ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.246 by root, Wed May 21 12:51:38 2008 UTC vs.
Revision 1.401 by root, Tue Dec 20 04:08:35 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
154#ifndef _WIN32 188#ifndef _WIN32
155# include <sys/time.h> 189# include <sys/time.h>
156# include <sys/wait.h> 190# include <sys/wait.h>
157# include <unistd.h> 191# include <unistd.h>
158#else 192#else
193# include <io.h>
159# define WIN32_LEAN_AND_MEAN 194# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 195# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 196# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 197# define EV_SELECT_IS_WINSOCKET 1
163# endif 198# endif
199# undef EV_AVOID_STDIO
164#endif 200#endif
201
202/* OS X, in its infinite idiocy, actually HARDCODES
203 * a limit of 1024 into their select. Where people have brains,
204 * OS X engineers apparently have a vacuum. Or maybe they were
205 * ordered to have a vacuum, or they do anything for money.
206 * This might help. Or not.
207 */
208#define _DARWIN_UNLIMITED_SELECT 1
165 209
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 210/* this block tries to deduce configuration from header-defined symbols and defaults */
167 211
212/* try to deduce the maximum number of signals on this platform */
213#if defined (EV_NSIG)
214/* use what's provided */
215#elif defined (NSIG)
216# define EV_NSIG (NSIG)
217#elif defined(_NSIG)
218# define EV_NSIG (_NSIG)
219#elif defined (SIGMAX)
220# define EV_NSIG (SIGMAX+1)
221#elif defined (SIG_MAX)
222# define EV_NSIG (SIG_MAX+1)
223#elif defined (_SIG_MAX)
224# define EV_NSIG (_SIG_MAX+1)
225#elif defined (MAXSIG)
226# define EV_NSIG (MAXSIG+1)
227#elif defined (MAX_SIG)
228# define EV_NSIG (MAX_SIG+1)
229#elif defined (SIGARRAYSIZE)
230# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
231#elif defined (_sys_nsig)
232# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
233#else
234# error "unable to find value for NSIG, please report"
235/* to make it compile regardless, just remove the above line, */
236/* but consider reporting it, too! :) */
237# define EV_NSIG 65
238#endif
239
240#ifndef EV_USE_FLOOR
241# define EV_USE_FLOOR 0
242#endif
243
244#ifndef EV_USE_CLOCK_SYSCALL
245# if __linux && __GLIBC__ >= 2
246# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
247# else
248# define EV_USE_CLOCK_SYSCALL 0
249# endif
250#endif
251
168#ifndef EV_USE_MONOTONIC 252#ifndef EV_USE_MONOTONIC
253# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
254# define EV_USE_MONOTONIC EV_FEATURE_OS
255# else
169# define EV_USE_MONOTONIC 0 256# define EV_USE_MONOTONIC 0
257# endif
170#endif 258#endif
171 259
172#ifndef EV_USE_REALTIME 260#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 261# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 262#endif
175 263
176#ifndef EV_USE_NANOSLEEP 264#ifndef EV_USE_NANOSLEEP
265# if _POSIX_C_SOURCE >= 199309L
266# define EV_USE_NANOSLEEP EV_FEATURE_OS
267# else
177# define EV_USE_NANOSLEEP 0 268# define EV_USE_NANOSLEEP 0
269# endif
178#endif 270#endif
179 271
180#ifndef EV_USE_SELECT 272#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 273# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 274#endif
183 275
184#ifndef EV_USE_POLL 276#ifndef EV_USE_POLL
185# ifdef _WIN32 277# ifdef _WIN32
186# define EV_USE_POLL 0 278# define EV_USE_POLL 0
187# else 279# else
188# define EV_USE_POLL 1 280# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 281# endif
190#endif 282#endif
191 283
192#ifndef EV_USE_EPOLL 284#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 285# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 286# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 287# else
196# define EV_USE_EPOLL 0 288# define EV_USE_EPOLL 0
197# endif 289# endif
198#endif 290#endif
199 291
205# define EV_USE_PORT 0 297# define EV_USE_PORT 0
206#endif 298#endif
207 299
208#ifndef EV_USE_INOTIFY 300#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 301# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 302# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 303# else
212# define EV_USE_INOTIFY 0 304# define EV_USE_INOTIFY 0
213# endif 305# endif
214#endif 306#endif
215 307
216#ifndef EV_PID_HASHSIZE 308#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 309# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 310#endif
223 311
224#ifndef EV_INOTIFY_HASHSIZE 312#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 313# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 314#endif
231 315
232#ifndef EV_USE_EVENTFD 316#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 317# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 318# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 319# else
236# define EV_USE_EVENTFD 0 320# define EV_USE_EVENTFD 0
237# endif 321# endif
238#endif 322#endif
239 323
324#ifndef EV_USE_SIGNALFD
325# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
326# define EV_USE_SIGNALFD EV_FEATURE_OS
327# else
328# define EV_USE_SIGNALFD 0
329# endif
330#endif
331
332#if 0 /* debugging */
333# define EV_VERIFY 3
334# define EV_USE_4HEAP 1
335# define EV_HEAP_CACHE_AT 1
336#endif
337
338#ifndef EV_VERIFY
339# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
340#endif
341
240#ifndef EV_USE_4HEAP 342#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 343# define EV_USE_4HEAP EV_FEATURE_DATA
242#endif 344#endif
243 345
244#ifndef EV_HEAP_CACHE_AT 346#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 347# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
348#endif
349
350/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
351/* which makes programs even slower. might work on other unices, too. */
352#if EV_USE_CLOCK_SYSCALL
353# include <syscall.h>
354# ifdef SYS_clock_gettime
355# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
356# undef EV_USE_MONOTONIC
357# define EV_USE_MONOTONIC 1
358# else
359# undef EV_USE_CLOCK_SYSCALL
360# define EV_USE_CLOCK_SYSCALL 0
361# endif
246#endif 362#endif
247 363
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 364/* this block fixes any misconfiguration where we know we run into trouble otherwise */
365
366#ifdef _AIX
367/* AIX has a completely broken poll.h header */
368# undef EV_USE_POLL
369# define EV_USE_POLL 0
370#endif
249 371
250#ifndef CLOCK_MONOTONIC 372#ifndef CLOCK_MONOTONIC
251# undef EV_USE_MONOTONIC 373# undef EV_USE_MONOTONIC
252# define EV_USE_MONOTONIC 0 374# define EV_USE_MONOTONIC 0
253#endif 375#endif
261# undef EV_USE_INOTIFY 383# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0 384# define EV_USE_INOTIFY 0
263#endif 385#endif
264 386
265#if !EV_USE_NANOSLEEP 387#if !EV_USE_NANOSLEEP
266# ifndef _WIN32 388/* hp-ux has it in sys/time.h, which we unconditionally include above */
389# if !defined(_WIN32) && !defined(__hpux)
267# include <sys/select.h> 390# include <sys/select.h>
268# endif 391# endif
269#endif 392#endif
270 393
271#if EV_USE_INOTIFY 394#if EV_USE_INOTIFY
395# include <sys/statfs.h>
272# include <sys/inotify.h> 396# include <sys/inotify.h>
397/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
398# ifndef IN_DONT_FOLLOW
399# undef EV_USE_INOTIFY
400# define EV_USE_INOTIFY 0
401# endif
273#endif 402#endif
274 403
275#if EV_SELECT_IS_WINSOCKET 404#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h> 405# include <winsock.h>
277#endif 406#endif
278 407
279#if EV_USE_EVENTFD 408#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 409/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 410# include <stdint.h>
282# ifdef __cplusplus 411# ifndef EFD_NONBLOCK
283extern "C" { 412# define EFD_NONBLOCK O_NONBLOCK
284# endif 413# endif
285int eventfd (unsigned int initval, int flags); 414# ifndef EFD_CLOEXEC
286# ifdef __cplusplus 415# ifdef O_CLOEXEC
287} 416# define EFD_CLOEXEC O_CLOEXEC
417# else
418# define EFD_CLOEXEC 02000000
419# endif
288# endif 420# endif
421EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
422#endif
423
424#if EV_USE_SIGNALFD
425/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
426# include <stdint.h>
427# ifndef SFD_NONBLOCK
428# define SFD_NONBLOCK O_NONBLOCK
429# endif
430# ifndef SFD_CLOEXEC
431# ifdef O_CLOEXEC
432# define SFD_CLOEXEC O_CLOEXEC
433# else
434# define SFD_CLOEXEC 02000000
435# endif
436# endif
437EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
438
439struct signalfd_siginfo
440{
441 uint32_t ssi_signo;
442 char pad[128 - sizeof (uint32_t)];
443};
289#endif 444#endif
290 445
291/**/ 446/**/
292 447
448#if EV_VERIFY >= 3
449# define EV_FREQUENT_CHECK ev_verify (EV_A)
450#else
451# define EV_FREQUENT_CHECK do { } while (0)
452#endif
453
293/* 454/*
294 * This is used to avoid floating point rounding problems. 455 * This is used to work around floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000. 456 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */ 457 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 458#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
459/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
302 460
303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
306 463
464#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
465#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
466
467/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
468/* ECB.H BEGIN */
469/*
470 * libecb - http://software.schmorp.de/pkg/libecb
471 *
472 * Copyright (©) 2009-2011 Marc Alexander Lehmann <libecb@schmorp.de>
473 * Copyright (©) 2011 Emanuele Giaquinta
474 * All rights reserved.
475 *
476 * Redistribution and use in source and binary forms, with or without modifica-
477 * tion, are permitted provided that the following conditions are met:
478 *
479 * 1. Redistributions of source code must retain the above copyright notice,
480 * this list of conditions and the following disclaimer.
481 *
482 * 2. Redistributions in binary form must reproduce the above copyright
483 * notice, this list of conditions and the following disclaimer in the
484 * documentation and/or other materials provided with the distribution.
485 *
486 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
487 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
488 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
489 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
490 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
491 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
492 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
493 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
494 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
495 * OF THE POSSIBILITY OF SUCH DAMAGE.
496 */
497
498#ifndef ECB_H
499#define ECB_H
500
501#ifdef _WIN32
502 typedef signed char int8_t;
503 typedef unsigned char uint8_t;
504 typedef signed short int16_t;
505 typedef unsigned short uint16_t;
506 typedef signed int int32_t;
507 typedef unsigned int uint32_t;
307#if __GNUC__ >= 4 508 #if __GNUC__
308# define expect(expr,value) __builtin_expect ((expr),(value)) 509 typedef signed long long int64_t;
309# define noinline __attribute__ ((noinline)) 510 typedef unsigned long long uint64_t;
511 #else /* _MSC_VER || __BORLANDC__ */
512 typedef signed __int64 int64_t;
513 typedef unsigned __int64 uint64_t;
514 #endif
310#else 515#else
311# define expect(expr,value) (expr) 516 #include <inttypes.h>
312# define noinline
313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
314# define inline
315# endif 517#endif
518
519/* many compilers define _GNUC_ to some versions but then only implement
520 * what their idiot authors think are the "more important" extensions,
521 * causing enormous grief in return for some better fake benchmark numbers.
522 * or so.
523 * we try to detect these and simply assume they are not gcc - if they have
524 * an issue with that they should have done it right in the first place.
525 */
526#ifndef ECB_GCC_VERSION
527 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
528 #define ECB_GCC_VERSION(major,minor) 0
529 #else
530 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
316#endif 531 #endif
532#endif
317 533
534/*****************************************************************************/
535
536/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
537/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
538
539#if ECB_NO_THREADS || ECB_NO_SMP
540 #define ECB_MEMORY_FENCE do { } while (0)
541#endif
542
543#ifndef ECB_MEMORY_FENCE
544 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || defined(__clang__)
545 #if __i386__
546 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
547 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
548 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
549 #elif __amd64
550 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
551 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
552 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
553 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
554 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
555 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
556 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
557 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
558 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
559 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
560 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
561 #endif
562 #endif
563#endif
564
565#ifndef ECB_MEMORY_FENCE
566 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
567 #define ECB_MEMORY_FENCE __sync_synchronize ()
568 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
569 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
570 #elif _MSC_VER >= 1400 /* VC++ 2005 */
571 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
572 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
573 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
574 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
575 #elif defined(_WIN32)
576 #include <WinNT.h>
577 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
578 #endif
579#endif
580
581#ifndef ECB_MEMORY_FENCE
582 #if !ECB_AVOID_PTHREADS
583 /*
584 * if you get undefined symbol references to pthread_mutex_lock,
585 * or failure to find pthread.h, then you should implement
586 * the ECB_MEMORY_FENCE operations for your cpu/compiler
587 * OR provide pthread.h and link against the posix thread library
588 * of your system.
589 */
590 #include <pthread.h>
591 #define ECB_NEEDS_PTHREADS 1
592 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
593
594 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
595 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
596 #endif
597#endif
598
599#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
600 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
601#endif
602
603#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
604 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
605#endif
606
607/*****************************************************************************/
608
609#define ECB_C99 (__STDC_VERSION__ >= 199901L)
610
611#if __cplusplus
612 #define ecb_inline static inline
613#elif ECB_GCC_VERSION(2,5)
614 #define ecb_inline static __inline__
615#elif ECB_C99
616 #define ecb_inline static inline
617#else
618 #define ecb_inline static
619#endif
620
621#if ECB_GCC_VERSION(3,3)
622 #define ecb_restrict __restrict__
623#elif ECB_C99
624 #define ecb_restrict restrict
625#else
626 #define ecb_restrict
627#endif
628
629typedef int ecb_bool;
630
631#define ECB_CONCAT_(a, b) a ## b
632#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
633#define ECB_STRINGIFY_(a) # a
634#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
635
636#define ecb_function_ ecb_inline
637
638#if ECB_GCC_VERSION(3,1)
639 #define ecb_attribute(attrlist) __attribute__(attrlist)
640 #define ecb_is_constant(expr) __builtin_constant_p (expr)
641 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
642 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
643#else
644 #define ecb_attribute(attrlist)
645 #define ecb_is_constant(expr) 0
646 #define ecb_expect(expr,value) (expr)
647 #define ecb_prefetch(addr,rw,locality)
648#endif
649
650/* no emulation for ecb_decltype */
651#if ECB_GCC_VERSION(4,5)
652 #define ecb_decltype(x) __decltype(x)
653#elif ECB_GCC_VERSION(3,0)
654 #define ecb_decltype(x) __typeof(x)
655#endif
656
657#define ecb_noinline ecb_attribute ((__noinline__))
658#define ecb_noreturn ecb_attribute ((__noreturn__))
659#define ecb_unused ecb_attribute ((__unused__))
660#define ecb_const ecb_attribute ((__const__))
661#define ecb_pure ecb_attribute ((__pure__))
662
663#if ECB_GCC_VERSION(4,3)
664 #define ecb_artificial ecb_attribute ((__artificial__))
665 #define ecb_hot ecb_attribute ((__hot__))
666 #define ecb_cold ecb_attribute ((__cold__))
667#else
668 #define ecb_artificial
669 #define ecb_hot
670 #define ecb_cold
671#endif
672
673/* put around conditional expressions if you are very sure that the */
674/* expression is mostly true or mostly false. note that these return */
675/* booleans, not the expression. */
318#define expect_false(expr) expect ((expr) != 0, 0) 676#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
319#define expect_true(expr) expect ((expr) != 0, 1) 677#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
678/* for compatibility to the rest of the world */
679#define ecb_likely(expr) ecb_expect_true (expr)
680#define ecb_unlikely(expr) ecb_expect_false (expr)
681
682/* count trailing zero bits and count # of one bits */
683#if ECB_GCC_VERSION(3,4)
684 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
685 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
686 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
687 #define ecb_ctz32(x) __builtin_ctz (x)
688 #define ecb_ctz64(x) __builtin_ctzll (x)
689 #define ecb_popcount32(x) __builtin_popcount (x)
690 /* no popcountll */
691#else
692 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
693 ecb_function_ int
694 ecb_ctz32 (uint32_t x)
695 {
696 int r = 0;
697
698 x &= ~x + 1; /* this isolates the lowest bit */
699
700#if ECB_branchless_on_i386
701 r += !!(x & 0xaaaaaaaa) << 0;
702 r += !!(x & 0xcccccccc) << 1;
703 r += !!(x & 0xf0f0f0f0) << 2;
704 r += !!(x & 0xff00ff00) << 3;
705 r += !!(x & 0xffff0000) << 4;
706#else
707 if (x & 0xaaaaaaaa) r += 1;
708 if (x & 0xcccccccc) r += 2;
709 if (x & 0xf0f0f0f0) r += 4;
710 if (x & 0xff00ff00) r += 8;
711 if (x & 0xffff0000) r += 16;
712#endif
713
714 return r;
715 }
716
717 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
718 ecb_function_ int
719 ecb_ctz64 (uint64_t x)
720 {
721 int shift = x & 0xffffffffU ? 0 : 32;
722 return ecb_ctz32 (x >> shift) + shift;
723 }
724
725 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
726 ecb_function_ int
727 ecb_popcount32 (uint32_t x)
728 {
729 x -= (x >> 1) & 0x55555555;
730 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
731 x = ((x >> 4) + x) & 0x0f0f0f0f;
732 x *= 0x01010101;
733
734 return x >> 24;
735 }
736
737 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
738 ecb_function_ int ecb_ld32 (uint32_t x)
739 {
740 int r = 0;
741
742 if (x >> 16) { x >>= 16; r += 16; }
743 if (x >> 8) { x >>= 8; r += 8; }
744 if (x >> 4) { x >>= 4; r += 4; }
745 if (x >> 2) { x >>= 2; r += 2; }
746 if (x >> 1) { r += 1; }
747
748 return r;
749 }
750
751 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
752 ecb_function_ int ecb_ld64 (uint64_t x)
753 {
754 int r = 0;
755
756 if (x >> 32) { x >>= 32; r += 32; }
757
758 return r + ecb_ld32 (x);
759 }
760#endif
761
762/* popcount64 is only available on 64 bit cpus as gcc builtin */
763/* so for this version we are lazy */
764ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
765ecb_function_ int
766ecb_popcount64 (uint64_t x)
767{
768 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
769}
770
771ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
772ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
773ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
774ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
775ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
776ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
777ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
778ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
779
780ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
781ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
782ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
783ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
784ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
785ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
786ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
787ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
788
789#if ECB_GCC_VERSION(4,3)
790 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
791 #define ecb_bswap32(x) __builtin_bswap32 (x)
792 #define ecb_bswap64(x) __builtin_bswap64 (x)
793#else
794 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
795 ecb_function_ uint16_t
796 ecb_bswap16 (uint16_t x)
797 {
798 return ecb_rotl16 (x, 8);
799 }
800
801 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
802 ecb_function_ uint32_t
803 ecb_bswap32 (uint32_t x)
804 {
805 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
806 }
807
808 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
809 ecb_function_ uint64_t
810 ecb_bswap64 (uint64_t x)
811 {
812 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
813 }
814#endif
815
816#if ECB_GCC_VERSION(4,5)
817 #define ecb_unreachable() __builtin_unreachable ()
818#else
819 /* this seems to work fine, but gcc always emits a warning for it :/ */
820 ecb_function_ void ecb_unreachable (void) ecb_noreturn;
821 ecb_function_ void ecb_unreachable (void) { }
822#endif
823
824/* try to tell the compiler that some condition is definitely true */
825#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
826
827ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
828ecb_function_ unsigned char
829ecb_byteorder_helper (void)
830{
831 const uint32_t u = 0x11223344;
832 return *(unsigned char *)&u;
833}
834
835ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
836ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
837ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
838ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
839
840#if ECB_GCC_VERSION(3,0) || ECB_C99
841 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
842#else
843 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
844#endif
845
846#if __cplusplus
847 template<typename T>
848 static inline T ecb_div_rd (T val, T div)
849 {
850 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
851 }
852 template<typename T>
853 static inline T ecb_div_ru (T val, T div)
854 {
855 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
856 }
857#else
858 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
859 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
860#endif
861
862#if ecb_cplusplus_does_not_suck
863 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
864 template<typename T, int N>
865 static inline int ecb_array_length (const T (&arr)[N])
866 {
867 return N;
868 }
869#else
870 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
871#endif
872
873#endif
874
875/* ECB.H END */
876
877#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
878/* if your architecture doesn't need memory fences, e.g. because it is
879 * single-cpu/core, or if you use libev in a project that doesn't use libev
880 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
881 * libev, in which casess the memory fences become nops.
882 * alternatively, you can remove this #error and link against libpthread,
883 * which will then provide the memory fences.
884 */
885# error "memory fences not defined for your architecture, please report"
886#endif
887
888#ifndef ECB_MEMORY_FENCE
889# define ECB_MEMORY_FENCE do { } while (0)
890# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
891# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
892#endif
893
894#define expect_false(cond) ecb_expect_false (cond)
895#define expect_true(cond) ecb_expect_true (cond)
896#define noinline ecb_noinline
897
320#define inline_size static inline 898#define inline_size ecb_inline
321 899
322#if EV_MINIMAL 900#if EV_FEATURE_CODE
901# define inline_speed ecb_inline
902#else
323# define inline_speed static noinline 903# define inline_speed static noinline
904#endif
905
906#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
907
908#if EV_MINPRI == EV_MAXPRI
909# define ABSPRI(w) (((W)w), 0)
324#else 910#else
325# define inline_speed static inline
326#endif
327
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 911# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
912#endif
330 913
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 914#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 915#define EMPTY2(a,b) /* used to suppress some warnings */
333 916
334typedef ev_watcher *W; 917typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 919typedef ev_watcher_time *WT;
337 920
338#define ev_active(w) ((W)(w))->active 921#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 922#define ev_at(w) ((WT)(w))->at
340 923
924#if EV_USE_REALTIME
925/* sig_atomic_t is used to avoid per-thread variables or locking but still */
926/* giving it a reasonably high chance of working on typical architectures */
927static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
928#endif
929
341#if EV_USE_MONOTONIC 930#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 931static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
932#endif
933
934#ifndef EV_FD_TO_WIN32_HANDLE
935# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
936#endif
937#ifndef EV_WIN32_HANDLE_TO_FD
938# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
939#endif
940#ifndef EV_WIN32_CLOSE_FD
941# define EV_WIN32_CLOSE_FD(fd) close (fd)
345#endif 942#endif
346 943
347#ifdef _WIN32 944#ifdef _WIN32
348# include "ev_win32.c" 945# include "ev_win32.c"
349#endif 946#endif
350 947
351/*****************************************************************************/ 948/*****************************************************************************/
352 949
950/* define a suitable floor function (only used by periodics atm) */
951
952#if EV_USE_FLOOR
953# include <math.h>
954# define ev_floor(v) floor (v)
955#else
956
957#include <float.h>
958
959/* a floor() replacement function, should be independent of ev_tstamp type */
960static ev_tstamp noinline
961ev_floor (ev_tstamp v)
962{
963 /* the choice of shift factor is not terribly important */
964#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
965 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
966#else
967 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
968#endif
969
970 /* argument too large for an unsigned long? */
971 if (expect_false (v >= shift))
972 {
973 ev_tstamp f;
974
975 if (v == v - 1.)
976 return v; /* very large number */
977
978 f = shift * ev_floor (v * (1. / shift));
979 return f + ev_floor (v - f);
980 }
981
982 /* special treatment for negative args? */
983 if (expect_false (v < 0.))
984 {
985 ev_tstamp f = -ev_floor (-v);
986
987 return f - (f == v ? 0 : 1);
988 }
989
990 /* fits into an unsigned long */
991 return (unsigned long)v;
992}
993
994#endif
995
996/*****************************************************************************/
997
998#ifdef __linux
999# include <sys/utsname.h>
1000#endif
1001
1002static unsigned int noinline ecb_cold
1003ev_linux_version (void)
1004{
1005#ifdef __linux
1006 unsigned int v = 0;
1007 struct utsname buf;
1008 int i;
1009 char *p = buf.release;
1010
1011 if (uname (&buf))
1012 return 0;
1013
1014 for (i = 3+1; --i; )
1015 {
1016 unsigned int c = 0;
1017
1018 for (;;)
1019 {
1020 if (*p >= '0' && *p <= '9')
1021 c = c * 10 + *p++ - '0';
1022 else
1023 {
1024 p += *p == '.';
1025 break;
1026 }
1027 }
1028
1029 v = (v << 8) | c;
1030 }
1031
1032 return v;
1033#else
1034 return 0;
1035#endif
1036}
1037
1038/*****************************************************************************/
1039
1040#if EV_AVOID_STDIO
1041static void noinline ecb_cold
1042ev_printerr (const char *msg)
1043{
1044 write (STDERR_FILENO, msg, strlen (msg));
1045}
1046#endif
1047
353static void (*syserr_cb)(const char *msg); 1048static void (*syserr_cb)(const char *msg);
354 1049
355void 1050void ecb_cold
356ev_set_syserr_cb (void (*cb)(const char *msg)) 1051ev_set_syserr_cb (void (*cb)(const char *msg))
357{ 1052{
358 syserr_cb = cb; 1053 syserr_cb = cb;
359} 1054}
360 1055
361static void noinline 1056static void noinline ecb_cold
362syserr (const char *msg) 1057ev_syserr (const char *msg)
363{ 1058{
364 if (!msg) 1059 if (!msg)
365 msg = "(libev) system error"; 1060 msg = "(libev) system error";
366 1061
367 if (syserr_cb) 1062 if (syserr_cb)
368 syserr_cb (msg); 1063 syserr_cb (msg);
369 else 1064 else
370 { 1065 {
1066#if EV_AVOID_STDIO
1067 ev_printerr (msg);
1068 ev_printerr (": ");
1069 ev_printerr (strerror (errno));
1070 ev_printerr ("\n");
1071#else
371 perror (msg); 1072 perror (msg);
1073#endif
372 abort (); 1074 abort ();
373 } 1075 }
374} 1076}
375 1077
376static void * 1078static void *
377ev_realloc_emul (void *ptr, long size) 1079ev_realloc_emul (void *ptr, long size)
378{ 1080{
1081#if __GLIBC__
1082 return realloc (ptr, size);
1083#else
379 /* some systems, notably openbsd and darwin, fail to properly 1084 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and 1085 * implement realloc (x, 0) (as required by both ansi c-89 and
381 * the single unix specification, so work around them here. 1086 * the single unix specification, so work around them here.
382 */ 1087 */
383 1088
384 if (size) 1089 if (size)
385 return realloc (ptr, size); 1090 return realloc (ptr, size);
386 1091
387 free (ptr); 1092 free (ptr);
388 return 0; 1093 return 0;
1094#endif
389} 1095}
390 1096
391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1097static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
392 1098
393void 1099void ecb_cold
394ev_set_allocator (void *(*cb)(void *ptr, long size)) 1100ev_set_allocator (void *(*cb)(void *ptr, long size))
395{ 1101{
396 alloc = cb; 1102 alloc = cb;
397} 1103}
398 1104
401{ 1107{
402 ptr = alloc (ptr, size); 1108 ptr = alloc (ptr, size);
403 1109
404 if (!ptr && size) 1110 if (!ptr && size)
405 { 1111 {
1112#if EV_AVOID_STDIO
1113 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1114#else
406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1115 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1116#endif
407 abort (); 1117 abort ();
408 } 1118 }
409 1119
410 return ptr; 1120 return ptr;
411} 1121}
413#define ev_malloc(size) ev_realloc (0, (size)) 1123#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 1124#define ev_free(ptr) ev_realloc ((ptr), 0)
415 1125
416/*****************************************************************************/ 1126/*****************************************************************************/
417 1127
1128/* set in reify when reification needed */
1129#define EV_ANFD_REIFY 1
1130
1131/* file descriptor info structure */
418typedef struct 1132typedef struct
419{ 1133{
420 WL head; 1134 WL head;
421 unsigned char events; 1135 unsigned char events; /* the events watched for */
1136 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1137 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 1138 unsigned char unused;
1139#if EV_USE_EPOLL
1140 unsigned int egen; /* generation counter to counter epoll bugs */
1141#endif
423#if EV_SELECT_IS_WINSOCKET 1142#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
424 SOCKET handle; 1143 SOCKET handle;
425#endif 1144#endif
1145#if EV_USE_IOCP
1146 OVERLAPPED or, ow;
1147#endif
426} ANFD; 1148} ANFD;
427 1149
1150/* stores the pending event set for a given watcher */
428typedef struct 1151typedef struct
429{ 1152{
430 W w; 1153 W w;
431 int events; 1154 int events; /* the pending event set for the given watcher */
432} ANPENDING; 1155} ANPENDING;
433 1156
434#if EV_USE_INOTIFY 1157#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 1158/* hash table entry per inotify-id */
436typedef struct 1159typedef struct
439} ANFS; 1162} ANFS;
440#endif 1163#endif
441 1164
442/* Heap Entry */ 1165/* Heap Entry */
443#if EV_HEAP_CACHE_AT 1166#if EV_HEAP_CACHE_AT
1167 /* a heap element */
444 typedef struct { 1168 typedef struct {
445 ev_tstamp at; 1169 ev_tstamp at;
446 WT w; 1170 WT w;
447 } ANHE; 1171 } ANHE;
448 1172
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1173 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1174 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 1175 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 1176#else
1177 /* a heap element */
453 typedef WT ANHE; 1178 typedef WT ANHE;
454 1179
455 #define ANHE_w(he) (he) 1180 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 1181 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 1182 #define ANHE_at_cache(he)
458#endif 1183#endif
459 1184
460#if EV_MULTIPLICITY 1185#if EV_MULTIPLICITY
461 1186
462 struct ev_loop 1187 struct ev_loop
468 #undef VAR 1193 #undef VAR
469 }; 1194 };
470 #include "ev_wrap.h" 1195 #include "ev_wrap.h"
471 1196
472 static struct ev_loop default_loop_struct; 1197 static struct ev_loop default_loop_struct;
473 struct ev_loop *ev_default_loop_ptr; 1198 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a defintiino despite extern */
474 1199
475#else 1200#else
476 1201
477 ev_tstamp ev_rt_now; 1202 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a defintiino despite extern */
478 #define VAR(name,decl) static decl; 1203 #define VAR(name,decl) static decl;
479 #include "ev_vars.h" 1204 #include "ev_vars.h"
480 #undef VAR 1205 #undef VAR
481 1206
482 static int ev_default_loop_ptr; 1207 static int ev_default_loop_ptr;
483 1208
484#endif 1209#endif
485 1210
1211#if EV_FEATURE_API
1212# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1213# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1214# define EV_INVOKE_PENDING invoke_cb (EV_A)
1215#else
1216# define EV_RELEASE_CB (void)0
1217# define EV_ACQUIRE_CB (void)0
1218# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1219#endif
1220
1221#define EVBREAK_RECURSE 0x80
1222
486/*****************************************************************************/ 1223/*****************************************************************************/
487 1224
1225#ifndef EV_HAVE_EV_TIME
488ev_tstamp 1226ev_tstamp
489ev_time (void) 1227ev_time (void)
490{ 1228{
491#if EV_USE_REALTIME 1229#if EV_USE_REALTIME
1230 if (expect_true (have_realtime))
1231 {
492 struct timespec ts; 1232 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 1233 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 1234 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 1235 }
1236#endif
1237
496 struct timeval tv; 1238 struct timeval tv;
497 gettimeofday (&tv, 0); 1239 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 1240 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 1241}
1242#endif
501 1243
502ev_tstamp inline_size 1244inline_size ev_tstamp
503get_clock (void) 1245get_clock (void)
504{ 1246{
505#if EV_USE_MONOTONIC 1247#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 1248 if (expect_true (have_monotonic))
507 { 1249 {
528 if (delay > 0.) 1270 if (delay > 0.)
529 { 1271 {
530#if EV_USE_NANOSLEEP 1272#if EV_USE_NANOSLEEP
531 struct timespec ts; 1273 struct timespec ts;
532 1274
533 ts.tv_sec = (time_t)delay; 1275 EV_TS_SET (ts, delay);
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0); 1276 nanosleep (&ts, 0);
537#elif defined(_WIN32) 1277#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3)); 1278 Sleep ((unsigned long)(delay * 1e3));
539#else 1279#else
540 struct timeval tv; 1280 struct timeval tv;
541 1281
542 tv.tv_sec = (time_t)delay; 1282 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1283 /* something not guaranteed by newer posix versions, but guaranteed */
544 1284 /* by older ones */
1285 EV_TV_SET (tv, delay);
545 select (0, 0, 0, 0, &tv); 1286 select (0, 0, 0, 0, &tv);
546#endif 1287#endif
547 } 1288 }
548} 1289}
549 1290
550/*****************************************************************************/ 1291/*****************************************************************************/
551 1292
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1293#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 1294
554int inline_size 1295/* find a suitable new size for the given array, */
1296/* hopefully by rounding to a nice-to-malloc size */
1297inline_size int
555array_nextsize (int elem, int cur, int cnt) 1298array_nextsize (int elem, int cur, int cnt)
556{ 1299{
557 int ncur = cur + 1; 1300 int ncur = cur + 1;
558 1301
559 do 1302 do
560 ncur <<= 1; 1303 ncur <<= 1;
561 while (cnt > ncur); 1304 while (cnt > ncur);
562 1305
563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1306 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1307 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
565 { 1308 {
566 ncur *= elem; 1309 ncur *= elem;
567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1310 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
568 ncur = ncur - sizeof (void *) * 4; 1311 ncur = ncur - sizeof (void *) * 4;
570 } 1313 }
571 1314
572 return ncur; 1315 return ncur;
573} 1316}
574 1317
575static noinline void * 1318static void * noinline ecb_cold
576array_realloc (int elem, void *base, int *cur, int cnt) 1319array_realloc (int elem, void *base, int *cur, int cnt)
577{ 1320{
578 *cur = array_nextsize (elem, *cur, cnt); 1321 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 1322 return ev_realloc (base, elem * *cur);
580} 1323}
1324
1325#define array_init_zero(base,count) \
1326 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 1327
582#define array_needsize(type,base,cur,cnt,init) \ 1328#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 1329 if (expect_false ((cnt) > (cur))) \
584 { \ 1330 { \
585 int ocur_ = (cur); \ 1331 int ecb_unused ocur_ = (cur); \
586 (base) = (type *)array_realloc \ 1332 (base) = (type *)array_realloc \
587 (sizeof (type), (base), &(cur), (cnt)); \ 1333 (sizeof (type), (base), &(cur), (cnt)); \
588 init ((base) + (ocur_), (cur) - ocur_); \ 1334 init ((base) + (ocur_), (cur) - ocur_); \
589 } 1335 }
590 1336
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1343 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 1344 }
599#endif 1345#endif
600 1346
601#define array_free(stem, idx) \ 1347#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1348 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 1349
604/*****************************************************************************/ 1350/*****************************************************************************/
1351
1352/* dummy callback for pending events */
1353static void noinline
1354pendingcb (EV_P_ ev_prepare *w, int revents)
1355{
1356}
605 1357
606void noinline 1358void noinline
607ev_feed_event (EV_P_ void *w, int revents) 1359ev_feed_event (EV_P_ void *w, int revents)
608{ 1360{
609 W w_ = (W)w; 1361 W w_ = (W)w;
618 pendings [pri][w_->pending - 1].w = w_; 1370 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 1371 pendings [pri][w_->pending - 1].events = revents;
620 } 1372 }
621} 1373}
622 1374
623void inline_speed 1375inline_speed void
1376feed_reverse (EV_P_ W w)
1377{
1378 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1379 rfeeds [rfeedcnt++] = w;
1380}
1381
1382inline_size void
1383feed_reverse_done (EV_P_ int revents)
1384{
1385 do
1386 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1387 while (rfeedcnt);
1388}
1389
1390inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 1391queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 1392{
626 int i; 1393 int i;
627 1394
628 for (i = 0; i < eventcnt; ++i) 1395 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 1396 ev_feed_event (EV_A_ events [i], type);
630} 1397}
631 1398
632/*****************************************************************************/ 1399/*****************************************************************************/
633 1400
634void inline_size 1401inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 1402fd_event_nocheck (EV_P_ int fd, int revents)
649{ 1403{
650 ANFD *anfd = anfds + fd; 1404 ANFD *anfd = anfds + fd;
651 ev_io *w; 1405 ev_io *w;
652 1406
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1407 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 1411 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 1412 ev_feed_event (EV_A_ (W)w, ev);
659 } 1413 }
660} 1414}
661 1415
1416/* do not submit kernel events for fds that have reify set */
1417/* because that means they changed while we were polling for new events */
1418inline_speed void
1419fd_event (EV_P_ int fd, int revents)
1420{
1421 ANFD *anfd = anfds + fd;
1422
1423 if (expect_true (!anfd->reify))
1424 fd_event_nocheck (EV_A_ fd, revents);
1425}
1426
662void 1427void
663ev_feed_fd_event (EV_P_ int fd, int revents) 1428ev_feed_fd_event (EV_P_ int fd, int revents)
664{ 1429{
665 if (fd >= 0 && fd < anfdmax) 1430 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 1431 fd_event_nocheck (EV_A_ fd, revents);
667} 1432}
668 1433
669void inline_size 1434/* make sure the external fd watch events are in-sync */
1435/* with the kernel/libev internal state */
1436inline_size void
670fd_reify (EV_P) 1437fd_reify (EV_P)
671{ 1438{
672 int i; 1439 int i;
1440
1441#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1442 for (i = 0; i < fdchangecnt; ++i)
1443 {
1444 int fd = fdchanges [i];
1445 ANFD *anfd = anfds + fd;
1446
1447 if (anfd->reify & EV__IOFDSET && anfd->head)
1448 {
1449 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1450
1451 if (handle != anfd->handle)
1452 {
1453 unsigned long arg;
1454
1455 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1456
1457 /* handle changed, but fd didn't - we need to do it in two steps */
1458 backend_modify (EV_A_ fd, anfd->events, 0);
1459 anfd->events = 0;
1460 anfd->handle = handle;
1461 }
1462 }
1463 }
1464#endif
673 1465
674 for (i = 0; i < fdchangecnt; ++i) 1466 for (i = 0; i < fdchangecnt; ++i)
675 { 1467 {
676 int fd = fdchanges [i]; 1468 int fd = fdchanges [i];
677 ANFD *anfd = anfds + fd; 1469 ANFD *anfd = anfds + fd;
678 ev_io *w; 1470 ev_io *w;
679 1471
680 unsigned char events = 0; 1472 unsigned char o_events = anfd->events;
1473 unsigned char o_reify = anfd->reify;
681 1474
682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1475 anfd->reify = 0;
683 events |= (unsigned char)w->events;
684 1476
685#if EV_SELECT_IS_WINSOCKET 1477 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
686 if (events)
687 { 1478 {
688 unsigned long argp; 1479 anfd->events = 0;
689 #ifdef EV_FD_TO_WIN32_HANDLE 1480
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1481 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
691 #else 1482 anfd->events |= (unsigned char)w->events;
692 anfd->handle = _get_osfhandle (fd); 1483
693 #endif 1484 if (o_events != anfd->events)
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1485 o_reify = EV__IOFDSET; /* actually |= */
695 } 1486 }
696#endif
697 1487
698 { 1488 if (o_reify & EV__IOFDSET)
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
702 anfd->reify = 0;
703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 1489 backend_modify (EV_A_ fd, o_events, anfd->events);
707 }
708 } 1490 }
709 1491
710 fdchangecnt = 0; 1492 fdchangecnt = 0;
711} 1493}
712 1494
713void inline_size 1495/* something about the given fd changed */
1496inline_size void
714fd_change (EV_P_ int fd, int flags) 1497fd_change (EV_P_ int fd, int flags)
715{ 1498{
716 unsigned char reify = anfds [fd].reify; 1499 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 1500 anfds [fd].reify |= flags;
718 1501
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1505 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 1506 fdchanges [fdchangecnt - 1] = fd;
724 } 1507 }
725} 1508}
726 1509
727void inline_speed 1510/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1511inline_speed void ecb_cold
728fd_kill (EV_P_ int fd) 1512fd_kill (EV_P_ int fd)
729{ 1513{
730 ev_io *w; 1514 ev_io *w;
731 1515
732 while ((w = (ev_io *)anfds [fd].head)) 1516 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 1518 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1519 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 1520 }
737} 1521}
738 1522
739int inline_size 1523/* check whether the given fd is actually valid, for error recovery */
1524inline_size int ecb_cold
740fd_valid (int fd) 1525fd_valid (int fd)
741{ 1526{
742#ifdef _WIN32 1527#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 1528 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
744#else 1529#else
745 return fcntl (fd, F_GETFD) != -1; 1530 return fcntl (fd, F_GETFD) != -1;
746#endif 1531#endif
747} 1532}
748 1533
749/* called on EBADF to verify fds */ 1534/* called on EBADF to verify fds */
750static void noinline 1535static void noinline ecb_cold
751fd_ebadf (EV_P) 1536fd_ebadf (EV_P)
752{ 1537{
753 int fd; 1538 int fd;
754 1539
755 for (fd = 0; fd < anfdmax; ++fd) 1540 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 1541 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 1542 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 1543 fd_kill (EV_A_ fd);
759} 1544}
760 1545
761/* called on ENOMEM in select/poll to kill some fds and retry */ 1546/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 1547static void noinline ecb_cold
763fd_enomem (EV_P) 1548fd_enomem (EV_P)
764{ 1549{
765 int fd; 1550 int fd;
766 1551
767 for (fd = anfdmax; fd--; ) 1552 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events) 1553 if (anfds [fd].events)
769 { 1554 {
770 fd_kill (EV_A_ fd); 1555 fd_kill (EV_A_ fd);
771 return; 1556 break;
772 } 1557 }
773} 1558}
774 1559
775/* usually called after fork if backend needs to re-arm all fds from scratch */ 1560/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline 1561static void noinline
780 1565
781 for (fd = 0; fd < anfdmax; ++fd) 1566 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 1567 if (anfds [fd].events)
783 { 1568 {
784 anfds [fd].events = 0; 1569 anfds [fd].events = 0;
1570 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1571 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 1572 }
787} 1573}
788 1574
1575/* used to prepare libev internal fd's */
1576/* this is not fork-safe */
1577inline_speed void
1578fd_intern (int fd)
1579{
1580#ifdef _WIN32
1581 unsigned long arg = 1;
1582 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1583#else
1584 fcntl (fd, F_SETFD, FD_CLOEXEC);
1585 fcntl (fd, F_SETFL, O_NONBLOCK);
1586#endif
1587}
1588
789/*****************************************************************************/ 1589/*****************************************************************************/
790 1590
791/* 1591/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not 1592 * the heap functions want a real array index. array index 0 is guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1593 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree. 1594 * the branching factor of the d-tree.
795 */ 1595 */
796 1596
797/* 1597/*
802 */ 1602 */
803#if EV_USE_4HEAP 1603#if EV_USE_4HEAP
804 1604
805#define DHEAP 4 1605#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1606#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807 1607#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808/* towards the root */ 1608#define UPHEAP_DONE(p,k) ((p) == (k))
809void inline_speed
810upheap (ANHE *heap, int k)
811{
812 ANHE he = heap [k];
813
814 for (;;)
815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
821 heap [k] = heap [p];
822 ev_active (ANHE_w (heap [k])) = k;
823 k = p;
824 }
825
826 ev_active (ANHE_w (he)) = k;
827 heap [k] = he;
828}
829 1609
830/* away from the root */ 1610/* away from the root */
831void inline_speed 1611inline_speed void
832downheap (ANHE *heap, int N, int k) 1612downheap (ANHE *heap, int N, int k)
833{ 1613{
834 ANHE he = heap [k]; 1614 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0; 1615 ANHE *E = heap + N + HEAP0;
836 1616
837 for (;;) 1617 for (;;)
838 { 1618 {
839 ev_tstamp minat; 1619 ev_tstamp minat;
840 ANHE *minpos; 1620 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1621 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
842 1622
843 // find minimum child 1623 /* find minimum child */
844 if (expect_true (pos + DHEAP - 1 < E)) 1624 if (expect_true (pos + DHEAP - 1 < E))
845 { 1625 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1626 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1627 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1628 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
859 break; 1639 break;
860 1640
861 if (ANHE_at (he) <= minat) 1641 if (ANHE_at (he) <= minat)
862 break; 1642 break;
863 1643
1644 heap [k] = *minpos;
864 ev_active (ANHE_w (*minpos)) = k; 1645 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866 1646
867 k = minpos - heap; 1647 k = minpos - heap;
868 } 1648 }
869 1649
1650 heap [k] = he;
870 ev_active (ANHE_w (he)) = k; 1651 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872} 1652}
873 1653
874#else // 4HEAP 1654#else /* 4HEAP */
875 1655
876#define HEAP0 1 1656#define HEAP0 1
1657#define HPARENT(k) ((k) >> 1)
1658#define UPHEAP_DONE(p,k) (!(p))
877 1659
878/* towards the root */ 1660/* away from the root */
879void inline_speed 1661inline_speed void
880upheap (ANHE *heap, int k) 1662downheap (ANHE *heap, int N, int k)
881{ 1663{
882 ANHE he = heap [k]; 1664 ANHE he = heap [k];
883 1665
884 for (;;) 1666 for (;;)
885 { 1667 {
886 int p = k >> 1; 1668 int c = k << 1;
887 1669
888 /* maybe we could use a dummy element at heap [0]? */ 1670 if (c >= N + HEAP0)
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break; 1671 break;
891 1672
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1673 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0; 1674 ? 1 : 0;
916 1675
917 if (ANHE_at (he) <= ANHE_at (heap [c])) 1676 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break; 1677 break;
919 1678
926 heap [k] = he; 1685 heap [k] = he;
927 ev_active (ANHE_w (he)) = k; 1686 ev_active (ANHE_w (he)) = k;
928} 1687}
929#endif 1688#endif
930 1689
931void inline_size 1690/* towards the root */
1691inline_speed void
1692upheap (ANHE *heap, int k)
1693{
1694 ANHE he = heap [k];
1695
1696 for (;;)
1697 {
1698 int p = HPARENT (k);
1699
1700 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1701 break;
1702
1703 heap [k] = heap [p];
1704 ev_active (ANHE_w (heap [k])) = k;
1705 k = p;
1706 }
1707
1708 heap [k] = he;
1709 ev_active (ANHE_w (he)) = k;
1710}
1711
1712/* move an element suitably so it is in a correct place */
1713inline_size void
932adjustheap (ANHE *heap, int N, int k) 1714adjustheap (ANHE *heap, int N, int k)
933{ 1715{
1716 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
934 upheap (heap, k); 1717 upheap (heap, k);
1718 else
935 downheap (heap, N, k); 1719 downheap (heap, N, k);
1720}
1721
1722/* rebuild the heap: this function is used only once and executed rarely */
1723inline_size void
1724reheap (ANHE *heap, int N)
1725{
1726 int i;
1727
1728 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1729 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1730 for (i = 0; i < N; ++i)
1731 upheap (heap, i + HEAP0);
936} 1732}
937 1733
938/*****************************************************************************/ 1734/*****************************************************************************/
939 1735
1736/* associate signal watchers to a signal signal */
940typedef struct 1737typedef struct
941{ 1738{
1739 EV_ATOMIC_T pending;
1740#if EV_MULTIPLICITY
1741 EV_P;
1742#endif
942 WL head; 1743 WL head;
943 EV_ATOMIC_T gotsig;
944} ANSIG; 1744} ANSIG;
945 1745
946static ANSIG *signals; 1746static ANSIG signals [EV_NSIG - 1];
947static int signalmax;
948
949static EV_ATOMIC_T gotsig;
950
951void inline_size
952signals_init (ANSIG *base, int count)
953{
954 while (count--)
955 {
956 base->head = 0;
957 base->gotsig = 0;
958
959 ++base;
960 }
961}
962 1747
963/*****************************************************************************/ 1748/*****************************************************************************/
964 1749
965void inline_speed 1750#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
966fd_intern (int fd)
967{
968#ifdef _WIN32
969 int arg = 1;
970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
971#else
972 fcntl (fd, F_SETFD, FD_CLOEXEC);
973 fcntl (fd, F_SETFL, O_NONBLOCK);
974#endif
975}
976 1751
977static void noinline 1752static void noinline ecb_cold
978evpipe_init (EV_P) 1753evpipe_init (EV_P)
979{ 1754{
980 if (!ev_is_active (&pipeev)) 1755 if (!ev_is_active (&pipe_w))
981 { 1756 {
982#if EV_USE_EVENTFD 1757# if EV_USE_EVENTFD
1758 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1759 if (evfd < 0 && errno == EINVAL)
983 if ((evfd = eventfd (0, 0)) >= 0) 1760 evfd = eventfd (0, 0);
1761
1762 if (evfd >= 0)
984 { 1763 {
985 evpipe [0] = -1; 1764 evpipe [0] = -1;
986 fd_intern (evfd); 1765 fd_intern (evfd); /* doing it twice doesn't hurt */
987 ev_io_set (&pipeev, evfd, EV_READ); 1766 ev_io_set (&pipe_w, evfd, EV_READ);
988 } 1767 }
989 else 1768 else
990#endif 1769# endif
991 { 1770 {
992 while (pipe (evpipe)) 1771 while (pipe (evpipe))
993 syserr ("(libev) error creating signal/async pipe"); 1772 ev_syserr ("(libev) error creating signal/async pipe");
994 1773
995 fd_intern (evpipe [0]); 1774 fd_intern (evpipe [0]);
996 fd_intern (evpipe [1]); 1775 fd_intern (evpipe [1]);
997 ev_io_set (&pipeev, evpipe [0], EV_READ); 1776 ev_io_set (&pipe_w, evpipe [0], EV_READ);
998 } 1777 }
999 1778
1000 ev_io_start (EV_A_ &pipeev); 1779 ev_io_start (EV_A_ &pipe_w);
1001 ev_unref (EV_A); /* watcher should not keep loop alive */ 1780 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 } 1781 }
1003} 1782}
1004 1783
1005void inline_size 1784inline_speed void
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1785evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{ 1786{
1008 if (!*flag) 1787 if (expect_true (*flag))
1788 return;
1789
1790 *flag = 1;
1791
1792 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1793
1794 pipe_write_skipped = 1;
1795
1796 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1797
1798 if (pipe_write_wanted)
1009 { 1799 {
1800 int old_errno;
1801
1802 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1803
1010 int old_errno = errno; /* save errno because write might clobber it */ 1804 old_errno = errno; /* save errno because write will clobber it */
1011
1012 *flag = 1;
1013 1805
1014#if EV_USE_EVENTFD 1806#if EV_USE_EVENTFD
1015 if (evfd >= 0) 1807 if (evfd >= 0)
1016 { 1808 {
1017 uint64_t counter = 1; 1809 uint64_t counter = 1;
1018 write (evfd, &counter, sizeof (uint64_t)); 1810 write (evfd, &counter, sizeof (uint64_t));
1019 } 1811 }
1020 else 1812 else
1021#endif 1813#endif
1814 {
1815 /* win32 people keep sending patches that change this write() to send() */
1816 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1817 /* so when you think this write should be a send instead, please find out */
1818 /* where your send() is from - it's definitely not the microsoft send, and */
1819 /* tell me. thank you. */
1022 write (evpipe [1], &old_errno, 1); 1820 write (evpipe [1], &(evpipe [1]), 1);
1821 }
1023 1822
1024 errno = old_errno; 1823 errno = old_errno;
1025 } 1824 }
1026} 1825}
1027 1826
1827/* called whenever the libev signal pipe */
1828/* got some events (signal, async) */
1028static void 1829static void
1029pipecb (EV_P_ ev_io *iow, int revents) 1830pipecb (EV_P_ ev_io *iow, int revents)
1030{ 1831{
1832 int i;
1833
1834 if (revents & EV_READ)
1835 {
1031#if EV_USE_EVENTFD 1836#if EV_USE_EVENTFD
1032 if (evfd >= 0) 1837 if (evfd >= 0)
1033 { 1838 {
1034 uint64_t counter; 1839 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t)); 1840 read (evfd, &counter, sizeof (uint64_t));
1036 } 1841 }
1037 else 1842 else
1038#endif 1843#endif
1039 { 1844 {
1040 char dummy; 1845 char dummy;
1846 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1041 read (evpipe [0], &dummy, 1); 1847 read (evpipe [0], &dummy, 1);
1848 }
1849 }
1850
1851 pipe_write_skipped = 0;
1852
1853#if EV_SIGNAL_ENABLE
1854 if (sig_pending)
1042 } 1855 {
1856 sig_pending = 0;
1043 1857
1044 if (gotsig && ev_is_default_loop (EV_A)) 1858 for (i = EV_NSIG - 1; i--; )
1045 { 1859 if (expect_false (signals [i].pending))
1046 int signum;
1047 gotsig = 0;
1048
1049 for (signum = signalmax; signum--; )
1050 if (signals [signum].gotsig)
1051 ev_feed_signal_event (EV_A_ signum + 1); 1860 ev_feed_signal_event (EV_A_ i + 1);
1052 } 1861 }
1862#endif
1053 1863
1054#if EV_ASYNC_ENABLE 1864#if EV_ASYNC_ENABLE
1055 if (gotasync) 1865 if (async_pending)
1056 { 1866 {
1057 int i; 1867 async_pending = 0;
1058 gotasync = 0;
1059 1868
1060 for (i = asynccnt; i--; ) 1869 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent) 1870 if (asyncs [i]->sent)
1062 { 1871 {
1063 asyncs [i]->sent = 0; 1872 asyncs [i]->sent = 0;
1067#endif 1876#endif
1068} 1877}
1069 1878
1070/*****************************************************************************/ 1879/*****************************************************************************/
1071 1880
1881void
1882ev_feed_signal (int signum)
1883{
1884#if EV_MULTIPLICITY
1885 EV_P = signals [signum - 1].loop;
1886
1887 if (!EV_A)
1888 return;
1889#endif
1890
1891 if (!ev_active (&pipe_w))
1892 return;
1893
1894 signals [signum - 1].pending = 1;
1895 evpipe_write (EV_A_ &sig_pending);
1896}
1897
1072static void 1898static void
1073ev_sighandler (int signum) 1899ev_sighandler (int signum)
1074{ 1900{
1075#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct;
1077#endif
1078
1079#if _WIN32 1901#ifdef _WIN32
1080 signal (signum, ev_sighandler); 1902 signal (signum, ev_sighandler);
1081#endif 1903#endif
1082 1904
1083 signals [signum - 1].gotsig = 1; 1905 ev_feed_signal (signum);
1084 evpipe_write (EV_A_ &gotsig);
1085} 1906}
1086 1907
1087void noinline 1908void noinline
1088ev_feed_signal_event (EV_P_ int signum) 1909ev_feed_signal_event (EV_P_ int signum)
1089{ 1910{
1090 WL w; 1911 WL w;
1091 1912
1913 if (expect_false (signum <= 0 || signum > EV_NSIG))
1914 return;
1915
1916 --signum;
1917
1092#if EV_MULTIPLICITY 1918#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1919 /* it is permissible to try to feed a signal to the wrong loop */
1094#endif 1920 /* or, likely more useful, feeding a signal nobody is waiting for */
1095 1921
1096 --signum; 1922 if (expect_false (signals [signum].loop != EV_A))
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return; 1923 return;
1924#endif
1100 1925
1101 signals [signum].gotsig = 0; 1926 signals [signum].pending = 0;
1102 1927
1103 for (w = signals [signum].head; w; w = w->next) 1928 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1929 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105} 1930}
1106 1931
1932#if EV_USE_SIGNALFD
1933static void
1934sigfdcb (EV_P_ ev_io *iow, int revents)
1935{
1936 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1937
1938 for (;;)
1939 {
1940 ssize_t res = read (sigfd, si, sizeof (si));
1941
1942 /* not ISO-C, as res might be -1, but works with SuS */
1943 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1944 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1945
1946 if (res < (ssize_t)sizeof (si))
1947 break;
1948 }
1949}
1950#endif
1951
1952#endif
1953
1107/*****************************************************************************/ 1954/*****************************************************************************/
1108 1955
1956#if EV_CHILD_ENABLE
1109static WL childs [EV_PID_HASHSIZE]; 1957static WL childs [EV_PID_HASHSIZE];
1110
1111#ifndef _WIN32
1112 1958
1113static ev_signal childev; 1959static ev_signal childev;
1114 1960
1115#ifndef WIFCONTINUED 1961#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0 1962# define WIFCONTINUED(status) 0
1117#endif 1963#endif
1118 1964
1119void inline_speed 1965/* handle a single child status event */
1966inline_speed void
1120child_reap (EV_P_ int chain, int pid, int status) 1967child_reap (EV_P_ int chain, int pid, int status)
1121{ 1968{
1122 ev_child *w; 1969 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1970 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1124 1971
1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1972 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1126 { 1973 {
1127 if ((w->pid == pid || !w->pid) 1974 if ((w->pid == pid || !w->pid)
1128 && (!traced || (w->flags & 1))) 1975 && (!traced || (w->flags & 1)))
1129 { 1976 {
1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1977 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1137 1984
1138#ifndef WCONTINUED 1985#ifndef WCONTINUED
1139# define WCONTINUED 0 1986# define WCONTINUED 0
1140#endif 1987#endif
1141 1988
1989/* called on sigchld etc., calls waitpid */
1142static void 1990static void
1143childcb (EV_P_ ev_signal *sw, int revents) 1991childcb (EV_P_ ev_signal *sw, int revents)
1144{ 1992{
1145 int pid, status; 1993 int pid, status;
1146 1994
1154 /* make sure we are called again until all children have been reaped */ 2002 /* make sure we are called again until all children have been reaped */
1155 /* we need to do it this way so that the callback gets called before we continue */ 2003 /* we need to do it this way so that the callback gets called before we continue */
1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2004 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1157 2005
1158 child_reap (EV_A_ pid, pid, status); 2006 child_reap (EV_A_ pid, pid, status);
1159 if (EV_PID_HASHSIZE > 1) 2007 if ((EV_PID_HASHSIZE) > 1)
1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2008 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1161} 2009}
1162 2010
1163#endif 2011#endif
1164 2012
1165/*****************************************************************************/ 2013/*****************************************************************************/
1166 2014
2015#if EV_USE_IOCP
2016# include "ev_iocp.c"
2017#endif
1167#if EV_USE_PORT 2018#if EV_USE_PORT
1168# include "ev_port.c" 2019# include "ev_port.c"
1169#endif 2020#endif
1170#if EV_USE_KQUEUE 2021#if EV_USE_KQUEUE
1171# include "ev_kqueue.c" 2022# include "ev_kqueue.c"
1178#endif 2029#endif
1179#if EV_USE_SELECT 2030#if EV_USE_SELECT
1180# include "ev_select.c" 2031# include "ev_select.c"
1181#endif 2032#endif
1182 2033
1183int 2034int ecb_cold
1184ev_version_major (void) 2035ev_version_major (void)
1185{ 2036{
1186 return EV_VERSION_MAJOR; 2037 return EV_VERSION_MAJOR;
1187} 2038}
1188 2039
1189int 2040int ecb_cold
1190ev_version_minor (void) 2041ev_version_minor (void)
1191{ 2042{
1192 return EV_VERSION_MINOR; 2043 return EV_VERSION_MINOR;
1193} 2044}
1194 2045
1195/* return true if we are running with elevated privileges and should ignore env variables */ 2046/* return true if we are running with elevated privileges and should ignore env variables */
1196int inline_size 2047int inline_size ecb_cold
1197enable_secure (void) 2048enable_secure (void)
1198{ 2049{
1199#ifdef _WIN32 2050#ifdef _WIN32
1200 return 0; 2051 return 0;
1201#else 2052#else
1202 return getuid () != geteuid () 2053 return getuid () != geteuid ()
1203 || getgid () != getegid (); 2054 || getgid () != getegid ();
1204#endif 2055#endif
1205} 2056}
1206 2057
1207unsigned int 2058unsigned int ecb_cold
1208ev_supported_backends (void) 2059ev_supported_backends (void)
1209{ 2060{
1210 unsigned int flags = 0; 2061 unsigned int flags = 0;
1211 2062
1212 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2063 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1216 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2067 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1217 2068
1218 return flags; 2069 return flags;
1219} 2070}
1220 2071
1221unsigned int 2072unsigned int ecb_cold
1222ev_recommended_backends (void) 2073ev_recommended_backends (void)
1223{ 2074{
1224 unsigned int flags = ev_supported_backends (); 2075 unsigned int flags = ev_supported_backends ();
1225 2076
1226#ifndef __NetBSD__ 2077#ifndef __NetBSD__
1227 /* kqueue is borked on everything but netbsd apparently */ 2078 /* kqueue is borked on everything but netbsd apparently */
1228 /* it usually doesn't work correctly on anything but sockets and pipes */ 2079 /* it usually doesn't work correctly on anything but sockets and pipes */
1229 flags &= ~EVBACKEND_KQUEUE; 2080 flags &= ~EVBACKEND_KQUEUE;
1230#endif 2081#endif
1231#ifdef __APPLE__ 2082#ifdef __APPLE__
1232 // flags &= ~EVBACKEND_KQUEUE; for documentation 2083 /* only select works correctly on that "unix-certified" platform */
1233 flags &= ~EVBACKEND_POLL; 2084 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2085 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2086#endif
2087#ifdef __FreeBSD__
2088 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1234#endif 2089#endif
1235 2090
1236 return flags; 2091 return flags;
1237} 2092}
1238 2093
1239unsigned int 2094unsigned int ecb_cold
1240ev_embeddable_backends (void) 2095ev_embeddable_backends (void)
1241{ 2096{
1242 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2097 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1243 2098
1244 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2099 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1245 /* please fix it and tell me how to detect the fix */ 2100 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1246 flags &= ~EVBACKEND_EPOLL; 2101 flags &= ~EVBACKEND_EPOLL;
1247 2102
1248 return flags; 2103 return flags;
1249} 2104}
1250 2105
1251unsigned int 2106unsigned int
1252ev_backend (EV_P) 2107ev_backend (EV_P)
1253{ 2108{
1254 return backend; 2109 return backend;
1255} 2110}
1256 2111
2112#if EV_FEATURE_API
1257unsigned int 2113unsigned int
1258ev_loop_count (EV_P) 2114ev_iteration (EV_P)
1259{ 2115{
1260 return loop_count; 2116 return loop_count;
2117}
2118
2119unsigned int
2120ev_depth (EV_P)
2121{
2122 return loop_depth;
1261} 2123}
1262 2124
1263void 2125void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2126ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1265{ 2127{
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2132ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1271{ 2133{
1272 timeout_blocktime = interval; 2134 timeout_blocktime = interval;
1273} 2135}
1274 2136
2137void
2138ev_set_userdata (EV_P_ void *data)
2139{
2140 userdata = data;
2141}
2142
2143void *
2144ev_userdata (EV_P)
2145{
2146 return userdata;
2147}
2148
2149void
2150ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2151{
2152 invoke_cb = invoke_pending_cb;
2153}
2154
2155void
2156ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2157{
2158 release_cb = release;
2159 acquire_cb = acquire;
2160}
2161#endif
2162
2163/* initialise a loop structure, must be zero-initialised */
1275static void noinline 2164static void noinline ecb_cold
1276loop_init (EV_P_ unsigned int flags) 2165loop_init (EV_P_ unsigned int flags)
1277{ 2166{
1278 if (!backend) 2167 if (!backend)
1279 { 2168 {
2169 origflags = flags;
2170
2171#if EV_USE_REALTIME
2172 if (!have_realtime)
2173 {
2174 struct timespec ts;
2175
2176 if (!clock_gettime (CLOCK_REALTIME, &ts))
2177 have_realtime = 1;
2178 }
2179#endif
2180
1280#if EV_USE_MONOTONIC 2181#if EV_USE_MONOTONIC
2182 if (!have_monotonic)
1281 { 2183 {
1282 struct timespec ts; 2184 struct timespec ts;
2185
1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2186 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1284 have_monotonic = 1; 2187 have_monotonic = 1;
1285 } 2188 }
1286#endif
1287
1288 ev_rt_now = ev_time ();
1289 mn_now = get_clock ();
1290 now_floor = mn_now;
1291 rtmn_diff = ev_rt_now - mn_now;
1292
1293 io_blocktime = 0.;
1294 timeout_blocktime = 0.;
1295 backend = 0;
1296 backend_fd = -1;
1297 gotasync = 0;
1298#if EV_USE_INOTIFY
1299 fs_fd = -2;
1300#endif 2189#endif
1301 2190
1302 /* pid check not overridable via env */ 2191 /* pid check not overridable via env */
1303#ifndef _WIN32 2192#ifndef _WIN32
1304 if (flags & EVFLAG_FORKCHECK) 2193 if (flags & EVFLAG_FORKCHECK)
1308 if (!(flags & EVFLAG_NOENV) 2197 if (!(flags & EVFLAG_NOENV)
1309 && !enable_secure () 2198 && !enable_secure ()
1310 && getenv ("LIBEV_FLAGS")) 2199 && getenv ("LIBEV_FLAGS"))
1311 flags = atoi (getenv ("LIBEV_FLAGS")); 2200 flags = atoi (getenv ("LIBEV_FLAGS"));
1312 2201
1313 if (!(flags & 0x0000ffffU)) 2202 ev_rt_now = ev_time ();
2203 mn_now = get_clock ();
2204 now_floor = mn_now;
2205 rtmn_diff = ev_rt_now - mn_now;
2206#if EV_FEATURE_API
2207 invoke_cb = ev_invoke_pending;
2208#endif
2209
2210 io_blocktime = 0.;
2211 timeout_blocktime = 0.;
2212 backend = 0;
2213 backend_fd = -1;
2214 sig_pending = 0;
2215#if EV_ASYNC_ENABLE
2216 async_pending = 0;
2217#endif
2218 pipe_write_skipped = 0;
2219 pipe_write_wanted = 0;
2220#if EV_USE_INOTIFY
2221 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2222#endif
2223#if EV_USE_SIGNALFD
2224 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2225#endif
2226
2227 if (!(flags & EVBACKEND_MASK))
1314 flags |= ev_recommended_backends (); 2228 flags |= ev_recommended_backends ();
1315 2229
2230#if EV_USE_IOCP
2231 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2232#endif
1316#if EV_USE_PORT 2233#if EV_USE_PORT
1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2234 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1318#endif 2235#endif
1319#if EV_USE_KQUEUE 2236#if EV_USE_KQUEUE
1320 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2237 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1327#endif 2244#endif
1328#if EV_USE_SELECT 2245#if EV_USE_SELECT
1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2246 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1330#endif 2247#endif
1331 2248
2249 ev_prepare_init (&pending_w, pendingcb);
2250
2251#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1332 ev_init (&pipeev, pipecb); 2252 ev_init (&pipe_w, pipecb);
1333 ev_set_priority (&pipeev, EV_MAXPRI); 2253 ev_set_priority (&pipe_w, EV_MAXPRI);
2254#endif
1334 } 2255 }
1335} 2256}
1336 2257
1337static void noinline 2258/* free up a loop structure */
2259void ecb_cold
1338loop_destroy (EV_P) 2260ev_loop_destroy (EV_P)
1339{ 2261{
1340 int i; 2262 int i;
1341 2263
2264#if EV_MULTIPLICITY
2265 /* mimic free (0) */
2266 if (!EV_A)
2267 return;
2268#endif
2269
2270#if EV_CLEANUP_ENABLE
2271 /* queue cleanup watchers (and execute them) */
2272 if (expect_false (cleanupcnt))
2273 {
2274 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2275 EV_INVOKE_PENDING;
2276 }
2277#endif
2278
2279#if EV_CHILD_ENABLE
2280 if (ev_is_active (&childev))
2281 {
2282 ev_ref (EV_A); /* child watcher */
2283 ev_signal_stop (EV_A_ &childev);
2284 }
2285#endif
2286
1342 if (ev_is_active (&pipeev)) 2287 if (ev_is_active (&pipe_w))
1343 { 2288 {
1344 ev_ref (EV_A); /* signal watcher */ 2289 /*ev_ref (EV_A);*/
1345 ev_io_stop (EV_A_ &pipeev); 2290 /*ev_io_stop (EV_A_ &pipe_w);*/
1346 2291
1347#if EV_USE_EVENTFD 2292#if EV_USE_EVENTFD
1348 if (evfd >= 0) 2293 if (evfd >= 0)
1349 close (evfd); 2294 close (evfd);
1350#endif 2295#endif
1351 2296
1352 if (evpipe [0] >= 0) 2297 if (evpipe [0] >= 0)
1353 { 2298 {
1354 close (evpipe [0]); 2299 EV_WIN32_CLOSE_FD (evpipe [0]);
1355 close (evpipe [1]); 2300 EV_WIN32_CLOSE_FD (evpipe [1]);
1356 } 2301 }
1357 } 2302 }
2303
2304#if EV_USE_SIGNALFD
2305 if (ev_is_active (&sigfd_w))
2306 close (sigfd);
2307#endif
1358 2308
1359#if EV_USE_INOTIFY 2309#if EV_USE_INOTIFY
1360 if (fs_fd >= 0) 2310 if (fs_fd >= 0)
1361 close (fs_fd); 2311 close (fs_fd);
1362#endif 2312#endif
1363 2313
1364 if (backend_fd >= 0) 2314 if (backend_fd >= 0)
1365 close (backend_fd); 2315 close (backend_fd);
1366 2316
2317#if EV_USE_IOCP
2318 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2319#endif
1367#if EV_USE_PORT 2320#if EV_USE_PORT
1368 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2321 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1369#endif 2322#endif
1370#if EV_USE_KQUEUE 2323#if EV_USE_KQUEUE
1371 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2324 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1386#if EV_IDLE_ENABLE 2339#if EV_IDLE_ENABLE
1387 array_free (idle, [i]); 2340 array_free (idle, [i]);
1388#endif 2341#endif
1389 } 2342 }
1390 2343
1391 ev_free (anfds); anfdmax = 0; 2344 ev_free (anfds); anfds = 0; anfdmax = 0;
1392 2345
1393 /* have to use the microsoft-never-gets-it-right macro */ 2346 /* have to use the microsoft-never-gets-it-right macro */
2347 array_free (rfeed, EMPTY);
1394 array_free (fdchange, EMPTY); 2348 array_free (fdchange, EMPTY);
1395 array_free (timer, EMPTY); 2349 array_free (timer, EMPTY);
1396#if EV_PERIODIC_ENABLE 2350#if EV_PERIODIC_ENABLE
1397 array_free (periodic, EMPTY); 2351 array_free (periodic, EMPTY);
1398#endif 2352#endif
1399#if EV_FORK_ENABLE 2353#if EV_FORK_ENABLE
1400 array_free (fork, EMPTY); 2354 array_free (fork, EMPTY);
1401#endif 2355#endif
2356#if EV_CLEANUP_ENABLE
2357 array_free (cleanup, EMPTY);
2358#endif
1402 array_free (prepare, EMPTY); 2359 array_free (prepare, EMPTY);
1403 array_free (check, EMPTY); 2360 array_free (check, EMPTY);
1404#if EV_ASYNC_ENABLE 2361#if EV_ASYNC_ENABLE
1405 array_free (async, EMPTY); 2362 array_free (async, EMPTY);
1406#endif 2363#endif
1407 2364
1408 backend = 0; 2365 backend = 0;
2366
2367#if EV_MULTIPLICITY
2368 if (ev_is_default_loop (EV_A))
2369#endif
2370 ev_default_loop_ptr = 0;
2371#if EV_MULTIPLICITY
2372 else
2373 ev_free (EV_A);
2374#endif
1409} 2375}
1410 2376
1411#if EV_USE_INOTIFY 2377#if EV_USE_INOTIFY
1412void inline_size infy_fork (EV_P); 2378inline_size void infy_fork (EV_P);
1413#endif 2379#endif
1414 2380
1415void inline_size 2381inline_size void
1416loop_fork (EV_P) 2382loop_fork (EV_P)
1417{ 2383{
1418#if EV_USE_PORT 2384#if EV_USE_PORT
1419 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2385 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1420#endif 2386#endif
1426#endif 2392#endif
1427#if EV_USE_INOTIFY 2393#if EV_USE_INOTIFY
1428 infy_fork (EV_A); 2394 infy_fork (EV_A);
1429#endif 2395#endif
1430 2396
1431 if (ev_is_active (&pipeev)) 2397 if (ev_is_active (&pipe_w))
1432 { 2398 {
1433 /* this "locks" the handlers against writing to the pipe */ 2399 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1434 /* while we modify the fd vars */
1435 gotsig = 1;
1436#if EV_ASYNC_ENABLE
1437 gotasync = 1;
1438#endif
1439 2400
1440 ev_ref (EV_A); 2401 ev_ref (EV_A);
1441 ev_io_stop (EV_A_ &pipeev); 2402 ev_io_stop (EV_A_ &pipe_w);
1442 2403
1443#if EV_USE_EVENTFD 2404#if EV_USE_EVENTFD
1444 if (evfd >= 0) 2405 if (evfd >= 0)
1445 close (evfd); 2406 close (evfd);
1446#endif 2407#endif
1447 2408
1448 if (evpipe [0] >= 0) 2409 if (evpipe [0] >= 0)
1449 { 2410 {
1450 close (evpipe [0]); 2411 EV_WIN32_CLOSE_FD (evpipe [0]);
1451 close (evpipe [1]); 2412 EV_WIN32_CLOSE_FD (evpipe [1]);
1452 } 2413 }
1453 2414
2415#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1454 evpipe_init (EV_A); 2416 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */ 2417 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ); 2418 pipecb (EV_A_ &pipe_w, EV_READ);
2419#endif
1457 } 2420 }
1458 2421
1459 postfork = 0; 2422 postfork = 0;
1460} 2423}
1461 2424
1462#if EV_MULTIPLICITY 2425#if EV_MULTIPLICITY
2426
1463struct ev_loop * 2427struct ev_loop * ecb_cold
1464ev_loop_new (unsigned int flags) 2428ev_loop_new (unsigned int flags)
1465{ 2429{
1466 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2430 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1467 2431
1468 memset (loop, 0, sizeof (struct ev_loop)); 2432 memset (EV_A, 0, sizeof (struct ev_loop));
1469
1470 loop_init (EV_A_ flags); 2433 loop_init (EV_A_ flags);
1471 2434
1472 if (ev_backend (EV_A)) 2435 if (ev_backend (EV_A))
1473 return loop; 2436 return EV_A;
1474 2437
2438 ev_free (EV_A);
1475 return 0; 2439 return 0;
1476} 2440}
1477 2441
1478void 2442#endif /* multiplicity */
1479ev_loop_destroy (EV_P)
1480{
1481 loop_destroy (EV_A);
1482 ev_free (loop);
1483}
1484 2443
1485void 2444#if EV_VERIFY
1486ev_loop_fork (EV_P) 2445static void noinline ecb_cold
2446verify_watcher (EV_P_ W w)
1487{ 2447{
1488 postfork = 1; /* must be in line with ev_default_fork */ 2448 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2449
2450 if (w->pending)
2451 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2452}
2453
2454static void noinline ecb_cold
2455verify_heap (EV_P_ ANHE *heap, int N)
2456{
2457 int i;
2458
2459 for (i = HEAP0; i < N + HEAP0; ++i)
2460 {
2461 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2462 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2463 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2464
2465 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2466 }
2467}
2468
2469static void noinline ecb_cold
2470array_verify (EV_P_ W *ws, int cnt)
2471{
2472 while (cnt--)
2473 {
2474 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2475 verify_watcher (EV_A_ ws [cnt]);
2476 }
2477}
2478#endif
2479
2480#if EV_FEATURE_API
2481void ecb_cold
2482ev_verify (EV_P)
2483{
2484#if EV_VERIFY
2485 int i;
2486 WL w;
2487
2488 assert (activecnt >= -1);
2489
2490 assert (fdchangemax >= fdchangecnt);
2491 for (i = 0; i < fdchangecnt; ++i)
2492 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2493
2494 assert (anfdmax >= 0);
2495 for (i = 0; i < anfdmax; ++i)
2496 for (w = anfds [i].head; w; w = w->next)
2497 {
2498 verify_watcher (EV_A_ (W)w);
2499 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2500 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2501 }
2502
2503 assert (timermax >= timercnt);
2504 verify_heap (EV_A_ timers, timercnt);
2505
2506#if EV_PERIODIC_ENABLE
2507 assert (periodicmax >= periodiccnt);
2508 verify_heap (EV_A_ periodics, periodiccnt);
2509#endif
2510
2511 for (i = NUMPRI; i--; )
2512 {
2513 assert (pendingmax [i] >= pendingcnt [i]);
2514#if EV_IDLE_ENABLE
2515 assert (idleall >= 0);
2516 assert (idlemax [i] >= idlecnt [i]);
2517 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2518#endif
2519 }
2520
2521#if EV_FORK_ENABLE
2522 assert (forkmax >= forkcnt);
2523 array_verify (EV_A_ (W *)forks, forkcnt);
2524#endif
2525
2526#if EV_CLEANUP_ENABLE
2527 assert (cleanupmax >= cleanupcnt);
2528 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2529#endif
2530
2531#if EV_ASYNC_ENABLE
2532 assert (asyncmax >= asynccnt);
2533 array_verify (EV_A_ (W *)asyncs, asynccnt);
2534#endif
2535
2536#if EV_PREPARE_ENABLE
2537 assert (preparemax >= preparecnt);
2538 array_verify (EV_A_ (W *)prepares, preparecnt);
2539#endif
2540
2541#if EV_CHECK_ENABLE
2542 assert (checkmax >= checkcnt);
2543 array_verify (EV_A_ (W *)checks, checkcnt);
2544#endif
2545
2546# if 0
2547#if EV_CHILD_ENABLE
2548 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2549 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2550#endif
2551# endif
2552#endif
1489} 2553}
1490#endif 2554#endif
1491 2555
1492#if EV_MULTIPLICITY 2556#if EV_MULTIPLICITY
1493struct ev_loop * 2557struct ev_loop * ecb_cold
1494ev_default_loop_init (unsigned int flags)
1495#else 2558#else
1496int 2559int
2560#endif
1497ev_default_loop (unsigned int flags) 2561ev_default_loop (unsigned int flags)
1498#endif
1499{ 2562{
1500 if (!ev_default_loop_ptr) 2563 if (!ev_default_loop_ptr)
1501 { 2564 {
1502#if EV_MULTIPLICITY 2565#if EV_MULTIPLICITY
1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2566 EV_P = ev_default_loop_ptr = &default_loop_struct;
1504#else 2567#else
1505 ev_default_loop_ptr = 1; 2568 ev_default_loop_ptr = 1;
1506#endif 2569#endif
1507 2570
1508 loop_init (EV_A_ flags); 2571 loop_init (EV_A_ flags);
1509 2572
1510 if (ev_backend (EV_A)) 2573 if (ev_backend (EV_A))
1511 { 2574 {
1512#ifndef _WIN32 2575#if EV_CHILD_ENABLE
1513 ev_signal_init (&childev, childcb, SIGCHLD); 2576 ev_signal_init (&childev, childcb, SIGCHLD);
1514 ev_set_priority (&childev, EV_MAXPRI); 2577 ev_set_priority (&childev, EV_MAXPRI);
1515 ev_signal_start (EV_A_ &childev); 2578 ev_signal_start (EV_A_ &childev);
1516 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2579 ev_unref (EV_A); /* child watcher should not keep loop alive */
1517#endif 2580#endif
1522 2585
1523 return ev_default_loop_ptr; 2586 return ev_default_loop_ptr;
1524} 2587}
1525 2588
1526void 2589void
1527ev_default_destroy (void) 2590ev_loop_fork (EV_P)
1528{ 2591{
1529#if EV_MULTIPLICITY
1530 struct ev_loop *loop = ev_default_loop_ptr;
1531#endif
1532
1533#ifndef _WIN32
1534 ev_ref (EV_A); /* child watcher */
1535 ev_signal_stop (EV_A_ &childev);
1536#endif
1537
1538 loop_destroy (EV_A);
1539}
1540
1541void
1542ev_default_fork (void)
1543{
1544#if EV_MULTIPLICITY
1545 struct ev_loop *loop = ev_default_loop_ptr;
1546#endif
1547
1548 if (backend)
1549 postfork = 1; /* must be in line with ev_loop_fork */ 2592 postfork = 1; /* must be in line with ev_default_fork */
1550} 2593}
1551 2594
1552/*****************************************************************************/ 2595/*****************************************************************************/
1553 2596
1554void 2597void
1555ev_invoke (EV_P_ void *w, int revents) 2598ev_invoke (EV_P_ void *w, int revents)
1556{ 2599{
1557 EV_CB_INVOKE ((W)w, revents); 2600 EV_CB_INVOKE ((W)w, revents);
1558} 2601}
1559 2602
1560void inline_speed 2603unsigned int
1561call_pending (EV_P) 2604ev_pending_count (EV_P)
2605{
2606 int pri;
2607 unsigned int count = 0;
2608
2609 for (pri = NUMPRI; pri--; )
2610 count += pendingcnt [pri];
2611
2612 return count;
2613}
2614
2615void noinline
2616ev_invoke_pending (EV_P)
1562{ 2617{
1563 int pri; 2618 int pri;
1564 2619
1565 for (pri = NUMPRI; pri--; ) 2620 for (pri = NUMPRI; pri--; )
1566 while (pendingcnt [pri]) 2621 while (pendingcnt [pri])
1567 { 2622 {
1568 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2623 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1569 2624
1570 if (expect_true (p->w))
1571 {
1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1573
1574 p->w->pending = 0; 2625 p->w->pending = 0;
1575 EV_CB_INVOKE (p->w, p->events); 2626 EV_CB_INVOKE (p->w, p->events);
1576 } 2627 EV_FREQUENT_CHECK;
1577 } 2628 }
1578} 2629}
1579 2630
1580#if EV_IDLE_ENABLE 2631#if EV_IDLE_ENABLE
1581void inline_size 2632/* make idle watchers pending. this handles the "call-idle */
2633/* only when higher priorities are idle" logic */
2634inline_size void
1582idle_reify (EV_P) 2635idle_reify (EV_P)
1583{ 2636{
1584 if (expect_false (idleall)) 2637 if (expect_false (idleall))
1585 { 2638 {
1586 int pri; 2639 int pri;
1598 } 2651 }
1599 } 2652 }
1600} 2653}
1601#endif 2654#endif
1602 2655
1603void inline_size 2656/* make timers pending */
2657inline_size void
1604timers_reify (EV_P) 2658timers_reify (EV_P)
1605{ 2659{
2660 EV_FREQUENT_CHECK;
2661
1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2662 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1607 { 2663 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2664 do
1609
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1611
1612 /* first reschedule or stop timer */
1613 if (w->repeat)
1614 { 2665 {
2666 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2667
2668 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2669
2670 /* first reschedule or stop timer */
2671 if (w->repeat)
2672 {
1615 ev_at (w) += w->repeat; 2673 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now) 2674 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now; 2675 ev_at (w) = mn_now;
1618 2676
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2677 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620 2678
1621 ANHE_at_set (timers [HEAP0]); 2679 ANHE_at_cache (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0); 2680 downheap (timers, timercnt, HEAP0);
2681 }
2682 else
2683 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2684
2685 EV_FREQUENT_CHECK;
2686 feed_reverse (EV_A_ (W)w);
1623 } 2687 }
1624 else 2688 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 2689
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2690 feed_reverse_done (EV_A_ EV_TIMER);
1628 } 2691 }
1629} 2692}
1630 2693
1631#if EV_PERIODIC_ENABLE 2694#if EV_PERIODIC_ENABLE
1632void inline_size 2695
2696static void noinline
2697periodic_recalc (EV_P_ ev_periodic *w)
2698{
2699 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2700 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2701
2702 /* the above almost always errs on the low side */
2703 while (at <= ev_rt_now)
2704 {
2705 ev_tstamp nat = at + w->interval;
2706
2707 /* when resolution fails us, we use ev_rt_now */
2708 if (expect_false (nat == at))
2709 {
2710 at = ev_rt_now;
2711 break;
2712 }
2713
2714 at = nat;
2715 }
2716
2717 ev_at (w) = at;
2718}
2719
2720/* make periodics pending */
2721inline_size void
1633periodics_reify (EV_P) 2722periodics_reify (EV_P)
1634{ 2723{
2724 EV_FREQUENT_CHECK;
2725
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2726 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1636 { 2727 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2728 int feed_count = 0;
1638 2729
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2730 do
1640
1641 /* first reschedule or stop timer */
1642 if (w->reschedule_cb)
1643 { 2731 {
2732 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2733
2734 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2735
2736 /* first reschedule or stop timer */
2737 if (w->reschedule_cb)
2738 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2739 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645 2740
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2741 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647 2742
1648 ANHE_at_set (periodics [HEAP0]); 2743 ANHE_at_cache (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0); 2744 downheap (periodics, periodiccnt, HEAP0);
2745 }
2746 else if (w->interval)
2747 {
2748 periodic_recalc (EV_A_ w);
2749 ANHE_at_cache (periodics [HEAP0]);
2750 downheap (periodics, periodiccnt, HEAP0);
2751 }
2752 else
2753 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2754
2755 EV_FREQUENT_CHECK;
2756 feed_reverse (EV_A_ (W)w);
1650 } 2757 }
1651 else if (w->interval) 2758 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 /* if next trigger time is not sufficiently in the future, put it there */
1655 /* this might happen because of floating point inexactness */
1656 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1657 {
1658 ev_at (w) += w->interval;
1659 2759
1660 /* if interval is unreasonably low we might still have a time in the past */
1661 /* so correct this. this will make the periodic very inexact, but the user */
1662 /* has effectively asked to get triggered more often than possible */
1663 if (ev_at (w) < ev_rt_now)
1664 ev_at (w) = ev_rt_now;
1665 }
1666
1667 ANHE_at_set (periodics [HEAP0]);
1668 downheap (periodics, periodiccnt, HEAP0);
1669 }
1670 else
1671 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1672
1673 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2760 feed_reverse_done (EV_A_ EV_PERIODIC);
1674 } 2761 }
1675} 2762}
1676 2763
2764/* simply recalculate all periodics */
2765/* TODO: maybe ensure that at least one event happens when jumping forward? */
1677static void noinline 2766static void noinline ecb_cold
1678periodics_reschedule (EV_P) 2767periodics_reschedule (EV_P)
1679{ 2768{
1680 int i; 2769 int i;
1681 2770
1682 /* adjust periodics after time jump */ 2771 /* adjust periodics after time jump */
1685 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 2774 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1686 2775
1687 if (w->reschedule_cb) 2776 if (w->reschedule_cb)
1688 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2777 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval) 2778 else if (w->interval)
1690 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2779 periodic_recalc (EV_A_ w);
1691 2780
1692 ANHE_at_set (periodics [i]); 2781 ANHE_at_cache (periodics [i]);
1693 } 2782 }
1694 2783
1695 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 2784 reheap (periodics, periodiccnt);
1696 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 2785}
2786#endif
2787
2788/* adjust all timers by a given offset */
2789static void noinline ecb_cold
2790timers_reschedule (EV_P_ ev_tstamp adjust)
2791{
2792 int i;
2793
1697 for (i = 0; i < periodiccnt; ++i) 2794 for (i = 0; i < timercnt; ++i)
1698 upheap (periodics, i + HEAP0); 2795 {
2796 ANHE *he = timers + i + HEAP0;
2797 ANHE_w (*he)->at += adjust;
2798 ANHE_at_cache (*he);
2799 }
1699} 2800}
1700#endif
1701 2801
1702void inline_speed 2802/* fetch new monotonic and realtime times from the kernel */
2803/* also detect if there was a timejump, and act accordingly */
2804inline_speed void
1703time_update (EV_P_ ev_tstamp max_block) 2805time_update (EV_P_ ev_tstamp max_block)
1704{ 2806{
1705 int i;
1706
1707#if EV_USE_MONOTONIC 2807#if EV_USE_MONOTONIC
1708 if (expect_true (have_monotonic)) 2808 if (expect_true (have_monotonic))
1709 { 2809 {
2810 int i;
1710 ev_tstamp odiff = rtmn_diff; 2811 ev_tstamp odiff = rtmn_diff;
1711 2812
1712 mn_now = get_clock (); 2813 mn_now = get_clock ();
1713 2814
1714 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2815 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1730 * doesn't hurt either as we only do this on time-jumps or 2831 * doesn't hurt either as we only do this on time-jumps or
1731 * in the unlikely event of having been preempted here. 2832 * in the unlikely event of having been preempted here.
1732 */ 2833 */
1733 for (i = 4; --i; ) 2834 for (i = 4; --i; )
1734 { 2835 {
2836 ev_tstamp diff;
1735 rtmn_diff = ev_rt_now - mn_now; 2837 rtmn_diff = ev_rt_now - mn_now;
1736 2838
2839 diff = odiff - rtmn_diff;
2840
1737 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2841 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1738 return; /* all is well */ 2842 return; /* all is well */
1739 2843
1740 ev_rt_now = ev_time (); 2844 ev_rt_now = ev_time ();
1741 mn_now = get_clock (); 2845 mn_now = get_clock ();
1742 now_floor = mn_now; 2846 now_floor = mn_now;
1743 } 2847 }
1744 2848
2849 /* no timer adjustment, as the monotonic clock doesn't jump */
2850 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1745# if EV_PERIODIC_ENABLE 2851# if EV_PERIODIC_ENABLE
1746 periodics_reschedule (EV_A); 2852 periodics_reschedule (EV_A);
1747# endif 2853# endif
1748 /* no timer adjustment, as the monotonic clock doesn't jump */
1749 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1750 } 2854 }
1751 else 2855 else
1752#endif 2856#endif
1753 { 2857 {
1754 ev_rt_now = ev_time (); 2858 ev_rt_now = ev_time ();
1755 2859
1756 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2860 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1757 { 2861 {
2862 /* adjust timers. this is easy, as the offset is the same for all of them */
2863 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1758#if EV_PERIODIC_ENABLE 2864#if EV_PERIODIC_ENABLE
1759 periodics_reschedule (EV_A); 2865 periodics_reschedule (EV_A);
1760#endif 2866#endif
1761 /* adjust timers. this is easy, as the offset is the same for all of them */
1762 for (i = 0; i < timercnt; ++i)
1763 {
1764 ANHE *he = timers + i + HEAP0;
1765 ANHE_w (*he)->at += ev_rt_now - mn_now;
1766 ANHE_at_set (*he);
1767 }
1768 } 2867 }
1769 2868
1770 mn_now = ev_rt_now; 2869 mn_now = ev_rt_now;
1771 } 2870 }
1772} 2871}
1773 2872
1774void 2873void
1775ev_ref (EV_P)
1776{
1777 ++activecnt;
1778}
1779
1780void
1781ev_unref (EV_P)
1782{
1783 --activecnt;
1784}
1785
1786static int loop_done;
1787
1788void
1789ev_loop (EV_P_ int flags) 2874ev_run (EV_P_ int flags)
1790{ 2875{
2876#if EV_FEATURE_API
2877 ++loop_depth;
2878#endif
2879
2880 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2881
1791 loop_done = EVUNLOOP_CANCEL; 2882 loop_done = EVBREAK_CANCEL;
1792 2883
1793 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2884 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1794 2885
1795 do 2886 do
1796 { 2887 {
2888#if EV_VERIFY >= 2
2889 ev_verify (EV_A);
2890#endif
2891
1797#ifndef _WIN32 2892#ifndef _WIN32
1798 if (expect_false (curpid)) /* penalise the forking check even more */ 2893 if (expect_false (curpid)) /* penalise the forking check even more */
1799 if (expect_false (getpid () != curpid)) 2894 if (expect_false (getpid () != curpid))
1800 { 2895 {
1801 curpid = getpid (); 2896 curpid = getpid ();
1807 /* we might have forked, so queue fork handlers */ 2902 /* we might have forked, so queue fork handlers */
1808 if (expect_false (postfork)) 2903 if (expect_false (postfork))
1809 if (forkcnt) 2904 if (forkcnt)
1810 { 2905 {
1811 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2906 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1812 call_pending (EV_A); 2907 EV_INVOKE_PENDING;
1813 } 2908 }
1814#endif 2909#endif
1815 2910
2911#if EV_PREPARE_ENABLE
1816 /* queue prepare watchers (and execute them) */ 2912 /* queue prepare watchers (and execute them) */
1817 if (expect_false (preparecnt)) 2913 if (expect_false (preparecnt))
1818 { 2914 {
1819 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2915 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1820 call_pending (EV_A); 2916 EV_INVOKE_PENDING;
1821 } 2917 }
2918#endif
1822 2919
1823 if (expect_false (!activecnt)) 2920 if (expect_false (loop_done))
1824 break; 2921 break;
1825 2922
1826 /* we might have forked, so reify kernel state if necessary */ 2923 /* we might have forked, so reify kernel state if necessary */
1827 if (expect_false (postfork)) 2924 if (expect_false (postfork))
1828 loop_fork (EV_A); 2925 loop_fork (EV_A);
1833 /* calculate blocking time */ 2930 /* calculate blocking time */
1834 { 2931 {
1835 ev_tstamp waittime = 0.; 2932 ev_tstamp waittime = 0.;
1836 ev_tstamp sleeptime = 0.; 2933 ev_tstamp sleeptime = 0.;
1837 2934
2935 /* remember old timestamp for io_blocktime calculation */
2936 ev_tstamp prev_mn_now = mn_now;
2937
2938 /* update time to cancel out callback processing overhead */
2939 time_update (EV_A_ 1e100);
2940
2941 /* from now on, we want a pipe-wake-up */
2942 pipe_write_wanted = 1;
2943
2944 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2945
1838 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2946 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1839 { 2947 {
1840 /* update time to cancel out callback processing overhead */
1841 time_update (EV_A_ 1e100);
1842
1843 waittime = MAX_BLOCKTIME; 2948 waittime = MAX_BLOCKTIME;
1844 2949
1845 if (timercnt) 2950 if (timercnt)
1846 { 2951 {
1847 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2952 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1848 if (waittime > to) waittime = to; 2953 if (waittime > to) waittime = to;
1849 } 2954 }
1850 2955
1851#if EV_PERIODIC_ENABLE 2956#if EV_PERIODIC_ENABLE
1852 if (periodiccnt) 2957 if (periodiccnt)
1853 { 2958 {
1854 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2959 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1855 if (waittime > to) waittime = to; 2960 if (waittime > to) waittime = to;
1856 } 2961 }
1857#endif 2962#endif
1858 2963
2964 /* don't let timeouts decrease the waittime below timeout_blocktime */
1859 if (expect_false (waittime < timeout_blocktime)) 2965 if (expect_false (waittime < timeout_blocktime))
1860 waittime = timeout_blocktime; 2966 waittime = timeout_blocktime;
1861 2967
1862 sleeptime = waittime - backend_fudge; 2968 /* at this point, we NEED to wait, so we have to ensure */
2969 /* to pass a minimum nonzero value to the backend */
2970 if (expect_false (waittime < backend_mintime))
2971 waittime = backend_mintime;
1863 2972
2973 /* extra check because io_blocktime is commonly 0 */
1864 if (expect_true (sleeptime > io_blocktime)) 2974 if (expect_false (io_blocktime))
1865 sleeptime = io_blocktime;
1866
1867 if (sleeptime)
1868 { 2975 {
2976 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2977
2978 if (sleeptime > waittime - backend_mintime)
2979 sleeptime = waittime - backend_mintime;
2980
2981 if (expect_true (sleeptime > 0.))
2982 {
1869 ev_sleep (sleeptime); 2983 ev_sleep (sleeptime);
1870 waittime -= sleeptime; 2984 waittime -= sleeptime;
2985 }
1871 } 2986 }
1872 } 2987 }
1873 2988
2989#if EV_FEATURE_API
1874 ++loop_count; 2990 ++loop_count;
2991#endif
2992 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1875 backend_poll (EV_A_ waittime); 2993 backend_poll (EV_A_ waittime);
2994 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2995
2996 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2997
2998 if (pipe_write_skipped)
2999 {
3000 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3001 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3002 }
3003
1876 3004
1877 /* update ev_rt_now, do magic */ 3005 /* update ev_rt_now, do magic */
1878 time_update (EV_A_ waittime + sleeptime); 3006 time_update (EV_A_ waittime + sleeptime);
1879 } 3007 }
1880 3008
1887#if EV_IDLE_ENABLE 3015#if EV_IDLE_ENABLE
1888 /* queue idle watchers unless other events are pending */ 3016 /* queue idle watchers unless other events are pending */
1889 idle_reify (EV_A); 3017 idle_reify (EV_A);
1890#endif 3018#endif
1891 3019
3020#if EV_CHECK_ENABLE
1892 /* queue check watchers, to be executed first */ 3021 /* queue check watchers, to be executed first */
1893 if (expect_false (checkcnt)) 3022 if (expect_false (checkcnt))
1894 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3023 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3024#endif
1895 3025
1896 call_pending (EV_A); 3026 EV_INVOKE_PENDING;
1897 } 3027 }
1898 while (expect_true ( 3028 while (expect_true (
1899 activecnt 3029 activecnt
1900 && !loop_done 3030 && !loop_done
1901 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3031 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1902 )); 3032 ));
1903 3033
1904 if (loop_done == EVUNLOOP_ONE) 3034 if (loop_done == EVBREAK_ONE)
1905 loop_done = EVUNLOOP_CANCEL; 3035 loop_done = EVBREAK_CANCEL;
3036
3037#if EV_FEATURE_API
3038 --loop_depth;
3039#endif
1906} 3040}
1907 3041
1908void 3042void
1909ev_unloop (EV_P_ int how) 3043ev_break (EV_P_ int how)
1910{ 3044{
1911 loop_done = how; 3045 loop_done = how;
1912} 3046}
1913 3047
3048void
3049ev_ref (EV_P)
3050{
3051 ++activecnt;
3052}
3053
3054void
3055ev_unref (EV_P)
3056{
3057 --activecnt;
3058}
3059
3060void
3061ev_now_update (EV_P)
3062{
3063 time_update (EV_A_ 1e100);
3064}
3065
3066void
3067ev_suspend (EV_P)
3068{
3069 ev_now_update (EV_A);
3070}
3071
3072void
3073ev_resume (EV_P)
3074{
3075 ev_tstamp mn_prev = mn_now;
3076
3077 ev_now_update (EV_A);
3078 timers_reschedule (EV_A_ mn_now - mn_prev);
3079#if EV_PERIODIC_ENABLE
3080 /* TODO: really do this? */
3081 periodics_reschedule (EV_A);
3082#endif
3083}
3084
1914/*****************************************************************************/ 3085/*****************************************************************************/
3086/* singly-linked list management, used when the expected list length is short */
1915 3087
1916void inline_size 3088inline_size void
1917wlist_add (WL *head, WL elem) 3089wlist_add (WL *head, WL elem)
1918{ 3090{
1919 elem->next = *head; 3091 elem->next = *head;
1920 *head = elem; 3092 *head = elem;
1921} 3093}
1922 3094
1923void inline_size 3095inline_size void
1924wlist_del (WL *head, WL elem) 3096wlist_del (WL *head, WL elem)
1925{ 3097{
1926 while (*head) 3098 while (*head)
1927 { 3099 {
1928 if (*head == elem) 3100 if (expect_true (*head == elem))
1929 { 3101 {
1930 *head = elem->next; 3102 *head = elem->next;
1931 return; 3103 break;
1932 } 3104 }
1933 3105
1934 head = &(*head)->next; 3106 head = &(*head)->next;
1935 } 3107 }
1936} 3108}
1937 3109
1938void inline_speed 3110/* internal, faster, version of ev_clear_pending */
3111inline_speed void
1939clear_pending (EV_P_ W w) 3112clear_pending (EV_P_ W w)
1940{ 3113{
1941 if (w->pending) 3114 if (w->pending)
1942 { 3115 {
1943 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3116 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1944 w->pending = 0; 3117 w->pending = 0;
1945 } 3118 }
1946} 3119}
1947 3120
1948int 3121int
1952 int pending = w_->pending; 3125 int pending = w_->pending;
1953 3126
1954 if (expect_true (pending)) 3127 if (expect_true (pending))
1955 { 3128 {
1956 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3129 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3130 p->w = (W)&pending_w;
1957 w_->pending = 0; 3131 w_->pending = 0;
1958 p->w = 0;
1959 return p->events; 3132 return p->events;
1960 } 3133 }
1961 else 3134 else
1962 return 0; 3135 return 0;
1963} 3136}
1964 3137
1965void inline_size 3138inline_size void
1966pri_adjust (EV_P_ W w) 3139pri_adjust (EV_P_ W w)
1967{ 3140{
1968 int pri = w->priority; 3141 int pri = ev_priority (w);
1969 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3142 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1970 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3143 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1971 w->priority = pri; 3144 ev_set_priority (w, pri);
1972} 3145}
1973 3146
1974void inline_speed 3147inline_speed void
1975ev_start (EV_P_ W w, int active) 3148ev_start (EV_P_ W w, int active)
1976{ 3149{
1977 pri_adjust (EV_A_ w); 3150 pri_adjust (EV_A_ w);
1978 w->active = active; 3151 w->active = active;
1979 ev_ref (EV_A); 3152 ev_ref (EV_A);
1980} 3153}
1981 3154
1982void inline_size 3155inline_size void
1983ev_stop (EV_P_ W w) 3156ev_stop (EV_P_ W w)
1984{ 3157{
1985 ev_unref (EV_A); 3158 ev_unref (EV_A);
1986 w->active = 0; 3159 w->active = 0;
1987} 3160}
1994 int fd = w->fd; 3167 int fd = w->fd;
1995 3168
1996 if (expect_false (ev_is_active (w))) 3169 if (expect_false (ev_is_active (w)))
1997 return; 3170 return;
1998 3171
1999 assert (("ev_io_start called with negative fd", fd >= 0)); 3172 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3173 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3174
3175 EV_FREQUENT_CHECK;
2000 3176
2001 ev_start (EV_A_ (W)w, 1); 3177 ev_start (EV_A_ (W)w, 1);
2002 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3178 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2003 wlist_add (&anfds[fd].head, (WL)w); 3179 wlist_add (&anfds[fd].head, (WL)w);
2004 3180
2005 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3181 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2006 w->events &= ~EV_IOFDSET; 3182 w->events &= ~EV__IOFDSET;
3183
3184 EV_FREQUENT_CHECK;
2007} 3185}
2008 3186
2009void noinline 3187void noinline
2010ev_io_stop (EV_P_ ev_io *w) 3188ev_io_stop (EV_P_ ev_io *w)
2011{ 3189{
2012 clear_pending (EV_A_ (W)w); 3190 clear_pending (EV_A_ (W)w);
2013 if (expect_false (!ev_is_active (w))) 3191 if (expect_false (!ev_is_active (w)))
2014 return; 3192 return;
2015 3193
2016 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3194 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3195
3196 EV_FREQUENT_CHECK;
2017 3197
2018 wlist_del (&anfds[w->fd].head, (WL)w); 3198 wlist_del (&anfds[w->fd].head, (WL)w);
2019 ev_stop (EV_A_ (W)w); 3199 ev_stop (EV_A_ (W)w);
2020 3200
2021 fd_change (EV_A_ w->fd, 1); 3201 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3202
3203 EV_FREQUENT_CHECK;
2022} 3204}
2023 3205
2024void noinline 3206void noinline
2025ev_timer_start (EV_P_ ev_timer *w) 3207ev_timer_start (EV_P_ ev_timer *w)
2026{ 3208{
2027 if (expect_false (ev_is_active (w))) 3209 if (expect_false (ev_is_active (w)))
2028 return; 3210 return;
2029 3211
2030 ev_at (w) += mn_now; 3212 ev_at (w) += mn_now;
2031 3213
2032 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3214 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2033 3215
3216 EV_FREQUENT_CHECK;
3217
3218 ++timercnt;
2034 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 3219 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2035 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 3220 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2036 ANHE_w (timers [ev_active (w)]) = (WT)w; 3221 ANHE_w (timers [ev_active (w)]) = (WT)w;
2037 ANHE_at_set (timers [ev_active (w)]); 3222 ANHE_at_cache (timers [ev_active (w)]);
2038 upheap (timers, ev_active (w)); 3223 upheap (timers, ev_active (w));
2039 3224
3225 EV_FREQUENT_CHECK;
3226
2040 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3227 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2041} 3228}
2042 3229
2043void noinline 3230void noinline
2044ev_timer_stop (EV_P_ ev_timer *w) 3231ev_timer_stop (EV_P_ ev_timer *w)
2045{ 3232{
2046 clear_pending (EV_A_ (W)w); 3233 clear_pending (EV_A_ (W)w);
2047 if (expect_false (!ev_is_active (w))) 3234 if (expect_false (!ev_is_active (w)))
2048 return; 3235 return;
2049 3236
3237 EV_FREQUENT_CHECK;
3238
2050 { 3239 {
2051 int active = ev_active (w); 3240 int active = ev_active (w);
2052 3241
2053 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3242 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2054 3243
3244 --timercnt;
3245
2055 if (expect_true (active < timercnt + HEAP0 - 1)) 3246 if (expect_true (active < timercnt + HEAP0))
2056 { 3247 {
2057 timers [active] = timers [timercnt + HEAP0 - 1]; 3248 timers [active] = timers [timercnt + HEAP0];
2058 adjustheap (timers, timercnt, active); 3249 adjustheap (timers, timercnt, active);
2059 } 3250 }
2060
2061 --timercnt;
2062 } 3251 }
2063 3252
2064 ev_at (w) -= mn_now; 3253 ev_at (w) -= mn_now;
2065 3254
2066 ev_stop (EV_A_ (W)w); 3255 ev_stop (EV_A_ (W)w);
3256
3257 EV_FREQUENT_CHECK;
2067} 3258}
2068 3259
2069void noinline 3260void noinline
2070ev_timer_again (EV_P_ ev_timer *w) 3261ev_timer_again (EV_P_ ev_timer *w)
2071{ 3262{
3263 EV_FREQUENT_CHECK;
3264
2072 if (ev_is_active (w)) 3265 if (ev_is_active (w))
2073 { 3266 {
2074 if (w->repeat) 3267 if (w->repeat)
2075 { 3268 {
2076 ev_at (w) = mn_now + w->repeat; 3269 ev_at (w) = mn_now + w->repeat;
2077 ANHE_at_set (timers [ev_active (w)]); 3270 ANHE_at_cache (timers [ev_active (w)]);
2078 adjustheap (timers, timercnt, ev_active (w)); 3271 adjustheap (timers, timercnt, ev_active (w));
2079 } 3272 }
2080 else 3273 else
2081 ev_timer_stop (EV_A_ w); 3274 ev_timer_stop (EV_A_ w);
2082 } 3275 }
2083 else if (w->repeat) 3276 else if (w->repeat)
2084 { 3277 {
2085 ev_at (w) = w->repeat; 3278 ev_at (w) = w->repeat;
2086 ev_timer_start (EV_A_ w); 3279 ev_timer_start (EV_A_ w);
2087 } 3280 }
3281
3282 EV_FREQUENT_CHECK;
3283}
3284
3285ev_tstamp
3286ev_timer_remaining (EV_P_ ev_timer *w)
3287{
3288 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2088} 3289}
2089 3290
2090#if EV_PERIODIC_ENABLE 3291#if EV_PERIODIC_ENABLE
2091void noinline 3292void noinline
2092ev_periodic_start (EV_P_ ev_periodic *w) 3293ev_periodic_start (EV_P_ ev_periodic *w)
2096 3297
2097 if (w->reschedule_cb) 3298 if (w->reschedule_cb)
2098 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3299 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2099 else if (w->interval) 3300 else if (w->interval)
2100 { 3301 {
2101 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3302 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2102 /* this formula differs from the one in periodic_reify because we do not always round up */ 3303 periodic_recalc (EV_A_ w);
2103 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2104 } 3304 }
2105 else 3305 else
2106 ev_at (w) = w->offset; 3306 ev_at (w) = w->offset;
2107 3307
3308 EV_FREQUENT_CHECK;
3309
3310 ++periodiccnt;
2108 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 3311 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2109 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 3312 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2110 ANHE_w (periodics [ev_active (w)]) = (WT)w; 3313 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2111 ANHE_at_set (periodics [ev_active (w)]); 3314 ANHE_at_cache (periodics [ev_active (w)]);
2112 upheap (periodics, ev_active (w)); 3315 upheap (periodics, ev_active (w));
2113 3316
3317 EV_FREQUENT_CHECK;
3318
2114 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3319 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2115} 3320}
2116 3321
2117void noinline 3322void noinline
2118ev_periodic_stop (EV_P_ ev_periodic *w) 3323ev_periodic_stop (EV_P_ ev_periodic *w)
2119{ 3324{
2120 clear_pending (EV_A_ (W)w); 3325 clear_pending (EV_A_ (W)w);
2121 if (expect_false (!ev_is_active (w))) 3326 if (expect_false (!ev_is_active (w)))
2122 return; 3327 return;
2123 3328
3329 EV_FREQUENT_CHECK;
3330
2124 { 3331 {
2125 int active = ev_active (w); 3332 int active = ev_active (w);
2126 3333
2127 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3334 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2128 3335
3336 --periodiccnt;
3337
2129 if (expect_true (active < periodiccnt + HEAP0 - 1)) 3338 if (expect_true (active < periodiccnt + HEAP0))
2130 { 3339 {
2131 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 3340 periodics [active] = periodics [periodiccnt + HEAP0];
2132 adjustheap (periodics, periodiccnt, active); 3341 adjustheap (periodics, periodiccnt, active);
2133 } 3342 }
2134
2135 --periodiccnt;
2136 } 3343 }
2137 3344
2138 ev_stop (EV_A_ (W)w); 3345 ev_stop (EV_A_ (W)w);
3346
3347 EV_FREQUENT_CHECK;
2139} 3348}
2140 3349
2141void noinline 3350void noinline
2142ev_periodic_again (EV_P_ ev_periodic *w) 3351ev_periodic_again (EV_P_ ev_periodic *w)
2143{ 3352{
2149 3358
2150#ifndef SA_RESTART 3359#ifndef SA_RESTART
2151# define SA_RESTART 0 3360# define SA_RESTART 0
2152#endif 3361#endif
2153 3362
3363#if EV_SIGNAL_ENABLE
3364
2154void noinline 3365void noinline
2155ev_signal_start (EV_P_ ev_signal *w) 3366ev_signal_start (EV_P_ ev_signal *w)
2156{ 3367{
2157#if EV_MULTIPLICITY
2158 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2159#endif
2160 if (expect_false (ev_is_active (w))) 3368 if (expect_false (ev_is_active (w)))
2161 return; 3369 return;
2162 3370
2163 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3371 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2164 3372
2165 evpipe_init (EV_A); 3373#if EV_MULTIPLICITY
3374 assert (("libev: a signal must not be attached to two different loops",
3375 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2166 3376
3377 signals [w->signum - 1].loop = EV_A;
3378#endif
3379
3380 EV_FREQUENT_CHECK;
3381
3382#if EV_USE_SIGNALFD
3383 if (sigfd == -2)
2167 { 3384 {
2168#ifndef _WIN32 3385 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2169 sigset_t full, prev; 3386 if (sigfd < 0 && errno == EINVAL)
2170 sigfillset (&full); 3387 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2171 sigprocmask (SIG_SETMASK, &full, &prev);
2172#endif
2173 3388
2174 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3389 if (sigfd >= 0)
3390 {
3391 fd_intern (sigfd); /* doing it twice will not hurt */
2175 3392
2176#ifndef _WIN32 3393 sigemptyset (&sigfd_set);
2177 sigprocmask (SIG_SETMASK, &prev, 0); 3394
2178#endif 3395 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3396 ev_set_priority (&sigfd_w, EV_MAXPRI);
3397 ev_io_start (EV_A_ &sigfd_w);
3398 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3399 }
2179 } 3400 }
3401
3402 if (sigfd >= 0)
3403 {
3404 /* TODO: check .head */
3405 sigaddset (&sigfd_set, w->signum);
3406 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3407
3408 signalfd (sigfd, &sigfd_set, 0);
3409 }
3410#endif
2180 3411
2181 ev_start (EV_A_ (W)w, 1); 3412 ev_start (EV_A_ (W)w, 1);
2182 wlist_add (&signals [w->signum - 1].head, (WL)w); 3413 wlist_add (&signals [w->signum - 1].head, (WL)w);
2183 3414
2184 if (!((WL)w)->next) 3415 if (!((WL)w)->next)
3416# if EV_USE_SIGNALFD
3417 if (sigfd < 0) /*TODO*/
3418# endif
2185 { 3419 {
2186#if _WIN32 3420# ifdef _WIN32
3421 evpipe_init (EV_A);
3422
2187 signal (w->signum, ev_sighandler); 3423 signal (w->signum, ev_sighandler);
2188#else 3424# else
2189 struct sigaction sa; 3425 struct sigaction sa;
3426
3427 evpipe_init (EV_A);
3428
2190 sa.sa_handler = ev_sighandler; 3429 sa.sa_handler = ev_sighandler;
2191 sigfillset (&sa.sa_mask); 3430 sigfillset (&sa.sa_mask);
2192 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3431 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2193 sigaction (w->signum, &sa, 0); 3432 sigaction (w->signum, &sa, 0);
3433
3434 if (origflags & EVFLAG_NOSIGMASK)
3435 {
3436 sigemptyset (&sa.sa_mask);
3437 sigaddset (&sa.sa_mask, w->signum);
3438 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3439 }
2194#endif 3440#endif
2195 } 3441 }
3442
3443 EV_FREQUENT_CHECK;
2196} 3444}
2197 3445
2198void noinline 3446void noinline
2199ev_signal_stop (EV_P_ ev_signal *w) 3447ev_signal_stop (EV_P_ ev_signal *w)
2200{ 3448{
2201 clear_pending (EV_A_ (W)w); 3449 clear_pending (EV_A_ (W)w);
2202 if (expect_false (!ev_is_active (w))) 3450 if (expect_false (!ev_is_active (w)))
2203 return; 3451 return;
2204 3452
3453 EV_FREQUENT_CHECK;
3454
2205 wlist_del (&signals [w->signum - 1].head, (WL)w); 3455 wlist_del (&signals [w->signum - 1].head, (WL)w);
2206 ev_stop (EV_A_ (W)w); 3456 ev_stop (EV_A_ (W)w);
2207 3457
2208 if (!signals [w->signum - 1].head) 3458 if (!signals [w->signum - 1].head)
3459 {
3460#if EV_MULTIPLICITY
3461 signals [w->signum - 1].loop = 0; /* unattach from signal */
3462#endif
3463#if EV_USE_SIGNALFD
3464 if (sigfd >= 0)
3465 {
3466 sigset_t ss;
3467
3468 sigemptyset (&ss);
3469 sigaddset (&ss, w->signum);
3470 sigdelset (&sigfd_set, w->signum);
3471
3472 signalfd (sigfd, &sigfd_set, 0);
3473 sigprocmask (SIG_UNBLOCK, &ss, 0);
3474 }
3475 else
3476#endif
2209 signal (w->signum, SIG_DFL); 3477 signal (w->signum, SIG_DFL);
3478 }
3479
3480 EV_FREQUENT_CHECK;
2210} 3481}
3482
3483#endif
3484
3485#if EV_CHILD_ENABLE
2211 3486
2212void 3487void
2213ev_child_start (EV_P_ ev_child *w) 3488ev_child_start (EV_P_ ev_child *w)
2214{ 3489{
2215#if EV_MULTIPLICITY 3490#if EV_MULTIPLICITY
2216 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3491 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2217#endif 3492#endif
2218 if (expect_false (ev_is_active (w))) 3493 if (expect_false (ev_is_active (w)))
2219 return; 3494 return;
2220 3495
3496 EV_FREQUENT_CHECK;
3497
2221 ev_start (EV_A_ (W)w, 1); 3498 ev_start (EV_A_ (W)w, 1);
2222 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3499 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3500
3501 EV_FREQUENT_CHECK;
2223} 3502}
2224 3503
2225void 3504void
2226ev_child_stop (EV_P_ ev_child *w) 3505ev_child_stop (EV_P_ ev_child *w)
2227{ 3506{
2228 clear_pending (EV_A_ (W)w); 3507 clear_pending (EV_A_ (W)w);
2229 if (expect_false (!ev_is_active (w))) 3508 if (expect_false (!ev_is_active (w)))
2230 return; 3509 return;
2231 3510
3511 EV_FREQUENT_CHECK;
3512
2232 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3513 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2233 ev_stop (EV_A_ (W)w); 3514 ev_stop (EV_A_ (W)w);
3515
3516 EV_FREQUENT_CHECK;
2234} 3517}
3518
3519#endif
2235 3520
2236#if EV_STAT_ENABLE 3521#if EV_STAT_ENABLE
2237 3522
2238# ifdef _WIN32 3523# ifdef _WIN32
2239# undef lstat 3524# undef lstat
2240# define lstat(a,b) _stati64 (a,b) 3525# define lstat(a,b) _stati64 (a,b)
2241# endif 3526# endif
2242 3527
2243#define DEF_STAT_INTERVAL 5.0074891 3528#define DEF_STAT_INTERVAL 5.0074891
3529#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2244#define MIN_STAT_INTERVAL 0.1074891 3530#define MIN_STAT_INTERVAL 0.1074891
2245 3531
2246static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3532static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2247 3533
2248#if EV_USE_INOTIFY 3534#if EV_USE_INOTIFY
2249# define EV_INOTIFY_BUFSIZE 8192 3535
3536/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3537# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2250 3538
2251static void noinline 3539static void noinline
2252infy_add (EV_P_ ev_stat *w) 3540infy_add (EV_P_ ev_stat *w)
2253{ 3541{
2254 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3542 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2255 3543
2256 if (w->wd < 0) 3544 if (w->wd >= 0)
3545 {
3546 struct statfs sfs;
3547
3548 /* now local changes will be tracked by inotify, but remote changes won't */
3549 /* unless the filesystem is known to be local, we therefore still poll */
3550 /* also do poll on <2.6.25, but with normal frequency */
3551
3552 if (!fs_2625)
3553 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3554 else if (!statfs (w->path, &sfs)
3555 && (sfs.f_type == 0x1373 /* devfs */
3556 || sfs.f_type == 0xEF53 /* ext2/3 */
3557 || sfs.f_type == 0x3153464a /* jfs */
3558 || sfs.f_type == 0x52654973 /* reiser3 */
3559 || sfs.f_type == 0x01021994 /* tempfs */
3560 || sfs.f_type == 0x58465342 /* xfs */))
3561 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3562 else
3563 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2257 { 3564 }
2258 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3565 else
3566 {
3567 /* can't use inotify, continue to stat */
3568 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2259 3569
2260 /* monitor some parent directory for speedup hints */ 3570 /* if path is not there, monitor some parent directory for speedup hints */
2261 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3571 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2262 /* but an efficiency issue only */ 3572 /* but an efficiency issue only */
2263 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3573 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2264 { 3574 {
2265 char path [4096]; 3575 char path [4096];
2266 strcpy (path, w->path); 3576 strcpy (path, w->path);
2270 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3580 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2271 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3581 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2272 3582
2273 char *pend = strrchr (path, '/'); 3583 char *pend = strrchr (path, '/');
2274 3584
2275 if (!pend) 3585 if (!pend || pend == path)
2276 break; /* whoops, no '/', complain to your admin */ 3586 break;
2277 3587
2278 *pend = 0; 3588 *pend = 0;
2279 w->wd = inotify_add_watch (fs_fd, path, mask); 3589 w->wd = inotify_add_watch (fs_fd, path, mask);
2280 } 3590 }
2281 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3591 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2282 } 3592 }
2283 } 3593 }
2284 else
2285 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2286 3594
2287 if (w->wd >= 0) 3595 if (w->wd >= 0)
2288 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3596 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3597
3598 /* now re-arm timer, if required */
3599 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3600 ev_timer_again (EV_A_ &w->timer);
3601 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2289} 3602}
2290 3603
2291static void noinline 3604static void noinline
2292infy_del (EV_P_ ev_stat *w) 3605infy_del (EV_P_ ev_stat *w)
2293{ 3606{
2296 3609
2297 if (wd < 0) 3610 if (wd < 0)
2298 return; 3611 return;
2299 3612
2300 w->wd = -2; 3613 w->wd = -2;
2301 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3614 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2302 wlist_del (&fs_hash [slot].head, (WL)w); 3615 wlist_del (&fs_hash [slot].head, (WL)w);
2303 3616
2304 /* remove this watcher, if others are watching it, they will rearm */ 3617 /* remove this watcher, if others are watching it, they will rearm */
2305 inotify_rm_watch (fs_fd, wd); 3618 inotify_rm_watch (fs_fd, wd);
2306} 3619}
2307 3620
2308static void noinline 3621static void noinline
2309infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3622infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2310{ 3623{
2311 if (slot < 0) 3624 if (slot < 0)
2312 /* overflow, need to check for all hahs slots */ 3625 /* overflow, need to check for all hash slots */
2313 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3626 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2314 infy_wd (EV_A_ slot, wd, ev); 3627 infy_wd (EV_A_ slot, wd, ev);
2315 else 3628 else
2316 { 3629 {
2317 WL w_; 3630 WL w_;
2318 3631
2319 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3632 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2320 { 3633 {
2321 ev_stat *w = (ev_stat *)w_; 3634 ev_stat *w = (ev_stat *)w_;
2322 w_ = w_->next; /* lets us remove this watcher and all before it */ 3635 w_ = w_->next; /* lets us remove this watcher and all before it */
2323 3636
2324 if (w->wd == wd || wd == -1) 3637 if (w->wd == wd || wd == -1)
2325 { 3638 {
2326 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3639 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2327 { 3640 {
3641 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2328 w->wd = -1; 3642 w->wd = -1;
2329 infy_add (EV_A_ w); /* re-add, no matter what */ 3643 infy_add (EV_A_ w); /* re-add, no matter what */
2330 } 3644 }
2331 3645
2332 stat_timer_cb (EV_A_ &w->timer, 0); 3646 stat_timer_cb (EV_A_ &w->timer, 0);
2337 3651
2338static void 3652static void
2339infy_cb (EV_P_ ev_io *w, int revents) 3653infy_cb (EV_P_ ev_io *w, int revents)
2340{ 3654{
2341 char buf [EV_INOTIFY_BUFSIZE]; 3655 char buf [EV_INOTIFY_BUFSIZE];
2342 struct inotify_event *ev = (struct inotify_event *)buf;
2343 int ofs; 3656 int ofs;
2344 int len = read (fs_fd, buf, sizeof (buf)); 3657 int len = read (fs_fd, buf, sizeof (buf));
2345 3658
2346 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3659 for (ofs = 0; ofs < len; )
3660 {
3661 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2347 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3662 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3663 ofs += sizeof (struct inotify_event) + ev->len;
3664 }
2348} 3665}
2349 3666
2350void inline_size 3667inline_size void ecb_cold
3668ev_check_2625 (EV_P)
3669{
3670 /* kernels < 2.6.25 are borked
3671 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3672 */
3673 if (ev_linux_version () < 0x020619)
3674 return;
3675
3676 fs_2625 = 1;
3677}
3678
3679inline_size int
3680infy_newfd (void)
3681{
3682#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3683 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3684 if (fd >= 0)
3685 return fd;
3686#endif
3687 return inotify_init ();
3688}
3689
3690inline_size void
2351infy_init (EV_P) 3691infy_init (EV_P)
2352{ 3692{
2353 if (fs_fd != -2) 3693 if (fs_fd != -2)
2354 return; 3694 return;
2355 3695
3696 fs_fd = -1;
3697
3698 ev_check_2625 (EV_A);
3699
2356 fs_fd = inotify_init (); 3700 fs_fd = infy_newfd ();
2357 3701
2358 if (fs_fd >= 0) 3702 if (fs_fd >= 0)
2359 { 3703 {
3704 fd_intern (fs_fd);
2360 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3705 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2361 ev_set_priority (&fs_w, EV_MAXPRI); 3706 ev_set_priority (&fs_w, EV_MAXPRI);
2362 ev_io_start (EV_A_ &fs_w); 3707 ev_io_start (EV_A_ &fs_w);
3708 ev_unref (EV_A);
2363 } 3709 }
2364} 3710}
2365 3711
2366void inline_size 3712inline_size void
2367infy_fork (EV_P) 3713infy_fork (EV_P)
2368{ 3714{
2369 int slot; 3715 int slot;
2370 3716
2371 if (fs_fd < 0) 3717 if (fs_fd < 0)
2372 return; 3718 return;
2373 3719
3720 ev_ref (EV_A);
3721 ev_io_stop (EV_A_ &fs_w);
2374 close (fs_fd); 3722 close (fs_fd);
2375 fs_fd = inotify_init (); 3723 fs_fd = infy_newfd ();
2376 3724
3725 if (fs_fd >= 0)
3726 {
3727 fd_intern (fs_fd);
3728 ev_io_set (&fs_w, fs_fd, EV_READ);
3729 ev_io_start (EV_A_ &fs_w);
3730 ev_unref (EV_A);
3731 }
3732
2377 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3733 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2378 { 3734 {
2379 WL w_ = fs_hash [slot].head; 3735 WL w_ = fs_hash [slot].head;
2380 fs_hash [slot].head = 0; 3736 fs_hash [slot].head = 0;
2381 3737
2382 while (w_) 3738 while (w_)
2387 w->wd = -1; 3743 w->wd = -1;
2388 3744
2389 if (fs_fd >= 0) 3745 if (fs_fd >= 0)
2390 infy_add (EV_A_ w); /* re-add, no matter what */ 3746 infy_add (EV_A_ w); /* re-add, no matter what */
2391 else 3747 else
3748 {
3749 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3750 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2392 ev_timer_start (EV_A_ &w->timer); 3751 ev_timer_again (EV_A_ &w->timer);
3752 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3753 }
2393 } 3754 }
2394
2395 } 3755 }
2396} 3756}
2397 3757
3758#endif
3759
3760#ifdef _WIN32
3761# define EV_LSTAT(p,b) _stati64 (p, b)
3762#else
3763# define EV_LSTAT(p,b) lstat (p, b)
2398#endif 3764#endif
2399 3765
2400void 3766void
2401ev_stat_stat (EV_P_ ev_stat *w) 3767ev_stat_stat (EV_P_ ev_stat *w)
2402{ 3768{
2409static void noinline 3775static void noinline
2410stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3776stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2411{ 3777{
2412 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3778 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2413 3779
2414 /* we copy this here each the time so that */ 3780 ev_statdata prev = w->attr;
2415 /* prev has the old value when the callback gets invoked */
2416 w->prev = w->attr;
2417 ev_stat_stat (EV_A_ w); 3781 ev_stat_stat (EV_A_ w);
2418 3782
2419 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3783 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2420 if ( 3784 if (
2421 w->prev.st_dev != w->attr.st_dev 3785 prev.st_dev != w->attr.st_dev
2422 || w->prev.st_ino != w->attr.st_ino 3786 || prev.st_ino != w->attr.st_ino
2423 || w->prev.st_mode != w->attr.st_mode 3787 || prev.st_mode != w->attr.st_mode
2424 || w->prev.st_nlink != w->attr.st_nlink 3788 || prev.st_nlink != w->attr.st_nlink
2425 || w->prev.st_uid != w->attr.st_uid 3789 || prev.st_uid != w->attr.st_uid
2426 || w->prev.st_gid != w->attr.st_gid 3790 || prev.st_gid != w->attr.st_gid
2427 || w->prev.st_rdev != w->attr.st_rdev 3791 || prev.st_rdev != w->attr.st_rdev
2428 || w->prev.st_size != w->attr.st_size 3792 || prev.st_size != w->attr.st_size
2429 || w->prev.st_atime != w->attr.st_atime 3793 || prev.st_atime != w->attr.st_atime
2430 || w->prev.st_mtime != w->attr.st_mtime 3794 || prev.st_mtime != w->attr.st_mtime
2431 || w->prev.st_ctime != w->attr.st_ctime 3795 || prev.st_ctime != w->attr.st_ctime
2432 ) { 3796 ) {
3797 /* we only update w->prev on actual differences */
3798 /* in case we test more often than invoke the callback, */
3799 /* to ensure that prev is always different to attr */
3800 w->prev = prev;
3801
2433 #if EV_USE_INOTIFY 3802 #if EV_USE_INOTIFY
3803 if (fs_fd >= 0)
3804 {
2434 infy_del (EV_A_ w); 3805 infy_del (EV_A_ w);
2435 infy_add (EV_A_ w); 3806 infy_add (EV_A_ w);
2436 ev_stat_stat (EV_A_ w); /* avoid race... */ 3807 ev_stat_stat (EV_A_ w); /* avoid race... */
3808 }
2437 #endif 3809 #endif
2438 3810
2439 ev_feed_event (EV_A_ w, EV_STAT); 3811 ev_feed_event (EV_A_ w, EV_STAT);
2440 } 3812 }
2441} 3813}
2444ev_stat_start (EV_P_ ev_stat *w) 3816ev_stat_start (EV_P_ ev_stat *w)
2445{ 3817{
2446 if (expect_false (ev_is_active (w))) 3818 if (expect_false (ev_is_active (w)))
2447 return; 3819 return;
2448 3820
2449 /* since we use memcmp, we need to clear any padding data etc. */
2450 memset (&w->prev, 0, sizeof (ev_statdata));
2451 memset (&w->attr, 0, sizeof (ev_statdata));
2452
2453 ev_stat_stat (EV_A_ w); 3821 ev_stat_stat (EV_A_ w);
2454 3822
3823 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2455 if (w->interval < MIN_STAT_INTERVAL) 3824 w->interval = MIN_STAT_INTERVAL;
2456 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2457 3825
2458 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3826 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2459 ev_set_priority (&w->timer, ev_priority (w)); 3827 ev_set_priority (&w->timer, ev_priority (w));
2460 3828
2461#if EV_USE_INOTIFY 3829#if EV_USE_INOTIFY
2462 infy_init (EV_A); 3830 infy_init (EV_A);
2463 3831
2464 if (fs_fd >= 0) 3832 if (fs_fd >= 0)
2465 infy_add (EV_A_ w); 3833 infy_add (EV_A_ w);
2466 else 3834 else
2467#endif 3835#endif
3836 {
2468 ev_timer_start (EV_A_ &w->timer); 3837 ev_timer_again (EV_A_ &w->timer);
3838 ev_unref (EV_A);
3839 }
2469 3840
2470 ev_start (EV_A_ (W)w, 1); 3841 ev_start (EV_A_ (W)w, 1);
3842
3843 EV_FREQUENT_CHECK;
2471} 3844}
2472 3845
2473void 3846void
2474ev_stat_stop (EV_P_ ev_stat *w) 3847ev_stat_stop (EV_P_ ev_stat *w)
2475{ 3848{
2476 clear_pending (EV_A_ (W)w); 3849 clear_pending (EV_A_ (W)w);
2477 if (expect_false (!ev_is_active (w))) 3850 if (expect_false (!ev_is_active (w)))
2478 return; 3851 return;
2479 3852
3853 EV_FREQUENT_CHECK;
3854
2480#if EV_USE_INOTIFY 3855#if EV_USE_INOTIFY
2481 infy_del (EV_A_ w); 3856 infy_del (EV_A_ w);
2482#endif 3857#endif
3858
3859 if (ev_is_active (&w->timer))
3860 {
3861 ev_ref (EV_A);
2483 ev_timer_stop (EV_A_ &w->timer); 3862 ev_timer_stop (EV_A_ &w->timer);
3863 }
2484 3864
2485 ev_stop (EV_A_ (W)w); 3865 ev_stop (EV_A_ (W)w);
3866
3867 EV_FREQUENT_CHECK;
2486} 3868}
2487#endif 3869#endif
2488 3870
2489#if EV_IDLE_ENABLE 3871#if EV_IDLE_ENABLE
2490void 3872void
2493 if (expect_false (ev_is_active (w))) 3875 if (expect_false (ev_is_active (w)))
2494 return; 3876 return;
2495 3877
2496 pri_adjust (EV_A_ (W)w); 3878 pri_adjust (EV_A_ (W)w);
2497 3879
3880 EV_FREQUENT_CHECK;
3881
2498 { 3882 {
2499 int active = ++idlecnt [ABSPRI (w)]; 3883 int active = ++idlecnt [ABSPRI (w)];
2500 3884
2501 ++idleall; 3885 ++idleall;
2502 ev_start (EV_A_ (W)w, active); 3886 ev_start (EV_A_ (W)w, active);
2503 3887
2504 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3888 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2505 idles [ABSPRI (w)][active - 1] = w; 3889 idles [ABSPRI (w)][active - 1] = w;
2506 } 3890 }
3891
3892 EV_FREQUENT_CHECK;
2507} 3893}
2508 3894
2509void 3895void
2510ev_idle_stop (EV_P_ ev_idle *w) 3896ev_idle_stop (EV_P_ ev_idle *w)
2511{ 3897{
2512 clear_pending (EV_A_ (W)w); 3898 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w))) 3899 if (expect_false (!ev_is_active (w)))
2514 return; 3900 return;
2515 3901
3902 EV_FREQUENT_CHECK;
3903
2516 { 3904 {
2517 int active = ev_active (w); 3905 int active = ev_active (w);
2518 3906
2519 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3907 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2520 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3908 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2521 3909
2522 ev_stop (EV_A_ (W)w); 3910 ev_stop (EV_A_ (W)w);
2523 --idleall; 3911 --idleall;
2524 } 3912 }
2525}
2526#endif
2527 3913
3914 EV_FREQUENT_CHECK;
3915}
3916#endif
3917
3918#if EV_PREPARE_ENABLE
2528void 3919void
2529ev_prepare_start (EV_P_ ev_prepare *w) 3920ev_prepare_start (EV_P_ ev_prepare *w)
2530{ 3921{
2531 if (expect_false (ev_is_active (w))) 3922 if (expect_false (ev_is_active (w)))
2532 return; 3923 return;
3924
3925 EV_FREQUENT_CHECK;
2533 3926
2534 ev_start (EV_A_ (W)w, ++preparecnt); 3927 ev_start (EV_A_ (W)w, ++preparecnt);
2535 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3928 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2536 prepares [preparecnt - 1] = w; 3929 prepares [preparecnt - 1] = w;
3930
3931 EV_FREQUENT_CHECK;
2537} 3932}
2538 3933
2539void 3934void
2540ev_prepare_stop (EV_P_ ev_prepare *w) 3935ev_prepare_stop (EV_P_ ev_prepare *w)
2541{ 3936{
2542 clear_pending (EV_A_ (W)w); 3937 clear_pending (EV_A_ (W)w);
2543 if (expect_false (!ev_is_active (w))) 3938 if (expect_false (!ev_is_active (w)))
2544 return; 3939 return;
2545 3940
3941 EV_FREQUENT_CHECK;
3942
2546 { 3943 {
2547 int active = ev_active (w); 3944 int active = ev_active (w);
2548 3945
2549 prepares [active - 1] = prepares [--preparecnt]; 3946 prepares [active - 1] = prepares [--preparecnt];
2550 ev_active (prepares [active - 1]) = active; 3947 ev_active (prepares [active - 1]) = active;
2551 } 3948 }
2552 3949
2553 ev_stop (EV_A_ (W)w); 3950 ev_stop (EV_A_ (W)w);
2554}
2555 3951
3952 EV_FREQUENT_CHECK;
3953}
3954#endif
3955
3956#if EV_CHECK_ENABLE
2556void 3957void
2557ev_check_start (EV_P_ ev_check *w) 3958ev_check_start (EV_P_ ev_check *w)
2558{ 3959{
2559 if (expect_false (ev_is_active (w))) 3960 if (expect_false (ev_is_active (w)))
2560 return; 3961 return;
3962
3963 EV_FREQUENT_CHECK;
2561 3964
2562 ev_start (EV_A_ (W)w, ++checkcnt); 3965 ev_start (EV_A_ (W)w, ++checkcnt);
2563 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3966 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2564 checks [checkcnt - 1] = w; 3967 checks [checkcnt - 1] = w;
3968
3969 EV_FREQUENT_CHECK;
2565} 3970}
2566 3971
2567void 3972void
2568ev_check_stop (EV_P_ ev_check *w) 3973ev_check_stop (EV_P_ ev_check *w)
2569{ 3974{
2570 clear_pending (EV_A_ (W)w); 3975 clear_pending (EV_A_ (W)w);
2571 if (expect_false (!ev_is_active (w))) 3976 if (expect_false (!ev_is_active (w)))
2572 return; 3977 return;
2573 3978
3979 EV_FREQUENT_CHECK;
3980
2574 { 3981 {
2575 int active = ev_active (w); 3982 int active = ev_active (w);
2576 3983
2577 checks [active - 1] = checks [--checkcnt]; 3984 checks [active - 1] = checks [--checkcnt];
2578 ev_active (checks [active - 1]) = active; 3985 ev_active (checks [active - 1]) = active;
2579 } 3986 }
2580 3987
2581 ev_stop (EV_A_ (W)w); 3988 ev_stop (EV_A_ (W)w);
3989
3990 EV_FREQUENT_CHECK;
2582} 3991}
3992#endif
2583 3993
2584#if EV_EMBED_ENABLE 3994#if EV_EMBED_ENABLE
2585void noinline 3995void noinline
2586ev_embed_sweep (EV_P_ ev_embed *w) 3996ev_embed_sweep (EV_P_ ev_embed *w)
2587{ 3997{
2588 ev_loop (w->other, EVLOOP_NONBLOCK); 3998 ev_run (w->other, EVRUN_NOWAIT);
2589} 3999}
2590 4000
2591static void 4001static void
2592embed_io_cb (EV_P_ ev_io *io, int revents) 4002embed_io_cb (EV_P_ ev_io *io, int revents)
2593{ 4003{
2594 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4004 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2595 4005
2596 if (ev_cb (w)) 4006 if (ev_cb (w))
2597 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4007 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2598 else 4008 else
2599 ev_loop (w->other, EVLOOP_NONBLOCK); 4009 ev_run (w->other, EVRUN_NOWAIT);
2600} 4010}
2601 4011
2602static void 4012static void
2603embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4013embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2604{ 4014{
2605 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4015 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2606 4016
2607 { 4017 {
2608 struct ev_loop *loop = w->other; 4018 EV_P = w->other;
2609 4019
2610 while (fdchangecnt) 4020 while (fdchangecnt)
2611 { 4021 {
2612 fd_reify (EV_A); 4022 fd_reify (EV_A);
2613 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4023 ev_run (EV_A_ EVRUN_NOWAIT);
2614 } 4024 }
2615 } 4025 }
4026}
4027
4028static void
4029embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4030{
4031 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4032
4033 ev_embed_stop (EV_A_ w);
4034
4035 {
4036 EV_P = w->other;
4037
4038 ev_loop_fork (EV_A);
4039 ev_run (EV_A_ EVRUN_NOWAIT);
4040 }
4041
4042 ev_embed_start (EV_A_ w);
2616} 4043}
2617 4044
2618#if 0 4045#if 0
2619static void 4046static void
2620embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4047embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2628{ 4055{
2629 if (expect_false (ev_is_active (w))) 4056 if (expect_false (ev_is_active (w)))
2630 return; 4057 return;
2631 4058
2632 { 4059 {
2633 struct ev_loop *loop = w->other; 4060 EV_P = w->other;
2634 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4061 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2635 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4062 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2636 } 4063 }
4064
4065 EV_FREQUENT_CHECK;
2637 4066
2638 ev_set_priority (&w->io, ev_priority (w)); 4067 ev_set_priority (&w->io, ev_priority (w));
2639 ev_io_start (EV_A_ &w->io); 4068 ev_io_start (EV_A_ &w->io);
2640 4069
2641 ev_prepare_init (&w->prepare, embed_prepare_cb); 4070 ev_prepare_init (&w->prepare, embed_prepare_cb);
2642 ev_set_priority (&w->prepare, EV_MINPRI); 4071 ev_set_priority (&w->prepare, EV_MINPRI);
2643 ev_prepare_start (EV_A_ &w->prepare); 4072 ev_prepare_start (EV_A_ &w->prepare);
2644 4073
4074 ev_fork_init (&w->fork, embed_fork_cb);
4075 ev_fork_start (EV_A_ &w->fork);
4076
2645 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4077 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2646 4078
2647 ev_start (EV_A_ (W)w, 1); 4079 ev_start (EV_A_ (W)w, 1);
4080
4081 EV_FREQUENT_CHECK;
2648} 4082}
2649 4083
2650void 4084void
2651ev_embed_stop (EV_P_ ev_embed *w) 4085ev_embed_stop (EV_P_ ev_embed *w)
2652{ 4086{
2653 clear_pending (EV_A_ (W)w); 4087 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w))) 4088 if (expect_false (!ev_is_active (w)))
2655 return; 4089 return;
2656 4090
4091 EV_FREQUENT_CHECK;
4092
2657 ev_io_stop (EV_A_ &w->io); 4093 ev_io_stop (EV_A_ &w->io);
2658 ev_prepare_stop (EV_A_ &w->prepare); 4094 ev_prepare_stop (EV_A_ &w->prepare);
4095 ev_fork_stop (EV_A_ &w->fork);
2659 4096
2660 ev_stop (EV_A_ (W)w); 4097 ev_stop (EV_A_ (W)w);
4098
4099 EV_FREQUENT_CHECK;
2661} 4100}
2662#endif 4101#endif
2663 4102
2664#if EV_FORK_ENABLE 4103#if EV_FORK_ENABLE
2665void 4104void
2666ev_fork_start (EV_P_ ev_fork *w) 4105ev_fork_start (EV_P_ ev_fork *w)
2667{ 4106{
2668 if (expect_false (ev_is_active (w))) 4107 if (expect_false (ev_is_active (w)))
2669 return; 4108 return;
2670 4109
4110 EV_FREQUENT_CHECK;
4111
2671 ev_start (EV_A_ (W)w, ++forkcnt); 4112 ev_start (EV_A_ (W)w, ++forkcnt);
2672 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4113 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2673 forks [forkcnt - 1] = w; 4114 forks [forkcnt - 1] = w;
4115
4116 EV_FREQUENT_CHECK;
2674} 4117}
2675 4118
2676void 4119void
2677ev_fork_stop (EV_P_ ev_fork *w) 4120ev_fork_stop (EV_P_ ev_fork *w)
2678{ 4121{
2679 clear_pending (EV_A_ (W)w); 4122 clear_pending (EV_A_ (W)w);
2680 if (expect_false (!ev_is_active (w))) 4123 if (expect_false (!ev_is_active (w)))
2681 return; 4124 return;
2682 4125
4126 EV_FREQUENT_CHECK;
4127
2683 { 4128 {
2684 int active = ev_active (w); 4129 int active = ev_active (w);
2685 4130
2686 forks [active - 1] = forks [--forkcnt]; 4131 forks [active - 1] = forks [--forkcnt];
2687 ev_active (forks [active - 1]) = active; 4132 ev_active (forks [active - 1]) = active;
2688 } 4133 }
2689 4134
2690 ev_stop (EV_A_ (W)w); 4135 ev_stop (EV_A_ (W)w);
4136
4137 EV_FREQUENT_CHECK;
4138}
4139#endif
4140
4141#if EV_CLEANUP_ENABLE
4142void
4143ev_cleanup_start (EV_P_ ev_cleanup *w)
4144{
4145 if (expect_false (ev_is_active (w)))
4146 return;
4147
4148 EV_FREQUENT_CHECK;
4149
4150 ev_start (EV_A_ (W)w, ++cleanupcnt);
4151 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4152 cleanups [cleanupcnt - 1] = w;
4153
4154 /* cleanup watchers should never keep a refcount on the loop */
4155 ev_unref (EV_A);
4156 EV_FREQUENT_CHECK;
4157}
4158
4159void
4160ev_cleanup_stop (EV_P_ ev_cleanup *w)
4161{
4162 clear_pending (EV_A_ (W)w);
4163 if (expect_false (!ev_is_active (w)))
4164 return;
4165
4166 EV_FREQUENT_CHECK;
4167 ev_ref (EV_A);
4168
4169 {
4170 int active = ev_active (w);
4171
4172 cleanups [active - 1] = cleanups [--cleanupcnt];
4173 ev_active (cleanups [active - 1]) = active;
4174 }
4175
4176 ev_stop (EV_A_ (W)w);
4177
4178 EV_FREQUENT_CHECK;
2691} 4179}
2692#endif 4180#endif
2693 4181
2694#if EV_ASYNC_ENABLE 4182#if EV_ASYNC_ENABLE
2695void 4183void
2696ev_async_start (EV_P_ ev_async *w) 4184ev_async_start (EV_P_ ev_async *w)
2697{ 4185{
2698 if (expect_false (ev_is_active (w))) 4186 if (expect_false (ev_is_active (w)))
2699 return; 4187 return;
2700 4188
4189 w->sent = 0;
4190
2701 evpipe_init (EV_A); 4191 evpipe_init (EV_A);
4192
4193 EV_FREQUENT_CHECK;
2702 4194
2703 ev_start (EV_A_ (W)w, ++asynccnt); 4195 ev_start (EV_A_ (W)w, ++asynccnt);
2704 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4196 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2705 asyncs [asynccnt - 1] = w; 4197 asyncs [asynccnt - 1] = w;
4198
4199 EV_FREQUENT_CHECK;
2706} 4200}
2707 4201
2708void 4202void
2709ev_async_stop (EV_P_ ev_async *w) 4203ev_async_stop (EV_P_ ev_async *w)
2710{ 4204{
2711 clear_pending (EV_A_ (W)w); 4205 clear_pending (EV_A_ (W)w);
2712 if (expect_false (!ev_is_active (w))) 4206 if (expect_false (!ev_is_active (w)))
2713 return; 4207 return;
2714 4208
4209 EV_FREQUENT_CHECK;
4210
2715 { 4211 {
2716 int active = ev_active (w); 4212 int active = ev_active (w);
2717 4213
2718 asyncs [active - 1] = asyncs [--asynccnt]; 4214 asyncs [active - 1] = asyncs [--asynccnt];
2719 ev_active (asyncs [active - 1]) = active; 4215 ev_active (asyncs [active - 1]) = active;
2720 } 4216 }
2721 4217
2722 ev_stop (EV_A_ (W)w); 4218 ev_stop (EV_A_ (W)w);
4219
4220 EV_FREQUENT_CHECK;
2723} 4221}
2724 4222
2725void 4223void
2726ev_async_send (EV_P_ ev_async *w) 4224ev_async_send (EV_P_ ev_async *w)
2727{ 4225{
2728 w->sent = 1; 4226 w->sent = 1;
2729 evpipe_write (EV_A_ &gotasync); 4227 evpipe_write (EV_A_ &async_pending);
2730} 4228}
2731#endif 4229#endif
2732 4230
2733/*****************************************************************************/ 4231/*****************************************************************************/
2734 4232
2744once_cb (EV_P_ struct ev_once *once, int revents) 4242once_cb (EV_P_ struct ev_once *once, int revents)
2745{ 4243{
2746 void (*cb)(int revents, void *arg) = once->cb; 4244 void (*cb)(int revents, void *arg) = once->cb;
2747 void *arg = once->arg; 4245 void *arg = once->arg;
2748 4246
2749 ev_io_stop (EV_A_ &once->io); 4247 ev_io_stop (EV_A_ &once->io);
2750 ev_timer_stop (EV_A_ &once->to); 4248 ev_timer_stop (EV_A_ &once->to);
2751 ev_free (once); 4249 ev_free (once);
2752 4250
2753 cb (revents, arg); 4251 cb (revents, arg);
2754} 4252}
2755 4253
2756static void 4254static void
2757once_cb_io (EV_P_ ev_io *w, int revents) 4255once_cb_io (EV_P_ ev_io *w, int revents)
2758{ 4256{
2759 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4257 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4258
4259 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2760} 4260}
2761 4261
2762static void 4262static void
2763once_cb_to (EV_P_ ev_timer *w, int revents) 4263once_cb_to (EV_P_ ev_timer *w, int revents)
2764{ 4264{
2765 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4265 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4266
4267 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2766} 4268}
2767 4269
2768void 4270void
2769ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4271ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2770{ 4272{
2771 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4273 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2772 4274
2773 if (expect_false (!once)) 4275 if (expect_false (!once))
2774 { 4276 {
2775 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4277 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2776 return; 4278 return;
2777 } 4279 }
2778 4280
2779 once->cb = cb; 4281 once->cb = cb;
2780 once->arg = arg; 4282 once->arg = arg;
2792 ev_timer_set (&once->to, timeout, 0.); 4294 ev_timer_set (&once->to, timeout, 0.);
2793 ev_timer_start (EV_A_ &once->to); 4295 ev_timer_start (EV_A_ &once->to);
2794 } 4296 }
2795} 4297}
2796 4298
4299/*****************************************************************************/
4300
4301#if EV_WALK_ENABLE
4302void ecb_cold
4303ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4304{
4305 int i, j;
4306 ev_watcher_list *wl, *wn;
4307
4308 if (types & (EV_IO | EV_EMBED))
4309 for (i = 0; i < anfdmax; ++i)
4310 for (wl = anfds [i].head; wl; )
4311 {
4312 wn = wl->next;
4313
4314#if EV_EMBED_ENABLE
4315 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4316 {
4317 if (types & EV_EMBED)
4318 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4319 }
4320 else
4321#endif
4322#if EV_USE_INOTIFY
4323 if (ev_cb ((ev_io *)wl) == infy_cb)
4324 ;
4325 else
4326#endif
4327 if ((ev_io *)wl != &pipe_w)
4328 if (types & EV_IO)
4329 cb (EV_A_ EV_IO, wl);
4330
4331 wl = wn;
4332 }
4333
4334 if (types & (EV_TIMER | EV_STAT))
4335 for (i = timercnt + HEAP0; i-- > HEAP0; )
4336#if EV_STAT_ENABLE
4337 /*TODO: timer is not always active*/
4338 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4339 {
4340 if (types & EV_STAT)
4341 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4342 }
4343 else
4344#endif
4345 if (types & EV_TIMER)
4346 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4347
4348#if EV_PERIODIC_ENABLE
4349 if (types & EV_PERIODIC)
4350 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4351 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4352#endif
4353
4354#if EV_IDLE_ENABLE
4355 if (types & EV_IDLE)
4356 for (j = NUMPRI; j--; )
4357 for (i = idlecnt [j]; i--; )
4358 cb (EV_A_ EV_IDLE, idles [j][i]);
4359#endif
4360
4361#if EV_FORK_ENABLE
4362 if (types & EV_FORK)
4363 for (i = forkcnt; i--; )
4364 if (ev_cb (forks [i]) != embed_fork_cb)
4365 cb (EV_A_ EV_FORK, forks [i]);
4366#endif
4367
4368#if EV_ASYNC_ENABLE
4369 if (types & EV_ASYNC)
4370 for (i = asynccnt; i--; )
4371 cb (EV_A_ EV_ASYNC, asyncs [i]);
4372#endif
4373
4374#if EV_PREPARE_ENABLE
4375 if (types & EV_PREPARE)
4376 for (i = preparecnt; i--; )
4377# if EV_EMBED_ENABLE
4378 if (ev_cb (prepares [i]) != embed_prepare_cb)
4379# endif
4380 cb (EV_A_ EV_PREPARE, prepares [i]);
4381#endif
4382
4383#if EV_CHECK_ENABLE
4384 if (types & EV_CHECK)
4385 for (i = checkcnt; i--; )
4386 cb (EV_A_ EV_CHECK, checks [i]);
4387#endif
4388
4389#if EV_SIGNAL_ENABLE
4390 if (types & EV_SIGNAL)
4391 for (i = 0; i < EV_NSIG - 1; ++i)
4392 for (wl = signals [i].head; wl; )
4393 {
4394 wn = wl->next;
4395 cb (EV_A_ EV_SIGNAL, wl);
4396 wl = wn;
4397 }
4398#endif
4399
4400#if EV_CHILD_ENABLE
4401 if (types & EV_CHILD)
4402 for (i = (EV_PID_HASHSIZE); i--; )
4403 for (wl = childs [i]; wl; )
4404 {
4405 wn = wl->next;
4406 cb (EV_A_ EV_CHILD, wl);
4407 wl = wn;
4408 }
4409#endif
4410/* EV_STAT 0x00001000 /* stat data changed */
4411/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4412}
4413#endif
4414
2797#if EV_MULTIPLICITY 4415#if EV_MULTIPLICITY
2798 #include "ev_wrap.h" 4416 #include "ev_wrap.h"
2799#endif 4417#endif
2800 4418
2801#ifdef __cplusplus
2802}
2803#endif
2804

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines