIC 0
253#endif 360#endif
267# include <sys/select.h> 374# include <sys/select.h>
268# endif 375# endif
269#endif 376#endif
270 377
271#if EV_USE_INOTIFY 378#if EV_USE_INOTIFY
379# include <sys/utsname.h>
380# include <sys/statfs.h>
272# include <sys/inotify.h> 381# include <sys/inotify.h>
382/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
383# ifndef IN_DONT_FOLLOW
384# undef EV_USE_INOTIFY
385# define EV_USE_INOTIFY 0
386# endif
273#endif 387#endif
274 388
275#if EV_SELECT_IS_WINSOCKET 389#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h> 390# include <winsock.h>
277#endif 391#endif
278 392
279#if EV_USE_EVENTFD 393#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 394/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 395# include <stdint.h>
396# ifndef EFD_NONBLOCK
397# define EFD_NONBLOCK O_NONBLOCK
398# endif
399# ifndef EFD_CLOEXEC
400# ifdef O_CLOEXEC
401# define EFD_CLOEXEC O_CLOEXEC
402# else
403# define EFD_CLOEXEC 02000000
404# endif
405# endif
282# ifdef __cplusplus 406# ifdef __cplusplus
283extern "C" { 407extern "C" {
284# endif 408# endif
285int eventfd (unsigned int initval, int flags); 409int (eventfd) (unsigned int initval, int flags);
286# ifdef __cplusplus 410# ifdef __cplusplus
287} 411}
288# endif 412# endif
289#endif 413#endif
290 414
415#if EV_USE_SIGNALFD
416/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
417# include <stdint.h>
418# ifndef SFD_NONBLOCK
419# define SFD_NONBLOCK O_NONBLOCK
420# endif
421# ifndef SFD_CLOEXEC
422# ifdef O_CLOEXEC
423# define SFD_CLOEXEC O_CLOEXEC
424# else
425# define SFD_CLOEXEC 02000000
426# endif
427# endif
428# ifdef __cplusplus
429extern "C" {
430# endif
431int signalfd (int fd, const sigset_t *mask, int flags);
432
433struct signalfd_siginfo
434{
435 uint32_t ssi_signo;
436 char pad[128 - sizeof (uint32_t)];
437};
438# ifdef __cplusplus
439}
440# endif
441#endif
442
443
291/**/ 444/**/
445
446#if EV_VERIFY >= 3
447# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
448#else
449# define EV_FREQUENT_CHECK do { } while (0)
450#endif
292 451
293/* 452/*
294 * This is used to avoid floating point rounding problems. 453 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics 454 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding 455 * to ensure progress, time-wise, even when rounding
300 */ 459 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
302 461
303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 462#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 463#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
306 464
307#if __GNUC__ >= 4 465#if __GNUC__ >= 4
308# define expect(expr,value) __builtin_expect ((expr),(value)) 466# define expect(expr,value) __builtin_expect ((expr),(value))
309# define noinline __attribute__ ((noinline)) 467# define noinline __attribute__ ((noinline))
310#else 468#else
323# define inline_speed static noinline 481# define inline_speed static noinline
324#else 482#else
325# define inline_speed static inline 483# define inline_speed static inline
326#endif 484#endif
327 485
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 486#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
487
488#if EV_MINPRI == EV_MAXPRI
489# define ABSPRI(w) (((W)w), 0)
490#else
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 491# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
492#endif
330 493
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 494#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 495#define EMPTY2(a,b) /* used to suppress some warnings */
333 496
334typedef ev_watcher *W; 497typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 499typedef ev_watcher_time *WT;
337 500
338#define ev_active(w) ((W)(w))->active 501#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 502#define ev_at(w) ((WT)(w))->at
340 503
341#if EV_USE_MONOTONIC 504#if EV_USE_REALTIME
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 505/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */ 506/* giving it a reasonably high chance of working on typical architetcures */
507static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
508#endif
509
510#if EV_USE_MONOTONIC
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 511static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
512#endif
513
514#ifndef EV_FD_TO_WIN32_HANDLE
515# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
516#endif
517#ifndef EV_WIN32_HANDLE_TO_FD
518# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
519#endif
520#ifndef EV_WIN32_CLOSE_FD
521# define EV_WIN32_CLOSE_FD(fd) close (fd)
345#endif 522#endif
346 523
347#ifdef _WIN32 524#ifdef _WIN32
348# include "ev_win32.c" 525# include "ev_win32.c"
349#endif 526#endif
350 527
351/*****************************************************************************/ 528/*****************************************************************************/
352 529
530#if EV_AVOID_STDIO
531static void noinline
532ev_printerr (const char *msg)
533{
534 write (STDERR_FILENO, msg, strlen (msg));
535}
536#endif
537
353static void (*syserr_cb)(const char *msg); 538static void (*syserr_cb)(const char *msg);
354 539
355void 540void
356ev_set_syserr_cb (void (*cb)(const char *msg)) 541ev_set_syserr_cb (void (*cb)(const char *msg))
357{ 542{
358 syserr_cb = cb; 543 syserr_cb = cb;
359} 544}
360 545
361static void noinline 546static void noinline
362syserr (const char *msg) 547ev_syserr (const char *msg)
363{ 548{
364 if (!msg) 549 if (!msg)
365 msg = "(libev) system error"; 550 msg = "(libev) system error";
366 551
367 if (syserr_cb) 552 if (syserr_cb)
368 syserr_cb (msg); 553 syserr_cb (msg);
369 else 554 else
370 { 555 {
556#if EV_AVOID_STDIO
557 const char *err = strerror (errno);
558
559 ev_printerr (msg);
560 ev_printerr (": ");
561 ev_printerr (err);
562 ev_printerr ("\n");
563#else
371 perror (msg); 564 perror (msg);
565#endif
372 abort (); 566 abort ();
373 } 567 }
374} 568}
375 569
376static void * 570static void *
401{ 595{
402 ptr = alloc (ptr, size); 596 ptr = alloc (ptr, size);
403 597
404 if (!ptr && size) 598 if (!ptr && size)
405 { 599 {
600#if EV_AVOID_STDIO
601 ev_printerr ("libev: memory allocation failed, aborting.\n");
602#else
406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 603 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
604#endif
407 abort (); 605 abort ();
408 } 606 }
409 607
410 return ptr; 608 return ptr;
411} 609}
413#define ev_malloc(size) ev_realloc (0, (size)) 611#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 612#define ev_free(ptr) ev_realloc ((ptr), 0)
415 613
416/*****************************************************************************/ 614/*****************************************************************************/
417 615
616/* set in reify when reification needed */
617#define EV_ANFD_REIFY 1
618
619/* file descriptor info structure */
418typedef struct 620typedef struct
419{ 621{
420 WL head; 622 WL head;
421 unsigned char events; 623 unsigned char events; /* the events watched for */
624 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
625 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 626 unsigned char unused;
627#if EV_USE_EPOLL
628 unsigned int egen; /* generation counter to counter epoll bugs */
629#endif
423#if EV_SELECT_IS_WINSOCKET 630#if EV_SELECT_IS_WINSOCKET
424 SOCKET handle; 631 SOCKET handle;
425#endif 632#endif
426} ANFD; 633} ANFD;
427 634
635/* stores the pending event set for a given watcher */
428typedef struct 636typedef struct
429{ 637{
430 W w; 638 W w;
431 int events; 639 int events; /* the pending event set for the given watcher */
432} ANPENDING; 640} ANPENDING;
433 641
434#if EV_USE_INOTIFY 642#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 643/* hash table entry per inotify-id */
436typedef struct 644typedef struct
439} ANFS; 647} ANFS;
440#endif 648#endif
441 649
442/* Heap Entry */ 650/* Heap Entry */
443#if EV_HEAP_CACHE_AT 651#if EV_HEAP_CACHE_AT
652 /* a heap element */
444 typedef struct { 653 typedef struct {
445 ev_tstamp at; 654 ev_tstamp at;
446 WT w; 655 WT w;
447 } ANHE; 656 } ANHE;
448 657
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 658 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 659 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 660 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 661#else
662 /* a heap element */
453 typedef WT ANHE; 663 typedef WT ANHE;
454 664
455 #define ANHE_w(he) (he) 665 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 666 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 667 #define ANHE_at_cache(he)
458#endif 668#endif
459 669
460#if EV_MULTIPLICITY 670#if EV_MULTIPLICITY
461 671
462 struct ev_loop 672 struct ev_loop
481 691
482 static int ev_default_loop_ptr; 692 static int ev_default_loop_ptr;
483 693
484#endif 694#endif
485 695
696#if EV_MINIMAL < 2
697# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
698# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
699# define EV_INVOKE_PENDING invoke_cb (EV_A)
700#else
701# define EV_RELEASE_CB (void)0
702# define EV_ACQUIRE_CB (void)0
703# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
704#endif
705
706#define EVUNLOOP_RECURSE 0x80
707
486/*****************************************************************************/ 708/*****************************************************************************/
487 709
710#ifndef EV_HAVE_EV_TIME
488ev_tstamp 711ev_tstamp
489ev_time (void) 712ev_time (void)
490{ 713{
491#if EV_USE_REALTIME 714#if EV_USE_REALTIME
715 if (expect_true (have_realtime))
716 {
492 struct timespec ts; 717 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 718 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 719 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 720 }
721#endif
722
496 struct timeval tv; 723 struct timeval tv;
497 gettimeofday (&tv, 0); 724 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 725 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 726}
727#endif
501 728
502ev_tstamp inline_size 729inline_size ev_tstamp
503get_clock (void) 730get_clock (void)
504{ 731{
505#if EV_USE_MONOTONIC 732#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 733 if (expect_true (have_monotonic))
507 { 734 {
540 struct timeval tv; 767 struct timeval tv;
541 768
542 tv.tv_sec = (time_t)delay; 769 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 770 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544 771
772 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
773 /* something not guaranteed by newer posix versions, but guaranteed */
774 /* by older ones */
545 select (0, 0, 0, 0, &tv); 775 select (0, 0, 0, 0, &tv);
546#endif 776#endif
547 } 777 }
548} 778}
549 779
550/*****************************************************************************/ 780/*****************************************************************************/
551 781
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 782#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 783
554int inline_size 784/* find a suitable new size for the given array, */
785/* hopefully by rounding to a ncie-to-malloc size */
786inline_size int
555array_nextsize (int elem, int cur, int cnt) 787array_nextsize (int elem, int cur, int cnt)
556{ 788{
557 int ncur = cur + 1; 789 int ncur = cur + 1;
558 790
559 do 791 do
576array_realloc (int elem, void *base, int *cur, int cnt) 808array_realloc (int elem, void *base, int *cur, int cnt)
577{ 809{
578 *cur = array_nextsize (elem, *cur, cnt); 810 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 811 return ev_realloc (base, elem * *cur);
580} 812}
813
814#define array_init_zero(base,count) \
815 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 816
582#define array_needsize(type,base,cur,cnt,init) \ 817#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 818 if (expect_false ((cnt) > (cur))) \
584 { \ 819 { \
585 int ocur_ = (cur); \ 820 int ocur_ = (cur); \
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 832 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 833 }
599#endif 834#endif
600 835
601#define array_free(stem, idx) \ 836#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 837 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 838
604/*****************************************************************************/ 839/*****************************************************************************/
840
841/* dummy callback for pending events */
842static void noinline
843pendingcb (EV_P_ ev_prepare *w, int revents)
844{
845}
605 846
606void noinline 847void noinline
607ev_feed_event (EV_P_ void *w, int revents) 848ev_feed_event (EV_P_ void *w, int revents)
608{ 849{
609 W w_ = (W)w; 850 W w_ = (W)w;
618 pendings [pri][w_->pending - 1].w = w_; 859 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 860 pendings [pri][w_->pending - 1].events = revents;
620 } 861 }
621} 862}
622 863
623void inline_speed 864inline_speed void
865feed_reverse (EV_P_ W w)
866{
867 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
868 rfeeds [rfeedcnt++] = w;
869}
870
871inline_size void
872feed_reverse_done (EV_P_ int revents)
873{
874 do
875 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
876 while (rfeedcnt);
877}
878
879inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 880queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 881{
626 int i; 882 int i;
627 883
628 for (i = 0; i < eventcnt; ++i) 884 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 885 ev_feed_event (EV_A_ events [i], type);
630} 886}
631 887
632/*****************************************************************************/ 888/*****************************************************************************/
633 889
634void inline_size 890inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 891fd_event_nc (EV_P_ int fd, int revents)
649{ 892{
650 ANFD *anfd = anfds + fd; 893 ANFD *anfd = anfds + fd;
651 ev_io *w; 894 ev_io *w;
652 895
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 896 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 900 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 901 ev_feed_event (EV_A_ (W)w, ev);
659 } 902 }
660} 903}
661 904
905/* do not submit kernel events for fds that have reify set */
906/* because that means they changed while we were polling for new events */
907inline_speed void
908fd_event (EV_P_ int fd, int revents)
909{
910 ANFD *anfd = anfds + fd;
911
912 if (expect_true (!anfd->reify))
913 fd_event_nc (EV_A_ fd, revents);
914}
915
662void 916void
663ev_feed_fd_event (EV_P_ int fd, int revents) 917ev_feed_fd_event (EV_P_ int fd, int revents)
664{ 918{
665 if (fd >= 0 && fd < anfdmax) 919 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 920 fd_event_nc (EV_A_ fd, revents);
667} 921}
668 922
669void inline_size 923/* make sure the external fd watch events are in-sync */
924/* with the kernel/libev internal state */
925inline_size void
670fd_reify (EV_P) 926fd_reify (EV_P)
671{ 927{
672 int i; 928 int i;
673 929
674 for (i = 0; i < fdchangecnt; ++i) 930 for (i = 0; i < fdchangecnt; ++i)
683 events |= (unsigned char)w->events; 939 events |= (unsigned char)w->events;
684 940
685#if EV_SELECT_IS_WINSOCKET 941#if EV_SELECT_IS_WINSOCKET
686 if (events) 942 if (events)
687 { 943 {
688 unsigned long argp; 944 unsigned long arg;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 945 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
692 anfd->handle = _get_osfhandle (fd);
693 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 946 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
695 } 947 }
696#endif 948#endif
697 949
698 { 950 {
699 unsigned char o_events = anfd->events; 951 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify; 952 unsigned char o_reify = anfd->reify;
701 953
702 anfd->reify = 0; 954 anfd->reify = 0;
703 anfd->events = events; 955 anfd->events = events;
704 956
705 if (o_events != events || o_reify & EV_IOFDSET) 957 if (o_events != events || o_reify & EV__IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 958 backend_modify (EV_A_ fd, o_events, events);
707 } 959 }
708 } 960 }
709 961
710 fdchangecnt = 0; 962 fdchangecnt = 0;
711} 963}
712 964
713void inline_size 965/* something about the given fd changed */
966inline_size void
714fd_change (EV_P_ int fd, int flags) 967fd_change (EV_P_ int fd, int flags)
715{ 968{
716 unsigned char reify = anfds [fd].reify; 969 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 970 anfds [fd].reify |= flags;
718 971
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 975 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 976 fdchanges [fdchangecnt - 1] = fd;
724 } 977 }
725} 978}
726 979
727void inline_speed 980/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
981inline_speed void
728fd_kill (EV_P_ int fd) 982fd_kill (EV_P_ int fd)
729{ 983{
730 ev_io *w; 984 ev_io *w;
731 985
732 while ((w = (ev_io *)anfds [fd].head)) 986 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 988 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 989 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 990 }
737} 991}
738 992
739int inline_size 993/* check whether the given fd is atcually valid, for error recovery */
994inline_size int
740fd_valid (int fd) 995fd_valid (int fd)
741{ 996{
742#ifdef _WIN32 997#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 998 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
744#else 999#else
745 return fcntl (fd, F_GETFD) != -1; 1000 return fcntl (fd, F_GETFD) != -1;
746#endif 1001#endif
747} 1002}
748 1003
752{ 1007{
753 int fd; 1008 int fd;
754 1009
755 for (fd = 0; fd < anfdmax; ++fd) 1010 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 1011 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 1012 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 1013 fd_kill (EV_A_ fd);
759} 1014}
760 1015
761/* called on ENOMEM in select/poll to kill some fds and retry */ 1016/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 1017static void noinline
766 1021
767 for (fd = anfdmax; fd--; ) 1022 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events) 1023 if (anfds [fd].events)
769 { 1024 {
770 fd_kill (EV_A_ fd); 1025 fd_kill (EV_A_ fd);
771 return; 1026 break;
772 } 1027 }
773} 1028}
774 1029
775/* usually called after fork if backend needs to re-arm all fds from scratch */ 1030/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline 1031static void noinline
780 1035
781 for (fd = 0; fd < anfdmax; ++fd) 1036 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 1037 if (anfds [fd].events)
783 { 1038 {
784 anfds [fd].events = 0; 1039 anfds [fd].events = 0;
1040 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1041 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 1042 }
787} 1043}
788 1044
789/*****************************************************************************/ 1045/*****************************************************************************/
790 1046
802 */ 1058 */
803#if EV_USE_4HEAP 1059#if EV_USE_4HEAP
804 1060
805#define DHEAP 4 1061#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1062#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807 1063#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808/* towards the root */ 1064#define UPHEAP_DONE(p,k) ((p) == (k))
809void inline_speed
810upheap (ANHE *heap, int k)
811{
812 ANHE he = heap [k];
813
814 for (;;)
815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
821 heap [k] = heap [p];
822 ev_active (ANHE_w (heap [k])) = k;
823 k = p;
824 }
825
826 ev_active (ANHE_w (he)) = k;
827 heap [k] = he;
828}
829 1065
830/* away from the root */ 1066/* away from the root */
831void inline_speed 1067inline_speed void
832downheap (ANHE *heap, int N, int k) 1068downheap (ANHE *heap, int N, int k)
833{ 1069{
834 ANHE he = heap [k]; 1070 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0; 1071 ANHE *E = heap + N + HEAP0;
836 1072
837 for (;;) 1073 for (;;)
838 { 1074 {
839 ev_tstamp minat; 1075 ev_tstamp minat;
840 ANHE *minpos; 1076 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1077 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
842 1078
843 // find minimum child 1079 /* find minimum child */
844 if (expect_true (pos + DHEAP - 1 < E)) 1080 if (expect_true (pos + DHEAP - 1 < E))
845 { 1081 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1082 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1083 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1084 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
859 break; 1095 break;
860 1096
861 if (ANHE_at (he) <= minat) 1097 if (ANHE_at (he) <= minat)
862 break; 1098 break;
863 1099
1100 heap [k] = *minpos;
864 ev_active (ANHE_w (*minpos)) = k; 1101 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866 1102
867 k = minpos - heap; 1103 k = minpos - heap;
868 } 1104 }
869 1105
1106 heap [k] = he;
870 ev_active (ANHE_w (he)) = k; 1107 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872} 1108}
873 1109
874#else // 4HEAP 1110#else /* 4HEAP */
875 1111
876#define HEAP0 1 1112#define HEAP0 1
1113#define HPARENT(k) ((k) >> 1)
1114#define UPHEAP_DONE(p,k) (!(p))
877 1115
878/* towards the root */ 1116/* away from the root */
879void inline_speed 1117inline_speed void
880upheap (ANHE *heap, int k) 1118downheap (ANHE *heap, int N, int k)
881{ 1119{
882 ANHE he = heap [k]; 1120 ANHE he = heap [k];
883 1121
884 for (;;) 1122 for (;;)
885 { 1123 {
886 int p = k >> 1; 1124 int c = k << 1;
887 1125
888 /* maybe we could use a dummy element at heap [0]? */ 1126 if (c >= N + HEAP0)
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break; 1127 break;
891 1128
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1129 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0; 1130 ? 1 : 0;
916 1131
917 if (ANHE_at (he) <= ANHE_at (heap [c])) 1132 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break; 1133 break;
919 1134
926 heap [k] = he; 1141 heap [k] = he;
927 ev_active (ANHE_w (he)) = k; 1142 ev_active (ANHE_w (he)) = k;
928} 1143}
929#endif 1144#endif
930 1145
931void inline_size 1146/* towards the root */
1147inline_speed void
1148upheap (ANHE *heap, int k)
1149{
1150 ANHE he = heap [k];
1151
1152 for (;;)
1153 {
1154 int p = HPARENT (k);
1155
1156 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1157 break;
1158
1159 heap [k] = heap [p];
1160 ev_active (ANHE_w (heap [k])) = k;
1161 k = p;
1162 }
1163
1164 heap [k] = he;
1165 ev_active (ANHE_w (he)) = k;
1166}
1167
1168/* move an element suitably so it is in a correct place */
1169inline_size void
932adjustheap (ANHE *heap, int N, int k) 1170adjustheap (ANHE *heap, int N, int k)
933{ 1171{
1172 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
934 upheap (heap, k); 1173 upheap (heap, k);
1174 else
935 downheap (heap, N, k); 1175 downheap (heap, N, k);
1176}
1177
1178/* rebuild the heap: this function is used only once and executed rarely */
1179inline_size void
1180reheap (ANHE *heap, int N)
1181{
1182 int i;
1183
1184 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1185 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1186 for (i = 0; i < N; ++i)
1187 upheap (heap, i + HEAP0);
936} 1188}
937 1189
938/*****************************************************************************/ 1190/*****************************************************************************/
939 1191
1192/* associate signal watchers to a signal signal */
940typedef struct 1193typedef struct
941{ 1194{
1195 EV_ATOMIC_T pending;
1196#if EV_MULTIPLICITY
1197 EV_P;
1198#endif
942 WL head; 1199 WL head;
943 EV_ATOMIC_T gotsig;
944} ANSIG; 1200} ANSIG;
945 1201
946static ANSIG *signals; 1202static ANSIG signals [EV_NSIG - 1];
947static int signalmax;
948
949static EV_ATOMIC_T gotsig;
950
951void inline_size
952signals_init (ANSIG *base, int count)
953{
954 while (count--)
955 {
956 base->head = 0;
957 base->gotsig = 0;
958
959 ++base;
960 }
961}
962 1203
963/*****************************************************************************/ 1204/*****************************************************************************/
964 1205
965void inline_speed 1206/* used to prepare libev internal fd's */
1207/* this is not fork-safe */
1208inline_speed void
966fd_intern (int fd) 1209fd_intern (int fd)
967{ 1210{
968#ifdef _WIN32 1211#ifdef _WIN32
969 int arg = 1; 1212 unsigned long arg = 1;
970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1213 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
971#else 1214#else
972 fcntl (fd, F_SETFD, FD_CLOEXEC); 1215 fcntl (fd, F_SETFD, FD_CLOEXEC);
973 fcntl (fd, F_SETFL, O_NONBLOCK); 1216 fcntl (fd, F_SETFL, O_NONBLOCK);
974#endif 1217#endif
975} 1218}
976 1219
977static void noinline 1220static void noinline
978evpipe_init (EV_P) 1221evpipe_init (EV_P)
979{ 1222{
980 if (!ev_is_active (&pipeev)) 1223 if (!ev_is_active (&pipe_w))
981 { 1224 {
982#if EV_USE_EVENTFD 1225#if EV_USE_EVENTFD
1226 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1227 if (evfd < 0 && errno == EINVAL)
983 if ((evfd = eventfd (0, 0)) >= 0) 1228 evfd = eventfd (0, 0);
1229
1230 if (evfd >= 0)
984 { 1231 {
985 evpipe [0] = -1; 1232 evpipe [0] = -1;
986 fd_intern (evfd); 1233 fd_intern (evfd); /* doing it twice doesn't hurt */
987 ev_io_set (&pipeev, evfd, EV_READ); 1234 ev_io_set (&pipe_w, evfd, EV_READ);
988 } 1235 }
989 else 1236 else
990#endif 1237#endif
991 { 1238 {
992 while (pipe (evpipe)) 1239 while (pipe (evpipe))
993 syserr ("(libev) error creating signal/async pipe"); 1240 ev_syserr ("(libev) error creating signal/async pipe");
994 1241
995 fd_intern (evpipe [0]); 1242 fd_intern (evpipe [0]);
996 fd_intern (evpipe [1]); 1243 fd_intern (evpipe [1]);
997 ev_io_set (&pipeev, evpipe [0], EV_READ); 1244 ev_io_set (&pipe_w, evpipe [0], EV_READ);
998 } 1245 }
999 1246
1000 ev_io_start (EV_A_ &pipeev); 1247 ev_io_start (EV_A_ &pipe_w);
1001 ev_unref (EV_A); /* watcher should not keep loop alive */ 1248 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 } 1249 }
1003} 1250}
1004 1251
1005void inline_size 1252inline_size void
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1253evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{ 1254{
1008 if (!*flag) 1255 if (!*flag)
1009 { 1256 {
1010 int old_errno = errno; /* save errno because write might clobber it */ 1257 int old_errno = errno; /* save errno because write might clobber it */
1023 1270
1024 errno = old_errno; 1271 errno = old_errno;
1025 } 1272 }
1026} 1273}
1027 1274
1275/* called whenever the libev signal pipe */
1276/* got some events (signal, async) */
1028static void 1277static void
1029pipecb (EV_P_ ev_io *iow, int revents) 1278pipecb (EV_P_ ev_io *iow, int revents)
1030{ 1279{
1280 int i;
1281
1031#if EV_USE_EVENTFD 1282#if EV_USE_EVENTFD
1032 if (evfd >= 0) 1283 if (evfd >= 0)
1033 { 1284 {
1034 uint64_t counter; 1285 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t)); 1286 read (evfd, &counter, sizeof (uint64_t));
1039 { 1290 {
1040 char dummy; 1291 char dummy;
1041 read (evpipe [0], &dummy, 1); 1292 read (evpipe [0], &dummy, 1);
1042 } 1293 }
1043 1294
1044 if (gotsig && ev_is_default_loop (EV_A)) 1295 if (sig_pending)
1045 { 1296 {
1046 int signum; 1297 sig_pending = 0;
1047 gotsig = 0;
1048 1298
1049 for (signum = signalmax; signum--; ) 1299 for (i = EV_NSIG - 1; i--; )
1050 if (signals [signum].gotsig) 1300 if (expect_false (signals [i].pending))
1051 ev_feed_signal_event (EV_A_ signum + 1); 1301 ev_feed_signal_event (EV_A_ i + 1);
1052 } 1302 }
1053 1303
1054#if EV_ASYNC_ENABLE 1304#if EV_ASYNC_ENABLE
1055 if (gotasync) 1305 if (async_pending)
1056 { 1306 {
1057 int i; 1307 async_pending = 0;
1058 gotasync = 0;
1059 1308
1060 for (i = asynccnt; i--; ) 1309 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent) 1310 if (asyncs [i]->sent)
1062 { 1311 {
1063 asyncs [i]->sent = 0; 1312 asyncs [i]->sent = 0;
1071 1320
1072static void 1321static void
1073ev_sighandler (int signum) 1322ev_sighandler (int signum)
1074{ 1323{
1075#if EV_MULTIPLICITY 1324#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct; 1325 EV_P = signals [signum - 1].loop;
1077#endif 1326#endif
1078 1327
1079#if _WIN32 1328#ifdef _WIN32
1080 signal (signum, ev_sighandler); 1329 signal (signum, ev_sighandler);
1081#endif 1330#endif
1082 1331
1083 signals [signum - 1].gotsig = 1; 1332 signals [signum - 1].pending = 1;
1084 evpipe_write (EV_A_ &gotsig); 1333 evpipe_write (EV_A_ &sig_pending);
1085} 1334}
1086 1335
1087void noinline 1336void noinline
1088ev_feed_signal_event (EV_P_ int signum) 1337ev_feed_signal_event (EV_P_ int signum)
1089{ 1338{
1090 WL w; 1339 WL w;
1091 1340
1341 if (expect_false (signum <= 0 || signum > EV_NSIG))
1342 return;
1343
1344 --signum;
1345
1092#if EV_MULTIPLICITY 1346#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1347 /* it is permissible to try to feed a signal to the wrong loop */
1094#endif 1348 /* or, likely more useful, feeding a signal nobody is waiting for */
1095 1349
1096 --signum; 1350 if (expect_false (signals [signum].loop != EV_A))
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return; 1351 return;
1352#endif
1100 1353
1101 signals [signum].gotsig = 0; 1354 signals [signum].pending = 0;
1102 1355
1103 for (w = signals [signum].head; w; w = w->next) 1356 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1357 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105} 1358}
1106 1359
1360#if EV_USE_SIGNALFD
1361static void
1362sigfdcb (EV_P_ ev_io *iow, int revents)
1363{
1364 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1365
1366 for (;;)
1367 {
1368 ssize_t res = read (sigfd, si, sizeof (si));
1369
1370 /* not ISO-C, as res might be -1, but works with SuS */
1371 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1372 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1373
1374 if (res < (ssize_t)sizeof (si))
1375 break;
1376 }
1377}
1378#endif
1379
1107/*****************************************************************************/ 1380/*****************************************************************************/
1108 1381
1109static WL childs [EV_PID_HASHSIZE]; 1382static WL childs [EV_PID_HASHSIZE];
1110 1383
1111#ifndef _WIN32 1384#ifndef _WIN32
1114 1387
1115#ifndef WIFCONTINUED 1388#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0 1389# define WIFCONTINUED(status) 0
1117#endif 1390#endif
1118 1391
1119void inline_speed 1392/* handle a single child status event */
1393inline_speed void
1120child_reap (EV_P_ int chain, int pid, int status) 1394child_reap (EV_P_ int chain, int pid, int status)
1121{ 1395{
1122 ev_child *w; 1396 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1397 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1124 1398
1137 1411
1138#ifndef WCONTINUED 1412#ifndef WCONTINUED
1139# define WCONTINUED 0 1413# define WCONTINUED 0
1140#endif 1414#endif
1141 1415
1416/* called on sigchld etc., calls waitpid */
1142static void 1417static void
1143childcb (EV_P_ ev_signal *sw, int revents) 1418childcb (EV_P_ ev_signal *sw, int revents)
1144{ 1419{
1145 int pid, status; 1420 int pid, status;
1146 1421
1227 /* kqueue is borked on everything but netbsd apparently */ 1502 /* kqueue is borked on everything but netbsd apparently */
1228 /* it usually doesn't work correctly on anything but sockets and pipes */ 1503 /* it usually doesn't work correctly on anything but sockets and pipes */
1229 flags &= ~EVBACKEND_KQUEUE; 1504 flags &= ~EVBACKEND_KQUEUE;
1230#endif 1505#endif
1231#ifdef __APPLE__ 1506#ifdef __APPLE__
1232 // flags &= ~EVBACKEND_KQUEUE; for documentation 1507 /* only select works correctly on that "unix-certified" platform */
1233 flags &= ~EVBACKEND_POLL; 1508 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1509 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1234#endif 1510#endif
1235 1511
1236 return flags; 1512 return flags;
1237} 1513}
1238 1514
1252ev_backend (EV_P) 1528ev_backend (EV_P)
1253{ 1529{
1254 return backend; 1530 return backend;
1255} 1531}
1256 1532
1533#if EV_MINIMAL < 2
1257unsigned int 1534unsigned int
1258ev_loop_count (EV_P) 1535ev_loop_count (EV_P)
1259{ 1536{
1260 return loop_count; 1537 return loop_count;
1261} 1538}
1262 1539
1540unsigned int
1541ev_loop_depth (EV_P)
1542{
1543 return loop_depth;
1544}
1545
1263void 1546void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1547ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1265{ 1548{
1266 io_blocktime = interval; 1549 io_blocktime = interval;
1267} 1550}
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1553ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1271{ 1554{
1272 timeout_blocktime = interval; 1555 timeout_blocktime = interval;
1273} 1556}
1274 1557
1558void
1559ev_set_userdata (EV_P_ void *data)
1560{
1561 userdata = data;
1562}
1563
1564void *
1565ev_userdata (EV_P)
1566{
1567 return userdata;
1568}
1569
1570void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1571{
1572 invoke_cb = invoke_pending_cb;
1573}
1574
1575void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1576{
1577 release_cb = release;
1578 acquire_cb = acquire;
1579}
1580#endif
1581
1582/* initialise a loop structure, must be zero-initialised */
1275static void noinline 1583static void noinline
1276loop_init (EV_P_ unsigned int flags) 1584loop_init (EV_P_ unsigned int flags)
1277{ 1585{
1278 if (!backend) 1586 if (!backend)
1279 { 1587 {
1588#if EV_USE_REALTIME
1589 if (!have_realtime)
1590 {
1591 struct timespec ts;
1592
1593 if (!clock_gettime (CLOCK_REALTIME, &ts))
1594 have_realtime = 1;
1595 }
1596#endif
1597
1280#if EV_USE_MONOTONIC 1598#if EV_USE_MONOTONIC
1599 if (!have_monotonic)
1281 { 1600 {
1282 struct timespec ts; 1601 struct timespec ts;
1602
1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1603 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1284 have_monotonic = 1; 1604 have_monotonic = 1;
1285 } 1605 }
1286#endif 1606#endif
1607
1608 /* pid check not overridable via env */
1609#ifndef _WIN32
1610 if (flags & EVFLAG_FORKCHECK)
1611 curpid = getpid ();
1612#endif
1613
1614 if (!(flags & EVFLAG_NOENV)
1615 && !enable_secure ()
1616 && getenv ("LIBEV_FLAGS"))
1617 flags = atoi (getenv ("LIBEV_FLAGS"));
1287 1618
1288 ev_rt_now = ev_time (); 1619 ev_rt_now = ev_time ();
1289 mn_now = get_clock (); 1620 mn_now = get_clock ();
1290 now_floor = mn_now; 1621 now_floor = mn_now;
1291 rtmn_diff = ev_rt_now - mn_now; 1622 rtmn_diff = ev_rt_now - mn_now;
1623#if EV_MINIMAL < 2
1624 invoke_cb = ev_invoke_pending;
1625#endif
1292 1626
1293 io_blocktime = 0.; 1627 io_blocktime = 0.;
1294 timeout_blocktime = 0.; 1628 timeout_blocktime = 0.;
1295 backend = 0; 1629 backend = 0;
1296 backend_fd = -1; 1630 backend_fd = -1;
1297 gotasync = 0; 1631 sig_pending = 0;
1632#if EV_ASYNC_ENABLE
1633 async_pending = 0;
1634#endif
1298#if EV_USE_INOTIFY 1635#if EV_USE_INOTIFY
1299 fs_fd = -2; 1636 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1300#endif 1637#endif
1301 1638#if EV_USE_SIGNALFD
1302 /* pid check not overridable via env */ 1639 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1303#ifndef _WIN32
1304 if (flags & EVFLAG_FORKCHECK)
1305 curpid = getpid ();
1306#endif 1640#endif
1307
1308 if (!(flags & EVFLAG_NOENV)
1309 && !enable_secure ()
1310 && getenv ("LIBEV_FLAGS"))
1311 flags = atoi (getenv ("LIBEV_FLAGS"));
1312 1641
1313 if (!(flags & 0x0000ffffU)) 1642 if (!(flags & 0x0000ffffU))
1314 flags |= ev_recommended_backends (); 1643 flags |= ev_recommended_backends ();
1315 1644
1316#if EV_USE_PORT 1645#if EV_USE_PORT
1327#endif 1656#endif
1328#if EV_USE_SELECT 1657#if EV_USE_SELECT
1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1658 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1330#endif 1659#endif
1331 1660
1661 ev_prepare_init (&pending_w, pendingcb);
1662
1332 ev_init (&pipeev, pipecb); 1663 ev_init (&pipe_w, pipecb);
1333 ev_set_priority (&pipeev, EV_MAXPRI); 1664 ev_set_priority (&pipe_w, EV_MAXPRI);
1334 } 1665 }
1335} 1666}
1336 1667
1668/* free up a loop structure */
1337static void noinline 1669static void noinline
1338loop_destroy (EV_P) 1670loop_destroy (EV_P)
1339{ 1671{
1340 int i; 1672 int i;
1341 1673
1342 if (ev_is_active (&pipeev)) 1674 if (ev_is_active (&pipe_w))
1343 { 1675 {
1344 ev_ref (EV_A); /* signal watcher */ 1676 /*ev_ref (EV_A);*/
1345 ev_io_stop (EV_A_ &pipeev); 1677 /*ev_io_stop (EV_A_ &pipe_w);*/
1346 1678
1347#if EV_USE_EVENTFD 1679#if EV_USE_EVENTFD
1348 if (evfd >= 0) 1680 if (evfd >= 0)
1349 close (evfd); 1681 close (evfd);
1350#endif 1682#endif
1351 1683
1352 if (evpipe [0] >= 0) 1684 if (evpipe [0] >= 0)
1353 { 1685 {
1354 close (evpipe [0]); 1686 EV_WIN32_CLOSE_FD (evpipe [0]);
1355 close (evpipe [1]); 1687 EV_WIN32_CLOSE_FD (evpipe [1]);
1356 } 1688 }
1357 } 1689 }
1690
1691#if EV_USE_SIGNALFD
1692 if (ev_is_active (&sigfd_w))
1693 close (sigfd);
1694#endif
1358 1695
1359#if EV_USE_INOTIFY 1696#if EV_USE_INOTIFY
1360 if (fs_fd >= 0) 1697 if (fs_fd >= 0)
1361 close (fs_fd); 1698 close (fs_fd);
1362#endif 1699#endif
1386#if EV_IDLE_ENABLE 1723#if EV_IDLE_ENABLE
1387 array_free (idle, [i]); 1724 array_free (idle, [i]);
1388#endif 1725#endif
1389 } 1726 }
1390 1727
1391 ev_free (anfds); anfdmax = 0; 1728 ev_free (anfds); anfds = 0; anfdmax = 0;
1392 1729
1393 /* have to use the microsoft-never-gets-it-right macro */ 1730 /* have to use the microsoft-never-gets-it-right macro */
1731 array_free (rfeed, EMPTY);
1394 array_free (fdchange, EMPTY); 1732 array_free (fdchange, EMPTY);
1395 array_free (timer, EMPTY); 1733 array_free (timer, EMPTY);
1396#if EV_PERIODIC_ENABLE 1734#if EV_PERIODIC_ENABLE
1397 array_free (periodic, EMPTY); 1735 array_free (periodic, EMPTY);
1398#endif 1736#endif
1407 1745
1408 backend = 0; 1746 backend = 0;
1409} 1747}
1410 1748
1411#if EV_USE_INOTIFY 1749#if EV_USE_INOTIFY
1412void inline_size infy_fork (EV_P); 1750inline_size void infy_fork (EV_P);
1413#endif 1751#endif
1414 1752
1415void inline_size 1753inline_size void
1416loop_fork (EV_P) 1754loop_fork (EV_P)
1417{ 1755{
1418#if EV_USE_PORT 1756#if EV_USE_PORT
1419 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1757 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1420#endif 1758#endif
1426#endif 1764#endif
1427#if EV_USE_INOTIFY 1765#if EV_USE_INOTIFY
1428 infy_fork (EV_A); 1766 infy_fork (EV_A);
1429#endif 1767#endif
1430 1768
1431 if (ev_is_active (&pipeev)) 1769 if (ev_is_active (&pipe_w))
1432 { 1770 {
1433 /* this "locks" the handlers against writing to the pipe */ 1771 /* this "locks" the handlers against writing to the pipe */
1434 /* while we modify the fd vars */ 1772 /* while we modify the fd vars */
1435 gotsig = 1; 1773 sig_pending = 1;
1436#if EV_ASYNC_ENABLE 1774#if EV_ASYNC_ENABLE
1437 gotasync = 1; 1775 async_pending = 1;
1438#endif 1776#endif
1439 1777
1440 ev_ref (EV_A); 1778 ev_ref (EV_A);
1441 ev_io_stop (EV_A_ &pipeev); 1779 ev_io_stop (EV_A_ &pipe_w);
1442 1780
1443#if EV_USE_EVENTFD 1781#if EV_USE_EVENTFD
1444 if (evfd >= 0) 1782 if (evfd >= 0)
1445 close (evfd); 1783 close (evfd);
1446#endif 1784#endif
1447 1785
1448 if (evpipe [0] >= 0) 1786 if (evpipe [0] >= 0)
1449 { 1787 {
1450 close (evpipe [0]); 1788 EV_WIN32_CLOSE_FD (evpipe [0]);
1451 close (evpipe [1]); 1789 EV_WIN32_CLOSE_FD (evpipe [1]);
1452 } 1790 }
1453 1791
1454 evpipe_init (EV_A); 1792 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */ 1793 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ); 1794 pipecb (EV_A_ &pipe_w, EV_READ);
1457 } 1795 }
1458 1796
1459 postfork = 0; 1797 postfork = 0;
1460} 1798}
1461 1799
1462#if EV_MULTIPLICITY 1800#if EV_MULTIPLICITY
1801
1463struct ev_loop * 1802struct ev_loop *
1464ev_loop_new (unsigned int flags) 1803ev_loop_new (unsigned int flags)
1465{ 1804{
1466 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1805 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1467 1806
1468 memset (loop, 0, sizeof (struct ev_loop)); 1807 memset (EV_A, 0, sizeof (struct ev_loop));
1469
1470 loop_init (EV_A_ flags); 1808 loop_init (EV_A_ flags);
1471 1809
1472 if (ev_backend (EV_A)) 1810 if (ev_backend (EV_A))
1473 return loop; 1811 return EV_A;
1474 1812
1475 return 0; 1813 return 0;
1476} 1814}
1477 1815
1478void 1816void
1484 1822
1485void 1823void
1486ev_loop_fork (EV_P) 1824ev_loop_fork (EV_P)
1487{ 1825{
1488 postfork = 1; /* must be in line with ev_default_fork */ 1826 postfork = 1; /* must be in line with ev_default_fork */
1827}
1828#endif /* multiplicity */
1829
1830#if EV_VERIFY
1831static void noinline
1832verify_watcher (EV_P_ W w)
1833{
1834 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1835
1836 if (w->pending)
1837 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1838}
1839
1840static void noinline
1841verify_heap (EV_P_ ANHE *heap, int N)
1842{
1843 int i;
1844
1845 for (i = HEAP0; i < N + HEAP0; ++i)
1846 {
1847 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1848 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1849 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1850
1851 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1852 }
1853}
1854
1855static void noinline
1856array_verify (EV_P_ W *ws, int cnt)
1857{
1858 while (cnt--)
1859 {
1860 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1861 verify_watcher (EV_A_ ws [cnt]);
1862 }
1863}
1864#endif
1865
1866#if EV_MINIMAL < 2
1867void
1868ev_loop_verify (EV_P)
1869{
1870#if EV_VERIFY
1871 int i;
1872 WL w;
1873
1874 assert (activecnt >= -1);
1875
1876 assert (fdchangemax >= fdchangecnt);
1877 for (i = 0; i < fdchangecnt; ++i)
1878 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1879
1880 assert (anfdmax >= 0);
1881 for (i = 0; i < anfdmax; ++i)
1882 for (w = anfds [i].head; w; w = w->next)
1883 {
1884 verify_watcher (EV_A_ (W)w);
1885 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1886 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1887 }
1888
1889 assert (timermax >= timercnt);
1890 verify_heap (EV_A_ timers, timercnt);
1891
1892#if EV_PERIODIC_ENABLE
1893 assert (periodicmax >= periodiccnt);
1894 verify_heap (EV_A_ periodics, periodiccnt);
1895#endif
1896
1897 for (i = NUMPRI; i--; )
1898 {
1899 assert (pendingmax [i] >= pendingcnt [i]);
1900#if EV_IDLE_ENABLE
1901 assert (idleall >= 0);
1902 assert (idlemax [i] >= idlecnt [i]);
1903 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1904#endif
1905 }
1906
1907#if EV_FORK_ENABLE
1908 assert (forkmax >= forkcnt);
1909 array_verify (EV_A_ (W *)forks, forkcnt);
1910#endif
1911
1912#if EV_ASYNC_ENABLE
1913 assert (asyncmax >= asynccnt);
1914 array_verify (EV_A_ (W *)asyncs, asynccnt);
1915#endif
1916
1917 assert (preparemax >= preparecnt);
1918 array_verify (EV_A_ (W *)prepares, preparecnt);
1919
1920 assert (checkmax >= checkcnt);
1921 array_verify (EV_A_ (W *)checks, checkcnt);
1922
1923# if 0
1924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1925 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1926# endif
1927#endif
1489} 1928}
1490#endif 1929#endif
1491 1930
1492#if EV_MULTIPLICITY 1931#if EV_MULTIPLICITY
1493struct ev_loop * 1932struct ev_loop *
1498#endif 1937#endif
1499{ 1938{
1500 if (!ev_default_loop_ptr) 1939 if (!ev_default_loop_ptr)
1501 { 1940 {
1502#if EV_MULTIPLICITY 1941#if EV_MULTIPLICITY
1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1942 EV_P = ev_default_loop_ptr = &default_loop_struct;
1504#else 1943#else
1505 ev_default_loop_ptr = 1; 1944 ev_default_loop_ptr = 1;
1506#endif 1945#endif
1507 1946
1508 loop_init (EV_A_ flags); 1947 loop_init (EV_A_ flags);
1525 1964
1526void 1965void
1527ev_default_destroy (void) 1966ev_default_destroy (void)
1528{ 1967{
1529#if EV_MULTIPLICITY 1968#if EV_MULTIPLICITY
1530 struct ev_loop *loop = ev_default_loop_ptr; 1969 EV_P = ev_default_loop_ptr;
1531#endif 1970#endif
1971
1972 ev_default_loop_ptr = 0;
1532 1973
1533#ifndef _WIN32 1974#ifndef _WIN32
1534 ev_ref (EV_A); /* child watcher */ 1975 ev_ref (EV_A); /* child watcher */
1535 ev_signal_stop (EV_A_ &childev); 1976 ev_signal_stop (EV_A_ &childev);
1536#endif 1977#endif
1540 1981
1541void 1982void
1542ev_default_fork (void) 1983ev_default_fork (void)
1543{ 1984{
1544#if EV_MULTIPLICITY 1985#if EV_MULTIPLICITY
1545 struct ev_loop *loop = ev_default_loop_ptr; 1986 EV_P = ev_default_loop_ptr;
1546#endif 1987#endif
1547 1988
1548 if (backend)
1549 postfork = 1; /* must be in line with ev_loop_fork */ 1989 postfork = 1; /* must be in line with ev_loop_fork */
1550} 1990}
1551 1991
1552/*****************************************************************************/ 1992/*****************************************************************************/
1553 1993
1554void 1994void
1555ev_invoke (EV_P_ void *w, int revents) 1995ev_invoke (EV_P_ void *w, int revents)
1556{ 1996{
1557 EV_CB_INVOKE ((W)w, revents); 1997 EV_CB_INVOKE ((W)w, revents);
1558} 1998}
1559 1999
1560void inline_speed 2000unsigned int
1561call_pending (EV_P) 2001ev_pending_count (EV_P)
2002{
2003 int pri;
2004 unsigned int count = 0;
2005
2006 for (pri = NUMPRI; pri--; )
2007 count += pendingcnt [pri];
2008
2009 return count;
2010}
2011
2012void noinline
2013ev_invoke_pending (EV_P)
1562{ 2014{
1563 int pri; 2015 int pri;
1564 2016
1565 for (pri = NUMPRI; pri--; ) 2017 for (pri = NUMPRI; pri--; )
1566 while (pendingcnt [pri]) 2018 while (pendingcnt [pri])
1567 { 2019 {
1568 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2020 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1569 2021
1570 if (expect_true (p->w))
1571 {
1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2022 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2023 /* ^ this is no longer true, as pending_w could be here */
1573 2024
1574 p->w->pending = 0; 2025 p->w->pending = 0;
1575 EV_CB_INVOKE (p->w, p->events); 2026 EV_CB_INVOKE (p->w, p->events);
1576 } 2027 EV_FREQUENT_CHECK;
1577 } 2028 }
1578} 2029}
1579 2030
1580#if EV_IDLE_ENABLE 2031#if EV_IDLE_ENABLE
1581void inline_size 2032/* make idle watchers pending. this handles the "call-idle */
2033/* only when higher priorities are idle" logic */
2034inline_size void
1582idle_reify (EV_P) 2035idle_reify (EV_P)
1583{ 2036{
1584 if (expect_false (idleall)) 2037 if (expect_false (idleall))
1585 { 2038 {
1586 int pri; 2039 int pri;
1598 } 2051 }
1599 } 2052 }
1600} 2053}
1601#endif 2054#endif
1602 2055
1603void inline_size 2056/* make timers pending */
2057inline_size void
1604timers_reify (EV_P) 2058timers_reify (EV_P)
1605{ 2059{
2060 EV_FREQUENT_CHECK;
2061
1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2062 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1607 { 2063 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2064 do
1609
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1611
1612 /* first reschedule or stop timer */
1613 if (w->repeat)
1614 { 2065 {
2066 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2067
2068 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2069
2070 /* first reschedule or stop timer */
2071 if (w->repeat)
2072 {
1615 ev_at (w) += w->repeat; 2073 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now) 2074 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now; 2075 ev_at (w) = mn_now;
1618 2076
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2077 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620 2078
1621 ANHE_at_set (timers [HEAP0]); 2079 ANHE_at_cache (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0); 2080 downheap (timers, timercnt, HEAP0);
2081 }
2082 else
2083 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2084
2085 EV_FREQUENT_CHECK;
2086 feed_reverse (EV_A_ (W)w);
1623 } 2087 }
1624 else 2088 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 2089
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2090 feed_reverse_done (EV_A_ EV_TIMEOUT);
1628 } 2091 }
1629} 2092}
1630 2093
1631#if EV_PERIODIC_ENABLE 2094#if EV_PERIODIC_ENABLE
1632void inline_size 2095/* make periodics pending */
2096inline_size void
1633periodics_reify (EV_P) 2097periodics_reify (EV_P)
1634{ 2098{
2099 EV_FREQUENT_CHECK;
2100
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2101 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1636 { 2102 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2103 int feed_count = 0;
1638 2104
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2105 do
1640
1641 /* first reschedule or stop timer */
1642 if (w->reschedule_cb)
1643 { 2106 {
2107 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2108
2109 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2110
2111 /* first reschedule or stop timer */
2112 if (w->reschedule_cb)
2113 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2114 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645 2115
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2116 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647 2117
1648 ANHE_at_set (periodics [HEAP0]); 2118 ANHE_at_cache (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0); 2119 downheap (periodics, periodiccnt, HEAP0);
2120 }
2121 else if (w->interval)
2122 {
2123 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2124 /* if next trigger time is not sufficiently in the future, put it there */
2125 /* this might happen because of floating point inexactness */
2126 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2127 {
2128 ev_at (w) += w->interval;
2129
2130 /* if interval is unreasonably low we might still have a time in the past */
2131 /* so correct this. this will make the periodic very inexact, but the user */
2132 /* has effectively asked to get triggered more often than possible */
2133 if (ev_at (w) < ev_rt_now)
2134 ev_at (w) = ev_rt_now;
2135 }
2136
2137 ANHE_at_cache (periodics [HEAP0]);
2138 downheap (periodics, periodiccnt, HEAP0);
2139 }
2140 else
2141 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2142
2143 EV_FREQUENT_CHECK;
2144 feed_reverse (EV_A_ (W)w);
1650 } 2145 }
1651 else if (w->interval) 2146 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 /* if next trigger time is not sufficiently in the future, put it there */
1655 /* this might happen because of floating point inexactness */
1656 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1657 {
1658 ev_at (w) += w->interval;
1659 2147
1660 /* if interval is unreasonably low we might still have a time in the past */
1661 /* so correct this. this will make the periodic very inexact, but the user */
1662 /* has effectively asked to get triggered more often than possible */
1663 if (ev_at (w) < ev_rt_now)
1664 ev_at (w) = ev_rt_now;
1665 }
1666
1667 ANHE_at_set (periodics [HEAP0]);
1668 downheap (periodics, periodiccnt, HEAP0);
1669 }
1670 else
1671 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1672
1673 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2148 feed_reverse_done (EV_A_ EV_PERIODIC);
1674 } 2149 }
1675} 2150}
1676 2151
2152/* simply recalculate all periodics */
2153/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1677static void noinline 2154static void noinline
1678periodics_reschedule (EV_P) 2155periodics_reschedule (EV_P)
1679{ 2156{
1680 int i; 2157 int i;
1681 2158
1687 if (w->reschedule_cb) 2164 if (w->reschedule_cb)
1688 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2165 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval) 2166 else if (w->interval)
1690 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2167 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1691 2168
1692 ANHE_at_set (periodics [i]); 2169 ANHE_at_cache (periodics [i]);
1693 } 2170 }
1694 2171
1695 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 2172 reheap (periodics, periodiccnt);
1696 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 2173}
2174#endif
2175
2176/* adjust all timers by a given offset */
2177static void noinline
2178timers_reschedule (EV_P_ ev_tstamp adjust)
2179{
2180 int i;
2181
1697 for (i = 0; i < periodiccnt; ++i) 2182 for (i = 0; i < timercnt; ++i)
1698 upheap (periodics, i + HEAP0); 2183 {
2184 ANHE *he = timers + i + HEAP0;
2185 ANHE_w (*he)->at += adjust;
2186 ANHE_at_cache (*he);
2187 }
1699} 2188}
1700#endif
1701 2189
1702void inline_speed 2190/* fetch new monotonic and realtime times from the kernel */
2191/* also detect if there was a timejump, and act accordingly */
2192inline_speed void
1703time_update (EV_P_ ev_tstamp max_block) 2193time_update (EV_P_ ev_tstamp max_block)
1704{ 2194{
1705 int i;
1706
1707#if EV_USE_MONOTONIC 2195#if EV_USE_MONOTONIC
1708 if (expect_true (have_monotonic)) 2196 if (expect_true (have_monotonic))
1709 { 2197 {
2198 int i;
1710 ev_tstamp odiff = rtmn_diff; 2199 ev_tstamp odiff = rtmn_diff;
1711 2200
1712 mn_now = get_clock (); 2201 mn_now = get_clock ();
1713 2202
1714 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2203 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1740 ev_rt_now = ev_time (); 2229 ev_rt_now = ev_time ();
1741 mn_now = get_clock (); 2230 mn_now = get_clock ();
1742 now_floor = mn_now; 2231 now_floor = mn_now;
1743 } 2232 }
1744 2233
2234 /* no timer adjustment, as the monotonic clock doesn't jump */
2235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1745# if EV_PERIODIC_ENABLE 2236# if EV_PERIODIC_ENABLE
1746 periodics_reschedule (EV_A); 2237 periodics_reschedule (EV_A);
1747# endif 2238# endif
1748 /* no timer adjustment, as the monotonic clock doesn't jump */
1749 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1750 } 2239 }
1751 else 2240 else
1752#endif 2241#endif
1753 { 2242 {
1754 ev_rt_now = ev_time (); 2243 ev_rt_now = ev_time ();
1755 2244
1756 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2245 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1757 { 2246 {
2247 /* adjust timers. this is easy, as the offset is the same for all of them */
2248 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1758#if EV_PERIODIC_ENABLE 2249#if EV_PERIODIC_ENABLE
1759 periodics_reschedule (EV_A); 2250 periodics_reschedule (EV_A);
1760#endif 2251#endif
1761 /* adjust timers. this is easy, as the offset is the same for all of them */
1762 for (i = 0; i < timercnt; ++i)
1763 {
1764 ANHE *he = timers + i + HEAP0;
1765 ANHE_w (*he)->at += ev_rt_now - mn_now;
1766 ANHE_at_set (*he);
1767 }
1768 } 2252 }
1769 2253
1770 mn_now = ev_rt_now; 2254 mn_now = ev_rt_now;
1771 } 2255 }
1772} 2256}
1773 2257
1774void 2258void
1775ev_ref (EV_P)
1776{
1777 ++activecnt;
1778}
1779
1780void
1781ev_unref (EV_P)
1782{
1783 --activecnt;
1784}
1785
1786static int loop_done;
1787
1788void
1789ev_loop (EV_P_ int flags) 2259ev_loop (EV_P_ int flags)
1790{ 2260{
2261#if EV_MINIMAL < 2
2262 ++loop_depth;
2263#endif
2264
2265 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2266
1791 loop_done = EVUNLOOP_CANCEL; 2267 loop_done = EVUNLOOP_CANCEL;
1792 2268
1793 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2269 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1794 2270
1795 do 2271 do
1796 { 2272 {
2273#if EV_VERIFY >= 2
2274 ev_loop_verify (EV_A);
2275#endif
2276
1797#ifndef _WIN32 2277#ifndef _WIN32
1798 if (expect_false (curpid)) /* penalise the forking check even more */ 2278 if (expect_false (curpid)) /* penalise the forking check even more */
1799 if (expect_false (getpid () != curpid)) 2279 if (expect_false (getpid () != curpid))
1800 { 2280 {
1801 curpid = getpid (); 2281 curpid = getpid ();
1807 /* we might have forked, so queue fork handlers */ 2287 /* we might have forked, so queue fork handlers */
1808 if (expect_false (postfork)) 2288 if (expect_false (postfork))
1809 if (forkcnt) 2289 if (forkcnt)
1810 { 2290 {
1811 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2291 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1812 call_pending (EV_A); 2292 EV_INVOKE_PENDING;
1813 } 2293 }
1814#endif 2294#endif
1815 2295
1816 /* queue prepare watchers (and execute them) */ 2296 /* queue prepare watchers (and execute them) */
1817 if (expect_false (preparecnt)) 2297 if (expect_false (preparecnt))
1818 { 2298 {
1819 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2299 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1820 call_pending (EV_A); 2300 EV_INVOKE_PENDING;
1821 } 2301 }
1822 2302
1823 if (expect_false (!activecnt)) 2303 if (expect_false (loop_done))
1824 break; 2304 break;
1825 2305
1826 /* we might have forked, so reify kernel state if necessary */ 2306 /* we might have forked, so reify kernel state if necessary */
1827 if (expect_false (postfork)) 2307 if (expect_false (postfork))
1828 loop_fork (EV_A); 2308 loop_fork (EV_A);
1835 ev_tstamp waittime = 0.; 2315 ev_tstamp waittime = 0.;
1836 ev_tstamp sleeptime = 0.; 2316 ev_tstamp sleeptime = 0.;
1837 2317
1838 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2318 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1839 { 2319 {
2320 /* remember old timestamp for io_blocktime calculation */
2321 ev_tstamp prev_mn_now = mn_now;
2322
1840 /* update time to cancel out callback processing overhead */ 2323 /* update time to cancel out callback processing overhead */
1841 time_update (EV_A_ 1e100); 2324 time_update (EV_A_ 1e100);
1842 2325
1843 waittime = MAX_BLOCKTIME; 2326 waittime = MAX_BLOCKTIME;
1844 2327
1854 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2337 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1855 if (waittime > to) waittime = to; 2338 if (waittime > to) waittime = to;
1856 } 2339 }
1857#endif 2340#endif
1858 2341
2342 /* don't let timeouts decrease the waittime below timeout_blocktime */
1859 if (expect_false (waittime < timeout_blocktime)) 2343 if (expect_false (waittime < timeout_blocktime))
1860 waittime = timeout_blocktime; 2344 waittime = timeout_blocktime;
1861 2345
1862 sleeptime = waittime - backend_fudge; 2346 /* extra check because io_blocktime is commonly 0 */
1863
1864 if (expect_true (sleeptime > io_blocktime)) 2347 if (expect_false (io_blocktime))
1865 sleeptime = io_blocktime;
1866
1867 if (sleeptime)
1868 { 2348 {
2349 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2350
2351 if (sleeptime > waittime - backend_fudge)
2352 sleeptime = waittime - backend_fudge;
2353
2354 if (expect_true (sleeptime > 0.))
2355 {
1869 ev_sleep (sleeptime); 2356 ev_sleep (sleeptime);
1870 waittime -= sleeptime; 2357 waittime -= sleeptime;
2358 }
1871 } 2359 }
1872 } 2360 }
1873 2361
2362#if EV_MINIMAL < 2
1874 ++loop_count; 2363 ++loop_count;
2364#endif
2365 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1875 backend_poll (EV_A_ waittime); 2366 backend_poll (EV_A_ waittime);
2367 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1876 2368
1877 /* update ev_rt_now, do magic */ 2369 /* update ev_rt_now, do magic */
1878 time_update (EV_A_ waittime + sleeptime); 2370 time_update (EV_A_ waittime + sleeptime);
1879 } 2371 }
1880 2372
1891 2383
1892 /* queue check watchers, to be executed first */ 2384 /* queue check watchers, to be executed first */
1893 if (expect_false (checkcnt)) 2385 if (expect_false (checkcnt))
1894 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2386 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1895 2387
1896 call_pending (EV_A); 2388 EV_INVOKE_PENDING;
1897 } 2389 }
1898 while (expect_true ( 2390 while (expect_true (
1899 activecnt 2391 activecnt
1900 && !loop_done 2392 && !loop_done
1901 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2393 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1902 )); 2394 ));
1903 2395
1904 if (loop_done == EVUNLOOP_ONE) 2396 if (loop_done == EVUNLOOP_ONE)
1905 loop_done = EVUNLOOP_CANCEL; 2397 loop_done = EVUNLOOP_CANCEL;
2398
2399#if EV_MINIMAL < 2
2400 --loop_depth;
2401#endif
1906} 2402}
1907 2403
1908void 2404void
1909ev_unloop (EV_P_ int how) 2405ev_unloop (EV_P_ int how)
1910{ 2406{
1911 loop_done = how; 2407 loop_done = how;
1912} 2408}
1913 2409
2410void
2411ev_ref (EV_P)
2412{
2413 ++activecnt;
2414}
2415
2416void
2417ev_unref (EV_P)
2418{
2419 --activecnt;
2420}
2421
2422void
2423ev_now_update (EV_P)
2424{
2425 time_update (EV_A_ 1e100);
2426}
2427
2428void
2429ev_suspend (EV_P)
2430{
2431 ev_now_update (EV_A);
2432}
2433
2434void
2435ev_resume (EV_P)
2436{
2437 ev_tstamp mn_prev = mn_now;
2438
2439 ev_now_update (EV_A);
2440 timers_reschedule (EV_A_ mn_now - mn_prev);
2441#if EV_PERIODIC_ENABLE
2442 /* TODO: really do this? */
2443 periodics_reschedule (EV_A);
2444#endif
2445}
2446
1914/*****************************************************************************/ 2447/*****************************************************************************/
2448/* singly-linked list management, used when the expected list length is short */
1915 2449
1916void inline_size 2450inline_size void
1917wlist_add (WL *head, WL elem) 2451wlist_add (WL *head, WL elem)
1918{ 2452{
1919 elem->next = *head; 2453 elem->next = *head;
1920 *head = elem; 2454 *head = elem;
1921} 2455}
1922 2456
1923void inline_size 2457inline_size void
1924wlist_del (WL *head, WL elem) 2458wlist_del (WL *head, WL elem)
1925{ 2459{
1926 while (*head) 2460 while (*head)
1927 { 2461 {
1928 if (*head == elem) 2462 if (expect_true (*head == elem))
1929 { 2463 {
1930 *head = elem->next; 2464 *head = elem->next;
1931 return; 2465 break;
1932 } 2466 }
1933 2467
1934 head = &(*head)->next; 2468 head = &(*head)->next;
1935 } 2469 }
1936} 2470}
1937 2471
1938void inline_speed 2472/* internal, faster, version of ev_clear_pending */
2473inline_speed void
1939clear_pending (EV_P_ W w) 2474clear_pending (EV_P_ W w)
1940{ 2475{
1941 if (w->pending) 2476 if (w->pending)
1942 { 2477 {
1943 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2478 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1944 w->pending = 0; 2479 w->pending = 0;
1945 } 2480 }
1946} 2481}
1947 2482
1948int 2483int
1952 int pending = w_->pending; 2487 int pending = w_->pending;
1953 2488
1954 if (expect_true (pending)) 2489 if (expect_true (pending))
1955 { 2490 {
1956 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2491 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2492 p->w = (W)&pending_w;
1957 w_->pending = 0; 2493 w_->pending = 0;
1958 p->w = 0;
1959 return p->events; 2494 return p->events;
1960 } 2495 }
1961 else 2496 else
1962 return 0; 2497 return 0;
1963} 2498}
1964 2499
1965void inline_size 2500inline_size void
1966pri_adjust (EV_P_ W w) 2501pri_adjust (EV_P_ W w)
1967{ 2502{
1968 int pri = w->priority; 2503 int pri = ev_priority (w);
1969 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2504 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1970 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2505 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1971 w->priority = pri; 2506 ev_set_priority (w, pri);
1972} 2507}
1973 2508
1974void inline_speed 2509inline_speed void
1975ev_start (EV_P_ W w, int active) 2510ev_start (EV_P_ W w, int active)
1976{ 2511{
1977 pri_adjust (EV_A_ w); 2512 pri_adjust (EV_A_ w);
1978 w->active = active; 2513 w->active = active;
1979 ev_ref (EV_A); 2514 ev_ref (EV_A);
1980} 2515}
1981 2516
1982void inline_size 2517inline_size void
1983ev_stop (EV_P_ W w) 2518ev_stop (EV_P_ W w)
1984{ 2519{
1985 ev_unref (EV_A); 2520 ev_unref (EV_A);
1986 w->active = 0; 2521 w->active = 0;
1987} 2522}
1994 int fd = w->fd; 2529 int fd = w->fd;
1995 2530
1996 if (expect_false (ev_is_active (w))) 2531 if (expect_false (ev_is_active (w)))
1997 return; 2532 return;
1998 2533
1999 assert (("ev_io_start called with negative fd", fd >= 0)); 2534 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2535 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2536
2537 EV_FREQUENT_CHECK;
2000 2538
2001 ev_start (EV_A_ (W)w, 1); 2539 ev_start (EV_A_ (W)w, 1);
2002 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2540 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2003 wlist_add (&anfds[fd].head, (WL)w); 2541 wlist_add (&anfds[fd].head, (WL)w);
2004 2542
2005 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2543 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2006 w->events &= ~EV_IOFDSET; 2544 w->events &= ~EV__IOFDSET;
2545
2546 EV_FREQUENT_CHECK;
2007} 2547}
2008 2548
2009void noinline 2549void noinline
2010ev_io_stop (EV_P_ ev_io *w) 2550ev_io_stop (EV_P_ ev_io *w)
2011{ 2551{
2012 clear_pending (EV_A_ (W)w); 2552 clear_pending (EV_A_ (W)w);
2013 if (expect_false (!ev_is_active (w))) 2553 if (expect_false (!ev_is_active (w)))
2014 return; 2554 return;
2015 2555
2016 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2556 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2557
2558 EV_FREQUENT_CHECK;
2017 2559
2018 wlist_del (&anfds[w->fd].head, (WL)w); 2560 wlist_del (&anfds[w->fd].head, (WL)w);
2019 ev_stop (EV_A_ (W)w); 2561 ev_stop (EV_A_ (W)w);
2020 2562
2021 fd_change (EV_A_ w->fd, 1); 2563 fd_change (EV_A_ w->fd, 1);
2564
2565 EV_FREQUENT_CHECK;
2022} 2566}
2023 2567
2024void noinline 2568void noinline
2025ev_timer_start (EV_P_ ev_timer *w) 2569ev_timer_start (EV_P_ ev_timer *w)
2026{ 2570{
2027 if (expect_false (ev_is_active (w))) 2571 if (expect_false (ev_is_active (w)))
2028 return; 2572 return;
2029 2573
2030 ev_at (w) += mn_now; 2574 ev_at (w) += mn_now;
2031 2575
2032 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2576 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2033 2577
2578 EV_FREQUENT_CHECK;
2579
2580 ++timercnt;
2034 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2581 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2035 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2582 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2036 ANHE_w (timers [ev_active (w)]) = (WT)w; 2583 ANHE_w (timers [ev_active (w)]) = (WT)w;
2037 ANHE_at_set (timers [ev_active (w)]); 2584 ANHE_at_cache (timers [ev_active (w)]);
2038 upheap (timers, ev_active (w)); 2585 upheap (timers, ev_active (w));
2039 2586
2587 EV_FREQUENT_CHECK;
2588
2040 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2589 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2041} 2590}
2042 2591
2043void noinline 2592void noinline
2044ev_timer_stop (EV_P_ ev_timer *w) 2593ev_timer_stop (EV_P_ ev_timer *w)
2045{ 2594{
2046 clear_pending (EV_A_ (W)w); 2595 clear_pending (EV_A_ (W)w);
2047 if (expect_false (!ev_is_active (w))) 2596 if (expect_false (!ev_is_active (w)))
2048 return; 2597 return;
2049 2598
2599 EV_FREQUENT_CHECK;
2600
2050 { 2601 {
2051 int active = ev_active (w); 2602 int active = ev_active (w);
2052 2603
2053 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2604 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2054 2605
2606 --timercnt;
2607
2055 if (expect_true (active < timercnt + HEAP0 - 1)) 2608 if (expect_true (active < timercnt + HEAP0))
2056 { 2609 {
2057 timers [active] = timers [timercnt + HEAP0 - 1]; 2610 timers [active] = timers [timercnt + HEAP0];
2058 adjustheap (timers, timercnt, active); 2611 adjustheap (timers, timercnt, active);
2059 } 2612 }
2060
2061 --timercnt;
2062 } 2613 }
2063 2614
2064 ev_at (w) -= mn_now; 2615 ev_at (w) -= mn_now;
2065 2616
2066 ev_stop (EV_A_ (W)w); 2617 ev_stop (EV_A_ (W)w);
2618
2619 EV_FREQUENT_CHECK;
2067} 2620}
2068 2621
2069void noinline 2622void noinline
2070ev_timer_again (EV_P_ ev_timer *w) 2623ev_timer_again (EV_P_ ev_timer *w)
2071{ 2624{
2625 EV_FREQUENT_CHECK;
2626
2072 if (ev_is_active (w)) 2627 if (ev_is_active (w))
2073 { 2628 {
2074 if (w->repeat) 2629 if (w->repeat)
2075 { 2630 {
2076 ev_at (w) = mn_now + w->repeat; 2631 ev_at (w) = mn_now + w->repeat;
2077 ANHE_at_set (timers [ev_active (w)]); 2632 ANHE_at_cache (timers [ev_active (w)]);
2078 adjustheap (timers, timercnt, ev_active (w)); 2633 adjustheap (timers, timercnt, ev_active (w));
2079 } 2634 }
2080 else 2635 else
2081 ev_timer_stop (EV_A_ w); 2636 ev_timer_stop (EV_A_ w);
2082 } 2637 }
2083 else if (w->repeat) 2638 else if (w->repeat)
2084 { 2639 {
2085 ev_at (w) = w->repeat; 2640 ev_at (w) = w->repeat;
2086 ev_timer_start (EV_A_ w); 2641 ev_timer_start (EV_A_ w);
2087 } 2642 }
2643
2644 EV_FREQUENT_CHECK;
2645}
2646
2647ev_tstamp
2648ev_timer_remaining (EV_P_ ev_timer *w)
2649{
2650 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2088} 2651}
2089 2652
2090#if EV_PERIODIC_ENABLE 2653#if EV_PERIODIC_ENABLE
2091void noinline 2654void noinline
2092ev_periodic_start (EV_P_ ev_periodic *w) 2655ev_periodic_start (EV_P_ ev_periodic *w)
2096 2659
2097 if (w->reschedule_cb) 2660 if (w->reschedule_cb)
2098 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2661 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2099 else if (w->interval) 2662 else if (w->interval)
2100 { 2663 {
2101 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2664 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2102 /* this formula differs from the one in periodic_reify because we do not always round up */ 2665 /* this formula differs from the one in periodic_reify because we do not always round up */
2103 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2666 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2104 } 2667 }
2105 else 2668 else
2106 ev_at (w) = w->offset; 2669 ev_at (w) = w->offset;
2107 2670
2671 EV_FREQUENT_CHECK;
2672
2673 ++periodiccnt;
2108 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2674 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2109 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2675 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2110 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2676 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2111 ANHE_at_set (periodics [ev_active (w)]); 2677 ANHE_at_cache (periodics [ev_active (w)]);
2112 upheap (periodics, ev_active (w)); 2678 upheap (periodics, ev_active (w));
2113 2679
2680 EV_FREQUENT_CHECK;
2681
2114 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2682 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2115} 2683}
2116 2684
2117void noinline 2685void noinline
2118ev_periodic_stop (EV_P_ ev_periodic *w) 2686ev_periodic_stop (EV_P_ ev_periodic *w)
2119{ 2687{
2120 clear_pending (EV_A_ (W)w); 2688 clear_pending (EV_A_ (W)w);
2121 if (expect_false (!ev_is_active (w))) 2689 if (expect_false (!ev_is_active (w)))
2122 return; 2690 return;
2123 2691
2692 EV_FREQUENT_CHECK;
2693
2124 { 2694 {
2125 int active = ev_active (w); 2695 int active = ev_active (w);
2126 2696
2127 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2697 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2128 2698
2699 --periodiccnt;
2700
2129 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2701 if (expect_true (active < periodiccnt + HEAP0))
2130 { 2702 {
2131 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2703 periodics [active] = periodics [periodiccnt + HEAP0];
2132 adjustheap (periodics, periodiccnt, active); 2704 adjustheap (periodics, periodiccnt, active);
2133 } 2705 }
2134
2135 --periodiccnt;
2136 } 2706 }
2137 2707
2138 ev_stop (EV_A_ (W)w); 2708 ev_stop (EV_A_ (W)w);
2709
2710 EV_FREQUENT_CHECK;
2139} 2711}
2140 2712
2141void noinline 2713void noinline
2142ev_periodic_again (EV_P_ ev_periodic *w) 2714ev_periodic_again (EV_P_ ev_periodic *w)
2143{ 2715{
2152#endif 2724#endif
2153 2725
2154void noinline 2726void noinline
2155ev_signal_start (EV_P_ ev_signal *w) 2727ev_signal_start (EV_P_ ev_signal *w)
2156{ 2728{
2157#if EV_MULTIPLICITY
2158 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2159#endif
2160 if (expect_false (ev_is_active (w))) 2729 if (expect_false (ev_is_active (w)))
2161 return; 2730 return;
2162 2731
2163 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2732 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2164 2733
2165 evpipe_init (EV_A); 2734#if EV_MULTIPLICITY
2735 assert (("libev: a signal must not be attached to two different loops",
2736 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2166 2737
2738 signals [w->signum - 1].loop = EV_A;
2739#endif
2740
2741 EV_FREQUENT_CHECK;
2742
2743#if EV_USE_SIGNALFD
2744 if (sigfd == -2)
2167 { 2745 {
2168#ifndef _WIN32 2746 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2169 sigset_t full, prev; 2747 if (sigfd < 0 && errno == EINVAL)
2170 sigfillset (&full); 2748 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2171 sigprocmask (SIG_SETMASK, &full, &prev);
2172#endif
2173 2749
2174 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2750 if (sigfd >= 0)
2751 {
2752 fd_intern (sigfd); /* doing it twice will not hurt */
2175 2753
2176#ifndef _WIN32 2754 sigemptyset (&sigfd_set);
2177 sigprocmask (SIG_SETMASK, &prev, 0); 2755
2178#endif 2756 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2757 ev_set_priority (&sigfd_w, EV_MAXPRI);
2758 ev_io_start (EV_A_ &sigfd_w);
2759 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2760 }
2179 } 2761 }
2762
2763 if (sigfd >= 0)
2764 {
2765 /* TODO: check .head */
2766 sigaddset (&sigfd_set, w->signum);
2767 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2768
2769 signalfd (sigfd, &sigfd_set, 0);
2770 }
2771#endif
2180 2772
2181 ev_start (EV_A_ (W)w, 1); 2773 ev_start (EV_A_ (W)w, 1);
2182 wlist_add (&signals [w->signum - 1].head, (WL)w); 2774 wlist_add (&signals [w->signum - 1].head, (WL)w);
2183 2775
2184 if (!((WL)w)->next) 2776 if (!((WL)w)->next)
2777# if EV_USE_SIGNALFD
2778 if (sigfd < 0) /*TODO*/
2779# endif
2185 { 2780 {
2186#if _WIN32 2781# ifdef _WIN32
2782 evpipe_init (EV_A);
2783
2187 signal (w->signum, ev_sighandler); 2784 signal (w->signum, ev_sighandler);
2188#else 2785# else
2189 struct sigaction sa; 2786 struct sigaction sa;
2787
2788 evpipe_init (EV_A);
2789
2190 sa.sa_handler = ev_sighandler; 2790 sa.sa_handler = ev_sighandler;
2191 sigfillset (&sa.sa_mask); 2791 sigfillset (&sa.sa_mask);
2192 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2792 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2193 sigaction (w->signum, &sa, 0); 2793 sigaction (w->signum, &sa, 0);
2794
2795 sigemptyset (&sa.sa_mask);
2796 sigaddset (&sa.sa_mask, w->signum);
2797 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2194#endif 2798#endif
2195 } 2799 }
2800
2801 EV_FREQUENT_CHECK;
2196} 2802}
2197 2803
2198void noinline 2804void noinline
2199ev_signal_stop (EV_P_ ev_signal *w) 2805ev_signal_stop (EV_P_ ev_signal *w)
2200{ 2806{
2201 clear_pending (EV_A_ (W)w); 2807 clear_pending (EV_A_ (W)w);
2202 if (expect_false (!ev_is_active (w))) 2808 if (expect_false (!ev_is_active (w)))
2203 return; 2809 return;
2204 2810
2811 EV_FREQUENT_CHECK;
2812
2205 wlist_del (&signals [w->signum - 1].head, (WL)w); 2813 wlist_del (&signals [w->signum - 1].head, (WL)w);
2206 ev_stop (EV_A_ (W)w); 2814 ev_stop (EV_A_ (W)w);
2207 2815
2208 if (!signals [w->signum - 1].head) 2816 if (!signals [w->signum - 1].head)
2817 {
2818#if EV_MULTIPLICITY
2819 signals [w->signum - 1].loop = 0; /* unattach from signal */
2820#endif
2821#if EV_USE_SIGNALFD
2822 if (sigfd >= 0)
2823 {
2824 sigset_t ss;
2825
2826 sigemptyset (&ss);
2827 sigaddset (&ss, w->signum);
2828 sigdelset (&sigfd_set, w->signum);
2829
2830 signalfd (sigfd, &sigfd_set, 0);
2831 sigprocmask (SIG_UNBLOCK, &ss, 0);
2832 }
2833 else
2834#endif
2209 signal (w->signum, SIG_DFL); 2835 signal (w->signum, SIG_DFL);
2836 }
2837
2838 EV_FREQUENT_CHECK;
2210} 2839}
2211 2840
2212void 2841void
2213ev_child_start (EV_P_ ev_child *w) 2842ev_child_start (EV_P_ ev_child *w)
2214{ 2843{
2215#if EV_MULTIPLICITY 2844#if EV_MULTIPLICITY
2216 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2845 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2217#endif 2846#endif
2218 if (expect_false (ev_is_active (w))) 2847 if (expect_false (ev_is_active (w)))
2219 return; 2848 return;
2220 2849
2850 EV_FREQUENT_CHECK;
2851
2221 ev_start (EV_A_ (W)w, 1); 2852 ev_start (EV_A_ (W)w, 1);
2222 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2853 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2854
2855 EV_FREQUENT_CHECK;
2223} 2856}
2224 2857
2225void 2858void
2226ev_child_stop (EV_P_ ev_child *w) 2859ev_child_stop (EV_P_ ev_child *w)
2227{ 2860{
2228 clear_pending (EV_A_ (W)w); 2861 clear_pending (EV_A_ (W)w);
2229 if (expect_false (!ev_is_active (w))) 2862 if (expect_false (!ev_is_active (w)))
2230 return; 2863 return;
2231 2864
2865 EV_FREQUENT_CHECK;
2866
2232 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2867 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2233 ev_stop (EV_A_ (W)w); 2868 ev_stop (EV_A_ (W)w);
2869
2870 EV_FREQUENT_CHECK;
2234} 2871}
2235 2872
2236#if EV_STAT_ENABLE 2873#if EV_STAT_ENABLE
2237 2874
2238# ifdef _WIN32 2875# ifdef _WIN32
2239# undef lstat 2876# undef lstat
2240# define lstat(a,b) _stati64 (a,b) 2877# define lstat(a,b) _stati64 (a,b)
2241# endif 2878# endif
2242 2879
2243#define DEF_STAT_INTERVAL 5.0074891 2880#define DEF_STAT_INTERVAL 5.0074891
2881#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2244#define MIN_STAT_INTERVAL 0.1074891 2882#define MIN_STAT_INTERVAL 0.1074891
2245 2883
2246static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2884static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2247 2885
2248#if EV_USE_INOTIFY 2886#if EV_USE_INOTIFY
2249# define EV_INOTIFY_BUFSIZE 8192 2887
2888/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2889# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2250 2890
2251static void noinline 2891static void noinline
2252infy_add (EV_P_ ev_stat *w) 2892infy_add (EV_P_ ev_stat *w)
2253{ 2893{
2254 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2894 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2255 2895
2256 if (w->wd < 0) 2896 if (w->wd >= 0)
2897 {
2898 struct statfs sfs;
2899
2900 /* now local changes will be tracked by inotify, but remote changes won't */
2901 /* unless the filesystem is known to be local, we therefore still poll */
2902 /* also do poll on <2.6.25, but with normal frequency */
2903
2904 if (!fs_2625)
2905 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2906 else if (!statfs (w->path, &sfs)
2907 && (sfs.f_type == 0x1373 /* devfs */
2908 || sfs.f_type == 0xEF53 /* ext2/3 */
2909 || sfs.f_type == 0x3153464a /* jfs */
2910 || sfs.f_type == 0x52654973 /* reiser3 */
2911 || sfs.f_type == 0x01021994 /* tempfs */
2912 || sfs.f_type == 0x58465342 /* xfs */))
2913 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2914 else
2915 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2257 { 2916 }
2258 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2917 else
2918 {
2919 /* can't use inotify, continue to stat */
2920 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2259 2921
2260 /* monitor some parent directory for speedup hints */ 2922 /* if path is not there, monitor some parent directory for speedup hints */
2261 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2923 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2262 /* but an efficiency issue only */ 2924 /* but an efficiency issue only */
2263 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2925 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2264 { 2926 {
2265 char path [4096]; 2927 char path [4096];
2266 strcpy (path, w->path); 2928 strcpy (path, w->path);
2270 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2932 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2271 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2933 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2272 2934
2273 char *pend = strrchr (path, '/'); 2935 char *pend = strrchr (path, '/');
2274 2936
2275 if (!pend) 2937 if (!pend || pend == path)
2276 break; /* whoops, no '/', complain to your admin */ 2938 break;
2277 2939
2278 *pend = 0; 2940 *pend = 0;
2279 w->wd = inotify_add_watch (fs_fd, path, mask); 2941 w->wd = inotify_add_watch (fs_fd, path, mask);
2280 } 2942 }
2281 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2943 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2282 } 2944 }
2283 } 2945 }
2284 else
2285 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2286 2946
2287 if (w->wd >= 0) 2947 if (w->wd >= 0)
2288 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2948 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2949
2950 /* now re-arm timer, if required */
2951 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2952 ev_timer_again (EV_A_ &w->timer);
2953 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2289} 2954}
2290 2955
2291static void noinline 2956static void noinline
2292infy_del (EV_P_ ev_stat *w) 2957infy_del (EV_P_ ev_stat *w)
2293{ 2958{
2307 2972
2308static void noinline 2973static void noinline
2309infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2974infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2310{ 2975{
2311 if (slot < 0) 2976 if (slot < 0)
2312 /* overflow, need to check for all hahs slots */ 2977 /* overflow, need to check for all hash slots */
2313 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2978 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2314 infy_wd (EV_A_ slot, wd, ev); 2979 infy_wd (EV_A_ slot, wd, ev);
2315 else 2980 else
2316 { 2981 {
2317 WL w_; 2982 WL w_;
2323 2988
2324 if (w->wd == wd || wd == -1) 2989 if (w->wd == wd || wd == -1)
2325 { 2990 {
2326 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2991 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2327 { 2992 {
2993 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2328 w->wd = -1; 2994 w->wd = -1;
2329 infy_add (EV_A_ w); /* re-add, no matter what */ 2995 infy_add (EV_A_ w); /* re-add, no matter what */
2330 } 2996 }
2331 2997
2332 stat_timer_cb (EV_A_ &w->timer, 0); 2998 stat_timer_cb (EV_A_ &w->timer, 0);
2337 3003
2338static void 3004static void
2339infy_cb (EV_P_ ev_io *w, int revents) 3005infy_cb (EV_P_ ev_io *w, int revents)
2340{ 3006{
2341 char buf [EV_INOTIFY_BUFSIZE]; 3007 char buf [EV_INOTIFY_BUFSIZE];
2342 struct inotify_event *ev = (struct inotify_event *)buf;
2343 int ofs; 3008 int ofs;
2344 int len = read (fs_fd, buf, sizeof (buf)); 3009 int len = read (fs_fd, buf, sizeof (buf));
2345 3010
2346 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3011 for (ofs = 0; ofs < len; )
3012 {
3013 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2347 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3014 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3015 ofs += sizeof (struct inotify_event) + ev->len;
3016 }
2348} 3017}
2349 3018
2350void inline_size 3019inline_size unsigned int
3020ev_linux_version (void)
3021{
3022 struct utsname buf;
3023 unsigned int v;
3024 int i;
3025 char *p = buf.release;
3026
3027 if (uname (&buf))
3028 return 0;
3029
3030 for (i = 3+1; --i; )
3031 {
3032 unsigned int c = 0;
3033
3034 for (;;)
3035 {
3036 if (*p >= '0' && *p <= '9')
3037 c = c * 10 + *p++ - '0';
3038 else
3039 {
3040 p += *p == '.';
3041 break;
3042 }
3043 }
3044
3045 v = (v << 8) | c;
3046 }
3047
3048 return v;
3049}
3050
3051inline_size void
3052ev_check_2625 (EV_P)
3053{
3054 /* kernels < 2.6.25 are borked
3055 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3056 */
3057 if (ev_linux_version () < 0x020619)
3058 return;
3059
3060 fs_2625 = 1;
3061}
3062
3063inline_size int
3064infy_newfd (void)
3065{
3066#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3067 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3068 if (fd >= 0)
3069 return fd;
3070#endif
3071 return inotify_init ();
3072}
3073
3074inline_size void
2351infy_init (EV_P) 3075infy_init (EV_P)
2352{ 3076{
2353 if (fs_fd != -2) 3077 if (fs_fd != -2)
2354 return; 3078 return;
2355 3079
3080 fs_fd = -1;
3081
3082 ev_check_2625 (EV_A);
3083
2356 fs_fd = inotify_init (); 3084 fs_fd = infy_newfd ();
2357 3085
2358 if (fs_fd >= 0) 3086 if (fs_fd >= 0)
2359 { 3087 {
3088 fd_intern (fs_fd);
2360 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3089 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2361 ev_set_priority (&fs_w, EV_MAXPRI); 3090 ev_set_priority (&fs_w, EV_MAXPRI);
2362 ev_io_start (EV_A_ &fs_w); 3091 ev_io_start (EV_A_ &fs_w);
3092 ev_unref (EV_A);
2363 } 3093 }
2364} 3094}
2365 3095
2366void inline_size 3096inline_size void
2367infy_fork (EV_P) 3097infy_fork (EV_P)
2368{ 3098{
2369 int slot; 3099 int slot;
2370 3100
2371 if (fs_fd < 0) 3101 if (fs_fd < 0)
2372 return; 3102 return;
2373 3103
3104 ev_ref (EV_A);
3105 ev_io_stop (EV_A_ &fs_w);
2374 close (fs_fd); 3106 close (fs_fd);
2375 fs_fd = inotify_init (); 3107 fs_fd = infy_newfd ();
3108
3109 if (fs_fd >= 0)
3110 {
3111 fd_intern (fs_fd);
3112 ev_io_set (&fs_w, fs_fd, EV_READ);
3113 ev_io_start (EV_A_ &fs_w);
3114 ev_unref (EV_A);
3115 }
2376 3116
2377 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3117 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2378 { 3118 {
2379 WL w_ = fs_hash [slot].head; 3119 WL w_ = fs_hash [slot].head;
2380 fs_hash [slot].head = 0; 3120 fs_hash [slot].head = 0;
2387 w->wd = -1; 3127 w->wd = -1;
2388 3128
2389 if (fs_fd >= 0) 3129 if (fs_fd >= 0)
2390 infy_add (EV_A_ w); /* re-add, no matter what */ 3130 infy_add (EV_A_ w); /* re-add, no matter what */
2391 else 3131 else
3132 {
3133 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3134 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2392 ev_timer_start (EV_A_ &w->timer); 3135 ev_timer_again (EV_A_ &w->timer);
3136 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3137 }
2393 } 3138 }
2394
2395 } 3139 }
2396} 3140}
2397 3141
3142#endif
3143
3144#ifdef _WIN32
3145# define EV_LSTAT(p,b) _stati64 (p, b)
3146#else
3147# define EV_LSTAT(p,b) lstat (p, b)
2398#endif 3148#endif
2399 3149
2400void 3150void
2401ev_stat_stat (EV_P_ ev_stat *w) 3151ev_stat_stat (EV_P_ ev_stat *w)
2402{ 3152{
2409static void noinline 3159static void noinline
2410stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3160stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2411{ 3161{
2412 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3162 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2413 3163
2414 /* we copy this here each the time so that */ 3164 ev_statdata prev = w->attr;
2415 /* prev has the old value when the callback gets invoked */
2416 w->prev = w->attr;
2417 ev_stat_stat (EV_A_ w); 3165 ev_stat_stat (EV_A_ w);
2418 3166
2419 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3167 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2420 if ( 3168 if (
2421 w->prev.st_dev != w->attr.st_dev 3169 prev.st_dev != w->attr.st_dev
2422 || w->prev.st_ino != w->attr.st_ino 3170 || prev.st_ino != w->attr.st_ino
2423 || w->prev.st_mode != w->attr.st_mode 3171 || prev.st_mode != w->attr.st_mode
2424 || w->prev.st_nlink != w->attr.st_nlink 3172 || prev.st_nlink != w->attr.st_nlink
2425 || w->prev.st_uid != w->attr.st_uid 3173 || prev.st_uid != w->attr.st_uid
2426 || w->prev.st_gid != w->attr.st_gid 3174 || prev.st_gid != w->attr.st_gid
2427 || w->prev.st_rdev != w->attr.st_rdev 3175 || prev.st_rdev != w->attr.st_rdev
2428 || w->prev.st_size != w->attr.st_size 3176 || prev.st_size != w->attr.st_size
2429 || w->prev.st_atime != w->attr.st_atime 3177 || prev.st_atime != w->attr.st_atime
2430 || w->prev.st_mtime != w->attr.st_mtime 3178 || prev.st_mtime != w->attr.st_mtime
2431 || w->prev.st_ctime != w->attr.st_ctime 3179 || prev.st_ctime != w->attr.st_ctime
2432 ) { 3180 ) {
3181 /* we only update w->prev on actual differences */
3182 /* in case we test more often than invoke the callback, */
3183 /* to ensure that prev is always different to attr */
3184 w->prev = prev;
3185
2433 #if EV_USE_INOTIFY 3186 #if EV_USE_INOTIFY
3187 if (fs_fd >= 0)
3188 {
2434 infy_del (EV_A_ w); 3189 infy_del (EV_A_ w);
2435 infy_add (EV_A_ w); 3190 infy_add (EV_A_ w);
2436 ev_stat_stat (EV_A_ w); /* avoid race... */ 3191 ev_stat_stat (EV_A_ w); /* avoid race... */
3192 }
2437 #endif 3193 #endif
2438 3194
2439 ev_feed_event (EV_A_ w, EV_STAT); 3195 ev_feed_event (EV_A_ w, EV_STAT);
2440 } 3196 }
2441} 3197}
2444ev_stat_start (EV_P_ ev_stat *w) 3200ev_stat_start (EV_P_ ev_stat *w)
2445{ 3201{
2446 if (expect_false (ev_is_active (w))) 3202 if (expect_false (ev_is_active (w)))
2447 return; 3203 return;
2448 3204
2449 /* since we use memcmp, we need to clear any padding data etc. */
2450 memset (&w->prev, 0, sizeof (ev_statdata));
2451 memset (&w->attr, 0, sizeof (ev_statdata));
2452
2453 ev_stat_stat (EV_A_ w); 3205 ev_stat_stat (EV_A_ w);
2454 3206
3207 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2455 if (w->interval < MIN_STAT_INTERVAL) 3208 w->interval = MIN_STAT_INTERVAL;
2456 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2457 3209
2458 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3210 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2459 ev_set_priority (&w->timer, ev_priority (w)); 3211 ev_set_priority (&w->timer, ev_priority (w));
2460 3212
2461#if EV_USE_INOTIFY 3213#if EV_USE_INOTIFY
2462 infy_init (EV_A); 3214 infy_init (EV_A);
2463 3215
2464 if (fs_fd >= 0) 3216 if (fs_fd >= 0)
2465 infy_add (EV_A_ w); 3217 infy_add (EV_A_ w);
2466 else 3218 else
2467#endif 3219#endif
3220 {
2468 ev_timer_start (EV_A_ &w->timer); 3221 ev_timer_again (EV_A_ &w->timer);
3222 ev_unref (EV_A);
3223 }
2469 3224
2470 ev_start (EV_A_ (W)w, 1); 3225 ev_start (EV_A_ (W)w, 1);
3226
3227 EV_FREQUENT_CHECK;
2471} 3228}
2472 3229
2473void 3230void
2474ev_stat_stop (EV_P_ ev_stat *w) 3231ev_stat_stop (EV_P_ ev_stat *w)
2475{ 3232{
2476 clear_pending (EV_A_ (W)w); 3233 clear_pending (EV_A_ (W)w);
2477 if (expect_false (!ev_is_active (w))) 3234 if (expect_false (!ev_is_active (w)))
2478 return; 3235 return;
2479 3236
3237 EV_FREQUENT_CHECK;
3238
2480#if EV_USE_INOTIFY 3239#if EV_USE_INOTIFY
2481 infy_del (EV_A_ w); 3240 infy_del (EV_A_ w);
2482#endif 3241#endif
3242
3243 if (ev_is_active (&w->timer))
3244 {
3245 ev_ref (EV_A);
2483 ev_timer_stop (EV_A_ &w->timer); 3246 ev_timer_stop (EV_A_ &w->timer);
3247 }
2484 3248
2485 ev_stop (EV_A_ (W)w); 3249 ev_stop (EV_A_ (W)w);
3250
3251 EV_FREQUENT_CHECK;
2486} 3252}
2487#endif 3253#endif
2488 3254
2489#if EV_IDLE_ENABLE 3255#if EV_IDLE_ENABLE
2490void 3256void
2492{ 3258{
2493 if (expect_false (ev_is_active (w))) 3259 if (expect_false (ev_is_active (w)))
2494 return; 3260 return;
2495 3261
2496 pri_adjust (EV_A_ (W)w); 3262 pri_adjust (EV_A_ (W)w);
3263
3264 EV_FREQUENT_CHECK;
2497 3265
2498 { 3266 {
2499 int active = ++idlecnt [ABSPRI (w)]; 3267 int active = ++idlecnt [ABSPRI (w)];
2500 3268
2501 ++idleall; 3269 ++idleall;
2502 ev_start (EV_A_ (W)w, active); 3270 ev_start (EV_A_ (W)w, active);
2503 3271
2504 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3272 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2505 idles [ABSPRI (w)][active - 1] = w; 3273 idles [ABSPRI (w)][active - 1] = w;
2506 } 3274 }
3275
3276 EV_FREQUENT_CHECK;
2507} 3277}
2508 3278
2509void 3279void
2510ev_idle_stop (EV_P_ ev_idle *w) 3280ev_idle_stop (EV_P_ ev_idle *w)
2511{ 3281{
2512 clear_pending (EV_A_ (W)w); 3282 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w))) 3283 if (expect_false (!ev_is_active (w)))
2514 return; 3284 return;
2515 3285
3286 EV_FREQUENT_CHECK;
3287
2516 { 3288 {
2517 int active = ev_active (w); 3289 int active = ev_active (w);
2518 3290
2519 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3291 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2520 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3292 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2521 3293
2522 ev_stop (EV_A_ (W)w); 3294 ev_stop (EV_A_ (W)w);
2523 --idleall; 3295 --idleall;
2524 } 3296 }
3297
3298 EV_FREQUENT_CHECK;
2525} 3299}
2526#endif 3300#endif
2527 3301
2528void 3302void
2529ev_prepare_start (EV_P_ ev_prepare *w) 3303ev_prepare_start (EV_P_ ev_prepare *w)
2530{ 3304{
2531 if (expect_false (ev_is_active (w))) 3305 if (expect_false (ev_is_active (w)))
2532 return; 3306 return;
3307
3308 EV_FREQUENT_CHECK;
2533 3309
2534 ev_start (EV_A_ (W)w, ++preparecnt); 3310 ev_start (EV_A_ (W)w, ++preparecnt);
2535 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3311 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2536 prepares [preparecnt - 1] = w; 3312 prepares [preparecnt - 1] = w;
3313
3314 EV_FREQUENT_CHECK;
2537} 3315}
2538 3316
2539void 3317void
2540ev_prepare_stop (EV_P_ ev_prepare *w) 3318ev_prepare_stop (EV_P_ ev_prepare *w)
2541{ 3319{
2542 clear_pending (EV_A_ (W)w); 3320 clear_pending (EV_A_ (W)w);
2543 if (expect_false (!ev_is_active (w))) 3321 if (expect_false (!ev_is_active (w)))
2544 return; 3322 return;
2545 3323
3324 EV_FREQUENT_CHECK;
3325
2546 { 3326 {
2547 int active = ev_active (w); 3327 int active = ev_active (w);
2548 3328
2549 prepares [active - 1] = prepares [--preparecnt]; 3329 prepares [active - 1] = prepares [--preparecnt];
2550 ev_active (prepares [active - 1]) = active; 3330 ev_active (prepares [active - 1]) = active;
2551 } 3331 }
2552 3332
2553 ev_stop (EV_A_ (W)w); 3333 ev_stop (EV_A_ (W)w);
3334
3335 EV_FREQUENT_CHECK;
2554} 3336}
2555 3337
2556void 3338void
2557ev_check_start (EV_P_ ev_check *w) 3339ev_check_start (EV_P_ ev_check *w)
2558{ 3340{
2559 if (expect_false (ev_is_active (w))) 3341 if (expect_false (ev_is_active (w)))
2560 return; 3342 return;
3343
3344 EV_FREQUENT_CHECK;
2561 3345
2562 ev_start (EV_A_ (W)w, ++checkcnt); 3346 ev_start (EV_A_ (W)w, ++checkcnt);
2563 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3347 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2564 checks [checkcnt - 1] = w; 3348 checks [checkcnt - 1] = w;
3349
3350 EV_FREQUENT_CHECK;
2565} 3351}
2566 3352
2567void 3353void
2568ev_check_stop (EV_P_ ev_check *w) 3354ev_check_stop (EV_P_ ev_check *w)
2569{ 3355{
2570 clear_pending (EV_A_ (W)w); 3356 clear_pending (EV_A_ (W)w);
2571 if (expect_false (!ev_is_active (w))) 3357 if (expect_false (!ev_is_active (w)))
2572 return; 3358 return;
2573 3359
3360 EV_FREQUENT_CHECK;
3361
2574 { 3362 {
2575 int active = ev_active (w); 3363 int active = ev_active (w);
2576 3364
2577 checks [active - 1] = checks [--checkcnt]; 3365 checks [active - 1] = checks [--checkcnt];
2578 ev_active (checks [active - 1]) = active; 3366 ev_active (checks [active - 1]) = active;
2579 } 3367 }
2580 3368
2581 ev_stop (EV_A_ (W)w); 3369 ev_stop (EV_A_ (W)w);
3370
3371 EV_FREQUENT_CHECK;
2582} 3372}
2583 3373
2584#if EV_EMBED_ENABLE 3374#if EV_EMBED_ENABLE
2585void noinline 3375void noinline
2586ev_embed_sweep (EV_P_ ev_embed *w) 3376ev_embed_sweep (EV_P_ ev_embed *w)
2603embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3393embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2604{ 3394{
2605 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3395 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2606 3396
2607 { 3397 {
2608 struct ev_loop *loop = w->other; 3398 EV_P = w->other;
2609 3399
2610 while (fdchangecnt) 3400 while (fdchangecnt)
2611 { 3401 {
2612 fd_reify (EV_A); 3402 fd_reify (EV_A);
2613 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3403 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2614 } 3404 }
2615 } 3405 }
2616} 3406}
2617 3407
3408static void
3409embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3410{
3411 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3412
3413 ev_embed_stop (EV_A_ w);
3414
3415 {
3416 EV_P = w->other;
3417
3418 ev_loop_fork (EV_A);
3419 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3420 }
3421
3422 ev_embed_start (EV_A_ w);
3423}
3424
2618#if 0 3425#if 0
2619static void 3426static void
2620embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3427embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2621{ 3428{
2622 ev_idle_stop (EV_A_ idle); 3429 ev_idle_stop (EV_A_ idle);
2628{ 3435{
2629 if (expect_false (ev_is_active (w))) 3436 if (expect_false (ev_is_active (w)))
2630 return; 3437 return;
2631 3438
2632 { 3439 {
2633 struct ev_loop *loop = w->other; 3440 EV_P = w->other;
2634 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3441 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2635 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3442 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2636 } 3443 }
3444
3445 EV_FREQUENT_CHECK;
2637 3446
2638 ev_set_priority (&w->io, ev_priority (w)); 3447 ev_set_priority (&w->io, ev_priority (w));
2639 ev_io_start (EV_A_ &w->io); 3448 ev_io_start (EV_A_ &w->io);
2640 3449
2641 ev_prepare_init (&w->prepare, embed_prepare_cb); 3450 ev_prepare_init (&w->prepare, embed_prepare_cb);
2642 ev_set_priority (&w->prepare, EV_MINPRI); 3451 ev_set_priority (&w->prepare, EV_MINPRI);
2643 ev_prepare_start (EV_A_ &w->prepare); 3452 ev_prepare_start (EV_A_ &w->prepare);
2644 3453
3454 ev_fork_init (&w->fork, embed_fork_cb);
3455 ev_fork_start (EV_A_ &w->fork);
3456
2645 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3457 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2646 3458
2647 ev_start (EV_A_ (W)w, 1); 3459 ev_start (EV_A_ (W)w, 1);
3460
3461 EV_FREQUENT_CHECK;
2648} 3462}
2649 3463
2650void 3464void
2651ev_embed_stop (EV_P_ ev_embed *w) 3465ev_embed_stop (EV_P_ ev_embed *w)
2652{ 3466{
2653 clear_pending (EV_A_ (W)w); 3467 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w))) 3468 if (expect_false (!ev_is_active (w)))
2655 return; 3469 return;
2656 3470
3471 EV_FREQUENT_CHECK;
3472
2657 ev_io_stop (EV_A_ &w->io); 3473 ev_io_stop (EV_A_ &w->io);
2658 ev_prepare_stop (EV_A_ &w->prepare); 3474 ev_prepare_stop (EV_A_ &w->prepare);
3475 ev_fork_stop (EV_A_ &w->fork);
2659 3476
2660 ev_stop (EV_A_ (W)w); 3477 ev_stop (EV_A_ (W)w);
3478
3479 EV_FREQUENT_CHECK;
2661} 3480}
2662#endif 3481#endif
2663 3482
2664#if EV_FORK_ENABLE 3483#if EV_FORK_ENABLE
2665void 3484void
2666ev_fork_start (EV_P_ ev_fork *w) 3485ev_fork_start (EV_P_ ev_fork *w)
2667{ 3486{
2668 if (expect_false (ev_is_active (w))) 3487 if (expect_false (ev_is_active (w)))
2669 return; 3488 return;
3489
3490 EV_FREQUENT_CHECK;
2670 3491
2671 ev_start (EV_A_ (W)w, ++forkcnt); 3492 ev_start (EV_A_ (W)w, ++forkcnt);
2672 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3493 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2673 forks [forkcnt - 1] = w; 3494 forks [forkcnt - 1] = w;
3495
3496 EV_FREQUENT_CHECK;
2674} 3497}
2675 3498
2676void 3499void
2677ev_fork_stop (EV_P_ ev_fork *w) 3500ev_fork_stop (EV_P_ ev_fork *w)
2678{ 3501{
2679 clear_pending (EV_A_ (W)w); 3502 clear_pending (EV_A_ (W)w);
2680 if (expect_false (!ev_is_active (w))) 3503 if (expect_false (!ev_is_active (w)))
2681 return; 3504 return;
2682 3505
3506 EV_FREQUENT_CHECK;
3507
2683 { 3508 {
2684 int active = ev_active (w); 3509 int active = ev_active (w);
2685 3510
2686 forks [active - 1] = forks [--forkcnt]; 3511 forks [active - 1] = forks [--forkcnt];
2687 ev_active (forks [active - 1]) = active; 3512 ev_active (forks [active - 1]) = active;
2688 } 3513 }
2689 3514
2690 ev_stop (EV_A_ (W)w); 3515 ev_stop (EV_A_ (W)w);
3516
3517 EV_FREQUENT_CHECK;
2691} 3518}
2692#endif 3519#endif
2693 3520
2694#if EV_ASYNC_ENABLE 3521#if EV_ASYNC_ENABLE
2695void 3522void
2697{ 3524{
2698 if (expect_false (ev_is_active (w))) 3525 if (expect_false (ev_is_active (w)))
2699 return; 3526 return;
2700 3527
2701 evpipe_init (EV_A); 3528 evpipe_init (EV_A);
3529
3530 EV_FREQUENT_CHECK;
2702 3531
2703 ev_start (EV_A_ (W)w, ++asynccnt); 3532 ev_start (EV_A_ (W)w, ++asynccnt);
2704 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3533 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2705 asyncs [asynccnt - 1] = w; 3534 asyncs [asynccnt - 1] = w;
3535
3536 EV_FREQUENT_CHECK;
2706} 3537}
2707 3538
2708void 3539void
2709ev_async_stop (EV_P_ ev_async *w) 3540ev_async_stop (EV_P_ ev_async *w)
2710{ 3541{
2711 clear_pending (EV_A_ (W)w); 3542 clear_pending (EV_A_ (W)w);
2712 if (expect_false (!ev_is_active (w))) 3543 if (expect_false (!ev_is_active (w)))
2713 return; 3544 return;
2714 3545
3546 EV_FREQUENT_CHECK;
3547
2715 { 3548 {
2716 int active = ev_active (w); 3549 int active = ev_active (w);
2717 3550
2718 asyncs [active - 1] = asyncs [--asynccnt]; 3551 asyncs [active - 1] = asyncs [--asynccnt];
2719 ev_active (asyncs [active - 1]) = active; 3552 ev_active (asyncs [active - 1]) = active;
2720 } 3553 }
2721 3554
2722 ev_stop (EV_A_ (W)w); 3555 ev_stop (EV_A_ (W)w);
3556
3557 EV_FREQUENT_CHECK;
2723} 3558}
2724 3559
2725void 3560void
2726ev_async_send (EV_P_ ev_async *w) 3561ev_async_send (EV_P_ ev_async *w)
2727{ 3562{
2728 w->sent = 1; 3563 w->sent = 1;
2729 evpipe_write (EV_A_ &gotasync); 3564 evpipe_write (EV_A_ &async_pending);
2730} 3565}
2731#endif 3566#endif
2732 3567
2733/*****************************************************************************/ 3568/*****************************************************************************/
2734 3569
2744once_cb (EV_P_ struct ev_once *once, int revents) 3579once_cb (EV_P_ struct ev_once *once, int revents)
2745{ 3580{
2746 void (*cb)(int revents, void *arg) = once->cb; 3581 void (*cb)(int revents, void *arg) = once->cb;
2747 void *arg = once->arg; 3582 void *arg = once->arg;
2748 3583
2749 ev_io_stop (EV_A_ &once->io); 3584 ev_io_stop (EV_A_ &once->io);
2750 ev_timer_stop (EV_A_ &once->to); 3585 ev_timer_stop (EV_A_ &once->to);
2751 ev_free (once); 3586 ev_free (once);
2752 3587
2753 cb (revents, arg); 3588 cb (revents, arg);
2754} 3589}
2755 3590
2756static void 3591static void
2757once_cb_io (EV_P_ ev_io *w, int revents) 3592once_cb_io (EV_P_ ev_io *w, int revents)
2758{ 3593{
2759 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3594 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3595
3596 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2760} 3597}
2761 3598
2762static void 3599static void
2763once_cb_to (EV_P_ ev_timer *w, int revents) 3600once_cb_to (EV_P_ ev_timer *w, int revents)
2764{ 3601{
2765 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3602 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3603
3604 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2766} 3605}
2767 3606
2768void 3607void
2769ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3608ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2770{ 3609{
2792 ev_timer_set (&once->to, timeout, 0.); 3631 ev_timer_set (&once->to, timeout, 0.);
2793 ev_timer_start (EV_A_ &once->to); 3632 ev_timer_start (EV_A_ &once->to);
2794 } 3633 }
2795} 3634}
2796 3635
3636/*****************************************************************************/
3637
3638#if EV_WALK_ENABLE
3639void
3640ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3641{
3642 int i, j;
3643 ev_watcher_list *wl, *wn;
3644
3645 if (types & (EV_IO | EV_EMBED))
3646 for (i = 0; i < anfdmax; ++i)
3647 for (wl = anfds [i].head; wl; )
3648 {
3649 wn = wl->next;
3650
3651#if EV_EMBED_ENABLE
3652 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3653 {
3654 if (types & EV_EMBED)
3655 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3656 }
3657 else
3658#endif
3659#if EV_USE_INOTIFY
3660 if (ev_cb ((ev_io *)wl) == infy_cb)
3661 ;
3662 else
3663#endif
3664 if ((ev_io *)wl != &pipe_w)
3665 if (types & EV_IO)
3666 cb (EV_A_ EV_IO, wl);
3667
3668 wl = wn;
3669 }
3670
3671 if (types & (EV_TIMER | EV_STAT))
3672 for (i = timercnt + HEAP0; i-- > HEAP0; )
3673#if EV_STAT_ENABLE
3674 /*TODO: timer is not always active*/
3675 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3676 {
3677 if (types & EV_STAT)
3678 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3679 }
3680 else
3681#endif
3682 if (types & EV_TIMER)
3683 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3684
3685#if EV_PERIODIC_ENABLE
3686 if (types & EV_PERIODIC)
3687 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3688 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3689#endif
3690
3691#if EV_IDLE_ENABLE
3692 if (types & EV_IDLE)
3693 for (j = NUMPRI; i--; )
3694 for (i = idlecnt [j]; i--; )
3695 cb (EV_A_ EV_IDLE, idles [j][i]);
3696#endif
3697
3698#if EV_FORK_ENABLE
3699 if (types & EV_FORK)
3700 for (i = forkcnt; i--; )
3701 if (ev_cb (forks [i]) != embed_fork_cb)
3702 cb (EV_A_ EV_FORK, forks [i]);
3703#endif
3704
3705#if EV_ASYNC_ENABLE
3706 if (types & EV_ASYNC)
3707 for (i = asynccnt; i--; )
3708 cb (EV_A_ EV_ASYNC, asyncs [i]);
3709#endif
3710
3711 if (types & EV_PREPARE)
3712 for (i = preparecnt; i--; )
3713#if EV_EMBED_ENABLE
3714 if (ev_cb (prepares [i]) != embed_prepare_cb)
3715#endif
3716 cb (EV_A_ EV_PREPARE, prepares [i]);
3717
3718 if (types & EV_CHECK)
3719 for (i = checkcnt; i--; )
3720 cb (EV_A_ EV_CHECK, checks [i]);
3721
3722 if (types & EV_SIGNAL)
3723 for (i = 0; i < EV_NSIG - 1; ++i)
3724 for (wl = signals [i].head; wl; )
3725 {
3726 wn = wl->next;
3727 cb (EV_A_ EV_SIGNAL, wl);
3728 wl = wn;
3729 }
3730
3731 if (types & EV_CHILD)
3732 for (i = EV_PID_HASHSIZE; i--; )
3733 for (wl = childs [i]; wl; )
3734 {
3735 wn = wl->next;
3736 cb (EV_A_ EV_CHILD, wl);
3737 wl = wn;
3738 }
3739/* EV_STAT 0x00001000 /* stat data changed */
3740/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3741}
3742#endif
3743
2797#if EV_MULTIPLICITY 3744#if EV_MULTIPLICITY
2798 #include "ev_wrap.h" 3745 #include "ev_wrap.h"
2799#endif 3746#endif
2800 3747
2801#ifdef __cplusplus 3748#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines