ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.118 by root, Fri Nov 16 01:33:54 2007 UTC vs.
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
43# ifndef EV_USE_REALTIME 56# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
45# endif 58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
46# endif 66# endif
47 67
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
50# endif 74# endif
51 75
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
54# endif 82# endif
55 83
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
58# endif 90# endif
59 91
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
62# endif 98# endif
63 99
64# if HAVE_PORT_H && HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
65# define EV_USE_PORT 1 102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
66# endif 106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
67 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
68#endif 132#endif
69 133
70#include <math.h> 134#include <math.h>
71#include <stdlib.h> 135#include <stdlib.h>
72#include <fcntl.h> 136#include <fcntl.h>
79#include <sys/types.h> 143#include <sys/types.h>
80#include <time.h> 144#include <time.h>
81 145
82#include <signal.h> 146#include <signal.h>
83 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
84#ifndef _WIN32 154#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 155# include <sys/time.h>
87# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
88#else 158#else
89# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 160# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
93# endif 163# endif
94#endif 164#endif
95 165
96/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
97 167
98#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
99# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
100#endif 170#endif
101 171
102#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 1 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
104#endif 178#endif
105 179
106#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
108# define EV_SELECT_USE_FD_SET 1
109#endif 182#endif
110 183
111#ifndef EV_USE_POLL 184#ifndef EV_USE_POLL
112# ifdef _WIN32 185# ifdef _WIN32
113# define EV_USE_POLL 0 186# define EV_USE_POLL 0
115# define EV_USE_POLL 1 188# define EV_USE_POLL 1
116# endif 189# endif
117#endif 190#endif
118 191
119#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
120# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
121#endif 198#endif
122 199
123#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
125#endif 202#endif
126 203
127#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
128# define EV_USE_PORT 0 205# define EV_USE_PORT 0
129#endif 206#endif
130 207
131/**/ 208#ifndef EV_USE_INOTIFY
132 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
133/* darwin simply cannot be helped */ 210# define EV_USE_INOTIFY 1
134#ifdef __APPLE__ 211# else
135# undef EV_USE_POLL 212# define EV_USE_INOTIFY 0
136# undef EV_USE_KQUEUE
137#endif 213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
138 249
139#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
140# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
141# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
142#endif 253#endif
144#ifndef CLOCK_REALTIME 255#ifndef CLOCK_REALTIME
145# undef EV_USE_REALTIME 256# undef EV_USE_REALTIME
146# define EV_USE_REALTIME 0 257# define EV_USE_REALTIME 0
147#endif 258#endif
148 259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
149#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
150# include <winsock.h> 276# include <winsock.h>
151#endif 277#endif
152 278
279#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
289#endif
290
153/**/ 291/**/
154 292
293/*
294 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
302
155#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
156#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
157#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
158/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
159 306
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165
166#if __GNUC__ >= 3 307#if __GNUC__ >= 4
167# define expect(expr,value) __builtin_expect ((expr),(value)) 308# define expect(expr,value) __builtin_expect ((expr),(value))
168# define inline inline 309# define noinline __attribute__ ((noinline))
169#else 310#else
170# define expect(expr,value) (expr) 311# define expect(expr,value) (expr)
171# define inline static 312# define noinline
313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
314# define inline
315# endif
172#endif 316#endif
173 317
174#define expect_false(expr) expect ((expr) != 0, 0) 318#define expect_false(expr) expect ((expr) != 0, 0)
175#define expect_true(expr) expect ((expr) != 0, 1) 319#define expect_true(expr) expect ((expr) != 0, 1)
320#define inline_size static inline
321
322#if EV_MINIMAL
323# define inline_speed static noinline
324#else
325# define inline_speed static inline
326#endif
176 327
177#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
178#define ABSPRI(w) ((w)->priority - EV_MINPRI) 329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
179 330
180#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 331#define EMPTY /* required for microsofts broken pseudo-c compiler */
181#define EMPTY2(a,b) /* used to suppress some warnings */ 332#define EMPTY2(a,b) /* used to suppress some warnings */
182 333
183typedef struct ev_watcher *W; 334typedef ev_watcher *W;
184typedef struct ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
185typedef struct ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
186 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
341#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
187static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
345#endif
188 346
189#ifdef _WIN32 347#ifdef _WIN32
190# include "ev_win32.c" 348# include "ev_win32.c"
191#endif 349#endif
192 350
193/*****************************************************************************/ 351/*****************************************************************************/
194 352
195static void (*syserr_cb)(const char *msg); 353static void (*syserr_cb)(const char *msg);
196 354
355void
197void ev_set_syserr_cb (void (*cb)(const char *msg)) 356ev_set_syserr_cb (void (*cb)(const char *msg))
198{ 357{
199 syserr_cb = cb; 358 syserr_cb = cb;
200} 359}
201 360
202static void 361static void noinline
203syserr (const char *msg) 362syserr (const char *msg)
204{ 363{
205 if (!msg) 364 if (!msg)
206 msg = "(libev) system error"; 365 msg = "(libev) system error";
207 366
212 perror (msg); 371 perror (msg);
213 abort (); 372 abort ();
214 } 373 }
215} 374}
216 375
376static void *
377ev_realloc_emul (void *ptr, long size)
378{
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389}
390
217static void *(*alloc)(void *ptr, long size); 391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
218 392
393void
219void ev_set_allocator (void *(*cb)(void *ptr, long size)) 394ev_set_allocator (void *(*cb)(void *ptr, long size))
220{ 395{
221 alloc = cb; 396 alloc = cb;
222} 397}
223 398
224static void * 399inline_speed void *
225ev_realloc (void *ptr, long size) 400ev_realloc (void *ptr, long size)
226{ 401{
227 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 402 ptr = alloc (ptr, size);
228 403
229 if (!ptr && size) 404 if (!ptr && size)
230 { 405 {
231 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
232 abort (); 407 abort ();
253typedef struct 428typedef struct
254{ 429{
255 W w; 430 W w;
256 int events; 431 int events;
257} ANPENDING; 432} ANPENDING;
433
434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
436typedef struct
437{
438 WL head;
439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
458#endif
258 459
259#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
260 461
261 struct ev_loop 462 struct ev_loop
262 { 463 {
296 gettimeofday (&tv, 0); 497 gettimeofday (&tv, 0);
297 return tv.tv_sec + tv.tv_usec * 1e-6; 498 return tv.tv_sec + tv.tv_usec * 1e-6;
298#endif 499#endif
299} 500}
300 501
301inline ev_tstamp 502ev_tstamp inline_size
302get_clock (void) 503get_clock (void)
303{ 504{
304#if EV_USE_MONOTONIC 505#if EV_USE_MONOTONIC
305 if (expect_true (have_monotonic)) 506 if (expect_true (have_monotonic))
306 { 507 {
319{ 520{
320 return ev_rt_now; 521 return ev_rt_now;
321} 522}
322#endif 523#endif
323 524
324#define array_roundsize(type,n) (((n) | 4) & ~3) 525void
526ev_sleep (ev_tstamp delay)
527{
528 if (delay > 0.)
529 {
530#if EV_USE_NANOSLEEP
531 struct timespec ts;
532
533 ts.tv_sec = (time_t)delay;
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0);
537#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3));
539#else
540 struct timeval tv;
541
542 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544
545 select (0, 0, 0, 0, &tv);
546#endif
547 }
548}
549
550/*****************************************************************************/
551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
554int inline_size
555array_nextsize (int elem, int cur, int cnt)
556{
557 int ncur = cur + 1;
558
559 do
560 ncur <<= 1;
561 while (cnt > ncur);
562
563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
565 {
566 ncur *= elem;
567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
568 ncur = ncur - sizeof (void *) * 4;
569 ncur /= elem;
570 }
571
572 return ncur;
573}
574
575static noinline void *
576array_realloc (int elem, void *base, int *cur, int cnt)
577{
578 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur);
580}
325 581
326#define array_needsize(type,base,cur,cnt,init) \ 582#define array_needsize(type,base,cur,cnt,init) \
327 if (expect_false ((cnt) > cur)) \ 583 if (expect_false ((cnt) > (cur))) \
328 { \ 584 { \
329 int newcnt = cur; \ 585 int ocur_ = (cur); \
330 do \ 586 (base) = (type *)array_realloc \
331 { \ 587 (sizeof (type), (base), &(cur), (cnt)); \
332 newcnt = array_roundsize (type, newcnt << 1); \ 588 init ((base) + (ocur_), (cur) - ocur_); \
333 } \
334 while ((cnt) > newcnt); \
335 \
336 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
337 init (base + cur, newcnt - cur); \
338 cur = newcnt; \
339 } 589 }
340 590
591#if 0
341#define array_slim(type,stem) \ 592#define array_slim(type,stem) \
342 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 593 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
343 { \ 594 { \
344 stem ## max = array_roundsize (stem ## cnt >> 1); \ 595 stem ## max = array_roundsize (stem ## cnt >> 1); \
345 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 596 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
346 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
347 } 598 }
599#endif
348 600
349#define array_free(stem, idx) \ 601#define array_free(stem, idx) \
350 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
351 603
352/*****************************************************************************/ 604/*****************************************************************************/
353 605
354static void 606void noinline
607ev_feed_event (EV_P_ void *w, int revents)
608{
609 W w_ = (W)w;
610 int pri = ABSPRI (w_);
611
612 if (expect_false (w_->pending))
613 pendings [pri][w_->pending - 1].events |= revents;
614 else
615 {
616 w_->pending = ++pendingcnt [pri];
617 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
618 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents;
620 }
621}
622
623void inline_speed
624queue_events (EV_P_ W *events, int eventcnt, int type)
625{
626 int i;
627
628 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type);
630}
631
632/*****************************************************************************/
633
634void inline_size
355anfds_init (ANFD *base, int count) 635anfds_init (ANFD *base, int count)
356{ 636{
357 while (count--) 637 while (count--)
358 { 638 {
359 base->head = 0; 639 base->head = 0;
362 642
363 ++base; 643 ++base;
364 } 644 }
365} 645}
366 646
367void 647void inline_speed
368ev_feed_event (EV_P_ void *w, int revents)
369{
370 W w_ = (W)w;
371
372 if (w_->pending)
373 {
374 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
375 return;
376 }
377
378 w_->pending = ++pendingcnt [ABSPRI (w_)];
379 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
380 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
381 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
382}
383
384static void
385queue_events (EV_P_ W *events, int eventcnt, int type)
386{
387 int i;
388
389 for (i = 0; i < eventcnt; ++i)
390 ev_feed_event (EV_A_ events [i], type);
391}
392
393inline void
394fd_event (EV_P_ int fd, int revents) 648fd_event (EV_P_ int fd, int revents)
395{ 649{
396 ANFD *anfd = anfds + fd; 650 ANFD *anfd = anfds + fd;
397 struct ev_io *w; 651 ev_io *w;
398 652
399 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
400 { 654 {
401 int ev = w->events & revents; 655 int ev = w->events & revents;
402 656
403 if (ev) 657 if (ev)
404 ev_feed_event (EV_A_ (W)w, ev); 658 ev_feed_event (EV_A_ (W)w, ev);
406} 660}
407 661
408void 662void
409ev_feed_fd_event (EV_P_ int fd, int revents) 663ev_feed_fd_event (EV_P_ int fd, int revents)
410{ 664{
665 if (fd >= 0 && fd < anfdmax)
411 fd_event (EV_A_ fd, revents); 666 fd_event (EV_A_ fd, revents);
412} 667}
413 668
414/*****************************************************************************/ 669void inline_size
415
416static void
417fd_reify (EV_P) 670fd_reify (EV_P)
418{ 671{
419 int i; 672 int i;
420 673
421 for (i = 0; i < fdchangecnt; ++i) 674 for (i = 0; i < fdchangecnt; ++i)
422 { 675 {
423 int fd = fdchanges [i]; 676 int fd = fdchanges [i];
424 ANFD *anfd = anfds + fd; 677 ANFD *anfd = anfds + fd;
425 struct ev_io *w; 678 ev_io *w;
426 679
427 int events = 0; 680 unsigned char events = 0;
428 681
429 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
430 events |= w->events; 683 events |= (unsigned char)w->events;
431 684
432#if EV_SELECT_IS_WINSOCKET 685#if EV_SELECT_IS_WINSOCKET
433 if (events) 686 if (events)
434 { 687 {
435 unsigned long argp; 688 unsigned long argp;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
436 anfd->handle = _get_osfhandle (fd); 692 anfd->handle = _get_osfhandle (fd);
693 #endif
437 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
438 } 695 }
439#endif 696#endif
440 697
698 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
441 anfd->reify = 0; 702 anfd->reify = 0;
442
443 method_modify (EV_A_ fd, anfd->events, events);
444 anfd->events = events; 703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events);
707 }
445 } 708 }
446 709
447 fdchangecnt = 0; 710 fdchangecnt = 0;
448} 711}
449 712
450static void 713void inline_size
451fd_change (EV_P_ int fd) 714fd_change (EV_P_ int fd, int flags)
452{ 715{
453 if (anfds [fd].reify) 716 unsigned char reify = anfds [fd].reify;
454 return;
455
456 anfds [fd].reify = 1; 717 anfds [fd].reify |= flags;
457 718
719 if (expect_true (!reify))
720 {
458 ++fdchangecnt; 721 ++fdchangecnt;
459 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
460 fdchanges [fdchangecnt - 1] = fd; 723 fdchanges [fdchangecnt - 1] = fd;
724 }
461} 725}
462 726
463static void 727void inline_speed
464fd_kill (EV_P_ int fd) 728fd_kill (EV_P_ int fd)
465{ 729{
466 struct ev_io *w; 730 ev_io *w;
467 731
468 while ((w = (struct ev_io *)anfds [fd].head)) 732 while ((w = (ev_io *)anfds [fd].head))
469 { 733 {
470 ev_io_stop (EV_A_ w); 734 ev_io_stop (EV_A_ w);
471 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
472 } 736 }
473} 737}
474 738
475static int 739int inline_size
476fd_valid (int fd) 740fd_valid (int fd)
477{ 741{
478#ifdef _WIN32 742#ifdef _WIN32
479 return _get_osfhandle (fd) != -1; 743 return _get_osfhandle (fd) != -1;
480#else 744#else
481 return fcntl (fd, F_GETFD) != -1; 745 return fcntl (fd, F_GETFD) != -1;
482#endif 746#endif
483} 747}
484 748
485/* called on EBADF to verify fds */ 749/* called on EBADF to verify fds */
486static void 750static void noinline
487fd_ebadf (EV_P) 751fd_ebadf (EV_P)
488{ 752{
489 int fd; 753 int fd;
490 754
491 for (fd = 0; fd < anfdmax; ++fd) 755 for (fd = 0; fd < anfdmax; ++fd)
493 if (!fd_valid (fd) == -1 && errno == EBADF) 757 if (!fd_valid (fd) == -1 && errno == EBADF)
494 fd_kill (EV_A_ fd); 758 fd_kill (EV_A_ fd);
495} 759}
496 760
497/* called on ENOMEM in select/poll to kill some fds and retry */ 761/* called on ENOMEM in select/poll to kill some fds and retry */
498static void 762static void noinline
499fd_enomem (EV_P) 763fd_enomem (EV_P)
500{ 764{
501 int fd; 765 int fd;
502 766
503 for (fd = anfdmax; fd--; ) 767 for (fd = anfdmax; fd--; )
506 fd_kill (EV_A_ fd); 770 fd_kill (EV_A_ fd);
507 return; 771 return;
508 } 772 }
509} 773}
510 774
511/* usually called after fork if method needs to re-arm all fds from scratch */ 775/* usually called after fork if backend needs to re-arm all fds from scratch */
512static void 776static void noinline
513fd_rearm_all (EV_P) 777fd_rearm_all (EV_P)
514{ 778{
515 int fd; 779 int fd;
516 780
517 /* this should be highly optimised to not do anything but set a flag */
518 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
519 if (anfds [fd].events) 782 if (anfds [fd].events)
520 { 783 {
521 anfds [fd].events = 0; 784 anfds [fd].events = 0;
522 fd_change (EV_A_ fd); 785 fd_change (EV_A_ fd, EV_IOFDSET | 1);
523 } 786 }
524} 787}
525 788
526/*****************************************************************************/ 789/*****************************************************************************/
527 790
528static void 791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808
809/* towards the root */
810void inline_speed
529upheap (WT *heap, int k) 811upheap (ANHE *heap, int k)
530{ 812{
531 WT w = heap [k]; 813 ANHE he = heap [k];
532 814
533 while (k && heap [k >> 1]->at > w->at) 815 for (;;)
534 {
535 heap [k] = heap [k >> 1];
536 ((W)heap [k])->active = k + 1;
537 k >>= 1;
538 } 816 {
817 int p = HPARENT (k);
539 818
540 heap [k] = w; 819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
541 ((W)heap [k])->active = k + 1;
542
543}
544
545static void
546downheap (WT *heap, int N, int k)
547{
548 WT w = heap [k];
549
550 while (k < (N >> 1))
551 {
552 int j = k << 1;
553
554 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
555 ++j;
556
557 if (w->at <= heap [j]->at)
558 break; 820 break;
559 821
560 heap [k] = heap [j]; 822 heap [k] = heap [p];
561 ((W)heap [k])->active = k + 1; 823 ev_active (ANHE_w (heap [k])) = k;
562 k = j; 824 k = p;
563 } 825 }
564 826
565 heap [k] = w; 827 heap [k] = he;
566 ((W)heap [k])->active = k + 1; 828 ev_active (ANHE_w (he)) = k;
567} 829}
568 830
569inline void 831/* away from the root */
832void inline_speed
833downheap (ANHE *heap, int N, int k)
834{
835 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0;
837
838 for (;;)
839 {
840 ev_tstamp minat;
841 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
843
844 // find minimum child
845 if (expect_true (pos + DHEAP - 1 < E))
846 {
847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else if (pos < E)
853 {
854 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else
860 break;
861
862 if (ANHE_at (he) <= minat)
863 break;
864
865 heap [k] = *minpos;
866 ev_active (ANHE_w (*minpos)) = k;
867
868 k = minpos - heap;
869 }
870
871 heap [k] = he;
872 ev_active (ANHE_w (he)) = k;
873}
874
875#else // 4HEAP
876
877#define HEAP0 1
878#define HPARENT(k) ((k) >> 1)
879
880/* towards the root */
881void inline_speed
882upheap (ANHE *heap, int k)
883{
884 ANHE he = heap [k];
885
886 for (;;)
887 {
888 int p = HPARENT (k);
889
890 /* maybe we could use a dummy element at heap [0]? */
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break;
893
894 heap [k] = heap [p];
895 ev_active (ANHE_w (heap [k])) = k;
896 k = p;
897 }
898
899 heap [k] = he;
900 ev_active (ANHE_w (heap [k])) = k;
901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
908
909 for (;;)
910 {
911 int c = k << 1;
912
913 if (c > N)
914 break;
915
916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
917 ? 1 : 0;
918
919 if (ANHE_at (he) <= ANHE_at (heap [c]))
920 break;
921
922 heap [k] = heap [c];
923 ev_active (ANHE_w (heap [k])) = k;
924
925 k = c;
926 }
927
928 heap [k] = he;
929 ev_active (ANHE_w (he)) = k;
930}
931#endif
932
933void inline_size
570adjustheap (WT *heap, int N, int k) 934adjustheap (ANHE *heap, int N, int k)
571{ 935{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
572 upheap (heap, k); 937 upheap (heap, k);
938 else
573 downheap (heap, N, k); 939 downheap (heap, N, k);
574} 940}
575 941
576/*****************************************************************************/ 942/*****************************************************************************/
577 943
578typedef struct 944typedef struct
579{ 945{
580 WL head; 946 WL head;
581 sig_atomic_t volatile gotsig; 947 EV_ATOMIC_T gotsig;
582} ANSIG; 948} ANSIG;
583 949
584static ANSIG *signals; 950static ANSIG *signals;
585static int signalmax; 951static int signalmax;
586 952
587static int sigpipe [2]; 953static EV_ATOMIC_T gotsig;
588static sig_atomic_t volatile gotsig;
589static struct ev_io sigev;
590 954
591static void 955void inline_size
592signals_init (ANSIG *base, int count) 956signals_init (ANSIG *base, int count)
593{ 957{
594 while (count--) 958 while (count--)
595 { 959 {
596 base->head = 0; 960 base->head = 0;
598 962
599 ++base; 963 ++base;
600 } 964 }
601} 965}
602 966
603static void 967/*****************************************************************************/
604sighandler (int signum)
605{
606#if _WIN32
607 signal (signum, sighandler);
608#endif
609 968
610 signals [signum - 1].gotsig = 1; 969void inline_speed
611
612 if (!gotsig)
613 {
614 int old_errno = errno;
615 gotsig = 1;
616 write (sigpipe [1], &signum, 1);
617 errno = old_errno;
618 }
619}
620
621void
622ev_feed_signal_event (EV_P_ int signum)
623{
624 WL w;
625
626#if EV_MULTIPLICITY
627 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
628#endif
629
630 --signum;
631
632 if (signum < 0 || signum >= signalmax)
633 return;
634
635 signals [signum].gotsig = 0;
636
637 for (w = signals [signum].head; w; w = w->next)
638 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
639}
640
641static void
642sigcb (EV_P_ struct ev_io *iow, int revents)
643{
644 int signum;
645
646 read (sigpipe [0], &revents, 1);
647 gotsig = 0;
648
649 for (signum = signalmax; signum--; )
650 if (signals [signum].gotsig)
651 ev_feed_signal_event (EV_A_ signum + 1);
652}
653
654inline void
655fd_intern (int fd) 970fd_intern (int fd)
656{ 971{
657#ifdef _WIN32 972#ifdef _WIN32
658 int arg = 1; 973 int arg = 1;
659 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 974 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
661 fcntl (fd, F_SETFD, FD_CLOEXEC); 976 fcntl (fd, F_SETFD, FD_CLOEXEC);
662 fcntl (fd, F_SETFL, O_NONBLOCK); 977 fcntl (fd, F_SETFL, O_NONBLOCK);
663#endif 978#endif
664} 979}
665 980
981static void noinline
982evpipe_init (EV_P)
983{
984 if (!ev_is_active (&pipeev))
985 {
986#if EV_USE_EVENTFD
987 if ((evfd = eventfd (0, 0)) >= 0)
988 {
989 evpipe [0] = -1;
990 fd_intern (evfd);
991 ev_io_set (&pipeev, evfd, EV_READ);
992 }
993 else
994#endif
995 {
996 while (pipe (evpipe))
997 syserr ("(libev) error creating signal/async pipe");
998
999 fd_intern (evpipe [0]);
1000 fd_intern (evpipe [1]);
1001 ev_io_set (&pipeev, evpipe [0], EV_READ);
1002 }
1003
1004 ev_io_start (EV_A_ &pipeev);
1005 ev_unref (EV_A); /* watcher should not keep loop alive */
1006 }
1007}
1008
1009void inline_size
1010evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1011{
1012 if (!*flag)
1013 {
1014 int old_errno = errno; /* save errno because write might clobber it */
1015
1016 *flag = 1;
1017
1018#if EV_USE_EVENTFD
1019 if (evfd >= 0)
1020 {
1021 uint64_t counter = 1;
1022 write (evfd, &counter, sizeof (uint64_t));
1023 }
1024 else
1025#endif
1026 write (evpipe [1], &old_errno, 1);
1027
1028 errno = old_errno;
1029 }
1030}
1031
666static void 1032static void
667siginit (EV_P) 1033pipecb (EV_P_ ev_io *iow, int revents)
668{ 1034{
669 fd_intern (sigpipe [0]); 1035#if EV_USE_EVENTFD
670 fd_intern (sigpipe [1]); 1036 if (evfd >= 0)
1037 {
1038 uint64_t counter;
1039 read (evfd, &counter, sizeof (uint64_t));
1040 }
1041 else
1042#endif
1043 {
1044 char dummy;
1045 read (evpipe [0], &dummy, 1);
1046 }
671 1047
672 ev_io_set (&sigev, sigpipe [0], EV_READ); 1048 if (gotsig && ev_is_default_loop (EV_A))
673 ev_io_start (EV_A_ &sigev); 1049 {
674 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1050 int signum;
1051 gotsig = 0;
1052
1053 for (signum = signalmax; signum--; )
1054 if (signals [signum].gotsig)
1055 ev_feed_signal_event (EV_A_ signum + 1);
1056 }
1057
1058#if EV_ASYNC_ENABLE
1059 if (gotasync)
1060 {
1061 int i;
1062 gotasync = 0;
1063
1064 for (i = asynccnt; i--; )
1065 if (asyncs [i]->sent)
1066 {
1067 asyncs [i]->sent = 0;
1068 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1069 }
1070 }
1071#endif
675} 1072}
676 1073
677/*****************************************************************************/ 1074/*****************************************************************************/
678 1075
679static struct ev_child *childs [PID_HASHSIZE]; 1076static void
1077ev_sighandler (int signum)
1078{
1079#if EV_MULTIPLICITY
1080 struct ev_loop *loop = &default_loop_struct;
1081#endif
1082
1083#if _WIN32
1084 signal (signum, ev_sighandler);
1085#endif
1086
1087 signals [signum - 1].gotsig = 1;
1088 evpipe_write (EV_A_ &gotsig);
1089}
1090
1091void noinline
1092ev_feed_signal_event (EV_P_ int signum)
1093{
1094 WL w;
1095
1096#if EV_MULTIPLICITY
1097 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1098#endif
1099
1100 --signum;
1101
1102 if (signum < 0 || signum >= signalmax)
1103 return;
1104
1105 signals [signum].gotsig = 0;
1106
1107 for (w = signals [signum].head; w; w = w->next)
1108 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1109}
1110
1111/*****************************************************************************/
1112
1113static WL childs [EV_PID_HASHSIZE];
680 1114
681#ifndef _WIN32 1115#ifndef _WIN32
682 1116
683static struct ev_signal childev; 1117static ev_signal childev;
1118
1119#ifndef WIFCONTINUED
1120# define WIFCONTINUED(status) 0
1121#endif
1122
1123void inline_speed
1124child_reap (EV_P_ int chain, int pid, int status)
1125{
1126 ev_child *w;
1127 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1128
1129 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1130 {
1131 if ((w->pid == pid || !w->pid)
1132 && (!traced || (w->flags & 1)))
1133 {
1134 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1135 w->rpid = pid;
1136 w->rstatus = status;
1137 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1138 }
1139 }
1140}
684 1141
685#ifndef WCONTINUED 1142#ifndef WCONTINUED
686# define WCONTINUED 0 1143# define WCONTINUED 0
687#endif 1144#endif
688 1145
689static void 1146static void
690child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
691{
692 struct ev_child *w;
693
694 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
695 if (w->pid == pid || !w->pid)
696 {
697 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
698 w->rpid = pid;
699 w->rstatus = status;
700 ev_feed_event (EV_A_ (W)w, EV_CHILD);
701 }
702}
703
704static void
705childcb (EV_P_ struct ev_signal *sw, int revents) 1147childcb (EV_P_ ev_signal *sw, int revents)
706{ 1148{
707 int pid, status; 1149 int pid, status;
708 1150
1151 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
709 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1152 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
710 { 1153 if (!WCONTINUED
1154 || errno != EINVAL
1155 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1156 return;
1157
711 /* make sure we are called again until all childs have been reaped */ 1158 /* make sure we are called again until all children have been reaped */
1159 /* we need to do it this way so that the callback gets called before we continue */
712 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1160 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
713 1161
714 child_reap (EV_A_ sw, pid, pid, status); 1162 child_reap (EV_A_ pid, pid, status);
1163 if (EV_PID_HASHSIZE > 1)
715 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1164 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
716 }
717} 1165}
718 1166
719#endif 1167#endif
720 1168
721/*****************************************************************************/ 1169/*****************************************************************************/
747{ 1195{
748 return EV_VERSION_MINOR; 1196 return EV_VERSION_MINOR;
749} 1197}
750 1198
751/* return true if we are running with elevated privileges and should ignore env variables */ 1199/* return true if we are running with elevated privileges and should ignore env variables */
752static int 1200int inline_size
753enable_secure (void) 1201enable_secure (void)
754{ 1202{
755#ifdef _WIN32 1203#ifdef _WIN32
756 return 0; 1204 return 0;
757#else 1205#else
759 || getgid () != getegid (); 1207 || getgid () != getegid ();
760#endif 1208#endif
761} 1209}
762 1210
763unsigned int 1211unsigned int
764ev_method (EV_P) 1212ev_supported_backends (void)
765{ 1213{
766 return method; 1214 unsigned int flags = 0;
767}
768 1215
769static void 1216 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1217 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1218 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1219 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1220 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1221
1222 return flags;
1223}
1224
1225unsigned int
1226ev_recommended_backends (void)
1227{
1228 unsigned int flags = ev_supported_backends ();
1229
1230#ifndef __NetBSD__
1231 /* kqueue is borked on everything but netbsd apparently */
1232 /* it usually doesn't work correctly on anything but sockets and pipes */
1233 flags &= ~EVBACKEND_KQUEUE;
1234#endif
1235#ifdef __APPLE__
1236 // flags &= ~EVBACKEND_KQUEUE; for documentation
1237 flags &= ~EVBACKEND_POLL;
1238#endif
1239
1240 return flags;
1241}
1242
1243unsigned int
1244ev_embeddable_backends (void)
1245{
1246 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1247
1248 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1249 /* please fix it and tell me how to detect the fix */
1250 flags &= ~EVBACKEND_EPOLL;
1251
1252 return flags;
1253}
1254
1255unsigned int
1256ev_backend (EV_P)
1257{
1258 return backend;
1259}
1260
1261unsigned int
1262ev_loop_count (EV_P)
1263{
1264 return loop_count;
1265}
1266
1267void
1268ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1269{
1270 io_blocktime = interval;
1271}
1272
1273void
1274ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1275{
1276 timeout_blocktime = interval;
1277}
1278
1279static void noinline
770loop_init (EV_P_ unsigned int flags) 1280loop_init (EV_P_ unsigned int flags)
771{ 1281{
772 if (!method) 1282 if (!backend)
773 { 1283 {
774#if EV_USE_MONOTONIC 1284#if EV_USE_MONOTONIC
775 { 1285 {
776 struct timespec ts; 1286 struct timespec ts;
777 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1287 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
778 have_monotonic = 1; 1288 have_monotonic = 1;
779 } 1289 }
780#endif 1290#endif
781 1291
782 ev_rt_now = ev_time (); 1292 ev_rt_now = ev_time ();
783 mn_now = get_clock (); 1293 mn_now = get_clock ();
784 now_floor = mn_now; 1294 now_floor = mn_now;
785 rtmn_diff = ev_rt_now - mn_now; 1295 rtmn_diff = ev_rt_now - mn_now;
786 1296
787 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1297 io_blocktime = 0.;
1298 timeout_blocktime = 0.;
1299 backend = 0;
1300 backend_fd = -1;
1301 gotasync = 0;
1302#if EV_USE_INOTIFY
1303 fs_fd = -2;
1304#endif
1305
1306 /* pid check not overridable via env */
1307#ifndef _WIN32
1308 if (flags & EVFLAG_FORKCHECK)
1309 curpid = getpid ();
1310#endif
1311
1312 if (!(flags & EVFLAG_NOENV)
1313 && !enable_secure ()
1314 && getenv ("LIBEV_FLAGS"))
788 flags = atoi (getenv ("LIBEV_FLAGS")); 1315 flags = atoi (getenv ("LIBEV_FLAGS"));
789 1316
790 if (!(flags & 0x0000ffff)) 1317 if (!(flags & 0x0000ffffU))
791 flags |= 0x0000ffff; 1318 flags |= ev_recommended_backends ();
792 1319
793 method = 0;
794#if EV_USE_PORT 1320#if EV_USE_PORT
795 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1321 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
796#endif 1322#endif
797#if EV_USE_KQUEUE 1323#if EV_USE_KQUEUE
798 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1324 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
799#endif 1325#endif
800#if EV_USE_EPOLL 1326#if EV_USE_EPOLL
801 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1327 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
802#endif 1328#endif
803#if EV_USE_POLL 1329#if EV_USE_POLL
804 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1330 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
805#endif 1331#endif
806#if EV_USE_SELECT 1332#if EV_USE_SELECT
807 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1333 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
808#endif 1334#endif
809 1335
810 ev_init (&sigev, sigcb); 1336 ev_init (&pipeev, pipecb);
811 ev_set_priority (&sigev, EV_MAXPRI); 1337 ev_set_priority (&pipeev, EV_MAXPRI);
812 } 1338 }
813} 1339}
814 1340
815void 1341static void noinline
816loop_destroy (EV_P) 1342loop_destroy (EV_P)
817{ 1343{
818 int i; 1344 int i;
819 1345
1346 if (ev_is_active (&pipeev))
1347 {
1348 ev_ref (EV_A); /* signal watcher */
1349 ev_io_stop (EV_A_ &pipeev);
1350
1351#if EV_USE_EVENTFD
1352 if (evfd >= 0)
1353 close (evfd);
1354#endif
1355
1356 if (evpipe [0] >= 0)
1357 {
1358 close (evpipe [0]);
1359 close (evpipe [1]);
1360 }
1361 }
1362
1363#if EV_USE_INOTIFY
1364 if (fs_fd >= 0)
1365 close (fs_fd);
1366#endif
1367
1368 if (backend_fd >= 0)
1369 close (backend_fd);
1370
820#if EV_USE_PORT 1371#if EV_USE_PORT
821 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1372 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
822#endif 1373#endif
823#if EV_USE_KQUEUE 1374#if EV_USE_KQUEUE
824 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1375 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
825#endif 1376#endif
826#if EV_USE_EPOLL 1377#if EV_USE_EPOLL
827 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1378 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
828#endif 1379#endif
829#if EV_USE_POLL 1380#if EV_USE_POLL
830 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1381 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
831#endif 1382#endif
832#if EV_USE_SELECT 1383#if EV_USE_SELECT
833 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1384 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
834#endif 1385#endif
835 1386
836 for (i = NUMPRI; i--; ) 1387 for (i = NUMPRI; i--; )
1388 {
837 array_free (pending, [i]); 1389 array_free (pending, [i]);
1390#if EV_IDLE_ENABLE
1391 array_free (idle, [i]);
1392#endif
1393 }
1394
1395 ev_free (anfds); anfdmax = 0;
838 1396
839 /* have to use the microsoft-never-gets-it-right macro */ 1397 /* have to use the microsoft-never-gets-it-right macro */
840 array_free (fdchange, EMPTY0); 1398 array_free (fdchange, EMPTY);
841 array_free (timer, EMPTY0); 1399 array_free (timer, EMPTY);
842#if EV_PERIODICS 1400#if EV_PERIODIC_ENABLE
843 array_free (periodic, EMPTY0); 1401 array_free (periodic, EMPTY);
844#endif 1402#endif
1403#if EV_FORK_ENABLE
845 array_free (idle, EMPTY0); 1404 array_free (fork, EMPTY);
1405#endif
846 array_free (prepare, EMPTY0); 1406 array_free (prepare, EMPTY);
847 array_free (check, EMPTY0); 1407 array_free (check, EMPTY);
1408#if EV_ASYNC_ENABLE
1409 array_free (async, EMPTY);
1410#endif
848 1411
849 method = 0; 1412 backend = 0;
850} 1413}
851 1414
852static void 1415#if EV_USE_INOTIFY
1416void inline_size infy_fork (EV_P);
1417#endif
1418
1419void inline_size
853loop_fork (EV_P) 1420loop_fork (EV_P)
854{ 1421{
855#if EV_USE_PORT 1422#if EV_USE_PORT
856 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1423 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
857#endif 1424#endif
858#if EV_USE_KQUEUE 1425#if EV_USE_KQUEUE
859 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1426 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
860#endif 1427#endif
861#if EV_USE_EPOLL 1428#if EV_USE_EPOLL
862 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1429 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
863#endif 1430#endif
1431#if EV_USE_INOTIFY
1432 infy_fork (EV_A);
1433#endif
864 1434
865 if (ev_is_active (&sigev)) 1435 if (ev_is_active (&pipeev))
866 { 1436 {
867 /* default loop */ 1437 /* this "locks" the handlers against writing to the pipe */
1438 /* while we modify the fd vars */
1439 gotsig = 1;
1440#if EV_ASYNC_ENABLE
1441 gotasync = 1;
1442#endif
868 1443
869 ev_ref (EV_A); 1444 ev_ref (EV_A);
870 ev_io_stop (EV_A_ &sigev); 1445 ev_io_stop (EV_A_ &pipeev);
1446
1447#if EV_USE_EVENTFD
1448 if (evfd >= 0)
1449 close (evfd);
1450#endif
1451
1452 if (evpipe [0] >= 0)
1453 {
871 close (sigpipe [0]); 1454 close (evpipe [0]);
872 close (sigpipe [1]); 1455 close (evpipe [1]);
1456 }
873 1457
874 while (pipe (sigpipe))
875 syserr ("(libev) error creating pipe");
876
877 siginit (EV_A); 1458 evpipe_init (EV_A);
1459 /* now iterate over everything, in case we missed something */
1460 pipecb (EV_A_ &pipeev, EV_READ);
878 } 1461 }
879 1462
880 postfork = 0; 1463 postfork = 0;
881} 1464}
882 1465
888 1471
889 memset (loop, 0, sizeof (struct ev_loop)); 1472 memset (loop, 0, sizeof (struct ev_loop));
890 1473
891 loop_init (EV_A_ flags); 1474 loop_init (EV_A_ flags);
892 1475
893 if (ev_method (EV_A)) 1476 if (ev_backend (EV_A))
894 return loop; 1477 return loop;
895 1478
896 return 0; 1479 return 0;
897} 1480}
898 1481
904} 1487}
905 1488
906void 1489void
907ev_loop_fork (EV_P) 1490ev_loop_fork (EV_P)
908{ 1491{
909 postfork = 1; 1492 postfork = 1; /* must be in line with ev_default_fork */
910} 1493}
911
912#endif 1494#endif
913 1495
914#if EV_MULTIPLICITY 1496#if EV_MULTIPLICITY
915struct ev_loop * 1497struct ev_loop *
916ev_default_loop_ (unsigned int flags) 1498ev_default_loop_init (unsigned int flags)
917#else 1499#else
918int 1500int
919ev_default_loop (unsigned int flags) 1501ev_default_loop (unsigned int flags)
920#endif 1502#endif
921{ 1503{
922 if (sigpipe [0] == sigpipe [1])
923 if (pipe (sigpipe))
924 return 0;
925
926 if (!ev_default_loop_ptr) 1504 if (!ev_default_loop_ptr)
927 { 1505 {
928#if EV_MULTIPLICITY 1506#if EV_MULTIPLICITY
929 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1507 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
930#else 1508#else
931 ev_default_loop_ptr = 1; 1509 ev_default_loop_ptr = 1;
932#endif 1510#endif
933 1511
934 loop_init (EV_A_ flags); 1512 loop_init (EV_A_ flags);
935 1513
936 if (ev_method (EV_A)) 1514 if (ev_backend (EV_A))
937 { 1515 {
938 siginit (EV_A);
939
940#ifndef _WIN32 1516#ifndef _WIN32
941 ev_signal_init (&childev, childcb, SIGCHLD); 1517 ev_signal_init (&childev, childcb, SIGCHLD);
942 ev_set_priority (&childev, EV_MAXPRI); 1518 ev_set_priority (&childev, EV_MAXPRI);
943 ev_signal_start (EV_A_ &childev); 1519 ev_signal_start (EV_A_ &childev);
944 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1520 ev_unref (EV_A); /* child watcher should not keep loop alive */
961#ifndef _WIN32 1537#ifndef _WIN32
962 ev_ref (EV_A); /* child watcher */ 1538 ev_ref (EV_A); /* child watcher */
963 ev_signal_stop (EV_A_ &childev); 1539 ev_signal_stop (EV_A_ &childev);
964#endif 1540#endif
965 1541
966 ev_ref (EV_A); /* signal watcher */
967 ev_io_stop (EV_A_ &sigev);
968
969 close (sigpipe [0]); sigpipe [0] = 0;
970 close (sigpipe [1]); sigpipe [1] = 0;
971
972 loop_destroy (EV_A); 1542 loop_destroy (EV_A);
973} 1543}
974 1544
975void 1545void
976ev_default_fork (void) 1546ev_default_fork (void)
977{ 1547{
978#if EV_MULTIPLICITY 1548#if EV_MULTIPLICITY
979 struct ev_loop *loop = ev_default_loop_ptr; 1549 struct ev_loop *loop = ev_default_loop_ptr;
980#endif 1550#endif
981 1551
982 if (method) 1552 if (backend)
983 postfork = 1; 1553 postfork = 1; /* must be in line with ev_loop_fork */
984} 1554}
985 1555
986/*****************************************************************************/ 1556/*****************************************************************************/
987 1557
988static int 1558void
989any_pending (EV_P) 1559ev_invoke (EV_P_ void *w, int revents)
990{ 1560{
991 int pri; 1561 EV_CB_INVOKE ((W)w, revents);
992
993 for (pri = NUMPRI; pri--; )
994 if (pendingcnt [pri])
995 return 1;
996
997 return 0;
998} 1562}
999 1563
1000static void 1564void inline_speed
1001call_pending (EV_P) 1565call_pending (EV_P)
1002{ 1566{
1003 int pri; 1567 int pri;
1004 1568
1005 for (pri = NUMPRI; pri--; ) 1569 for (pri = NUMPRI; pri--; )
1006 while (pendingcnt [pri]) 1570 while (pendingcnt [pri])
1007 { 1571 {
1008 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1572 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1009 1573
1010 if (p->w) 1574 if (expect_true (p->w))
1011 { 1575 {
1576 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1577
1012 p->w->pending = 0; 1578 p->w->pending = 0;
1013 EV_CB_INVOKE (p->w, p->events); 1579 EV_CB_INVOKE (p->w, p->events);
1014 } 1580 }
1015 } 1581 }
1016} 1582}
1017 1583
1018static void 1584#if EV_IDLE_ENABLE
1585void inline_size
1586idle_reify (EV_P)
1587{
1588 if (expect_false (idleall))
1589 {
1590 int pri;
1591
1592 for (pri = NUMPRI; pri--; )
1593 {
1594 if (pendingcnt [pri])
1595 break;
1596
1597 if (idlecnt [pri])
1598 {
1599 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1600 break;
1601 }
1602 }
1603 }
1604}
1605#endif
1606
1607void inline_size
1019timers_reify (EV_P) 1608timers_reify (EV_P)
1020{ 1609{
1021 while (timercnt && ((WT)timers [0])->at <= mn_now) 1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1022 { 1611 {
1023 struct ev_timer *w = timers [0]; 1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1024 1613
1025 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1026 1615
1027 /* first reschedule or stop timer */ 1616 /* first reschedule or stop timer */
1028 if (w->repeat) 1617 if (w->repeat)
1029 { 1618 {
1619 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now;
1622
1030 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1031 1624
1032 ((WT)w)->at += w->repeat; 1625 ANHE_at_set (timers [HEAP0]);
1033 if (((WT)w)->at < mn_now)
1034 ((WT)w)->at = mn_now;
1035
1036 downheap ((WT *)timers, timercnt, 0); 1626 downheap (timers, timercnt, HEAP0);
1037 } 1627 }
1038 else 1628 else
1039 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1040 1630
1041 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1042 } 1632 }
1043} 1633}
1044 1634
1045#if EV_PERIODICS 1635#if EV_PERIODIC_ENABLE
1046static void 1636void inline_size
1047periodics_reify (EV_P) 1637periodics_reify (EV_P)
1048{ 1638{
1049 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1050 { 1640 {
1051 struct ev_periodic *w = periodics [0]; 1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1052 1642
1053 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1054 1644
1055 /* first reschedule or stop timer */ 1645 /* first reschedule or stop timer */
1056 if (w->reschedule_cb) 1646 if (w->reschedule_cb)
1057 { 1647 {
1058 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649
1059 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651
1652 ANHE_at_set (periodics [HEAP0]);
1060 downheap ((WT *)periodics, periodiccnt, 0); 1653 downheap (periodics, periodiccnt, HEAP0);
1061 } 1654 }
1062 else if (w->interval) 1655 else if (w->interval)
1063 { 1656 {
1064 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1065 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1066 downheap ((WT *)periodics, periodiccnt, 0); 1672 downheap (periodics, periodiccnt, HEAP0);
1067 } 1673 }
1068 else 1674 else
1069 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1070 1676
1071 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1072 } 1678 }
1073} 1679}
1074 1680
1075static void 1681static void noinline
1076periodics_reschedule (EV_P) 1682periodics_reschedule (EV_P)
1077{ 1683{
1078 int i; 1684 int i;
1079 1685
1080 /* adjust periodics after time jump */ 1686 /* adjust periodics after time jump */
1687 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1688 {
1689 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1690
1691 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695
1696 ANHE_at_set (periodics [i]);
1697 }
1698
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1081 for (i = 0; i < periodiccnt; ++i) 1701 for (i = 0; i < periodiccnt; ++i)
1082 { 1702 upheap (periodics, i + HEAP0);
1083 struct ev_periodic *w = periodics [i]; 1703}
1704#endif
1084 1705
1085 if (w->reschedule_cb) 1706void inline_speed
1086 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1707time_update (EV_P_ ev_tstamp max_block)
1087 else if (w->interval) 1708{
1088 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1709 int i;
1710
1711#if EV_USE_MONOTONIC
1712 if (expect_true (have_monotonic))
1089 } 1713 {
1714 ev_tstamp odiff = rtmn_diff;
1090 1715
1091 /* now rebuild the heap */
1092 for (i = periodiccnt >> 1; i--; )
1093 downheap ((WT *)periodics, periodiccnt, i);
1094}
1095#endif
1096
1097inline int
1098time_update_monotonic (EV_P)
1099{
1100 mn_now = get_clock (); 1716 mn_now = get_clock ();
1101 1717
1718 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1719 /* interpolate in the meantime */
1102 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1720 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1103 { 1721 {
1104 ev_rt_now = rtmn_diff + mn_now; 1722 ev_rt_now = rtmn_diff + mn_now;
1105 return 0; 1723 return;
1106 } 1724 }
1107 else 1725
1108 {
1109 now_floor = mn_now; 1726 now_floor = mn_now;
1110 ev_rt_now = ev_time (); 1727 ev_rt_now = ev_time ();
1111 return 1;
1112 }
1113}
1114 1728
1115static void 1729 /* loop a few times, before making important decisions.
1116time_update (EV_P) 1730 * on the choice of "4": one iteration isn't enough,
1117{ 1731 * in case we get preempted during the calls to
1118 int i; 1732 * ev_time and get_clock. a second call is almost guaranteed
1119 1733 * to succeed in that case, though. and looping a few more times
1120#if EV_USE_MONOTONIC 1734 * doesn't hurt either as we only do this on time-jumps or
1121 if (expect_true (have_monotonic)) 1735 * in the unlikely event of having been preempted here.
1122 { 1736 */
1123 if (time_update_monotonic (EV_A)) 1737 for (i = 4; --i; )
1124 { 1738 {
1125 ev_tstamp odiff = rtmn_diff; 1739 rtmn_diff = ev_rt_now - mn_now;
1126 1740
1127 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1741 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1742 return; /* all is well */
1743
1744 ev_rt_now = ev_time ();
1745 mn_now = get_clock ();
1746 now_floor = mn_now;
1747 }
1748
1749# if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A);
1751# endif
1752 /* no timer adjustment, as the monotonic clock doesn't jump */
1753 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1754 }
1755 else
1756#endif
1757 {
1758 ev_rt_now = ev_time ();
1759
1760 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1761 {
1762#if EV_PERIODIC_ENABLE
1763 periodics_reschedule (EV_A);
1764#endif
1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1766 for (i = 0; i < timercnt; ++i)
1128 { 1767 {
1129 rtmn_diff = ev_rt_now - mn_now; 1768 ANHE *he = timers + i + HEAP0;
1130 1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1131 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1770 ANHE_at_set (*he);
1132 return; /* all is well */
1133
1134 ev_rt_now = ev_time ();
1135 mn_now = get_clock ();
1136 now_floor = mn_now;
1137 } 1771 }
1138
1139# if EV_PERIODICS
1140 periodics_reschedule (EV_A);
1141# endif
1142 /* no timer adjustment, as the monotonic clock doesn't jump */
1143 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1144 } 1772 }
1145 }
1146 else
1147#endif
1148 {
1149 ev_rt_now = ev_time ();
1150
1151 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1152 {
1153#if EV_PERIODICS
1154 periodics_reschedule (EV_A);
1155#endif
1156
1157 /* adjust timers. this is easy, as the offset is the same for all */
1158 for (i = 0; i < timercnt; ++i)
1159 ((WT)timers [i])->at += ev_rt_now - mn_now;
1160 }
1161 1773
1162 mn_now = ev_rt_now; 1774 mn_now = ev_rt_now;
1163 } 1775 }
1164} 1776}
1165 1777
1178static int loop_done; 1790static int loop_done;
1179 1791
1180void 1792void
1181ev_loop (EV_P_ int flags) 1793ev_loop (EV_P_ int flags)
1182{ 1794{
1183 double block; 1795 loop_done = EVUNLOOP_CANCEL;
1184 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1185 1796
1186 while (activecnt) 1797 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1798
1799 do
1187 { 1800 {
1801#ifndef _WIN32
1802 if (expect_false (curpid)) /* penalise the forking check even more */
1803 if (expect_false (getpid () != curpid))
1804 {
1805 curpid = getpid ();
1806 postfork = 1;
1807 }
1808#endif
1809
1810#if EV_FORK_ENABLE
1811 /* we might have forked, so queue fork handlers */
1812 if (expect_false (postfork))
1813 if (forkcnt)
1814 {
1815 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1816 call_pending (EV_A);
1817 }
1818#endif
1819
1188 /* queue check watchers (and execute them) */ 1820 /* queue prepare watchers (and execute them) */
1189 if (expect_false (preparecnt)) 1821 if (expect_false (preparecnt))
1190 { 1822 {
1191 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1823 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1192 call_pending (EV_A); 1824 call_pending (EV_A);
1193 } 1825 }
1194 1826
1827 if (expect_false (!activecnt))
1828 break;
1829
1195 /* we might have forked, so reify kernel state if necessary */ 1830 /* we might have forked, so reify kernel state if necessary */
1196 if (expect_false (postfork)) 1831 if (expect_false (postfork))
1197 loop_fork (EV_A); 1832 loop_fork (EV_A);
1198 1833
1199 /* update fd-related kernel structures */ 1834 /* update fd-related kernel structures */
1200 fd_reify (EV_A); 1835 fd_reify (EV_A);
1201 1836
1202 /* calculate blocking time */ 1837 /* calculate blocking time */
1838 {
1839 ev_tstamp waittime = 0.;
1840 ev_tstamp sleeptime = 0.;
1203 1841
1204 /* we only need this for !monotonic clock or timers, but as we basically 1842 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1205 always have timers, we just calculate it always */
1206#if EV_USE_MONOTONIC
1207 if (expect_true (have_monotonic))
1208 time_update_monotonic (EV_A);
1209 else
1210#endif
1211 { 1843 {
1212 ev_rt_now = ev_time (); 1844 /* update time to cancel out callback processing overhead */
1213 mn_now = ev_rt_now; 1845 time_update (EV_A_ 1e100);
1214 }
1215 1846
1216 if (flags & EVLOOP_NONBLOCK || idlecnt)
1217 block = 0.;
1218 else
1219 {
1220 block = MAX_BLOCKTIME; 1847 waittime = MAX_BLOCKTIME;
1221 1848
1222 if (timercnt) 1849 if (timercnt)
1223 { 1850 {
1224 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1851 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1225 if (block > to) block = to; 1852 if (waittime > to) waittime = to;
1226 } 1853 }
1227 1854
1228#if EV_PERIODICS 1855#if EV_PERIODIC_ENABLE
1229 if (periodiccnt) 1856 if (periodiccnt)
1230 { 1857 {
1231 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1232 if (block > to) block = to; 1859 if (waittime > to) waittime = to;
1233 } 1860 }
1234#endif 1861#endif
1235 1862
1236 if (block < 0.) block = 0.; 1863 if (expect_false (waittime < timeout_blocktime))
1864 waittime = timeout_blocktime;
1865
1866 sleeptime = waittime - backend_fudge;
1867
1868 if (expect_true (sleeptime > io_blocktime))
1869 sleeptime = io_blocktime;
1870
1871 if (sleeptime)
1872 {
1873 ev_sleep (sleeptime);
1874 waittime -= sleeptime;
1875 }
1237 } 1876 }
1238 1877
1239 method_poll (EV_A_ block); 1878 ++loop_count;
1879 backend_poll (EV_A_ waittime);
1240 1880
1241 /* update ev_rt_now, do magic */ 1881 /* update ev_rt_now, do magic */
1242 time_update (EV_A); 1882 time_update (EV_A_ waittime + sleeptime);
1883 }
1243 1884
1244 /* queue pending timers and reschedule them */ 1885 /* queue pending timers and reschedule them */
1245 timers_reify (EV_A); /* relative timers called last */ 1886 timers_reify (EV_A); /* relative timers called last */
1246#if EV_PERIODICS 1887#if EV_PERIODIC_ENABLE
1247 periodics_reify (EV_A); /* absolute timers called first */ 1888 periodics_reify (EV_A); /* absolute timers called first */
1248#endif 1889#endif
1249 1890
1891#if EV_IDLE_ENABLE
1250 /* queue idle watchers unless io or timers are pending */ 1892 /* queue idle watchers unless other events are pending */
1251 if (idlecnt && !any_pending (EV_A)) 1893 idle_reify (EV_A);
1252 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1894#endif
1253 1895
1254 /* queue check watchers, to be executed first */ 1896 /* queue check watchers, to be executed first */
1255 if (checkcnt) 1897 if (expect_false (checkcnt))
1256 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1898 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1257 1899
1258 call_pending (EV_A); 1900 call_pending (EV_A);
1259
1260 if (loop_done)
1261 break;
1262 } 1901 }
1902 while (expect_true (
1903 activecnt
1904 && !loop_done
1905 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1906 ));
1263 1907
1264 if (loop_done != 2) 1908 if (loop_done == EVUNLOOP_ONE)
1265 loop_done = 0; 1909 loop_done = EVUNLOOP_CANCEL;
1266} 1910}
1267 1911
1268void 1912void
1269ev_unloop (EV_P_ int how) 1913ev_unloop (EV_P_ int how)
1270{ 1914{
1271 loop_done = how; 1915 loop_done = how;
1272} 1916}
1273 1917
1274/*****************************************************************************/ 1918/*****************************************************************************/
1275 1919
1276inline void 1920void inline_size
1277wlist_add (WL *head, WL elem) 1921wlist_add (WL *head, WL elem)
1278{ 1922{
1279 elem->next = *head; 1923 elem->next = *head;
1280 *head = elem; 1924 *head = elem;
1281} 1925}
1282 1926
1283inline void 1927void inline_size
1284wlist_del (WL *head, WL elem) 1928wlist_del (WL *head, WL elem)
1285{ 1929{
1286 while (*head) 1930 while (*head)
1287 { 1931 {
1288 if (*head == elem) 1932 if (*head == elem)
1293 1937
1294 head = &(*head)->next; 1938 head = &(*head)->next;
1295 } 1939 }
1296} 1940}
1297 1941
1298inline void 1942void inline_speed
1299ev_clear_pending (EV_P_ W w) 1943clear_pending (EV_P_ W w)
1300{ 1944{
1301 if (w->pending) 1945 if (w->pending)
1302 { 1946 {
1303 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1947 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1304 w->pending = 0; 1948 w->pending = 0;
1305 } 1949 }
1306} 1950}
1307 1951
1308inline void 1952int
1953ev_clear_pending (EV_P_ void *w)
1954{
1955 W w_ = (W)w;
1956 int pending = w_->pending;
1957
1958 if (expect_true (pending))
1959 {
1960 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1961 w_->pending = 0;
1962 p->w = 0;
1963 return p->events;
1964 }
1965 else
1966 return 0;
1967}
1968
1969void inline_size
1970pri_adjust (EV_P_ W w)
1971{
1972 int pri = w->priority;
1973 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1974 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1975 w->priority = pri;
1976}
1977
1978void inline_speed
1309ev_start (EV_P_ W w, int active) 1979ev_start (EV_P_ W w, int active)
1310{ 1980{
1311 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1981 pri_adjust (EV_A_ w);
1312 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1313
1314 w->active = active; 1982 w->active = active;
1315 ev_ref (EV_A); 1983 ev_ref (EV_A);
1316} 1984}
1317 1985
1318inline void 1986void inline_size
1319ev_stop (EV_P_ W w) 1987ev_stop (EV_P_ W w)
1320{ 1988{
1321 ev_unref (EV_A); 1989 ev_unref (EV_A);
1322 w->active = 0; 1990 w->active = 0;
1323} 1991}
1324 1992
1325/*****************************************************************************/ 1993/*****************************************************************************/
1326 1994
1327void 1995void noinline
1328ev_io_start (EV_P_ struct ev_io *w) 1996ev_io_start (EV_P_ ev_io *w)
1329{ 1997{
1330 int fd = w->fd; 1998 int fd = w->fd;
1331 1999
1332 if (ev_is_active (w)) 2000 if (expect_false (ev_is_active (w)))
1333 return; 2001 return;
1334 2002
1335 assert (("ev_io_start called with negative fd", fd >= 0)); 2003 assert (("ev_io_start called with negative fd", fd >= 0));
1336 2004
1337 ev_start (EV_A_ (W)w, 1); 2005 ev_start (EV_A_ (W)w, 1);
1338 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2006 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1339 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2007 wlist_add (&anfds[fd].head, (WL)w);
1340 2008
1341 fd_change (EV_A_ fd); 2009 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2010 w->events &= ~EV_IOFDSET;
1342} 2011}
1343 2012
1344void 2013void noinline
1345ev_io_stop (EV_P_ struct ev_io *w) 2014ev_io_stop (EV_P_ ev_io *w)
1346{ 2015{
1347 ev_clear_pending (EV_A_ (W)w); 2016 clear_pending (EV_A_ (W)w);
1348 if (!ev_is_active (w)) 2017 if (expect_false (!ev_is_active (w)))
1349 return; 2018 return;
1350 2019
1351 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1352 2021
1353 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2022 wlist_del (&anfds[w->fd].head, (WL)w);
1354 ev_stop (EV_A_ (W)w); 2023 ev_stop (EV_A_ (W)w);
1355 2024
1356 fd_change (EV_A_ w->fd); 2025 fd_change (EV_A_ w->fd, 1);
1357} 2026}
1358 2027
1359void 2028void noinline
1360ev_timer_start (EV_P_ struct ev_timer *w) 2029ev_timer_start (EV_P_ ev_timer *w)
1361{ 2030{
1362 if (ev_is_active (w)) 2031 if (expect_false (ev_is_active (w)))
1363 return; 2032 return;
1364 2033
1365 ((WT)w)->at += mn_now; 2034 ev_at (w) += mn_now;
1366 2035
1367 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1368 2037
1369 ev_start (EV_A_ (W)w, ++timercnt); 2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1370 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1371 timers [timercnt - 1] = w; 2040 ANHE_w (timers [ev_active (w)]) = (WT)w;
1372 upheap ((WT *)timers, timercnt - 1); 2041 ANHE_at_set (timers [ev_active (w)]);
2042 upheap (timers, ev_active (w));
1373 2043
1374 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1375} 2045}
1376 2046
1377void 2047void noinline
1378ev_timer_stop (EV_P_ struct ev_timer *w) 2048ev_timer_stop (EV_P_ ev_timer *w)
1379{ 2049{
1380 ev_clear_pending (EV_A_ (W)w); 2050 clear_pending (EV_A_ (W)w);
1381 if (!ev_is_active (w)) 2051 if (expect_false (!ev_is_active (w)))
1382 return; 2052 return;
1383 2053
2054 {
2055 int active = ev_active (w);
2056
1384 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1385 2058
1386 if (((W)w)->active < timercnt--) 2059 if (expect_true (active < timercnt + HEAP0 - 1))
1387 { 2060 {
1388 timers [((W)w)->active - 1] = timers [timercnt]; 2061 timers [active] = timers [timercnt + HEAP0 - 1];
1389 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2062 adjustheap (timers, timercnt, active);
1390 } 2063 }
1391 2064
1392 ((WT)w)->at -= mn_now; 2065 --timercnt;
2066 }
2067
2068 ev_at (w) -= mn_now;
1393 2069
1394 ev_stop (EV_A_ (W)w); 2070 ev_stop (EV_A_ (W)w);
1395} 2071}
1396 2072
1397void 2073void noinline
1398ev_timer_again (EV_P_ struct ev_timer *w) 2074ev_timer_again (EV_P_ ev_timer *w)
1399{ 2075{
1400 if (ev_is_active (w)) 2076 if (ev_is_active (w))
1401 { 2077 {
1402 if (w->repeat) 2078 if (w->repeat)
1403 { 2079 {
1404 ((WT)w)->at = mn_now + w->repeat; 2080 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]);
1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2082 adjustheap (timers, timercnt, ev_active (w));
1406 } 2083 }
1407 else 2084 else
1408 ev_timer_stop (EV_A_ w); 2085 ev_timer_stop (EV_A_ w);
1409 } 2086 }
1410 else if (w->repeat) 2087 else if (w->repeat)
1411 { 2088 {
1412 w->at = w->repeat; 2089 ev_at (w) = w->repeat;
1413 ev_timer_start (EV_A_ w); 2090 ev_timer_start (EV_A_ w);
1414 } 2091 }
1415} 2092}
1416 2093
1417#if EV_PERIODICS 2094#if EV_PERIODIC_ENABLE
1418void 2095void noinline
1419ev_periodic_start (EV_P_ struct ev_periodic *w) 2096ev_periodic_start (EV_P_ ev_periodic *w)
1420{ 2097{
1421 if (ev_is_active (w)) 2098 if (expect_false (ev_is_active (w)))
1422 return; 2099 return;
1423 2100
1424 if (w->reschedule_cb) 2101 if (w->reschedule_cb)
1425 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2102 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1426 else if (w->interval) 2103 else if (w->interval)
1427 { 2104 {
1428 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2105 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1429 /* this formula differs from the one in periodic_reify because we do not always round up */ 2106 /* this formula differs from the one in periodic_reify because we do not always round up */
1430 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 } 2108 }
2109 else
2110 ev_at (w) = w->offset;
1432 2111
1433 ev_start (EV_A_ (W)w, ++periodiccnt); 2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1434 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1435 periodics [periodiccnt - 1] = w; 2114 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1436 upheap ((WT *)periodics, periodiccnt - 1); 2115 ANHE_at_set (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w));
1437 2117
1438 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1439} 2119}
1440 2120
1441void 2121void noinline
1442ev_periodic_stop (EV_P_ struct ev_periodic *w) 2122ev_periodic_stop (EV_P_ ev_periodic *w)
1443{ 2123{
1444 ev_clear_pending (EV_A_ (W)w); 2124 clear_pending (EV_A_ (W)w);
1445 if (!ev_is_active (w)) 2125 if (expect_false (!ev_is_active (w)))
1446 return; 2126 return;
1447 2127
2128 {
2129 int active = ev_active (w);
2130
1448 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1449 2132
1450 if (((W)w)->active < periodiccnt--) 2133 if (expect_true (active < periodiccnt + HEAP0 - 1))
1451 { 2134 {
1452 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1453 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2136 adjustheap (periodics, periodiccnt, active);
1454 } 2137 }
2138
2139 --periodiccnt;
2140 }
1455 2141
1456 ev_stop (EV_A_ (W)w); 2142 ev_stop (EV_A_ (W)w);
1457} 2143}
1458 2144
1459void 2145void noinline
1460ev_periodic_again (EV_P_ struct ev_periodic *w) 2146ev_periodic_again (EV_P_ ev_periodic *w)
1461{ 2147{
1462 /* TODO: use adjustheap and recalculation */ 2148 /* TODO: use adjustheap and recalculation */
1463 ev_periodic_stop (EV_A_ w); 2149 ev_periodic_stop (EV_A_ w);
1464 ev_periodic_start (EV_A_ w); 2150 ev_periodic_start (EV_A_ w);
1465} 2151}
1466#endif 2152#endif
1467 2153
1468void
1469ev_idle_start (EV_P_ struct ev_idle *w)
1470{
1471 if (ev_is_active (w))
1472 return;
1473
1474 ev_start (EV_A_ (W)w, ++idlecnt);
1475 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1476 idles [idlecnt - 1] = w;
1477}
1478
1479void
1480ev_idle_stop (EV_P_ struct ev_idle *w)
1481{
1482 ev_clear_pending (EV_A_ (W)w);
1483 if (!ev_is_active (w))
1484 return;
1485
1486 idles [((W)w)->active - 1] = idles [--idlecnt];
1487 ev_stop (EV_A_ (W)w);
1488}
1489
1490void
1491ev_prepare_start (EV_P_ struct ev_prepare *w)
1492{
1493 if (ev_is_active (w))
1494 return;
1495
1496 ev_start (EV_A_ (W)w, ++preparecnt);
1497 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1498 prepares [preparecnt - 1] = w;
1499}
1500
1501void
1502ev_prepare_stop (EV_P_ struct ev_prepare *w)
1503{
1504 ev_clear_pending (EV_A_ (W)w);
1505 if (!ev_is_active (w))
1506 return;
1507
1508 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1509 ev_stop (EV_A_ (W)w);
1510}
1511
1512void
1513ev_check_start (EV_P_ struct ev_check *w)
1514{
1515 if (ev_is_active (w))
1516 return;
1517
1518 ev_start (EV_A_ (W)w, ++checkcnt);
1519 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1520 checks [checkcnt - 1] = w;
1521}
1522
1523void
1524ev_check_stop (EV_P_ struct ev_check *w)
1525{
1526 ev_clear_pending (EV_A_ (W)w);
1527 if (!ev_is_active (w))
1528 return;
1529
1530 checks [((W)w)->active - 1] = checks [--checkcnt];
1531 ev_stop (EV_A_ (W)w);
1532}
1533
1534#ifndef SA_RESTART 2154#ifndef SA_RESTART
1535# define SA_RESTART 0 2155# define SA_RESTART 0
1536#endif 2156#endif
1537 2157
1538void 2158void noinline
1539ev_signal_start (EV_P_ struct ev_signal *w) 2159ev_signal_start (EV_P_ ev_signal *w)
1540{ 2160{
1541#if EV_MULTIPLICITY 2161#if EV_MULTIPLICITY
1542 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2162 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1543#endif 2163#endif
1544 if (ev_is_active (w)) 2164 if (expect_false (ev_is_active (w)))
1545 return; 2165 return;
1546 2166
1547 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2167 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1548 2168
2169 evpipe_init (EV_A);
2170
2171 {
2172#ifndef _WIN32
2173 sigset_t full, prev;
2174 sigfillset (&full);
2175 sigprocmask (SIG_SETMASK, &full, &prev);
2176#endif
2177
2178 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2179
2180#ifndef _WIN32
2181 sigprocmask (SIG_SETMASK, &prev, 0);
2182#endif
2183 }
2184
1549 ev_start (EV_A_ (W)w, 1); 2185 ev_start (EV_A_ (W)w, 1);
1550 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1551 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2186 wlist_add (&signals [w->signum - 1].head, (WL)w);
1552 2187
1553 if (!((WL)w)->next) 2188 if (!((WL)w)->next)
1554 { 2189 {
1555#if _WIN32 2190#if _WIN32
1556 signal (w->signum, sighandler); 2191 signal (w->signum, ev_sighandler);
1557#else 2192#else
1558 struct sigaction sa; 2193 struct sigaction sa;
1559 sa.sa_handler = sighandler; 2194 sa.sa_handler = ev_sighandler;
1560 sigfillset (&sa.sa_mask); 2195 sigfillset (&sa.sa_mask);
1561 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2196 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1562 sigaction (w->signum, &sa, 0); 2197 sigaction (w->signum, &sa, 0);
1563#endif 2198#endif
1564 } 2199 }
1565} 2200}
1566 2201
1567void 2202void noinline
1568ev_signal_stop (EV_P_ struct ev_signal *w) 2203ev_signal_stop (EV_P_ ev_signal *w)
1569{ 2204{
1570 ev_clear_pending (EV_A_ (W)w); 2205 clear_pending (EV_A_ (W)w);
1571 if (!ev_is_active (w)) 2206 if (expect_false (!ev_is_active (w)))
1572 return; 2207 return;
1573 2208
1574 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2209 wlist_del (&signals [w->signum - 1].head, (WL)w);
1575 ev_stop (EV_A_ (W)w); 2210 ev_stop (EV_A_ (W)w);
1576 2211
1577 if (!signals [w->signum - 1].head) 2212 if (!signals [w->signum - 1].head)
1578 signal (w->signum, SIG_DFL); 2213 signal (w->signum, SIG_DFL);
1579} 2214}
1580 2215
1581void 2216void
1582ev_child_start (EV_P_ struct ev_child *w) 2217ev_child_start (EV_P_ ev_child *w)
1583{ 2218{
1584#if EV_MULTIPLICITY 2219#if EV_MULTIPLICITY
1585 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2220 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1586#endif 2221#endif
1587 if (ev_is_active (w)) 2222 if (expect_false (ev_is_active (w)))
1588 return; 2223 return;
1589 2224
1590 ev_start (EV_A_ (W)w, 1); 2225 ev_start (EV_A_ (W)w, 1);
1591 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2226 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1592} 2227}
1593 2228
1594void 2229void
1595ev_child_stop (EV_P_ struct ev_child *w) 2230ev_child_stop (EV_P_ ev_child *w)
1596{ 2231{
1597 ev_clear_pending (EV_A_ (W)w); 2232 clear_pending (EV_A_ (W)w);
1598 if (!ev_is_active (w)) 2233 if (expect_false (!ev_is_active (w)))
1599 return; 2234 return;
1600 2235
1601 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2236 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1602 ev_stop (EV_A_ (W)w); 2237 ev_stop (EV_A_ (W)w);
1603} 2238}
1604 2239
2240#if EV_STAT_ENABLE
2241
2242# ifdef _WIN32
2243# undef lstat
2244# define lstat(a,b) _stati64 (a,b)
2245# endif
2246
2247#define DEF_STAT_INTERVAL 5.0074891
2248#define MIN_STAT_INTERVAL 0.1074891
2249
2250static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2251
2252#if EV_USE_INOTIFY
2253# define EV_INOTIFY_BUFSIZE 8192
2254
2255static void noinline
2256infy_add (EV_P_ ev_stat *w)
2257{
2258 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2259
2260 if (w->wd < 0)
2261 {
2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2263
2264 /* monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */
2266 /* but an efficiency issue only */
2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2268 {
2269 char path [4096];
2270 strcpy (path, w->path);
2271
2272 do
2273 {
2274 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2275 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2276
2277 char *pend = strrchr (path, '/');
2278
2279 if (!pend)
2280 break; /* whoops, no '/', complain to your admin */
2281
2282 *pend = 0;
2283 w->wd = inotify_add_watch (fs_fd, path, mask);
2284 }
2285 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2286 }
2287 }
2288 else
2289 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2290
2291 if (w->wd >= 0)
2292 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2293}
2294
2295static void noinline
2296infy_del (EV_P_ ev_stat *w)
2297{
2298 int slot;
2299 int wd = w->wd;
2300
2301 if (wd < 0)
2302 return;
2303
2304 w->wd = -2;
2305 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2306 wlist_del (&fs_hash [slot].head, (WL)w);
2307
2308 /* remove this watcher, if others are watching it, they will rearm */
2309 inotify_rm_watch (fs_fd, wd);
2310}
2311
2312static void noinline
2313infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2314{
2315 if (slot < 0)
2316 /* overflow, need to check for all hahs slots */
2317 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2318 infy_wd (EV_A_ slot, wd, ev);
2319 else
2320 {
2321 WL w_;
2322
2323 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2324 {
2325 ev_stat *w = (ev_stat *)w_;
2326 w_ = w_->next; /* lets us remove this watcher and all before it */
2327
2328 if (w->wd == wd || wd == -1)
2329 {
2330 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2331 {
2332 w->wd = -1;
2333 infy_add (EV_A_ w); /* re-add, no matter what */
2334 }
2335
2336 stat_timer_cb (EV_A_ &w->timer, 0);
2337 }
2338 }
2339 }
2340}
2341
2342static void
2343infy_cb (EV_P_ ev_io *w, int revents)
2344{
2345 char buf [EV_INOTIFY_BUFSIZE];
2346 struct inotify_event *ev = (struct inotify_event *)buf;
2347 int ofs;
2348 int len = read (fs_fd, buf, sizeof (buf));
2349
2350 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2351 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2352}
2353
2354void inline_size
2355infy_init (EV_P)
2356{
2357 if (fs_fd != -2)
2358 return;
2359
2360 fs_fd = inotify_init ();
2361
2362 if (fs_fd >= 0)
2363 {
2364 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2365 ev_set_priority (&fs_w, EV_MAXPRI);
2366 ev_io_start (EV_A_ &fs_w);
2367 }
2368}
2369
2370void inline_size
2371infy_fork (EV_P)
2372{
2373 int slot;
2374
2375 if (fs_fd < 0)
2376 return;
2377
2378 close (fs_fd);
2379 fs_fd = inotify_init ();
2380
2381 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2382 {
2383 WL w_ = fs_hash [slot].head;
2384 fs_hash [slot].head = 0;
2385
2386 while (w_)
2387 {
2388 ev_stat *w = (ev_stat *)w_;
2389 w_ = w_->next; /* lets us add this watcher */
2390
2391 w->wd = -1;
2392
2393 if (fs_fd >= 0)
2394 infy_add (EV_A_ w); /* re-add, no matter what */
2395 else
2396 ev_timer_start (EV_A_ &w->timer);
2397 }
2398
2399 }
2400}
2401
2402#endif
2403
2404void
2405ev_stat_stat (EV_P_ ev_stat *w)
2406{
2407 if (lstat (w->path, &w->attr) < 0)
2408 w->attr.st_nlink = 0;
2409 else if (!w->attr.st_nlink)
2410 w->attr.st_nlink = 1;
2411}
2412
2413static void noinline
2414stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2415{
2416 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2417
2418 /* we copy this here each the time so that */
2419 /* prev has the old value when the callback gets invoked */
2420 w->prev = w->attr;
2421 ev_stat_stat (EV_A_ w);
2422
2423 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2424 if (
2425 w->prev.st_dev != w->attr.st_dev
2426 || w->prev.st_ino != w->attr.st_ino
2427 || w->prev.st_mode != w->attr.st_mode
2428 || w->prev.st_nlink != w->attr.st_nlink
2429 || w->prev.st_uid != w->attr.st_uid
2430 || w->prev.st_gid != w->attr.st_gid
2431 || w->prev.st_rdev != w->attr.st_rdev
2432 || w->prev.st_size != w->attr.st_size
2433 || w->prev.st_atime != w->attr.st_atime
2434 || w->prev.st_mtime != w->attr.st_mtime
2435 || w->prev.st_ctime != w->attr.st_ctime
2436 ) {
2437 #if EV_USE_INOTIFY
2438 infy_del (EV_A_ w);
2439 infy_add (EV_A_ w);
2440 ev_stat_stat (EV_A_ w); /* avoid race... */
2441 #endif
2442
2443 ev_feed_event (EV_A_ w, EV_STAT);
2444 }
2445}
2446
2447void
2448ev_stat_start (EV_P_ ev_stat *w)
2449{
2450 if (expect_false (ev_is_active (w)))
2451 return;
2452
2453 /* since we use memcmp, we need to clear any padding data etc. */
2454 memset (&w->prev, 0, sizeof (ev_statdata));
2455 memset (&w->attr, 0, sizeof (ev_statdata));
2456
2457 ev_stat_stat (EV_A_ w);
2458
2459 if (w->interval < MIN_STAT_INTERVAL)
2460 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2461
2462 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2463 ev_set_priority (&w->timer, ev_priority (w));
2464
2465#if EV_USE_INOTIFY
2466 infy_init (EV_A);
2467
2468 if (fs_fd >= 0)
2469 infy_add (EV_A_ w);
2470 else
2471#endif
2472 ev_timer_start (EV_A_ &w->timer);
2473
2474 ev_start (EV_A_ (W)w, 1);
2475}
2476
2477void
2478ev_stat_stop (EV_P_ ev_stat *w)
2479{
2480 clear_pending (EV_A_ (W)w);
2481 if (expect_false (!ev_is_active (w)))
2482 return;
2483
2484#if EV_USE_INOTIFY
2485 infy_del (EV_A_ w);
2486#endif
2487 ev_timer_stop (EV_A_ &w->timer);
2488
2489 ev_stop (EV_A_ (W)w);
2490}
2491#endif
2492
2493#if EV_IDLE_ENABLE
2494void
2495ev_idle_start (EV_P_ ev_idle *w)
2496{
2497 if (expect_false (ev_is_active (w)))
2498 return;
2499
2500 pri_adjust (EV_A_ (W)w);
2501
2502 {
2503 int active = ++idlecnt [ABSPRI (w)];
2504
2505 ++idleall;
2506 ev_start (EV_A_ (W)w, active);
2507
2508 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2509 idles [ABSPRI (w)][active - 1] = w;
2510 }
2511}
2512
2513void
2514ev_idle_stop (EV_P_ ev_idle *w)
2515{
2516 clear_pending (EV_A_ (W)w);
2517 if (expect_false (!ev_is_active (w)))
2518 return;
2519
2520 {
2521 int active = ev_active (w);
2522
2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2524 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2525
2526 ev_stop (EV_A_ (W)w);
2527 --idleall;
2528 }
2529}
2530#endif
2531
2532void
2533ev_prepare_start (EV_P_ ev_prepare *w)
2534{
2535 if (expect_false (ev_is_active (w)))
2536 return;
2537
2538 ev_start (EV_A_ (W)w, ++preparecnt);
2539 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2540 prepares [preparecnt - 1] = w;
2541}
2542
2543void
2544ev_prepare_stop (EV_P_ ev_prepare *w)
2545{
2546 clear_pending (EV_A_ (W)w);
2547 if (expect_false (!ev_is_active (w)))
2548 return;
2549
2550 {
2551 int active = ev_active (w);
2552
2553 prepares [active - 1] = prepares [--preparecnt];
2554 ev_active (prepares [active - 1]) = active;
2555 }
2556
2557 ev_stop (EV_A_ (W)w);
2558}
2559
2560void
2561ev_check_start (EV_P_ ev_check *w)
2562{
2563 if (expect_false (ev_is_active (w)))
2564 return;
2565
2566 ev_start (EV_A_ (W)w, ++checkcnt);
2567 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2568 checks [checkcnt - 1] = w;
2569}
2570
2571void
2572ev_check_stop (EV_P_ ev_check *w)
2573{
2574 clear_pending (EV_A_ (W)w);
2575 if (expect_false (!ev_is_active (w)))
2576 return;
2577
2578 {
2579 int active = ev_active (w);
2580
2581 checks [active - 1] = checks [--checkcnt];
2582 ev_active (checks [active - 1]) = active;
2583 }
2584
2585 ev_stop (EV_A_ (W)w);
2586}
2587
2588#if EV_EMBED_ENABLE
2589void noinline
2590ev_embed_sweep (EV_P_ ev_embed *w)
2591{
2592 ev_loop (w->other, EVLOOP_NONBLOCK);
2593}
2594
2595static void
2596embed_io_cb (EV_P_ ev_io *io, int revents)
2597{
2598 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2599
2600 if (ev_cb (w))
2601 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2602 else
2603 ev_loop (w->other, EVLOOP_NONBLOCK);
2604}
2605
2606static void
2607embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2608{
2609 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2610
2611 {
2612 struct ev_loop *loop = w->other;
2613
2614 while (fdchangecnt)
2615 {
2616 fd_reify (EV_A);
2617 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2618 }
2619 }
2620}
2621
2622#if 0
2623static void
2624embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2625{
2626 ev_idle_stop (EV_A_ idle);
2627}
2628#endif
2629
2630void
2631ev_embed_start (EV_P_ ev_embed *w)
2632{
2633 if (expect_false (ev_is_active (w)))
2634 return;
2635
2636 {
2637 struct ev_loop *loop = w->other;
2638 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2639 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2640 }
2641
2642 ev_set_priority (&w->io, ev_priority (w));
2643 ev_io_start (EV_A_ &w->io);
2644
2645 ev_prepare_init (&w->prepare, embed_prepare_cb);
2646 ev_set_priority (&w->prepare, EV_MINPRI);
2647 ev_prepare_start (EV_A_ &w->prepare);
2648
2649 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2650
2651 ev_start (EV_A_ (W)w, 1);
2652}
2653
2654void
2655ev_embed_stop (EV_P_ ev_embed *w)
2656{
2657 clear_pending (EV_A_ (W)w);
2658 if (expect_false (!ev_is_active (w)))
2659 return;
2660
2661 ev_io_stop (EV_A_ &w->io);
2662 ev_prepare_stop (EV_A_ &w->prepare);
2663
2664 ev_stop (EV_A_ (W)w);
2665}
2666#endif
2667
2668#if EV_FORK_ENABLE
2669void
2670ev_fork_start (EV_P_ ev_fork *w)
2671{
2672 if (expect_false (ev_is_active (w)))
2673 return;
2674
2675 ev_start (EV_A_ (W)w, ++forkcnt);
2676 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2677 forks [forkcnt - 1] = w;
2678}
2679
2680void
2681ev_fork_stop (EV_P_ ev_fork *w)
2682{
2683 clear_pending (EV_A_ (W)w);
2684 if (expect_false (!ev_is_active (w)))
2685 return;
2686
2687 {
2688 int active = ev_active (w);
2689
2690 forks [active - 1] = forks [--forkcnt];
2691 ev_active (forks [active - 1]) = active;
2692 }
2693
2694 ev_stop (EV_A_ (W)w);
2695}
2696#endif
2697
2698#if EV_ASYNC_ENABLE
2699void
2700ev_async_start (EV_P_ ev_async *w)
2701{
2702 if (expect_false (ev_is_active (w)))
2703 return;
2704
2705 evpipe_init (EV_A);
2706
2707 ev_start (EV_A_ (W)w, ++asynccnt);
2708 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2709 asyncs [asynccnt - 1] = w;
2710}
2711
2712void
2713ev_async_stop (EV_P_ ev_async *w)
2714{
2715 clear_pending (EV_A_ (W)w);
2716 if (expect_false (!ev_is_active (w)))
2717 return;
2718
2719 {
2720 int active = ev_active (w);
2721
2722 asyncs [active - 1] = asyncs [--asynccnt];
2723 ev_active (asyncs [active - 1]) = active;
2724 }
2725
2726 ev_stop (EV_A_ (W)w);
2727}
2728
2729void
2730ev_async_send (EV_P_ ev_async *w)
2731{
2732 w->sent = 1;
2733 evpipe_write (EV_A_ &gotasync);
2734}
2735#endif
2736
1605/*****************************************************************************/ 2737/*****************************************************************************/
1606 2738
1607struct ev_once 2739struct ev_once
1608{ 2740{
1609 struct ev_io io; 2741 ev_io io;
1610 struct ev_timer to; 2742 ev_timer to;
1611 void (*cb)(int revents, void *arg); 2743 void (*cb)(int revents, void *arg);
1612 void *arg; 2744 void *arg;
1613}; 2745};
1614 2746
1615static void 2747static void
1624 2756
1625 cb (revents, arg); 2757 cb (revents, arg);
1626} 2758}
1627 2759
1628static void 2760static void
1629once_cb_io (EV_P_ struct ev_io *w, int revents) 2761once_cb_io (EV_P_ ev_io *w, int revents)
1630{ 2762{
1631 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2763 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1632} 2764}
1633 2765
1634static void 2766static void
1635once_cb_to (EV_P_ struct ev_timer *w, int revents) 2767once_cb_to (EV_P_ ev_timer *w, int revents)
1636{ 2768{
1637 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2769 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1638} 2770}
1639 2771
1640void 2772void
1641ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2773ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1642{ 2774{
1643 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2775 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1644 2776
1645 if (!once) 2777 if (expect_false (!once))
2778 {
1646 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2779 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1647 else 2780 return;
1648 { 2781 }
2782
1649 once->cb = cb; 2783 once->cb = cb;
1650 once->arg = arg; 2784 once->arg = arg;
1651 2785
1652 ev_init (&once->io, once_cb_io); 2786 ev_init (&once->io, once_cb_io);
1653 if (fd >= 0) 2787 if (fd >= 0)
1654 { 2788 {
1655 ev_io_set (&once->io, fd, events); 2789 ev_io_set (&once->io, fd, events);
1656 ev_io_start (EV_A_ &once->io); 2790 ev_io_start (EV_A_ &once->io);
1657 } 2791 }
1658 2792
1659 ev_init (&once->to, once_cb_to); 2793 ev_init (&once->to, once_cb_to);
1660 if (timeout >= 0.) 2794 if (timeout >= 0.)
1661 { 2795 {
1662 ev_timer_set (&once->to, timeout, 0.); 2796 ev_timer_set (&once->to, timeout, 0.);
1663 ev_timer_start (EV_A_ &once->to); 2797 ev_timer_start (EV_A_ &once->to);
1664 }
1665 } 2798 }
1666} 2799}
2800
2801#if EV_MULTIPLICITY
2802 #include "ev_wrap.h"
2803#endif
1667 2804
1668#ifdef __cplusplus 2805#ifdef __cplusplus
1669} 2806}
1670#endif 2807#endif
1671 2808

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines