ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.74 by root, Tue Nov 6 16:51:20 2007 UTC vs.
Revision 1.246 by root, Wed May 21 12:51:38 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
33 51
34# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
37# endif 66# endif
38 67
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
41# endif 74# endif
42 75
43# if HAVE_POLL && HAVE_POLL_H 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
45# endif 82# endif
46 83
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
49# endif 90# endif
50 91
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
53# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
54 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
55#endif 132#endif
56 133
57#include <math.h> 134#include <math.h>
58#include <stdlib.h> 135#include <stdlib.h>
59#include <fcntl.h> 136#include <fcntl.h>
66#include <sys/types.h> 143#include <sys/types.h>
67#include <time.h> 144#include <time.h>
68 145
69#include <signal.h> 146#include <signal.h>
70 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
71#ifndef WIN32 154#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 155# include <sys/time.h>
74# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
75#endif 163# endif
76/**/ 164#endif
165
166/* this block tries to deduce configuration from header-defined symbols and defaults */
77 167
78#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
80#endif 178#endif
81 179
82#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
84#endif 182#endif
85 183
86#ifndef EV_USE_POLL 184#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
88#endif 190#endif
89 191
90#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
91# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
92#endif 198#endif
93 199
94#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
96#endif 202#endif
97 203
204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
98#ifndef EV_USE_WIN32 208#ifndef EV_USE_INOTIFY
99# ifdef WIN32 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1 210# define EV_USE_INOTIFY 1
103# else 211# else
104# define EV_USE_WIN32 0 212# define EV_USE_INOTIFY 0
105# endif 213# endif
106#endif 214#endif
107 215
108#ifndef EV_USE_REALTIME 216#ifndef EV_PID_HASHSIZE
109# define EV_USE_REALTIME 1 217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
110#endif 221# endif
222#endif
111 223
112/**/ 224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
113 249
114#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
117#endif 253#endif
119#ifndef CLOCK_REALTIME 255#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 256# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 257# define EV_USE_REALTIME 0
122#endif 258#endif
123 259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
275#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h>
277#endif
278
279#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
289#endif
290
124/**/ 291/**/
125 292
293/*
294 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
302
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
130 306
131#include "ev.h"
132
133#if __GNUC__ >= 3 307#if __GNUC__ >= 4
134# define expect(expr,value) __builtin_expect ((expr),(value)) 308# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 309# define noinline __attribute__ ((noinline))
136#else 310#else
137# define expect(expr,value) (expr) 311# define expect(expr,value) (expr)
138# define inline static 312# define noinline
313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
314# define inline
315# endif
139#endif 316#endif
140 317
141#define expect_false(expr) expect ((expr) != 0, 0) 318#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1) 319#define expect_true(expr) expect ((expr) != 0, 1)
320#define inline_size static inline
321
322#if EV_MINIMAL
323# define inline_speed static noinline
324#else
325# define inline_speed static inline
326#endif
143 327
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
146 330
331#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */
333
147typedef struct ev_watcher *W; 334typedef ev_watcher *W;
148typedef struct ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
150 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
341#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
345#endif
152 346
347#ifdef _WIN32
153#include "ev_win32.c" 348# include "ev_win32.c"
349#endif
154 350
155/*****************************************************************************/ 351/*****************************************************************************/
156 352
157static void (*syserr_cb)(const char *msg); 353static void (*syserr_cb)(const char *msg);
158 354
355void
159void ev_set_syserr_cb (void (*cb)(const char *msg)) 356ev_set_syserr_cb (void (*cb)(const char *msg))
160{ 357{
161 syserr_cb = cb; 358 syserr_cb = cb;
162} 359}
163 360
164static void 361static void noinline
165syserr (const char *msg) 362syserr (const char *msg)
166{ 363{
167 if (!msg) 364 if (!msg)
168 msg = "(libev) system error"; 365 msg = "(libev) system error";
169 366
174 perror (msg); 371 perror (msg);
175 abort (); 372 abort ();
176 } 373 }
177} 374}
178 375
376static void *
377ev_realloc_emul (void *ptr, long size)
378{
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389}
390
179static void *(*alloc)(void *ptr, long size); 391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
180 392
393void
181void ev_set_allocator (void *(*cb)(void *ptr, long size)) 394ev_set_allocator (void *(*cb)(void *ptr, long size))
182{ 395{
183 alloc = cb; 396 alloc = cb;
184} 397}
185 398
186static void * 399inline_speed void *
187ev_realloc (void *ptr, long size) 400ev_realloc (void *ptr, long size)
188{ 401{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 402 ptr = alloc (ptr, size);
190 403
191 if (!ptr && size) 404 if (!ptr && size)
192 { 405 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort (); 407 abort ();
205typedef struct 418typedef struct
206{ 419{
207 WL head; 420 WL head;
208 unsigned char events; 421 unsigned char events;
209 unsigned char reify; 422 unsigned char reify;
423#if EV_SELECT_IS_WINSOCKET
424 SOCKET handle;
425#endif
210} ANFD; 426} ANFD;
211 427
212typedef struct 428typedef struct
213{ 429{
214 W w; 430 W w;
215 int events; 431 int events;
216} ANPENDING; 432} ANPENDING;
217 433
434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
436typedef struct
437{
438 WL head;
439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
458#endif
459
218#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
219 461
220struct ev_loop 462 struct ev_loop
221{ 463 {
464 ev_tstamp ev_rt_now;
465 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 466 #define VAR(name,decl) decl;
223# include "ev_vars.h" 467 #include "ev_vars.h"
224};
225# undef VAR 468 #undef VAR
469 };
226# include "ev_wrap.h" 470 #include "ev_wrap.h"
471
472 static struct ev_loop default_loop_struct;
473 struct ev_loop *ev_default_loop_ptr;
227 474
228#else 475#else
229 476
477 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 478 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 479 #include "ev_vars.h"
232# undef VAR 480 #undef VAR
481
482 static int ev_default_loop_ptr;
233 483
234#endif 484#endif
235 485
236/*****************************************************************************/ 486/*****************************************************************************/
237 487
238inline ev_tstamp 488ev_tstamp
239ev_time (void) 489ev_time (void)
240{ 490{
241#if EV_USE_REALTIME 491#if EV_USE_REALTIME
242 struct timespec ts; 492 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 493 clock_gettime (CLOCK_REALTIME, &ts);
247 gettimeofday (&tv, 0); 497 gettimeofday (&tv, 0);
248 return tv.tv_sec + tv.tv_usec * 1e-6; 498 return tv.tv_sec + tv.tv_usec * 1e-6;
249#endif 499#endif
250} 500}
251 501
252inline ev_tstamp 502ev_tstamp inline_size
253get_clock (void) 503get_clock (void)
254{ 504{
255#if EV_USE_MONOTONIC 505#if EV_USE_MONOTONIC
256 if (expect_true (have_monotonic)) 506 if (expect_true (have_monotonic))
257 { 507 {
262#endif 512#endif
263 513
264 return ev_time (); 514 return ev_time ();
265} 515}
266 516
517#if EV_MULTIPLICITY
267ev_tstamp 518ev_tstamp
268ev_now (EV_P) 519ev_now (EV_P)
269{ 520{
270 return rt_now; 521 return ev_rt_now;
271} 522}
523#endif
272 524
273#define array_roundsize(type,n) ((n) | 4 & ~3) 525void
526ev_sleep (ev_tstamp delay)
527{
528 if (delay > 0.)
529 {
530#if EV_USE_NANOSLEEP
531 struct timespec ts;
532
533 ts.tv_sec = (time_t)delay;
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0);
537#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3));
539#else
540 struct timeval tv;
541
542 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544
545 select (0, 0, 0, 0, &tv);
546#endif
547 }
548}
549
550/*****************************************************************************/
551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
554int inline_size
555array_nextsize (int elem, int cur, int cnt)
556{
557 int ncur = cur + 1;
558
559 do
560 ncur <<= 1;
561 while (cnt > ncur);
562
563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
565 {
566 ncur *= elem;
567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
568 ncur = ncur - sizeof (void *) * 4;
569 ncur /= elem;
570 }
571
572 return ncur;
573}
574
575static noinline void *
576array_realloc (int elem, void *base, int *cur, int cnt)
577{
578 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur);
580}
274 581
275#define array_needsize(type,base,cur,cnt,init) \ 582#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 583 if (expect_false ((cnt) > (cur))) \
277 { \ 584 { \
278 int newcnt = cur; \ 585 int ocur_ = (cur); \
279 do \ 586 (base) = (type *)array_realloc \
280 { \ 587 (sizeof (type), (base), &(cur), (cnt)); \
281 newcnt = array_roundsize (type, newcnt << 1); \ 588 init ((base) + (ocur_), (cur) - ocur_); \
282 } \
283 while ((cnt) > newcnt); \
284 \
285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \
287 cur = newcnt; \
288 } 589 }
289 590
591#if 0
290#define array_slim(type,stem) \ 592#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 593 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 594 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 595 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 596 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 598 }
297 599#endif
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302 600
303#define array_free(stem, idx) \ 601#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
305 603
306/*****************************************************************************/ 604/*****************************************************************************/
307 605
308static void 606void noinline
607ev_feed_event (EV_P_ void *w, int revents)
608{
609 W w_ = (W)w;
610 int pri = ABSPRI (w_);
611
612 if (expect_false (w_->pending))
613 pendings [pri][w_->pending - 1].events |= revents;
614 else
615 {
616 w_->pending = ++pendingcnt [pri];
617 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
618 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents;
620 }
621}
622
623void inline_speed
624queue_events (EV_P_ W *events, int eventcnt, int type)
625{
626 int i;
627
628 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type);
630}
631
632/*****************************************************************************/
633
634void inline_size
309anfds_init (ANFD *base, int count) 635anfds_init (ANFD *base, int count)
310{ 636{
311 while (count--) 637 while (count--)
312 { 638 {
313 base->head = 0; 639 base->head = 0;
316 642
317 ++base; 643 ++base;
318 } 644 }
319} 645}
320 646
321static void 647void inline_speed
322event (EV_P_ W w, int events)
323{
324 if (w->pending)
325 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events;
327 return;
328 }
329
330 w->pending = ++pendingcnt [ABSPRI (w)];
331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w;
333 pendings [ABSPRI (w)][w->pending - 1].events = events;
334}
335
336static void
337queue_events (EV_P_ W *events, int eventcnt, int type)
338{
339 int i;
340
341 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type);
343}
344
345static void
346fd_event (EV_P_ int fd, int events) 648fd_event (EV_P_ int fd, int revents)
347{ 649{
348 ANFD *anfd = anfds + fd; 650 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 651 ev_io *w;
350 652
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
352 { 654 {
353 int ev = w->events & events; 655 int ev = w->events & revents;
354 656
355 if (ev) 657 if (ev)
356 event (EV_A_ (W)w, ev); 658 ev_feed_event (EV_A_ (W)w, ev);
357 } 659 }
358} 660}
359 661
360/*****************************************************************************/ 662void
663ev_feed_fd_event (EV_P_ int fd, int revents)
664{
665 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents);
667}
361 668
362static void 669void inline_size
363fd_reify (EV_P) 670fd_reify (EV_P)
364{ 671{
365 int i; 672 int i;
366 673
367 for (i = 0; i < fdchangecnt; ++i) 674 for (i = 0; i < fdchangecnt; ++i)
368 { 675 {
369 int fd = fdchanges [i]; 676 int fd = fdchanges [i];
370 ANFD *anfd = anfds + fd; 677 ANFD *anfd = anfds + fd;
371 struct ev_io *w; 678 ev_io *w;
372 679
373 int events = 0; 680 unsigned char events = 0;
374 681
375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
376 events |= w->events; 683 events |= (unsigned char)w->events;
377 684
685#if EV_SELECT_IS_WINSOCKET
686 if (events)
687 {
688 unsigned long argp;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
692 anfd->handle = _get_osfhandle (fd);
693 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
695 }
696#endif
697
698 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
378 anfd->reify = 0; 702 anfd->reify = 0;
379
380 method_modify (EV_A_ fd, anfd->events, events);
381 anfd->events = events; 703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events);
707 }
382 } 708 }
383 709
384 fdchangecnt = 0; 710 fdchangecnt = 0;
385} 711}
386 712
387static void 713void inline_size
388fd_change (EV_P_ int fd) 714fd_change (EV_P_ int fd, int flags)
389{ 715{
390 if (anfds [fd].reify) 716 unsigned char reify = anfds [fd].reify;
391 return;
392
393 anfds [fd].reify = 1; 717 anfds [fd].reify |= flags;
394 718
719 if (expect_true (!reify))
720 {
395 ++fdchangecnt; 721 ++fdchangecnt;
396 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
397 fdchanges [fdchangecnt - 1] = fd; 723 fdchanges [fdchangecnt - 1] = fd;
724 }
398} 725}
399 726
400static void 727void inline_speed
401fd_kill (EV_P_ int fd) 728fd_kill (EV_P_ int fd)
402{ 729{
403 struct ev_io *w; 730 ev_io *w;
404 731
405 while ((w = (struct ev_io *)anfds [fd].head)) 732 while ((w = (ev_io *)anfds [fd].head))
406 { 733 {
407 ev_io_stop (EV_A_ w); 734 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 736 }
410} 737}
411 738
412static int 739int inline_size
413fd_valid (int fd) 740fd_valid (int fd)
414{ 741{
415#ifdef WIN32 742#ifdef _WIN32
416 return !!win32_get_osfhandle (fd); 743 return _get_osfhandle (fd) != -1;
417#else 744#else
418 return fcntl (fd, F_GETFD) != -1; 745 return fcntl (fd, F_GETFD) != -1;
419#endif 746#endif
420} 747}
421 748
422/* called on EBADF to verify fds */ 749/* called on EBADF to verify fds */
423static void 750static void noinline
424fd_ebadf (EV_P) 751fd_ebadf (EV_P)
425{ 752{
426 int fd; 753 int fd;
427 754
428 for (fd = 0; fd < anfdmax; ++fd) 755 for (fd = 0; fd < anfdmax; ++fd)
430 if (!fd_valid (fd) == -1 && errno == EBADF) 757 if (!fd_valid (fd) == -1 && errno == EBADF)
431 fd_kill (EV_A_ fd); 758 fd_kill (EV_A_ fd);
432} 759}
433 760
434/* called on ENOMEM in select/poll to kill some fds and retry */ 761/* called on ENOMEM in select/poll to kill some fds and retry */
435static void 762static void noinline
436fd_enomem (EV_P) 763fd_enomem (EV_P)
437{ 764{
438 int fd; 765 int fd;
439 766
440 for (fd = anfdmax; fd--; ) 767 for (fd = anfdmax; fd--; )
443 fd_kill (EV_A_ fd); 770 fd_kill (EV_A_ fd);
444 return; 771 return;
445 } 772 }
446} 773}
447 774
448/* usually called after fork if method needs to re-arm all fds from scratch */ 775/* usually called after fork if backend needs to re-arm all fds from scratch */
449static void 776static void noinline
450fd_rearm_all (EV_P) 777fd_rearm_all (EV_P)
451{ 778{
452 int fd; 779 int fd;
453 780
454 /* this should be highly optimised to not do anything but set a flag */
455 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
456 if (anfds [fd].events) 782 if (anfds [fd].events)
457 { 783 {
458 anfds [fd].events = 0; 784 anfds [fd].events = 0;
459 fd_change (EV_A_ fd); 785 fd_change (EV_A_ fd, EV_IOFDSET | 1);
460 } 786 }
461} 787}
462 788
463/*****************************************************************************/ 789/*****************************************************************************/
464 790
465static void 791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807
808/* towards the root */
809void inline_speed
466upheap (WT *heap, int k) 810upheap (ANHE *heap, int k)
467{ 811{
468 WT w = heap [k]; 812 ANHE he = heap [k];
469 813
470 while (k && heap [k >> 1]->at > w->at) 814 for (;;)
471 {
472 heap [k] = heap [k >> 1];
473 ((W)heap [k])->active = k + 1;
474 k >>= 1;
475 } 815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
476 817
477 heap [k] = w; 818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
478 ((W)heap [k])->active = k + 1;
479
480}
481
482static void
483downheap (WT *heap, int N, int k)
484{
485 WT w = heap [k];
486
487 while (k < (N >> 1))
488 {
489 int j = k << 1;
490
491 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
492 ++j;
493
494 if (w->at <= heap [j]->at)
495 break; 819 break;
496 820
497 heap [k] = heap [j]; 821 heap [k] = heap [p];
498 ((W)heap [k])->active = k + 1; 822 ev_active (ANHE_w (heap [k])) = k;
499 k = j; 823 k = p;
500 } 824 }
501 825
826 ev_active (ANHE_w (he)) = k;
502 heap [k] = w; 827 heap [k] = he;
503 ((W)heap [k])->active = k + 1; 828}
829
830/* away from the root */
831void inline_speed
832downheap (ANHE *heap, int N, int k)
833{
834 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0;
836
837 for (;;)
838 {
839 ev_tstamp minat;
840 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
842
843 // find minimum child
844 if (expect_true (pos + DHEAP - 1 < E))
845 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else if (pos < E)
852 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else
859 break;
860
861 if (ANHE_at (he) <= minat)
862 break;
863
864 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866
867 k = minpos - heap;
868 }
869
870 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872}
873
874#else // 4HEAP
875
876#define HEAP0 1
877
878/* towards the root */
879void inline_speed
880upheap (ANHE *heap, int k)
881{
882 ANHE he = heap [k];
883
884 for (;;)
885 {
886 int p = k >> 1;
887
888 /* maybe we could use a dummy element at heap [0]? */
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break;
891
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0;
916
917 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break;
919
920 heap [k] = heap [c];
921 ev_active (ANHE_w (heap [k])) = k;
922
923 k = c;
924 }
925
926 heap [k] = he;
927 ev_active (ANHE_w (he)) = k;
928}
929#endif
930
931void inline_size
932adjustheap (ANHE *heap, int N, int k)
933{
934 upheap (heap, k);
935 downheap (heap, N, k);
504} 936}
505 937
506/*****************************************************************************/ 938/*****************************************************************************/
507 939
508typedef struct 940typedef struct
509{ 941{
510 WL head; 942 WL head;
511 sig_atomic_t volatile gotsig; 943 EV_ATOMIC_T gotsig;
512} ANSIG; 944} ANSIG;
513 945
514static ANSIG *signals; 946static ANSIG *signals;
515static int signalmax; 947static int signalmax;
516 948
517static int sigpipe [2]; 949static EV_ATOMIC_T gotsig;
518static sig_atomic_t volatile gotsig;
519static struct ev_io sigev;
520 950
521static void 951void inline_size
522signals_init (ANSIG *base, int count) 952signals_init (ANSIG *base, int count)
523{ 953{
524 while (count--) 954 while (count--)
525 { 955 {
526 base->head = 0; 956 base->head = 0;
528 958
529 ++base; 959 ++base;
530 } 960 }
531} 961}
532 962
963/*****************************************************************************/
964
965void inline_speed
966fd_intern (int fd)
967{
968#ifdef _WIN32
969 int arg = 1;
970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
971#else
972 fcntl (fd, F_SETFD, FD_CLOEXEC);
973 fcntl (fd, F_SETFL, O_NONBLOCK);
974#endif
975}
976
977static void noinline
978evpipe_init (EV_P)
979{
980 if (!ev_is_active (&pipeev))
981 {
982#if EV_USE_EVENTFD
983 if ((evfd = eventfd (0, 0)) >= 0)
984 {
985 evpipe [0] = -1;
986 fd_intern (evfd);
987 ev_io_set (&pipeev, evfd, EV_READ);
988 }
989 else
990#endif
991 {
992 while (pipe (evpipe))
993 syserr ("(libev) error creating signal/async pipe");
994
995 fd_intern (evpipe [0]);
996 fd_intern (evpipe [1]);
997 ev_io_set (&pipeev, evpipe [0], EV_READ);
998 }
999
1000 ev_io_start (EV_A_ &pipeev);
1001 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 }
1003}
1004
1005void inline_size
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{
1008 if (!*flag)
1009 {
1010 int old_errno = errno; /* save errno because write might clobber it */
1011
1012 *flag = 1;
1013
1014#if EV_USE_EVENTFD
1015 if (evfd >= 0)
1016 {
1017 uint64_t counter = 1;
1018 write (evfd, &counter, sizeof (uint64_t));
1019 }
1020 else
1021#endif
1022 write (evpipe [1], &old_errno, 1);
1023
1024 errno = old_errno;
1025 }
1026}
1027
533static void 1028static void
1029pipecb (EV_P_ ev_io *iow, int revents)
1030{
1031#if EV_USE_EVENTFD
1032 if (evfd >= 0)
1033 {
1034 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t));
1036 }
1037 else
1038#endif
1039 {
1040 char dummy;
1041 read (evpipe [0], &dummy, 1);
1042 }
1043
1044 if (gotsig && ev_is_default_loop (EV_A))
1045 {
1046 int signum;
1047 gotsig = 0;
1048
1049 for (signum = signalmax; signum--; )
1050 if (signals [signum].gotsig)
1051 ev_feed_signal_event (EV_A_ signum + 1);
1052 }
1053
1054#if EV_ASYNC_ENABLE
1055 if (gotasync)
1056 {
1057 int i;
1058 gotasync = 0;
1059
1060 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent)
1062 {
1063 asyncs [i]->sent = 0;
1064 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1065 }
1066 }
1067#endif
1068}
1069
1070/*****************************************************************************/
1071
1072static void
534sighandler (int signum) 1073ev_sighandler (int signum)
535{ 1074{
1075#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct;
1077#endif
1078
536#if WIN32 1079#if _WIN32
537 signal (signum, sighandler); 1080 signal (signum, ev_sighandler);
538#endif 1081#endif
539 1082
540 signals [signum - 1].gotsig = 1; 1083 signals [signum - 1].gotsig = 1;
541 1084 evpipe_write (EV_A_ &gotsig);
542 if (!gotsig)
543 {
544 int old_errno = errno;
545 gotsig = 1;
546 write (sigpipe [1], &signum, 1);
547 errno = old_errno;
548 }
549} 1085}
550 1086
551static void 1087void noinline
552sigcb (EV_P_ struct ev_io *iow, int revents) 1088ev_feed_signal_event (EV_P_ int signum)
553{ 1089{
554 WL w; 1090 WL w;
1091
1092#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1094#endif
1095
555 int signum; 1096 --signum;
556 1097
557 read (sigpipe [0], &revents, 1); 1098 if (signum < 0 || signum >= signalmax)
558 gotsig = 0; 1099 return;
559 1100
560 for (signum = signalmax; signum--; )
561 if (signals [signum].gotsig)
562 {
563 signals [signum].gotsig = 0; 1101 signals [signum].gotsig = 0;
564 1102
565 for (w = signals [signum].head; w; w = w->next) 1103 for (w = signals [signum].head; w; w = w->next)
566 event (EV_A_ (W)w, EV_SIGNAL); 1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
567 }
568}
569
570static void
571siginit (EV_P)
572{
573#ifndef WIN32
574 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
575 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
576
577 /* rather than sort out wether we really need nb, set it */
578 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
579 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
580#endif
581
582 ev_io_set (&sigev, sigpipe [0], EV_READ);
583 ev_io_start (EV_A_ &sigev);
584 ev_unref (EV_A); /* child watcher should not keep loop alive */
585} 1105}
586 1106
587/*****************************************************************************/ 1107/*****************************************************************************/
588 1108
589static struct ev_child *childs [PID_HASHSIZE]; 1109static WL childs [EV_PID_HASHSIZE];
590 1110
591#ifndef WIN32 1111#ifndef _WIN32
592 1112
593static struct ev_signal childev; 1113static ev_signal childev;
1114
1115#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0
1117#endif
1118
1119void inline_speed
1120child_reap (EV_P_ int chain, int pid, int status)
1121{
1122 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1124
1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1126 {
1127 if ((w->pid == pid || !w->pid)
1128 && (!traced || (w->flags & 1)))
1129 {
1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1131 w->rpid = pid;
1132 w->rstatus = status;
1133 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1134 }
1135 }
1136}
594 1137
595#ifndef WCONTINUED 1138#ifndef WCONTINUED
596# define WCONTINUED 0 1139# define WCONTINUED 0
597#endif 1140#endif
598 1141
599static void 1142static void
600child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
601{
602 struct ev_child *w;
603
604 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
605 if (w->pid == pid || !w->pid)
606 {
607 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
608 w->rpid = pid;
609 w->rstatus = status;
610 event (EV_A_ (W)w, EV_CHILD);
611 }
612}
613
614static void
615childcb (EV_P_ struct ev_signal *sw, int revents) 1143childcb (EV_P_ ev_signal *sw, int revents)
616{ 1144{
617 int pid, status; 1145 int pid, status;
618 1146
1147 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
619 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1148 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
620 { 1149 if (!WCONTINUED
1150 || errno != EINVAL
1151 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1152 return;
1153
621 /* make sure we are called again until all childs have been reaped */ 1154 /* make sure we are called again until all children have been reaped */
1155 /* we need to do it this way so that the callback gets called before we continue */
622 event (EV_A_ (W)sw, EV_SIGNAL); 1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
623 1157
624 child_reap (EV_A_ sw, pid, pid, status); 1158 child_reap (EV_A_ pid, pid, status);
1159 if (EV_PID_HASHSIZE > 1)
625 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
626 }
627} 1161}
628 1162
629#endif 1163#endif
630 1164
631/*****************************************************************************/ 1165/*****************************************************************************/
632 1166
1167#if EV_USE_PORT
1168# include "ev_port.c"
1169#endif
633#if EV_USE_KQUEUE 1170#if EV_USE_KQUEUE
634# include "ev_kqueue.c" 1171# include "ev_kqueue.c"
635#endif 1172#endif
636#if EV_USE_EPOLL 1173#if EV_USE_EPOLL
637# include "ev_epoll.c" 1174# include "ev_epoll.c"
654{ 1191{
655 return EV_VERSION_MINOR; 1192 return EV_VERSION_MINOR;
656} 1193}
657 1194
658/* return true if we are running with elevated privileges and should ignore env variables */ 1195/* return true if we are running with elevated privileges and should ignore env variables */
659static int 1196int inline_size
660enable_secure (void) 1197enable_secure (void)
661{ 1198{
662#ifdef WIN32 1199#ifdef _WIN32
663 return 0; 1200 return 0;
664#else 1201#else
665 return getuid () != geteuid () 1202 return getuid () != geteuid ()
666 || getgid () != getegid (); 1203 || getgid () != getegid ();
667#endif 1204#endif
668} 1205}
669 1206
670int 1207unsigned int
671ev_method (EV_P) 1208ev_supported_backends (void)
672{ 1209{
673 return method; 1210 unsigned int flags = 0;
674}
675 1211
676static void 1212 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
677loop_init (EV_P_ int methods) 1213 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1214 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1215 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1216 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1217
1218 return flags;
1219}
1220
1221unsigned int
1222ev_recommended_backends (void)
678{ 1223{
679 if (!method) 1224 unsigned int flags = ev_supported_backends ();
1225
1226#ifndef __NetBSD__
1227 /* kqueue is borked on everything but netbsd apparently */
1228 /* it usually doesn't work correctly on anything but sockets and pipes */
1229 flags &= ~EVBACKEND_KQUEUE;
1230#endif
1231#ifdef __APPLE__
1232 // flags &= ~EVBACKEND_KQUEUE; for documentation
1233 flags &= ~EVBACKEND_POLL;
1234#endif
1235
1236 return flags;
1237}
1238
1239unsigned int
1240ev_embeddable_backends (void)
1241{
1242 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1243
1244 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1245 /* please fix it and tell me how to detect the fix */
1246 flags &= ~EVBACKEND_EPOLL;
1247
1248 return flags;
1249}
1250
1251unsigned int
1252ev_backend (EV_P)
1253{
1254 return backend;
1255}
1256
1257unsigned int
1258ev_loop_count (EV_P)
1259{
1260 return loop_count;
1261}
1262
1263void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1265{
1266 io_blocktime = interval;
1267}
1268
1269void
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1271{
1272 timeout_blocktime = interval;
1273}
1274
1275static void noinline
1276loop_init (EV_P_ unsigned int flags)
1277{
1278 if (!backend)
680 { 1279 {
681#if EV_USE_MONOTONIC 1280#if EV_USE_MONOTONIC
682 { 1281 {
683 struct timespec ts; 1282 struct timespec ts;
684 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
685 have_monotonic = 1; 1284 have_monotonic = 1;
686 } 1285 }
687#endif 1286#endif
688 1287
689 rt_now = ev_time (); 1288 ev_rt_now = ev_time ();
690 mn_now = get_clock (); 1289 mn_now = get_clock ();
691 now_floor = mn_now; 1290 now_floor = mn_now;
692 rtmn_diff = rt_now - mn_now; 1291 rtmn_diff = ev_rt_now - mn_now;
693 1292
694 if (methods == EVMETHOD_AUTO) 1293 io_blocktime = 0.;
695 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1294 timeout_blocktime = 0.;
1295 backend = 0;
1296 backend_fd = -1;
1297 gotasync = 0;
1298#if EV_USE_INOTIFY
1299 fs_fd = -2;
1300#endif
1301
1302 /* pid check not overridable via env */
1303#ifndef _WIN32
1304 if (flags & EVFLAG_FORKCHECK)
1305 curpid = getpid ();
1306#endif
1307
1308 if (!(flags & EVFLAG_NOENV)
1309 && !enable_secure ()
1310 && getenv ("LIBEV_FLAGS"))
696 methods = atoi (getenv ("LIBEV_METHODS")); 1311 flags = atoi (getenv ("LIBEV_FLAGS"));
697 else
698 methods = EVMETHOD_ANY;
699 1312
700 method = 0; 1313 if (!(flags & 0x0000ffffU))
701#if EV_USE_WIN32 1314 flags |= ev_recommended_backends ();
702 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1315
1316#if EV_USE_PORT
1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
703#endif 1318#endif
704#if EV_USE_KQUEUE 1319#if EV_USE_KQUEUE
705 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1320 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
706#endif 1321#endif
707#if EV_USE_EPOLL 1322#if EV_USE_EPOLL
708 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1323 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
709#endif 1324#endif
710#if EV_USE_POLL 1325#if EV_USE_POLL
711 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1326 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
712#endif 1327#endif
713#if EV_USE_SELECT 1328#if EV_USE_SELECT
714 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
715#endif 1330#endif
716 1331
717 ev_watcher_init (&sigev, sigcb); 1332 ev_init (&pipeev, pipecb);
718 ev_set_priority (&sigev, EV_MAXPRI); 1333 ev_set_priority (&pipeev, EV_MAXPRI);
719 } 1334 }
720} 1335}
721 1336
722void 1337static void noinline
723loop_destroy (EV_P) 1338loop_destroy (EV_P)
724{ 1339{
725 int i; 1340 int i;
726 1341
1342 if (ev_is_active (&pipeev))
1343 {
1344 ev_ref (EV_A); /* signal watcher */
1345 ev_io_stop (EV_A_ &pipeev);
1346
1347#if EV_USE_EVENTFD
1348 if (evfd >= 0)
1349 close (evfd);
1350#endif
1351
1352 if (evpipe [0] >= 0)
1353 {
1354 close (evpipe [0]);
1355 close (evpipe [1]);
1356 }
1357 }
1358
727#if EV_USE_WIN32 1359#if EV_USE_INOTIFY
728 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1360 if (fs_fd >= 0)
1361 close (fs_fd);
1362#endif
1363
1364 if (backend_fd >= 0)
1365 close (backend_fd);
1366
1367#if EV_USE_PORT
1368 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
729#endif 1369#endif
730#if EV_USE_KQUEUE 1370#if EV_USE_KQUEUE
731 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1371 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
732#endif 1372#endif
733#if EV_USE_EPOLL 1373#if EV_USE_EPOLL
734 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1374 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
735#endif 1375#endif
736#if EV_USE_POLL 1376#if EV_USE_POLL
737 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1377 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
738#endif 1378#endif
739#if EV_USE_SELECT 1379#if EV_USE_SELECT
740 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1380 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
741#endif 1381#endif
742 1382
743 for (i = NUMPRI; i--; ) 1383 for (i = NUMPRI; i--; )
1384 {
744 array_free (pending, [i]); 1385 array_free (pending, [i]);
1386#if EV_IDLE_ENABLE
1387 array_free (idle, [i]);
1388#endif
1389 }
1390
1391 ev_free (anfds); anfdmax = 0;
745 1392
746 /* have to use the microsoft-never-gets-it-right macro */ 1393 /* have to use the microsoft-never-gets-it-right macro */
747 array_free_microshit (fdchange); 1394 array_free (fdchange, EMPTY);
748 array_free_microshit (timer); 1395 array_free (timer, EMPTY);
749 array_free_microshit (periodic); 1396#if EV_PERIODIC_ENABLE
750 array_free_microshit (idle); 1397 array_free (periodic, EMPTY);
751 array_free_microshit (prepare); 1398#endif
752 array_free_microshit (check); 1399#if EV_FORK_ENABLE
1400 array_free (fork, EMPTY);
1401#endif
1402 array_free (prepare, EMPTY);
1403 array_free (check, EMPTY);
1404#if EV_ASYNC_ENABLE
1405 array_free (async, EMPTY);
1406#endif
753 1407
754 method = 0; 1408 backend = 0;
755} 1409}
756 1410
757static void 1411#if EV_USE_INOTIFY
1412void inline_size infy_fork (EV_P);
1413#endif
1414
1415void inline_size
758loop_fork (EV_P) 1416loop_fork (EV_P)
759{ 1417{
1418#if EV_USE_PORT
1419 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1420#endif
1421#if EV_USE_KQUEUE
1422 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1423#endif
760#if EV_USE_EPOLL 1424#if EV_USE_EPOLL
761 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1425 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
762#endif 1426#endif
763#if EV_USE_KQUEUE 1427#if EV_USE_INOTIFY
764 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1428 infy_fork (EV_A);
765#endif 1429#endif
766 1430
767 if (ev_is_active (&sigev)) 1431 if (ev_is_active (&pipeev))
768 { 1432 {
769 /* default loop */ 1433 /* this "locks" the handlers against writing to the pipe */
1434 /* while we modify the fd vars */
1435 gotsig = 1;
1436#if EV_ASYNC_ENABLE
1437 gotasync = 1;
1438#endif
770 1439
771 ev_ref (EV_A); 1440 ev_ref (EV_A);
772 ev_io_stop (EV_A_ &sigev); 1441 ev_io_stop (EV_A_ &pipeev);
1442
1443#if EV_USE_EVENTFD
1444 if (evfd >= 0)
1445 close (evfd);
1446#endif
1447
1448 if (evpipe [0] >= 0)
1449 {
773 close (sigpipe [0]); 1450 close (evpipe [0]);
774 close (sigpipe [1]); 1451 close (evpipe [1]);
1452 }
775 1453
776 while (pipe (sigpipe))
777 syserr ("(libev) error creating pipe");
778
779 siginit (EV_A); 1454 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ);
780 } 1457 }
781 1458
782 postfork = 0; 1459 postfork = 0;
783} 1460}
784 1461
785#if EV_MULTIPLICITY 1462#if EV_MULTIPLICITY
786struct ev_loop * 1463struct ev_loop *
787ev_loop_new (int methods) 1464ev_loop_new (unsigned int flags)
788{ 1465{
789 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1466 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
790 1467
791 memset (loop, 0, sizeof (struct ev_loop)); 1468 memset (loop, 0, sizeof (struct ev_loop));
792 1469
793 loop_init (EV_A_ methods); 1470 loop_init (EV_A_ flags);
794 1471
795 if (ev_method (EV_A)) 1472 if (ev_backend (EV_A))
796 return loop; 1473 return loop;
797 1474
798 return 0; 1475 return 0;
799} 1476}
800 1477
806} 1483}
807 1484
808void 1485void
809ev_loop_fork (EV_P) 1486ev_loop_fork (EV_P)
810{ 1487{
811 postfork = 1; 1488 postfork = 1; /* must be in line with ev_default_fork */
812} 1489}
813
814#endif 1490#endif
815 1491
816#if EV_MULTIPLICITY 1492#if EV_MULTIPLICITY
817struct ev_loop default_loop_struct;
818static struct ev_loop *default_loop;
819
820struct ev_loop * 1493struct ev_loop *
1494ev_default_loop_init (unsigned int flags)
821#else 1495#else
822static int default_loop;
823
824int 1496int
1497ev_default_loop (unsigned int flags)
825#endif 1498#endif
826ev_default_loop (int methods)
827{ 1499{
828 if (sigpipe [0] == sigpipe [1])
829 if (pipe (sigpipe))
830 return 0;
831
832 if (!default_loop) 1500 if (!ev_default_loop_ptr)
833 { 1501 {
834#if EV_MULTIPLICITY 1502#if EV_MULTIPLICITY
835 struct ev_loop *loop = default_loop = &default_loop_struct; 1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
836#else 1504#else
837 default_loop = 1; 1505 ev_default_loop_ptr = 1;
838#endif 1506#endif
839 1507
840 loop_init (EV_A_ methods); 1508 loop_init (EV_A_ flags);
841 1509
842 if (ev_method (EV_A)) 1510 if (ev_backend (EV_A))
843 { 1511 {
844 siginit (EV_A);
845
846#ifndef WIN32 1512#ifndef _WIN32
847 ev_signal_init (&childev, childcb, SIGCHLD); 1513 ev_signal_init (&childev, childcb, SIGCHLD);
848 ev_set_priority (&childev, EV_MAXPRI); 1514 ev_set_priority (&childev, EV_MAXPRI);
849 ev_signal_start (EV_A_ &childev); 1515 ev_signal_start (EV_A_ &childev);
850 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1516 ev_unref (EV_A); /* child watcher should not keep loop alive */
851#endif 1517#endif
852 } 1518 }
853 else 1519 else
854 default_loop = 0; 1520 ev_default_loop_ptr = 0;
855 } 1521 }
856 1522
857 return default_loop; 1523 return ev_default_loop_ptr;
858} 1524}
859 1525
860void 1526void
861ev_default_destroy (void) 1527ev_default_destroy (void)
862{ 1528{
863#if EV_MULTIPLICITY 1529#if EV_MULTIPLICITY
864 struct ev_loop *loop = default_loop; 1530 struct ev_loop *loop = ev_default_loop_ptr;
865#endif 1531#endif
866 1532
867#ifndef WIN32 1533#ifndef _WIN32
868 ev_ref (EV_A); /* child watcher */ 1534 ev_ref (EV_A); /* child watcher */
869 ev_signal_stop (EV_A_ &childev); 1535 ev_signal_stop (EV_A_ &childev);
870#endif 1536#endif
871 1537
872 ev_ref (EV_A); /* signal watcher */
873 ev_io_stop (EV_A_ &sigev);
874
875 close (sigpipe [0]); sigpipe [0] = 0;
876 close (sigpipe [1]); sigpipe [1] = 0;
877
878 loop_destroy (EV_A); 1538 loop_destroy (EV_A);
879} 1539}
880 1540
881void 1541void
882ev_default_fork (void) 1542ev_default_fork (void)
883{ 1543{
884#if EV_MULTIPLICITY 1544#if EV_MULTIPLICITY
885 struct ev_loop *loop = default_loop; 1545 struct ev_loop *loop = ev_default_loop_ptr;
886#endif 1546#endif
887 1547
888 if (method) 1548 if (backend)
889 postfork = 1; 1549 postfork = 1; /* must be in line with ev_loop_fork */
890} 1550}
891 1551
892/*****************************************************************************/ 1552/*****************************************************************************/
893 1553
894static void 1554void
1555ev_invoke (EV_P_ void *w, int revents)
1556{
1557 EV_CB_INVOKE ((W)w, revents);
1558}
1559
1560void inline_speed
895call_pending (EV_P) 1561call_pending (EV_P)
896{ 1562{
897 int pri; 1563 int pri;
898 1564
899 for (pri = NUMPRI; pri--; ) 1565 for (pri = NUMPRI; pri--; )
900 while (pendingcnt [pri]) 1566 while (pendingcnt [pri])
901 { 1567 {
902 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1568 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
903 1569
904 if (p->w) 1570 if (expect_true (p->w))
905 { 1571 {
1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1573
906 p->w->pending = 0; 1574 p->w->pending = 0;
907 p->w->cb (EV_A_ p->w, p->events); 1575 EV_CB_INVOKE (p->w, p->events);
908 } 1576 }
909 } 1577 }
910} 1578}
911 1579
912static void 1580#if EV_IDLE_ENABLE
1581void inline_size
1582idle_reify (EV_P)
1583{
1584 if (expect_false (idleall))
1585 {
1586 int pri;
1587
1588 for (pri = NUMPRI; pri--; )
1589 {
1590 if (pendingcnt [pri])
1591 break;
1592
1593 if (idlecnt [pri])
1594 {
1595 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1596 break;
1597 }
1598 }
1599 }
1600}
1601#endif
1602
1603void inline_size
913timers_reify (EV_P) 1604timers_reify (EV_P)
914{ 1605{
915 while (timercnt && ((WT)timers [0])->at <= mn_now) 1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
916 { 1607 {
917 struct ev_timer *w = timers [0]; 1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
918 1609
919 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
920 1611
921 /* first reschedule or stop timer */ 1612 /* first reschedule or stop timer */
922 if (w->repeat) 1613 if (w->repeat)
923 { 1614 {
1615 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now;
1618
924 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
925 ((WT)w)->at = mn_now + w->repeat; 1620
1621 ANHE_at_set (timers [HEAP0]);
926 downheap ((WT *)timers, timercnt, 0); 1622 downheap (timers, timercnt, HEAP0);
927 } 1623 }
928 else 1624 else
929 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
930 1626
931 event (EV_A_ (W)w, EV_TIMEOUT); 1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
932 } 1628 }
933} 1629}
934 1630
935static void 1631#if EV_PERIODIC_ENABLE
1632void inline_size
936periodics_reify (EV_P) 1633periodics_reify (EV_P)
937{ 1634{
938 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
939 { 1636 {
940 struct ev_periodic *w = periodics [0]; 1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
941 1638
942 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
943 1640
944 /* first reschedule or stop timer */ 1641 /* first reschedule or stop timer */
945 if (w->interval) 1642 if (w->reschedule_cb)
946 { 1643 {
947 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
948 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1645
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647
1648 ANHE_at_set (periodics [HEAP0]);
949 downheap ((WT *)periodics, periodiccnt, 0); 1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else if (w->interval)
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 /* if next trigger time is not sufficiently in the future, put it there */
1655 /* this might happen because of floating point inexactness */
1656 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1657 {
1658 ev_at (w) += w->interval;
1659
1660 /* if interval is unreasonably low we might still have a time in the past */
1661 /* so correct this. this will make the periodic very inexact, but the user */
1662 /* has effectively asked to get triggered more often than possible */
1663 if (ev_at (w) < ev_rt_now)
1664 ev_at (w) = ev_rt_now;
1665 }
1666
1667 ANHE_at_set (periodics [HEAP0]);
1668 downheap (periodics, periodiccnt, HEAP0);
950 } 1669 }
951 else 1670 else
952 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1671 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
953 1672
954 event (EV_A_ (W)w, EV_PERIODIC); 1673 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
955 } 1674 }
956} 1675}
957 1676
958static void 1677static void noinline
959periodics_reschedule (EV_P) 1678periodics_reschedule (EV_P)
960{ 1679{
961 int i; 1680 int i;
962 1681
963 /* adjust periodics after time jump */ 1682 /* adjust periodics after time jump */
1683 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1684 {
1685 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1686
1687 if (w->reschedule_cb)
1688 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval)
1690 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1691
1692 ANHE_at_set (periodics [i]);
1693 }
1694
1695 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1696 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
964 for (i = 0; i < periodiccnt; ++i) 1697 for (i = 0; i < periodiccnt; ++i)
965 { 1698 upheap (periodics, i + HEAP0);
966 struct ev_periodic *w = periodics [i]; 1699}
1700#endif
967 1701
968 if (w->interval) 1702void inline_speed
1703time_update (EV_P_ ev_tstamp max_block)
1704{
1705 int i;
1706
1707#if EV_USE_MONOTONIC
1708 if (expect_true (have_monotonic))
1709 {
1710 ev_tstamp odiff = rtmn_diff;
1711
1712 mn_now = get_clock ();
1713
1714 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1715 /* interpolate in the meantime */
1716 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
969 { 1717 {
970 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1718 ev_rt_now = rtmn_diff + mn_now;
1719 return;
1720 }
971 1721
972 if (fabs (diff) >= 1e-4) 1722 now_floor = mn_now;
1723 ev_rt_now = ev_time ();
1724
1725 /* loop a few times, before making important decisions.
1726 * on the choice of "4": one iteration isn't enough,
1727 * in case we get preempted during the calls to
1728 * ev_time and get_clock. a second call is almost guaranteed
1729 * to succeed in that case, though. and looping a few more times
1730 * doesn't hurt either as we only do this on time-jumps or
1731 * in the unlikely event of having been preempted here.
1732 */
1733 for (i = 4; --i; )
1734 {
1735 rtmn_diff = ev_rt_now - mn_now;
1736
1737 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1738 return; /* all is well */
1739
1740 ev_rt_now = ev_time ();
1741 mn_now = get_clock ();
1742 now_floor = mn_now;
1743 }
1744
1745# if EV_PERIODIC_ENABLE
1746 periodics_reschedule (EV_A);
1747# endif
1748 /* no timer adjustment, as the monotonic clock doesn't jump */
1749 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1750 }
1751 else
1752#endif
1753 {
1754 ev_rt_now = ev_time ();
1755
1756 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1757 {
1758#if EV_PERIODIC_ENABLE
1759 periodics_reschedule (EV_A);
1760#endif
1761 /* adjust timers. this is easy, as the offset is the same for all of them */
1762 for (i = 0; i < timercnt; ++i)
973 { 1763 {
974 ev_periodic_stop (EV_A_ w); 1764 ANHE *he = timers + i + HEAP0;
975 ev_periodic_start (EV_A_ w); 1765 ANHE_w (*he)->at += ev_rt_now - mn_now;
976 1766 ANHE_at_set (*he);
977 i = 0; /* restart loop, inefficient, but time jumps should be rare */
978 } 1767 }
979 } 1768 }
980 }
981}
982 1769
983inline int
984time_update_monotonic (EV_P)
985{
986 mn_now = get_clock ();
987
988 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
989 {
990 rt_now = rtmn_diff + mn_now;
991 return 0;
992 }
993 else
994 {
995 now_floor = mn_now;
996 rt_now = ev_time ();
997 return 1;
998 }
999}
1000
1001static void
1002time_update (EV_P)
1003{
1004 int i;
1005
1006#if EV_USE_MONOTONIC
1007 if (expect_true (have_monotonic))
1008 {
1009 if (time_update_monotonic (EV_A))
1010 {
1011 ev_tstamp odiff = rtmn_diff;
1012
1013 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1014 {
1015 rtmn_diff = rt_now - mn_now;
1016
1017 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1018 return; /* all is well */
1019
1020 rt_now = ev_time ();
1021 mn_now = get_clock ();
1022 now_floor = mn_now;
1023 }
1024
1025 periodics_reschedule (EV_A);
1026 /* no timer adjustment, as the monotonic clock doesn't jump */
1027 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1028 }
1029 }
1030 else
1031#endif
1032 {
1033 rt_now = ev_time ();
1034
1035 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1036 {
1037 periodics_reschedule (EV_A);
1038
1039 /* adjust timers. this is easy, as the offset is the same for all */
1040 for (i = 0; i < timercnt; ++i)
1041 ((WT)timers [i])->at += rt_now - mn_now;
1042 }
1043
1044 mn_now = rt_now; 1770 mn_now = ev_rt_now;
1045 } 1771 }
1046} 1772}
1047 1773
1048void 1774void
1049ev_ref (EV_P) 1775ev_ref (EV_P)
1060static int loop_done; 1786static int loop_done;
1061 1787
1062void 1788void
1063ev_loop (EV_P_ int flags) 1789ev_loop (EV_P_ int flags)
1064{ 1790{
1065 double block; 1791 loop_done = EVUNLOOP_CANCEL;
1066 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1792
1793 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1067 1794
1068 do 1795 do
1069 { 1796 {
1797#ifndef _WIN32
1798 if (expect_false (curpid)) /* penalise the forking check even more */
1799 if (expect_false (getpid () != curpid))
1800 {
1801 curpid = getpid ();
1802 postfork = 1;
1803 }
1804#endif
1805
1806#if EV_FORK_ENABLE
1807 /* we might have forked, so queue fork handlers */
1808 if (expect_false (postfork))
1809 if (forkcnt)
1810 {
1811 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1812 call_pending (EV_A);
1813 }
1814#endif
1815
1070 /* queue check watchers (and execute them) */ 1816 /* queue prepare watchers (and execute them) */
1071 if (expect_false (preparecnt)) 1817 if (expect_false (preparecnt))
1072 { 1818 {
1073 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1819 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1074 call_pending (EV_A); 1820 call_pending (EV_A);
1075 } 1821 }
1076 1822
1823 if (expect_false (!activecnt))
1824 break;
1825
1077 /* we might have forked, so reify kernel state if necessary */ 1826 /* we might have forked, so reify kernel state if necessary */
1078 if (expect_false (postfork)) 1827 if (expect_false (postfork))
1079 loop_fork (EV_A); 1828 loop_fork (EV_A);
1080 1829
1081 /* update fd-related kernel structures */ 1830 /* update fd-related kernel structures */
1082 fd_reify (EV_A); 1831 fd_reify (EV_A);
1083 1832
1084 /* calculate blocking time */ 1833 /* calculate blocking time */
1834 {
1835 ev_tstamp waittime = 0.;
1836 ev_tstamp sleeptime = 0.;
1085 1837
1086 /* we only need this for !monotonic clockor timers, but as we basically 1838 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1087 always have timers, we just calculate it always */
1088#if EV_USE_MONOTONIC
1089 if (expect_true (have_monotonic))
1090 time_update_monotonic (EV_A);
1091 else
1092#endif
1093 { 1839 {
1094 rt_now = ev_time (); 1840 /* update time to cancel out callback processing overhead */
1095 mn_now = rt_now; 1841 time_update (EV_A_ 1e100);
1096 }
1097 1842
1098 if (flags & EVLOOP_NONBLOCK || idlecnt)
1099 block = 0.;
1100 else
1101 {
1102 block = MAX_BLOCKTIME; 1843 waittime = MAX_BLOCKTIME;
1103 1844
1104 if (timercnt) 1845 if (timercnt)
1105 { 1846 {
1106 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1847 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1107 if (block > to) block = to; 1848 if (waittime > to) waittime = to;
1108 } 1849 }
1109 1850
1851#if EV_PERIODIC_ENABLE
1110 if (periodiccnt) 1852 if (periodiccnt)
1111 { 1853 {
1112 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1854 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1113 if (block > to) block = to; 1855 if (waittime > to) waittime = to;
1114 } 1856 }
1857#endif
1115 1858
1116 if (block < 0.) block = 0.; 1859 if (expect_false (waittime < timeout_blocktime))
1860 waittime = timeout_blocktime;
1861
1862 sleeptime = waittime - backend_fudge;
1863
1864 if (expect_true (sleeptime > io_blocktime))
1865 sleeptime = io_blocktime;
1866
1867 if (sleeptime)
1868 {
1869 ev_sleep (sleeptime);
1870 waittime -= sleeptime;
1871 }
1117 } 1872 }
1118 1873
1119 method_poll (EV_A_ block); 1874 ++loop_count;
1875 backend_poll (EV_A_ waittime);
1120 1876
1121 /* update rt_now, do magic */ 1877 /* update ev_rt_now, do magic */
1122 time_update (EV_A); 1878 time_update (EV_A_ waittime + sleeptime);
1879 }
1123 1880
1124 /* queue pending timers and reschedule them */ 1881 /* queue pending timers and reschedule them */
1125 timers_reify (EV_A); /* relative timers called last */ 1882 timers_reify (EV_A); /* relative timers called last */
1883#if EV_PERIODIC_ENABLE
1126 periodics_reify (EV_A); /* absolute timers called first */ 1884 periodics_reify (EV_A); /* absolute timers called first */
1885#endif
1127 1886
1887#if EV_IDLE_ENABLE
1128 /* queue idle watchers unless io or timers are pending */ 1888 /* queue idle watchers unless other events are pending */
1129 if (!pendingcnt) 1889 idle_reify (EV_A);
1130 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1890#endif
1131 1891
1132 /* queue check watchers, to be executed first */ 1892 /* queue check watchers, to be executed first */
1133 if (checkcnt) 1893 if (expect_false (checkcnt))
1134 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1894 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1135 1895
1136 call_pending (EV_A); 1896 call_pending (EV_A);
1137 } 1897 }
1138 while (activecnt && !loop_done); 1898 while (expect_true (
1899 activecnt
1900 && !loop_done
1901 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1902 ));
1139 1903
1140 if (loop_done != 2) 1904 if (loop_done == EVUNLOOP_ONE)
1141 loop_done = 0; 1905 loop_done = EVUNLOOP_CANCEL;
1142} 1906}
1143 1907
1144void 1908void
1145ev_unloop (EV_P_ int how) 1909ev_unloop (EV_P_ int how)
1146{ 1910{
1147 loop_done = how; 1911 loop_done = how;
1148} 1912}
1149 1913
1150/*****************************************************************************/ 1914/*****************************************************************************/
1151 1915
1152inline void 1916void inline_size
1153wlist_add (WL *head, WL elem) 1917wlist_add (WL *head, WL elem)
1154{ 1918{
1155 elem->next = *head; 1919 elem->next = *head;
1156 *head = elem; 1920 *head = elem;
1157} 1921}
1158 1922
1159inline void 1923void inline_size
1160wlist_del (WL *head, WL elem) 1924wlist_del (WL *head, WL elem)
1161{ 1925{
1162 while (*head) 1926 while (*head)
1163 { 1927 {
1164 if (*head == elem) 1928 if (*head == elem)
1169 1933
1170 head = &(*head)->next; 1934 head = &(*head)->next;
1171 } 1935 }
1172} 1936}
1173 1937
1174inline void 1938void inline_speed
1175ev_clear_pending (EV_P_ W w) 1939clear_pending (EV_P_ W w)
1176{ 1940{
1177 if (w->pending) 1941 if (w->pending)
1178 { 1942 {
1179 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1943 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1180 w->pending = 0; 1944 w->pending = 0;
1181 } 1945 }
1182} 1946}
1183 1947
1184inline void 1948int
1949ev_clear_pending (EV_P_ void *w)
1950{
1951 W w_ = (W)w;
1952 int pending = w_->pending;
1953
1954 if (expect_true (pending))
1955 {
1956 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1957 w_->pending = 0;
1958 p->w = 0;
1959 return p->events;
1960 }
1961 else
1962 return 0;
1963}
1964
1965void inline_size
1966pri_adjust (EV_P_ W w)
1967{
1968 int pri = w->priority;
1969 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1970 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1971 w->priority = pri;
1972}
1973
1974void inline_speed
1185ev_start (EV_P_ W w, int active) 1975ev_start (EV_P_ W w, int active)
1186{ 1976{
1187 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1977 pri_adjust (EV_A_ w);
1188 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1189
1190 w->active = active; 1978 w->active = active;
1191 ev_ref (EV_A); 1979 ev_ref (EV_A);
1192} 1980}
1193 1981
1194inline void 1982void inline_size
1195ev_stop (EV_P_ W w) 1983ev_stop (EV_P_ W w)
1196{ 1984{
1197 ev_unref (EV_A); 1985 ev_unref (EV_A);
1198 w->active = 0; 1986 w->active = 0;
1199} 1987}
1200 1988
1201/*****************************************************************************/ 1989/*****************************************************************************/
1202 1990
1203void 1991void noinline
1204ev_io_start (EV_P_ struct ev_io *w) 1992ev_io_start (EV_P_ ev_io *w)
1205{ 1993{
1206 int fd = w->fd; 1994 int fd = w->fd;
1207 1995
1208 if (ev_is_active (w)) 1996 if (expect_false (ev_is_active (w)))
1209 return; 1997 return;
1210 1998
1211 assert (("ev_io_start called with negative fd", fd >= 0)); 1999 assert (("ev_io_start called with negative fd", fd >= 0));
1212 2000
1213 ev_start (EV_A_ (W)w, 1); 2001 ev_start (EV_A_ (W)w, 1);
1214 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2002 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1215 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2003 wlist_add (&anfds[fd].head, (WL)w);
1216 2004
1217 fd_change (EV_A_ fd); 2005 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2006 w->events &= ~EV_IOFDSET;
1218} 2007}
1219 2008
1220void 2009void noinline
1221ev_io_stop (EV_P_ struct ev_io *w) 2010ev_io_stop (EV_P_ ev_io *w)
1222{ 2011{
1223 ev_clear_pending (EV_A_ (W)w); 2012 clear_pending (EV_A_ (W)w);
1224 if (!ev_is_active (w)) 2013 if (expect_false (!ev_is_active (w)))
1225 return; 2014 return;
1226 2015
2016 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2017
1227 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2018 wlist_del (&anfds[w->fd].head, (WL)w);
1228 ev_stop (EV_A_ (W)w); 2019 ev_stop (EV_A_ (W)w);
1229 2020
1230 fd_change (EV_A_ w->fd); 2021 fd_change (EV_A_ w->fd, 1);
1231} 2022}
1232 2023
1233void 2024void noinline
1234ev_timer_start (EV_P_ struct ev_timer *w) 2025ev_timer_start (EV_P_ ev_timer *w)
1235{ 2026{
1236 if (ev_is_active (w)) 2027 if (expect_false (ev_is_active (w)))
1237 return; 2028 return;
1238 2029
1239 ((WT)w)->at += mn_now; 2030 ev_at (w) += mn_now;
1240 2031
1241 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2032 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1242 2033
1243 ev_start (EV_A_ (W)w, ++timercnt); 2034 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1244 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2035 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1245 timers [timercnt - 1] = w; 2036 ANHE_w (timers [ev_active (w)]) = (WT)w;
1246 upheap ((WT *)timers, timercnt - 1); 2037 ANHE_at_set (timers [ev_active (w)]);
2038 upheap (timers, ev_active (w));
1247 2039
1248 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2040 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1249} 2041}
1250 2042
1251void 2043void noinline
1252ev_timer_stop (EV_P_ struct ev_timer *w) 2044ev_timer_stop (EV_P_ ev_timer *w)
1253{ 2045{
1254 ev_clear_pending (EV_A_ (W)w); 2046 clear_pending (EV_A_ (W)w);
1255 if (!ev_is_active (w)) 2047 if (expect_false (!ev_is_active (w)))
1256 return; 2048 return;
1257 2049
2050 {
2051 int active = ev_active (w);
2052
1258 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2053 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1259 2054
1260 if (((W)w)->active < timercnt--) 2055 if (expect_true (active < timercnt + HEAP0 - 1))
1261 { 2056 {
1262 timers [((W)w)->active - 1] = timers [timercnt]; 2057 timers [active] = timers [timercnt + HEAP0 - 1];
1263 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2058 adjustheap (timers, timercnt, active);
1264 } 2059 }
1265 2060
1266 ((WT)w)->at = w->repeat; 2061 --timercnt;
2062 }
2063
2064 ev_at (w) -= mn_now;
1267 2065
1268 ev_stop (EV_A_ (W)w); 2066 ev_stop (EV_A_ (W)w);
1269} 2067}
1270 2068
1271void 2069void noinline
1272ev_timer_again (EV_P_ struct ev_timer *w) 2070ev_timer_again (EV_P_ ev_timer *w)
1273{ 2071{
1274 if (ev_is_active (w)) 2072 if (ev_is_active (w))
1275 { 2073 {
1276 if (w->repeat) 2074 if (w->repeat)
1277 { 2075 {
1278 ((WT)w)->at = mn_now + w->repeat; 2076 ev_at (w) = mn_now + w->repeat;
1279 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2077 ANHE_at_set (timers [ev_active (w)]);
2078 adjustheap (timers, timercnt, ev_active (w));
1280 } 2079 }
1281 else 2080 else
1282 ev_timer_stop (EV_A_ w); 2081 ev_timer_stop (EV_A_ w);
1283 } 2082 }
1284 else if (w->repeat) 2083 else if (w->repeat)
2084 {
2085 ev_at (w) = w->repeat;
1285 ev_timer_start (EV_A_ w); 2086 ev_timer_start (EV_A_ w);
2087 }
1286} 2088}
1287 2089
1288void 2090#if EV_PERIODIC_ENABLE
2091void noinline
1289ev_periodic_start (EV_P_ struct ev_periodic *w) 2092ev_periodic_start (EV_P_ ev_periodic *w)
1290{ 2093{
1291 if (ev_is_active (w)) 2094 if (expect_false (ev_is_active (w)))
1292 return; 2095 return;
1293 2096
2097 if (w->reschedule_cb)
2098 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2099 else if (w->interval)
2100 {
1294 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2101 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1295
1296 /* this formula differs from the one in periodic_reify because we do not always round up */ 2102 /* this formula differs from the one in periodic_reify because we do not always round up */
1297 if (w->interval)
1298 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2103 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2104 }
2105 else
2106 ev_at (w) = w->offset;
1299 2107
1300 ev_start (EV_A_ (W)w, ++periodiccnt); 2108 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1301 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2109 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1302 periodics [periodiccnt - 1] = w; 2110 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1303 upheap ((WT *)periodics, periodiccnt - 1); 2111 ANHE_at_set (periodics [ev_active (w)]);
2112 upheap (periodics, ev_active (w));
1304 2113
1305 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2114 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1306} 2115}
1307 2116
1308void 2117void noinline
1309ev_periodic_stop (EV_P_ struct ev_periodic *w) 2118ev_periodic_stop (EV_P_ ev_periodic *w)
1310{ 2119{
1311 ev_clear_pending (EV_A_ (W)w); 2120 clear_pending (EV_A_ (W)w);
1312 if (!ev_is_active (w)) 2121 if (expect_false (!ev_is_active (w)))
1313 return; 2122 return;
1314 2123
2124 {
2125 int active = ev_active (w);
2126
1315 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2127 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1316 2128
1317 if (((W)w)->active < periodiccnt--) 2129 if (expect_true (active < periodiccnt + HEAP0 - 1))
1318 { 2130 {
1319 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2131 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1320 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2132 adjustheap (periodics, periodiccnt, active);
1321 } 2133 }
2134
2135 --periodiccnt;
2136 }
1322 2137
1323 ev_stop (EV_A_ (W)w); 2138 ev_stop (EV_A_ (W)w);
1324} 2139}
1325 2140
1326void 2141void noinline
1327ev_idle_start (EV_P_ struct ev_idle *w) 2142ev_periodic_again (EV_P_ ev_periodic *w)
1328{ 2143{
1329 if (ev_is_active (w)) 2144 /* TODO: use adjustheap and recalculation */
1330 return;
1331
1332 ev_start (EV_A_ (W)w, ++idlecnt);
1333 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1334 idles [idlecnt - 1] = w;
1335}
1336
1337void
1338ev_idle_stop (EV_P_ struct ev_idle *w)
1339{
1340 ev_clear_pending (EV_A_ (W)w);
1341 if (ev_is_active (w))
1342 return;
1343
1344 idles [((W)w)->active - 1] = idles [--idlecnt];
1345 ev_stop (EV_A_ (W)w); 2145 ev_periodic_stop (EV_A_ w);
2146 ev_periodic_start (EV_A_ w);
1346} 2147}
1347 2148#endif
1348void
1349ev_prepare_start (EV_P_ struct ev_prepare *w)
1350{
1351 if (ev_is_active (w))
1352 return;
1353
1354 ev_start (EV_A_ (W)w, ++preparecnt);
1355 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1356 prepares [preparecnt - 1] = w;
1357}
1358
1359void
1360ev_prepare_stop (EV_P_ struct ev_prepare *w)
1361{
1362 ev_clear_pending (EV_A_ (W)w);
1363 if (ev_is_active (w))
1364 return;
1365
1366 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1367 ev_stop (EV_A_ (W)w);
1368}
1369
1370void
1371ev_check_start (EV_P_ struct ev_check *w)
1372{
1373 if (ev_is_active (w))
1374 return;
1375
1376 ev_start (EV_A_ (W)w, ++checkcnt);
1377 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1378 checks [checkcnt - 1] = w;
1379}
1380
1381void
1382ev_check_stop (EV_P_ struct ev_check *w)
1383{
1384 ev_clear_pending (EV_A_ (W)w);
1385 if (ev_is_active (w))
1386 return;
1387
1388 checks [((W)w)->active - 1] = checks [--checkcnt];
1389 ev_stop (EV_A_ (W)w);
1390}
1391 2149
1392#ifndef SA_RESTART 2150#ifndef SA_RESTART
1393# define SA_RESTART 0 2151# define SA_RESTART 0
1394#endif 2152#endif
1395 2153
1396void 2154void noinline
1397ev_signal_start (EV_P_ struct ev_signal *w) 2155ev_signal_start (EV_P_ ev_signal *w)
1398{ 2156{
1399#if EV_MULTIPLICITY 2157#if EV_MULTIPLICITY
1400 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2158 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1401#endif 2159#endif
1402 if (ev_is_active (w)) 2160 if (expect_false (ev_is_active (w)))
1403 return; 2161 return;
1404 2162
1405 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2163 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1406 2164
2165 evpipe_init (EV_A);
2166
2167 {
2168#ifndef _WIN32
2169 sigset_t full, prev;
2170 sigfillset (&full);
2171 sigprocmask (SIG_SETMASK, &full, &prev);
2172#endif
2173
2174 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2175
2176#ifndef _WIN32
2177 sigprocmask (SIG_SETMASK, &prev, 0);
2178#endif
2179 }
2180
1407 ev_start (EV_A_ (W)w, 1); 2181 ev_start (EV_A_ (W)w, 1);
1408 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1409 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2182 wlist_add (&signals [w->signum - 1].head, (WL)w);
1410 2183
1411 if (!((WL)w)->next) 2184 if (!((WL)w)->next)
1412 { 2185 {
1413#if WIN32 2186#if _WIN32
1414 signal (w->signum, sighandler); 2187 signal (w->signum, ev_sighandler);
1415#else 2188#else
1416 struct sigaction sa; 2189 struct sigaction sa;
1417 sa.sa_handler = sighandler; 2190 sa.sa_handler = ev_sighandler;
1418 sigfillset (&sa.sa_mask); 2191 sigfillset (&sa.sa_mask);
1419 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2192 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1420 sigaction (w->signum, &sa, 0); 2193 sigaction (w->signum, &sa, 0);
1421#endif 2194#endif
1422 } 2195 }
1423} 2196}
1424 2197
1425void 2198void noinline
1426ev_signal_stop (EV_P_ struct ev_signal *w) 2199ev_signal_stop (EV_P_ ev_signal *w)
1427{ 2200{
1428 ev_clear_pending (EV_A_ (W)w); 2201 clear_pending (EV_A_ (W)w);
1429 if (!ev_is_active (w)) 2202 if (expect_false (!ev_is_active (w)))
1430 return; 2203 return;
1431 2204
1432 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2205 wlist_del (&signals [w->signum - 1].head, (WL)w);
1433 ev_stop (EV_A_ (W)w); 2206 ev_stop (EV_A_ (W)w);
1434 2207
1435 if (!signals [w->signum - 1].head) 2208 if (!signals [w->signum - 1].head)
1436 signal (w->signum, SIG_DFL); 2209 signal (w->signum, SIG_DFL);
1437} 2210}
1438 2211
1439void 2212void
1440ev_child_start (EV_P_ struct ev_child *w) 2213ev_child_start (EV_P_ ev_child *w)
1441{ 2214{
1442#if EV_MULTIPLICITY 2215#if EV_MULTIPLICITY
1443 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2216 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1444#endif 2217#endif
1445 if (ev_is_active (w)) 2218 if (expect_false (ev_is_active (w)))
1446 return; 2219 return;
1447 2220
1448 ev_start (EV_A_ (W)w, 1); 2221 ev_start (EV_A_ (W)w, 1);
1449 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2222 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1450} 2223}
1451 2224
1452void 2225void
1453ev_child_stop (EV_P_ struct ev_child *w) 2226ev_child_stop (EV_P_ ev_child *w)
1454{ 2227{
1455 ev_clear_pending (EV_A_ (W)w); 2228 clear_pending (EV_A_ (W)w);
1456 if (ev_is_active (w)) 2229 if (expect_false (!ev_is_active (w)))
1457 return; 2230 return;
1458 2231
1459 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2232 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1460 ev_stop (EV_A_ (W)w); 2233 ev_stop (EV_A_ (W)w);
1461} 2234}
1462 2235
2236#if EV_STAT_ENABLE
2237
2238# ifdef _WIN32
2239# undef lstat
2240# define lstat(a,b) _stati64 (a,b)
2241# endif
2242
2243#define DEF_STAT_INTERVAL 5.0074891
2244#define MIN_STAT_INTERVAL 0.1074891
2245
2246static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2247
2248#if EV_USE_INOTIFY
2249# define EV_INOTIFY_BUFSIZE 8192
2250
2251static void noinline
2252infy_add (EV_P_ ev_stat *w)
2253{
2254 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2255
2256 if (w->wd < 0)
2257 {
2258 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2259
2260 /* monitor some parent directory for speedup hints */
2261 /* note that exceeding the hardcoded limit is not a correctness issue, */
2262 /* but an efficiency issue only */
2263 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2264 {
2265 char path [4096];
2266 strcpy (path, w->path);
2267
2268 do
2269 {
2270 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2271 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2272
2273 char *pend = strrchr (path, '/');
2274
2275 if (!pend)
2276 break; /* whoops, no '/', complain to your admin */
2277
2278 *pend = 0;
2279 w->wd = inotify_add_watch (fs_fd, path, mask);
2280 }
2281 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2282 }
2283 }
2284 else
2285 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2286
2287 if (w->wd >= 0)
2288 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2289}
2290
2291static void noinline
2292infy_del (EV_P_ ev_stat *w)
2293{
2294 int slot;
2295 int wd = w->wd;
2296
2297 if (wd < 0)
2298 return;
2299
2300 w->wd = -2;
2301 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2302 wlist_del (&fs_hash [slot].head, (WL)w);
2303
2304 /* remove this watcher, if others are watching it, they will rearm */
2305 inotify_rm_watch (fs_fd, wd);
2306}
2307
2308static void noinline
2309infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2310{
2311 if (slot < 0)
2312 /* overflow, need to check for all hahs slots */
2313 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2314 infy_wd (EV_A_ slot, wd, ev);
2315 else
2316 {
2317 WL w_;
2318
2319 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2320 {
2321 ev_stat *w = (ev_stat *)w_;
2322 w_ = w_->next; /* lets us remove this watcher and all before it */
2323
2324 if (w->wd == wd || wd == -1)
2325 {
2326 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2327 {
2328 w->wd = -1;
2329 infy_add (EV_A_ w); /* re-add, no matter what */
2330 }
2331
2332 stat_timer_cb (EV_A_ &w->timer, 0);
2333 }
2334 }
2335 }
2336}
2337
2338static void
2339infy_cb (EV_P_ ev_io *w, int revents)
2340{
2341 char buf [EV_INOTIFY_BUFSIZE];
2342 struct inotify_event *ev = (struct inotify_event *)buf;
2343 int ofs;
2344 int len = read (fs_fd, buf, sizeof (buf));
2345
2346 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2347 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2348}
2349
2350void inline_size
2351infy_init (EV_P)
2352{
2353 if (fs_fd != -2)
2354 return;
2355
2356 fs_fd = inotify_init ();
2357
2358 if (fs_fd >= 0)
2359 {
2360 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2361 ev_set_priority (&fs_w, EV_MAXPRI);
2362 ev_io_start (EV_A_ &fs_w);
2363 }
2364}
2365
2366void inline_size
2367infy_fork (EV_P)
2368{
2369 int slot;
2370
2371 if (fs_fd < 0)
2372 return;
2373
2374 close (fs_fd);
2375 fs_fd = inotify_init ();
2376
2377 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2378 {
2379 WL w_ = fs_hash [slot].head;
2380 fs_hash [slot].head = 0;
2381
2382 while (w_)
2383 {
2384 ev_stat *w = (ev_stat *)w_;
2385 w_ = w_->next; /* lets us add this watcher */
2386
2387 w->wd = -1;
2388
2389 if (fs_fd >= 0)
2390 infy_add (EV_A_ w); /* re-add, no matter what */
2391 else
2392 ev_timer_start (EV_A_ &w->timer);
2393 }
2394
2395 }
2396}
2397
2398#endif
2399
2400void
2401ev_stat_stat (EV_P_ ev_stat *w)
2402{
2403 if (lstat (w->path, &w->attr) < 0)
2404 w->attr.st_nlink = 0;
2405 else if (!w->attr.st_nlink)
2406 w->attr.st_nlink = 1;
2407}
2408
2409static void noinline
2410stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2411{
2412 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2413
2414 /* we copy this here each the time so that */
2415 /* prev has the old value when the callback gets invoked */
2416 w->prev = w->attr;
2417 ev_stat_stat (EV_A_ w);
2418
2419 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2420 if (
2421 w->prev.st_dev != w->attr.st_dev
2422 || w->prev.st_ino != w->attr.st_ino
2423 || w->prev.st_mode != w->attr.st_mode
2424 || w->prev.st_nlink != w->attr.st_nlink
2425 || w->prev.st_uid != w->attr.st_uid
2426 || w->prev.st_gid != w->attr.st_gid
2427 || w->prev.st_rdev != w->attr.st_rdev
2428 || w->prev.st_size != w->attr.st_size
2429 || w->prev.st_atime != w->attr.st_atime
2430 || w->prev.st_mtime != w->attr.st_mtime
2431 || w->prev.st_ctime != w->attr.st_ctime
2432 ) {
2433 #if EV_USE_INOTIFY
2434 infy_del (EV_A_ w);
2435 infy_add (EV_A_ w);
2436 ev_stat_stat (EV_A_ w); /* avoid race... */
2437 #endif
2438
2439 ev_feed_event (EV_A_ w, EV_STAT);
2440 }
2441}
2442
2443void
2444ev_stat_start (EV_P_ ev_stat *w)
2445{
2446 if (expect_false (ev_is_active (w)))
2447 return;
2448
2449 /* since we use memcmp, we need to clear any padding data etc. */
2450 memset (&w->prev, 0, sizeof (ev_statdata));
2451 memset (&w->attr, 0, sizeof (ev_statdata));
2452
2453 ev_stat_stat (EV_A_ w);
2454
2455 if (w->interval < MIN_STAT_INTERVAL)
2456 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2457
2458 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2459 ev_set_priority (&w->timer, ev_priority (w));
2460
2461#if EV_USE_INOTIFY
2462 infy_init (EV_A);
2463
2464 if (fs_fd >= 0)
2465 infy_add (EV_A_ w);
2466 else
2467#endif
2468 ev_timer_start (EV_A_ &w->timer);
2469
2470 ev_start (EV_A_ (W)w, 1);
2471}
2472
2473void
2474ev_stat_stop (EV_P_ ev_stat *w)
2475{
2476 clear_pending (EV_A_ (W)w);
2477 if (expect_false (!ev_is_active (w)))
2478 return;
2479
2480#if EV_USE_INOTIFY
2481 infy_del (EV_A_ w);
2482#endif
2483 ev_timer_stop (EV_A_ &w->timer);
2484
2485 ev_stop (EV_A_ (W)w);
2486}
2487#endif
2488
2489#if EV_IDLE_ENABLE
2490void
2491ev_idle_start (EV_P_ ev_idle *w)
2492{
2493 if (expect_false (ev_is_active (w)))
2494 return;
2495
2496 pri_adjust (EV_A_ (W)w);
2497
2498 {
2499 int active = ++idlecnt [ABSPRI (w)];
2500
2501 ++idleall;
2502 ev_start (EV_A_ (W)w, active);
2503
2504 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2505 idles [ABSPRI (w)][active - 1] = w;
2506 }
2507}
2508
2509void
2510ev_idle_stop (EV_P_ ev_idle *w)
2511{
2512 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w)))
2514 return;
2515
2516 {
2517 int active = ev_active (w);
2518
2519 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2520 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2521
2522 ev_stop (EV_A_ (W)w);
2523 --idleall;
2524 }
2525}
2526#endif
2527
2528void
2529ev_prepare_start (EV_P_ ev_prepare *w)
2530{
2531 if (expect_false (ev_is_active (w)))
2532 return;
2533
2534 ev_start (EV_A_ (W)w, ++preparecnt);
2535 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2536 prepares [preparecnt - 1] = w;
2537}
2538
2539void
2540ev_prepare_stop (EV_P_ ev_prepare *w)
2541{
2542 clear_pending (EV_A_ (W)w);
2543 if (expect_false (!ev_is_active (w)))
2544 return;
2545
2546 {
2547 int active = ev_active (w);
2548
2549 prepares [active - 1] = prepares [--preparecnt];
2550 ev_active (prepares [active - 1]) = active;
2551 }
2552
2553 ev_stop (EV_A_ (W)w);
2554}
2555
2556void
2557ev_check_start (EV_P_ ev_check *w)
2558{
2559 if (expect_false (ev_is_active (w)))
2560 return;
2561
2562 ev_start (EV_A_ (W)w, ++checkcnt);
2563 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2564 checks [checkcnt - 1] = w;
2565}
2566
2567void
2568ev_check_stop (EV_P_ ev_check *w)
2569{
2570 clear_pending (EV_A_ (W)w);
2571 if (expect_false (!ev_is_active (w)))
2572 return;
2573
2574 {
2575 int active = ev_active (w);
2576
2577 checks [active - 1] = checks [--checkcnt];
2578 ev_active (checks [active - 1]) = active;
2579 }
2580
2581 ev_stop (EV_A_ (W)w);
2582}
2583
2584#if EV_EMBED_ENABLE
2585void noinline
2586ev_embed_sweep (EV_P_ ev_embed *w)
2587{
2588 ev_loop (w->other, EVLOOP_NONBLOCK);
2589}
2590
2591static void
2592embed_io_cb (EV_P_ ev_io *io, int revents)
2593{
2594 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2595
2596 if (ev_cb (w))
2597 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2598 else
2599 ev_loop (w->other, EVLOOP_NONBLOCK);
2600}
2601
2602static void
2603embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2604{
2605 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2606
2607 {
2608 struct ev_loop *loop = w->other;
2609
2610 while (fdchangecnt)
2611 {
2612 fd_reify (EV_A);
2613 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2614 }
2615 }
2616}
2617
2618#if 0
2619static void
2620embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2621{
2622 ev_idle_stop (EV_A_ idle);
2623}
2624#endif
2625
2626void
2627ev_embed_start (EV_P_ ev_embed *w)
2628{
2629 if (expect_false (ev_is_active (w)))
2630 return;
2631
2632 {
2633 struct ev_loop *loop = w->other;
2634 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2635 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2636 }
2637
2638 ev_set_priority (&w->io, ev_priority (w));
2639 ev_io_start (EV_A_ &w->io);
2640
2641 ev_prepare_init (&w->prepare, embed_prepare_cb);
2642 ev_set_priority (&w->prepare, EV_MINPRI);
2643 ev_prepare_start (EV_A_ &w->prepare);
2644
2645 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2646
2647 ev_start (EV_A_ (W)w, 1);
2648}
2649
2650void
2651ev_embed_stop (EV_P_ ev_embed *w)
2652{
2653 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w)))
2655 return;
2656
2657 ev_io_stop (EV_A_ &w->io);
2658 ev_prepare_stop (EV_A_ &w->prepare);
2659
2660 ev_stop (EV_A_ (W)w);
2661}
2662#endif
2663
2664#if EV_FORK_ENABLE
2665void
2666ev_fork_start (EV_P_ ev_fork *w)
2667{
2668 if (expect_false (ev_is_active (w)))
2669 return;
2670
2671 ev_start (EV_A_ (W)w, ++forkcnt);
2672 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2673 forks [forkcnt - 1] = w;
2674}
2675
2676void
2677ev_fork_stop (EV_P_ ev_fork *w)
2678{
2679 clear_pending (EV_A_ (W)w);
2680 if (expect_false (!ev_is_active (w)))
2681 return;
2682
2683 {
2684 int active = ev_active (w);
2685
2686 forks [active - 1] = forks [--forkcnt];
2687 ev_active (forks [active - 1]) = active;
2688 }
2689
2690 ev_stop (EV_A_ (W)w);
2691}
2692#endif
2693
2694#if EV_ASYNC_ENABLE
2695void
2696ev_async_start (EV_P_ ev_async *w)
2697{
2698 if (expect_false (ev_is_active (w)))
2699 return;
2700
2701 evpipe_init (EV_A);
2702
2703 ev_start (EV_A_ (W)w, ++asynccnt);
2704 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2705 asyncs [asynccnt - 1] = w;
2706}
2707
2708void
2709ev_async_stop (EV_P_ ev_async *w)
2710{
2711 clear_pending (EV_A_ (W)w);
2712 if (expect_false (!ev_is_active (w)))
2713 return;
2714
2715 {
2716 int active = ev_active (w);
2717
2718 asyncs [active - 1] = asyncs [--asynccnt];
2719 ev_active (asyncs [active - 1]) = active;
2720 }
2721
2722 ev_stop (EV_A_ (W)w);
2723}
2724
2725void
2726ev_async_send (EV_P_ ev_async *w)
2727{
2728 w->sent = 1;
2729 evpipe_write (EV_A_ &gotasync);
2730}
2731#endif
2732
1463/*****************************************************************************/ 2733/*****************************************************************************/
1464 2734
1465struct ev_once 2735struct ev_once
1466{ 2736{
1467 struct ev_io io; 2737 ev_io io;
1468 struct ev_timer to; 2738 ev_timer to;
1469 void (*cb)(int revents, void *arg); 2739 void (*cb)(int revents, void *arg);
1470 void *arg; 2740 void *arg;
1471}; 2741};
1472 2742
1473static void 2743static void
1482 2752
1483 cb (revents, arg); 2753 cb (revents, arg);
1484} 2754}
1485 2755
1486static void 2756static void
1487once_cb_io (EV_P_ struct ev_io *w, int revents) 2757once_cb_io (EV_P_ ev_io *w, int revents)
1488{ 2758{
1489 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2759 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1490} 2760}
1491 2761
1492static void 2762static void
1493once_cb_to (EV_P_ struct ev_timer *w, int revents) 2763once_cb_to (EV_P_ ev_timer *w, int revents)
1494{ 2764{
1495 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2765 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1496} 2766}
1497 2767
1498void 2768void
1499ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2769ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1500{ 2770{
1501 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2771 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1502 2772
1503 if (!once) 2773 if (expect_false (!once))
2774 {
1504 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2775 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1505 else 2776 return;
1506 { 2777 }
2778
1507 once->cb = cb; 2779 once->cb = cb;
1508 once->arg = arg; 2780 once->arg = arg;
1509 2781
1510 ev_watcher_init (&once->io, once_cb_io); 2782 ev_init (&once->io, once_cb_io);
1511 if (fd >= 0) 2783 if (fd >= 0)
1512 { 2784 {
1513 ev_io_set (&once->io, fd, events); 2785 ev_io_set (&once->io, fd, events);
1514 ev_io_start (EV_A_ &once->io); 2786 ev_io_start (EV_A_ &once->io);
1515 } 2787 }
1516 2788
1517 ev_watcher_init (&once->to, once_cb_to); 2789 ev_init (&once->to, once_cb_to);
1518 if (timeout >= 0.) 2790 if (timeout >= 0.)
1519 { 2791 {
1520 ev_timer_set (&once->to, timeout, 0.); 2792 ev_timer_set (&once->to, timeout, 0.);
1521 ev_timer_start (EV_A_ &once->to); 2793 ev_timer_start (EV_A_ &once->to);
1522 }
1523 } 2794 }
1524} 2795}
1525 2796
2797#if EV_MULTIPLICITY
2798 #include "ev_wrap.h"
2799#endif
2800
2801#ifdef __cplusplus
2802}
2803#endif
2804

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines