ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.246 by root, Wed May 21 12:51:38 2008 UTC vs.
Revision 1.520 by root, Sat Dec 28 07:44:15 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
100# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
102# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO 0 /* was: EV_FEATURE_BACKENDS, always off by default */
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
106# endif 127# endif
107 128
129# if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
108# ifndef EV_USE_PORT 130# ifndef EV_USE_IOURING
109# if HAVE_PORT_H && HAVE_PORT_CREATE 131# define EV_USE_IOURING EV_FEATURE_BACKENDS
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_IOURING
135# define EV_USE_IOURING 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY 138# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 139# ifndef EV_USE_KQUEUE
118# define EV_USE_INOTIFY 1 140# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
119# else
120# define EV_USE_INOTIFY 0
121# endif 141# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else 142# else
143# undef EV_USE_KQUEUE
128# define EV_USE_EVENTFD 0 144# define EV_USE_KQUEUE 0
129# endif
130# endif 145# endif
131 146
147# if HAVE_PORT_H && HAVE_PORT_CREATE
148# ifndef EV_USE_PORT
149# define EV_USE_PORT EV_FEATURE_BACKENDS
150# endif
151# else
152# undef EV_USE_PORT
153# define EV_USE_PORT 0
132#endif 154# endif
133 155
134#include <math.h> 156# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157# ifndef EV_USE_INOTIFY
158# define EV_USE_INOTIFY EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_INOTIFY
162# define EV_USE_INOTIFY 0
163# endif
164
165# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166# ifndef EV_USE_SIGNALFD
167# define EV_USE_SIGNALFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_SIGNALFD
171# define EV_USE_SIGNALFD 0
172# endif
173
174# if HAVE_EVENTFD
175# ifndef EV_USE_EVENTFD
176# define EV_USE_EVENTFD EV_FEATURE_OS
177# endif
178# else
179# undef EV_USE_EVENTFD
180# define EV_USE_EVENTFD 0
181# endif
182
183# if HAVE_SYS_TIMERFD_H
184# ifndef EV_USE_TIMERFD
185# define EV_USE_TIMERFD EV_FEATURE_OS
186# endif
187# else
188# undef EV_USE_TIMERFD
189# define EV_USE_TIMERFD 0
190# endif
191
192#endif
193
194/* OS X, in its infinite idiocy, actually HARDCODES
195 * a limit of 1024 into their select. Where people have brains,
196 * OS X engineers apparently have a vacuum. Or maybe they were
197 * ordered to have a vacuum, or they do anything for money.
198 * This might help. Or not.
199 * Note that this must be defined early, as other include files
200 * will rely on this define as well.
201 */
202#define _DARWIN_UNLIMITED_SELECT 1
203
135#include <stdlib.h> 204#include <stdlib.h>
205#include <string.h>
136#include <fcntl.h> 206#include <fcntl.h>
137#include <stddef.h> 207#include <stddef.h>
138 208
139#include <stdio.h> 209#include <stdio.h>
140 210
141#include <assert.h> 211#include <assert.h>
142#include <errno.h> 212#include <errno.h>
143#include <sys/types.h> 213#include <sys/types.h>
144#include <time.h> 214#include <time.h>
215#include <limits.h>
145 216
146#include <signal.h> 217#include <signal.h>
147 218
148#ifdef EV_H 219#ifdef EV_H
149# include EV_H 220# include EV_H
150#else 221#else
151# include "ev.h" 222# include "ev.h"
223#endif
224
225#if EV_NO_THREADS
226# undef EV_NO_SMP
227# define EV_NO_SMP 1
228# undef ECB_NO_THREADS
229# define ECB_NO_THREADS 1
230#endif
231#if EV_NO_SMP
232# undef EV_NO_SMP
233# define ECB_NO_SMP 1
152#endif 234#endif
153 235
154#ifndef _WIN32 236#ifndef _WIN32
155# include <sys/time.h> 237# include <sys/time.h>
156# include <sys/wait.h> 238# include <sys/wait.h>
157# include <unistd.h> 239# include <unistd.h>
158#else 240#else
241# include <io.h>
159# define WIN32_LEAN_AND_MEAN 242# define WIN32_LEAN_AND_MEAN
243# include <winsock2.h>
160# include <windows.h> 244# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 245# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 246# define EV_SELECT_IS_WINSOCKET 1
163# endif 247# endif
248# undef EV_AVOID_STDIO
164#endif 249#endif
165 250
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 251/* this block tries to deduce configuration from header-defined symbols and defaults */
167 252
253/* try to deduce the maximum number of signals on this platform */
254#if defined EV_NSIG
255/* use what's provided */
256#elif defined NSIG
257# define EV_NSIG (NSIG)
258#elif defined _NSIG
259# define EV_NSIG (_NSIG)
260#elif defined SIGMAX
261# define EV_NSIG (SIGMAX+1)
262#elif defined SIG_MAX
263# define EV_NSIG (SIG_MAX+1)
264#elif defined _SIG_MAX
265# define EV_NSIG (_SIG_MAX+1)
266#elif defined MAXSIG
267# define EV_NSIG (MAXSIG+1)
268#elif defined MAX_SIG
269# define EV_NSIG (MAX_SIG+1)
270#elif defined SIGARRAYSIZE
271# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
272#elif defined _sys_nsig
273# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
274#else
275# define EV_NSIG (8 * sizeof (sigset_t) + 1)
276#endif
277
278#ifndef EV_USE_FLOOR
279# define EV_USE_FLOOR 0
280#endif
281
282#ifndef EV_USE_CLOCK_SYSCALL
283# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
284# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
285# else
286# define EV_USE_CLOCK_SYSCALL 0
287# endif
288#endif
289
290#if !(_POSIX_TIMERS > 0)
291# ifndef EV_USE_MONOTONIC
292# define EV_USE_MONOTONIC 0
293# endif
294# ifndef EV_USE_REALTIME
295# define EV_USE_REALTIME 0
296# endif
297#endif
298
168#ifndef EV_USE_MONOTONIC 299#ifndef EV_USE_MONOTONIC
300# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
301# define EV_USE_MONOTONIC EV_FEATURE_OS
302# else
169# define EV_USE_MONOTONIC 0 303# define EV_USE_MONOTONIC 0
304# endif
170#endif 305#endif
171 306
172#ifndef EV_USE_REALTIME 307#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 308# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 309#endif
175 310
176#ifndef EV_USE_NANOSLEEP 311#ifndef EV_USE_NANOSLEEP
312# if _POSIX_C_SOURCE >= 199309L
313# define EV_USE_NANOSLEEP EV_FEATURE_OS
314# else
177# define EV_USE_NANOSLEEP 0 315# define EV_USE_NANOSLEEP 0
316# endif
178#endif 317#endif
179 318
180#ifndef EV_USE_SELECT 319#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 320# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 321#endif
183 322
184#ifndef EV_USE_POLL 323#ifndef EV_USE_POLL
185# ifdef _WIN32 324# ifdef _WIN32
186# define EV_USE_POLL 0 325# define EV_USE_POLL 0
187# else 326# else
188# define EV_USE_POLL 1 327# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 328# endif
190#endif 329#endif
191 330
192#ifndef EV_USE_EPOLL 331#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 332# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 333# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 334# else
196# define EV_USE_EPOLL 0 335# define EV_USE_EPOLL 0
197# endif 336# endif
198#endif 337#endif
199 338
203 342
204#ifndef EV_USE_PORT 343#ifndef EV_USE_PORT
205# define EV_USE_PORT 0 344# define EV_USE_PORT 0
206#endif 345#endif
207 346
347#ifndef EV_USE_LINUXAIO
348# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
349# define EV_USE_LINUXAIO 0 /* was: 1, always off by default */
350# else
351# define EV_USE_LINUXAIO 0
352# endif
353#endif
354
355#ifndef EV_USE_IOURING
356# if __linux /* later checks might disable again */
357# define EV_USE_IOURING 1
358# else
359# define EV_USE_IOURING 0
360# endif
361#endif
362
208#ifndef EV_USE_INOTIFY 363#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 364# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 365# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 366# else
212# define EV_USE_INOTIFY 0 367# define EV_USE_INOTIFY 0
213# endif 368# endif
214#endif 369#endif
215 370
216#ifndef EV_PID_HASHSIZE 371#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 372# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 373#endif
223 374
224#ifndef EV_INOTIFY_HASHSIZE 375#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 376# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 377#endif
231 378
232#ifndef EV_USE_EVENTFD 379#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 380# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 381# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 382# else
236# define EV_USE_EVENTFD 0 383# define EV_USE_EVENTFD 0
237# endif 384# endif
238#endif 385#endif
239 386
387#ifndef EV_USE_SIGNALFD
388# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
389# define EV_USE_SIGNALFD EV_FEATURE_OS
390# else
391# define EV_USE_SIGNALFD 0
392# endif
393#endif
394
395#ifndef EV_USE_TIMERFD
396# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 8))
397# define EV_USE_TIMERFD EV_FEATURE_OS
398# else
399# define EV_USE_TIMERFD 0
400# endif
401#endif
402
403#if 0 /* debugging */
404# define EV_VERIFY 3
405# define EV_USE_4HEAP 1
406# define EV_HEAP_CACHE_AT 1
407#endif
408
409#ifndef EV_VERIFY
410# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
411#endif
412
240#ifndef EV_USE_4HEAP 413#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 414# define EV_USE_4HEAP EV_FEATURE_DATA
242#endif 415#endif
243 416
244#ifndef EV_HEAP_CACHE_AT 417#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 418# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
419#endif
420
421#ifdef __ANDROID__
422/* supposedly, android doesn't typedef fd_mask */
423# undef EV_USE_SELECT
424# define EV_USE_SELECT 0
425/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
426# undef EV_USE_CLOCK_SYSCALL
427# define EV_USE_CLOCK_SYSCALL 0
428#endif
429
430/* aix's poll.h seems to cause lots of trouble */
431#ifdef _AIX
432/* AIX has a completely broken poll.h header */
433# undef EV_USE_POLL
434# define EV_USE_POLL 0
435#endif
436
437/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
438/* which makes programs even slower. might work on other unices, too. */
439#if EV_USE_CLOCK_SYSCALL
440# include <sys/syscall.h>
441# ifdef SYS_clock_gettime
442# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
443# undef EV_USE_MONOTONIC
444# define EV_USE_MONOTONIC 1
445# define EV_NEED_SYSCALL 1
446# else
447# undef EV_USE_CLOCK_SYSCALL
448# define EV_USE_CLOCK_SYSCALL 0
449# endif
246#endif 450#endif
247 451
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 452/* this block fixes any misconfiguration where we know we run into trouble otherwise */
249 453
250#ifndef CLOCK_MONOTONIC 454#ifndef CLOCK_MONOTONIC
260#if !EV_STAT_ENABLE 464#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY 465# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0 466# define EV_USE_INOTIFY 0
263#endif 467#endif
264 468
469#if __linux && EV_USE_IOURING
470# include <linux/version.h>
471# if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
472# undef EV_USE_IOURING
473# define EV_USE_IOURING 0
474# endif
475#endif
476
265#if !EV_USE_NANOSLEEP 477#if !EV_USE_NANOSLEEP
266# ifndef _WIN32 478/* hp-ux has it in sys/time.h, which we unconditionally include above */
479# if !defined _WIN32 && !defined __hpux
267# include <sys/select.h> 480# include <sys/select.h>
268# endif 481# endif
269#endif 482#endif
270 483
484#if EV_USE_LINUXAIO
485# include <sys/syscall.h>
486# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
487# define EV_NEED_SYSCALL 1
488# else
489# undef EV_USE_LINUXAIO
490# define EV_USE_LINUXAIO 0
491# endif
492#endif
493
494#if EV_USE_IOURING
495# include <sys/syscall.h>
496# if !SYS_io_uring_setup && __linux && !__alpha
497# define SYS_io_uring_setup 425
498# define SYS_io_uring_enter 426
499# define SYS_io_uring_wregister 427
500# endif
501# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
502# define EV_NEED_SYSCALL 1
503# else
504# undef EV_USE_IOURING
505# define EV_USE_IOURING 0
506# endif
507#endif
508
271#if EV_USE_INOTIFY 509#if EV_USE_INOTIFY
510# include <sys/statfs.h>
272# include <sys/inotify.h> 511# include <sys/inotify.h>
512/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
513# ifndef IN_DONT_FOLLOW
514# undef EV_USE_INOTIFY
515# define EV_USE_INOTIFY 0
273#endif 516# endif
274
275#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h>
277#endif 517#endif
278 518
279#if EV_USE_EVENTFD 519#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 520/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
281# include <stdint.h> 521# include <stdint.h>
282# ifdef __cplusplus 522# ifndef EFD_NONBLOCK
283extern "C" { 523# define EFD_NONBLOCK O_NONBLOCK
284# endif 524# endif
285int eventfd (unsigned int initval, int flags); 525# ifndef EFD_CLOEXEC
286# ifdef __cplusplus 526# ifdef O_CLOEXEC
287} 527# define EFD_CLOEXEC O_CLOEXEC
528# else
529# define EFD_CLOEXEC 02000000
530# endif
288# endif 531# endif
532EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
533#endif
534
535#if EV_USE_SIGNALFD
536/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
537# include <stdint.h>
538# ifndef SFD_NONBLOCK
539# define SFD_NONBLOCK O_NONBLOCK
289#endif 540# endif
541# ifndef SFD_CLOEXEC
542# ifdef O_CLOEXEC
543# define SFD_CLOEXEC O_CLOEXEC
544# else
545# define SFD_CLOEXEC 02000000
546# endif
547# endif
548EV_CPP (extern "C") int (signalfd) (int fd, const sigset_t *mask, int flags);
290 549
291/**/ 550struct signalfd_siginfo
551{
552 uint32_t ssi_signo;
553 char pad[128 - sizeof (uint32_t)];
554};
555#endif
556
557/* for timerfd, libev core requires TFD_TIMER_CANCEL_ON_SET &c */
558#if EV_USE_TIMERFD
559# include <sys/timerfd.h>
560/* timerfd is only used for periodics */
561# if !(defined (TFD_TIMER_CANCEL_ON_SET) && defined (TFD_CLOEXEC) && defined (TFD_NONBLOCK)) || !EV_PERIODIC_ENABLE
562# undef EV_USE_TIMERFD
563# define EV_USE_TIMERFD 0
564# endif
565#endif
566
567/*****************************************************************************/
568
569#if EV_VERIFY >= 3
570# define EV_FREQUENT_CHECK ev_verify (EV_A)
571#else
572# define EV_FREQUENT_CHECK do { } while (0)
573#endif
292 574
293/* 575/*
294 * This is used to avoid floating point rounding problems. 576 * This is used to work around floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000. 577 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */ 578 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 579#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
580/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
302 581
303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 582#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 583#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
306 584
585/* find a portable timestamp that is "always" in the future but fits into time_t.
586 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
587 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
588#define EV_TSTAMP_HUGE \
589 (sizeof (time_t) >= 8 ? 10000000000000. \
590 : 0 < (time_t)4294967295 ? 4294967295. \
591 : 2147483647.) \
592
593#ifndef EV_TS_CONST
594# define EV_TS_CONST(nv) nv
595# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
596# define EV_TS_FROM_USEC(us) us * 1e-6
597# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
598# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
599# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
600# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
601#endif
602
603/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
604/* ECB.H BEGIN */
605/*
606 * libecb - http://software.schmorp.de/pkg/libecb
607 *
608 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
609 * Copyright (©) 2011 Emanuele Giaquinta
610 * All rights reserved.
611 *
612 * Redistribution and use in source and binary forms, with or without modifica-
613 * tion, are permitted provided that the following conditions are met:
614 *
615 * 1. Redistributions of source code must retain the above copyright notice,
616 * this list of conditions and the following disclaimer.
617 *
618 * 2. Redistributions in binary form must reproduce the above copyright
619 * notice, this list of conditions and the following disclaimer in the
620 * documentation and/or other materials provided with the distribution.
621 *
622 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
623 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
624 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
625 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
626 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
627 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
628 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
629 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
630 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
631 * OF THE POSSIBILITY OF SUCH DAMAGE.
632 *
633 * Alternatively, the contents of this file may be used under the terms of
634 * the GNU General Public License ("GPL") version 2 or any later version,
635 * in which case the provisions of the GPL are applicable instead of
636 * the above. If you wish to allow the use of your version of this file
637 * only under the terms of the GPL and not to allow others to use your
638 * version of this file under the BSD license, indicate your decision
639 * by deleting the provisions above and replace them with the notice
640 * and other provisions required by the GPL. If you do not delete the
641 * provisions above, a recipient may use your version of this file under
642 * either the BSD or the GPL.
643 */
644
645#ifndef ECB_H
646#define ECB_H
647
648/* 16 bits major, 16 bits minor */
649#define ECB_VERSION 0x00010006
650
651#ifdef _WIN32
652 typedef signed char int8_t;
653 typedef unsigned char uint8_t;
654 typedef signed short int16_t;
655 typedef unsigned short uint16_t;
656 typedef signed int int32_t;
657 typedef unsigned int uint32_t;
307#if __GNUC__ >= 4 658 #if __GNUC__
308# define expect(expr,value) __builtin_expect ((expr),(value)) 659 typedef signed long long int64_t;
309# define noinline __attribute__ ((noinline)) 660 typedef unsigned long long uint64_t;
661 #else /* _MSC_VER || __BORLANDC__ */
662 typedef signed __int64 int64_t;
663 typedef unsigned __int64 uint64_t;
664 #endif
665 #ifdef _WIN64
666 #define ECB_PTRSIZE 8
667 typedef uint64_t uintptr_t;
668 typedef int64_t intptr_t;
669 #else
670 #define ECB_PTRSIZE 4
671 typedef uint32_t uintptr_t;
672 typedef int32_t intptr_t;
673 #endif
310#else 674#else
311# define expect(expr,value) (expr) 675 #include <inttypes.h>
312# define noinline 676 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 677 #define ECB_PTRSIZE 8
314# define inline 678 #else
679 #define ECB_PTRSIZE 4
680 #endif
315# endif 681#endif
682
683#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
684#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
685
686/* work around x32 idiocy by defining proper macros */
687#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
688 #if _ILP32
689 #define ECB_AMD64_X32 1
690 #else
691 #define ECB_AMD64 1
316#endif 692 #endif
693#endif
317 694
318#define expect_false(expr) expect ((expr) != 0, 0) 695/* many compilers define _GNUC_ to some versions but then only implement
319#define expect_true(expr) expect ((expr) != 0, 1) 696 * what their idiot authors think are the "more important" extensions,
320#define inline_size static inline 697 * causing enormous grief in return for some better fake benchmark numbers.
321 698 * or so.
322#if EV_MINIMAL 699 * we try to detect these and simply assume they are not gcc - if they have
323# define inline_speed static noinline 700 * an issue with that they should have done it right in the first place.
701 */
702#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
703 #define ECB_GCC_VERSION(major,minor) 0
324#else 704#else
705 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
706#endif
707
708#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
709
710#if __clang__ && defined __has_builtin
711 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
712#else
713 #define ECB_CLANG_BUILTIN(x) 0
714#endif
715
716#if __clang__ && defined __has_extension
717 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
718#else
719 #define ECB_CLANG_EXTENSION(x) 0
720#endif
721
722#define ECB_CPP (__cplusplus+0)
723#define ECB_CPP11 (__cplusplus >= 201103L)
724#define ECB_CPP14 (__cplusplus >= 201402L)
725#define ECB_CPP17 (__cplusplus >= 201703L)
726
727#if ECB_CPP
728 #define ECB_C 0
729 #define ECB_STDC_VERSION 0
730#else
731 #define ECB_C 1
732 #define ECB_STDC_VERSION __STDC_VERSION__
733#endif
734
735#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
736#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
737#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
738
739#if ECB_CPP
740 #define ECB_EXTERN_C extern "C"
741 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
742 #define ECB_EXTERN_C_END }
743#else
744 #define ECB_EXTERN_C extern
745 #define ECB_EXTERN_C_BEG
746 #define ECB_EXTERN_C_END
747#endif
748
749/*****************************************************************************/
750
751/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
752/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
753
754#if ECB_NO_THREADS
755 #define ECB_NO_SMP 1
756#endif
757
758#if ECB_NO_SMP
759 #define ECB_MEMORY_FENCE do { } while (0)
760#endif
761
762/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
763#if __xlC__ && ECB_CPP
764 #include <builtins.h>
765#endif
766
767#if 1400 <= _MSC_VER
768 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
769#endif
770
771#ifndef ECB_MEMORY_FENCE
772 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
773 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
774 #if __i386 || __i386__
775 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
776 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
777 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
778 #elif ECB_GCC_AMD64
779 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
780 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
781 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
782 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
783 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
784 #elif defined __ARM_ARCH_2__ \
785 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
786 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
787 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
788 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
789 || defined __ARM_ARCH_5TEJ__
790 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
791 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
792 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
793 || defined __ARM_ARCH_6T2__
794 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
795 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
796 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
797 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
798 #elif __aarch64__
799 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
800 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
801 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
802 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
803 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
804 #elif defined __s390__ || defined __s390x__
805 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
806 #elif defined __mips__
807 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
808 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
809 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
810 #elif defined __alpha__
811 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
812 #elif defined __hppa__
813 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
814 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
815 #elif defined __ia64__
816 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
817 #elif defined __m68k__
818 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
819 #elif defined __m88k__
820 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
821 #elif defined __sh__
822 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
823 #endif
824 #endif
825#endif
826
827#ifndef ECB_MEMORY_FENCE
828 #if ECB_GCC_VERSION(4,7)
829 /* see comment below (stdatomic.h) about the C11 memory model. */
830 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
831 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
832 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
833 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
834
835 #elif ECB_CLANG_EXTENSION(c_atomic)
836 /* see comment below (stdatomic.h) about the C11 memory model. */
837 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
838 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
839 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
840 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
841
842 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
843 #define ECB_MEMORY_FENCE __sync_synchronize ()
844 #elif _MSC_VER >= 1500 /* VC++ 2008 */
845 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
846 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
847 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
848 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
849 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
850 #elif _MSC_VER >= 1400 /* VC++ 2005 */
851 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
852 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
853 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
854 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
855 #elif defined _WIN32
856 #include <WinNT.h>
857 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
858 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
859 #include <mbarrier.h>
860 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
861 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
862 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
863 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
864 #elif __xlC__
865 #define ECB_MEMORY_FENCE __sync ()
866 #endif
867#endif
868
869#ifndef ECB_MEMORY_FENCE
870 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
871 /* we assume that these memory fences work on all variables/all memory accesses, */
872 /* not just C11 atomics and atomic accesses */
873 #include <stdatomic.h>
874 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
875 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
876 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
877 #endif
878#endif
879
880#ifndef ECB_MEMORY_FENCE
881 #if !ECB_AVOID_PTHREADS
882 /*
883 * if you get undefined symbol references to pthread_mutex_lock,
884 * or failure to find pthread.h, then you should implement
885 * the ECB_MEMORY_FENCE operations for your cpu/compiler
886 * OR provide pthread.h and link against the posix thread library
887 * of your system.
888 */
889 #include <pthread.h>
890 #define ECB_NEEDS_PTHREADS 1
891 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
892
893 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
894 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
895 #endif
896#endif
897
898#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
899 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
900#endif
901
902#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
903 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
904#endif
905
906#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
907 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
908#endif
909
910/*****************************************************************************/
911
912#if ECB_CPP
913 #define ecb_inline static inline
914#elif ECB_GCC_VERSION(2,5)
915 #define ecb_inline static __inline__
916#elif ECB_C99
917 #define ecb_inline static inline
918#else
919 #define ecb_inline static
920#endif
921
922#if ECB_GCC_VERSION(3,3)
923 #define ecb_restrict __restrict__
924#elif ECB_C99
925 #define ecb_restrict restrict
926#else
927 #define ecb_restrict
928#endif
929
930typedef int ecb_bool;
931
932#define ECB_CONCAT_(a, b) a ## b
933#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
934#define ECB_STRINGIFY_(a) # a
935#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
936#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
937
938#define ecb_function_ ecb_inline
939
940#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
941 #define ecb_attribute(attrlist) __attribute__ (attrlist)
942#else
943 #define ecb_attribute(attrlist)
944#endif
945
946#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
947 #define ecb_is_constant(expr) __builtin_constant_p (expr)
948#else
949 /* possible C11 impl for integral types
950 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
951 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
952
953 #define ecb_is_constant(expr) 0
954#endif
955
956#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
957 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
958#else
959 #define ecb_expect(expr,value) (expr)
960#endif
961
962#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
963 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
964#else
965 #define ecb_prefetch(addr,rw,locality)
966#endif
967
968/* no emulation for ecb_decltype */
969#if ECB_CPP11
970 // older implementations might have problems with decltype(x)::type, work around it
971 template<class T> struct ecb_decltype_t { typedef T type; };
972 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
973#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
974 #define ecb_decltype(x) __typeof__ (x)
975#endif
976
977#if _MSC_VER >= 1300
978 #define ecb_deprecated __declspec (deprecated)
979#else
980 #define ecb_deprecated ecb_attribute ((__deprecated__))
981#endif
982
983#if _MSC_VER >= 1500
984 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
985#elif ECB_GCC_VERSION(4,5)
986 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
987#else
988 #define ecb_deprecated_message(msg) ecb_deprecated
989#endif
990
991#if _MSC_VER >= 1400
992 #define ecb_noinline __declspec (noinline)
993#else
994 #define ecb_noinline ecb_attribute ((__noinline__))
995#endif
996
997#define ecb_unused ecb_attribute ((__unused__))
998#define ecb_const ecb_attribute ((__const__))
999#define ecb_pure ecb_attribute ((__pure__))
1000
1001#if ECB_C11 || __IBMC_NORETURN
1002 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1003 #define ecb_noreturn _Noreturn
1004#elif ECB_CPP11
1005 #define ecb_noreturn [[noreturn]]
1006#elif _MSC_VER >= 1200
1007 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1008 #define ecb_noreturn __declspec (noreturn)
1009#else
1010 #define ecb_noreturn ecb_attribute ((__noreturn__))
1011#endif
1012
1013#if ECB_GCC_VERSION(4,3)
1014 #define ecb_artificial ecb_attribute ((__artificial__))
1015 #define ecb_hot ecb_attribute ((__hot__))
1016 #define ecb_cold ecb_attribute ((__cold__))
1017#else
1018 #define ecb_artificial
1019 #define ecb_hot
1020 #define ecb_cold
1021#endif
1022
1023/* put around conditional expressions if you are very sure that the */
1024/* expression is mostly true or mostly false. note that these return */
1025/* booleans, not the expression. */
1026#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1027#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1028/* for compatibility to the rest of the world */
1029#define ecb_likely(expr) ecb_expect_true (expr)
1030#define ecb_unlikely(expr) ecb_expect_false (expr)
1031
1032/* count trailing zero bits and count # of one bits */
1033#if ECB_GCC_VERSION(3,4) \
1034 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1035 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1036 && ECB_CLANG_BUILTIN(__builtin_popcount))
1037 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1038 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1039 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1040 #define ecb_ctz32(x) __builtin_ctz (x)
1041 #define ecb_ctz64(x) __builtin_ctzll (x)
1042 #define ecb_popcount32(x) __builtin_popcount (x)
1043 /* no popcountll */
1044#else
1045 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1046 ecb_function_ ecb_const int
1047 ecb_ctz32 (uint32_t x)
1048 {
1049#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1050 unsigned long r;
1051 _BitScanForward (&r, x);
1052 return (int)r;
1053#else
1054 int r = 0;
1055
1056 x &= ~x + 1; /* this isolates the lowest bit */
1057
1058#if ECB_branchless_on_i386
1059 r += !!(x & 0xaaaaaaaa) << 0;
1060 r += !!(x & 0xcccccccc) << 1;
1061 r += !!(x & 0xf0f0f0f0) << 2;
1062 r += !!(x & 0xff00ff00) << 3;
1063 r += !!(x & 0xffff0000) << 4;
1064#else
1065 if (x & 0xaaaaaaaa) r += 1;
1066 if (x & 0xcccccccc) r += 2;
1067 if (x & 0xf0f0f0f0) r += 4;
1068 if (x & 0xff00ff00) r += 8;
1069 if (x & 0xffff0000) r += 16;
1070#endif
1071
1072 return r;
1073#endif
1074 }
1075
1076 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1077 ecb_function_ ecb_const int
1078 ecb_ctz64 (uint64_t x)
1079 {
1080#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1081 unsigned long r;
1082 _BitScanForward64 (&r, x);
1083 return (int)r;
1084#else
1085 int shift = x & 0xffffffff ? 0 : 32;
1086 return ecb_ctz32 (x >> shift) + shift;
1087#endif
1088 }
1089
1090 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1091 ecb_function_ ecb_const int
1092 ecb_popcount32 (uint32_t x)
1093 {
1094 x -= (x >> 1) & 0x55555555;
1095 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1096 x = ((x >> 4) + x) & 0x0f0f0f0f;
1097 x *= 0x01010101;
1098
1099 return x >> 24;
1100 }
1101
1102 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1103 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1104 {
1105#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1106 unsigned long r;
1107 _BitScanReverse (&r, x);
1108 return (int)r;
1109#else
1110 int r = 0;
1111
1112 if (x >> 16) { x >>= 16; r += 16; }
1113 if (x >> 8) { x >>= 8; r += 8; }
1114 if (x >> 4) { x >>= 4; r += 4; }
1115 if (x >> 2) { x >>= 2; r += 2; }
1116 if (x >> 1) { r += 1; }
1117
1118 return r;
1119#endif
1120 }
1121
1122 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1123 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1124 {
1125#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1126 unsigned long r;
1127 _BitScanReverse64 (&r, x);
1128 return (int)r;
1129#else
1130 int r = 0;
1131
1132 if (x >> 32) { x >>= 32; r += 32; }
1133
1134 return r + ecb_ld32 (x);
1135#endif
1136 }
1137#endif
1138
1139ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1140ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1141ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1142ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1143
1144ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1145ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1146{
1147 return ( (x * 0x0802U & 0x22110U)
1148 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1149}
1150
1151ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1152ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1153{
1154 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1155 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1156 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1157 x = ( x >> 8 ) | ( x << 8);
1158
1159 return x;
1160}
1161
1162ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1163ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1164{
1165 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1166 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1167 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1168 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1169 x = ( x >> 16 ) | ( x << 16);
1170
1171 return x;
1172}
1173
1174/* popcount64 is only available on 64 bit cpus as gcc builtin */
1175/* so for this version we are lazy */
1176ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1177ecb_function_ ecb_const int
1178ecb_popcount64 (uint64_t x)
1179{
1180 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1181}
1182
1183ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1184ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1185ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1186ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1187ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1188ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1189ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1190ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1191
1192ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1193ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1194ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1195ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1196ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1197ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1198ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1199ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1200
1201#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1202 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1203 #define ecb_bswap16(x) __builtin_bswap16 (x)
1204 #else
1205 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1206 #endif
1207 #define ecb_bswap32(x) __builtin_bswap32 (x)
1208 #define ecb_bswap64(x) __builtin_bswap64 (x)
1209#elif _MSC_VER
1210 #include <stdlib.h>
1211 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1212 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1213 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1214#else
1215 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1216 ecb_function_ ecb_const uint16_t
1217 ecb_bswap16 (uint16_t x)
1218 {
1219 return ecb_rotl16 (x, 8);
1220 }
1221
1222 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1223 ecb_function_ ecb_const uint32_t
1224 ecb_bswap32 (uint32_t x)
1225 {
1226 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1227 }
1228
1229 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1230 ecb_function_ ecb_const uint64_t
1231 ecb_bswap64 (uint64_t x)
1232 {
1233 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1234 }
1235#endif
1236
1237#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1238 #define ecb_unreachable() __builtin_unreachable ()
1239#else
1240 /* this seems to work fine, but gcc always emits a warning for it :/ */
1241 ecb_inline ecb_noreturn void ecb_unreachable (void);
1242 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1243#endif
1244
1245/* try to tell the compiler that some condition is definitely true */
1246#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1247
1248ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1249ecb_inline ecb_const uint32_t
1250ecb_byteorder_helper (void)
1251{
1252 /* the union code still generates code under pressure in gcc, */
1253 /* but less than using pointers, and always seems to */
1254 /* successfully return a constant. */
1255 /* the reason why we have this horrible preprocessor mess */
1256 /* is to avoid it in all cases, at least on common architectures */
1257 /* or when using a recent enough gcc version (>= 4.6) */
1258#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1259 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1260 #define ECB_LITTLE_ENDIAN 1
1261 return 0x44332211;
1262#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1263 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1264 #define ECB_BIG_ENDIAN 1
1265 return 0x11223344;
1266#else
1267 union
1268 {
1269 uint8_t c[4];
1270 uint32_t u;
1271 } u = { 0x11, 0x22, 0x33, 0x44 };
1272 return u.u;
1273#endif
1274}
1275
1276ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1277ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1278ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1279ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1280
1281#if ECB_GCC_VERSION(3,0) || ECB_C99
1282 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1283#else
1284 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1285#endif
1286
1287#if ECB_CPP
1288 template<typename T>
1289 static inline T ecb_div_rd (T val, T div)
1290 {
1291 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1292 }
1293 template<typename T>
1294 static inline T ecb_div_ru (T val, T div)
1295 {
1296 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1297 }
1298#else
1299 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1300 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1301#endif
1302
1303#if ecb_cplusplus_does_not_suck
1304 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1305 template<typename T, int N>
1306 static inline int ecb_array_length (const T (&arr)[N])
1307 {
1308 return N;
1309 }
1310#else
1311 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1312#endif
1313
1314ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1315ecb_function_ ecb_const uint32_t
1316ecb_binary16_to_binary32 (uint32_t x)
1317{
1318 unsigned int s = (x & 0x8000) << (31 - 15);
1319 int e = (x >> 10) & 0x001f;
1320 unsigned int m = x & 0x03ff;
1321
1322 if (ecb_expect_false (e == 31))
1323 /* infinity or NaN */
1324 e = 255 - (127 - 15);
1325 else if (ecb_expect_false (!e))
1326 {
1327 if (ecb_expect_true (!m))
1328 /* zero, handled by code below by forcing e to 0 */
1329 e = 0 - (127 - 15);
1330 else
1331 {
1332 /* subnormal, renormalise */
1333 unsigned int s = 10 - ecb_ld32 (m);
1334
1335 m = (m << s) & 0x3ff; /* mask implicit bit */
1336 e -= s - 1;
1337 }
1338 }
1339
1340 /* e and m now are normalised, or zero, (or inf or nan) */
1341 e += 127 - 15;
1342
1343 return s | (e << 23) | (m << (23 - 10));
1344}
1345
1346ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1347ecb_function_ ecb_const uint16_t
1348ecb_binary32_to_binary16 (uint32_t x)
1349{
1350 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1351 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1352 unsigned int m = x & 0x007fffff;
1353
1354 x &= 0x7fffffff;
1355
1356 /* if it's within range of binary16 normals, use fast path */
1357 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1358 {
1359 /* mantissa round-to-even */
1360 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1361
1362 /* handle overflow */
1363 if (ecb_expect_false (m >= 0x00800000))
1364 {
1365 m >>= 1;
1366 e += 1;
1367 }
1368
1369 return s | (e << 10) | (m >> (23 - 10));
1370 }
1371
1372 /* handle large numbers and infinity */
1373 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1374 return s | 0x7c00;
1375
1376 /* handle zero, subnormals and small numbers */
1377 if (ecb_expect_true (x < 0x38800000))
1378 {
1379 /* zero */
1380 if (ecb_expect_true (!x))
1381 return s;
1382
1383 /* handle subnormals */
1384
1385 /* too small, will be zero */
1386 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1387 return s;
1388
1389 m |= 0x00800000; /* make implicit bit explicit */
1390
1391 /* very tricky - we need to round to the nearest e (+10) bit value */
1392 {
1393 unsigned int bits = 14 - e;
1394 unsigned int half = (1 << (bits - 1)) - 1;
1395 unsigned int even = (m >> bits) & 1;
1396
1397 /* if this overflows, we will end up with a normalised number */
1398 m = (m + half + even) >> bits;
1399 }
1400
1401 return s | m;
1402 }
1403
1404 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1405 m >>= 13;
1406
1407 return s | 0x7c00 | m | !m;
1408}
1409
1410/*******************************************************************************/
1411/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1412
1413/* basically, everything uses "ieee pure-endian" floating point numbers */
1414/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1415#if 0 \
1416 || __i386 || __i386__ \
1417 || ECB_GCC_AMD64 \
1418 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1419 || defined __s390__ || defined __s390x__ \
1420 || defined __mips__ \
1421 || defined __alpha__ \
1422 || defined __hppa__ \
1423 || defined __ia64__ \
1424 || defined __m68k__ \
1425 || defined __m88k__ \
1426 || defined __sh__ \
1427 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1428 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1429 || defined __aarch64__
1430 #define ECB_STDFP 1
1431 #include <string.h> /* for memcpy */
1432#else
1433 #define ECB_STDFP 0
1434#endif
1435
1436#ifndef ECB_NO_LIBM
1437
1438 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1439
1440 /* only the oldest of old doesn't have this one. solaris. */
1441 #ifdef INFINITY
1442 #define ECB_INFINITY INFINITY
1443 #else
1444 #define ECB_INFINITY HUGE_VAL
1445 #endif
1446
1447 #ifdef NAN
1448 #define ECB_NAN NAN
1449 #else
1450 #define ECB_NAN ECB_INFINITY
1451 #endif
1452
1453 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1454 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1455 #define ecb_frexpf(x,e) frexpf ((x), (e))
1456 #else
1457 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1458 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1459 #endif
1460
1461 /* convert a float to ieee single/binary32 */
1462 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1463 ecb_function_ ecb_const uint32_t
1464 ecb_float_to_binary32 (float x)
1465 {
1466 uint32_t r;
1467
1468 #if ECB_STDFP
1469 memcpy (&r, &x, 4);
1470 #else
1471 /* slow emulation, works for anything but -0 */
1472 uint32_t m;
1473 int e;
1474
1475 if (x == 0e0f ) return 0x00000000U;
1476 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1477 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1478 if (x != x ) return 0x7fbfffffU;
1479
1480 m = ecb_frexpf (x, &e) * 0x1000000U;
1481
1482 r = m & 0x80000000U;
1483
1484 if (r)
1485 m = -m;
1486
1487 if (e <= -126)
1488 {
1489 m &= 0xffffffU;
1490 m >>= (-125 - e);
1491 e = -126;
1492 }
1493
1494 r |= (e + 126) << 23;
1495 r |= m & 0x7fffffU;
1496 #endif
1497
1498 return r;
1499 }
1500
1501 /* converts an ieee single/binary32 to a float */
1502 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1503 ecb_function_ ecb_const float
1504 ecb_binary32_to_float (uint32_t x)
1505 {
1506 float r;
1507
1508 #if ECB_STDFP
1509 memcpy (&r, &x, 4);
1510 #else
1511 /* emulation, only works for normals and subnormals and +0 */
1512 int neg = x >> 31;
1513 int e = (x >> 23) & 0xffU;
1514
1515 x &= 0x7fffffU;
1516
1517 if (e)
1518 x |= 0x800000U;
1519 else
1520 e = 1;
1521
1522 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1523 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1524
1525 r = neg ? -r : r;
1526 #endif
1527
1528 return r;
1529 }
1530
1531 /* convert a double to ieee double/binary64 */
1532 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1533 ecb_function_ ecb_const uint64_t
1534 ecb_double_to_binary64 (double x)
1535 {
1536 uint64_t r;
1537
1538 #if ECB_STDFP
1539 memcpy (&r, &x, 8);
1540 #else
1541 /* slow emulation, works for anything but -0 */
1542 uint64_t m;
1543 int e;
1544
1545 if (x == 0e0 ) return 0x0000000000000000U;
1546 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1547 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1548 if (x != x ) return 0X7ff7ffffffffffffU;
1549
1550 m = frexp (x, &e) * 0x20000000000000U;
1551
1552 r = m & 0x8000000000000000;;
1553
1554 if (r)
1555 m = -m;
1556
1557 if (e <= -1022)
1558 {
1559 m &= 0x1fffffffffffffU;
1560 m >>= (-1021 - e);
1561 e = -1022;
1562 }
1563
1564 r |= ((uint64_t)(e + 1022)) << 52;
1565 r |= m & 0xfffffffffffffU;
1566 #endif
1567
1568 return r;
1569 }
1570
1571 /* converts an ieee double/binary64 to a double */
1572 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1573 ecb_function_ ecb_const double
1574 ecb_binary64_to_double (uint64_t x)
1575 {
1576 double r;
1577
1578 #if ECB_STDFP
1579 memcpy (&r, &x, 8);
1580 #else
1581 /* emulation, only works for normals and subnormals and +0 */
1582 int neg = x >> 63;
1583 int e = (x >> 52) & 0x7ffU;
1584
1585 x &= 0xfffffffffffffU;
1586
1587 if (e)
1588 x |= 0x10000000000000U;
1589 else
1590 e = 1;
1591
1592 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1593 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1594
1595 r = neg ? -r : r;
1596 #endif
1597
1598 return r;
1599 }
1600
1601 /* convert a float to ieee half/binary16 */
1602 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1603 ecb_function_ ecb_const uint16_t
1604 ecb_float_to_binary16 (float x)
1605 {
1606 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1607 }
1608
1609 /* convert an ieee half/binary16 to float */
1610 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1611 ecb_function_ ecb_const float
1612 ecb_binary16_to_float (uint16_t x)
1613 {
1614 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1615 }
1616
1617#endif
1618
1619#endif
1620
1621/* ECB.H END */
1622
1623#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1624/* if your architecture doesn't need memory fences, e.g. because it is
1625 * single-cpu/core, or if you use libev in a project that doesn't use libev
1626 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1627 * libev, in which cases the memory fences become nops.
1628 * alternatively, you can remove this #error and link against libpthread,
1629 * which will then provide the memory fences.
1630 */
1631# error "memory fences not defined for your architecture, please report"
1632#endif
1633
1634#ifndef ECB_MEMORY_FENCE
1635# define ECB_MEMORY_FENCE do { } while (0)
1636# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1637# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1638#endif
1639
1640#define inline_size ecb_inline
1641
1642#if EV_FEATURE_CODE
325# define inline_speed static inline 1643# define inline_speed ecb_inline
1644#else
1645# define inline_speed ecb_noinline static
326#endif 1646#endif
327 1647
1648/*****************************************************************************/
1649/* raw syscall wrappers */
1650
1651#if EV_NEED_SYSCALL
1652
1653#include <sys/syscall.h>
1654
1655/*
1656 * define some syscall wrappers for common architectures
1657 * this is mostly for nice looks during debugging, not performance.
1658 * our syscalls return < 0, not == -1, on error. which is good
1659 * enough for linux aio.
1660 * TODO: arm is also common nowadays, maybe even mips and x86
1661 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1662 */
1663#if __GNUC__ && __linux && ECB_AMD64 && !EV_FEATURE_CODE
1664 /* the costly errno access probably kills this for size optimisation */
1665
1666 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1667 ({ \
1668 long res; \
1669 register unsigned long r6 __asm__ ("r9" ); \
1670 register unsigned long r5 __asm__ ("r8" ); \
1671 register unsigned long r4 __asm__ ("r10"); \
1672 register unsigned long r3 __asm__ ("rdx"); \
1673 register unsigned long r2 __asm__ ("rsi"); \
1674 register unsigned long r1 __asm__ ("rdi"); \
1675 if (narg >= 6) r6 = (unsigned long)(arg6); \
1676 if (narg >= 5) r5 = (unsigned long)(arg5); \
1677 if (narg >= 4) r4 = (unsigned long)(arg4); \
1678 if (narg >= 3) r3 = (unsigned long)(arg3); \
1679 if (narg >= 2) r2 = (unsigned long)(arg2); \
1680 if (narg >= 1) r1 = (unsigned long)(arg1); \
1681 __asm__ __volatile__ ( \
1682 "syscall\n\t" \
1683 : "=a" (res) \
1684 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1685 : "cc", "r11", "cx", "memory"); \
1686 errno = -res; \
1687 res; \
1688 })
1689
1690#endif
1691
1692#ifdef ev_syscall
1693 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1694 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1695 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1696 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1697 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1698 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1699 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1700#else
1701 #define ev_syscall0(nr) syscall (nr)
1702 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1703 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1704 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1705 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1706 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1707 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1708#endif
1709
1710#endif
1711
1712/*****************************************************************************/
1713
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1714#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1715
1716#if EV_MINPRI == EV_MAXPRI
1717# define ABSPRI(w) (((W)w), 0)
1718#else
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1719# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1720#endif
330 1721
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1722#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */
333 1723
334typedef ev_watcher *W; 1724typedef ev_watcher *W;
335typedef ev_watcher_list *WL; 1725typedef ev_watcher_list *WL;
336typedef ev_watcher_time *WT; 1726typedef ev_watcher_time *WT;
337 1727
338#define ev_active(w) ((W)(w))->active 1728#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 1729#define ev_at(w) ((WT)(w))->at
340 1730
1731#if EV_USE_REALTIME
1732/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1733/* giving it a reasonably high chance of working on typical architectures */
1734static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1735#endif
1736
341#if EV_USE_MONOTONIC 1737#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1738static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1739#endif
1740
1741#ifndef EV_FD_TO_WIN32_HANDLE
1742# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1743#endif
1744#ifndef EV_WIN32_HANDLE_TO_FD
1745# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1746#endif
1747#ifndef EV_WIN32_CLOSE_FD
1748# define EV_WIN32_CLOSE_FD(fd) close (fd)
345#endif 1749#endif
346 1750
347#ifdef _WIN32 1751#ifdef _WIN32
348# include "ev_win32.c" 1752# include "ev_win32.c"
349#endif 1753#endif
350 1754
351/*****************************************************************************/ 1755/*****************************************************************************/
352 1756
1757#if EV_USE_LINUXAIO
1758# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1759#endif
1760
1761/* define a suitable floor function (only used by periodics atm) */
1762
1763#if EV_USE_FLOOR
1764# include <math.h>
1765# define ev_floor(v) floor (v)
1766#else
1767
1768#include <float.h>
1769
1770/* a floor() replacement function, should be independent of ev_tstamp type */
1771ecb_noinline
1772static ev_tstamp
1773ev_floor (ev_tstamp v)
1774{
1775 /* the choice of shift factor is not terribly important */
1776#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1777 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1778#else
1779 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1780#endif
1781
1782 /* special treatment for negative arguments */
1783 if (ecb_expect_false (v < 0.))
1784 {
1785 ev_tstamp f = -ev_floor (-v);
1786
1787 return f - (f == v ? 0 : 1);
1788 }
1789
1790 /* argument too large for an unsigned long? then reduce it */
1791 if (ecb_expect_false (v >= shift))
1792 {
1793 ev_tstamp f;
1794
1795 if (v == v - 1.)
1796 return v; /* very large numbers are assumed to be integer */
1797
1798 f = shift * ev_floor (v * (1. / shift));
1799 return f + ev_floor (v - f);
1800 }
1801
1802 /* fits into an unsigned long */
1803 return (unsigned long)v;
1804}
1805
1806#endif
1807
1808/*****************************************************************************/
1809
1810#ifdef __linux
1811# include <sys/utsname.h>
1812#endif
1813
1814ecb_noinline ecb_cold
1815static unsigned int
1816ev_linux_version (void)
1817{
1818#ifdef __linux
1819 unsigned int v = 0;
1820 struct utsname buf;
1821 int i;
1822 char *p = buf.release;
1823
1824 if (uname (&buf))
1825 return 0;
1826
1827 for (i = 3+1; --i; )
1828 {
1829 unsigned int c = 0;
1830
1831 for (;;)
1832 {
1833 if (*p >= '0' && *p <= '9')
1834 c = c * 10 + *p++ - '0';
1835 else
1836 {
1837 p += *p == '.';
1838 break;
1839 }
1840 }
1841
1842 v = (v << 8) | c;
1843 }
1844
1845 return v;
1846#else
1847 return 0;
1848#endif
1849}
1850
1851/*****************************************************************************/
1852
1853#if EV_AVOID_STDIO
1854ecb_noinline ecb_cold
1855static void
1856ev_printerr (const char *msg)
1857{
1858 write (STDERR_FILENO, msg, strlen (msg));
1859}
1860#endif
1861
353static void (*syserr_cb)(const char *msg); 1862static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
354 1863
1864ecb_cold
355void 1865void
356ev_set_syserr_cb (void (*cb)(const char *msg)) 1866ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
357{ 1867{
358 syserr_cb = cb; 1868 syserr_cb = cb;
359} 1869}
360 1870
361static void noinline 1871ecb_noinline ecb_cold
1872static void
362syserr (const char *msg) 1873ev_syserr (const char *msg)
363{ 1874{
364 if (!msg) 1875 if (!msg)
365 msg = "(libev) system error"; 1876 msg = "(libev) system error";
366 1877
367 if (syserr_cb) 1878 if (syserr_cb)
368 syserr_cb (msg); 1879 syserr_cb (msg);
369 else 1880 else
370 { 1881 {
1882#if EV_AVOID_STDIO
1883 ev_printerr (msg);
1884 ev_printerr (": ");
1885 ev_printerr (strerror (errno));
1886 ev_printerr ("\n");
1887#else
371 perror (msg); 1888 perror (msg);
1889#endif
372 abort (); 1890 abort ();
373 } 1891 }
374} 1892}
375 1893
376static void * 1894static void *
377ev_realloc_emul (void *ptr, long size) 1895ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
378{ 1896{
379 /* some systems, notably openbsd and darwin, fail to properly 1897 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and 1898 * implement realloc (x, 0) (as required by both ansi c-89 and
381 * the single unix specification, so work around them here. 1899 * the single unix specification, so work around them here.
1900 * recently, also (at least) fedora and debian started breaking it,
1901 * despite documenting it otherwise.
382 */ 1902 */
383 1903
384 if (size) 1904 if (size)
385 return realloc (ptr, size); 1905 return realloc (ptr, size);
386 1906
387 free (ptr); 1907 free (ptr);
388 return 0; 1908 return 0;
389} 1909}
390 1910
391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1911static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
392 1912
1913ecb_cold
393void 1914void
394ev_set_allocator (void *(*cb)(void *ptr, long size)) 1915ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
395{ 1916{
396 alloc = cb; 1917 alloc = cb;
397} 1918}
398 1919
399inline_speed void * 1920inline_speed void *
401{ 1922{
402 ptr = alloc (ptr, size); 1923 ptr = alloc (ptr, size);
403 1924
404 if (!ptr && size) 1925 if (!ptr && size)
405 { 1926 {
1927#if EV_AVOID_STDIO
1928 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1929#else
406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1930 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1931#endif
407 abort (); 1932 abort ();
408 } 1933 }
409 1934
410 return ptr; 1935 return ptr;
411} 1936}
413#define ev_malloc(size) ev_realloc (0, (size)) 1938#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 1939#define ev_free(ptr) ev_realloc ((ptr), 0)
415 1940
416/*****************************************************************************/ 1941/*****************************************************************************/
417 1942
1943/* set in reify when reification needed */
1944#define EV_ANFD_REIFY 1
1945
1946/* file descriptor info structure */
418typedef struct 1947typedef struct
419{ 1948{
420 WL head; 1949 WL head;
421 unsigned char events; 1950 unsigned char events; /* the events watched for */
422 unsigned char reify; 1951 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1952 unsigned char emask; /* some backends store the actual kernel mask in here */
1953 unsigned char eflags; /* flags field for use by backends */
1954#if EV_USE_EPOLL
1955 unsigned int egen; /* generation counter to counter epoll bugs */
1956#endif
423#if EV_SELECT_IS_WINSOCKET 1957#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
424 SOCKET handle; 1958 SOCKET handle;
425#endif 1959#endif
1960#if EV_USE_IOCP
1961 OVERLAPPED or, ow;
1962#endif
426} ANFD; 1963} ANFD;
427 1964
1965/* stores the pending event set for a given watcher */
428typedef struct 1966typedef struct
429{ 1967{
430 W w; 1968 W w;
431 int events; 1969 int events; /* the pending event set for the given watcher */
432} ANPENDING; 1970} ANPENDING;
433 1971
434#if EV_USE_INOTIFY 1972#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 1973/* hash table entry per inotify-id */
436typedef struct 1974typedef struct
439} ANFS; 1977} ANFS;
440#endif 1978#endif
441 1979
442/* Heap Entry */ 1980/* Heap Entry */
443#if EV_HEAP_CACHE_AT 1981#if EV_HEAP_CACHE_AT
1982 /* a heap element */
444 typedef struct { 1983 typedef struct {
445 ev_tstamp at; 1984 ev_tstamp at;
446 WT w; 1985 WT w;
447 } ANHE; 1986 } ANHE;
448 1987
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1988 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1989 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 1990 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 1991#else
1992 /* a heap element */
453 typedef WT ANHE; 1993 typedef WT ANHE;
454 1994
455 #define ANHE_w(he) (he) 1995 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 1996 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 1997 #define ANHE_at_cache(he)
458#endif 1998#endif
459 1999
460#if EV_MULTIPLICITY 2000#if EV_MULTIPLICITY
461 2001
462 struct ev_loop 2002 struct ev_loop
468 #undef VAR 2008 #undef VAR
469 }; 2009 };
470 #include "ev_wrap.h" 2010 #include "ev_wrap.h"
471 2011
472 static struct ev_loop default_loop_struct; 2012 static struct ev_loop default_loop_struct;
473 struct ev_loop *ev_default_loop_ptr; 2013 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
474 2014
475#else 2015#else
476 2016
477 ev_tstamp ev_rt_now; 2017 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
478 #define VAR(name,decl) static decl; 2018 #define VAR(name,decl) static decl;
479 #include "ev_vars.h" 2019 #include "ev_vars.h"
480 #undef VAR 2020 #undef VAR
481 2021
482 static int ev_default_loop_ptr; 2022 static int ev_default_loop_ptr;
483 2023
484#endif 2024#endif
485 2025
2026#if EV_FEATURE_API
2027# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2028# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2029# define EV_INVOKE_PENDING invoke_cb (EV_A)
2030#else
2031# define EV_RELEASE_CB (void)0
2032# define EV_ACQUIRE_CB (void)0
2033# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2034#endif
2035
2036#define EVBREAK_RECURSE 0x80
2037
486/*****************************************************************************/ 2038/*****************************************************************************/
487 2039
2040#ifndef EV_HAVE_EV_TIME
488ev_tstamp 2041ev_tstamp
489ev_time (void) 2042ev_time (void) EV_NOEXCEPT
490{ 2043{
491#if EV_USE_REALTIME 2044#if EV_USE_REALTIME
2045 if (ecb_expect_true (have_realtime))
2046 {
492 struct timespec ts; 2047 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 2048 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 2049 return EV_TS_GET (ts);
495#else 2050 }
2051#endif
2052
2053 {
496 struct timeval tv; 2054 struct timeval tv;
497 gettimeofday (&tv, 0); 2055 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 2056 return EV_TV_GET (tv);
499#endif 2057 }
500} 2058}
2059#endif
501 2060
502ev_tstamp inline_size 2061inline_size ev_tstamp
503get_clock (void) 2062get_clock (void)
504{ 2063{
505#if EV_USE_MONOTONIC 2064#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 2065 if (ecb_expect_true (have_monotonic))
507 { 2066 {
508 struct timespec ts; 2067 struct timespec ts;
509 clock_gettime (CLOCK_MONOTONIC, &ts); 2068 clock_gettime (CLOCK_MONOTONIC, &ts);
510 return ts.tv_sec + ts.tv_nsec * 1e-9; 2069 return EV_TS_GET (ts);
511 } 2070 }
512#endif 2071#endif
513 2072
514 return ev_time (); 2073 return ev_time ();
515} 2074}
516 2075
517#if EV_MULTIPLICITY 2076#if EV_MULTIPLICITY
518ev_tstamp 2077ev_tstamp
519ev_now (EV_P) 2078ev_now (EV_P) EV_NOEXCEPT
520{ 2079{
521 return ev_rt_now; 2080 return ev_rt_now;
522} 2081}
523#endif 2082#endif
524 2083
525void 2084void
526ev_sleep (ev_tstamp delay) 2085ev_sleep (ev_tstamp delay) EV_NOEXCEPT
527{ 2086{
528 if (delay > 0.) 2087 if (delay > EV_TS_CONST (0.))
529 { 2088 {
530#if EV_USE_NANOSLEEP 2089#if EV_USE_NANOSLEEP
531 struct timespec ts; 2090 struct timespec ts;
532 2091
533 ts.tv_sec = (time_t)delay; 2092 EV_TS_SET (ts, delay);
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0); 2093 nanosleep (&ts, 0);
537#elif defined(_WIN32) 2094#elif defined _WIN32
2095 /* maybe this should round up, as ms is very low resolution */
2096 /* compared to select (µs) or nanosleep (ns) */
538 Sleep ((unsigned long)(delay * 1e3)); 2097 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
539#else 2098#else
540 struct timeval tv; 2099 struct timeval tv;
541 2100
542 tv.tv_sec = (time_t)delay; 2101 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 2102 /* something not guaranteed by newer posix versions, but guaranteed */
544 2103 /* by older ones */
2104 EV_TV_SET (tv, delay);
545 select (0, 0, 0, 0, &tv); 2105 select (0, 0, 0, 0, &tv);
546#endif 2106#endif
547 } 2107 }
548} 2108}
549 2109
550/*****************************************************************************/ 2110/*****************************************************************************/
551 2111
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 2112#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 2113
554int inline_size 2114/* find a suitable new size for the given array, */
2115/* hopefully by rounding to a nice-to-malloc size */
2116inline_size int
555array_nextsize (int elem, int cur, int cnt) 2117array_nextsize (int elem, int cur, int cnt)
556{ 2118{
557 int ncur = cur + 1; 2119 int ncur = cur + 1;
558 2120
559 do 2121 do
560 ncur <<= 1; 2122 ncur <<= 1;
561 while (cnt > ncur); 2123 while (cnt > ncur);
562 2124
563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 2125 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 2126 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
565 { 2127 {
566 ncur *= elem; 2128 ncur *= elem;
567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 2129 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
568 ncur = ncur - sizeof (void *) * 4; 2130 ncur = ncur - sizeof (void *) * 4;
570 } 2132 }
571 2133
572 return ncur; 2134 return ncur;
573} 2135}
574 2136
575static noinline void * 2137ecb_noinline ecb_cold
2138static void *
576array_realloc (int elem, void *base, int *cur, int cnt) 2139array_realloc (int elem, void *base, int *cur, int cnt)
577{ 2140{
578 *cur = array_nextsize (elem, *cur, cnt); 2141 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 2142 return ev_realloc (base, elem * *cur);
580} 2143}
581 2144
2145#define array_needsize_noinit(base,offset,count)
2146
2147#define array_needsize_zerofill(base,offset,count) \
2148 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2149
582#define array_needsize(type,base,cur,cnt,init) \ 2150#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 2151 if (ecb_expect_false ((cnt) > (cur))) \
584 { \ 2152 { \
585 int ocur_ = (cur); \ 2153 ecb_unused int ocur_ = (cur); \
586 (base) = (type *)array_realloc \ 2154 (base) = (type *)array_realloc \
587 (sizeof (type), (base), &(cur), (cnt)); \ 2155 (sizeof (type), (base), &(cur), (cnt)); \
588 init ((base) + (ocur_), (cur) - ocur_); \ 2156 init ((base), ocur_, ((cur) - ocur_)); \
589 } 2157 }
590 2158
591#if 0 2159#if 0
592#define array_slim(type,stem) \ 2160#define array_slim(type,stem) \
593 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2161 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2165 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 2166 }
599#endif 2167#endif
600 2168
601#define array_free(stem, idx) \ 2169#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2170 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 2171
604/*****************************************************************************/ 2172/*****************************************************************************/
605 2173
606void noinline 2174/* dummy callback for pending events */
2175ecb_noinline
2176static void
2177pendingcb (EV_P_ ev_prepare *w, int revents)
2178{
2179}
2180
2181ecb_noinline
2182void
607ev_feed_event (EV_P_ void *w, int revents) 2183ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
608{ 2184{
609 W w_ = (W)w; 2185 W w_ = (W)w;
610 int pri = ABSPRI (w_); 2186 int pri = ABSPRI (w_);
611 2187
612 if (expect_false (w_->pending)) 2188 if (ecb_expect_false (w_->pending))
613 pendings [pri][w_->pending - 1].events |= revents; 2189 pendings [pri][w_->pending - 1].events |= revents;
614 else 2190 else
615 { 2191 {
616 w_->pending = ++pendingcnt [pri]; 2192 w_->pending = ++pendingcnt [pri];
617 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2193 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
618 pendings [pri][w_->pending - 1].w = w_; 2194 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 2195 pendings [pri][w_->pending - 1].events = revents;
620 } 2196 }
621}
622 2197
623void inline_speed 2198 pendingpri = NUMPRI - 1;
2199}
2200
2201inline_speed void
2202feed_reverse (EV_P_ W w)
2203{
2204 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2205 rfeeds [rfeedcnt++] = w;
2206}
2207
2208inline_size void
2209feed_reverse_done (EV_P_ int revents)
2210{
2211 do
2212 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2213 while (rfeedcnt);
2214}
2215
2216inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 2217queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 2218{
626 int i; 2219 int i;
627 2220
628 for (i = 0; i < eventcnt; ++i) 2221 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 2222 ev_feed_event (EV_A_ events [i], type);
630} 2223}
631 2224
632/*****************************************************************************/ 2225/*****************************************************************************/
633 2226
634void inline_size 2227inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 2228fd_event_nocheck (EV_P_ int fd, int revents)
649{ 2229{
650 ANFD *anfd = anfds + fd; 2230 ANFD *anfd = anfds + fd;
651 ev_io *w; 2231 ev_io *w;
652 2232
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2233 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 2237 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 2238 ev_feed_event (EV_A_ (W)w, ev);
659 } 2239 }
660} 2240}
661 2241
662void 2242/* do not submit kernel events for fds that have reify set */
2243/* because that means they changed while we were polling for new events */
2244inline_speed void
663ev_feed_fd_event (EV_P_ int fd, int revents) 2245fd_event (EV_P_ int fd, int revents)
2246{
2247 ANFD *anfd = anfds + fd;
2248
2249 if (ecb_expect_true (!anfd->reify))
2250 fd_event_nocheck (EV_A_ fd, revents);
2251}
2252
2253void
2254ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
664{ 2255{
665 if (fd >= 0 && fd < anfdmax) 2256 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 2257 fd_event_nocheck (EV_A_ fd, revents);
667} 2258}
668 2259
669void inline_size 2260/* make sure the external fd watch events are in-sync */
2261/* with the kernel/libev internal state */
2262inline_size void
670fd_reify (EV_P) 2263fd_reify (EV_P)
671{ 2264{
672 int i; 2265 int i;
673 2266
2267 /* most backends do not modify the fdchanges list in backend_modfiy.
2268 * except io_uring, which has fixed-size buffers which might force us
2269 * to handle events in backend_modify, causing fdchangesd to be amended,
2270 * which could result in an endless loop.
2271 * to avoid this, we do not dynamically handle fds that were added
2272 * during fd_reify. that menas thast for those backends, fdchangecnt
2273 * might be non-zero during poll, which must cause them to not block.
2274 * to not put too much of a burden on other backends, this detail
2275 * needs to be handled in the backend.
2276 */
2277 int changecnt = fdchangecnt;
2278
2279#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
674 for (i = 0; i < fdchangecnt; ++i) 2280 for (i = 0; i < changecnt; ++i)
2281 {
2282 int fd = fdchanges [i];
2283 ANFD *anfd = anfds + fd;
2284
2285 if (anfd->reify & EV__IOFDSET && anfd->head)
2286 {
2287 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2288
2289 if (handle != anfd->handle)
2290 {
2291 unsigned long arg;
2292
2293 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2294
2295 /* handle changed, but fd didn't - we need to do it in two steps */
2296 backend_modify (EV_A_ fd, anfd->events, 0);
2297 anfd->events = 0;
2298 anfd->handle = handle;
2299 }
2300 }
2301 }
2302#endif
2303
2304 for (i = 0; i < changecnt; ++i)
675 { 2305 {
676 int fd = fdchanges [i]; 2306 int fd = fdchanges [i];
677 ANFD *anfd = anfds + fd; 2307 ANFD *anfd = anfds + fd;
678 ev_io *w; 2308 ev_io *w;
679 2309
680 unsigned char events = 0; 2310 unsigned char o_events = anfd->events;
2311 unsigned char o_reify = anfd->reify;
681 2312
682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2313 anfd->reify = 0;
683 events |= (unsigned char)w->events;
684 2314
685#if EV_SELECT_IS_WINSOCKET 2315 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
686 if (events)
687 { 2316 {
688 unsigned long argp; 2317 anfd->events = 0;
689 #ifdef EV_FD_TO_WIN32_HANDLE 2318
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2319 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
691 #else 2320 anfd->events |= (unsigned char)w->events;
692 anfd->handle = _get_osfhandle (fd); 2321
693 #endif 2322 if (o_events != anfd->events)
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2323 o_reify = EV__IOFDSET; /* actually |= */
695 } 2324 }
696#endif
697 2325
698 { 2326 if (o_reify & EV__IOFDSET)
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
702 anfd->reify = 0;
703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 2327 backend_modify (EV_A_ fd, o_events, anfd->events);
707 } 2328 }
708 }
709 2329
2330 /* normally, fdchangecnt hasn't changed. if it has, then new fds have been added.
2331 * this is a rare case (see beginning comment in this function), so we copy them to the
2332 * front and hope the backend handles this case.
2333 */
2334 if (ecb_expect_false (fdchangecnt != changecnt))
2335 memmove (fdchanges, fdchanges + changecnt, (fdchangecnt - changecnt) * sizeof (*fdchanges));
2336
710 fdchangecnt = 0; 2337 fdchangecnt -= changecnt;
711} 2338}
712 2339
2340/* something about the given fd changed */
713void inline_size 2341inline_size
2342void
714fd_change (EV_P_ int fd, int flags) 2343fd_change (EV_P_ int fd, int flags)
715{ 2344{
716 unsigned char reify = anfds [fd].reify; 2345 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 2346 anfds [fd].reify |= flags;
718 2347
719 if (expect_true (!reify)) 2348 if (ecb_expect_true (!reify))
720 { 2349 {
721 ++fdchangecnt; 2350 ++fdchangecnt;
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2351 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
723 fdchanges [fdchangecnt - 1] = fd; 2352 fdchanges [fdchangecnt - 1] = fd;
724 } 2353 }
725} 2354}
726 2355
727void inline_speed 2356/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2357inline_speed ecb_cold void
728fd_kill (EV_P_ int fd) 2358fd_kill (EV_P_ int fd)
729{ 2359{
730 ev_io *w; 2360 ev_io *w;
731 2361
732 while ((w = (ev_io *)anfds [fd].head)) 2362 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 2364 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2365 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 2366 }
737} 2367}
738 2368
739int inline_size 2369/* check whether the given fd is actually valid, for error recovery */
2370inline_size ecb_cold int
740fd_valid (int fd) 2371fd_valid (int fd)
741{ 2372{
742#ifdef _WIN32 2373#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 2374 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
744#else 2375#else
745 return fcntl (fd, F_GETFD) != -1; 2376 return fcntl (fd, F_GETFD) != -1;
746#endif 2377#endif
747} 2378}
748 2379
749/* called on EBADF to verify fds */ 2380/* called on EBADF to verify fds */
750static void noinline 2381ecb_noinline ecb_cold
2382static void
751fd_ebadf (EV_P) 2383fd_ebadf (EV_P)
752{ 2384{
753 int fd; 2385 int fd;
754 2386
755 for (fd = 0; fd < anfdmax; ++fd) 2387 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 2388 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 2389 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 2390 fd_kill (EV_A_ fd);
759} 2391}
760 2392
761/* called on ENOMEM in select/poll to kill some fds and retry */ 2393/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 2394ecb_noinline ecb_cold
2395static void
763fd_enomem (EV_P) 2396fd_enomem (EV_P)
764{ 2397{
765 int fd; 2398 int fd;
766 2399
767 for (fd = anfdmax; fd--; ) 2400 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events) 2401 if (anfds [fd].events)
769 { 2402 {
770 fd_kill (EV_A_ fd); 2403 fd_kill (EV_A_ fd);
771 return; 2404 break;
772 } 2405 }
773} 2406}
774 2407
775/* usually called after fork if backend needs to re-arm all fds from scratch */ 2408/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline 2409ecb_noinline
2410static void
777fd_rearm_all (EV_P) 2411fd_rearm_all (EV_P)
778{ 2412{
779 int fd; 2413 int fd;
780 2414
781 for (fd = 0; fd < anfdmax; ++fd) 2415 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 2416 if (anfds [fd].events)
783 { 2417 {
784 anfds [fd].events = 0; 2418 anfds [fd].events = 0;
2419 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2420 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 2421 }
787} 2422}
788 2423
2424/* used to prepare libev internal fd's */
2425/* this is not fork-safe */
2426inline_speed void
2427fd_intern (int fd)
2428{
2429#ifdef _WIN32
2430 unsigned long arg = 1;
2431 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2432#else
2433 fcntl (fd, F_SETFD, FD_CLOEXEC);
2434 fcntl (fd, F_SETFL, O_NONBLOCK);
2435#endif
2436}
2437
789/*****************************************************************************/ 2438/*****************************************************************************/
790 2439
791/* 2440/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not 2441 * the heap functions want a real array index. array index 0 is guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2442 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree. 2443 * the branching factor of the d-tree.
795 */ 2444 */
796 2445
797/* 2446/*
802 */ 2451 */
803#if EV_USE_4HEAP 2452#if EV_USE_4HEAP
804 2453
805#define DHEAP 4 2454#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2455#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807 2456#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808/* towards the root */ 2457#define UPHEAP_DONE(p,k) ((p) == (k))
809void inline_speed
810upheap (ANHE *heap, int k)
811{
812 ANHE he = heap [k];
813
814 for (;;)
815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
821 heap [k] = heap [p];
822 ev_active (ANHE_w (heap [k])) = k;
823 k = p;
824 }
825
826 ev_active (ANHE_w (he)) = k;
827 heap [k] = he;
828}
829 2458
830/* away from the root */ 2459/* away from the root */
831void inline_speed 2460inline_speed void
832downheap (ANHE *heap, int N, int k) 2461downheap (ANHE *heap, int N, int k)
833{ 2462{
834 ANHE he = heap [k]; 2463 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0; 2464 ANHE *E = heap + N + HEAP0;
836 2465
837 for (;;) 2466 for (;;)
838 { 2467 {
839 ev_tstamp minat; 2468 ev_tstamp minat;
840 ANHE *minpos; 2469 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 2470 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
842 2471
843 // find minimum child 2472 /* find minimum child */
844 if (expect_true (pos + DHEAP - 1 < E)) 2473 if (ecb_expect_true (pos + DHEAP - 1 < E))
845 { 2474 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2475 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2476 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2477 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2478 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 } 2479 }
851 else if (pos < E) 2480 else if (pos < E)
852 { 2481 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2482 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2483 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2484 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2485 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 } 2486 }
858 else 2487 else
859 break; 2488 break;
860 2489
861 if (ANHE_at (he) <= minat) 2490 if (ANHE_at (he) <= minat)
862 break; 2491 break;
863 2492
2493 heap [k] = *minpos;
864 ev_active (ANHE_w (*minpos)) = k; 2494 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866 2495
867 k = minpos - heap; 2496 k = minpos - heap;
868 } 2497 }
869 2498
2499 heap [k] = he;
870 ev_active (ANHE_w (he)) = k; 2500 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872} 2501}
873 2502
874#else // 4HEAP 2503#else /* not 4HEAP */
875 2504
876#define HEAP0 1 2505#define HEAP0 1
2506#define HPARENT(k) ((k) >> 1)
2507#define UPHEAP_DONE(p,k) (!(p))
877 2508
878/* towards the root */ 2509/* away from the root */
879void inline_speed 2510inline_speed void
880upheap (ANHE *heap, int k) 2511downheap (ANHE *heap, int N, int k)
881{ 2512{
882 ANHE he = heap [k]; 2513 ANHE he = heap [k];
883 2514
884 for (;;) 2515 for (;;)
885 { 2516 {
886 int p = k >> 1; 2517 int c = k << 1;
887 2518
888 /* maybe we could use a dummy element at heap [0]? */ 2519 if (c >= N + HEAP0)
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break; 2520 break;
891 2521
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2522 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0; 2523 ? 1 : 0;
916 2524
917 if (ANHE_at (he) <= ANHE_at (heap [c])) 2525 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break; 2526 break;
919 2527
926 heap [k] = he; 2534 heap [k] = he;
927 ev_active (ANHE_w (he)) = k; 2535 ev_active (ANHE_w (he)) = k;
928} 2536}
929#endif 2537#endif
930 2538
931void inline_size 2539/* towards the root */
2540inline_speed void
2541upheap (ANHE *heap, int k)
2542{
2543 ANHE he = heap [k];
2544
2545 for (;;)
2546 {
2547 int p = HPARENT (k);
2548
2549 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2550 break;
2551
2552 heap [k] = heap [p];
2553 ev_active (ANHE_w (heap [k])) = k;
2554 k = p;
2555 }
2556
2557 heap [k] = he;
2558 ev_active (ANHE_w (he)) = k;
2559}
2560
2561/* move an element suitably so it is in a correct place */
2562inline_size void
932adjustheap (ANHE *heap, int N, int k) 2563adjustheap (ANHE *heap, int N, int k)
933{ 2564{
2565 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
934 upheap (heap, k); 2566 upheap (heap, k);
2567 else
935 downheap (heap, N, k); 2568 downheap (heap, N, k);
2569}
2570
2571/* rebuild the heap: this function is used only once and executed rarely */
2572inline_size void
2573reheap (ANHE *heap, int N)
2574{
2575 int i;
2576
2577 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2578 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2579 for (i = 0; i < N; ++i)
2580 upheap (heap, i + HEAP0);
936} 2581}
937 2582
938/*****************************************************************************/ 2583/*****************************************************************************/
939 2584
2585/* associate signal watchers to a signal signal */
940typedef struct 2586typedef struct
941{ 2587{
2588 EV_ATOMIC_T pending;
2589#if EV_MULTIPLICITY
2590 EV_P;
2591#endif
942 WL head; 2592 WL head;
943 EV_ATOMIC_T gotsig;
944} ANSIG; 2593} ANSIG;
945 2594
946static ANSIG *signals; 2595static ANSIG signals [EV_NSIG - 1];
947static int signalmax;
948
949static EV_ATOMIC_T gotsig;
950
951void inline_size
952signals_init (ANSIG *base, int count)
953{
954 while (count--)
955 {
956 base->head = 0;
957 base->gotsig = 0;
958
959 ++base;
960 }
961}
962 2596
963/*****************************************************************************/ 2597/*****************************************************************************/
964 2598
965void inline_speed 2599#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
966fd_intern (int fd)
967{
968#ifdef _WIN32
969 int arg = 1;
970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
971#else
972 fcntl (fd, F_SETFD, FD_CLOEXEC);
973 fcntl (fd, F_SETFL, O_NONBLOCK);
974#endif
975}
976 2600
977static void noinline 2601ecb_noinline ecb_cold
2602static void
978evpipe_init (EV_P) 2603evpipe_init (EV_P)
979{ 2604{
980 if (!ev_is_active (&pipeev)) 2605 if (!ev_is_active (&pipe_w))
2606 {
2607 int fds [2];
2608
2609# if EV_USE_EVENTFD
2610 fds [0] = -1;
2611 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2612 if (fds [1] < 0 && errno == EINVAL)
2613 fds [1] = eventfd (0, 0);
2614
2615 if (fds [1] < 0)
2616# endif
2617 {
2618 while (pipe (fds))
2619 ev_syserr ("(libev) error creating signal/async pipe");
2620
2621 fd_intern (fds [0]);
2622 }
2623
2624 evpipe [0] = fds [0];
2625
2626 if (evpipe [1] < 0)
2627 evpipe [1] = fds [1]; /* first call, set write fd */
2628 else
2629 {
2630 /* on subsequent calls, do not change evpipe [1] */
2631 /* so that evpipe_write can always rely on its value. */
2632 /* this branch does not do anything sensible on windows, */
2633 /* so must not be executed on windows */
2634
2635 dup2 (fds [1], evpipe [1]);
2636 close (fds [1]);
2637 }
2638
2639 fd_intern (evpipe [1]);
2640
2641 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2642 ev_io_start (EV_A_ &pipe_w);
2643 ev_unref (EV_A); /* watcher should not keep loop alive */
981 { 2644 }
2645}
2646
2647inline_speed void
2648evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2649{
2650 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2651
2652 if (ecb_expect_true (*flag))
2653 return;
2654
2655 *flag = 1;
2656 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2657
2658 pipe_write_skipped = 1;
2659
2660 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2661
2662 if (pipe_write_wanted)
2663 {
2664 int old_errno;
2665
2666 pipe_write_skipped = 0;
2667 ECB_MEMORY_FENCE_RELEASE;
2668
2669 old_errno = errno; /* save errno because write will clobber it */
2670
982#if EV_USE_EVENTFD 2671#if EV_USE_EVENTFD
983 if ((evfd = eventfd (0, 0)) >= 0) 2672 if (evpipe [0] < 0)
984 { 2673 {
985 evpipe [0] = -1; 2674 uint64_t counter = 1;
986 fd_intern (evfd); 2675 write (evpipe [1], &counter, sizeof (uint64_t));
987 ev_io_set (&pipeev, evfd, EV_READ);
988 } 2676 }
989 else 2677 else
990#endif 2678#endif
991 { 2679 {
992 while (pipe (evpipe)) 2680#ifdef _WIN32
993 syserr ("(libev) error creating signal/async pipe"); 2681 WSABUF buf;
994 2682 DWORD sent;
995 fd_intern (evpipe [0]); 2683 buf.buf = (char *)&buf;
996 fd_intern (evpipe [1]); 2684 buf.len = 1;
997 ev_io_set (&pipeev, evpipe [0], EV_READ); 2685 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2686#else
2687 write (evpipe [1], &(evpipe [1]), 1);
2688#endif
998 } 2689 }
999 2690
1000 ev_io_start (EV_A_ &pipeev); 2691 errno = old_errno;
1001 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 }
1003}
1004
1005void inline_size
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{
1008 if (!*flag)
1009 { 2692 }
1010 int old_errno = errno; /* save errno because write might clobber it */ 2693}
1011 2694
1012 *flag = 1; 2695/* called whenever the libev signal pipe */
2696/* got some events (signal, async) */
2697static void
2698pipecb (EV_P_ ev_io *iow, int revents)
2699{
2700 int i;
1013 2701
2702 if (revents & EV_READ)
2703 {
1014#if EV_USE_EVENTFD 2704#if EV_USE_EVENTFD
1015 if (evfd >= 0) 2705 if (evpipe [0] < 0)
1016 { 2706 {
1017 uint64_t counter = 1; 2707 uint64_t counter;
1018 write (evfd, &counter, sizeof (uint64_t)); 2708 read (evpipe [1], &counter, sizeof (uint64_t));
1019 } 2709 }
1020 else 2710 else
1021#endif 2711#endif
1022 write (evpipe [1], &old_errno, 1); 2712 {
1023
1024 errno = old_errno;
1025 }
1026}
1027
1028static void
1029pipecb (EV_P_ ev_io *iow, int revents)
1030{
1031#if EV_USE_EVENTFD
1032 if (evfd >= 0)
1033 {
1034 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t));
1036 }
1037 else
1038#endif
1039 {
1040 char dummy; 2713 char dummy[4];
2714#ifdef _WIN32
2715 WSABUF buf;
2716 DWORD recvd;
2717 DWORD flags = 0;
2718 buf.buf = dummy;
2719 buf.len = sizeof (dummy);
2720 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2721#else
1041 read (evpipe [0], &dummy, 1); 2722 read (evpipe [0], &dummy, sizeof (dummy));
2723#endif
2724 }
2725 }
2726
2727 pipe_write_skipped = 0;
2728
2729 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2730
2731#if EV_SIGNAL_ENABLE
2732 if (sig_pending)
1042 } 2733 {
2734 sig_pending = 0;
1043 2735
1044 if (gotsig && ev_is_default_loop (EV_A)) 2736 ECB_MEMORY_FENCE;
1045 {
1046 int signum;
1047 gotsig = 0;
1048 2737
1049 for (signum = signalmax; signum--; ) 2738 for (i = EV_NSIG - 1; i--; )
1050 if (signals [signum].gotsig) 2739 if (ecb_expect_false (signals [i].pending))
1051 ev_feed_signal_event (EV_A_ signum + 1); 2740 ev_feed_signal_event (EV_A_ i + 1);
1052 } 2741 }
2742#endif
1053 2743
1054#if EV_ASYNC_ENABLE 2744#if EV_ASYNC_ENABLE
1055 if (gotasync) 2745 if (async_pending)
1056 { 2746 {
1057 int i; 2747 async_pending = 0;
1058 gotasync = 0; 2748
2749 ECB_MEMORY_FENCE;
1059 2750
1060 for (i = asynccnt; i--; ) 2751 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent) 2752 if (asyncs [i]->sent)
1062 { 2753 {
1063 asyncs [i]->sent = 0; 2754 asyncs [i]->sent = 0;
2755 ECB_MEMORY_FENCE_RELEASE;
1064 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2756 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1065 } 2757 }
1066 } 2758 }
1067#endif 2759#endif
1068} 2760}
1069 2761
1070/*****************************************************************************/ 2762/*****************************************************************************/
1071 2763
2764void
2765ev_feed_signal (int signum) EV_NOEXCEPT
2766{
2767#if EV_MULTIPLICITY
2768 EV_P;
2769 ECB_MEMORY_FENCE_ACQUIRE;
2770 EV_A = signals [signum - 1].loop;
2771
2772 if (!EV_A)
2773 return;
2774#endif
2775
2776 signals [signum - 1].pending = 1;
2777 evpipe_write (EV_A_ &sig_pending);
2778}
2779
1072static void 2780static void
1073ev_sighandler (int signum) 2781ev_sighandler (int signum)
1074{ 2782{
2783#ifdef _WIN32
2784 signal (signum, ev_sighandler);
2785#endif
2786
2787 ev_feed_signal (signum);
2788}
2789
2790ecb_noinline
2791void
2792ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2793{
2794 WL w;
2795
2796 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2797 return;
2798
2799 --signum;
2800
1075#if EV_MULTIPLICITY 2801#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct; 2802 /* it is permissible to try to feed a signal to the wrong loop */
1077#endif 2803 /* or, likely more useful, feeding a signal nobody is waiting for */
1078 2804
1079#if _WIN32 2805 if (ecb_expect_false (signals [signum].loop != EV_A))
1080 signal (signum, ev_sighandler);
1081#endif
1082
1083 signals [signum - 1].gotsig = 1;
1084 evpipe_write (EV_A_ &gotsig);
1085}
1086
1087void noinline
1088ev_feed_signal_event (EV_P_ int signum)
1089{
1090 WL w;
1091
1092#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1094#endif
1095
1096 --signum;
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return; 2806 return;
2807#endif
1100 2808
1101 signals [signum].gotsig = 0; 2809 signals [signum].pending = 0;
2810 ECB_MEMORY_FENCE_RELEASE;
1102 2811
1103 for (w = signals [signum].head; w; w = w->next) 2812 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2813 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105} 2814}
1106 2815
2816#if EV_USE_SIGNALFD
2817static void
2818sigfdcb (EV_P_ ev_io *iow, int revents)
2819{
2820 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2821
2822 for (;;)
2823 {
2824 ssize_t res = read (sigfd, si, sizeof (si));
2825
2826 /* not ISO-C, as res might be -1, but works with SuS */
2827 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2828 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2829
2830 if (res < (ssize_t)sizeof (si))
2831 break;
2832 }
2833}
2834#endif
2835
2836#endif
2837
1107/*****************************************************************************/ 2838/*****************************************************************************/
1108 2839
2840#if EV_CHILD_ENABLE
1109static WL childs [EV_PID_HASHSIZE]; 2841static WL childs [EV_PID_HASHSIZE];
1110
1111#ifndef _WIN32
1112 2842
1113static ev_signal childev; 2843static ev_signal childev;
1114 2844
1115#ifndef WIFCONTINUED 2845#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0 2846# define WIFCONTINUED(status) 0
1117#endif 2847#endif
1118 2848
1119void inline_speed 2849/* handle a single child status event */
2850inline_speed void
1120child_reap (EV_P_ int chain, int pid, int status) 2851child_reap (EV_P_ int chain, int pid, int status)
1121{ 2852{
1122 ev_child *w; 2853 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2854 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1124 2855
1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2856 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1126 { 2857 {
1127 if ((w->pid == pid || !w->pid) 2858 if ((w->pid == pid || !w->pid)
1128 && (!traced || (w->flags & 1))) 2859 && (!traced || (w->flags & 1)))
1129 { 2860 {
1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2861 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1137 2868
1138#ifndef WCONTINUED 2869#ifndef WCONTINUED
1139# define WCONTINUED 0 2870# define WCONTINUED 0
1140#endif 2871#endif
1141 2872
2873/* called on sigchld etc., calls waitpid */
1142static void 2874static void
1143childcb (EV_P_ ev_signal *sw, int revents) 2875childcb (EV_P_ ev_signal *sw, int revents)
1144{ 2876{
1145 int pid, status; 2877 int pid, status;
1146 2878
1154 /* make sure we are called again until all children have been reaped */ 2886 /* make sure we are called again until all children have been reaped */
1155 /* we need to do it this way so that the callback gets called before we continue */ 2887 /* we need to do it this way so that the callback gets called before we continue */
1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2888 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1157 2889
1158 child_reap (EV_A_ pid, pid, status); 2890 child_reap (EV_A_ pid, pid, status);
1159 if (EV_PID_HASHSIZE > 1) 2891 if ((EV_PID_HASHSIZE) > 1)
1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2892 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1161} 2893}
1162 2894
1163#endif 2895#endif
1164 2896
1165/*****************************************************************************/ 2897/*****************************************************************************/
1166 2898
2899#if EV_USE_TIMERFD
2900
2901static void periodics_reschedule (EV_P);
2902
2903static void
2904timerfdcb (EV_P_ ev_io *iow, int revents)
2905{
2906 struct itimerspec its = { 0 };
2907
2908 /* since we can't easily come zup with a (portable) maximum value of time_t,
2909 * we wake up once per month, which hopefully is rare enough to not
2910 * be a problem. */
2911 its.it_value.tv_sec = ev_rt_now + 86400 * 30;
2912 timerfd_settime (timerfd, TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET, &its, 0);
2913
2914 ev_rt_now = ev_time ();
2915 /* periodics_reschedule only needs ev_rt_now */
2916 /* but maybe in the future we want the full treatment. */
2917 /*
2918 now_floor = EV_TS_CONST (0.);
2919 time_update (EV_A_ EV_TSTAMP_HUGE);
2920 */
2921 periodics_reschedule (EV_A);
2922}
2923
2924ecb_noinline ecb_cold
2925static void
2926evtimerfd_init (EV_P)
2927{
2928 if (!ev_is_active (&timerfd_w))
2929 {
2930 timerfd = timerfd_create (CLOCK_REALTIME, TFD_NONBLOCK | TFD_CLOEXEC);
2931
2932 if (timerfd >= 0)
2933 {
2934 fd_intern (timerfd); /* just to be sure */
2935
2936 ev_io_init (&timerfd_w, timerfdcb, timerfd, EV_READ);
2937 ev_set_priority (&timerfd_w, EV_MINPRI);
2938 ev_io_start (EV_A_ &timerfd_w);
2939 ev_unref (EV_A); /* watcher should not keep loop alive */
2940
2941 /* (re-) arm timer */
2942 timerfdcb (EV_A_ 0, 0);
2943 }
2944 }
2945}
2946
2947#endif
2948
2949/*****************************************************************************/
2950
2951#if EV_USE_IOCP
2952# include "ev_iocp.c"
2953#endif
1167#if EV_USE_PORT 2954#if EV_USE_PORT
1168# include "ev_port.c" 2955# include "ev_port.c"
1169#endif 2956#endif
1170#if EV_USE_KQUEUE 2957#if EV_USE_KQUEUE
1171# include "ev_kqueue.c" 2958# include "ev_kqueue.c"
1172#endif 2959#endif
1173#if EV_USE_EPOLL 2960#if EV_USE_EPOLL
1174# include "ev_epoll.c" 2961# include "ev_epoll.c"
1175#endif 2962#endif
2963#if EV_USE_LINUXAIO
2964# include "ev_linuxaio.c"
2965#endif
2966#if EV_USE_IOURING
2967# include "ev_iouring.c"
2968#endif
1176#if EV_USE_POLL 2969#if EV_USE_POLL
1177# include "ev_poll.c" 2970# include "ev_poll.c"
1178#endif 2971#endif
1179#if EV_USE_SELECT 2972#if EV_USE_SELECT
1180# include "ev_select.c" 2973# include "ev_select.c"
1181#endif 2974#endif
1182 2975
1183int 2976ecb_cold int
1184ev_version_major (void) 2977ev_version_major (void) EV_NOEXCEPT
1185{ 2978{
1186 return EV_VERSION_MAJOR; 2979 return EV_VERSION_MAJOR;
1187} 2980}
1188 2981
1189int 2982ecb_cold int
1190ev_version_minor (void) 2983ev_version_minor (void) EV_NOEXCEPT
1191{ 2984{
1192 return EV_VERSION_MINOR; 2985 return EV_VERSION_MINOR;
1193} 2986}
1194 2987
1195/* return true if we are running with elevated privileges and should ignore env variables */ 2988/* return true if we are running with elevated privileges and should ignore env variables */
1196int inline_size 2989inline_size ecb_cold int
1197enable_secure (void) 2990enable_secure (void)
1198{ 2991{
1199#ifdef _WIN32 2992#ifdef _WIN32
1200 return 0; 2993 return 0;
1201#else 2994#else
1202 return getuid () != geteuid () 2995 return getuid () != geteuid ()
1203 || getgid () != getegid (); 2996 || getgid () != getegid ();
1204#endif 2997#endif
1205} 2998}
1206 2999
3000ecb_cold
1207unsigned int 3001unsigned int
1208ev_supported_backends (void) 3002ev_supported_backends (void) EV_NOEXCEPT
1209{ 3003{
1210 unsigned int flags = 0; 3004 unsigned int flags = 0;
1211 3005
1212 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 3006 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1213 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 3007 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
1214 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 3008 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1215 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 3009 if (EV_USE_LINUXAIO ) flags |= EVBACKEND_LINUXAIO;
1216 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 3010 if (EV_USE_IOURING && ev_linux_version () >= 0x050601) flags |= EVBACKEND_IOURING; /* 5.6.1+ */
1217 3011 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
3012 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
3013
1218 return flags; 3014 return flags;
1219} 3015}
1220 3016
3017ecb_cold
1221unsigned int 3018unsigned int
1222ev_recommended_backends (void) 3019ev_recommended_backends (void) EV_NOEXCEPT
1223{ 3020{
1224 unsigned int flags = ev_supported_backends (); 3021 unsigned int flags = ev_supported_backends ();
1225 3022
1226#ifndef __NetBSD__ 3023#ifndef __NetBSD__
1227 /* kqueue is borked on everything but netbsd apparently */ 3024 /* kqueue is borked on everything but netbsd apparently */
1228 /* it usually doesn't work correctly on anything but sockets and pipes */ 3025 /* it usually doesn't work correctly on anything but sockets and pipes */
1229 flags &= ~EVBACKEND_KQUEUE; 3026 flags &= ~EVBACKEND_KQUEUE;
1230#endif 3027#endif
1231#ifdef __APPLE__ 3028#ifdef __APPLE__
1232 // flags &= ~EVBACKEND_KQUEUE; for documentation 3029 /* only select works correctly on that "unix-certified" platform */
3030 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
3031 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
3032#endif
3033#ifdef __FreeBSD__
3034 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
3035#endif
3036
3037 /* TODO: linuxaio is very experimental */
3038#if !EV_RECOMMEND_LINUXAIO
3039 flags &= ~EVBACKEND_LINUXAIO;
3040#endif
3041 /* TODO: linuxaio is super experimental */
3042#if !EV_RECOMMEND_IOURING
1233 flags &= ~EVBACKEND_POLL; 3043 flags &= ~EVBACKEND_IOURING;
1234#endif 3044#endif
1235 3045
1236 return flags; 3046 return flags;
1237} 3047}
1238 3048
3049ecb_cold
1239unsigned int 3050unsigned int
1240ev_embeddable_backends (void) 3051ev_embeddable_backends (void) EV_NOEXCEPT
1241{ 3052{
1242 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 3053 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1243 3054
1244 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 3055 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1245 /* please fix it and tell me how to detect the fix */ 3056 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1246 flags &= ~EVBACKEND_EPOLL; 3057 flags &= ~EVBACKEND_EPOLL;
3058
3059 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
3060
3061 /* EVBACKEND_IOURING is practically embeddable, but the current implementation is not
3062 * because our backend_fd is the epoll fd we need as fallback.
3063 * if the kernel ever is fixed, this might change...
3064 */
1247 3065
1248 return flags; 3066 return flags;
1249} 3067}
1250 3068
1251unsigned int 3069unsigned int
1252ev_backend (EV_P) 3070ev_backend (EV_P) EV_NOEXCEPT
1253{ 3071{
1254 return backend; 3072 return backend;
1255} 3073}
1256 3074
3075#if EV_FEATURE_API
1257unsigned int 3076unsigned int
1258ev_loop_count (EV_P) 3077ev_iteration (EV_P) EV_NOEXCEPT
1259{ 3078{
1260 return loop_count; 3079 return loop_count;
1261} 3080}
1262 3081
3082unsigned int
3083ev_depth (EV_P) EV_NOEXCEPT
3084{
3085 return loop_depth;
3086}
3087
1263void 3088void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 3089ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1265{ 3090{
1266 io_blocktime = interval; 3091 io_blocktime = interval;
1267} 3092}
1268 3093
1269void 3094void
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 3095ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1271{ 3096{
1272 timeout_blocktime = interval; 3097 timeout_blocktime = interval;
1273} 3098}
1274 3099
1275static void noinline 3100void
3101ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3102{
3103 userdata = data;
3104}
3105
3106void *
3107ev_userdata (EV_P) EV_NOEXCEPT
3108{
3109 return userdata;
3110}
3111
3112void
3113ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3114{
3115 invoke_cb = invoke_pending_cb;
3116}
3117
3118void
3119ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3120{
3121 release_cb = release;
3122 acquire_cb = acquire;
3123}
3124#endif
3125
3126/* initialise a loop structure, must be zero-initialised */
3127ecb_noinline ecb_cold
3128static void
1276loop_init (EV_P_ unsigned int flags) 3129loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
1277{ 3130{
1278 if (!backend) 3131 if (!backend)
1279 { 3132 {
3133 origflags = flags;
3134
3135#if EV_USE_REALTIME
3136 if (!have_realtime)
3137 {
3138 struct timespec ts;
3139
3140 if (!clock_gettime (CLOCK_REALTIME, &ts))
3141 have_realtime = 1;
3142 }
3143#endif
3144
1280#if EV_USE_MONOTONIC 3145#if EV_USE_MONOTONIC
3146 if (!have_monotonic)
1281 { 3147 {
1282 struct timespec ts; 3148 struct timespec ts;
3149
1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3150 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1284 have_monotonic = 1; 3151 have_monotonic = 1;
1285 } 3152 }
1286#endif
1287
1288 ev_rt_now = ev_time ();
1289 mn_now = get_clock ();
1290 now_floor = mn_now;
1291 rtmn_diff = ev_rt_now - mn_now;
1292
1293 io_blocktime = 0.;
1294 timeout_blocktime = 0.;
1295 backend = 0;
1296 backend_fd = -1;
1297 gotasync = 0;
1298#if EV_USE_INOTIFY
1299 fs_fd = -2;
1300#endif 3153#endif
1301 3154
1302 /* pid check not overridable via env */ 3155 /* pid check not overridable via env */
1303#ifndef _WIN32 3156#ifndef _WIN32
1304 if (flags & EVFLAG_FORKCHECK) 3157 if (flags & EVFLAG_FORKCHECK)
1308 if (!(flags & EVFLAG_NOENV) 3161 if (!(flags & EVFLAG_NOENV)
1309 && !enable_secure () 3162 && !enable_secure ()
1310 && getenv ("LIBEV_FLAGS")) 3163 && getenv ("LIBEV_FLAGS"))
1311 flags = atoi (getenv ("LIBEV_FLAGS")); 3164 flags = atoi (getenv ("LIBEV_FLAGS"));
1312 3165
1313 if (!(flags & 0x0000ffffU)) 3166 ev_rt_now = ev_time ();
3167 mn_now = get_clock ();
3168 now_floor = mn_now;
3169 rtmn_diff = ev_rt_now - mn_now;
3170#if EV_FEATURE_API
3171 invoke_cb = ev_invoke_pending;
3172#endif
3173
3174 io_blocktime = 0.;
3175 timeout_blocktime = 0.;
3176 backend = 0;
3177 backend_fd = -1;
3178 sig_pending = 0;
3179#if EV_ASYNC_ENABLE
3180 async_pending = 0;
3181#endif
3182 pipe_write_skipped = 0;
3183 pipe_write_wanted = 0;
3184 evpipe [0] = -1;
3185 evpipe [1] = -1;
3186#if EV_USE_INOTIFY
3187 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3188#endif
3189#if EV_USE_SIGNALFD
3190 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3191#endif
3192#if EV_USE_TIMERFD
3193 timerfd = flags & EVFLAG_NOTIMERFD ? -1 : -2;
3194#endif
3195
3196 if (!(flags & EVBACKEND_MASK))
1314 flags |= ev_recommended_backends (); 3197 flags |= ev_recommended_backends ();
1315 3198
3199#if EV_USE_IOCP
3200 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3201#endif
1316#if EV_USE_PORT 3202#if EV_USE_PORT
1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 3203 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1318#endif 3204#endif
1319#if EV_USE_KQUEUE 3205#if EV_USE_KQUEUE
1320 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 3206 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3207#endif
3208#if EV_USE_IOURING
3209 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3210#endif
3211#if EV_USE_LINUXAIO
3212 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
1321#endif 3213#endif
1322#if EV_USE_EPOLL 3214#if EV_USE_EPOLL
1323 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 3215 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1324#endif 3216#endif
1325#if EV_USE_POLL 3217#if EV_USE_POLL
1326 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 3218 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1327#endif 3219#endif
1328#if EV_USE_SELECT 3220#if EV_USE_SELECT
1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 3221 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
1330#endif 3222#endif
1331 3223
3224 ev_prepare_init (&pending_w, pendingcb);
3225
3226#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1332 ev_init (&pipeev, pipecb); 3227 ev_init (&pipe_w, pipecb);
1333 ev_set_priority (&pipeev, EV_MAXPRI); 3228 ev_set_priority (&pipe_w, EV_MAXPRI);
3229#endif
1334 } 3230 }
1335} 3231}
1336 3232
1337static void noinline 3233/* free up a loop structure */
3234ecb_cold
3235void
1338loop_destroy (EV_P) 3236ev_loop_destroy (EV_P)
1339{ 3237{
1340 int i; 3238 int i;
1341 3239
3240#if EV_MULTIPLICITY
3241 /* mimic free (0) */
3242 if (!EV_A)
3243 return;
3244#endif
3245
3246#if EV_CLEANUP_ENABLE
3247 /* queue cleanup watchers (and execute them) */
3248 if (ecb_expect_false (cleanupcnt))
3249 {
3250 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3251 EV_INVOKE_PENDING;
3252 }
3253#endif
3254
3255#if EV_CHILD_ENABLE
3256 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3257 {
3258 ev_ref (EV_A); /* child watcher */
3259 ev_signal_stop (EV_A_ &childev);
3260 }
3261#endif
3262
1342 if (ev_is_active (&pipeev)) 3263 if (ev_is_active (&pipe_w))
1343 { 3264 {
1344 ev_ref (EV_A); /* signal watcher */ 3265 /*ev_ref (EV_A);*/
1345 ev_io_stop (EV_A_ &pipeev); 3266 /*ev_io_stop (EV_A_ &pipe_w);*/
1346 3267
3268 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3269 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3270 }
3271
3272#if EV_USE_SIGNALFD
3273 if (ev_is_active (&sigfd_w))
3274 close (sigfd);
3275#endif
3276
1347#if EV_USE_EVENTFD 3277#if EV_USE_TIMERFD
1348 if (evfd >= 0) 3278 if (ev_is_active (&timerfd_w))
1349 close (evfd); 3279 close (timerfd);
1350#endif 3280#endif
1351
1352 if (evpipe [0] >= 0)
1353 {
1354 close (evpipe [0]);
1355 close (evpipe [1]);
1356 }
1357 }
1358 3281
1359#if EV_USE_INOTIFY 3282#if EV_USE_INOTIFY
1360 if (fs_fd >= 0) 3283 if (fs_fd >= 0)
1361 close (fs_fd); 3284 close (fs_fd);
1362#endif 3285#endif
1363 3286
1364 if (backend_fd >= 0) 3287 if (backend_fd >= 0)
1365 close (backend_fd); 3288 close (backend_fd);
1366 3289
3290#if EV_USE_IOCP
3291 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3292#endif
1367#if EV_USE_PORT 3293#if EV_USE_PORT
1368 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3294 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1369#endif 3295#endif
1370#if EV_USE_KQUEUE 3296#if EV_USE_KQUEUE
1371 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3297 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3298#endif
3299#if EV_USE_IOURING
3300 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3301#endif
3302#if EV_USE_LINUXAIO
3303 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1372#endif 3304#endif
1373#if EV_USE_EPOLL 3305#if EV_USE_EPOLL
1374 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3306 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1375#endif 3307#endif
1376#if EV_USE_POLL 3308#if EV_USE_POLL
1377 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3309 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1378#endif 3310#endif
1379#if EV_USE_SELECT 3311#if EV_USE_SELECT
1380 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3312 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1381#endif 3313#endif
1382 3314
1383 for (i = NUMPRI; i--; ) 3315 for (i = NUMPRI; i--; )
1384 { 3316 {
1385 array_free (pending, [i]); 3317 array_free (pending, [i]);
1386#if EV_IDLE_ENABLE 3318#if EV_IDLE_ENABLE
1387 array_free (idle, [i]); 3319 array_free (idle, [i]);
1388#endif 3320#endif
1389 } 3321 }
1390 3322
1391 ev_free (anfds); anfdmax = 0; 3323 ev_free (anfds); anfds = 0; anfdmax = 0;
1392 3324
1393 /* have to use the microsoft-never-gets-it-right macro */ 3325 /* have to use the microsoft-never-gets-it-right macro */
3326 array_free (rfeed, EMPTY);
1394 array_free (fdchange, EMPTY); 3327 array_free (fdchange, EMPTY);
1395 array_free (timer, EMPTY); 3328 array_free (timer, EMPTY);
1396#if EV_PERIODIC_ENABLE 3329#if EV_PERIODIC_ENABLE
1397 array_free (periodic, EMPTY); 3330 array_free (periodic, EMPTY);
1398#endif 3331#endif
1399#if EV_FORK_ENABLE 3332#if EV_FORK_ENABLE
1400 array_free (fork, EMPTY); 3333 array_free (fork, EMPTY);
1401#endif 3334#endif
3335#if EV_CLEANUP_ENABLE
3336 array_free (cleanup, EMPTY);
3337#endif
1402 array_free (prepare, EMPTY); 3338 array_free (prepare, EMPTY);
1403 array_free (check, EMPTY); 3339 array_free (check, EMPTY);
1404#if EV_ASYNC_ENABLE 3340#if EV_ASYNC_ENABLE
1405 array_free (async, EMPTY); 3341 array_free (async, EMPTY);
1406#endif 3342#endif
1407 3343
1408 backend = 0; 3344 backend = 0;
3345
3346#if EV_MULTIPLICITY
3347 if (ev_is_default_loop (EV_A))
3348#endif
3349 ev_default_loop_ptr = 0;
3350#if EV_MULTIPLICITY
3351 else
3352 ev_free (EV_A);
3353#endif
1409} 3354}
1410 3355
1411#if EV_USE_INOTIFY 3356#if EV_USE_INOTIFY
1412void inline_size infy_fork (EV_P); 3357inline_size void infy_fork (EV_P);
1413#endif 3358#endif
1414 3359
1415void inline_size 3360inline_size void
1416loop_fork (EV_P) 3361loop_fork (EV_P)
1417{ 3362{
1418#if EV_USE_PORT 3363#if EV_USE_PORT
1419 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3364 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1420#endif 3365#endif
1421#if EV_USE_KQUEUE 3366#if EV_USE_KQUEUE
1422 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3367 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3368#endif
3369#if EV_USE_IOURING
3370 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3371#endif
3372#if EV_USE_LINUXAIO
3373 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1423#endif 3374#endif
1424#if EV_USE_EPOLL 3375#if EV_USE_EPOLL
1425 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3376 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1426#endif 3377#endif
1427#if EV_USE_INOTIFY 3378#if EV_USE_INOTIFY
1428 infy_fork (EV_A); 3379 infy_fork (EV_A);
1429#endif 3380#endif
1430 3381
3382 if (postfork != 2)
3383 {
3384 #if EV_USE_SIGNALFD
3385 /* surprisingly, nothing needs to be done for signalfd, accoridng to docs, it does the right thing on fork */
3386 #endif
3387
3388 #if EV_USE_TIMERFD
3389 if (ev_is_active (&timerfd_w))
3390 {
3391 ev_ref (EV_A);
3392 ev_io_stop (EV_A_ &timerfd_w);
3393
3394 close (timerfd);
3395 timerfd = -2;
3396
3397 evtimerfd_init (EV_A);
3398 /* reschedule periodics, in case we missed something */
3399 ev_feed_event (EV_A_ &timerfd_w, EV_CUSTOM);
3400 }
3401 #endif
3402
3403 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1431 if (ev_is_active (&pipeev)) 3404 if (ev_is_active (&pipe_w))
3405 {
3406 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3407
3408 ev_ref (EV_A);
3409 ev_io_stop (EV_A_ &pipe_w);
3410
3411 if (evpipe [0] >= 0)
3412 EV_WIN32_CLOSE_FD (evpipe [0]);
3413
3414 evpipe_init (EV_A);
3415 /* iterate over everything, in case we missed something before */
3416 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3417 }
3418 #endif
1432 { 3419 }
1433 /* this "locks" the handlers against writing to the pipe */ 3420
1434 /* while we modify the fd vars */ 3421 postfork = 0;
1435 gotsig = 1; 3422}
3423
3424#if EV_MULTIPLICITY
3425
3426ecb_cold
3427struct ev_loop *
3428ev_loop_new (unsigned int flags) EV_NOEXCEPT
3429{
3430 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3431
3432 memset (EV_A, 0, sizeof (struct ev_loop));
3433 loop_init (EV_A_ flags);
3434
3435 if (ev_backend (EV_A))
3436 return EV_A;
3437
3438 ev_free (EV_A);
3439 return 0;
3440}
3441
3442#endif /* multiplicity */
3443
3444#if EV_VERIFY
3445ecb_noinline ecb_cold
3446static void
3447verify_watcher (EV_P_ W w)
3448{
3449 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3450
3451 if (w->pending)
3452 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3453}
3454
3455ecb_noinline ecb_cold
3456static void
3457verify_heap (EV_P_ ANHE *heap, int N)
3458{
3459 int i;
3460
3461 for (i = HEAP0; i < N + HEAP0; ++i)
3462 {
3463 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3464 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3465 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3466
3467 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3468 }
3469}
3470
3471ecb_noinline ecb_cold
3472static void
3473array_verify (EV_P_ W *ws, int cnt)
3474{
3475 while (cnt--)
3476 {
3477 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3478 verify_watcher (EV_A_ ws [cnt]);
3479 }
3480}
3481#endif
3482
3483#if EV_FEATURE_API
3484void ecb_cold
3485ev_verify (EV_P) EV_NOEXCEPT
3486{
3487#if EV_VERIFY
3488 int i;
3489 WL w, w2;
3490
3491 assert (activecnt >= -1);
3492
3493 assert (fdchangemax >= fdchangecnt);
3494 for (i = 0; i < fdchangecnt; ++i)
3495 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3496
3497 assert (anfdmax >= 0);
3498 for (i = 0; i < anfdmax; ++i)
3499 {
3500 int j = 0;
3501
3502 for (w = w2 = anfds [i].head; w; w = w->next)
3503 {
3504 verify_watcher (EV_A_ (W)w);
3505
3506 if (j++ & 1)
3507 {
3508 assert (("libev: io watcher list contains a loop", w != w2));
3509 w2 = w2->next;
3510 }
3511
3512 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3513 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3514 }
3515 }
3516
3517 assert (timermax >= timercnt);
3518 verify_heap (EV_A_ timers, timercnt);
3519
3520#if EV_PERIODIC_ENABLE
3521 assert (periodicmax >= periodiccnt);
3522 verify_heap (EV_A_ periodics, periodiccnt);
3523#endif
3524
3525 for (i = NUMPRI; i--; )
3526 {
3527 assert (pendingmax [i] >= pendingcnt [i]);
3528#if EV_IDLE_ENABLE
3529 assert (idleall >= 0);
3530 assert (idlemax [i] >= idlecnt [i]);
3531 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3532#endif
3533 }
3534
3535#if EV_FORK_ENABLE
3536 assert (forkmax >= forkcnt);
3537 array_verify (EV_A_ (W *)forks, forkcnt);
3538#endif
3539
3540#if EV_CLEANUP_ENABLE
3541 assert (cleanupmax >= cleanupcnt);
3542 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3543#endif
3544
1436#if EV_ASYNC_ENABLE 3545#if EV_ASYNC_ENABLE
1437 gotasync = 1; 3546 assert (asyncmax >= asynccnt);
3547 array_verify (EV_A_ (W *)asyncs, asynccnt);
3548#endif
3549
3550#if EV_PREPARE_ENABLE
3551 assert (preparemax >= preparecnt);
3552 array_verify (EV_A_ (W *)prepares, preparecnt);
3553#endif
3554
3555#if EV_CHECK_ENABLE
3556 assert (checkmax >= checkcnt);
3557 array_verify (EV_A_ (W *)checks, checkcnt);
3558#endif
3559
3560# if 0
3561#if EV_CHILD_ENABLE
3562 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3563 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3564#endif
1438#endif 3565# endif
1439
1440 ev_ref (EV_A);
1441 ev_io_stop (EV_A_ &pipeev);
1442
1443#if EV_USE_EVENTFD
1444 if (evfd >= 0)
1445 close (evfd);
1446#endif 3566#endif
1447
1448 if (evpipe [0] >= 0)
1449 {
1450 close (evpipe [0]);
1451 close (evpipe [1]);
1452 }
1453
1454 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ);
1457 }
1458
1459 postfork = 0;
1460} 3567}
3568#endif
1461 3569
1462#if EV_MULTIPLICITY 3570#if EV_MULTIPLICITY
3571ecb_cold
1463struct ev_loop * 3572struct ev_loop *
1464ev_loop_new (unsigned int flags)
1465{
1466 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1467
1468 memset (loop, 0, sizeof (struct ev_loop));
1469
1470 loop_init (EV_A_ flags);
1471
1472 if (ev_backend (EV_A))
1473 return loop;
1474
1475 return 0;
1476}
1477
1478void
1479ev_loop_destroy (EV_P)
1480{
1481 loop_destroy (EV_A);
1482 ev_free (loop);
1483}
1484
1485void
1486ev_loop_fork (EV_P)
1487{
1488 postfork = 1; /* must be in line with ev_default_fork */
1489}
1490#endif
1491
1492#if EV_MULTIPLICITY
1493struct ev_loop *
1494ev_default_loop_init (unsigned int flags)
1495#else 3573#else
1496int 3574int
3575#endif
1497ev_default_loop (unsigned int flags) 3576ev_default_loop (unsigned int flags) EV_NOEXCEPT
1498#endif
1499{ 3577{
1500 if (!ev_default_loop_ptr) 3578 if (!ev_default_loop_ptr)
1501 { 3579 {
1502#if EV_MULTIPLICITY 3580#if EV_MULTIPLICITY
1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3581 EV_P = ev_default_loop_ptr = &default_loop_struct;
1504#else 3582#else
1505 ev_default_loop_ptr = 1; 3583 ev_default_loop_ptr = 1;
1506#endif 3584#endif
1507 3585
1508 loop_init (EV_A_ flags); 3586 loop_init (EV_A_ flags);
1509 3587
1510 if (ev_backend (EV_A)) 3588 if (ev_backend (EV_A))
1511 { 3589 {
1512#ifndef _WIN32 3590#if EV_CHILD_ENABLE
1513 ev_signal_init (&childev, childcb, SIGCHLD); 3591 ev_signal_init (&childev, childcb, SIGCHLD);
1514 ev_set_priority (&childev, EV_MAXPRI); 3592 ev_set_priority (&childev, EV_MAXPRI);
1515 ev_signal_start (EV_A_ &childev); 3593 ev_signal_start (EV_A_ &childev);
1516 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3594 ev_unref (EV_A); /* child watcher should not keep loop alive */
1517#endif 3595#endif
1522 3600
1523 return ev_default_loop_ptr; 3601 return ev_default_loop_ptr;
1524} 3602}
1525 3603
1526void 3604void
1527ev_default_destroy (void) 3605ev_loop_fork (EV_P) EV_NOEXCEPT
1528{ 3606{
1529#if EV_MULTIPLICITY 3607 postfork = 1;
1530 struct ev_loop *loop = ev_default_loop_ptr;
1531#endif
1532
1533#ifndef _WIN32
1534 ev_ref (EV_A); /* child watcher */
1535 ev_signal_stop (EV_A_ &childev);
1536#endif
1537
1538 loop_destroy (EV_A);
1539}
1540
1541void
1542ev_default_fork (void)
1543{
1544#if EV_MULTIPLICITY
1545 struct ev_loop *loop = ev_default_loop_ptr;
1546#endif
1547
1548 if (backend)
1549 postfork = 1; /* must be in line with ev_loop_fork */
1550} 3608}
1551 3609
1552/*****************************************************************************/ 3610/*****************************************************************************/
1553 3611
1554void 3612void
1555ev_invoke (EV_P_ void *w, int revents) 3613ev_invoke (EV_P_ void *w, int revents)
1556{ 3614{
1557 EV_CB_INVOKE ((W)w, revents); 3615 EV_CB_INVOKE ((W)w, revents);
1558} 3616}
1559 3617
1560void inline_speed 3618unsigned int
1561call_pending (EV_P) 3619ev_pending_count (EV_P) EV_NOEXCEPT
1562{ 3620{
1563 int pri; 3621 int pri;
3622 unsigned int count = 0;
1564 3623
1565 for (pri = NUMPRI; pri--; ) 3624 for (pri = NUMPRI; pri--; )
3625 count += pendingcnt [pri];
3626
3627 return count;
3628}
3629
3630ecb_noinline
3631void
3632ev_invoke_pending (EV_P)
3633{
3634 pendingpri = NUMPRI;
3635
3636 do
3637 {
3638 --pendingpri;
3639
3640 /* pendingpri possibly gets modified in the inner loop */
1566 while (pendingcnt [pri]) 3641 while (pendingcnt [pendingpri])
1567 {
1568 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1569
1570 if (expect_true (p->w))
1571 { 3642 {
1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3643 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1573 3644
1574 p->w->pending = 0; 3645 p->w->pending = 0;
1575 EV_CB_INVOKE (p->w, p->events); 3646 EV_CB_INVOKE (p->w, p->events);
3647 EV_FREQUENT_CHECK;
1576 } 3648 }
1577 } 3649 }
3650 while (pendingpri);
1578} 3651}
1579 3652
1580#if EV_IDLE_ENABLE 3653#if EV_IDLE_ENABLE
1581void inline_size 3654/* make idle watchers pending. this handles the "call-idle */
3655/* only when higher priorities are idle" logic */
3656inline_size void
1582idle_reify (EV_P) 3657idle_reify (EV_P)
1583{ 3658{
1584 if (expect_false (idleall)) 3659 if (ecb_expect_false (idleall))
1585 { 3660 {
1586 int pri; 3661 int pri;
1587 3662
1588 for (pri = NUMPRI; pri--; ) 3663 for (pri = NUMPRI; pri--; )
1589 { 3664 {
1598 } 3673 }
1599 } 3674 }
1600} 3675}
1601#endif 3676#endif
1602 3677
1603void inline_size 3678/* make timers pending */
3679inline_size void
1604timers_reify (EV_P) 3680timers_reify (EV_P)
1605{ 3681{
3682 EV_FREQUENT_CHECK;
3683
1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3684 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1607 { 3685 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3686 do
1609
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1611
1612 /* first reschedule or stop timer */
1613 if (w->repeat)
1614 { 3687 {
3688 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3689
3690 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3691
3692 /* first reschedule or stop timer */
3693 if (w->repeat)
3694 {
1615 ev_at (w) += w->repeat; 3695 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now) 3696 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now; 3697 ev_at (w) = mn_now;
1618 3698
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3699 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
1620 3700
1621 ANHE_at_set (timers [HEAP0]); 3701 ANHE_at_cache (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0); 3702 downheap (timers, timercnt, HEAP0);
3703 }
3704 else
3705 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3706
3707 EV_FREQUENT_CHECK;
3708 feed_reverse (EV_A_ (W)w);
1623 } 3709 }
1624 else 3710 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 3711
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3712 feed_reverse_done (EV_A_ EV_TIMER);
1628 } 3713 }
1629} 3714}
1630 3715
1631#if EV_PERIODIC_ENABLE 3716#if EV_PERIODIC_ENABLE
1632void inline_size 3717
3718ecb_noinline
3719static void
3720periodic_recalc (EV_P_ ev_periodic *w)
3721{
3722 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3723 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3724
3725 /* the above almost always errs on the low side */
3726 while (at <= ev_rt_now)
3727 {
3728 ev_tstamp nat = at + w->interval;
3729
3730 /* when resolution fails us, we use ev_rt_now */
3731 if (ecb_expect_false (nat == at))
3732 {
3733 at = ev_rt_now;
3734 break;
3735 }
3736
3737 at = nat;
3738 }
3739
3740 ev_at (w) = at;
3741}
3742
3743/* make periodics pending */
3744inline_size void
1633periodics_reify (EV_P) 3745periodics_reify (EV_P)
1634{ 3746{
3747 EV_FREQUENT_CHECK;
3748
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3749 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1636 { 3750 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3751 do
1638
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1640
1641 /* first reschedule or stop timer */
1642 if (w->reschedule_cb)
1643 { 3752 {
3753 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3754
3755 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3756
3757 /* first reschedule or stop timer */
3758 if (w->reschedule_cb)
3759 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3760 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645 3761
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3762 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647 3763
1648 ANHE_at_set (periodics [HEAP0]); 3764 ANHE_at_cache (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0); 3765 downheap (periodics, periodiccnt, HEAP0);
3766 }
3767 else if (w->interval)
3768 {
3769 periodic_recalc (EV_A_ w);
3770 ANHE_at_cache (periodics [HEAP0]);
3771 downheap (periodics, periodiccnt, HEAP0);
3772 }
3773 else
3774 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3775
3776 EV_FREQUENT_CHECK;
3777 feed_reverse (EV_A_ (W)w);
1650 } 3778 }
1651 else if (w->interval) 3779 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 /* if next trigger time is not sufficiently in the future, put it there */
1655 /* this might happen because of floating point inexactness */
1656 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1657 {
1658 ev_at (w) += w->interval;
1659 3780
1660 /* if interval is unreasonably low we might still have a time in the past */
1661 /* so correct this. this will make the periodic very inexact, but the user */
1662 /* has effectively asked to get triggered more often than possible */
1663 if (ev_at (w) < ev_rt_now)
1664 ev_at (w) = ev_rt_now;
1665 }
1666
1667 ANHE_at_set (periodics [HEAP0]);
1668 downheap (periodics, periodiccnt, HEAP0);
1669 }
1670 else
1671 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1672
1673 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3781 feed_reverse_done (EV_A_ EV_PERIODIC);
1674 } 3782 }
1675} 3783}
1676 3784
1677static void noinline 3785/* simply recalculate all periodics */
3786/* TODO: maybe ensure that at least one event happens when jumping forward? */
3787ecb_noinline ecb_cold
3788static void
1678periodics_reschedule (EV_P) 3789periodics_reschedule (EV_P)
1679{ 3790{
1680 int i; 3791 int i;
1681 3792
1682 /* adjust periodics after time jump */ 3793 /* adjust periodics after time jump */
1685 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3796 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1686 3797
1687 if (w->reschedule_cb) 3798 if (w->reschedule_cb)
1688 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3799 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval) 3800 else if (w->interval)
1690 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3801 periodic_recalc (EV_A_ w);
1691 3802
1692 ANHE_at_set (periodics [i]); 3803 ANHE_at_cache (periodics [i]);
1693 } 3804 }
1694 3805
1695 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 3806 reheap (periodics, periodiccnt);
1696 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 3807}
3808#endif
3809
3810/* adjust all timers by a given offset */
3811ecb_noinline ecb_cold
3812static void
3813timers_reschedule (EV_P_ ev_tstamp adjust)
3814{
3815 int i;
3816
1697 for (i = 0; i < periodiccnt; ++i) 3817 for (i = 0; i < timercnt; ++i)
1698 upheap (periodics, i + HEAP0); 3818 {
3819 ANHE *he = timers + i + HEAP0;
3820 ANHE_w (*he)->at += adjust;
3821 ANHE_at_cache (*he);
3822 }
1699} 3823}
1700#endif
1701 3824
1702void inline_speed 3825/* fetch new monotonic and realtime times from the kernel */
3826/* also detect if there was a timejump, and act accordingly */
3827inline_speed void
1703time_update (EV_P_ ev_tstamp max_block) 3828time_update (EV_P_ ev_tstamp max_block)
1704{ 3829{
1705 int i;
1706
1707#if EV_USE_MONOTONIC 3830#if EV_USE_MONOTONIC
1708 if (expect_true (have_monotonic)) 3831 if (ecb_expect_true (have_monotonic))
1709 { 3832 {
3833 int i;
1710 ev_tstamp odiff = rtmn_diff; 3834 ev_tstamp odiff = rtmn_diff;
1711 3835
1712 mn_now = get_clock (); 3836 mn_now = get_clock ();
1713 3837
1714 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3838 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1715 /* interpolate in the meantime */ 3839 /* interpolate in the meantime */
1716 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3840 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
1717 { 3841 {
1718 ev_rt_now = rtmn_diff + mn_now; 3842 ev_rt_now = rtmn_diff + mn_now;
1719 return; 3843 return;
1720 } 3844 }
1721 3845
1730 * doesn't hurt either as we only do this on time-jumps or 3854 * doesn't hurt either as we only do this on time-jumps or
1731 * in the unlikely event of having been preempted here. 3855 * in the unlikely event of having been preempted here.
1732 */ 3856 */
1733 for (i = 4; --i; ) 3857 for (i = 4; --i; )
1734 { 3858 {
3859 ev_tstamp diff;
1735 rtmn_diff = ev_rt_now - mn_now; 3860 rtmn_diff = ev_rt_now - mn_now;
1736 3861
1737 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3862 diff = odiff - rtmn_diff;
3863
3864 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
1738 return; /* all is well */ 3865 return; /* all is well */
1739 3866
1740 ev_rt_now = ev_time (); 3867 ev_rt_now = ev_time ();
1741 mn_now = get_clock (); 3868 mn_now = get_clock ();
1742 now_floor = mn_now; 3869 now_floor = mn_now;
1743 } 3870 }
1744 3871
3872 /* no timer adjustment, as the monotonic clock doesn't jump */
3873 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1745# if EV_PERIODIC_ENABLE 3874# if EV_PERIODIC_ENABLE
1746 periodics_reschedule (EV_A); 3875 periodics_reschedule (EV_A);
1747# endif 3876# endif
1748 /* no timer adjustment, as the monotonic clock doesn't jump */
1749 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1750 } 3877 }
1751 else 3878 else
1752#endif 3879#endif
1753 { 3880 {
1754 ev_rt_now = ev_time (); 3881 ev_rt_now = ev_time ();
1755 3882
1756 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3883 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
1757 { 3884 {
3885 /* adjust timers. this is easy, as the offset is the same for all of them */
3886 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1758#if EV_PERIODIC_ENABLE 3887#if EV_PERIODIC_ENABLE
1759 periodics_reschedule (EV_A); 3888 periodics_reschedule (EV_A);
1760#endif 3889#endif
1761 /* adjust timers. this is easy, as the offset is the same for all of them */
1762 for (i = 0; i < timercnt; ++i)
1763 {
1764 ANHE *he = timers + i + HEAP0;
1765 ANHE_w (*he)->at += ev_rt_now - mn_now;
1766 ANHE_at_set (*he);
1767 }
1768 } 3890 }
1769 3891
1770 mn_now = ev_rt_now; 3892 mn_now = ev_rt_now;
1771 } 3893 }
1772} 3894}
1773 3895
1774void 3896int
1775ev_ref (EV_P)
1776{
1777 ++activecnt;
1778}
1779
1780void
1781ev_unref (EV_P)
1782{
1783 --activecnt;
1784}
1785
1786static int loop_done;
1787
1788void
1789ev_loop (EV_P_ int flags) 3897ev_run (EV_P_ int flags)
1790{ 3898{
3899#if EV_FEATURE_API
3900 ++loop_depth;
3901#endif
3902
3903 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3904
1791 loop_done = EVUNLOOP_CANCEL; 3905 loop_done = EVBREAK_CANCEL;
1792 3906
1793 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3907 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1794 3908
1795 do 3909 do
1796 { 3910 {
3911#if EV_VERIFY >= 2
3912 ev_verify (EV_A);
3913#endif
3914
1797#ifndef _WIN32 3915#ifndef _WIN32
1798 if (expect_false (curpid)) /* penalise the forking check even more */ 3916 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
1799 if (expect_false (getpid () != curpid)) 3917 if (ecb_expect_false (getpid () != curpid))
1800 { 3918 {
1801 curpid = getpid (); 3919 curpid = getpid ();
1802 postfork = 1; 3920 postfork = 1;
1803 } 3921 }
1804#endif 3922#endif
1805 3923
1806#if EV_FORK_ENABLE 3924#if EV_FORK_ENABLE
1807 /* we might have forked, so queue fork handlers */ 3925 /* we might have forked, so queue fork handlers */
1808 if (expect_false (postfork)) 3926 if (ecb_expect_false (postfork))
1809 if (forkcnt) 3927 if (forkcnt)
1810 { 3928 {
1811 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3929 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1812 call_pending (EV_A); 3930 EV_INVOKE_PENDING;
1813 } 3931 }
1814#endif 3932#endif
1815 3933
3934#if EV_PREPARE_ENABLE
1816 /* queue prepare watchers (and execute them) */ 3935 /* queue prepare watchers (and execute them) */
1817 if (expect_false (preparecnt)) 3936 if (ecb_expect_false (preparecnt))
1818 { 3937 {
1819 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3938 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1820 call_pending (EV_A); 3939 EV_INVOKE_PENDING;
1821 } 3940 }
3941#endif
1822 3942
1823 if (expect_false (!activecnt)) 3943 if (ecb_expect_false (loop_done))
1824 break; 3944 break;
1825 3945
1826 /* we might have forked, so reify kernel state if necessary */ 3946 /* we might have forked, so reify kernel state if necessary */
1827 if (expect_false (postfork)) 3947 if (ecb_expect_false (postfork))
1828 loop_fork (EV_A); 3948 loop_fork (EV_A);
1829 3949
1830 /* update fd-related kernel structures */ 3950 /* update fd-related kernel structures */
1831 fd_reify (EV_A); 3951 fd_reify (EV_A);
1832 3952
1833 /* calculate blocking time */ 3953 /* calculate blocking time */
1834 { 3954 {
1835 ev_tstamp waittime = 0.; 3955 ev_tstamp waittime = 0.;
1836 ev_tstamp sleeptime = 0.; 3956 ev_tstamp sleeptime = 0.;
1837 3957
3958 /* remember old timestamp for io_blocktime calculation */
3959 ev_tstamp prev_mn_now = mn_now;
3960
3961 /* update time to cancel out callback processing overhead */
3962 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
3963
3964 /* from now on, we want a pipe-wake-up */
3965 pipe_write_wanted = 1;
3966
3967 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3968
1838 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3969 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1839 { 3970 {
1840 /* update time to cancel out callback processing overhead */
1841 time_update (EV_A_ 1e100);
1842
1843 waittime = MAX_BLOCKTIME; 3971 waittime = EV_TS_CONST (MAX_BLOCKTIME);
1844 3972
1845 if (timercnt) 3973 if (timercnt)
1846 { 3974 {
1847 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1848 if (waittime > to) waittime = to; 3976 if (waittime > to) waittime = to;
1849 } 3977 }
1850 3978
1851#if EV_PERIODIC_ENABLE 3979#if EV_PERIODIC_ENABLE
1852 if (periodiccnt) 3980 if (periodiccnt)
1853 { 3981 {
1854 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1855 if (waittime > to) waittime = to; 3983 if (waittime > to) waittime = to;
1856 } 3984 }
1857#endif 3985#endif
1858 3986
3987 /* don't let timeouts decrease the waittime below timeout_blocktime */
1859 if (expect_false (waittime < timeout_blocktime)) 3988 if (ecb_expect_false (waittime < timeout_blocktime))
1860 waittime = timeout_blocktime; 3989 waittime = timeout_blocktime;
1861 3990
1862 sleeptime = waittime - backend_fudge; 3991 /* now there are two more special cases left, either we have
3992 * already-expired timers, so we should not sleep, or we have timers
3993 * that expire very soon, in which case we need to wait for a minimum
3994 * amount of time for some event loop backends.
3995 */
3996 if (ecb_expect_false (waittime < backend_mintime))
3997 waittime = waittime <= EV_TS_CONST (0.)
3998 ? EV_TS_CONST (0.)
3999 : backend_mintime;
1863 4000
4001 /* extra check because io_blocktime is commonly 0 */
1864 if (expect_true (sleeptime > io_blocktime)) 4002 if (ecb_expect_false (io_blocktime))
1865 sleeptime = io_blocktime;
1866
1867 if (sleeptime)
1868 { 4003 {
4004 sleeptime = io_blocktime - (mn_now - prev_mn_now);
4005
4006 if (sleeptime > waittime - backend_mintime)
4007 sleeptime = waittime - backend_mintime;
4008
4009 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
4010 {
1869 ev_sleep (sleeptime); 4011 ev_sleep (sleeptime);
1870 waittime -= sleeptime; 4012 waittime -= sleeptime;
4013 }
1871 } 4014 }
1872 } 4015 }
1873 4016
4017#if EV_FEATURE_API
1874 ++loop_count; 4018 ++loop_count;
4019#endif
4020 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1875 backend_poll (EV_A_ waittime); 4021 backend_poll (EV_A_ waittime);
4022 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
4023
4024 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
4025
4026 ECB_MEMORY_FENCE_ACQUIRE;
4027 if (pipe_write_skipped)
4028 {
4029 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
4030 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
4031 }
1876 4032
1877 /* update ev_rt_now, do magic */ 4033 /* update ev_rt_now, do magic */
1878 time_update (EV_A_ waittime + sleeptime); 4034 time_update (EV_A_ waittime + sleeptime);
1879 } 4035 }
1880 4036
1887#if EV_IDLE_ENABLE 4043#if EV_IDLE_ENABLE
1888 /* queue idle watchers unless other events are pending */ 4044 /* queue idle watchers unless other events are pending */
1889 idle_reify (EV_A); 4045 idle_reify (EV_A);
1890#endif 4046#endif
1891 4047
4048#if EV_CHECK_ENABLE
1892 /* queue check watchers, to be executed first */ 4049 /* queue check watchers, to be executed first */
1893 if (expect_false (checkcnt)) 4050 if (ecb_expect_false (checkcnt))
1894 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 4051 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
4052#endif
1895 4053
1896 call_pending (EV_A); 4054 EV_INVOKE_PENDING;
1897 } 4055 }
1898 while (expect_true ( 4056 while (ecb_expect_true (
1899 activecnt 4057 activecnt
1900 && !loop_done 4058 && !loop_done
1901 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 4059 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1902 )); 4060 ));
1903 4061
1904 if (loop_done == EVUNLOOP_ONE) 4062 if (loop_done == EVBREAK_ONE)
1905 loop_done = EVUNLOOP_CANCEL; 4063 loop_done = EVBREAK_CANCEL;
1906}
1907 4064
4065#if EV_FEATURE_API
4066 --loop_depth;
4067#endif
4068
4069 return activecnt;
4070}
4071
1908void 4072void
1909ev_unloop (EV_P_ int how) 4073ev_break (EV_P_ int how) EV_NOEXCEPT
1910{ 4074{
1911 loop_done = how; 4075 loop_done = how;
1912} 4076}
1913 4077
4078void
4079ev_ref (EV_P) EV_NOEXCEPT
4080{
4081 ++activecnt;
4082}
4083
4084void
4085ev_unref (EV_P) EV_NOEXCEPT
4086{
4087 --activecnt;
4088}
4089
4090void
4091ev_now_update (EV_P) EV_NOEXCEPT
4092{
4093 time_update (EV_A_ EV_TSTAMP_HUGE);
4094}
4095
4096void
4097ev_suspend (EV_P) EV_NOEXCEPT
4098{
4099 ev_now_update (EV_A);
4100}
4101
4102void
4103ev_resume (EV_P) EV_NOEXCEPT
4104{
4105 ev_tstamp mn_prev = mn_now;
4106
4107 ev_now_update (EV_A);
4108 timers_reschedule (EV_A_ mn_now - mn_prev);
4109#if EV_PERIODIC_ENABLE
4110 /* TODO: really do this? */
4111 periodics_reschedule (EV_A);
4112#endif
4113}
4114
1914/*****************************************************************************/ 4115/*****************************************************************************/
4116/* singly-linked list management, used when the expected list length is short */
1915 4117
1916void inline_size 4118inline_size void
1917wlist_add (WL *head, WL elem) 4119wlist_add (WL *head, WL elem)
1918{ 4120{
1919 elem->next = *head; 4121 elem->next = *head;
1920 *head = elem; 4122 *head = elem;
1921} 4123}
1922 4124
1923void inline_size 4125inline_size void
1924wlist_del (WL *head, WL elem) 4126wlist_del (WL *head, WL elem)
1925{ 4127{
1926 while (*head) 4128 while (*head)
1927 { 4129 {
1928 if (*head == elem) 4130 if (ecb_expect_true (*head == elem))
1929 { 4131 {
1930 *head = elem->next; 4132 *head = elem->next;
1931 return; 4133 break;
1932 } 4134 }
1933 4135
1934 head = &(*head)->next; 4136 head = &(*head)->next;
1935 } 4137 }
1936} 4138}
1937 4139
1938void inline_speed 4140/* internal, faster, version of ev_clear_pending */
4141inline_speed void
1939clear_pending (EV_P_ W w) 4142clear_pending (EV_P_ W w)
1940{ 4143{
1941 if (w->pending) 4144 if (w->pending)
1942 { 4145 {
1943 pendings [ABSPRI (w)][w->pending - 1].w = 0; 4146 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1944 w->pending = 0; 4147 w->pending = 0;
1945 } 4148 }
1946} 4149}
1947 4150
1948int 4151int
1949ev_clear_pending (EV_P_ void *w) 4152ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
1950{ 4153{
1951 W w_ = (W)w; 4154 W w_ = (W)w;
1952 int pending = w_->pending; 4155 int pending = w_->pending;
1953 4156
1954 if (expect_true (pending)) 4157 if (ecb_expect_true (pending))
1955 { 4158 {
1956 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 4159 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4160 p->w = (W)&pending_w;
1957 w_->pending = 0; 4161 w_->pending = 0;
1958 p->w = 0;
1959 return p->events; 4162 return p->events;
1960 } 4163 }
1961 else 4164 else
1962 return 0; 4165 return 0;
1963} 4166}
1964 4167
1965void inline_size 4168inline_size void
1966pri_adjust (EV_P_ W w) 4169pri_adjust (EV_P_ W w)
1967{ 4170{
1968 int pri = w->priority; 4171 int pri = ev_priority (w);
1969 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 4172 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1970 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 4173 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1971 w->priority = pri; 4174 ev_set_priority (w, pri);
1972} 4175}
1973 4176
1974void inline_speed 4177inline_speed void
1975ev_start (EV_P_ W w, int active) 4178ev_start (EV_P_ W w, int active)
1976{ 4179{
1977 pri_adjust (EV_A_ w); 4180 pri_adjust (EV_A_ w);
1978 w->active = active; 4181 w->active = active;
1979 ev_ref (EV_A); 4182 ev_ref (EV_A);
1980} 4183}
1981 4184
1982void inline_size 4185inline_size void
1983ev_stop (EV_P_ W w) 4186ev_stop (EV_P_ W w)
1984{ 4187{
1985 ev_unref (EV_A); 4188 ev_unref (EV_A);
1986 w->active = 0; 4189 w->active = 0;
1987} 4190}
1988 4191
1989/*****************************************************************************/ 4192/*****************************************************************************/
1990 4193
1991void noinline 4194ecb_noinline
4195void
1992ev_io_start (EV_P_ ev_io *w) 4196ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
1993{ 4197{
1994 int fd = w->fd; 4198 int fd = w->fd;
1995 4199
1996 if (expect_false (ev_is_active (w))) 4200 if (ecb_expect_false (ev_is_active (w)))
1997 return; 4201 return;
1998 4202
1999 assert (("ev_io_start called with negative fd", fd >= 0)); 4203 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4204 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4205
4206#if EV_VERIFY >= 2
4207 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4208#endif
4209 EV_FREQUENT_CHECK;
2000 4210
2001 ev_start (EV_A_ (W)w, 1); 4211 ev_start (EV_A_ (W)w, 1);
2002 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 4212 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
2003 wlist_add (&anfds[fd].head, (WL)w); 4213 wlist_add (&anfds[fd].head, (WL)w);
2004 4214
4215 /* common bug, apparently */
4216 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4217
2005 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 4218 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2006 w->events &= ~EV_IOFDSET; 4219 w->events &= ~EV__IOFDSET;
2007}
2008 4220
2009void noinline 4221 EV_FREQUENT_CHECK;
4222}
4223
4224ecb_noinline
4225void
2010ev_io_stop (EV_P_ ev_io *w) 4226ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
2011{ 4227{
2012 clear_pending (EV_A_ (W)w); 4228 clear_pending (EV_A_ (W)w);
2013 if (expect_false (!ev_is_active (w))) 4229 if (ecb_expect_false (!ev_is_active (w)))
2014 return; 4230 return;
2015 4231
2016 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 4232 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4233
4234#if EV_VERIFY >= 2
4235 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4236#endif
4237 EV_FREQUENT_CHECK;
2017 4238
2018 wlist_del (&anfds[w->fd].head, (WL)w); 4239 wlist_del (&anfds[w->fd].head, (WL)w);
2019 ev_stop (EV_A_ (W)w); 4240 ev_stop (EV_A_ (W)w);
2020 4241
2021 fd_change (EV_A_ w->fd, 1); 4242 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2022}
2023 4243
2024void noinline 4244 EV_FREQUENT_CHECK;
4245}
4246
4247ecb_noinline
4248void
2025ev_timer_start (EV_P_ ev_timer *w) 4249ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
2026{ 4250{
2027 if (expect_false (ev_is_active (w))) 4251 if (ecb_expect_false (ev_is_active (w)))
2028 return; 4252 return;
2029 4253
2030 ev_at (w) += mn_now; 4254 ev_at (w) += mn_now;
2031 4255
2032 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 4256 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2033 4257
4258 EV_FREQUENT_CHECK;
4259
4260 ++timercnt;
2034 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 4261 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2035 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 4262 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
2036 ANHE_w (timers [ev_active (w)]) = (WT)w; 4263 ANHE_w (timers [ev_active (w)]) = (WT)w;
2037 ANHE_at_set (timers [ev_active (w)]); 4264 ANHE_at_cache (timers [ev_active (w)]);
2038 upheap (timers, ev_active (w)); 4265 upheap (timers, ev_active (w));
2039 4266
4267 EV_FREQUENT_CHECK;
4268
2040 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 4269 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2041} 4270}
2042 4271
2043void noinline 4272ecb_noinline
4273void
2044ev_timer_stop (EV_P_ ev_timer *w) 4274ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
2045{ 4275{
2046 clear_pending (EV_A_ (W)w); 4276 clear_pending (EV_A_ (W)w);
2047 if (expect_false (!ev_is_active (w))) 4277 if (ecb_expect_false (!ev_is_active (w)))
2048 return; 4278 return;
4279
4280 EV_FREQUENT_CHECK;
2049 4281
2050 { 4282 {
2051 int active = ev_active (w); 4283 int active = ev_active (w);
2052 4284
2053 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 4285 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2054 4286
4287 --timercnt;
4288
2055 if (expect_true (active < timercnt + HEAP0 - 1)) 4289 if (ecb_expect_true (active < timercnt + HEAP0))
2056 { 4290 {
2057 timers [active] = timers [timercnt + HEAP0 - 1]; 4291 timers [active] = timers [timercnt + HEAP0];
2058 adjustheap (timers, timercnt, active); 4292 adjustheap (timers, timercnt, active);
2059 } 4293 }
2060
2061 --timercnt;
2062 } 4294 }
2063 4295
2064 ev_at (w) -= mn_now; 4296 ev_at (w) -= mn_now;
2065 4297
2066 ev_stop (EV_A_ (W)w); 4298 ev_stop (EV_A_ (W)w);
2067}
2068 4299
2069void noinline 4300 EV_FREQUENT_CHECK;
4301}
4302
4303ecb_noinline
4304void
2070ev_timer_again (EV_P_ ev_timer *w) 4305ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
2071{ 4306{
4307 EV_FREQUENT_CHECK;
4308
4309 clear_pending (EV_A_ (W)w);
4310
2072 if (ev_is_active (w)) 4311 if (ev_is_active (w))
2073 { 4312 {
2074 if (w->repeat) 4313 if (w->repeat)
2075 { 4314 {
2076 ev_at (w) = mn_now + w->repeat; 4315 ev_at (w) = mn_now + w->repeat;
2077 ANHE_at_set (timers [ev_active (w)]); 4316 ANHE_at_cache (timers [ev_active (w)]);
2078 adjustheap (timers, timercnt, ev_active (w)); 4317 adjustheap (timers, timercnt, ev_active (w));
2079 } 4318 }
2080 else 4319 else
2081 ev_timer_stop (EV_A_ w); 4320 ev_timer_stop (EV_A_ w);
2082 } 4321 }
2083 else if (w->repeat) 4322 else if (w->repeat)
2084 { 4323 {
2085 ev_at (w) = w->repeat; 4324 ev_at (w) = w->repeat;
2086 ev_timer_start (EV_A_ w); 4325 ev_timer_start (EV_A_ w);
2087 } 4326 }
4327
4328 EV_FREQUENT_CHECK;
4329}
4330
4331ev_tstamp
4332ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4333{
4334 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
2088} 4335}
2089 4336
2090#if EV_PERIODIC_ENABLE 4337#if EV_PERIODIC_ENABLE
2091void noinline 4338ecb_noinline
4339void
2092ev_periodic_start (EV_P_ ev_periodic *w) 4340ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
2093{ 4341{
2094 if (expect_false (ev_is_active (w))) 4342 if (ecb_expect_false (ev_is_active (w)))
2095 return; 4343 return;
4344
4345#if EV_USE_TIMERFD
4346 if (timerfd == -2)
4347 evtimerfd_init (EV_A);
4348#endif
2096 4349
2097 if (w->reschedule_cb) 4350 if (w->reschedule_cb)
2098 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 4351 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2099 else if (w->interval) 4352 else if (w->interval)
2100 { 4353 {
2101 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4354 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2102 /* this formula differs from the one in periodic_reify because we do not always round up */ 4355 periodic_recalc (EV_A_ w);
2103 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2104 } 4356 }
2105 else 4357 else
2106 ev_at (w) = w->offset; 4358 ev_at (w) = w->offset;
2107 4359
4360 EV_FREQUENT_CHECK;
4361
4362 ++periodiccnt;
2108 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 4363 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2109 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 4364 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
2110 ANHE_w (periodics [ev_active (w)]) = (WT)w; 4365 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2111 ANHE_at_set (periodics [ev_active (w)]); 4366 ANHE_at_cache (periodics [ev_active (w)]);
2112 upheap (periodics, ev_active (w)); 4367 upheap (periodics, ev_active (w));
2113 4368
4369 EV_FREQUENT_CHECK;
4370
2114 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 4371 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2115} 4372}
2116 4373
2117void noinline 4374ecb_noinline
4375void
2118ev_periodic_stop (EV_P_ ev_periodic *w) 4376ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
2119{ 4377{
2120 clear_pending (EV_A_ (W)w); 4378 clear_pending (EV_A_ (W)w);
2121 if (expect_false (!ev_is_active (w))) 4379 if (ecb_expect_false (!ev_is_active (w)))
2122 return; 4380 return;
4381
4382 EV_FREQUENT_CHECK;
2123 4383
2124 { 4384 {
2125 int active = ev_active (w); 4385 int active = ev_active (w);
2126 4386
2127 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 4387 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2128 4388
4389 --periodiccnt;
4390
2129 if (expect_true (active < periodiccnt + HEAP0 - 1)) 4391 if (ecb_expect_true (active < periodiccnt + HEAP0))
2130 { 4392 {
2131 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 4393 periodics [active] = periodics [periodiccnt + HEAP0];
2132 adjustheap (periodics, periodiccnt, active); 4394 adjustheap (periodics, periodiccnt, active);
2133 } 4395 }
2134
2135 --periodiccnt;
2136 } 4396 }
2137 4397
2138 ev_stop (EV_A_ (W)w); 4398 ev_stop (EV_A_ (W)w);
2139}
2140 4399
2141void noinline 4400 EV_FREQUENT_CHECK;
4401}
4402
4403ecb_noinline
4404void
2142ev_periodic_again (EV_P_ ev_periodic *w) 4405ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
2143{ 4406{
2144 /* TODO: use adjustheap and recalculation */ 4407 /* TODO: use adjustheap and recalculation */
2145 ev_periodic_stop (EV_A_ w); 4408 ev_periodic_stop (EV_A_ w);
2146 ev_periodic_start (EV_A_ w); 4409 ev_periodic_start (EV_A_ w);
2147} 4410}
2149 4412
2150#ifndef SA_RESTART 4413#ifndef SA_RESTART
2151# define SA_RESTART 0 4414# define SA_RESTART 0
2152#endif 4415#endif
2153 4416
2154void noinline 4417#if EV_SIGNAL_ENABLE
4418
4419ecb_noinline
4420void
2155ev_signal_start (EV_P_ ev_signal *w) 4421ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
2156{ 4422{
4423 if (ecb_expect_false (ev_is_active (w)))
4424 return;
4425
4426 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4427
2157#if EV_MULTIPLICITY 4428#if EV_MULTIPLICITY
2158 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4429 assert (("libev: a signal must not be attached to two different loops",
2159#endif 4430 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2160 if (expect_false (ev_is_active (w)))
2161 return;
2162 4431
2163 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4432 signals [w->signum - 1].loop = EV_A;
4433 ECB_MEMORY_FENCE_RELEASE;
4434#endif
2164 4435
2165 evpipe_init (EV_A); 4436 EV_FREQUENT_CHECK;
2166 4437
4438#if EV_USE_SIGNALFD
4439 if (sigfd == -2)
2167 { 4440 {
2168#ifndef _WIN32 4441 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2169 sigset_t full, prev; 4442 if (sigfd < 0 && errno == EINVAL)
2170 sigfillset (&full); 4443 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2171 sigprocmask (SIG_SETMASK, &full, &prev);
2172#endif
2173 4444
2174 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4445 if (sigfd >= 0)
4446 {
4447 fd_intern (sigfd); /* doing it twice will not hurt */
2175 4448
2176#ifndef _WIN32 4449 sigemptyset (&sigfd_set);
2177 sigprocmask (SIG_SETMASK, &prev, 0); 4450
2178#endif 4451 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4452 ev_set_priority (&sigfd_w, EV_MAXPRI);
4453 ev_io_start (EV_A_ &sigfd_w);
4454 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4455 }
2179 } 4456 }
4457
4458 if (sigfd >= 0)
4459 {
4460 /* TODO: check .head */
4461 sigaddset (&sigfd_set, w->signum);
4462 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4463
4464 signalfd (sigfd, &sigfd_set, 0);
4465 }
4466#endif
2180 4467
2181 ev_start (EV_A_ (W)w, 1); 4468 ev_start (EV_A_ (W)w, 1);
2182 wlist_add (&signals [w->signum - 1].head, (WL)w); 4469 wlist_add (&signals [w->signum - 1].head, (WL)w);
2183 4470
2184 if (!((WL)w)->next) 4471 if (!((WL)w)->next)
4472# if EV_USE_SIGNALFD
4473 if (sigfd < 0) /*TODO*/
4474# endif
2185 { 4475 {
2186#if _WIN32 4476# ifdef _WIN32
4477 evpipe_init (EV_A);
4478
2187 signal (w->signum, ev_sighandler); 4479 signal (w->signum, ev_sighandler);
2188#else 4480# else
2189 struct sigaction sa; 4481 struct sigaction sa;
4482
4483 evpipe_init (EV_A);
4484
2190 sa.sa_handler = ev_sighandler; 4485 sa.sa_handler = ev_sighandler;
2191 sigfillset (&sa.sa_mask); 4486 sigfillset (&sa.sa_mask);
2192 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4487 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2193 sigaction (w->signum, &sa, 0); 4488 sigaction (w->signum, &sa, 0);
4489
4490 if (origflags & EVFLAG_NOSIGMASK)
4491 {
4492 sigemptyset (&sa.sa_mask);
4493 sigaddset (&sa.sa_mask, w->signum);
4494 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4495 }
2194#endif 4496#endif
2195 } 4497 }
2196}
2197 4498
2198void noinline 4499 EV_FREQUENT_CHECK;
4500}
4501
4502ecb_noinline
4503void
2199ev_signal_stop (EV_P_ ev_signal *w) 4504ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
2200{ 4505{
2201 clear_pending (EV_A_ (W)w); 4506 clear_pending (EV_A_ (W)w);
2202 if (expect_false (!ev_is_active (w))) 4507 if (ecb_expect_false (!ev_is_active (w)))
2203 return; 4508 return;
4509
4510 EV_FREQUENT_CHECK;
2204 4511
2205 wlist_del (&signals [w->signum - 1].head, (WL)w); 4512 wlist_del (&signals [w->signum - 1].head, (WL)w);
2206 ev_stop (EV_A_ (W)w); 4513 ev_stop (EV_A_ (W)w);
2207 4514
2208 if (!signals [w->signum - 1].head) 4515 if (!signals [w->signum - 1].head)
2209 signal (w->signum, SIG_DFL); 4516 {
2210}
2211
2212void
2213ev_child_start (EV_P_ ev_child *w)
2214{
2215#if EV_MULTIPLICITY 4517#if EV_MULTIPLICITY
4518 signals [w->signum - 1].loop = 0; /* unattach from signal */
4519#endif
4520#if EV_USE_SIGNALFD
4521 if (sigfd >= 0)
4522 {
4523 sigset_t ss;
4524
4525 sigemptyset (&ss);
4526 sigaddset (&ss, w->signum);
4527 sigdelset (&sigfd_set, w->signum);
4528
4529 signalfd (sigfd, &sigfd_set, 0);
4530 sigprocmask (SIG_UNBLOCK, &ss, 0);
4531 }
4532 else
4533#endif
4534 signal (w->signum, SIG_DFL);
4535 }
4536
4537 EV_FREQUENT_CHECK;
4538}
4539
4540#endif
4541
4542#if EV_CHILD_ENABLE
4543
4544void
4545ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4546{
4547#if EV_MULTIPLICITY
2216 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4548 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2217#endif 4549#endif
2218 if (expect_false (ev_is_active (w))) 4550 if (ecb_expect_false (ev_is_active (w)))
2219 return; 4551 return;
2220 4552
4553 EV_FREQUENT_CHECK;
4554
2221 ev_start (EV_A_ (W)w, 1); 4555 ev_start (EV_A_ (W)w, 1);
2222 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4556 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2223}
2224 4557
4558 EV_FREQUENT_CHECK;
4559}
4560
2225void 4561void
2226ev_child_stop (EV_P_ ev_child *w) 4562ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
2227{ 4563{
2228 clear_pending (EV_A_ (W)w); 4564 clear_pending (EV_A_ (W)w);
2229 if (expect_false (!ev_is_active (w))) 4565 if (ecb_expect_false (!ev_is_active (w)))
2230 return; 4566 return;
2231 4567
4568 EV_FREQUENT_CHECK;
4569
2232 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4570 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2233 ev_stop (EV_A_ (W)w); 4571 ev_stop (EV_A_ (W)w);
4572
4573 EV_FREQUENT_CHECK;
2234} 4574}
4575
4576#endif
2235 4577
2236#if EV_STAT_ENABLE 4578#if EV_STAT_ENABLE
2237 4579
2238# ifdef _WIN32 4580# ifdef _WIN32
2239# undef lstat 4581# undef lstat
2240# define lstat(a,b) _stati64 (a,b) 4582# define lstat(a,b) _stati64 (a,b)
2241# endif 4583# endif
2242 4584
2243#define DEF_STAT_INTERVAL 5.0074891 4585#define DEF_STAT_INTERVAL 5.0074891
4586#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2244#define MIN_STAT_INTERVAL 0.1074891 4587#define MIN_STAT_INTERVAL 0.1074891
2245 4588
2246static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4589ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2247 4590
2248#if EV_USE_INOTIFY 4591#if EV_USE_INOTIFY
2249# define EV_INOTIFY_BUFSIZE 8192
2250 4592
2251static void noinline 4593/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4594# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4595
4596ecb_noinline
4597static void
2252infy_add (EV_P_ ev_stat *w) 4598infy_add (EV_P_ ev_stat *w)
2253{ 4599{
2254 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4600 w->wd = inotify_add_watch (fs_fd, w->path,
4601 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4602 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4603 | IN_DONT_FOLLOW | IN_MASK_ADD);
2255 4604
2256 if (w->wd < 0) 4605 if (w->wd >= 0)
4606 {
4607 struct statfs sfs;
4608
4609 /* now local changes will be tracked by inotify, but remote changes won't */
4610 /* unless the filesystem is known to be local, we therefore still poll */
4611 /* also do poll on <2.6.25, but with normal frequency */
4612
4613 if (!fs_2625)
4614 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4615 else if (!statfs (w->path, &sfs)
4616 && (sfs.f_type == 0x1373 /* devfs */
4617 || sfs.f_type == 0x4006 /* fat */
4618 || sfs.f_type == 0x4d44 /* msdos */
4619 || sfs.f_type == 0xEF53 /* ext2/3 */
4620 || sfs.f_type == 0x72b6 /* jffs2 */
4621 || sfs.f_type == 0x858458f6 /* ramfs */
4622 || sfs.f_type == 0x5346544e /* ntfs */
4623 || sfs.f_type == 0x3153464a /* jfs */
4624 || sfs.f_type == 0x9123683e /* btrfs */
4625 || sfs.f_type == 0x52654973 /* reiser3 */
4626 || sfs.f_type == 0x01021994 /* tmpfs */
4627 || sfs.f_type == 0x58465342 /* xfs */))
4628 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4629 else
4630 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2257 { 4631 }
2258 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4632 else
4633 {
4634 /* can't use inotify, continue to stat */
4635 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2259 4636
2260 /* monitor some parent directory for speedup hints */ 4637 /* if path is not there, monitor some parent directory for speedup hints */
2261 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4638 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2262 /* but an efficiency issue only */ 4639 /* but an efficiency issue only */
2263 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4640 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2264 { 4641 {
2265 char path [4096]; 4642 char path [4096];
2266 strcpy (path, w->path); 4643 strcpy (path, w->path);
2270 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4647 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2271 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4648 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2272 4649
2273 char *pend = strrchr (path, '/'); 4650 char *pend = strrchr (path, '/');
2274 4651
2275 if (!pend) 4652 if (!pend || pend == path)
2276 break; /* whoops, no '/', complain to your admin */ 4653 break;
2277 4654
2278 *pend = 0; 4655 *pend = 0;
2279 w->wd = inotify_add_watch (fs_fd, path, mask); 4656 w->wd = inotify_add_watch (fs_fd, path, mask);
2280 } 4657 }
2281 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4658 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2282 } 4659 }
2283 } 4660 }
2284 else
2285 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2286 4661
2287 if (w->wd >= 0) 4662 if (w->wd >= 0)
2288 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4663 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2289}
2290 4664
2291static void noinline 4665 /* now re-arm timer, if required */
4666 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4667 ev_timer_again (EV_A_ &w->timer);
4668 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4669}
4670
4671ecb_noinline
4672static void
2292infy_del (EV_P_ ev_stat *w) 4673infy_del (EV_P_ ev_stat *w)
2293{ 4674{
2294 int slot; 4675 int slot;
2295 int wd = w->wd; 4676 int wd = w->wd;
2296 4677
2297 if (wd < 0) 4678 if (wd < 0)
2298 return; 4679 return;
2299 4680
2300 w->wd = -2; 4681 w->wd = -2;
2301 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4682 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2302 wlist_del (&fs_hash [slot].head, (WL)w); 4683 wlist_del (&fs_hash [slot].head, (WL)w);
2303 4684
2304 /* remove this watcher, if others are watching it, they will rearm */ 4685 /* remove this watcher, if others are watching it, they will rearm */
2305 inotify_rm_watch (fs_fd, wd); 4686 inotify_rm_watch (fs_fd, wd);
2306} 4687}
2307 4688
2308static void noinline 4689ecb_noinline
4690static void
2309infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4691infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2310{ 4692{
2311 if (slot < 0) 4693 if (slot < 0)
2312 /* overflow, need to check for all hahs slots */ 4694 /* overflow, need to check for all hash slots */
2313 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4695 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2314 infy_wd (EV_A_ slot, wd, ev); 4696 infy_wd (EV_A_ slot, wd, ev);
2315 else 4697 else
2316 { 4698 {
2317 WL w_; 4699 WL w_;
2318 4700
2319 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4701 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2320 { 4702 {
2321 ev_stat *w = (ev_stat *)w_; 4703 ev_stat *w = (ev_stat *)w_;
2322 w_ = w_->next; /* lets us remove this watcher and all before it */ 4704 w_ = w_->next; /* lets us remove this watcher and all before it */
2323 4705
2324 if (w->wd == wd || wd == -1) 4706 if (w->wd == wd || wd == -1)
2325 { 4707 {
2326 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4708 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2327 { 4709 {
4710 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2328 w->wd = -1; 4711 w->wd = -1;
2329 infy_add (EV_A_ w); /* re-add, no matter what */ 4712 infy_add (EV_A_ w); /* re-add, no matter what */
2330 } 4713 }
2331 4714
2332 stat_timer_cb (EV_A_ &w->timer, 0); 4715 stat_timer_cb (EV_A_ &w->timer, 0);
2337 4720
2338static void 4721static void
2339infy_cb (EV_P_ ev_io *w, int revents) 4722infy_cb (EV_P_ ev_io *w, int revents)
2340{ 4723{
2341 char buf [EV_INOTIFY_BUFSIZE]; 4724 char buf [EV_INOTIFY_BUFSIZE];
2342 struct inotify_event *ev = (struct inotify_event *)buf;
2343 int ofs; 4725 int ofs;
2344 int len = read (fs_fd, buf, sizeof (buf)); 4726 int len = read (fs_fd, buf, sizeof (buf));
2345 4727
2346 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4728 for (ofs = 0; ofs < len; )
4729 {
4730 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2347 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4731 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4732 ofs += sizeof (struct inotify_event) + ev->len;
4733 }
2348} 4734}
2349 4735
2350void inline_size 4736inline_size ecb_cold
4737void
4738ev_check_2625 (EV_P)
4739{
4740 /* kernels < 2.6.25 are borked
4741 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4742 */
4743 if (ev_linux_version () < 0x020619)
4744 return;
4745
4746 fs_2625 = 1;
4747}
4748
4749inline_size int
4750infy_newfd (void)
4751{
4752#if defined IN_CLOEXEC && defined IN_NONBLOCK
4753 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4754 if (fd >= 0)
4755 return fd;
4756#endif
4757 return inotify_init ();
4758}
4759
4760inline_size void
2351infy_init (EV_P) 4761infy_init (EV_P)
2352{ 4762{
2353 if (fs_fd != -2) 4763 if (fs_fd != -2)
2354 return; 4764 return;
2355 4765
4766 fs_fd = -1;
4767
4768 ev_check_2625 (EV_A);
4769
2356 fs_fd = inotify_init (); 4770 fs_fd = infy_newfd ();
2357 4771
2358 if (fs_fd >= 0) 4772 if (fs_fd >= 0)
2359 { 4773 {
4774 fd_intern (fs_fd);
2360 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4775 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2361 ev_set_priority (&fs_w, EV_MAXPRI); 4776 ev_set_priority (&fs_w, EV_MAXPRI);
2362 ev_io_start (EV_A_ &fs_w); 4777 ev_io_start (EV_A_ &fs_w);
4778 ev_unref (EV_A);
2363 } 4779 }
2364} 4780}
2365 4781
2366void inline_size 4782inline_size void
2367infy_fork (EV_P) 4783infy_fork (EV_P)
2368{ 4784{
2369 int slot; 4785 int slot;
2370 4786
2371 if (fs_fd < 0) 4787 if (fs_fd < 0)
2372 return; 4788 return;
2373 4789
4790 ev_ref (EV_A);
4791 ev_io_stop (EV_A_ &fs_w);
2374 close (fs_fd); 4792 close (fs_fd);
2375 fs_fd = inotify_init (); 4793 fs_fd = infy_newfd ();
2376 4794
4795 if (fs_fd >= 0)
4796 {
4797 fd_intern (fs_fd);
4798 ev_io_set (&fs_w, fs_fd, EV_READ);
4799 ev_io_start (EV_A_ &fs_w);
4800 ev_unref (EV_A);
4801 }
4802
2377 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4803 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2378 { 4804 {
2379 WL w_ = fs_hash [slot].head; 4805 WL w_ = fs_hash [slot].head;
2380 fs_hash [slot].head = 0; 4806 fs_hash [slot].head = 0;
2381 4807
2382 while (w_) 4808 while (w_)
2387 w->wd = -1; 4813 w->wd = -1;
2388 4814
2389 if (fs_fd >= 0) 4815 if (fs_fd >= 0)
2390 infy_add (EV_A_ w); /* re-add, no matter what */ 4816 infy_add (EV_A_ w); /* re-add, no matter what */
2391 else 4817 else
4818 {
4819 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4820 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2392 ev_timer_start (EV_A_ &w->timer); 4821 ev_timer_again (EV_A_ &w->timer);
4822 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4823 }
2393 } 4824 }
2394
2395 } 4825 }
2396} 4826}
2397 4827
2398#endif 4828#endif
2399 4829
4830#ifdef _WIN32
4831# define EV_LSTAT(p,b) _stati64 (p, b)
4832#else
4833# define EV_LSTAT(p,b) lstat (p, b)
4834#endif
4835
2400void 4836void
2401ev_stat_stat (EV_P_ ev_stat *w) 4837ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2402{ 4838{
2403 if (lstat (w->path, &w->attr) < 0) 4839 if (lstat (w->path, &w->attr) < 0)
2404 w->attr.st_nlink = 0; 4840 w->attr.st_nlink = 0;
2405 else if (!w->attr.st_nlink) 4841 else if (!w->attr.st_nlink)
2406 w->attr.st_nlink = 1; 4842 w->attr.st_nlink = 1;
2407} 4843}
2408 4844
2409static void noinline 4845ecb_noinline
4846static void
2410stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4847stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2411{ 4848{
2412 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4849 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2413 4850
2414 /* we copy this here each the time so that */ 4851 ev_statdata prev = w->attr;
2415 /* prev has the old value when the callback gets invoked */
2416 w->prev = w->attr;
2417 ev_stat_stat (EV_A_ w); 4852 ev_stat_stat (EV_A_ w);
2418 4853
2419 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4854 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2420 if ( 4855 if (
2421 w->prev.st_dev != w->attr.st_dev 4856 prev.st_dev != w->attr.st_dev
2422 || w->prev.st_ino != w->attr.st_ino 4857 || prev.st_ino != w->attr.st_ino
2423 || w->prev.st_mode != w->attr.st_mode 4858 || prev.st_mode != w->attr.st_mode
2424 || w->prev.st_nlink != w->attr.st_nlink 4859 || prev.st_nlink != w->attr.st_nlink
2425 || w->prev.st_uid != w->attr.st_uid 4860 || prev.st_uid != w->attr.st_uid
2426 || w->prev.st_gid != w->attr.st_gid 4861 || prev.st_gid != w->attr.st_gid
2427 || w->prev.st_rdev != w->attr.st_rdev 4862 || prev.st_rdev != w->attr.st_rdev
2428 || w->prev.st_size != w->attr.st_size 4863 || prev.st_size != w->attr.st_size
2429 || w->prev.st_atime != w->attr.st_atime 4864 || prev.st_atime != w->attr.st_atime
2430 || w->prev.st_mtime != w->attr.st_mtime 4865 || prev.st_mtime != w->attr.st_mtime
2431 || w->prev.st_ctime != w->attr.st_ctime 4866 || prev.st_ctime != w->attr.st_ctime
2432 ) { 4867 ) {
4868 /* we only update w->prev on actual differences */
4869 /* in case we test more often than invoke the callback, */
4870 /* to ensure that prev is always different to attr */
4871 w->prev = prev;
4872
2433 #if EV_USE_INOTIFY 4873 #if EV_USE_INOTIFY
4874 if (fs_fd >= 0)
4875 {
2434 infy_del (EV_A_ w); 4876 infy_del (EV_A_ w);
2435 infy_add (EV_A_ w); 4877 infy_add (EV_A_ w);
2436 ev_stat_stat (EV_A_ w); /* avoid race... */ 4878 ev_stat_stat (EV_A_ w); /* avoid race... */
4879 }
2437 #endif 4880 #endif
2438 4881
2439 ev_feed_event (EV_A_ w, EV_STAT); 4882 ev_feed_event (EV_A_ w, EV_STAT);
2440 } 4883 }
2441} 4884}
2442 4885
2443void 4886void
2444ev_stat_start (EV_P_ ev_stat *w) 4887ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2445{ 4888{
2446 if (expect_false (ev_is_active (w))) 4889 if (ecb_expect_false (ev_is_active (w)))
2447 return; 4890 return;
2448 4891
2449 /* since we use memcmp, we need to clear any padding data etc. */
2450 memset (&w->prev, 0, sizeof (ev_statdata));
2451 memset (&w->attr, 0, sizeof (ev_statdata));
2452
2453 ev_stat_stat (EV_A_ w); 4892 ev_stat_stat (EV_A_ w);
2454 4893
4894 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2455 if (w->interval < MIN_STAT_INTERVAL) 4895 w->interval = MIN_STAT_INTERVAL;
2456 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2457 4896
2458 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4897 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2459 ev_set_priority (&w->timer, ev_priority (w)); 4898 ev_set_priority (&w->timer, ev_priority (w));
2460 4899
2461#if EV_USE_INOTIFY 4900#if EV_USE_INOTIFY
2462 infy_init (EV_A); 4901 infy_init (EV_A);
2463 4902
2464 if (fs_fd >= 0) 4903 if (fs_fd >= 0)
2465 infy_add (EV_A_ w); 4904 infy_add (EV_A_ w);
2466 else 4905 else
2467#endif 4906#endif
4907 {
2468 ev_timer_start (EV_A_ &w->timer); 4908 ev_timer_again (EV_A_ &w->timer);
4909 ev_unref (EV_A);
4910 }
2469 4911
2470 ev_start (EV_A_ (W)w, 1); 4912 ev_start (EV_A_ (W)w, 1);
2471}
2472 4913
4914 EV_FREQUENT_CHECK;
4915}
4916
2473void 4917void
2474ev_stat_stop (EV_P_ ev_stat *w) 4918ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2475{ 4919{
2476 clear_pending (EV_A_ (W)w); 4920 clear_pending (EV_A_ (W)w);
2477 if (expect_false (!ev_is_active (w))) 4921 if (ecb_expect_false (!ev_is_active (w)))
2478 return; 4922 return;
4923
4924 EV_FREQUENT_CHECK;
2479 4925
2480#if EV_USE_INOTIFY 4926#if EV_USE_INOTIFY
2481 infy_del (EV_A_ w); 4927 infy_del (EV_A_ w);
2482#endif 4928#endif
4929
4930 if (ev_is_active (&w->timer))
4931 {
4932 ev_ref (EV_A);
2483 ev_timer_stop (EV_A_ &w->timer); 4933 ev_timer_stop (EV_A_ &w->timer);
4934 }
2484 4935
2485 ev_stop (EV_A_ (W)w); 4936 ev_stop (EV_A_ (W)w);
4937
4938 EV_FREQUENT_CHECK;
2486} 4939}
2487#endif 4940#endif
2488 4941
2489#if EV_IDLE_ENABLE 4942#if EV_IDLE_ENABLE
2490void 4943void
2491ev_idle_start (EV_P_ ev_idle *w) 4944ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2492{ 4945{
2493 if (expect_false (ev_is_active (w))) 4946 if (ecb_expect_false (ev_is_active (w)))
2494 return; 4947 return;
2495 4948
2496 pri_adjust (EV_A_ (W)w); 4949 pri_adjust (EV_A_ (W)w);
4950
4951 EV_FREQUENT_CHECK;
2497 4952
2498 { 4953 {
2499 int active = ++idlecnt [ABSPRI (w)]; 4954 int active = ++idlecnt [ABSPRI (w)];
2500 4955
2501 ++idleall; 4956 ++idleall;
2502 ev_start (EV_A_ (W)w, active); 4957 ev_start (EV_A_ (W)w, active);
2503 4958
2504 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4959 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
2505 idles [ABSPRI (w)][active - 1] = w; 4960 idles [ABSPRI (w)][active - 1] = w;
2506 } 4961 }
2507}
2508 4962
4963 EV_FREQUENT_CHECK;
4964}
4965
2509void 4966void
2510ev_idle_stop (EV_P_ ev_idle *w) 4967ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2511{ 4968{
2512 clear_pending (EV_A_ (W)w); 4969 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w))) 4970 if (ecb_expect_false (!ev_is_active (w)))
2514 return; 4971 return;
4972
4973 EV_FREQUENT_CHECK;
2515 4974
2516 { 4975 {
2517 int active = ev_active (w); 4976 int active = ev_active (w);
2518 4977
2519 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4978 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2520 ev_active (idles [ABSPRI (w)][active - 1]) = active; 4979 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2521 4980
2522 ev_stop (EV_A_ (W)w); 4981 ev_stop (EV_A_ (W)w);
2523 --idleall; 4982 --idleall;
2524 } 4983 }
2525}
2526#endif
2527 4984
4985 EV_FREQUENT_CHECK;
4986}
4987#endif
4988
4989#if EV_PREPARE_ENABLE
2528void 4990void
2529ev_prepare_start (EV_P_ ev_prepare *w) 4991ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2530{ 4992{
2531 if (expect_false (ev_is_active (w))) 4993 if (ecb_expect_false (ev_is_active (w)))
2532 return; 4994 return;
2533 4995
4996 EV_FREQUENT_CHECK;
4997
2534 ev_start (EV_A_ (W)w, ++preparecnt); 4998 ev_start (EV_A_ (W)w, ++preparecnt);
2535 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4999 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
2536 prepares [preparecnt - 1] = w; 5000 prepares [preparecnt - 1] = w;
2537}
2538 5001
5002 EV_FREQUENT_CHECK;
5003}
5004
2539void 5005void
2540ev_prepare_stop (EV_P_ ev_prepare *w) 5006ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2541{ 5007{
2542 clear_pending (EV_A_ (W)w); 5008 clear_pending (EV_A_ (W)w);
2543 if (expect_false (!ev_is_active (w))) 5009 if (ecb_expect_false (!ev_is_active (w)))
2544 return; 5010 return;
5011
5012 EV_FREQUENT_CHECK;
2545 5013
2546 { 5014 {
2547 int active = ev_active (w); 5015 int active = ev_active (w);
2548 5016
2549 prepares [active - 1] = prepares [--preparecnt]; 5017 prepares [active - 1] = prepares [--preparecnt];
2550 ev_active (prepares [active - 1]) = active; 5018 ev_active (prepares [active - 1]) = active;
2551 } 5019 }
2552 5020
2553 ev_stop (EV_A_ (W)w); 5021 ev_stop (EV_A_ (W)w);
2554}
2555 5022
5023 EV_FREQUENT_CHECK;
5024}
5025#endif
5026
5027#if EV_CHECK_ENABLE
2556void 5028void
2557ev_check_start (EV_P_ ev_check *w) 5029ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2558{ 5030{
2559 if (expect_false (ev_is_active (w))) 5031 if (ecb_expect_false (ev_is_active (w)))
2560 return; 5032 return;
2561 5033
5034 EV_FREQUENT_CHECK;
5035
2562 ev_start (EV_A_ (W)w, ++checkcnt); 5036 ev_start (EV_A_ (W)w, ++checkcnt);
2563 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 5037 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2564 checks [checkcnt - 1] = w; 5038 checks [checkcnt - 1] = w;
2565}
2566 5039
5040 EV_FREQUENT_CHECK;
5041}
5042
2567void 5043void
2568ev_check_stop (EV_P_ ev_check *w) 5044ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2569{ 5045{
2570 clear_pending (EV_A_ (W)w); 5046 clear_pending (EV_A_ (W)w);
2571 if (expect_false (!ev_is_active (w))) 5047 if (ecb_expect_false (!ev_is_active (w)))
2572 return; 5048 return;
5049
5050 EV_FREQUENT_CHECK;
2573 5051
2574 { 5052 {
2575 int active = ev_active (w); 5053 int active = ev_active (w);
2576 5054
2577 checks [active - 1] = checks [--checkcnt]; 5055 checks [active - 1] = checks [--checkcnt];
2578 ev_active (checks [active - 1]) = active; 5056 ev_active (checks [active - 1]) = active;
2579 } 5057 }
2580 5058
2581 ev_stop (EV_A_ (W)w); 5059 ev_stop (EV_A_ (W)w);
5060
5061 EV_FREQUENT_CHECK;
2582} 5062}
5063#endif
2583 5064
2584#if EV_EMBED_ENABLE 5065#if EV_EMBED_ENABLE
2585void noinline 5066ecb_noinline
5067void
2586ev_embed_sweep (EV_P_ ev_embed *w) 5068ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2587{ 5069{
2588 ev_loop (w->other, EVLOOP_NONBLOCK); 5070 ev_run (w->other, EVRUN_NOWAIT);
2589} 5071}
2590 5072
2591static void 5073static void
2592embed_io_cb (EV_P_ ev_io *io, int revents) 5074embed_io_cb (EV_P_ ev_io *io, int revents)
2593{ 5075{
2594 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 5076 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2595 5077
2596 if (ev_cb (w)) 5078 if (ev_cb (w))
2597 ev_feed_event (EV_A_ (W)w, EV_EMBED); 5079 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2598 else 5080 else
2599 ev_loop (w->other, EVLOOP_NONBLOCK); 5081 ev_run (w->other, EVRUN_NOWAIT);
2600} 5082}
2601 5083
2602static void 5084static void
2603embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 5085embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2604{ 5086{
2605 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 5087 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2606 5088
2607 { 5089 {
2608 struct ev_loop *loop = w->other; 5090 EV_P = w->other;
2609 5091
2610 while (fdchangecnt) 5092 while (fdchangecnt)
2611 { 5093 {
2612 fd_reify (EV_A); 5094 fd_reify (EV_A);
2613 ev_loop (EV_A_ EVLOOP_NONBLOCK); 5095 ev_run (EV_A_ EVRUN_NOWAIT);
2614 } 5096 }
2615 } 5097 }
2616} 5098}
5099
5100#if EV_FORK_ENABLE
5101static void
5102embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
5103{
5104 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
5105
5106 ev_embed_stop (EV_A_ w);
5107
5108 {
5109 EV_P = w->other;
5110
5111 ev_loop_fork (EV_A);
5112 ev_run (EV_A_ EVRUN_NOWAIT);
5113 }
5114
5115 ev_embed_start (EV_A_ w);
5116}
5117#endif
2617 5118
2618#if 0 5119#if 0
2619static void 5120static void
2620embed_idle_cb (EV_P_ ev_idle *idle, int revents) 5121embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2621{ 5122{
2622 ev_idle_stop (EV_A_ idle); 5123 ev_idle_stop (EV_A_ idle);
2623} 5124}
2624#endif 5125#endif
2625 5126
2626void 5127void
2627ev_embed_start (EV_P_ ev_embed *w) 5128ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2628{ 5129{
2629 if (expect_false (ev_is_active (w))) 5130 if (ecb_expect_false (ev_is_active (w)))
2630 return; 5131 return;
2631 5132
2632 { 5133 {
2633 struct ev_loop *loop = w->other; 5134 EV_P = w->other;
2634 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 5135 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2635 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 5136 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2636 } 5137 }
5138
5139 EV_FREQUENT_CHECK;
2637 5140
2638 ev_set_priority (&w->io, ev_priority (w)); 5141 ev_set_priority (&w->io, ev_priority (w));
2639 ev_io_start (EV_A_ &w->io); 5142 ev_io_start (EV_A_ &w->io);
2640 5143
2641 ev_prepare_init (&w->prepare, embed_prepare_cb); 5144 ev_prepare_init (&w->prepare, embed_prepare_cb);
2642 ev_set_priority (&w->prepare, EV_MINPRI); 5145 ev_set_priority (&w->prepare, EV_MINPRI);
2643 ev_prepare_start (EV_A_ &w->prepare); 5146 ev_prepare_start (EV_A_ &w->prepare);
2644 5147
5148#if EV_FORK_ENABLE
5149 ev_fork_init (&w->fork, embed_fork_cb);
5150 ev_fork_start (EV_A_ &w->fork);
5151#endif
5152
2645 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 5153 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2646 5154
2647 ev_start (EV_A_ (W)w, 1); 5155 ev_start (EV_A_ (W)w, 1);
2648}
2649 5156
5157 EV_FREQUENT_CHECK;
5158}
5159
2650void 5160void
2651ev_embed_stop (EV_P_ ev_embed *w) 5161ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2652{ 5162{
2653 clear_pending (EV_A_ (W)w); 5163 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w))) 5164 if (ecb_expect_false (!ev_is_active (w)))
2655 return; 5165 return;
2656 5166
5167 EV_FREQUENT_CHECK;
5168
2657 ev_io_stop (EV_A_ &w->io); 5169 ev_io_stop (EV_A_ &w->io);
2658 ev_prepare_stop (EV_A_ &w->prepare); 5170 ev_prepare_stop (EV_A_ &w->prepare);
5171#if EV_FORK_ENABLE
5172 ev_fork_stop (EV_A_ &w->fork);
5173#endif
2659 5174
2660 ev_stop (EV_A_ (W)w); 5175 ev_stop (EV_A_ (W)w);
5176
5177 EV_FREQUENT_CHECK;
2661} 5178}
2662#endif 5179#endif
2663 5180
2664#if EV_FORK_ENABLE 5181#if EV_FORK_ENABLE
2665void 5182void
2666ev_fork_start (EV_P_ ev_fork *w) 5183ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2667{ 5184{
2668 if (expect_false (ev_is_active (w))) 5185 if (ecb_expect_false (ev_is_active (w)))
2669 return; 5186 return;
2670 5187
5188 EV_FREQUENT_CHECK;
5189
2671 ev_start (EV_A_ (W)w, ++forkcnt); 5190 ev_start (EV_A_ (W)w, ++forkcnt);
2672 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 5191 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
2673 forks [forkcnt - 1] = w; 5192 forks [forkcnt - 1] = w;
2674}
2675 5193
5194 EV_FREQUENT_CHECK;
5195}
5196
2676void 5197void
2677ev_fork_stop (EV_P_ ev_fork *w) 5198ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2678{ 5199{
2679 clear_pending (EV_A_ (W)w); 5200 clear_pending (EV_A_ (W)w);
2680 if (expect_false (!ev_is_active (w))) 5201 if (ecb_expect_false (!ev_is_active (w)))
2681 return; 5202 return;
5203
5204 EV_FREQUENT_CHECK;
2682 5205
2683 { 5206 {
2684 int active = ev_active (w); 5207 int active = ev_active (w);
2685 5208
2686 forks [active - 1] = forks [--forkcnt]; 5209 forks [active - 1] = forks [--forkcnt];
2687 ev_active (forks [active - 1]) = active; 5210 ev_active (forks [active - 1]) = active;
2688 } 5211 }
2689 5212
2690 ev_stop (EV_A_ (W)w); 5213 ev_stop (EV_A_ (W)w);
5214
5215 EV_FREQUENT_CHECK;
5216}
5217#endif
5218
5219#if EV_CLEANUP_ENABLE
5220void
5221ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5222{
5223 if (ecb_expect_false (ev_is_active (w)))
5224 return;
5225
5226 EV_FREQUENT_CHECK;
5227
5228 ev_start (EV_A_ (W)w, ++cleanupcnt);
5229 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5230 cleanups [cleanupcnt - 1] = w;
5231
5232 /* cleanup watchers should never keep a refcount on the loop */
5233 ev_unref (EV_A);
5234 EV_FREQUENT_CHECK;
5235}
5236
5237void
5238ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5239{
5240 clear_pending (EV_A_ (W)w);
5241 if (ecb_expect_false (!ev_is_active (w)))
5242 return;
5243
5244 EV_FREQUENT_CHECK;
5245 ev_ref (EV_A);
5246
5247 {
5248 int active = ev_active (w);
5249
5250 cleanups [active - 1] = cleanups [--cleanupcnt];
5251 ev_active (cleanups [active - 1]) = active;
5252 }
5253
5254 ev_stop (EV_A_ (W)w);
5255
5256 EV_FREQUENT_CHECK;
2691} 5257}
2692#endif 5258#endif
2693 5259
2694#if EV_ASYNC_ENABLE 5260#if EV_ASYNC_ENABLE
2695void 5261void
2696ev_async_start (EV_P_ ev_async *w) 5262ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
2697{ 5263{
2698 if (expect_false (ev_is_active (w))) 5264 if (ecb_expect_false (ev_is_active (w)))
2699 return; 5265 return;
2700 5266
5267 w->sent = 0;
5268
2701 evpipe_init (EV_A); 5269 evpipe_init (EV_A);
2702 5270
5271 EV_FREQUENT_CHECK;
5272
2703 ev_start (EV_A_ (W)w, ++asynccnt); 5273 ev_start (EV_A_ (W)w, ++asynccnt);
2704 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 5274 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
2705 asyncs [asynccnt - 1] = w; 5275 asyncs [asynccnt - 1] = w;
2706}
2707 5276
5277 EV_FREQUENT_CHECK;
5278}
5279
2708void 5280void
2709ev_async_stop (EV_P_ ev_async *w) 5281ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
2710{ 5282{
2711 clear_pending (EV_A_ (W)w); 5283 clear_pending (EV_A_ (W)w);
2712 if (expect_false (!ev_is_active (w))) 5284 if (ecb_expect_false (!ev_is_active (w)))
2713 return; 5285 return;
5286
5287 EV_FREQUENT_CHECK;
2714 5288
2715 { 5289 {
2716 int active = ev_active (w); 5290 int active = ev_active (w);
2717 5291
2718 asyncs [active - 1] = asyncs [--asynccnt]; 5292 asyncs [active - 1] = asyncs [--asynccnt];
2719 ev_active (asyncs [active - 1]) = active; 5293 ev_active (asyncs [active - 1]) = active;
2720 } 5294 }
2721 5295
2722 ev_stop (EV_A_ (W)w); 5296 ev_stop (EV_A_ (W)w);
2723}
2724 5297
5298 EV_FREQUENT_CHECK;
5299}
5300
2725void 5301void
2726ev_async_send (EV_P_ ev_async *w) 5302ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
2727{ 5303{
2728 w->sent = 1; 5304 w->sent = 1;
2729 evpipe_write (EV_A_ &gotasync); 5305 evpipe_write (EV_A_ &async_pending);
2730} 5306}
2731#endif 5307#endif
2732 5308
2733/*****************************************************************************/ 5309/*****************************************************************************/
2734 5310
2744once_cb (EV_P_ struct ev_once *once, int revents) 5320once_cb (EV_P_ struct ev_once *once, int revents)
2745{ 5321{
2746 void (*cb)(int revents, void *arg) = once->cb; 5322 void (*cb)(int revents, void *arg) = once->cb;
2747 void *arg = once->arg; 5323 void *arg = once->arg;
2748 5324
2749 ev_io_stop (EV_A_ &once->io); 5325 ev_io_stop (EV_A_ &once->io);
2750 ev_timer_stop (EV_A_ &once->to); 5326 ev_timer_stop (EV_A_ &once->to);
2751 ev_free (once); 5327 ev_free (once);
2752 5328
2753 cb (revents, arg); 5329 cb (revents, arg);
2754} 5330}
2755 5331
2756static void 5332static void
2757once_cb_io (EV_P_ ev_io *w, int revents) 5333once_cb_io (EV_P_ ev_io *w, int revents)
2758{ 5334{
2759 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5335 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5336
5337 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2760} 5338}
2761 5339
2762static void 5340static void
2763once_cb_to (EV_P_ ev_timer *w, int revents) 5341once_cb_to (EV_P_ ev_timer *w, int revents)
2764{ 5342{
2765 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5343 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
2766}
2767 5344
5345 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5346}
5347
2768void 5348void
2769ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5349ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
2770{ 5350{
2771 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5351 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2772
2773 if (expect_false (!once))
2774 {
2775 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2776 return;
2777 }
2778 5352
2779 once->cb = cb; 5353 once->cb = cb;
2780 once->arg = arg; 5354 once->arg = arg;
2781 5355
2782 ev_init (&once->io, once_cb_io); 5356 ev_init (&once->io, once_cb_io);
2792 ev_timer_set (&once->to, timeout, 0.); 5366 ev_timer_set (&once->to, timeout, 0.);
2793 ev_timer_start (EV_A_ &once->to); 5367 ev_timer_start (EV_A_ &once->to);
2794 } 5368 }
2795} 5369}
2796 5370
5371/*****************************************************************************/
5372
5373#if EV_WALK_ENABLE
5374ecb_cold
5375void
5376ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5377{
5378 int i, j;
5379 ev_watcher_list *wl, *wn;
5380
5381 if (types & (EV_IO | EV_EMBED))
5382 for (i = 0; i < anfdmax; ++i)
5383 for (wl = anfds [i].head; wl; )
5384 {
5385 wn = wl->next;
5386
5387#if EV_EMBED_ENABLE
5388 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5389 {
5390 if (types & EV_EMBED)
5391 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5392 }
5393 else
5394#endif
5395#if EV_USE_INOTIFY
5396 if (ev_cb ((ev_io *)wl) == infy_cb)
5397 ;
5398 else
5399#endif
5400 if ((ev_io *)wl != &pipe_w)
5401 if (types & EV_IO)
5402 cb (EV_A_ EV_IO, wl);
5403
5404 wl = wn;
5405 }
5406
5407 if (types & (EV_TIMER | EV_STAT))
5408 for (i = timercnt + HEAP0; i-- > HEAP0; )
5409#if EV_STAT_ENABLE
5410 /*TODO: timer is not always active*/
5411 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5412 {
5413 if (types & EV_STAT)
5414 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5415 }
5416 else
5417#endif
5418 if (types & EV_TIMER)
5419 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5420
5421#if EV_PERIODIC_ENABLE
5422 if (types & EV_PERIODIC)
5423 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5424 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5425#endif
5426
5427#if EV_IDLE_ENABLE
5428 if (types & EV_IDLE)
5429 for (j = NUMPRI; j--; )
5430 for (i = idlecnt [j]; i--; )
5431 cb (EV_A_ EV_IDLE, idles [j][i]);
5432#endif
5433
5434#if EV_FORK_ENABLE
5435 if (types & EV_FORK)
5436 for (i = forkcnt; i--; )
5437 if (ev_cb (forks [i]) != embed_fork_cb)
5438 cb (EV_A_ EV_FORK, forks [i]);
5439#endif
5440
5441#if EV_ASYNC_ENABLE
5442 if (types & EV_ASYNC)
5443 for (i = asynccnt; i--; )
5444 cb (EV_A_ EV_ASYNC, asyncs [i]);
5445#endif
5446
5447#if EV_PREPARE_ENABLE
5448 if (types & EV_PREPARE)
5449 for (i = preparecnt; i--; )
5450# if EV_EMBED_ENABLE
5451 if (ev_cb (prepares [i]) != embed_prepare_cb)
5452# endif
5453 cb (EV_A_ EV_PREPARE, prepares [i]);
5454#endif
5455
5456#if EV_CHECK_ENABLE
5457 if (types & EV_CHECK)
5458 for (i = checkcnt; i--; )
5459 cb (EV_A_ EV_CHECK, checks [i]);
5460#endif
5461
5462#if EV_SIGNAL_ENABLE
5463 if (types & EV_SIGNAL)
5464 for (i = 0; i < EV_NSIG - 1; ++i)
5465 for (wl = signals [i].head; wl; )
5466 {
5467 wn = wl->next;
5468 cb (EV_A_ EV_SIGNAL, wl);
5469 wl = wn;
5470 }
5471#endif
5472
5473#if EV_CHILD_ENABLE
5474 if (types & EV_CHILD)
5475 for (i = (EV_PID_HASHSIZE); i--; )
5476 for (wl = childs [i]; wl; )
5477 {
5478 wn = wl->next;
5479 cb (EV_A_ EV_CHILD, wl);
5480 wl = wn;
5481 }
5482#endif
5483/* EV_STAT 0x00001000 /* stat data changed */
5484/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5485}
5486#endif
5487
2797#if EV_MULTIPLICITY 5488#if EV_MULTIPLICITY
2798 #include "ev_wrap.h" 5489 #include "ev_wrap.h"
2799#endif 5490#endif
2800 5491
2801#ifdef __cplusplus
2802}
2803#endif
2804

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines