ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.246 by root, Wed May 21 12:51:38 2008 UTC vs.
Revision 1.359 by root, Sun Oct 24 17:58:41 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
52# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
55# endif 65# endif
56# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
58# endif 68# endif
59# else 69# else
60# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
62# endif 72# endif
63# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
65# endif 75# endif
66# endif 76# endif
67 77
78# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
71# else 82# else
83# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
74# endif 94# endif
75 95
96# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 99# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 100# else
101# undef EV_USE_POLL
88# define EV_USE_POLL 0 102# define EV_USE_POLL 0
89# endif
90# endif 103# endif
91 104
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
95# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
98# endif 112# endif
99 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
106# endif 121# endif
107 122
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
111# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
114# endif 130# endif
115 131
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
122# endif 139# endif
123 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 142# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 143# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
130# endif 148# endif
131 149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
132#endif 159#endif
133 160
134#include <math.h> 161#include <math.h>
135#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
136#include <fcntl.h> 164#include <fcntl.h>
137#include <stddef.h> 165#include <stddef.h>
138 166
139#include <stdio.h> 167#include <stdio.h>
140 168
141#include <assert.h> 169#include <assert.h>
142#include <errno.h> 170#include <errno.h>
143#include <sys/types.h> 171#include <sys/types.h>
144#include <time.h> 172#include <time.h>
173#include <limits.h>
145 174
146#include <signal.h> 175#include <signal.h>
147 176
148#ifdef EV_H 177#ifdef EV_H
149# include EV_H 178# include EV_H
150#else 179#else
151# include "ev.h" 180# include "ev.h"
152#endif 181#endif
182
183EV_CPP(extern "C" {)
153 184
154#ifndef _WIN32 185#ifndef _WIN32
155# include <sys/time.h> 186# include <sys/time.h>
156# include <sys/wait.h> 187# include <sys/wait.h>
157# include <unistd.h> 188# include <unistd.h>
158#else 189#else
190# include <io.h>
159# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 192# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
163# endif 195# endif
196# undef EV_AVOID_STDIO
164#endif 197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
165 206
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 207/* this block tries to deduce configuration from header-defined symbols and defaults */
167 208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
244
168#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
169# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
170#endif 251#endif
171 252
172#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 255#endif
175 256
176#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
177# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
262# endif
178#endif 263#endif
179 264
180#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 267#endif
183 268
184#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
185# ifdef _WIN32 270# ifdef _WIN32
186# define EV_USE_POLL 0 271# define EV_USE_POLL 0
187# else 272# else
188# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 274# endif
190#endif 275#endif
191 276
192#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 280# else
196# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
197# endif 282# endif
198#endif 283#endif
199 284
205# define EV_USE_PORT 0 290# define EV_USE_PORT 0
206#endif 291#endif
207 292
208#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 295# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 296# else
212# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
213# endif 298# endif
214#endif 299#endif
215 300
216#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 303#endif
223 304
224#ifndef EV_INOTIFY_HASHSIZE 305#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 307#endif
231 308
232#ifndef EV_USE_EVENTFD 309#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 311# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 312# else
236# define EV_USE_EVENTFD 0 313# define EV_USE_EVENTFD 0
237# endif 314# endif
238#endif 315#endif
239 316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
240#ifndef EV_USE_4HEAP 335#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 336# define EV_USE_4HEAP EV_FEATURE_DATA
242#endif 337#endif
243 338
244#ifndef EV_HEAP_CACHE_AT 339#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
246#endif 355#endif
247 356
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
249 364
250#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
251# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
252# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
253#endif 368#endif
267# include <sys/select.h> 382# include <sys/select.h>
268# endif 383# endif
269#endif 384#endif
270 385
271#if EV_USE_INOTIFY 386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
272# include <sys/inotify.h> 388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
273#endif 394#endif
274 395
275#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h> 397# include <winsock.h>
277#endif 398#endif
278 399
279#if EV_USE_EVENTFD 400#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 402# include <stdint.h>
282# ifdef __cplusplus 403# ifndef EFD_NONBLOCK
283extern "C" { 404# define EFD_NONBLOCK O_NONBLOCK
284# endif 405# endif
285int eventfd (unsigned int initval, int flags); 406# ifndef EFD_CLOEXEC
286# ifdef __cplusplus 407# ifdef O_CLOEXEC
287} 408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
288# endif 412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
289#endif 436#endif
290 437
291/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
292 445
293/* 446/*
294 * This is used to avoid floating point rounding problems. 447 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics 448 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding 449 * to ensure progress, time-wise, even when rounding
300 */ 453 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
302 455
303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
306 461
307#if __GNUC__ >= 4 462#if __GNUC__ >= 4
308# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
309# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
310#else 465#else
317 472
318#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
319#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
320#define inline_size static inline 475#define inline_size static inline
321 476
322#if EV_MINIMAL 477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
323# define inline_speed static noinline 480# define inline_speed static noinline
481#endif
482
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
324#else 487#else
325# define inline_speed static inline
326#endif
327
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
330 490
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
333 493
334typedef ev_watcher *W; 494typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
337 497
338#define ev_active(w) ((W)(w))->active 498#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 499#define ev_at(w) ((WT)(w))->at
340 500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
341#if EV_USE_MONOTONIC 507#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
345#endif 519#endif
346 520
347#ifdef _WIN32 521#ifdef _WIN32
348# include "ev_win32.c" 522# include "ev_win32.c"
349#endif 523#endif
350 524
351/*****************************************************************************/ 525/*****************************************************************************/
352 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
353static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
354 578
355void 579void
356ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
357{ 581{
358 syserr_cb = cb; 582 syserr_cb = cb;
359} 583}
360 584
361static void noinline 585static void noinline
362syserr (const char *msg) 586ev_syserr (const char *msg)
363{ 587{
364 if (!msg) 588 if (!msg)
365 msg = "(libev) system error"; 589 msg = "(libev) system error";
366 590
367 if (syserr_cb) 591 if (syserr_cb)
368 syserr_cb (msg); 592 syserr_cb (msg);
369 else 593 else
370 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
371 perror (msg); 603 perror (msg);
604#endif
372 abort (); 605 abort ();
373 } 606 }
374} 607}
375 608
376static void * 609static void *
377ev_realloc_emul (void *ptr, long size) 610ev_realloc_emul (void *ptr, long size)
378{ 611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
379 /* some systems, notably openbsd and darwin, fail to properly 615 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and 616 * implement realloc (x, 0) (as required by both ansi c-89 and
381 * the single unix specification, so work around them here. 617 * the single unix specification, so work around them here.
382 */ 618 */
383 619
384 if (size) 620 if (size)
385 return realloc (ptr, size); 621 return realloc (ptr, size);
386 622
387 free (ptr); 623 free (ptr);
388 return 0; 624 return 0;
625#endif
389} 626}
390 627
391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
392 629
393void 630void
401{ 638{
402 ptr = alloc (ptr, size); 639 ptr = alloc (ptr, size);
403 640
404 if (!ptr && size) 641 if (!ptr && size)
405 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
407 abort (); 648 abort ();
408 } 649 }
409 650
410 return ptr; 651 return ptr;
411} 652}
413#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
415 656
416/*****************************************************************************/ 657/*****************************************************************************/
417 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
418typedef struct 663typedef struct
419{ 664{
420 WL head; 665 WL head;
421 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
423#if EV_SELECT_IS_WINSOCKET 673#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
424 SOCKET handle; 674 SOCKET handle;
425#endif 675#endif
676#if EV_USE_IOCP
677 OVERLAPPED or, ow;
678#endif
426} ANFD; 679} ANFD;
427 680
681/* stores the pending event set for a given watcher */
428typedef struct 682typedef struct
429{ 683{
430 W w; 684 W w;
431 int events; 685 int events; /* the pending event set for the given watcher */
432} ANPENDING; 686} ANPENDING;
433 687
434#if EV_USE_INOTIFY 688#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 689/* hash table entry per inotify-id */
436typedef struct 690typedef struct
439} ANFS; 693} ANFS;
440#endif 694#endif
441 695
442/* Heap Entry */ 696/* Heap Entry */
443#if EV_HEAP_CACHE_AT 697#if EV_HEAP_CACHE_AT
698 /* a heap element */
444 typedef struct { 699 typedef struct {
445 ev_tstamp at; 700 ev_tstamp at;
446 WT w; 701 WT w;
447 } ANHE; 702 } ANHE;
448 703
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 704 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 705 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 706 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 707#else
708 /* a heap element */
453 typedef WT ANHE; 709 typedef WT ANHE;
454 710
455 #define ANHE_w(he) (he) 711 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 712 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 713 #define ANHE_at_cache(he)
458#endif 714#endif
459 715
460#if EV_MULTIPLICITY 716#if EV_MULTIPLICITY
461 717
462 struct ev_loop 718 struct ev_loop
481 737
482 static int ev_default_loop_ptr; 738 static int ev_default_loop_ptr;
483 739
484#endif 740#endif
485 741
742#if EV_FEATURE_API
743# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745# define EV_INVOKE_PENDING invoke_cb (EV_A)
746#else
747# define EV_RELEASE_CB (void)0
748# define EV_ACQUIRE_CB (void)0
749# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750#endif
751
752#define EVBREAK_RECURSE 0x80
753
486/*****************************************************************************/ 754/*****************************************************************************/
487 755
756#ifndef EV_HAVE_EV_TIME
488ev_tstamp 757ev_tstamp
489ev_time (void) 758ev_time (void)
490{ 759{
491#if EV_USE_REALTIME 760#if EV_USE_REALTIME
761 if (expect_true (have_realtime))
762 {
492 struct timespec ts; 763 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 764 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 765 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 766 }
767#endif
768
496 struct timeval tv; 769 struct timeval tv;
497 gettimeofday (&tv, 0); 770 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 771 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 772}
773#endif
501 774
502ev_tstamp inline_size 775inline_size ev_tstamp
503get_clock (void) 776get_clock (void)
504{ 777{
505#if EV_USE_MONOTONIC 778#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 779 if (expect_true (have_monotonic))
507 { 780 {
528 if (delay > 0.) 801 if (delay > 0.)
529 { 802 {
530#if EV_USE_NANOSLEEP 803#if EV_USE_NANOSLEEP
531 struct timespec ts; 804 struct timespec ts;
532 805
533 ts.tv_sec = (time_t)delay; 806 EV_TS_SET (ts, delay);
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0); 807 nanosleep (&ts, 0);
537#elif defined(_WIN32) 808#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3)); 809 Sleep ((unsigned long)(delay * 1e3));
539#else 810#else
540 struct timeval tv; 811 struct timeval tv;
541 812
542 tv.tv_sec = (time_t)delay; 813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 814 /* something not guaranteed by newer posix versions, but guaranteed */
544 815 /* by older ones */
816 EV_TV_SET (tv, delay);
545 select (0, 0, 0, 0, &tv); 817 select (0, 0, 0, 0, &tv);
546#endif 818#endif
547 } 819 }
548} 820}
549 821
550/*****************************************************************************/ 822/*****************************************************************************/
551 823
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 824#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 825
554int inline_size 826/* find a suitable new size for the given array, */
827/* hopefully by rounding to a nice-to-malloc size */
828inline_size int
555array_nextsize (int elem, int cur, int cnt) 829array_nextsize (int elem, int cur, int cnt)
556{ 830{
557 int ncur = cur + 1; 831 int ncur = cur + 1;
558 832
559 do 833 do
576array_realloc (int elem, void *base, int *cur, int cnt) 850array_realloc (int elem, void *base, int *cur, int cnt)
577{ 851{
578 *cur = array_nextsize (elem, *cur, cnt); 852 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 853 return ev_realloc (base, elem * *cur);
580} 854}
855
856#define array_init_zero(base,count) \
857 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 858
582#define array_needsize(type,base,cur,cnt,init) \ 859#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 860 if (expect_false ((cnt) > (cur))) \
584 { \ 861 { \
585 int ocur_ = (cur); \ 862 int ocur_ = (cur); \
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 874 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 875 }
599#endif 876#endif
600 877
601#define array_free(stem, idx) \ 878#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 879 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 880
604/*****************************************************************************/ 881/*****************************************************************************/
882
883/* dummy callback for pending events */
884static void noinline
885pendingcb (EV_P_ ev_prepare *w, int revents)
886{
887}
605 888
606void noinline 889void noinline
607ev_feed_event (EV_P_ void *w, int revents) 890ev_feed_event (EV_P_ void *w, int revents)
608{ 891{
609 W w_ = (W)w; 892 W w_ = (W)w;
618 pendings [pri][w_->pending - 1].w = w_; 901 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 902 pendings [pri][w_->pending - 1].events = revents;
620 } 903 }
621} 904}
622 905
623void inline_speed 906inline_speed void
907feed_reverse (EV_P_ W w)
908{
909 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910 rfeeds [rfeedcnt++] = w;
911}
912
913inline_size void
914feed_reverse_done (EV_P_ int revents)
915{
916 do
917 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918 while (rfeedcnt);
919}
920
921inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 922queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 923{
626 int i; 924 int i;
627 925
628 for (i = 0; i < eventcnt; ++i) 926 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 927 ev_feed_event (EV_A_ events [i], type);
630} 928}
631 929
632/*****************************************************************************/ 930/*****************************************************************************/
633 931
634void inline_size 932inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 933fd_event_nocheck (EV_P_ int fd, int revents)
649{ 934{
650 ANFD *anfd = anfds + fd; 935 ANFD *anfd = anfds + fd;
651 ev_io *w; 936 ev_io *w;
652 937
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 942 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 943 ev_feed_event (EV_A_ (W)w, ev);
659 } 944 }
660} 945}
661 946
947/* do not submit kernel events for fds that have reify set */
948/* because that means they changed while we were polling for new events */
949inline_speed void
950fd_event (EV_P_ int fd, int revents)
951{
952 ANFD *anfd = anfds + fd;
953
954 if (expect_true (!anfd->reify))
955 fd_event_nocheck (EV_A_ fd, revents);
956}
957
662void 958void
663ev_feed_fd_event (EV_P_ int fd, int revents) 959ev_feed_fd_event (EV_P_ int fd, int revents)
664{ 960{
665 if (fd >= 0 && fd < anfdmax) 961 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 962 fd_event_nocheck (EV_A_ fd, revents);
667} 963}
668 964
669void inline_size 965/* make sure the external fd watch events are in-sync */
966/* with the kernel/libev internal state */
967inline_size void
670fd_reify (EV_P) 968fd_reify (EV_P)
671{ 969{
672 int i; 970 int i;
673 971
674 for (i = 0; i < fdchangecnt; ++i) 972 for (i = 0; i < fdchangecnt; ++i)
675 { 973 {
676 int fd = fdchanges [i]; 974 int fd = fdchanges [i];
677 ANFD *anfd = anfds + fd; 975 ANFD *anfd = anfds + fd;
678 ev_io *w; 976 ev_io *w;
679 977
680 unsigned char events = 0; 978 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify;
681 980
682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 981 anfd->reify = 0;
683 events |= (unsigned char)w->events;
684 982
685#if EV_SELECT_IS_WINSOCKET 983#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
686 if (events) 984 if (o_reify & EV__IOFDSET)
687 { 985 {
688 unsigned long argp; 986 unsigned long arg;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
692 anfd->handle = _get_osfhandle (fd);
693 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
695 } 990 }
696#endif 991#endif
697 992
993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
698 { 994 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
702 anfd->reify = 0;
703 anfd->events = events; 995 anfd->events = 0;
704 996
705 if (o_events != events || o_reify & EV_IOFDSET) 997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998 anfd->events |= (unsigned char)w->events;
999
1000 if (o_events != anfd->events)
1001 o_reify = EV__IOFDSET; /* actually |= */
1002 }
1003
1004 if (o_reify & EV__IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 1005 backend_modify (EV_A_ fd, o_events, anfd->events);
707 }
708 } 1006 }
709 1007
710 fdchangecnt = 0; 1008 fdchangecnt = 0;
711} 1009}
712 1010
713void inline_size 1011/* something about the given fd changed */
1012inline_size void
714fd_change (EV_P_ int fd, int flags) 1013fd_change (EV_P_ int fd, int flags)
715{ 1014{
716 unsigned char reify = anfds [fd].reify; 1015 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 1016 anfds [fd].reify |= flags;
718 1017
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1021 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 1022 fdchanges [fdchangecnt - 1] = fd;
724 } 1023 }
725} 1024}
726 1025
727void inline_speed 1026/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027inline_speed void
728fd_kill (EV_P_ int fd) 1028fd_kill (EV_P_ int fd)
729{ 1029{
730 ev_io *w; 1030 ev_io *w;
731 1031
732 while ((w = (ev_io *)anfds [fd].head)) 1032 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 1034 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 1036 }
737} 1037}
738 1038
739int inline_size 1039/* check whether the given fd is actually valid, for error recovery */
1040inline_size int
740fd_valid (int fd) 1041fd_valid (int fd)
741{ 1042{
742#ifdef _WIN32 1043#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
744#else 1045#else
745 return fcntl (fd, F_GETFD) != -1; 1046 return fcntl (fd, F_GETFD) != -1;
746#endif 1047#endif
747} 1048}
748 1049
752{ 1053{
753 int fd; 1054 int fd;
754 1055
755 for (fd = 0; fd < anfdmax; ++fd) 1056 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 1057 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 1058 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 1059 fd_kill (EV_A_ fd);
759} 1060}
760 1061
761/* called on ENOMEM in select/poll to kill some fds and retry */ 1062/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 1063static void noinline
766 1067
767 for (fd = anfdmax; fd--; ) 1068 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events) 1069 if (anfds [fd].events)
769 { 1070 {
770 fd_kill (EV_A_ fd); 1071 fd_kill (EV_A_ fd);
771 return; 1072 break;
772 } 1073 }
773} 1074}
774 1075
775/* usually called after fork if backend needs to re-arm all fds from scratch */ 1076/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline 1077static void noinline
780 1081
781 for (fd = 0; fd < anfdmax; ++fd) 1082 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 1083 if (anfds [fd].events)
783 { 1084 {
784 anfds [fd].events = 0; 1085 anfds [fd].events = 0;
1086 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1087 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 1088 }
787} 1089}
788 1090
1091/* used to prepare libev internal fd's */
1092/* this is not fork-safe */
1093inline_speed void
1094fd_intern (int fd)
1095{
1096#ifdef _WIN32
1097 unsigned long arg = 1;
1098 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1099#else
1100 fcntl (fd, F_SETFD, FD_CLOEXEC);
1101 fcntl (fd, F_SETFL, O_NONBLOCK);
1102#endif
1103}
1104
789/*****************************************************************************/ 1105/*****************************************************************************/
790 1106
791/* 1107/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not 1108 * the heap functions want a real array index. array index 0 is guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1109 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree. 1110 * the branching factor of the d-tree.
795 */ 1111 */
796 1112
797/* 1113/*
802 */ 1118 */
803#if EV_USE_4HEAP 1119#if EV_USE_4HEAP
804 1120
805#define DHEAP 4 1121#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1122#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807 1123#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808/* towards the root */ 1124#define UPHEAP_DONE(p,k) ((p) == (k))
809void inline_speed
810upheap (ANHE *heap, int k)
811{
812 ANHE he = heap [k];
813
814 for (;;)
815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
821 heap [k] = heap [p];
822 ev_active (ANHE_w (heap [k])) = k;
823 k = p;
824 }
825
826 ev_active (ANHE_w (he)) = k;
827 heap [k] = he;
828}
829 1125
830/* away from the root */ 1126/* away from the root */
831void inline_speed 1127inline_speed void
832downheap (ANHE *heap, int N, int k) 1128downheap (ANHE *heap, int N, int k)
833{ 1129{
834 ANHE he = heap [k]; 1130 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0; 1131 ANHE *E = heap + N + HEAP0;
836 1132
837 for (;;) 1133 for (;;)
838 { 1134 {
839 ev_tstamp minat; 1135 ev_tstamp minat;
840 ANHE *minpos; 1136 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1137 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
842 1138
843 // find minimum child 1139 /* find minimum child */
844 if (expect_true (pos + DHEAP - 1 < E)) 1140 if (expect_true (pos + DHEAP - 1 < E))
845 { 1141 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1142 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1143 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1144 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
859 break; 1155 break;
860 1156
861 if (ANHE_at (he) <= minat) 1157 if (ANHE_at (he) <= minat)
862 break; 1158 break;
863 1159
1160 heap [k] = *minpos;
864 ev_active (ANHE_w (*minpos)) = k; 1161 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866 1162
867 k = minpos - heap; 1163 k = minpos - heap;
868 } 1164 }
869 1165
1166 heap [k] = he;
870 ev_active (ANHE_w (he)) = k; 1167 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872} 1168}
873 1169
874#else // 4HEAP 1170#else /* 4HEAP */
875 1171
876#define HEAP0 1 1172#define HEAP0 1
1173#define HPARENT(k) ((k) >> 1)
1174#define UPHEAP_DONE(p,k) (!(p))
877 1175
878/* towards the root */ 1176/* away from the root */
879void inline_speed 1177inline_speed void
880upheap (ANHE *heap, int k) 1178downheap (ANHE *heap, int N, int k)
881{ 1179{
882 ANHE he = heap [k]; 1180 ANHE he = heap [k];
883 1181
884 for (;;) 1182 for (;;)
885 { 1183 {
886 int p = k >> 1; 1184 int c = k << 1;
887 1185
888 /* maybe we could use a dummy element at heap [0]? */ 1186 if (c >= N + HEAP0)
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break; 1187 break;
891 1188
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1189 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0; 1190 ? 1 : 0;
916 1191
917 if (ANHE_at (he) <= ANHE_at (heap [c])) 1192 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break; 1193 break;
919 1194
926 heap [k] = he; 1201 heap [k] = he;
927 ev_active (ANHE_w (he)) = k; 1202 ev_active (ANHE_w (he)) = k;
928} 1203}
929#endif 1204#endif
930 1205
931void inline_size 1206/* towards the root */
1207inline_speed void
1208upheap (ANHE *heap, int k)
1209{
1210 ANHE he = heap [k];
1211
1212 for (;;)
1213 {
1214 int p = HPARENT (k);
1215
1216 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1217 break;
1218
1219 heap [k] = heap [p];
1220 ev_active (ANHE_w (heap [k])) = k;
1221 k = p;
1222 }
1223
1224 heap [k] = he;
1225 ev_active (ANHE_w (he)) = k;
1226}
1227
1228/* move an element suitably so it is in a correct place */
1229inline_size void
932adjustheap (ANHE *heap, int N, int k) 1230adjustheap (ANHE *heap, int N, int k)
933{ 1231{
1232 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
934 upheap (heap, k); 1233 upheap (heap, k);
1234 else
935 downheap (heap, N, k); 1235 downheap (heap, N, k);
1236}
1237
1238/* rebuild the heap: this function is used only once and executed rarely */
1239inline_size void
1240reheap (ANHE *heap, int N)
1241{
1242 int i;
1243
1244 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1245 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1246 for (i = 0; i < N; ++i)
1247 upheap (heap, i + HEAP0);
936} 1248}
937 1249
938/*****************************************************************************/ 1250/*****************************************************************************/
939 1251
1252/* associate signal watchers to a signal signal */
940typedef struct 1253typedef struct
941{ 1254{
1255 EV_ATOMIC_T pending;
1256#if EV_MULTIPLICITY
1257 EV_P;
1258#endif
942 WL head; 1259 WL head;
943 EV_ATOMIC_T gotsig;
944} ANSIG; 1260} ANSIG;
945 1261
946static ANSIG *signals; 1262static ANSIG signals [EV_NSIG - 1];
947static int signalmax;
948
949static EV_ATOMIC_T gotsig;
950
951void inline_size
952signals_init (ANSIG *base, int count)
953{
954 while (count--)
955 {
956 base->head = 0;
957 base->gotsig = 0;
958
959 ++base;
960 }
961}
962 1263
963/*****************************************************************************/ 1264/*****************************************************************************/
964 1265
965void inline_speed 1266#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
966fd_intern (int fd)
967{
968#ifdef _WIN32
969 int arg = 1;
970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
971#else
972 fcntl (fd, F_SETFD, FD_CLOEXEC);
973 fcntl (fd, F_SETFL, O_NONBLOCK);
974#endif
975}
976 1267
977static void noinline 1268static void noinline
978evpipe_init (EV_P) 1269evpipe_init (EV_P)
979{ 1270{
980 if (!ev_is_active (&pipeev)) 1271 if (!ev_is_active (&pipe_w))
981 { 1272 {
982#if EV_USE_EVENTFD 1273# if EV_USE_EVENTFD
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL)
983 if ((evfd = eventfd (0, 0)) >= 0) 1276 evfd = eventfd (0, 0);
1277
1278 if (evfd >= 0)
984 { 1279 {
985 evpipe [0] = -1; 1280 evpipe [0] = -1;
986 fd_intern (evfd); 1281 fd_intern (evfd); /* doing it twice doesn't hurt */
987 ev_io_set (&pipeev, evfd, EV_READ); 1282 ev_io_set (&pipe_w, evfd, EV_READ);
988 } 1283 }
989 else 1284 else
990#endif 1285# endif
991 { 1286 {
992 while (pipe (evpipe)) 1287 while (pipe (evpipe))
993 syserr ("(libev) error creating signal/async pipe"); 1288 ev_syserr ("(libev) error creating signal/async pipe");
994 1289
995 fd_intern (evpipe [0]); 1290 fd_intern (evpipe [0]);
996 fd_intern (evpipe [1]); 1291 fd_intern (evpipe [1]);
997 ev_io_set (&pipeev, evpipe [0], EV_READ); 1292 ev_io_set (&pipe_w, evpipe [0], EV_READ);
998 } 1293 }
999 1294
1000 ev_io_start (EV_A_ &pipeev); 1295 ev_io_start (EV_A_ &pipe_w);
1001 ev_unref (EV_A); /* watcher should not keep loop alive */ 1296 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 } 1297 }
1003} 1298}
1004 1299
1005void inline_size 1300inline_size void
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1301evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{ 1302{
1008 if (!*flag) 1303 if (!*flag)
1009 { 1304 {
1010 int old_errno = errno; /* save errno because write might clobber it */ 1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
1011 1307
1012 *flag = 1; 1308 *flag = 1;
1013 1309
1014#if EV_USE_EVENTFD 1310#if EV_USE_EVENTFD
1015 if (evfd >= 0) 1311 if (evfd >= 0)
1017 uint64_t counter = 1; 1313 uint64_t counter = 1;
1018 write (evfd, &counter, sizeof (uint64_t)); 1314 write (evfd, &counter, sizeof (uint64_t));
1019 } 1315 }
1020 else 1316 else
1021#endif 1317#endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
1022 write (evpipe [1], &old_errno, 1); 1323 write (evpipe [1], &dummy, 1);
1023 1324
1024 errno = old_errno; 1325 errno = old_errno;
1025 } 1326 }
1026} 1327}
1027 1328
1329/* called whenever the libev signal pipe */
1330/* got some events (signal, async) */
1028static void 1331static void
1029pipecb (EV_P_ ev_io *iow, int revents) 1332pipecb (EV_P_ ev_io *iow, int revents)
1030{ 1333{
1334 int i;
1335
1031#if EV_USE_EVENTFD 1336#if EV_USE_EVENTFD
1032 if (evfd >= 0) 1337 if (evfd >= 0)
1033 { 1338 {
1034 uint64_t counter; 1339 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t)); 1340 read (evfd, &counter, sizeof (uint64_t));
1036 } 1341 }
1037 else 1342 else
1038#endif 1343#endif
1039 { 1344 {
1040 char dummy; 1345 char dummy;
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1041 read (evpipe [0], &dummy, 1); 1347 read (evpipe [0], &dummy, 1);
1042 } 1348 }
1043 1349
1044 if (gotsig && ev_is_default_loop (EV_A)) 1350 if (sig_pending)
1045 { 1351 {
1046 int signum; 1352 sig_pending = 0;
1047 gotsig = 0;
1048 1353
1049 for (signum = signalmax; signum--; ) 1354 for (i = EV_NSIG - 1; i--; )
1050 if (signals [signum].gotsig) 1355 if (expect_false (signals [i].pending))
1051 ev_feed_signal_event (EV_A_ signum + 1); 1356 ev_feed_signal_event (EV_A_ i + 1);
1052 } 1357 }
1053 1358
1054#if EV_ASYNC_ENABLE 1359#if EV_ASYNC_ENABLE
1055 if (gotasync) 1360 if (async_pending)
1056 { 1361 {
1057 int i; 1362 async_pending = 0;
1058 gotasync = 0;
1059 1363
1060 for (i = asynccnt; i--; ) 1364 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent) 1365 if (asyncs [i]->sent)
1062 { 1366 {
1063 asyncs [i]->sent = 0; 1367 asyncs [i]->sent = 0;
1071 1375
1072static void 1376static void
1073ev_sighandler (int signum) 1377ev_sighandler (int signum)
1074{ 1378{
1075#if EV_MULTIPLICITY 1379#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct; 1380 EV_P = signals [signum - 1].loop;
1077#endif 1381#endif
1078 1382
1079#if _WIN32 1383#ifdef _WIN32
1080 signal (signum, ev_sighandler); 1384 signal (signum, ev_sighandler);
1081#endif 1385#endif
1082 1386
1083 signals [signum - 1].gotsig = 1; 1387 signals [signum - 1].pending = 1;
1084 evpipe_write (EV_A_ &gotsig); 1388 evpipe_write (EV_A_ &sig_pending);
1085} 1389}
1086 1390
1087void noinline 1391void noinline
1088ev_feed_signal_event (EV_P_ int signum) 1392ev_feed_signal_event (EV_P_ int signum)
1089{ 1393{
1090 WL w; 1394 WL w;
1091 1395
1396 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397 return;
1398
1399 --signum;
1400
1092#if EV_MULTIPLICITY 1401#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1402 /* it is permissible to try to feed a signal to the wrong loop */
1094#endif 1403 /* or, likely more useful, feeding a signal nobody is waiting for */
1095 1404
1096 --signum; 1405 if (expect_false (signals [signum].loop != EV_A))
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return; 1406 return;
1407#endif
1100 1408
1101 signals [signum].gotsig = 0; 1409 signals [signum].pending = 0;
1102 1410
1103 for (w = signals [signum].head; w; w = w->next) 1411 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105} 1413}
1106 1414
1415#if EV_USE_SIGNALFD
1416static void
1417sigfdcb (EV_P_ ev_io *iow, int revents)
1418{
1419 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1420
1421 for (;;)
1422 {
1423 ssize_t res = read (sigfd, si, sizeof (si));
1424
1425 /* not ISO-C, as res might be -1, but works with SuS */
1426 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1427 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1428
1429 if (res < (ssize_t)sizeof (si))
1430 break;
1431 }
1432}
1433#endif
1434
1435#endif
1436
1107/*****************************************************************************/ 1437/*****************************************************************************/
1108 1438
1439#if EV_CHILD_ENABLE
1109static WL childs [EV_PID_HASHSIZE]; 1440static WL childs [EV_PID_HASHSIZE];
1110
1111#ifndef _WIN32
1112 1441
1113static ev_signal childev; 1442static ev_signal childev;
1114 1443
1115#ifndef WIFCONTINUED 1444#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0 1445# define WIFCONTINUED(status) 0
1117#endif 1446#endif
1118 1447
1119void inline_speed 1448/* handle a single child status event */
1449inline_speed void
1120child_reap (EV_P_ int chain, int pid, int status) 1450child_reap (EV_P_ int chain, int pid, int status)
1121{ 1451{
1122 ev_child *w; 1452 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1453 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1124 1454
1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1455 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1126 { 1456 {
1127 if ((w->pid == pid || !w->pid) 1457 if ((w->pid == pid || !w->pid)
1128 && (!traced || (w->flags & 1))) 1458 && (!traced || (w->flags & 1)))
1129 { 1459 {
1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1460 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1137 1467
1138#ifndef WCONTINUED 1468#ifndef WCONTINUED
1139# define WCONTINUED 0 1469# define WCONTINUED 0
1140#endif 1470#endif
1141 1471
1472/* called on sigchld etc., calls waitpid */
1142static void 1473static void
1143childcb (EV_P_ ev_signal *sw, int revents) 1474childcb (EV_P_ ev_signal *sw, int revents)
1144{ 1475{
1145 int pid, status; 1476 int pid, status;
1146 1477
1154 /* make sure we are called again until all children have been reaped */ 1485 /* make sure we are called again until all children have been reaped */
1155 /* we need to do it this way so that the callback gets called before we continue */ 1486 /* we need to do it this way so that the callback gets called before we continue */
1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1487 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1157 1488
1158 child_reap (EV_A_ pid, pid, status); 1489 child_reap (EV_A_ pid, pid, status);
1159 if (EV_PID_HASHSIZE > 1) 1490 if ((EV_PID_HASHSIZE) > 1)
1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1491 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1161} 1492}
1162 1493
1163#endif 1494#endif
1164 1495
1165/*****************************************************************************/ 1496/*****************************************************************************/
1166 1497
1498#if EV_USE_IOCP
1499# include "ev_iocp.c"
1500#endif
1167#if EV_USE_PORT 1501#if EV_USE_PORT
1168# include "ev_port.c" 1502# include "ev_port.c"
1169#endif 1503#endif
1170#if EV_USE_KQUEUE 1504#if EV_USE_KQUEUE
1171# include "ev_kqueue.c" 1505# include "ev_kqueue.c"
1227 /* kqueue is borked on everything but netbsd apparently */ 1561 /* kqueue is borked on everything but netbsd apparently */
1228 /* it usually doesn't work correctly on anything but sockets and pipes */ 1562 /* it usually doesn't work correctly on anything but sockets and pipes */
1229 flags &= ~EVBACKEND_KQUEUE; 1563 flags &= ~EVBACKEND_KQUEUE;
1230#endif 1564#endif
1231#ifdef __APPLE__ 1565#ifdef __APPLE__
1232 // flags &= ~EVBACKEND_KQUEUE; for documentation 1566 /* only select works correctly on that "unix-certified" platform */
1233 flags &= ~EVBACKEND_POLL; 1567 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569#endif
1570#ifdef __FreeBSD__
1571 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1234#endif 1572#endif
1235 1573
1236 return flags; 1574 return flags;
1237} 1575}
1238 1576
1240ev_embeddable_backends (void) 1578ev_embeddable_backends (void)
1241{ 1579{
1242 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1243 1581
1244 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1245 /* please fix it and tell me how to detect the fix */ 1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1246 flags &= ~EVBACKEND_EPOLL; 1584 flags &= ~EVBACKEND_EPOLL;
1247 1585
1248 return flags; 1586 return flags;
1249} 1587}
1250 1588
1251unsigned int 1589unsigned int
1252ev_backend (EV_P) 1590ev_backend (EV_P)
1253{ 1591{
1254 return backend; 1592 return backend;
1255} 1593}
1256 1594
1595#if EV_FEATURE_API
1257unsigned int 1596unsigned int
1258ev_loop_count (EV_P) 1597ev_iteration (EV_P)
1259{ 1598{
1260 return loop_count; 1599 return loop_count;
1600}
1601
1602unsigned int
1603ev_depth (EV_P)
1604{
1605 return loop_depth;
1261} 1606}
1262 1607
1263void 1608void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1609ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1265{ 1610{
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1615ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1271{ 1616{
1272 timeout_blocktime = interval; 1617 timeout_blocktime = interval;
1273} 1618}
1274 1619
1620void
1621ev_set_userdata (EV_P_ void *data)
1622{
1623 userdata = data;
1624}
1625
1626void *
1627ev_userdata (EV_P)
1628{
1629 return userdata;
1630}
1631
1632void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633{
1634 invoke_cb = invoke_pending_cb;
1635}
1636
1637void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638{
1639 release_cb = release;
1640 acquire_cb = acquire;
1641}
1642#endif
1643
1644/* initialise a loop structure, must be zero-initialised */
1275static void noinline 1645static void noinline
1276loop_init (EV_P_ unsigned int flags) 1646loop_init (EV_P_ unsigned int flags)
1277{ 1647{
1278 if (!backend) 1648 if (!backend)
1279 { 1649 {
1650#if EV_USE_REALTIME
1651 if (!have_realtime)
1652 {
1653 struct timespec ts;
1654
1655 if (!clock_gettime (CLOCK_REALTIME, &ts))
1656 have_realtime = 1;
1657 }
1658#endif
1659
1280#if EV_USE_MONOTONIC 1660#if EV_USE_MONOTONIC
1661 if (!have_monotonic)
1281 { 1662 {
1282 struct timespec ts; 1663 struct timespec ts;
1664
1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1665 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1284 have_monotonic = 1; 1666 have_monotonic = 1;
1285 } 1667 }
1286#endif 1668#endif
1669
1670 /* pid check not overridable via env */
1671#ifndef _WIN32
1672 if (flags & EVFLAG_FORKCHECK)
1673 curpid = getpid ();
1674#endif
1675
1676 if (!(flags & EVFLAG_NOENV)
1677 && !enable_secure ()
1678 && getenv ("LIBEV_FLAGS"))
1679 flags = atoi (getenv ("LIBEV_FLAGS"));
1287 1680
1288 ev_rt_now = ev_time (); 1681 ev_rt_now = ev_time ();
1289 mn_now = get_clock (); 1682 mn_now = get_clock ();
1290 now_floor = mn_now; 1683 now_floor = mn_now;
1291 rtmn_diff = ev_rt_now - mn_now; 1684 rtmn_diff = ev_rt_now - mn_now;
1685#if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending;
1687#endif
1292 1688
1293 io_blocktime = 0.; 1689 io_blocktime = 0.;
1294 timeout_blocktime = 0.; 1690 timeout_blocktime = 0.;
1295 backend = 0; 1691 backend = 0;
1296 backend_fd = -1; 1692 backend_fd = -1;
1297 gotasync = 0; 1693 sig_pending = 0;
1694#if EV_ASYNC_ENABLE
1695 async_pending = 0;
1696#endif
1298#if EV_USE_INOTIFY 1697#if EV_USE_INOTIFY
1299 fs_fd = -2; 1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1300#endif 1699#endif
1301 1700#if EV_USE_SIGNALFD
1302 /* pid check not overridable via env */ 1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1303#ifndef _WIN32
1304 if (flags & EVFLAG_FORKCHECK)
1305 curpid = getpid ();
1306#endif 1702#endif
1307
1308 if (!(flags & EVFLAG_NOENV)
1309 && !enable_secure ()
1310 && getenv ("LIBEV_FLAGS"))
1311 flags = atoi (getenv ("LIBEV_FLAGS"));
1312 1703
1313 if (!(flags & 0x0000ffffU)) 1704 if (!(flags & 0x0000ffffU))
1314 flags |= ev_recommended_backends (); 1705 flags |= ev_recommended_backends ();
1315 1706
1707#if EV_USE_IOCP
1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1709#endif
1316#if EV_USE_PORT 1710#if EV_USE_PORT
1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1711 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1318#endif 1712#endif
1319#if EV_USE_KQUEUE 1713#if EV_USE_KQUEUE
1320 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1714 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1327#endif 1721#endif
1328#if EV_USE_SELECT 1722#if EV_USE_SELECT
1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1723 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1330#endif 1724#endif
1331 1725
1726 ev_prepare_init (&pending_w, pendingcb);
1727
1728#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1332 ev_init (&pipeev, pipecb); 1729 ev_init (&pipe_w, pipecb);
1333 ev_set_priority (&pipeev, EV_MAXPRI); 1730 ev_set_priority (&pipe_w, EV_MAXPRI);
1731#endif
1334 } 1732 }
1335} 1733}
1336 1734
1337static void noinline 1735/* free up a loop structure */
1736void
1338loop_destroy (EV_P) 1737ev_loop_destroy (EV_P)
1339{ 1738{
1340 int i; 1739 int i;
1341 1740
1741#if EV_CHILD_ENABLE
1742 if (ev_is_active (&childev))
1743 {
1744 ev_ref (EV_A); /* child watcher */
1745 ev_signal_stop (EV_A_ &childev);
1746 }
1747#endif
1748
1342 if (ev_is_active (&pipeev)) 1749 if (ev_is_active (&pipe_w))
1343 { 1750 {
1344 ev_ref (EV_A); /* signal watcher */ 1751 /*ev_ref (EV_A);*/
1345 ev_io_stop (EV_A_ &pipeev); 1752 /*ev_io_stop (EV_A_ &pipe_w);*/
1346 1753
1347#if EV_USE_EVENTFD 1754#if EV_USE_EVENTFD
1348 if (evfd >= 0) 1755 if (evfd >= 0)
1349 close (evfd); 1756 close (evfd);
1350#endif 1757#endif
1351 1758
1352 if (evpipe [0] >= 0) 1759 if (evpipe [0] >= 0)
1353 { 1760 {
1354 close (evpipe [0]); 1761 EV_WIN32_CLOSE_FD (evpipe [0]);
1355 close (evpipe [1]); 1762 EV_WIN32_CLOSE_FD (evpipe [1]);
1356 } 1763 }
1357 } 1764 }
1765
1766#if EV_USE_SIGNALFD
1767 if (ev_is_active (&sigfd_w))
1768 close (sigfd);
1769#endif
1358 1770
1359#if EV_USE_INOTIFY 1771#if EV_USE_INOTIFY
1360 if (fs_fd >= 0) 1772 if (fs_fd >= 0)
1361 close (fs_fd); 1773 close (fs_fd);
1362#endif 1774#endif
1363 1775
1364 if (backend_fd >= 0) 1776 if (backend_fd >= 0)
1365 close (backend_fd); 1777 close (backend_fd);
1366 1778
1779#if EV_USE_IOCP
1780 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1781#endif
1367#if EV_USE_PORT 1782#if EV_USE_PORT
1368 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1783 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1369#endif 1784#endif
1370#if EV_USE_KQUEUE 1785#if EV_USE_KQUEUE
1371 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1786 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1386#if EV_IDLE_ENABLE 1801#if EV_IDLE_ENABLE
1387 array_free (idle, [i]); 1802 array_free (idle, [i]);
1388#endif 1803#endif
1389 } 1804 }
1390 1805
1391 ev_free (anfds); anfdmax = 0; 1806 ev_free (anfds); anfds = 0; anfdmax = 0;
1392 1807
1393 /* have to use the microsoft-never-gets-it-right macro */ 1808 /* have to use the microsoft-never-gets-it-right macro */
1809 array_free (rfeed, EMPTY);
1394 array_free (fdchange, EMPTY); 1810 array_free (fdchange, EMPTY);
1395 array_free (timer, EMPTY); 1811 array_free (timer, EMPTY);
1396#if EV_PERIODIC_ENABLE 1812#if EV_PERIODIC_ENABLE
1397 array_free (periodic, EMPTY); 1813 array_free (periodic, EMPTY);
1398#endif 1814#endif
1404#if EV_ASYNC_ENABLE 1820#if EV_ASYNC_ENABLE
1405 array_free (async, EMPTY); 1821 array_free (async, EMPTY);
1406#endif 1822#endif
1407 1823
1408 backend = 0; 1824 backend = 0;
1825
1826#if EV_MULTIPLICITY
1827 if (ev_is_default_loop (EV_A))
1828#endif
1829 ev_default_loop_ptr = 0;
1830#if EV_MULTIPLICITY
1831 else
1832 ev_free (EV_A);
1833#endif
1409} 1834}
1410 1835
1411#if EV_USE_INOTIFY 1836#if EV_USE_INOTIFY
1412void inline_size infy_fork (EV_P); 1837inline_size void infy_fork (EV_P);
1413#endif 1838#endif
1414 1839
1415void inline_size 1840inline_size void
1416loop_fork (EV_P) 1841loop_fork (EV_P)
1417{ 1842{
1418#if EV_USE_PORT 1843#if EV_USE_PORT
1419 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1844 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1420#endif 1845#endif
1426#endif 1851#endif
1427#if EV_USE_INOTIFY 1852#if EV_USE_INOTIFY
1428 infy_fork (EV_A); 1853 infy_fork (EV_A);
1429#endif 1854#endif
1430 1855
1431 if (ev_is_active (&pipeev)) 1856 if (ev_is_active (&pipe_w))
1432 { 1857 {
1433 /* this "locks" the handlers against writing to the pipe */ 1858 /* this "locks" the handlers against writing to the pipe */
1434 /* while we modify the fd vars */ 1859 /* while we modify the fd vars */
1435 gotsig = 1; 1860 sig_pending = 1;
1436#if EV_ASYNC_ENABLE 1861#if EV_ASYNC_ENABLE
1437 gotasync = 1; 1862 async_pending = 1;
1438#endif 1863#endif
1439 1864
1440 ev_ref (EV_A); 1865 ev_ref (EV_A);
1441 ev_io_stop (EV_A_ &pipeev); 1866 ev_io_stop (EV_A_ &pipe_w);
1442 1867
1443#if EV_USE_EVENTFD 1868#if EV_USE_EVENTFD
1444 if (evfd >= 0) 1869 if (evfd >= 0)
1445 close (evfd); 1870 close (evfd);
1446#endif 1871#endif
1447 1872
1448 if (evpipe [0] >= 0) 1873 if (evpipe [0] >= 0)
1449 { 1874 {
1450 close (evpipe [0]); 1875 EV_WIN32_CLOSE_FD (evpipe [0]);
1451 close (evpipe [1]); 1876 EV_WIN32_CLOSE_FD (evpipe [1]);
1452 } 1877 }
1453 1878
1879#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1454 evpipe_init (EV_A); 1880 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */ 1881 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ); 1882 pipecb (EV_A_ &pipe_w, EV_READ);
1883#endif
1457 } 1884 }
1458 1885
1459 postfork = 0; 1886 postfork = 0;
1460} 1887}
1888
1889#if EV_MULTIPLICITY
1890
1891struct ev_loop *
1892ev_loop_new (unsigned int flags)
1893{
1894 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1895
1896 memset (EV_A, 0, sizeof (struct ev_loop));
1897 loop_init (EV_A_ flags);
1898
1899 if (ev_backend (EV_A))
1900 return EV_A;
1901
1902 ev_free (EV_A);
1903 return 0;
1904}
1905
1906#endif /* multiplicity */
1907
1908#if EV_VERIFY
1909static void noinline
1910verify_watcher (EV_P_ W w)
1911{
1912 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1913
1914 if (w->pending)
1915 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1916}
1917
1918static void noinline
1919verify_heap (EV_P_ ANHE *heap, int N)
1920{
1921 int i;
1922
1923 for (i = HEAP0; i < N + HEAP0; ++i)
1924 {
1925 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1926 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1927 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1928
1929 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1930 }
1931}
1932
1933static void noinline
1934array_verify (EV_P_ W *ws, int cnt)
1935{
1936 while (cnt--)
1937 {
1938 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1939 verify_watcher (EV_A_ ws [cnt]);
1940 }
1941}
1942#endif
1943
1944#if EV_FEATURE_API
1945void
1946ev_verify (EV_P)
1947{
1948#if EV_VERIFY
1949 int i;
1950 WL w;
1951
1952 assert (activecnt >= -1);
1953
1954 assert (fdchangemax >= fdchangecnt);
1955 for (i = 0; i < fdchangecnt; ++i)
1956 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1957
1958 assert (anfdmax >= 0);
1959 for (i = 0; i < anfdmax; ++i)
1960 for (w = anfds [i].head; w; w = w->next)
1961 {
1962 verify_watcher (EV_A_ (W)w);
1963 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1964 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1965 }
1966
1967 assert (timermax >= timercnt);
1968 verify_heap (EV_A_ timers, timercnt);
1969
1970#if EV_PERIODIC_ENABLE
1971 assert (periodicmax >= periodiccnt);
1972 verify_heap (EV_A_ periodics, periodiccnt);
1973#endif
1974
1975 for (i = NUMPRI; i--; )
1976 {
1977 assert (pendingmax [i] >= pendingcnt [i]);
1978#if EV_IDLE_ENABLE
1979 assert (idleall >= 0);
1980 assert (idlemax [i] >= idlecnt [i]);
1981 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1982#endif
1983 }
1984
1985#if EV_FORK_ENABLE
1986 assert (forkmax >= forkcnt);
1987 array_verify (EV_A_ (W *)forks, forkcnt);
1988#endif
1989
1990#if EV_ASYNC_ENABLE
1991 assert (asyncmax >= asynccnt);
1992 array_verify (EV_A_ (W *)asyncs, asynccnt);
1993#endif
1994
1995#if EV_PREPARE_ENABLE
1996 assert (preparemax >= preparecnt);
1997 array_verify (EV_A_ (W *)prepares, preparecnt);
1998#endif
1999
2000#if EV_CHECK_ENABLE
2001 assert (checkmax >= checkcnt);
2002 array_verify (EV_A_ (W *)checks, checkcnt);
2003#endif
2004
2005# if 0
2006#if EV_CHILD_ENABLE
2007 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2008 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2009#endif
2010# endif
2011#endif
2012}
2013#endif
1461 2014
1462#if EV_MULTIPLICITY 2015#if EV_MULTIPLICITY
1463struct ev_loop * 2016struct ev_loop *
1464ev_loop_new (unsigned int flags)
1465{
1466 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1467
1468 memset (loop, 0, sizeof (struct ev_loop));
1469
1470 loop_init (EV_A_ flags);
1471
1472 if (ev_backend (EV_A))
1473 return loop;
1474
1475 return 0;
1476}
1477
1478void
1479ev_loop_destroy (EV_P)
1480{
1481 loop_destroy (EV_A);
1482 ev_free (loop);
1483}
1484
1485void
1486ev_loop_fork (EV_P)
1487{
1488 postfork = 1; /* must be in line with ev_default_fork */
1489}
1490#endif
1491
1492#if EV_MULTIPLICITY
1493struct ev_loop *
1494ev_default_loop_init (unsigned int flags)
1495#else 2017#else
1496int 2018int
2019#endif
1497ev_default_loop (unsigned int flags) 2020ev_default_loop (unsigned int flags)
1498#endif
1499{ 2021{
1500 if (!ev_default_loop_ptr) 2022 if (!ev_default_loop_ptr)
1501 { 2023 {
1502#if EV_MULTIPLICITY 2024#if EV_MULTIPLICITY
1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2025 EV_P = ev_default_loop_ptr = &default_loop_struct;
1504#else 2026#else
1505 ev_default_loop_ptr = 1; 2027 ev_default_loop_ptr = 1;
1506#endif 2028#endif
1507 2029
1508 loop_init (EV_A_ flags); 2030 loop_init (EV_A_ flags);
1509 2031
1510 if (ev_backend (EV_A)) 2032 if (ev_backend (EV_A))
1511 { 2033 {
1512#ifndef _WIN32 2034#if EV_CHILD_ENABLE
1513 ev_signal_init (&childev, childcb, SIGCHLD); 2035 ev_signal_init (&childev, childcb, SIGCHLD);
1514 ev_set_priority (&childev, EV_MAXPRI); 2036 ev_set_priority (&childev, EV_MAXPRI);
1515 ev_signal_start (EV_A_ &childev); 2037 ev_signal_start (EV_A_ &childev);
1516 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2038 ev_unref (EV_A); /* child watcher should not keep loop alive */
1517#endif 2039#endif
1522 2044
1523 return ev_default_loop_ptr; 2045 return ev_default_loop_ptr;
1524} 2046}
1525 2047
1526void 2048void
1527ev_default_destroy (void) 2049ev_loop_fork (EV_P)
1528{ 2050{
1529#if EV_MULTIPLICITY
1530 struct ev_loop *loop = ev_default_loop_ptr;
1531#endif
1532
1533#ifndef _WIN32
1534 ev_ref (EV_A); /* child watcher */
1535 ev_signal_stop (EV_A_ &childev);
1536#endif
1537
1538 loop_destroy (EV_A);
1539}
1540
1541void
1542ev_default_fork (void)
1543{
1544#if EV_MULTIPLICITY
1545 struct ev_loop *loop = ev_default_loop_ptr;
1546#endif
1547
1548 if (backend)
1549 postfork = 1; /* must be in line with ev_loop_fork */ 2051 postfork = 1; /* must be in line with ev_default_fork */
1550} 2052}
1551 2053
1552/*****************************************************************************/ 2054/*****************************************************************************/
1553 2055
1554void 2056void
1555ev_invoke (EV_P_ void *w, int revents) 2057ev_invoke (EV_P_ void *w, int revents)
1556{ 2058{
1557 EV_CB_INVOKE ((W)w, revents); 2059 EV_CB_INVOKE ((W)w, revents);
1558} 2060}
1559 2061
1560void inline_speed 2062unsigned int
1561call_pending (EV_P) 2063ev_pending_count (EV_P)
2064{
2065 int pri;
2066 unsigned int count = 0;
2067
2068 for (pri = NUMPRI; pri--; )
2069 count += pendingcnt [pri];
2070
2071 return count;
2072}
2073
2074void noinline
2075ev_invoke_pending (EV_P)
1562{ 2076{
1563 int pri; 2077 int pri;
1564 2078
1565 for (pri = NUMPRI; pri--; ) 2079 for (pri = NUMPRI; pri--; )
1566 while (pendingcnt [pri]) 2080 while (pendingcnt [pri])
1567 { 2081 {
1568 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2082 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1569 2083
1570 if (expect_true (p->w))
1571 {
1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2084 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2085 /* ^ this is no longer true, as pending_w could be here */
1573 2086
1574 p->w->pending = 0; 2087 p->w->pending = 0;
1575 EV_CB_INVOKE (p->w, p->events); 2088 EV_CB_INVOKE (p->w, p->events);
1576 } 2089 EV_FREQUENT_CHECK;
1577 } 2090 }
1578} 2091}
1579 2092
1580#if EV_IDLE_ENABLE 2093#if EV_IDLE_ENABLE
1581void inline_size 2094/* make idle watchers pending. this handles the "call-idle */
2095/* only when higher priorities are idle" logic */
2096inline_size void
1582idle_reify (EV_P) 2097idle_reify (EV_P)
1583{ 2098{
1584 if (expect_false (idleall)) 2099 if (expect_false (idleall))
1585 { 2100 {
1586 int pri; 2101 int pri;
1598 } 2113 }
1599 } 2114 }
1600} 2115}
1601#endif 2116#endif
1602 2117
1603void inline_size 2118/* make timers pending */
2119inline_size void
1604timers_reify (EV_P) 2120timers_reify (EV_P)
1605{ 2121{
2122 EV_FREQUENT_CHECK;
2123
1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2124 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1607 { 2125 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2126 do
1609
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1611
1612 /* first reschedule or stop timer */
1613 if (w->repeat)
1614 { 2127 {
2128 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2129
2130 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2131
2132 /* first reschedule or stop timer */
2133 if (w->repeat)
2134 {
1615 ev_at (w) += w->repeat; 2135 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now) 2136 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now; 2137 ev_at (w) = mn_now;
1618 2138
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2139 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620 2140
1621 ANHE_at_set (timers [HEAP0]); 2141 ANHE_at_cache (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0); 2142 downheap (timers, timercnt, HEAP0);
2143 }
2144 else
2145 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2146
2147 EV_FREQUENT_CHECK;
2148 feed_reverse (EV_A_ (W)w);
1623 } 2149 }
1624 else 2150 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 2151
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2152 feed_reverse_done (EV_A_ EV_TIMER);
1628 } 2153 }
1629} 2154}
1630 2155
1631#if EV_PERIODIC_ENABLE 2156#if EV_PERIODIC_ENABLE
1632void inline_size 2157/* make periodics pending */
2158inline_size void
1633periodics_reify (EV_P) 2159periodics_reify (EV_P)
1634{ 2160{
2161 EV_FREQUENT_CHECK;
2162
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2163 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1636 { 2164 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2165 int feed_count = 0;
1638 2166
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2167 do
1640
1641 /* first reschedule or stop timer */
1642 if (w->reschedule_cb)
1643 { 2168 {
2169 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2170
2171 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2172
2173 /* first reschedule or stop timer */
2174 if (w->reschedule_cb)
2175 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2176 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645 2177
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2178 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647 2179
1648 ANHE_at_set (periodics [HEAP0]); 2180 ANHE_at_cache (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0); 2181 downheap (periodics, periodiccnt, HEAP0);
2182 }
2183 else if (w->interval)
2184 {
2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2186 /* if next trigger time is not sufficiently in the future, put it there */
2187 /* this might happen because of floating point inexactness */
2188 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2189 {
2190 ev_at (w) += w->interval;
2191
2192 /* if interval is unreasonably low we might still have a time in the past */
2193 /* so correct this. this will make the periodic very inexact, but the user */
2194 /* has effectively asked to get triggered more often than possible */
2195 if (ev_at (w) < ev_rt_now)
2196 ev_at (w) = ev_rt_now;
2197 }
2198
2199 ANHE_at_cache (periodics [HEAP0]);
2200 downheap (periodics, periodiccnt, HEAP0);
2201 }
2202 else
2203 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2204
2205 EV_FREQUENT_CHECK;
2206 feed_reverse (EV_A_ (W)w);
1650 } 2207 }
1651 else if (w->interval) 2208 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 /* if next trigger time is not sufficiently in the future, put it there */
1655 /* this might happen because of floating point inexactness */
1656 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1657 {
1658 ev_at (w) += w->interval;
1659 2209
1660 /* if interval is unreasonably low we might still have a time in the past */
1661 /* so correct this. this will make the periodic very inexact, but the user */
1662 /* has effectively asked to get triggered more often than possible */
1663 if (ev_at (w) < ev_rt_now)
1664 ev_at (w) = ev_rt_now;
1665 }
1666
1667 ANHE_at_set (periodics [HEAP0]);
1668 downheap (periodics, periodiccnt, HEAP0);
1669 }
1670 else
1671 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1672
1673 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2210 feed_reverse_done (EV_A_ EV_PERIODIC);
1674 } 2211 }
1675} 2212}
1676 2213
2214/* simply recalculate all periodics */
2215/* TODO: maybe ensure that at least one event happens when jumping forward? */
1677static void noinline 2216static void noinline
1678periodics_reschedule (EV_P) 2217periodics_reschedule (EV_P)
1679{ 2218{
1680 int i; 2219 int i;
1681 2220
1687 if (w->reschedule_cb) 2226 if (w->reschedule_cb)
1688 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2227 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval) 2228 else if (w->interval)
1690 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2229 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1691 2230
1692 ANHE_at_set (periodics [i]); 2231 ANHE_at_cache (periodics [i]);
1693 } 2232 }
1694 2233
1695 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 2234 reheap (periodics, periodiccnt);
1696 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 2235}
2236#endif
2237
2238/* adjust all timers by a given offset */
2239static void noinline
2240timers_reschedule (EV_P_ ev_tstamp adjust)
2241{
2242 int i;
2243
1697 for (i = 0; i < periodiccnt; ++i) 2244 for (i = 0; i < timercnt; ++i)
1698 upheap (periodics, i + HEAP0); 2245 {
2246 ANHE *he = timers + i + HEAP0;
2247 ANHE_w (*he)->at += adjust;
2248 ANHE_at_cache (*he);
2249 }
1699} 2250}
1700#endif
1701 2251
1702void inline_speed 2252/* fetch new monotonic and realtime times from the kernel */
2253/* also detect if there was a timejump, and act accordingly */
2254inline_speed void
1703time_update (EV_P_ ev_tstamp max_block) 2255time_update (EV_P_ ev_tstamp max_block)
1704{ 2256{
1705 int i;
1706
1707#if EV_USE_MONOTONIC 2257#if EV_USE_MONOTONIC
1708 if (expect_true (have_monotonic)) 2258 if (expect_true (have_monotonic))
1709 { 2259 {
2260 int i;
1710 ev_tstamp odiff = rtmn_diff; 2261 ev_tstamp odiff = rtmn_diff;
1711 2262
1712 mn_now = get_clock (); 2263 mn_now = get_clock ();
1713 2264
1714 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2265 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1740 ev_rt_now = ev_time (); 2291 ev_rt_now = ev_time ();
1741 mn_now = get_clock (); 2292 mn_now = get_clock ();
1742 now_floor = mn_now; 2293 now_floor = mn_now;
1743 } 2294 }
1744 2295
2296 /* no timer adjustment, as the monotonic clock doesn't jump */
2297 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1745# if EV_PERIODIC_ENABLE 2298# if EV_PERIODIC_ENABLE
1746 periodics_reschedule (EV_A); 2299 periodics_reschedule (EV_A);
1747# endif 2300# endif
1748 /* no timer adjustment, as the monotonic clock doesn't jump */
1749 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1750 } 2301 }
1751 else 2302 else
1752#endif 2303#endif
1753 { 2304 {
1754 ev_rt_now = ev_time (); 2305 ev_rt_now = ev_time ();
1755 2306
1756 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2307 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1757 { 2308 {
2309 /* adjust timers. this is easy, as the offset is the same for all of them */
2310 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1758#if EV_PERIODIC_ENABLE 2311#if EV_PERIODIC_ENABLE
1759 periodics_reschedule (EV_A); 2312 periodics_reschedule (EV_A);
1760#endif 2313#endif
1761 /* adjust timers. this is easy, as the offset is the same for all of them */
1762 for (i = 0; i < timercnt; ++i)
1763 {
1764 ANHE *he = timers + i + HEAP0;
1765 ANHE_w (*he)->at += ev_rt_now - mn_now;
1766 ANHE_at_set (*he);
1767 }
1768 } 2314 }
1769 2315
1770 mn_now = ev_rt_now; 2316 mn_now = ev_rt_now;
1771 } 2317 }
1772} 2318}
1773 2319
1774void 2320void
1775ev_ref (EV_P)
1776{
1777 ++activecnt;
1778}
1779
1780void
1781ev_unref (EV_P)
1782{
1783 --activecnt;
1784}
1785
1786static int loop_done;
1787
1788void
1789ev_loop (EV_P_ int flags) 2321ev_run (EV_P_ int flags)
1790{ 2322{
2323#if EV_FEATURE_API
2324 ++loop_depth;
2325#endif
2326
2327 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2328
1791 loop_done = EVUNLOOP_CANCEL; 2329 loop_done = EVBREAK_CANCEL;
1792 2330
1793 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2331 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1794 2332
1795 do 2333 do
1796 { 2334 {
2335#if EV_VERIFY >= 2
2336 ev_verify (EV_A);
2337#endif
2338
1797#ifndef _WIN32 2339#ifndef _WIN32
1798 if (expect_false (curpid)) /* penalise the forking check even more */ 2340 if (expect_false (curpid)) /* penalise the forking check even more */
1799 if (expect_false (getpid () != curpid)) 2341 if (expect_false (getpid () != curpid))
1800 { 2342 {
1801 curpid = getpid (); 2343 curpid = getpid ();
1807 /* we might have forked, so queue fork handlers */ 2349 /* we might have forked, so queue fork handlers */
1808 if (expect_false (postfork)) 2350 if (expect_false (postfork))
1809 if (forkcnt) 2351 if (forkcnt)
1810 { 2352 {
1811 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2353 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1812 call_pending (EV_A); 2354 EV_INVOKE_PENDING;
1813 } 2355 }
1814#endif 2356#endif
1815 2357
2358#if EV_PREPARE_ENABLE
1816 /* queue prepare watchers (and execute them) */ 2359 /* queue prepare watchers (and execute them) */
1817 if (expect_false (preparecnt)) 2360 if (expect_false (preparecnt))
1818 { 2361 {
1819 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2362 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1820 call_pending (EV_A); 2363 EV_INVOKE_PENDING;
1821 } 2364 }
2365#endif
1822 2366
1823 if (expect_false (!activecnt)) 2367 if (expect_false (loop_done))
1824 break; 2368 break;
1825 2369
1826 /* we might have forked, so reify kernel state if necessary */ 2370 /* we might have forked, so reify kernel state if necessary */
1827 if (expect_false (postfork)) 2371 if (expect_false (postfork))
1828 loop_fork (EV_A); 2372 loop_fork (EV_A);
1833 /* calculate blocking time */ 2377 /* calculate blocking time */
1834 { 2378 {
1835 ev_tstamp waittime = 0.; 2379 ev_tstamp waittime = 0.;
1836 ev_tstamp sleeptime = 0.; 2380 ev_tstamp sleeptime = 0.;
1837 2381
2382 /* remember old timestamp for io_blocktime calculation */
2383 ev_tstamp prev_mn_now = mn_now;
2384
2385 /* update time to cancel out callback processing overhead */
2386 time_update (EV_A_ 1e100);
2387
1838 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2388 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1839 { 2389 {
1840 /* update time to cancel out callback processing overhead */
1841 time_update (EV_A_ 1e100);
1842
1843 waittime = MAX_BLOCKTIME; 2390 waittime = MAX_BLOCKTIME;
1844 2391
1845 if (timercnt) 2392 if (timercnt)
1846 { 2393 {
1847 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2394 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1854 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2401 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1855 if (waittime > to) waittime = to; 2402 if (waittime > to) waittime = to;
1856 } 2403 }
1857#endif 2404#endif
1858 2405
2406 /* don't let timeouts decrease the waittime below timeout_blocktime */
1859 if (expect_false (waittime < timeout_blocktime)) 2407 if (expect_false (waittime < timeout_blocktime))
1860 waittime = timeout_blocktime; 2408 waittime = timeout_blocktime;
1861 2409
1862 sleeptime = waittime - backend_fudge; 2410 /* extra check because io_blocktime is commonly 0 */
1863
1864 if (expect_true (sleeptime > io_blocktime)) 2411 if (expect_false (io_blocktime))
1865 sleeptime = io_blocktime;
1866
1867 if (sleeptime)
1868 { 2412 {
2413 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2414
2415 if (sleeptime > waittime - backend_fudge)
2416 sleeptime = waittime - backend_fudge;
2417
2418 if (expect_true (sleeptime > 0.))
2419 {
1869 ev_sleep (sleeptime); 2420 ev_sleep (sleeptime);
1870 waittime -= sleeptime; 2421 waittime -= sleeptime;
2422 }
1871 } 2423 }
1872 } 2424 }
1873 2425
2426#if EV_FEATURE_API
1874 ++loop_count; 2427 ++loop_count;
2428#endif
2429 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1875 backend_poll (EV_A_ waittime); 2430 backend_poll (EV_A_ waittime);
2431 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1876 2432
1877 /* update ev_rt_now, do magic */ 2433 /* update ev_rt_now, do magic */
1878 time_update (EV_A_ waittime + sleeptime); 2434 time_update (EV_A_ waittime + sleeptime);
1879 } 2435 }
1880 2436
1887#if EV_IDLE_ENABLE 2443#if EV_IDLE_ENABLE
1888 /* queue idle watchers unless other events are pending */ 2444 /* queue idle watchers unless other events are pending */
1889 idle_reify (EV_A); 2445 idle_reify (EV_A);
1890#endif 2446#endif
1891 2447
2448#if EV_CHECK_ENABLE
1892 /* queue check watchers, to be executed first */ 2449 /* queue check watchers, to be executed first */
1893 if (expect_false (checkcnt)) 2450 if (expect_false (checkcnt))
1894 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2451 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2452#endif
1895 2453
1896 call_pending (EV_A); 2454 EV_INVOKE_PENDING;
1897 } 2455 }
1898 while (expect_true ( 2456 while (expect_true (
1899 activecnt 2457 activecnt
1900 && !loop_done 2458 && !loop_done
1901 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2459 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1902 )); 2460 ));
1903 2461
1904 if (loop_done == EVUNLOOP_ONE) 2462 if (loop_done == EVBREAK_ONE)
1905 loop_done = EVUNLOOP_CANCEL; 2463 loop_done = EVBREAK_CANCEL;
2464
2465#if EV_FEATURE_API
2466 --loop_depth;
2467#endif
1906} 2468}
1907 2469
1908void 2470void
1909ev_unloop (EV_P_ int how) 2471ev_break (EV_P_ int how)
1910{ 2472{
1911 loop_done = how; 2473 loop_done = how;
1912} 2474}
1913 2475
2476void
2477ev_ref (EV_P)
2478{
2479 ++activecnt;
2480}
2481
2482void
2483ev_unref (EV_P)
2484{
2485 --activecnt;
2486}
2487
2488void
2489ev_now_update (EV_P)
2490{
2491 time_update (EV_A_ 1e100);
2492}
2493
2494void
2495ev_suspend (EV_P)
2496{
2497 ev_now_update (EV_A);
2498}
2499
2500void
2501ev_resume (EV_P)
2502{
2503 ev_tstamp mn_prev = mn_now;
2504
2505 ev_now_update (EV_A);
2506 timers_reschedule (EV_A_ mn_now - mn_prev);
2507#if EV_PERIODIC_ENABLE
2508 /* TODO: really do this? */
2509 periodics_reschedule (EV_A);
2510#endif
2511}
2512
1914/*****************************************************************************/ 2513/*****************************************************************************/
2514/* singly-linked list management, used when the expected list length is short */
1915 2515
1916void inline_size 2516inline_size void
1917wlist_add (WL *head, WL elem) 2517wlist_add (WL *head, WL elem)
1918{ 2518{
1919 elem->next = *head; 2519 elem->next = *head;
1920 *head = elem; 2520 *head = elem;
1921} 2521}
1922 2522
1923void inline_size 2523inline_size void
1924wlist_del (WL *head, WL elem) 2524wlist_del (WL *head, WL elem)
1925{ 2525{
1926 while (*head) 2526 while (*head)
1927 { 2527 {
1928 if (*head == elem) 2528 if (expect_true (*head == elem))
1929 { 2529 {
1930 *head = elem->next; 2530 *head = elem->next;
1931 return; 2531 break;
1932 } 2532 }
1933 2533
1934 head = &(*head)->next; 2534 head = &(*head)->next;
1935 } 2535 }
1936} 2536}
1937 2537
1938void inline_speed 2538/* internal, faster, version of ev_clear_pending */
2539inline_speed void
1939clear_pending (EV_P_ W w) 2540clear_pending (EV_P_ W w)
1940{ 2541{
1941 if (w->pending) 2542 if (w->pending)
1942 { 2543 {
1943 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2544 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1944 w->pending = 0; 2545 w->pending = 0;
1945 } 2546 }
1946} 2547}
1947 2548
1948int 2549int
1952 int pending = w_->pending; 2553 int pending = w_->pending;
1953 2554
1954 if (expect_true (pending)) 2555 if (expect_true (pending))
1955 { 2556 {
1956 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2557 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2558 p->w = (W)&pending_w;
1957 w_->pending = 0; 2559 w_->pending = 0;
1958 p->w = 0;
1959 return p->events; 2560 return p->events;
1960 } 2561 }
1961 else 2562 else
1962 return 0; 2563 return 0;
1963} 2564}
1964 2565
1965void inline_size 2566inline_size void
1966pri_adjust (EV_P_ W w) 2567pri_adjust (EV_P_ W w)
1967{ 2568{
1968 int pri = w->priority; 2569 int pri = ev_priority (w);
1969 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2570 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1970 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2571 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1971 w->priority = pri; 2572 ev_set_priority (w, pri);
1972} 2573}
1973 2574
1974void inline_speed 2575inline_speed void
1975ev_start (EV_P_ W w, int active) 2576ev_start (EV_P_ W w, int active)
1976{ 2577{
1977 pri_adjust (EV_A_ w); 2578 pri_adjust (EV_A_ w);
1978 w->active = active; 2579 w->active = active;
1979 ev_ref (EV_A); 2580 ev_ref (EV_A);
1980} 2581}
1981 2582
1982void inline_size 2583inline_size void
1983ev_stop (EV_P_ W w) 2584ev_stop (EV_P_ W w)
1984{ 2585{
1985 ev_unref (EV_A); 2586 ev_unref (EV_A);
1986 w->active = 0; 2587 w->active = 0;
1987} 2588}
1994 int fd = w->fd; 2595 int fd = w->fd;
1995 2596
1996 if (expect_false (ev_is_active (w))) 2597 if (expect_false (ev_is_active (w)))
1997 return; 2598 return;
1998 2599
1999 assert (("ev_io_start called with negative fd", fd >= 0)); 2600 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2601 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2602
2603 EV_FREQUENT_CHECK;
2000 2604
2001 ev_start (EV_A_ (W)w, 1); 2605 ev_start (EV_A_ (W)w, 1);
2002 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2606 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2003 wlist_add (&anfds[fd].head, (WL)w); 2607 wlist_add (&anfds[fd].head, (WL)w);
2004 2608
2005 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2609 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2006 w->events &= ~EV_IOFDSET; 2610 w->events &= ~EV__IOFDSET;
2611
2612 EV_FREQUENT_CHECK;
2007} 2613}
2008 2614
2009void noinline 2615void noinline
2010ev_io_stop (EV_P_ ev_io *w) 2616ev_io_stop (EV_P_ ev_io *w)
2011{ 2617{
2012 clear_pending (EV_A_ (W)w); 2618 clear_pending (EV_A_ (W)w);
2013 if (expect_false (!ev_is_active (w))) 2619 if (expect_false (!ev_is_active (w)))
2014 return; 2620 return;
2015 2621
2016 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2622 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2623
2624 EV_FREQUENT_CHECK;
2017 2625
2018 wlist_del (&anfds[w->fd].head, (WL)w); 2626 wlist_del (&anfds[w->fd].head, (WL)w);
2019 ev_stop (EV_A_ (W)w); 2627 ev_stop (EV_A_ (W)w);
2020 2628
2021 fd_change (EV_A_ w->fd, 1); 2629 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2630
2631 EV_FREQUENT_CHECK;
2022} 2632}
2023 2633
2024void noinline 2634void noinline
2025ev_timer_start (EV_P_ ev_timer *w) 2635ev_timer_start (EV_P_ ev_timer *w)
2026{ 2636{
2027 if (expect_false (ev_is_active (w))) 2637 if (expect_false (ev_is_active (w)))
2028 return; 2638 return;
2029 2639
2030 ev_at (w) += mn_now; 2640 ev_at (w) += mn_now;
2031 2641
2032 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2642 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2033 2643
2644 EV_FREQUENT_CHECK;
2645
2646 ++timercnt;
2034 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2647 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2035 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2648 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2036 ANHE_w (timers [ev_active (w)]) = (WT)w; 2649 ANHE_w (timers [ev_active (w)]) = (WT)w;
2037 ANHE_at_set (timers [ev_active (w)]); 2650 ANHE_at_cache (timers [ev_active (w)]);
2038 upheap (timers, ev_active (w)); 2651 upheap (timers, ev_active (w));
2039 2652
2653 EV_FREQUENT_CHECK;
2654
2040 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2655 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2041} 2656}
2042 2657
2043void noinline 2658void noinline
2044ev_timer_stop (EV_P_ ev_timer *w) 2659ev_timer_stop (EV_P_ ev_timer *w)
2045{ 2660{
2046 clear_pending (EV_A_ (W)w); 2661 clear_pending (EV_A_ (W)w);
2047 if (expect_false (!ev_is_active (w))) 2662 if (expect_false (!ev_is_active (w)))
2048 return; 2663 return;
2049 2664
2665 EV_FREQUENT_CHECK;
2666
2050 { 2667 {
2051 int active = ev_active (w); 2668 int active = ev_active (w);
2052 2669
2053 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2670 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2054 2671
2672 --timercnt;
2673
2055 if (expect_true (active < timercnt + HEAP0 - 1)) 2674 if (expect_true (active < timercnt + HEAP0))
2056 { 2675 {
2057 timers [active] = timers [timercnt + HEAP0 - 1]; 2676 timers [active] = timers [timercnt + HEAP0];
2058 adjustheap (timers, timercnt, active); 2677 adjustheap (timers, timercnt, active);
2059 } 2678 }
2060
2061 --timercnt;
2062 } 2679 }
2063 2680
2064 ev_at (w) -= mn_now; 2681 ev_at (w) -= mn_now;
2065 2682
2066 ev_stop (EV_A_ (W)w); 2683 ev_stop (EV_A_ (W)w);
2684
2685 EV_FREQUENT_CHECK;
2067} 2686}
2068 2687
2069void noinline 2688void noinline
2070ev_timer_again (EV_P_ ev_timer *w) 2689ev_timer_again (EV_P_ ev_timer *w)
2071{ 2690{
2691 EV_FREQUENT_CHECK;
2692
2072 if (ev_is_active (w)) 2693 if (ev_is_active (w))
2073 { 2694 {
2074 if (w->repeat) 2695 if (w->repeat)
2075 { 2696 {
2076 ev_at (w) = mn_now + w->repeat; 2697 ev_at (w) = mn_now + w->repeat;
2077 ANHE_at_set (timers [ev_active (w)]); 2698 ANHE_at_cache (timers [ev_active (w)]);
2078 adjustheap (timers, timercnt, ev_active (w)); 2699 adjustheap (timers, timercnt, ev_active (w));
2079 } 2700 }
2080 else 2701 else
2081 ev_timer_stop (EV_A_ w); 2702 ev_timer_stop (EV_A_ w);
2082 } 2703 }
2083 else if (w->repeat) 2704 else if (w->repeat)
2084 { 2705 {
2085 ev_at (w) = w->repeat; 2706 ev_at (w) = w->repeat;
2086 ev_timer_start (EV_A_ w); 2707 ev_timer_start (EV_A_ w);
2087 } 2708 }
2709
2710 EV_FREQUENT_CHECK;
2711}
2712
2713ev_tstamp
2714ev_timer_remaining (EV_P_ ev_timer *w)
2715{
2716 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2088} 2717}
2089 2718
2090#if EV_PERIODIC_ENABLE 2719#if EV_PERIODIC_ENABLE
2091void noinline 2720void noinline
2092ev_periodic_start (EV_P_ ev_periodic *w) 2721ev_periodic_start (EV_P_ ev_periodic *w)
2096 2725
2097 if (w->reschedule_cb) 2726 if (w->reschedule_cb)
2098 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2727 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2099 else if (w->interval) 2728 else if (w->interval)
2100 { 2729 {
2101 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2730 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2102 /* this formula differs from the one in periodic_reify because we do not always round up */ 2731 /* this formula differs from the one in periodic_reify because we do not always round up */
2103 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2732 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2104 } 2733 }
2105 else 2734 else
2106 ev_at (w) = w->offset; 2735 ev_at (w) = w->offset;
2107 2736
2737 EV_FREQUENT_CHECK;
2738
2739 ++periodiccnt;
2108 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2740 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2109 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2741 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2110 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2742 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2111 ANHE_at_set (periodics [ev_active (w)]); 2743 ANHE_at_cache (periodics [ev_active (w)]);
2112 upheap (periodics, ev_active (w)); 2744 upheap (periodics, ev_active (w));
2113 2745
2746 EV_FREQUENT_CHECK;
2747
2114 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2748 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2115} 2749}
2116 2750
2117void noinline 2751void noinline
2118ev_periodic_stop (EV_P_ ev_periodic *w) 2752ev_periodic_stop (EV_P_ ev_periodic *w)
2119{ 2753{
2120 clear_pending (EV_A_ (W)w); 2754 clear_pending (EV_A_ (W)w);
2121 if (expect_false (!ev_is_active (w))) 2755 if (expect_false (!ev_is_active (w)))
2122 return; 2756 return;
2123 2757
2758 EV_FREQUENT_CHECK;
2759
2124 { 2760 {
2125 int active = ev_active (w); 2761 int active = ev_active (w);
2126 2762
2127 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2763 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2128 2764
2765 --periodiccnt;
2766
2129 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2767 if (expect_true (active < periodiccnt + HEAP0))
2130 { 2768 {
2131 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2769 periodics [active] = periodics [periodiccnt + HEAP0];
2132 adjustheap (periodics, periodiccnt, active); 2770 adjustheap (periodics, periodiccnt, active);
2133 } 2771 }
2134
2135 --periodiccnt;
2136 } 2772 }
2137 2773
2138 ev_stop (EV_A_ (W)w); 2774 ev_stop (EV_A_ (W)w);
2775
2776 EV_FREQUENT_CHECK;
2139} 2777}
2140 2778
2141void noinline 2779void noinline
2142ev_periodic_again (EV_P_ ev_periodic *w) 2780ev_periodic_again (EV_P_ ev_periodic *w)
2143{ 2781{
2149 2787
2150#ifndef SA_RESTART 2788#ifndef SA_RESTART
2151# define SA_RESTART 0 2789# define SA_RESTART 0
2152#endif 2790#endif
2153 2791
2792#if EV_SIGNAL_ENABLE
2793
2154void noinline 2794void noinline
2155ev_signal_start (EV_P_ ev_signal *w) 2795ev_signal_start (EV_P_ ev_signal *w)
2156{ 2796{
2157#if EV_MULTIPLICITY
2158 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2159#endif
2160 if (expect_false (ev_is_active (w))) 2797 if (expect_false (ev_is_active (w)))
2161 return; 2798 return;
2162 2799
2163 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2800 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2164 2801
2165 evpipe_init (EV_A); 2802#if EV_MULTIPLICITY
2803 assert (("libev: a signal must not be attached to two different loops",
2804 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2166 2805
2806 signals [w->signum - 1].loop = EV_A;
2807#endif
2808
2809 EV_FREQUENT_CHECK;
2810
2811#if EV_USE_SIGNALFD
2812 if (sigfd == -2)
2167 { 2813 {
2168#ifndef _WIN32 2814 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2169 sigset_t full, prev; 2815 if (sigfd < 0 && errno == EINVAL)
2170 sigfillset (&full); 2816 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2171 sigprocmask (SIG_SETMASK, &full, &prev);
2172#endif
2173 2817
2174 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2818 if (sigfd >= 0)
2819 {
2820 fd_intern (sigfd); /* doing it twice will not hurt */
2175 2821
2176#ifndef _WIN32 2822 sigemptyset (&sigfd_set);
2177 sigprocmask (SIG_SETMASK, &prev, 0); 2823
2178#endif 2824 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2825 ev_set_priority (&sigfd_w, EV_MAXPRI);
2826 ev_io_start (EV_A_ &sigfd_w);
2827 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2828 }
2179 } 2829 }
2830
2831 if (sigfd >= 0)
2832 {
2833 /* TODO: check .head */
2834 sigaddset (&sigfd_set, w->signum);
2835 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2836
2837 signalfd (sigfd, &sigfd_set, 0);
2838 }
2839#endif
2180 2840
2181 ev_start (EV_A_ (W)w, 1); 2841 ev_start (EV_A_ (W)w, 1);
2182 wlist_add (&signals [w->signum - 1].head, (WL)w); 2842 wlist_add (&signals [w->signum - 1].head, (WL)w);
2183 2843
2184 if (!((WL)w)->next) 2844 if (!((WL)w)->next)
2845# if EV_USE_SIGNALFD
2846 if (sigfd < 0) /*TODO*/
2847# endif
2185 { 2848 {
2186#if _WIN32 2849# ifdef _WIN32
2850 evpipe_init (EV_A);
2851
2187 signal (w->signum, ev_sighandler); 2852 signal (w->signum, ev_sighandler);
2188#else 2853# else
2189 struct sigaction sa; 2854 struct sigaction sa;
2855
2856 evpipe_init (EV_A);
2857
2190 sa.sa_handler = ev_sighandler; 2858 sa.sa_handler = ev_sighandler;
2191 sigfillset (&sa.sa_mask); 2859 sigfillset (&sa.sa_mask);
2192 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2860 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2193 sigaction (w->signum, &sa, 0); 2861 sigaction (w->signum, &sa, 0);
2862
2863 sigemptyset (&sa.sa_mask);
2864 sigaddset (&sa.sa_mask, w->signum);
2865 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2194#endif 2866#endif
2195 } 2867 }
2868
2869 EV_FREQUENT_CHECK;
2196} 2870}
2197 2871
2198void noinline 2872void noinline
2199ev_signal_stop (EV_P_ ev_signal *w) 2873ev_signal_stop (EV_P_ ev_signal *w)
2200{ 2874{
2201 clear_pending (EV_A_ (W)w); 2875 clear_pending (EV_A_ (W)w);
2202 if (expect_false (!ev_is_active (w))) 2876 if (expect_false (!ev_is_active (w)))
2203 return; 2877 return;
2204 2878
2879 EV_FREQUENT_CHECK;
2880
2205 wlist_del (&signals [w->signum - 1].head, (WL)w); 2881 wlist_del (&signals [w->signum - 1].head, (WL)w);
2206 ev_stop (EV_A_ (W)w); 2882 ev_stop (EV_A_ (W)w);
2207 2883
2208 if (!signals [w->signum - 1].head) 2884 if (!signals [w->signum - 1].head)
2885 {
2886#if EV_MULTIPLICITY
2887 signals [w->signum - 1].loop = 0; /* unattach from signal */
2888#endif
2889#if EV_USE_SIGNALFD
2890 if (sigfd >= 0)
2891 {
2892 sigset_t ss;
2893
2894 sigemptyset (&ss);
2895 sigaddset (&ss, w->signum);
2896 sigdelset (&sigfd_set, w->signum);
2897
2898 signalfd (sigfd, &sigfd_set, 0);
2899 sigprocmask (SIG_UNBLOCK, &ss, 0);
2900 }
2901 else
2902#endif
2209 signal (w->signum, SIG_DFL); 2903 signal (w->signum, SIG_DFL);
2904 }
2905
2906 EV_FREQUENT_CHECK;
2210} 2907}
2908
2909#endif
2910
2911#if EV_CHILD_ENABLE
2211 2912
2212void 2913void
2213ev_child_start (EV_P_ ev_child *w) 2914ev_child_start (EV_P_ ev_child *w)
2214{ 2915{
2215#if EV_MULTIPLICITY 2916#if EV_MULTIPLICITY
2216 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2917 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2217#endif 2918#endif
2218 if (expect_false (ev_is_active (w))) 2919 if (expect_false (ev_is_active (w)))
2219 return; 2920 return;
2220 2921
2922 EV_FREQUENT_CHECK;
2923
2221 ev_start (EV_A_ (W)w, 1); 2924 ev_start (EV_A_ (W)w, 1);
2222 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2925 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2926
2927 EV_FREQUENT_CHECK;
2223} 2928}
2224 2929
2225void 2930void
2226ev_child_stop (EV_P_ ev_child *w) 2931ev_child_stop (EV_P_ ev_child *w)
2227{ 2932{
2228 clear_pending (EV_A_ (W)w); 2933 clear_pending (EV_A_ (W)w);
2229 if (expect_false (!ev_is_active (w))) 2934 if (expect_false (!ev_is_active (w)))
2230 return; 2935 return;
2231 2936
2937 EV_FREQUENT_CHECK;
2938
2232 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2939 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2233 ev_stop (EV_A_ (W)w); 2940 ev_stop (EV_A_ (W)w);
2941
2942 EV_FREQUENT_CHECK;
2234} 2943}
2944
2945#endif
2235 2946
2236#if EV_STAT_ENABLE 2947#if EV_STAT_ENABLE
2237 2948
2238# ifdef _WIN32 2949# ifdef _WIN32
2239# undef lstat 2950# undef lstat
2240# define lstat(a,b) _stati64 (a,b) 2951# define lstat(a,b) _stati64 (a,b)
2241# endif 2952# endif
2242 2953
2243#define DEF_STAT_INTERVAL 5.0074891 2954#define DEF_STAT_INTERVAL 5.0074891
2955#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2244#define MIN_STAT_INTERVAL 0.1074891 2956#define MIN_STAT_INTERVAL 0.1074891
2245 2957
2246static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2958static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2247 2959
2248#if EV_USE_INOTIFY 2960#if EV_USE_INOTIFY
2249# define EV_INOTIFY_BUFSIZE 8192 2961
2962/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2963# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2250 2964
2251static void noinline 2965static void noinline
2252infy_add (EV_P_ ev_stat *w) 2966infy_add (EV_P_ ev_stat *w)
2253{ 2967{
2254 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2968 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2255 2969
2256 if (w->wd < 0) 2970 if (w->wd >= 0)
2971 {
2972 struct statfs sfs;
2973
2974 /* now local changes will be tracked by inotify, but remote changes won't */
2975 /* unless the filesystem is known to be local, we therefore still poll */
2976 /* also do poll on <2.6.25, but with normal frequency */
2977
2978 if (!fs_2625)
2979 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2980 else if (!statfs (w->path, &sfs)
2981 && (sfs.f_type == 0x1373 /* devfs */
2982 || sfs.f_type == 0xEF53 /* ext2/3 */
2983 || sfs.f_type == 0x3153464a /* jfs */
2984 || sfs.f_type == 0x52654973 /* reiser3 */
2985 || sfs.f_type == 0x01021994 /* tempfs */
2986 || sfs.f_type == 0x58465342 /* xfs */))
2987 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2988 else
2989 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2257 { 2990 }
2258 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2991 else
2992 {
2993 /* can't use inotify, continue to stat */
2994 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2259 2995
2260 /* monitor some parent directory for speedup hints */ 2996 /* if path is not there, monitor some parent directory for speedup hints */
2261 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2997 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2262 /* but an efficiency issue only */ 2998 /* but an efficiency issue only */
2263 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2999 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2264 { 3000 {
2265 char path [4096]; 3001 char path [4096];
2266 strcpy (path, w->path); 3002 strcpy (path, w->path);
2270 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3006 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2271 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3007 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2272 3008
2273 char *pend = strrchr (path, '/'); 3009 char *pend = strrchr (path, '/');
2274 3010
2275 if (!pend) 3011 if (!pend || pend == path)
2276 break; /* whoops, no '/', complain to your admin */ 3012 break;
2277 3013
2278 *pend = 0; 3014 *pend = 0;
2279 w->wd = inotify_add_watch (fs_fd, path, mask); 3015 w->wd = inotify_add_watch (fs_fd, path, mask);
2280 } 3016 }
2281 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3017 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2282 } 3018 }
2283 } 3019 }
2284 else
2285 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2286 3020
2287 if (w->wd >= 0) 3021 if (w->wd >= 0)
2288 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3022 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3023
3024 /* now re-arm timer, if required */
3025 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3026 ev_timer_again (EV_A_ &w->timer);
3027 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2289} 3028}
2290 3029
2291static void noinline 3030static void noinline
2292infy_del (EV_P_ ev_stat *w) 3031infy_del (EV_P_ ev_stat *w)
2293{ 3032{
2296 3035
2297 if (wd < 0) 3036 if (wd < 0)
2298 return; 3037 return;
2299 3038
2300 w->wd = -2; 3039 w->wd = -2;
2301 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3040 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2302 wlist_del (&fs_hash [slot].head, (WL)w); 3041 wlist_del (&fs_hash [slot].head, (WL)w);
2303 3042
2304 /* remove this watcher, if others are watching it, they will rearm */ 3043 /* remove this watcher, if others are watching it, they will rearm */
2305 inotify_rm_watch (fs_fd, wd); 3044 inotify_rm_watch (fs_fd, wd);
2306} 3045}
2307 3046
2308static void noinline 3047static void noinline
2309infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3048infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2310{ 3049{
2311 if (slot < 0) 3050 if (slot < 0)
2312 /* overflow, need to check for all hahs slots */ 3051 /* overflow, need to check for all hash slots */
2313 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3052 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2314 infy_wd (EV_A_ slot, wd, ev); 3053 infy_wd (EV_A_ slot, wd, ev);
2315 else 3054 else
2316 { 3055 {
2317 WL w_; 3056 WL w_;
2318 3057
2319 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3058 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2320 { 3059 {
2321 ev_stat *w = (ev_stat *)w_; 3060 ev_stat *w = (ev_stat *)w_;
2322 w_ = w_->next; /* lets us remove this watcher and all before it */ 3061 w_ = w_->next; /* lets us remove this watcher and all before it */
2323 3062
2324 if (w->wd == wd || wd == -1) 3063 if (w->wd == wd || wd == -1)
2325 { 3064 {
2326 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3065 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2327 { 3066 {
3067 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2328 w->wd = -1; 3068 w->wd = -1;
2329 infy_add (EV_A_ w); /* re-add, no matter what */ 3069 infy_add (EV_A_ w); /* re-add, no matter what */
2330 } 3070 }
2331 3071
2332 stat_timer_cb (EV_A_ &w->timer, 0); 3072 stat_timer_cb (EV_A_ &w->timer, 0);
2337 3077
2338static void 3078static void
2339infy_cb (EV_P_ ev_io *w, int revents) 3079infy_cb (EV_P_ ev_io *w, int revents)
2340{ 3080{
2341 char buf [EV_INOTIFY_BUFSIZE]; 3081 char buf [EV_INOTIFY_BUFSIZE];
2342 struct inotify_event *ev = (struct inotify_event *)buf;
2343 int ofs; 3082 int ofs;
2344 int len = read (fs_fd, buf, sizeof (buf)); 3083 int len = read (fs_fd, buf, sizeof (buf));
2345 3084
2346 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3085 for (ofs = 0; ofs < len; )
3086 {
3087 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2347 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3088 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3089 ofs += sizeof (struct inotify_event) + ev->len;
3090 }
2348} 3091}
2349 3092
2350void inline_size 3093inline_size void
3094ev_check_2625 (EV_P)
3095{
3096 /* kernels < 2.6.25 are borked
3097 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3098 */
3099 if (ev_linux_version () < 0x020619)
3100 return;
3101
3102 fs_2625 = 1;
3103}
3104
3105inline_size int
3106infy_newfd (void)
3107{
3108#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3109 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3110 if (fd >= 0)
3111 return fd;
3112#endif
3113 return inotify_init ();
3114}
3115
3116inline_size void
2351infy_init (EV_P) 3117infy_init (EV_P)
2352{ 3118{
2353 if (fs_fd != -2) 3119 if (fs_fd != -2)
2354 return; 3120 return;
2355 3121
3122 fs_fd = -1;
3123
3124 ev_check_2625 (EV_A);
3125
2356 fs_fd = inotify_init (); 3126 fs_fd = infy_newfd ();
2357 3127
2358 if (fs_fd >= 0) 3128 if (fs_fd >= 0)
2359 { 3129 {
3130 fd_intern (fs_fd);
2360 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3131 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2361 ev_set_priority (&fs_w, EV_MAXPRI); 3132 ev_set_priority (&fs_w, EV_MAXPRI);
2362 ev_io_start (EV_A_ &fs_w); 3133 ev_io_start (EV_A_ &fs_w);
3134 ev_unref (EV_A);
2363 } 3135 }
2364} 3136}
2365 3137
2366void inline_size 3138inline_size void
2367infy_fork (EV_P) 3139infy_fork (EV_P)
2368{ 3140{
2369 int slot; 3141 int slot;
2370 3142
2371 if (fs_fd < 0) 3143 if (fs_fd < 0)
2372 return; 3144 return;
2373 3145
3146 ev_ref (EV_A);
3147 ev_io_stop (EV_A_ &fs_w);
2374 close (fs_fd); 3148 close (fs_fd);
2375 fs_fd = inotify_init (); 3149 fs_fd = infy_newfd ();
2376 3150
3151 if (fs_fd >= 0)
3152 {
3153 fd_intern (fs_fd);
3154 ev_io_set (&fs_w, fs_fd, EV_READ);
3155 ev_io_start (EV_A_ &fs_w);
3156 ev_unref (EV_A);
3157 }
3158
2377 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3159 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2378 { 3160 {
2379 WL w_ = fs_hash [slot].head; 3161 WL w_ = fs_hash [slot].head;
2380 fs_hash [slot].head = 0; 3162 fs_hash [slot].head = 0;
2381 3163
2382 while (w_) 3164 while (w_)
2387 w->wd = -1; 3169 w->wd = -1;
2388 3170
2389 if (fs_fd >= 0) 3171 if (fs_fd >= 0)
2390 infy_add (EV_A_ w); /* re-add, no matter what */ 3172 infy_add (EV_A_ w); /* re-add, no matter what */
2391 else 3173 else
3174 {
3175 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3176 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2392 ev_timer_start (EV_A_ &w->timer); 3177 ev_timer_again (EV_A_ &w->timer);
3178 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3179 }
2393 } 3180 }
2394
2395 } 3181 }
2396} 3182}
2397 3183
3184#endif
3185
3186#ifdef _WIN32
3187# define EV_LSTAT(p,b) _stati64 (p, b)
3188#else
3189# define EV_LSTAT(p,b) lstat (p, b)
2398#endif 3190#endif
2399 3191
2400void 3192void
2401ev_stat_stat (EV_P_ ev_stat *w) 3193ev_stat_stat (EV_P_ ev_stat *w)
2402{ 3194{
2409static void noinline 3201static void noinline
2410stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3202stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2411{ 3203{
2412 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3204 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2413 3205
2414 /* we copy this here each the time so that */ 3206 ev_statdata prev = w->attr;
2415 /* prev has the old value when the callback gets invoked */
2416 w->prev = w->attr;
2417 ev_stat_stat (EV_A_ w); 3207 ev_stat_stat (EV_A_ w);
2418 3208
2419 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3209 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2420 if ( 3210 if (
2421 w->prev.st_dev != w->attr.st_dev 3211 prev.st_dev != w->attr.st_dev
2422 || w->prev.st_ino != w->attr.st_ino 3212 || prev.st_ino != w->attr.st_ino
2423 || w->prev.st_mode != w->attr.st_mode 3213 || prev.st_mode != w->attr.st_mode
2424 || w->prev.st_nlink != w->attr.st_nlink 3214 || prev.st_nlink != w->attr.st_nlink
2425 || w->prev.st_uid != w->attr.st_uid 3215 || prev.st_uid != w->attr.st_uid
2426 || w->prev.st_gid != w->attr.st_gid 3216 || prev.st_gid != w->attr.st_gid
2427 || w->prev.st_rdev != w->attr.st_rdev 3217 || prev.st_rdev != w->attr.st_rdev
2428 || w->prev.st_size != w->attr.st_size 3218 || prev.st_size != w->attr.st_size
2429 || w->prev.st_atime != w->attr.st_atime 3219 || prev.st_atime != w->attr.st_atime
2430 || w->prev.st_mtime != w->attr.st_mtime 3220 || prev.st_mtime != w->attr.st_mtime
2431 || w->prev.st_ctime != w->attr.st_ctime 3221 || prev.st_ctime != w->attr.st_ctime
2432 ) { 3222 ) {
3223 /* we only update w->prev on actual differences */
3224 /* in case we test more often than invoke the callback, */
3225 /* to ensure that prev is always different to attr */
3226 w->prev = prev;
3227
2433 #if EV_USE_INOTIFY 3228 #if EV_USE_INOTIFY
3229 if (fs_fd >= 0)
3230 {
2434 infy_del (EV_A_ w); 3231 infy_del (EV_A_ w);
2435 infy_add (EV_A_ w); 3232 infy_add (EV_A_ w);
2436 ev_stat_stat (EV_A_ w); /* avoid race... */ 3233 ev_stat_stat (EV_A_ w); /* avoid race... */
3234 }
2437 #endif 3235 #endif
2438 3236
2439 ev_feed_event (EV_A_ w, EV_STAT); 3237 ev_feed_event (EV_A_ w, EV_STAT);
2440 } 3238 }
2441} 3239}
2444ev_stat_start (EV_P_ ev_stat *w) 3242ev_stat_start (EV_P_ ev_stat *w)
2445{ 3243{
2446 if (expect_false (ev_is_active (w))) 3244 if (expect_false (ev_is_active (w)))
2447 return; 3245 return;
2448 3246
2449 /* since we use memcmp, we need to clear any padding data etc. */
2450 memset (&w->prev, 0, sizeof (ev_statdata));
2451 memset (&w->attr, 0, sizeof (ev_statdata));
2452
2453 ev_stat_stat (EV_A_ w); 3247 ev_stat_stat (EV_A_ w);
2454 3248
3249 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2455 if (w->interval < MIN_STAT_INTERVAL) 3250 w->interval = MIN_STAT_INTERVAL;
2456 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2457 3251
2458 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3252 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2459 ev_set_priority (&w->timer, ev_priority (w)); 3253 ev_set_priority (&w->timer, ev_priority (w));
2460 3254
2461#if EV_USE_INOTIFY 3255#if EV_USE_INOTIFY
2462 infy_init (EV_A); 3256 infy_init (EV_A);
2463 3257
2464 if (fs_fd >= 0) 3258 if (fs_fd >= 0)
2465 infy_add (EV_A_ w); 3259 infy_add (EV_A_ w);
2466 else 3260 else
2467#endif 3261#endif
3262 {
2468 ev_timer_start (EV_A_ &w->timer); 3263 ev_timer_again (EV_A_ &w->timer);
3264 ev_unref (EV_A);
3265 }
2469 3266
2470 ev_start (EV_A_ (W)w, 1); 3267 ev_start (EV_A_ (W)w, 1);
3268
3269 EV_FREQUENT_CHECK;
2471} 3270}
2472 3271
2473void 3272void
2474ev_stat_stop (EV_P_ ev_stat *w) 3273ev_stat_stop (EV_P_ ev_stat *w)
2475{ 3274{
2476 clear_pending (EV_A_ (W)w); 3275 clear_pending (EV_A_ (W)w);
2477 if (expect_false (!ev_is_active (w))) 3276 if (expect_false (!ev_is_active (w)))
2478 return; 3277 return;
2479 3278
3279 EV_FREQUENT_CHECK;
3280
2480#if EV_USE_INOTIFY 3281#if EV_USE_INOTIFY
2481 infy_del (EV_A_ w); 3282 infy_del (EV_A_ w);
2482#endif 3283#endif
3284
3285 if (ev_is_active (&w->timer))
3286 {
3287 ev_ref (EV_A);
2483 ev_timer_stop (EV_A_ &w->timer); 3288 ev_timer_stop (EV_A_ &w->timer);
3289 }
2484 3290
2485 ev_stop (EV_A_ (W)w); 3291 ev_stop (EV_A_ (W)w);
3292
3293 EV_FREQUENT_CHECK;
2486} 3294}
2487#endif 3295#endif
2488 3296
2489#if EV_IDLE_ENABLE 3297#if EV_IDLE_ENABLE
2490void 3298void
2493 if (expect_false (ev_is_active (w))) 3301 if (expect_false (ev_is_active (w)))
2494 return; 3302 return;
2495 3303
2496 pri_adjust (EV_A_ (W)w); 3304 pri_adjust (EV_A_ (W)w);
2497 3305
3306 EV_FREQUENT_CHECK;
3307
2498 { 3308 {
2499 int active = ++idlecnt [ABSPRI (w)]; 3309 int active = ++idlecnt [ABSPRI (w)];
2500 3310
2501 ++idleall; 3311 ++idleall;
2502 ev_start (EV_A_ (W)w, active); 3312 ev_start (EV_A_ (W)w, active);
2503 3313
2504 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3314 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2505 idles [ABSPRI (w)][active - 1] = w; 3315 idles [ABSPRI (w)][active - 1] = w;
2506 } 3316 }
3317
3318 EV_FREQUENT_CHECK;
2507} 3319}
2508 3320
2509void 3321void
2510ev_idle_stop (EV_P_ ev_idle *w) 3322ev_idle_stop (EV_P_ ev_idle *w)
2511{ 3323{
2512 clear_pending (EV_A_ (W)w); 3324 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w))) 3325 if (expect_false (!ev_is_active (w)))
2514 return; 3326 return;
2515 3327
3328 EV_FREQUENT_CHECK;
3329
2516 { 3330 {
2517 int active = ev_active (w); 3331 int active = ev_active (w);
2518 3332
2519 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3333 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2520 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3334 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2521 3335
2522 ev_stop (EV_A_ (W)w); 3336 ev_stop (EV_A_ (W)w);
2523 --idleall; 3337 --idleall;
2524 } 3338 }
2525}
2526#endif
2527 3339
3340 EV_FREQUENT_CHECK;
3341}
3342#endif
3343
3344#if EV_PREPARE_ENABLE
2528void 3345void
2529ev_prepare_start (EV_P_ ev_prepare *w) 3346ev_prepare_start (EV_P_ ev_prepare *w)
2530{ 3347{
2531 if (expect_false (ev_is_active (w))) 3348 if (expect_false (ev_is_active (w)))
2532 return; 3349 return;
3350
3351 EV_FREQUENT_CHECK;
2533 3352
2534 ev_start (EV_A_ (W)w, ++preparecnt); 3353 ev_start (EV_A_ (W)w, ++preparecnt);
2535 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3354 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2536 prepares [preparecnt - 1] = w; 3355 prepares [preparecnt - 1] = w;
3356
3357 EV_FREQUENT_CHECK;
2537} 3358}
2538 3359
2539void 3360void
2540ev_prepare_stop (EV_P_ ev_prepare *w) 3361ev_prepare_stop (EV_P_ ev_prepare *w)
2541{ 3362{
2542 clear_pending (EV_A_ (W)w); 3363 clear_pending (EV_A_ (W)w);
2543 if (expect_false (!ev_is_active (w))) 3364 if (expect_false (!ev_is_active (w)))
2544 return; 3365 return;
2545 3366
3367 EV_FREQUENT_CHECK;
3368
2546 { 3369 {
2547 int active = ev_active (w); 3370 int active = ev_active (w);
2548 3371
2549 prepares [active - 1] = prepares [--preparecnt]; 3372 prepares [active - 1] = prepares [--preparecnt];
2550 ev_active (prepares [active - 1]) = active; 3373 ev_active (prepares [active - 1]) = active;
2551 } 3374 }
2552 3375
2553 ev_stop (EV_A_ (W)w); 3376 ev_stop (EV_A_ (W)w);
2554}
2555 3377
3378 EV_FREQUENT_CHECK;
3379}
3380#endif
3381
3382#if EV_CHECK_ENABLE
2556void 3383void
2557ev_check_start (EV_P_ ev_check *w) 3384ev_check_start (EV_P_ ev_check *w)
2558{ 3385{
2559 if (expect_false (ev_is_active (w))) 3386 if (expect_false (ev_is_active (w)))
2560 return; 3387 return;
3388
3389 EV_FREQUENT_CHECK;
2561 3390
2562 ev_start (EV_A_ (W)w, ++checkcnt); 3391 ev_start (EV_A_ (W)w, ++checkcnt);
2563 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3392 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2564 checks [checkcnt - 1] = w; 3393 checks [checkcnt - 1] = w;
3394
3395 EV_FREQUENT_CHECK;
2565} 3396}
2566 3397
2567void 3398void
2568ev_check_stop (EV_P_ ev_check *w) 3399ev_check_stop (EV_P_ ev_check *w)
2569{ 3400{
2570 clear_pending (EV_A_ (W)w); 3401 clear_pending (EV_A_ (W)w);
2571 if (expect_false (!ev_is_active (w))) 3402 if (expect_false (!ev_is_active (w)))
2572 return; 3403 return;
2573 3404
3405 EV_FREQUENT_CHECK;
3406
2574 { 3407 {
2575 int active = ev_active (w); 3408 int active = ev_active (w);
2576 3409
2577 checks [active - 1] = checks [--checkcnt]; 3410 checks [active - 1] = checks [--checkcnt];
2578 ev_active (checks [active - 1]) = active; 3411 ev_active (checks [active - 1]) = active;
2579 } 3412 }
2580 3413
2581 ev_stop (EV_A_ (W)w); 3414 ev_stop (EV_A_ (W)w);
3415
3416 EV_FREQUENT_CHECK;
2582} 3417}
3418#endif
2583 3419
2584#if EV_EMBED_ENABLE 3420#if EV_EMBED_ENABLE
2585void noinline 3421void noinline
2586ev_embed_sweep (EV_P_ ev_embed *w) 3422ev_embed_sweep (EV_P_ ev_embed *w)
2587{ 3423{
2588 ev_loop (w->other, EVLOOP_NONBLOCK); 3424 ev_run (w->other, EVRUN_NOWAIT);
2589} 3425}
2590 3426
2591static void 3427static void
2592embed_io_cb (EV_P_ ev_io *io, int revents) 3428embed_io_cb (EV_P_ ev_io *io, int revents)
2593{ 3429{
2594 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3430 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2595 3431
2596 if (ev_cb (w)) 3432 if (ev_cb (w))
2597 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3433 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2598 else 3434 else
2599 ev_loop (w->other, EVLOOP_NONBLOCK); 3435 ev_run (w->other, EVRUN_NOWAIT);
2600} 3436}
2601 3437
2602static void 3438static void
2603embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3439embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2604{ 3440{
2605 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3441 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2606 3442
2607 { 3443 {
2608 struct ev_loop *loop = w->other; 3444 EV_P = w->other;
2609 3445
2610 while (fdchangecnt) 3446 while (fdchangecnt)
2611 { 3447 {
2612 fd_reify (EV_A); 3448 fd_reify (EV_A);
2613 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3449 ev_run (EV_A_ EVRUN_NOWAIT);
2614 } 3450 }
2615 } 3451 }
3452}
3453
3454static void
3455embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3456{
3457 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3458
3459 ev_embed_stop (EV_A_ w);
3460
3461 {
3462 EV_P = w->other;
3463
3464 ev_loop_fork (EV_A);
3465 ev_run (EV_A_ EVRUN_NOWAIT);
3466 }
3467
3468 ev_embed_start (EV_A_ w);
2616} 3469}
2617 3470
2618#if 0 3471#if 0
2619static void 3472static void
2620embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3473embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2628{ 3481{
2629 if (expect_false (ev_is_active (w))) 3482 if (expect_false (ev_is_active (w)))
2630 return; 3483 return;
2631 3484
2632 { 3485 {
2633 struct ev_loop *loop = w->other; 3486 EV_P = w->other;
2634 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3487 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2635 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2636 } 3489 }
3490
3491 EV_FREQUENT_CHECK;
2637 3492
2638 ev_set_priority (&w->io, ev_priority (w)); 3493 ev_set_priority (&w->io, ev_priority (w));
2639 ev_io_start (EV_A_ &w->io); 3494 ev_io_start (EV_A_ &w->io);
2640 3495
2641 ev_prepare_init (&w->prepare, embed_prepare_cb); 3496 ev_prepare_init (&w->prepare, embed_prepare_cb);
2642 ev_set_priority (&w->prepare, EV_MINPRI); 3497 ev_set_priority (&w->prepare, EV_MINPRI);
2643 ev_prepare_start (EV_A_ &w->prepare); 3498 ev_prepare_start (EV_A_ &w->prepare);
2644 3499
3500 ev_fork_init (&w->fork, embed_fork_cb);
3501 ev_fork_start (EV_A_ &w->fork);
3502
2645 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3503 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2646 3504
2647 ev_start (EV_A_ (W)w, 1); 3505 ev_start (EV_A_ (W)w, 1);
3506
3507 EV_FREQUENT_CHECK;
2648} 3508}
2649 3509
2650void 3510void
2651ev_embed_stop (EV_P_ ev_embed *w) 3511ev_embed_stop (EV_P_ ev_embed *w)
2652{ 3512{
2653 clear_pending (EV_A_ (W)w); 3513 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w))) 3514 if (expect_false (!ev_is_active (w)))
2655 return; 3515 return;
2656 3516
3517 EV_FREQUENT_CHECK;
3518
2657 ev_io_stop (EV_A_ &w->io); 3519 ev_io_stop (EV_A_ &w->io);
2658 ev_prepare_stop (EV_A_ &w->prepare); 3520 ev_prepare_stop (EV_A_ &w->prepare);
3521 ev_fork_stop (EV_A_ &w->fork);
2659 3522
2660 ev_stop (EV_A_ (W)w); 3523 ev_stop (EV_A_ (W)w);
3524
3525 EV_FREQUENT_CHECK;
2661} 3526}
2662#endif 3527#endif
2663 3528
2664#if EV_FORK_ENABLE 3529#if EV_FORK_ENABLE
2665void 3530void
2666ev_fork_start (EV_P_ ev_fork *w) 3531ev_fork_start (EV_P_ ev_fork *w)
2667{ 3532{
2668 if (expect_false (ev_is_active (w))) 3533 if (expect_false (ev_is_active (w)))
2669 return; 3534 return;
2670 3535
3536 EV_FREQUENT_CHECK;
3537
2671 ev_start (EV_A_ (W)w, ++forkcnt); 3538 ev_start (EV_A_ (W)w, ++forkcnt);
2672 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3539 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2673 forks [forkcnt - 1] = w; 3540 forks [forkcnt - 1] = w;
3541
3542 EV_FREQUENT_CHECK;
2674} 3543}
2675 3544
2676void 3545void
2677ev_fork_stop (EV_P_ ev_fork *w) 3546ev_fork_stop (EV_P_ ev_fork *w)
2678{ 3547{
2679 clear_pending (EV_A_ (W)w); 3548 clear_pending (EV_A_ (W)w);
2680 if (expect_false (!ev_is_active (w))) 3549 if (expect_false (!ev_is_active (w)))
2681 return; 3550 return;
2682 3551
3552 EV_FREQUENT_CHECK;
3553
2683 { 3554 {
2684 int active = ev_active (w); 3555 int active = ev_active (w);
2685 3556
2686 forks [active - 1] = forks [--forkcnt]; 3557 forks [active - 1] = forks [--forkcnt];
2687 ev_active (forks [active - 1]) = active; 3558 ev_active (forks [active - 1]) = active;
2688 } 3559 }
2689 3560
2690 ev_stop (EV_A_ (W)w); 3561 ev_stop (EV_A_ (W)w);
3562
3563 EV_FREQUENT_CHECK;
2691} 3564}
2692#endif 3565#endif
2693 3566
2694#if EV_ASYNC_ENABLE 3567#if EV_ASYNC_ENABLE
2695void 3568void
2696ev_async_start (EV_P_ ev_async *w) 3569ev_async_start (EV_P_ ev_async *w)
2697{ 3570{
2698 if (expect_false (ev_is_active (w))) 3571 if (expect_false (ev_is_active (w)))
2699 return; 3572 return;
2700 3573
3574 w->sent = 0;
3575
2701 evpipe_init (EV_A); 3576 evpipe_init (EV_A);
3577
3578 EV_FREQUENT_CHECK;
2702 3579
2703 ev_start (EV_A_ (W)w, ++asynccnt); 3580 ev_start (EV_A_ (W)w, ++asynccnt);
2704 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3581 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2705 asyncs [asynccnt - 1] = w; 3582 asyncs [asynccnt - 1] = w;
3583
3584 EV_FREQUENT_CHECK;
2706} 3585}
2707 3586
2708void 3587void
2709ev_async_stop (EV_P_ ev_async *w) 3588ev_async_stop (EV_P_ ev_async *w)
2710{ 3589{
2711 clear_pending (EV_A_ (W)w); 3590 clear_pending (EV_A_ (W)w);
2712 if (expect_false (!ev_is_active (w))) 3591 if (expect_false (!ev_is_active (w)))
2713 return; 3592 return;
2714 3593
3594 EV_FREQUENT_CHECK;
3595
2715 { 3596 {
2716 int active = ev_active (w); 3597 int active = ev_active (w);
2717 3598
2718 asyncs [active - 1] = asyncs [--asynccnt]; 3599 asyncs [active - 1] = asyncs [--asynccnt];
2719 ev_active (asyncs [active - 1]) = active; 3600 ev_active (asyncs [active - 1]) = active;
2720 } 3601 }
2721 3602
2722 ev_stop (EV_A_ (W)w); 3603 ev_stop (EV_A_ (W)w);
3604
3605 EV_FREQUENT_CHECK;
2723} 3606}
2724 3607
2725void 3608void
2726ev_async_send (EV_P_ ev_async *w) 3609ev_async_send (EV_P_ ev_async *w)
2727{ 3610{
2728 w->sent = 1; 3611 w->sent = 1;
2729 evpipe_write (EV_A_ &gotasync); 3612 evpipe_write (EV_A_ &async_pending);
2730} 3613}
2731#endif 3614#endif
2732 3615
2733/*****************************************************************************/ 3616/*****************************************************************************/
2734 3617
2744once_cb (EV_P_ struct ev_once *once, int revents) 3627once_cb (EV_P_ struct ev_once *once, int revents)
2745{ 3628{
2746 void (*cb)(int revents, void *arg) = once->cb; 3629 void (*cb)(int revents, void *arg) = once->cb;
2747 void *arg = once->arg; 3630 void *arg = once->arg;
2748 3631
2749 ev_io_stop (EV_A_ &once->io); 3632 ev_io_stop (EV_A_ &once->io);
2750 ev_timer_stop (EV_A_ &once->to); 3633 ev_timer_stop (EV_A_ &once->to);
2751 ev_free (once); 3634 ev_free (once);
2752 3635
2753 cb (revents, arg); 3636 cb (revents, arg);
2754} 3637}
2755 3638
2756static void 3639static void
2757once_cb_io (EV_P_ ev_io *w, int revents) 3640once_cb_io (EV_P_ ev_io *w, int revents)
2758{ 3641{
2759 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3642 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3643
3644 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2760} 3645}
2761 3646
2762static void 3647static void
2763once_cb_to (EV_P_ ev_timer *w, int revents) 3648once_cb_to (EV_P_ ev_timer *w, int revents)
2764{ 3649{
2765 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3650 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3651
3652 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2766} 3653}
2767 3654
2768void 3655void
2769ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3656ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2770{ 3657{
2771 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3658 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2772 3659
2773 if (expect_false (!once)) 3660 if (expect_false (!once))
2774 { 3661 {
2775 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3662 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2776 return; 3663 return;
2777 } 3664 }
2778 3665
2779 once->cb = cb; 3666 once->cb = cb;
2780 once->arg = arg; 3667 once->arg = arg;
2792 ev_timer_set (&once->to, timeout, 0.); 3679 ev_timer_set (&once->to, timeout, 0.);
2793 ev_timer_start (EV_A_ &once->to); 3680 ev_timer_start (EV_A_ &once->to);
2794 } 3681 }
2795} 3682}
2796 3683
3684/*****************************************************************************/
3685
3686#if EV_WALK_ENABLE
3687void
3688ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3689{
3690 int i, j;
3691 ev_watcher_list *wl, *wn;
3692
3693 if (types & (EV_IO | EV_EMBED))
3694 for (i = 0; i < anfdmax; ++i)
3695 for (wl = anfds [i].head; wl; )
3696 {
3697 wn = wl->next;
3698
3699#if EV_EMBED_ENABLE
3700 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3701 {
3702 if (types & EV_EMBED)
3703 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3704 }
3705 else
3706#endif
3707#if EV_USE_INOTIFY
3708 if (ev_cb ((ev_io *)wl) == infy_cb)
3709 ;
3710 else
3711#endif
3712 if ((ev_io *)wl != &pipe_w)
3713 if (types & EV_IO)
3714 cb (EV_A_ EV_IO, wl);
3715
3716 wl = wn;
3717 }
3718
3719 if (types & (EV_TIMER | EV_STAT))
3720 for (i = timercnt + HEAP0; i-- > HEAP0; )
3721#if EV_STAT_ENABLE
3722 /*TODO: timer is not always active*/
3723 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3724 {
3725 if (types & EV_STAT)
3726 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3727 }
3728 else
3729#endif
3730 if (types & EV_TIMER)
3731 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3732
3733#if EV_PERIODIC_ENABLE
3734 if (types & EV_PERIODIC)
3735 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3736 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3737#endif
3738
3739#if EV_IDLE_ENABLE
3740 if (types & EV_IDLE)
3741 for (j = NUMPRI; i--; )
3742 for (i = idlecnt [j]; i--; )
3743 cb (EV_A_ EV_IDLE, idles [j][i]);
3744#endif
3745
3746#if EV_FORK_ENABLE
3747 if (types & EV_FORK)
3748 for (i = forkcnt; i--; )
3749 if (ev_cb (forks [i]) != embed_fork_cb)
3750 cb (EV_A_ EV_FORK, forks [i]);
3751#endif
3752
3753#if EV_ASYNC_ENABLE
3754 if (types & EV_ASYNC)
3755 for (i = asynccnt; i--; )
3756 cb (EV_A_ EV_ASYNC, asyncs [i]);
3757#endif
3758
3759#if EV_PREPARE_ENABLE
3760 if (types & EV_PREPARE)
3761 for (i = preparecnt; i--; )
3762# if EV_EMBED_ENABLE
3763 if (ev_cb (prepares [i]) != embed_prepare_cb)
3764# endif
3765 cb (EV_A_ EV_PREPARE, prepares [i]);
3766#endif
3767
3768#if EV_CHECK_ENABLE
3769 if (types & EV_CHECK)
3770 for (i = checkcnt; i--; )
3771 cb (EV_A_ EV_CHECK, checks [i]);
3772#endif
3773
3774#if EV_SIGNAL_ENABLE
3775 if (types & EV_SIGNAL)
3776 for (i = 0; i < EV_NSIG - 1; ++i)
3777 for (wl = signals [i].head; wl; )
3778 {
3779 wn = wl->next;
3780 cb (EV_A_ EV_SIGNAL, wl);
3781 wl = wn;
3782 }
3783#endif
3784
3785#if EV_CHILD_ENABLE
3786 if (types & EV_CHILD)
3787 for (i = (EV_PID_HASHSIZE); i--; )
3788 for (wl = childs [i]; wl; )
3789 {
3790 wn = wl->next;
3791 cb (EV_A_ EV_CHILD, wl);
3792 wl = wn;
3793 }
3794#endif
3795/* EV_STAT 0x00001000 /* stat data changed */
3796/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3797}
3798#endif
3799
2797#if EV_MULTIPLICITY 3800#if EV_MULTIPLICITY
2798 #include "ev_wrap.h" 3801 #include "ev_wrap.h"
2799#endif 3802#endif
2800 3803
2801#ifdef __cplusplus 3804EV_CPP(})
2802}
2803#endif
2804 3805

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines