ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.197 by root, Sat Dec 22 15:20:13 2007 UTC vs.
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
110# else 119# else
111# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
112# endif 121# endif
113# endif 122# endif
114 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
115#endif 132#endif
116 133
117#include <math.h> 134#include <math.h>
118#include <stdlib.h> 135#include <stdlib.h>
119#include <fcntl.h> 136#include <fcntl.h>
144# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
146# endif 163# endif
147#endif 164#endif
148 165
149/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
150 167
151#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
152# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
153#endif 170#endif
154 171
171# define EV_USE_POLL 1 188# define EV_USE_POLL 1
172# endif 189# endif
173#endif 190#endif
174 191
175#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
176# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
177#endif 198#endif
178 199
179#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
181#endif 202#endif
183#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 205# define EV_USE_PORT 0
185#endif 206#endif
186 207
187#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
188# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
189#endif 214#endif
190 215
191#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 217# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
202# else 227# else
203# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
204# endif 229# endif
205#endif 230#endif
206 231
207/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 249
209#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
212#endif 253#endif
231# include <sys/inotify.h> 272# include <sys/inotify.h>
232#endif 273#endif
233 274
234#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 276# include <winsock.h>
277#endif
278
279#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
236#endif 289#endif
237 290
238/**/ 291/**/
239 292
240/* 293/*
255# define expect(expr,value) __builtin_expect ((expr),(value)) 308# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 309# define noinline __attribute__ ((noinline))
257#else 310#else
258# define expect(expr,value) (expr) 311# define expect(expr,value) (expr)
259# define noinline 312# define noinline
260# if __STDC_VERSION__ < 199901L 313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 314# define inline
262# endif 315# endif
263#endif 316#endif
264 317
265#define expect_false(expr) expect ((expr) != 0, 0) 318#define expect_false(expr) expect ((expr) != 0, 0)
280 333
281typedef ev_watcher *W; 334typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
284 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
341#if EV_USE_MONOTONIC
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */ 343/* giving it a reasonably high chance of working on typical architetcures */
287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
345#endif
288 346
289#ifdef _WIN32 347#ifdef _WIN32
290# include "ev_win32.c" 348# include "ev_win32.c"
291#endif 349#endif
292 350
313 perror (msg); 371 perror (msg);
314 abort (); 372 abort ();
315 } 373 }
316} 374}
317 375
376static void *
377ev_realloc_emul (void *ptr, long size)
378{
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389}
390
318static void *(*alloc)(void *ptr, long size); 391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
319 392
320void 393void
321ev_set_allocator (void *(*cb)(void *ptr, long size)) 394ev_set_allocator (void *(*cb)(void *ptr, long size))
322{ 395{
323 alloc = cb; 396 alloc = cb;
324} 397}
325 398
326inline_speed void * 399inline_speed void *
327ev_realloc (void *ptr, long size) 400ev_realloc (void *ptr, long size)
328{ 401{
329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 402 ptr = alloc (ptr, size);
330 403
331 if (!ptr && size) 404 if (!ptr && size)
332 { 405 {
333 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
334 abort (); 407 abort ();
357 W w; 430 W w;
358 int events; 431 int events;
359} ANPENDING; 432} ANPENDING;
360 433
361#if EV_USE_INOTIFY 434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
362typedef struct 436typedef struct
363{ 437{
364 WL head; 438 WL head;
365} ANFS; 439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
366#endif 458#endif
367 459
368#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
369 461
370 struct ev_loop 462 struct ev_loop
441 ts.tv_sec = (time_t)delay; 533 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443 535
444 nanosleep (&ts, 0); 536 nanosleep (&ts, 0);
445#elif defined(_WIN32) 537#elif defined(_WIN32)
446 Sleep (delay * 1e3); 538 Sleep ((unsigned long)(delay * 1e3));
447#else 539#else
448 struct timeval tv; 540 struct timeval tv;
449 541
450 tv.tv_sec = (time_t)delay; 542 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
454#endif 546#endif
455 } 547 }
456} 548}
457 549
458/*****************************************************************************/ 550/*****************************************************************************/
551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
459 553
460int inline_size 554int inline_size
461array_nextsize (int elem, int cur, int cnt) 555array_nextsize (int elem, int cur, int cnt)
462{ 556{
463 int ncur = cur + 1; 557 int ncur = cur + 1;
464 558
465 do 559 do
466 ncur <<= 1; 560 ncur <<= 1;
467 while (cnt > ncur); 561 while (cnt > ncur);
468 562
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096) 564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
471 { 565 {
472 ncur *= elem; 566 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
474 ncur = ncur - sizeof (void *) * 4; 568 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem; 569 ncur /= elem;
476 } 570 }
477 571
478 return ncur; 572 return ncur;
590 684
591#if EV_SELECT_IS_WINSOCKET 685#if EV_SELECT_IS_WINSOCKET
592 if (events) 686 if (events)
593 { 687 {
594 unsigned long argp; 688 unsigned long argp;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
595 anfd->handle = _get_osfhandle (fd); 692 anfd->handle = _get_osfhandle (fd);
693 #endif
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
597 } 695 }
598#endif 696#endif
599 697
600 { 698 {
688 } 786 }
689} 787}
690 788
691/*****************************************************************************/ 789/*****************************************************************************/
692 790
791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808
809/* towards the root */
693void inline_speed 810void inline_speed
694upheap (WT *heap, int k) 811upheap (ANHE *heap, int k)
695{ 812{
696 WT w = heap [k]; 813 ANHE he = heap [k];
697 814
698 while (k) 815 for (;;)
699 { 816 {
700 int p = (k - 1) >> 1; 817 int p = HPARENT (k);
701 818
702 if (heap [p]->at <= w->at) 819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
703 break; 820 break;
704 821
705 heap [k] = heap [p]; 822 heap [k] = heap [p];
706 ((W)heap [k])->active = k + 1; 823 ev_active (ANHE_w (heap [k])) = k;
707 k = p; 824 k = p;
708 } 825 }
709 826
710 heap [k] = w; 827 heap [k] = he;
711 ((W)heap [k])->active = k + 1; 828 ev_active (ANHE_w (he)) = k;
712} 829}
713 830
831/* away from the root */
714void inline_speed 832void inline_speed
715downheap (WT *heap, int N, int k) 833downheap (ANHE *heap, int N, int k)
716{ 834{
717 WT w = heap [k]; 835 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0;
718 837
719 for (;;) 838 for (;;)
720 { 839 {
721 int c = (k << 1) + 1; 840 ev_tstamp minat;
841 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
722 843
723 if (c >= N) 844 // find minimum child
845 if (expect_true (pos + DHEAP - 1 < E))
846 {
847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else if (pos < E)
853 {
854 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else
724 break; 860 break;
725 861
862 if (ANHE_at (he) <= minat)
863 break;
864
865 heap [k] = *minpos;
866 ev_active (ANHE_w (*minpos)) = k;
867
868 k = minpos - heap;
869 }
870
871 heap [k] = he;
872 ev_active (ANHE_w (he)) = k;
873}
874
875#else // 4HEAP
876
877#define HEAP0 1
878#define HPARENT(k) ((k) >> 1)
879
880/* towards the root */
881void inline_speed
882upheap (ANHE *heap, int k)
883{
884 ANHE he = heap [k];
885
886 for (;;)
887 {
888 int p = HPARENT (k);
889
890 /* maybe we could use a dummy element at heap [0]? */
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break;
893
894 heap [k] = heap [p];
895 ev_active (ANHE_w (heap [k])) = k;
896 k = p;
897 }
898
899 heap [k] = he;
900 ev_active (ANHE_w (heap [k])) = k;
901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
908
909 for (;;)
910 {
911 int c = k << 1;
912
913 if (c > N)
914 break;
915
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
727 ? 1 : 0; 917 ? 1 : 0;
728 918
729 if (w->at <= heap [c]->at) 919 if (ANHE_at (he) <= ANHE_at (heap [c]))
730 break; 920 break;
731 921
732 heap [k] = heap [c]; 922 heap [k] = heap [c];
733 ((W)heap [k])->active = k + 1; 923 ev_active (ANHE_w (heap [k])) = k;
734 924
735 k = c; 925 k = c;
736 } 926 }
737 927
738 heap [k] = w; 928 heap [k] = he;
739 ((W)heap [k])->active = k + 1; 929 ev_active (ANHE_w (he)) = k;
740} 930}
931#endif
741 932
742void inline_size 933void inline_size
743adjustheap (WT *heap, int N, int k) 934adjustheap (ANHE *heap, int N, int k)
744{ 935{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
745 upheap (heap, k); 937 upheap (heap, k);
938 else
746 downheap (heap, N, k); 939 downheap (heap, N, k);
747} 940}
748 941
749/*****************************************************************************/ 942/*****************************************************************************/
750 943
751typedef struct 944typedef struct
752{ 945{
753 WL head; 946 WL head;
754 sig_atomic_t volatile gotsig; 947 EV_ATOMIC_T gotsig;
755} ANSIG; 948} ANSIG;
756 949
757static ANSIG *signals; 950static ANSIG *signals;
758static int signalmax; 951static int signalmax;
759 952
760static int sigpipe [2]; 953static EV_ATOMIC_T gotsig;
761static sig_atomic_t volatile gotsig;
762static ev_io sigev;
763 954
764void inline_size 955void inline_size
765signals_init (ANSIG *base, int count) 956signals_init (ANSIG *base, int count)
766{ 957{
767 while (count--) 958 while (count--)
771 962
772 ++base; 963 ++base;
773 } 964 }
774} 965}
775 966
776static void 967/*****************************************************************************/
777sighandler (int signum)
778{
779#if _WIN32
780 signal (signum, sighandler);
781#endif
782
783 signals [signum - 1].gotsig = 1;
784
785 if (!gotsig)
786 {
787 int old_errno = errno;
788 gotsig = 1;
789 write (sigpipe [1], &signum, 1);
790 errno = old_errno;
791 }
792}
793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
814static void
815sigcb (EV_P_ ev_io *iow, int revents)
816{
817 int signum;
818
819 read (sigpipe [0], &revents, 1);
820 gotsig = 0;
821
822 for (signum = signalmax; signum--; )
823 if (signals [signum].gotsig)
824 ev_feed_signal_event (EV_A_ signum + 1);
825}
826 968
827void inline_speed 969void inline_speed
828fd_intern (int fd) 970fd_intern (int fd)
829{ 971{
830#ifdef _WIN32 972#ifdef _WIN32
835 fcntl (fd, F_SETFL, O_NONBLOCK); 977 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 978#endif
837} 979}
838 980
839static void noinline 981static void noinline
840siginit (EV_P) 982evpipe_init (EV_P)
841{ 983{
984 if (!ev_is_active (&pipeev))
985 {
986#if EV_USE_EVENTFD
987 if ((evfd = eventfd (0, 0)) >= 0)
988 {
989 evpipe [0] = -1;
990 fd_intern (evfd);
991 ev_io_set (&pipeev, evfd, EV_READ);
992 }
993 else
994#endif
995 {
996 while (pipe (evpipe))
997 syserr ("(libev) error creating signal/async pipe");
998
842 fd_intern (sigpipe [0]); 999 fd_intern (evpipe [0]);
843 fd_intern (sigpipe [1]); 1000 fd_intern (evpipe [1]);
1001 ev_io_set (&pipeev, evpipe [0], EV_READ);
1002 }
844 1003
845 ev_io_set (&sigev, sigpipe [0], EV_READ);
846 ev_io_start (EV_A_ &sigev); 1004 ev_io_start (EV_A_ &pipeev);
847 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1005 ev_unref (EV_A); /* watcher should not keep loop alive */
1006 }
1007}
1008
1009void inline_size
1010evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1011{
1012 if (!*flag)
1013 {
1014 int old_errno = errno; /* save errno because write might clobber it */
1015
1016 *flag = 1;
1017
1018#if EV_USE_EVENTFD
1019 if (evfd >= 0)
1020 {
1021 uint64_t counter = 1;
1022 write (evfd, &counter, sizeof (uint64_t));
1023 }
1024 else
1025#endif
1026 write (evpipe [1], &old_errno, 1);
1027
1028 errno = old_errno;
1029 }
1030}
1031
1032static void
1033pipecb (EV_P_ ev_io *iow, int revents)
1034{
1035#if EV_USE_EVENTFD
1036 if (evfd >= 0)
1037 {
1038 uint64_t counter;
1039 read (evfd, &counter, sizeof (uint64_t));
1040 }
1041 else
1042#endif
1043 {
1044 char dummy;
1045 read (evpipe [0], &dummy, 1);
1046 }
1047
1048 if (gotsig && ev_is_default_loop (EV_A))
1049 {
1050 int signum;
1051 gotsig = 0;
1052
1053 for (signum = signalmax; signum--; )
1054 if (signals [signum].gotsig)
1055 ev_feed_signal_event (EV_A_ signum + 1);
1056 }
1057
1058#if EV_ASYNC_ENABLE
1059 if (gotasync)
1060 {
1061 int i;
1062 gotasync = 0;
1063
1064 for (i = asynccnt; i--; )
1065 if (asyncs [i]->sent)
1066 {
1067 asyncs [i]->sent = 0;
1068 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1069 }
1070 }
1071#endif
848} 1072}
849 1073
850/*****************************************************************************/ 1074/*****************************************************************************/
851 1075
1076static void
1077ev_sighandler (int signum)
1078{
1079#if EV_MULTIPLICITY
1080 struct ev_loop *loop = &default_loop_struct;
1081#endif
1082
1083#if _WIN32
1084 signal (signum, ev_sighandler);
1085#endif
1086
1087 signals [signum - 1].gotsig = 1;
1088 evpipe_write (EV_A_ &gotsig);
1089}
1090
1091void noinline
1092ev_feed_signal_event (EV_P_ int signum)
1093{
1094 WL w;
1095
1096#if EV_MULTIPLICITY
1097 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1098#endif
1099
1100 --signum;
1101
1102 if (signum < 0 || signum >= signalmax)
1103 return;
1104
1105 signals [signum].gotsig = 0;
1106
1107 for (w = signals [signum].head; w; w = w->next)
1108 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1109}
1110
1111/*****************************************************************************/
1112
852static WL childs [EV_PID_HASHSIZE]; 1113static WL childs [EV_PID_HASHSIZE];
853 1114
854#ifndef _WIN32 1115#ifndef _WIN32
855 1116
856static ev_signal childev; 1117static ev_signal childev;
857 1118
1119#ifndef WIFCONTINUED
1120# define WIFCONTINUED(status) 0
1121#endif
1122
858void inline_speed 1123void inline_speed
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1124child_reap (EV_P_ int chain, int pid, int status)
860{ 1125{
861 ev_child *w; 1126 ev_child *w;
1127 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
862 1128
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1129 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1130 {
864 if (w->pid == pid || !w->pid) 1131 if ((w->pid == pid || !w->pid)
1132 && (!traced || (w->flags & 1)))
865 { 1133 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1134 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
867 w->rpid = pid; 1135 w->rpid = pid;
868 w->rstatus = status; 1136 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1137 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 } 1138 }
1139 }
871} 1140}
872 1141
873#ifndef WCONTINUED 1142#ifndef WCONTINUED
874# define WCONTINUED 0 1143# define WCONTINUED 0
875#endif 1144#endif
884 if (!WCONTINUED 1153 if (!WCONTINUED
885 || errno != EINVAL 1154 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1155 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return; 1156 return;
888 1157
889 /* make sure we are called again until all childs have been reaped */ 1158 /* make sure we are called again until all children have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */ 1159 /* we need to do it this way so that the callback gets called before we continue */
891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1160 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
892 1161
893 child_reap (EV_A_ sw, pid, pid, status); 1162 child_reap (EV_A_ pid, pid, status);
894 if (EV_PID_HASHSIZE > 1) 1163 if (EV_PID_HASHSIZE > 1)
895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1164 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
896} 1165}
897 1166
898#endif 1167#endif
899 1168
900/*****************************************************************************/ 1169/*****************************************************************************/
1018 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1287 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1019 have_monotonic = 1; 1288 have_monotonic = 1;
1020 } 1289 }
1021#endif 1290#endif
1022 1291
1023 ev_rt_now = ev_time (); 1292 ev_rt_now = ev_time ();
1024 mn_now = get_clock (); 1293 mn_now = get_clock ();
1025 now_floor = mn_now; 1294 now_floor = mn_now;
1026 rtmn_diff = ev_rt_now - mn_now; 1295 rtmn_diff = ev_rt_now - mn_now;
1027 1296
1028 io_blocktime = 0.; 1297 io_blocktime = 0.;
1029 timeout_blocktime = 0.; 1298 timeout_blocktime = 0.;
1299 backend = 0;
1300 backend_fd = -1;
1301 gotasync = 0;
1302#if EV_USE_INOTIFY
1303 fs_fd = -2;
1304#endif
1030 1305
1031 /* pid check not overridable via env */ 1306 /* pid check not overridable via env */
1032#ifndef _WIN32 1307#ifndef _WIN32
1033 if (flags & EVFLAG_FORKCHECK) 1308 if (flags & EVFLAG_FORKCHECK)
1034 curpid = getpid (); 1309 curpid = getpid ();
1037 if (!(flags & EVFLAG_NOENV) 1312 if (!(flags & EVFLAG_NOENV)
1038 && !enable_secure () 1313 && !enable_secure ()
1039 && getenv ("LIBEV_FLAGS")) 1314 && getenv ("LIBEV_FLAGS"))
1040 flags = atoi (getenv ("LIBEV_FLAGS")); 1315 flags = atoi (getenv ("LIBEV_FLAGS"));
1041 1316
1042 if (!(flags & 0x0000ffffUL)) 1317 if (!(flags & 0x0000ffffU))
1043 flags |= ev_recommended_backends (); 1318 flags |= ev_recommended_backends ();
1044
1045 backend = 0;
1046 backend_fd = -1;
1047#if EV_USE_INOTIFY
1048 fs_fd = -2;
1049#endif
1050 1319
1051#if EV_USE_PORT 1320#if EV_USE_PORT
1052 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1321 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1053#endif 1322#endif
1054#if EV_USE_KQUEUE 1323#if EV_USE_KQUEUE
1062#endif 1331#endif
1063#if EV_USE_SELECT 1332#if EV_USE_SELECT
1064 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1333 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1065#endif 1334#endif
1066 1335
1067 ev_init (&sigev, sigcb); 1336 ev_init (&pipeev, pipecb);
1068 ev_set_priority (&sigev, EV_MAXPRI); 1337 ev_set_priority (&pipeev, EV_MAXPRI);
1069 } 1338 }
1070} 1339}
1071 1340
1072static void noinline 1341static void noinline
1073loop_destroy (EV_P) 1342loop_destroy (EV_P)
1074{ 1343{
1075 int i; 1344 int i;
1345
1346 if (ev_is_active (&pipeev))
1347 {
1348 ev_ref (EV_A); /* signal watcher */
1349 ev_io_stop (EV_A_ &pipeev);
1350
1351#if EV_USE_EVENTFD
1352 if (evfd >= 0)
1353 close (evfd);
1354#endif
1355
1356 if (evpipe [0] >= 0)
1357 {
1358 close (evpipe [0]);
1359 close (evpipe [1]);
1360 }
1361 }
1076 1362
1077#if EV_USE_INOTIFY 1363#if EV_USE_INOTIFY
1078 if (fs_fd >= 0) 1364 if (fs_fd >= 0)
1079 close (fs_fd); 1365 close (fs_fd);
1080#endif 1366#endif
1117#if EV_FORK_ENABLE 1403#if EV_FORK_ENABLE
1118 array_free (fork, EMPTY); 1404 array_free (fork, EMPTY);
1119#endif 1405#endif
1120 array_free (prepare, EMPTY); 1406 array_free (prepare, EMPTY);
1121 array_free (check, EMPTY); 1407 array_free (check, EMPTY);
1408#if EV_ASYNC_ENABLE
1409 array_free (async, EMPTY);
1410#endif
1122 1411
1123 backend = 0; 1412 backend = 0;
1124} 1413}
1125 1414
1415#if EV_USE_INOTIFY
1126void inline_size infy_fork (EV_P); 1416void inline_size infy_fork (EV_P);
1417#endif
1127 1418
1128void inline_size 1419void inline_size
1129loop_fork (EV_P) 1420loop_fork (EV_P)
1130{ 1421{
1131#if EV_USE_PORT 1422#if EV_USE_PORT
1139#endif 1430#endif
1140#if EV_USE_INOTIFY 1431#if EV_USE_INOTIFY
1141 infy_fork (EV_A); 1432 infy_fork (EV_A);
1142#endif 1433#endif
1143 1434
1144 if (ev_is_active (&sigev)) 1435 if (ev_is_active (&pipeev))
1145 { 1436 {
1146 /* default loop */ 1437 /* this "locks" the handlers against writing to the pipe */
1438 /* while we modify the fd vars */
1439 gotsig = 1;
1440#if EV_ASYNC_ENABLE
1441 gotasync = 1;
1442#endif
1147 1443
1148 ev_ref (EV_A); 1444 ev_ref (EV_A);
1149 ev_io_stop (EV_A_ &sigev); 1445 ev_io_stop (EV_A_ &pipeev);
1446
1447#if EV_USE_EVENTFD
1448 if (evfd >= 0)
1449 close (evfd);
1450#endif
1451
1452 if (evpipe [0] >= 0)
1453 {
1150 close (sigpipe [0]); 1454 close (evpipe [0]);
1151 close (sigpipe [1]); 1455 close (evpipe [1]);
1456 }
1152 1457
1153 while (pipe (sigpipe))
1154 syserr ("(libev) error creating pipe");
1155
1156 siginit (EV_A); 1458 evpipe_init (EV_A);
1459 /* now iterate over everything, in case we missed something */
1460 pipecb (EV_A_ &pipeev, EV_READ);
1157 } 1461 }
1158 1462
1159 postfork = 0; 1463 postfork = 0;
1160} 1464}
1161 1465
1183} 1487}
1184 1488
1185void 1489void
1186ev_loop_fork (EV_P) 1490ev_loop_fork (EV_P)
1187{ 1491{
1188 postfork = 1; 1492 postfork = 1; /* must be in line with ev_default_fork */
1189} 1493}
1190
1191#endif 1494#endif
1192 1495
1193#if EV_MULTIPLICITY 1496#if EV_MULTIPLICITY
1194struct ev_loop * 1497struct ev_loop *
1195ev_default_loop_init (unsigned int flags) 1498ev_default_loop_init (unsigned int flags)
1196#else 1499#else
1197int 1500int
1198ev_default_loop (unsigned int flags) 1501ev_default_loop (unsigned int flags)
1199#endif 1502#endif
1200{ 1503{
1201 if (sigpipe [0] == sigpipe [1])
1202 if (pipe (sigpipe))
1203 return 0;
1204
1205 if (!ev_default_loop_ptr) 1504 if (!ev_default_loop_ptr)
1206 { 1505 {
1207#if EV_MULTIPLICITY 1506#if EV_MULTIPLICITY
1208 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1507 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1209#else 1508#else
1212 1511
1213 loop_init (EV_A_ flags); 1512 loop_init (EV_A_ flags);
1214 1513
1215 if (ev_backend (EV_A)) 1514 if (ev_backend (EV_A))
1216 { 1515 {
1217 siginit (EV_A);
1218
1219#ifndef _WIN32 1516#ifndef _WIN32
1220 ev_signal_init (&childev, childcb, SIGCHLD); 1517 ev_signal_init (&childev, childcb, SIGCHLD);
1221 ev_set_priority (&childev, EV_MAXPRI); 1518 ev_set_priority (&childev, EV_MAXPRI);
1222 ev_signal_start (EV_A_ &childev); 1519 ev_signal_start (EV_A_ &childev);
1223 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1520 ev_unref (EV_A); /* child watcher should not keep loop alive */
1240#ifndef _WIN32 1537#ifndef _WIN32
1241 ev_ref (EV_A); /* child watcher */ 1538 ev_ref (EV_A); /* child watcher */
1242 ev_signal_stop (EV_A_ &childev); 1539 ev_signal_stop (EV_A_ &childev);
1243#endif 1540#endif
1244 1541
1245 ev_ref (EV_A); /* signal watcher */
1246 ev_io_stop (EV_A_ &sigev);
1247
1248 close (sigpipe [0]); sigpipe [0] = 0;
1249 close (sigpipe [1]); sigpipe [1] = 0;
1250
1251 loop_destroy (EV_A); 1542 loop_destroy (EV_A);
1252} 1543}
1253 1544
1254void 1545void
1255ev_default_fork (void) 1546ev_default_fork (void)
1257#if EV_MULTIPLICITY 1548#if EV_MULTIPLICITY
1258 struct ev_loop *loop = ev_default_loop_ptr; 1549 struct ev_loop *loop = ev_default_loop_ptr;
1259#endif 1550#endif
1260 1551
1261 if (backend) 1552 if (backend)
1262 postfork = 1; 1553 postfork = 1; /* must be in line with ev_loop_fork */
1263} 1554}
1264 1555
1265/*****************************************************************************/ 1556/*****************************************************************************/
1266 1557
1267void 1558void
1287 p->w->pending = 0; 1578 p->w->pending = 0;
1288 EV_CB_INVOKE (p->w, p->events); 1579 EV_CB_INVOKE (p->w, p->events);
1289 } 1580 }
1290 } 1581 }
1291} 1582}
1292
1293void inline_size
1294timers_reify (EV_P)
1295{
1296 while (timercnt && ((WT)timers [0])->at <= mn_now)
1297 {
1298 ev_timer *w = (ev_timer *)timers [0];
1299
1300 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1301
1302 /* first reschedule or stop timer */
1303 if (w->repeat)
1304 {
1305 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1306
1307 ((WT)w)->at += w->repeat;
1308 if (((WT)w)->at < mn_now)
1309 ((WT)w)->at = mn_now;
1310
1311 downheap (timers, timercnt, 0);
1312 }
1313 else
1314 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1315
1316 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1317 }
1318}
1319
1320#if EV_PERIODIC_ENABLE
1321void inline_size
1322periodics_reify (EV_P)
1323{
1324 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1325 {
1326 ev_periodic *w = (ev_periodic *)periodics [0];
1327
1328 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1329
1330 /* first reschedule or stop timer */
1331 if (w->reschedule_cb)
1332 {
1333 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1334 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1335 downheap (periodics, periodiccnt, 0);
1336 }
1337 else if (w->interval)
1338 {
1339 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1340 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1341 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1342 downheap (periodics, periodiccnt, 0);
1343 }
1344 else
1345 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1346
1347 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1348 }
1349}
1350
1351static void noinline
1352periodics_reschedule (EV_P)
1353{
1354 int i;
1355
1356 /* adjust periodics after time jump */
1357 for (i = 0; i < periodiccnt; ++i)
1358 {
1359 ev_periodic *w = (ev_periodic *)periodics [i];
1360
1361 if (w->reschedule_cb)
1362 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1363 else if (w->interval)
1364 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1365 }
1366
1367 /* now rebuild the heap */
1368 for (i = periodiccnt >> 1; i--; )
1369 downheap (periodics, periodiccnt, i);
1370}
1371#endif
1372 1583
1373#if EV_IDLE_ENABLE 1584#if EV_IDLE_ENABLE
1374void inline_size 1585void inline_size
1375idle_reify (EV_P) 1586idle_reify (EV_P)
1376{ 1587{
1388 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1599 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1389 break; 1600 break;
1390 } 1601 }
1391 } 1602 }
1392 } 1603 }
1604}
1605#endif
1606
1607void inline_size
1608timers_reify (EV_P)
1609{
1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1611 {
1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1613
1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1615
1616 /* first reschedule or stop timer */
1617 if (w->repeat)
1618 {
1619 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now;
1622
1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1624
1625 ANHE_at_set (timers [HEAP0]);
1626 downheap (timers, timercnt, HEAP0);
1627 }
1628 else
1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1630
1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1632 }
1633}
1634
1635#if EV_PERIODIC_ENABLE
1636void inline_size
1637periodics_reify (EV_P)
1638{
1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1640 {
1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1642
1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1644
1645 /* first reschedule or stop timer */
1646 if (w->reschedule_cb)
1647 {
1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649
1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651
1652 ANHE_at_set (periodics [HEAP0]);
1653 downheap (periodics, periodiccnt, HEAP0);
1654 }
1655 else if (w->interval)
1656 {
1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1672 downheap (periodics, periodiccnt, HEAP0);
1673 }
1674 else
1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1676
1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1678 }
1679}
1680
1681static void noinline
1682periodics_reschedule (EV_P)
1683{
1684 int i;
1685
1686 /* adjust periodics after time jump */
1687 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1688 {
1689 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1690
1691 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695
1696 ANHE_at_set (periodics [i]);
1697 }
1698
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1701 for (i = 0; i < periodiccnt; ++i)
1702 upheap (periodics, i + HEAP0);
1393} 1703}
1394#endif 1704#endif
1395 1705
1396void inline_speed 1706void inline_speed
1397time_update (EV_P_ ev_tstamp max_block) 1707time_update (EV_P_ ev_tstamp max_block)
1426 */ 1736 */
1427 for (i = 4; --i; ) 1737 for (i = 4; --i; )
1428 { 1738 {
1429 rtmn_diff = ev_rt_now - mn_now; 1739 rtmn_diff = ev_rt_now - mn_now;
1430 1740
1431 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1741 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1432 return; /* all is well */ 1742 return; /* all is well */
1433 1743
1434 ev_rt_now = ev_time (); 1744 ev_rt_now = ev_time ();
1435 mn_now = get_clock (); 1745 mn_now = get_clock ();
1436 now_floor = mn_now; 1746 now_floor = mn_now;
1452#if EV_PERIODIC_ENABLE 1762#if EV_PERIODIC_ENABLE
1453 periodics_reschedule (EV_A); 1763 periodics_reschedule (EV_A);
1454#endif 1764#endif
1455 /* adjust timers. this is easy, as the offset is the same for all of them */ 1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1456 for (i = 0; i < timercnt; ++i) 1766 for (i = 0; i < timercnt; ++i)
1767 {
1768 ANHE *he = timers + i + HEAP0;
1457 ((WT)timers [i])->at += ev_rt_now - mn_now; 1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1458 } 1772 }
1459 1773
1460 mn_now = ev_rt_now; 1774 mn_now = ev_rt_now;
1461 } 1775 }
1462} 1776}
1476static int loop_done; 1790static int loop_done;
1477 1791
1478void 1792void
1479ev_loop (EV_P_ int flags) 1793ev_loop (EV_P_ int flags)
1480{ 1794{
1481 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1795 loop_done = EVUNLOOP_CANCEL;
1482 ? EVUNLOOP_ONE
1483 : EVUNLOOP_CANCEL;
1484 1796
1485 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1797 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1486 1798
1487 do 1799 do
1488 { 1800 {
1534 1846
1535 waittime = MAX_BLOCKTIME; 1847 waittime = MAX_BLOCKTIME;
1536 1848
1537 if (timercnt) 1849 if (timercnt)
1538 { 1850 {
1539 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1851 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1540 if (waittime > to) waittime = to; 1852 if (waittime > to) waittime = to;
1541 } 1853 }
1542 1854
1543#if EV_PERIODIC_ENABLE 1855#if EV_PERIODIC_ENABLE
1544 if (periodiccnt) 1856 if (periodiccnt)
1545 { 1857 {
1546 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1547 if (waittime > to) waittime = to; 1859 if (waittime > to) waittime = to;
1548 } 1860 }
1549#endif 1861#endif
1550 1862
1551 if (expect_false (waittime < timeout_blocktime)) 1863 if (expect_false (waittime < timeout_blocktime))
1584 /* queue check watchers, to be executed first */ 1896 /* queue check watchers, to be executed first */
1585 if (expect_false (checkcnt)) 1897 if (expect_false (checkcnt))
1586 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1898 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1587 1899
1588 call_pending (EV_A); 1900 call_pending (EV_A);
1589
1590 } 1901 }
1591 while (expect_true (activecnt && !loop_done)); 1902 while (expect_true (
1903 activecnt
1904 && !loop_done
1905 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1906 ));
1592 1907
1593 if (loop_done == EVUNLOOP_ONE) 1908 if (loop_done == EVUNLOOP_ONE)
1594 loop_done = EVUNLOOP_CANCEL; 1909 loop_done = EVUNLOOP_CANCEL;
1595} 1910}
1596 1911
1700{ 2015{
1701 clear_pending (EV_A_ (W)w); 2016 clear_pending (EV_A_ (W)w);
1702 if (expect_false (!ev_is_active (w))) 2017 if (expect_false (!ev_is_active (w)))
1703 return; 2018 return;
1704 2019
1705 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1706 2021
1707 wlist_del (&anfds[w->fd].head, (WL)w); 2022 wlist_del (&anfds[w->fd].head, (WL)w);
1708 ev_stop (EV_A_ (W)w); 2023 ev_stop (EV_A_ (W)w);
1709 2024
1710 fd_change (EV_A_ w->fd, 1); 2025 fd_change (EV_A_ w->fd, 1);
1714ev_timer_start (EV_P_ ev_timer *w) 2029ev_timer_start (EV_P_ ev_timer *w)
1715{ 2030{
1716 if (expect_false (ev_is_active (w))) 2031 if (expect_false (ev_is_active (w)))
1717 return; 2032 return;
1718 2033
1719 ((WT)w)->at += mn_now; 2034 ev_at (w) += mn_now;
1720 2035
1721 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1722 2037
1723 ev_start (EV_A_ (W)w, ++timercnt); 2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1724 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1725 timers [timercnt - 1] = (WT)w; 2040 ANHE_w (timers [ev_active (w)]) = (WT)w;
1726 upheap (timers, timercnt - 1); 2041 ANHE_at_set (timers [ev_active (w)]);
2042 upheap (timers, ev_active (w));
1727 2043
1728 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1729} 2045}
1730 2046
1731void noinline 2047void noinline
1732ev_timer_stop (EV_P_ ev_timer *w) 2048ev_timer_stop (EV_P_ ev_timer *w)
1733{ 2049{
1734 clear_pending (EV_A_ (W)w); 2050 clear_pending (EV_A_ (W)w);
1735 if (expect_false (!ev_is_active (w))) 2051 if (expect_false (!ev_is_active (w)))
1736 return; 2052 return;
1737 2053
1738 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1739
1740 { 2054 {
1741 int active = ((W)w)->active; 2055 int active = ev_active (w);
1742 2056
2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2058
1743 if (expect_true (--active < --timercnt)) 2059 if (expect_true (active < timercnt + HEAP0 - 1))
1744 { 2060 {
1745 timers [active] = timers [timercnt]; 2061 timers [active] = timers [timercnt + HEAP0 - 1];
1746 adjustheap (timers, timercnt, active); 2062 adjustheap (timers, timercnt, active);
1747 } 2063 }
2064
2065 --timercnt;
1748 } 2066 }
1749 2067
1750 ((WT)w)->at -= mn_now; 2068 ev_at (w) -= mn_now;
1751 2069
1752 ev_stop (EV_A_ (W)w); 2070 ev_stop (EV_A_ (W)w);
1753} 2071}
1754 2072
1755void noinline 2073void noinline
1757{ 2075{
1758 if (ev_is_active (w)) 2076 if (ev_is_active (w))
1759 { 2077 {
1760 if (w->repeat) 2078 if (w->repeat)
1761 { 2079 {
1762 ((WT)w)->at = mn_now + w->repeat; 2080 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]);
1763 adjustheap (timers, timercnt, ((W)w)->active - 1); 2082 adjustheap (timers, timercnt, ev_active (w));
1764 } 2083 }
1765 else 2084 else
1766 ev_timer_stop (EV_A_ w); 2085 ev_timer_stop (EV_A_ w);
1767 } 2086 }
1768 else if (w->repeat) 2087 else if (w->repeat)
1769 { 2088 {
1770 w->at = w->repeat; 2089 ev_at (w) = w->repeat;
1771 ev_timer_start (EV_A_ w); 2090 ev_timer_start (EV_A_ w);
1772 } 2091 }
1773} 2092}
1774 2093
1775#if EV_PERIODIC_ENABLE 2094#if EV_PERIODIC_ENABLE
1778{ 2097{
1779 if (expect_false (ev_is_active (w))) 2098 if (expect_false (ev_is_active (w)))
1780 return; 2099 return;
1781 2100
1782 if (w->reschedule_cb) 2101 if (w->reschedule_cb)
1783 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2102 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1784 else if (w->interval) 2103 else if (w->interval)
1785 { 2104 {
1786 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2105 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1787 /* this formula differs from the one in periodic_reify because we do not always round up */ 2106 /* this formula differs from the one in periodic_reify because we do not always round up */
1788 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1789 } 2108 }
1790 else 2109 else
1791 ((WT)w)->at = w->offset; 2110 ev_at (w) = w->offset;
1792 2111
1793 ev_start (EV_A_ (W)w, ++periodiccnt); 2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1794 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1795 periodics [periodiccnt - 1] = (WT)w; 2114 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1796 upheap (periodics, periodiccnt - 1); 2115 ANHE_at_set (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w));
1797 2117
1798 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1799} 2119}
1800 2120
1801void noinline 2121void noinline
1802ev_periodic_stop (EV_P_ ev_periodic *w) 2122ev_periodic_stop (EV_P_ ev_periodic *w)
1803{ 2123{
1804 clear_pending (EV_A_ (W)w); 2124 clear_pending (EV_A_ (W)w);
1805 if (expect_false (!ev_is_active (w))) 2125 if (expect_false (!ev_is_active (w)))
1806 return; 2126 return;
1807 2127
1808 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1809
1810 { 2128 {
1811 int active = ((W)w)->active; 2129 int active = ev_active (w);
1812 2130
2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2132
1813 if (expect_true (--active < --periodiccnt)) 2133 if (expect_true (active < periodiccnt + HEAP0 - 1))
1814 { 2134 {
1815 periodics [active] = periodics [periodiccnt]; 2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1816 adjustheap (periodics, periodiccnt, active); 2136 adjustheap (periodics, periodiccnt, active);
1817 } 2137 }
2138
2139 --periodiccnt;
1818 } 2140 }
1819 2141
1820 ev_stop (EV_A_ (W)w); 2142 ev_stop (EV_A_ (W)w);
1821} 2143}
1822 2144
1841#endif 2163#endif
1842 if (expect_false (ev_is_active (w))) 2164 if (expect_false (ev_is_active (w)))
1843 return; 2165 return;
1844 2166
1845 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2167 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2168
2169 evpipe_init (EV_A);
1846 2170
1847 { 2171 {
1848#ifndef _WIN32 2172#ifndef _WIN32
1849 sigset_t full, prev; 2173 sigset_t full, prev;
1850 sigfillset (&full); 2174 sigfillset (&full);
1862 wlist_add (&signals [w->signum - 1].head, (WL)w); 2186 wlist_add (&signals [w->signum - 1].head, (WL)w);
1863 2187
1864 if (!((WL)w)->next) 2188 if (!((WL)w)->next)
1865 { 2189 {
1866#if _WIN32 2190#if _WIN32
1867 signal (w->signum, sighandler); 2191 signal (w->signum, ev_sighandler);
1868#else 2192#else
1869 struct sigaction sa; 2193 struct sigaction sa;
1870 sa.sa_handler = sighandler; 2194 sa.sa_handler = ev_sighandler;
1871 sigfillset (&sa.sa_mask); 2195 sigfillset (&sa.sa_mask);
1872 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2196 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1873 sigaction (w->signum, &sa, 0); 2197 sigaction (w->signum, &sa, 0);
1874#endif 2198#endif
1875 } 2199 }
1936 if (w->wd < 0) 2260 if (w->wd < 0)
1937 { 2261 {
1938 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1939 2263
1940 /* monitor some parent directory for speedup hints */ 2264 /* monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */
2266 /* but an efficiency issue only */
1941 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1942 { 2268 {
1943 char path [4096]; 2269 char path [4096];
1944 strcpy (path, w->path); 2270 strcpy (path, w->path);
1945 2271
2190 clear_pending (EV_A_ (W)w); 2516 clear_pending (EV_A_ (W)w);
2191 if (expect_false (!ev_is_active (w))) 2517 if (expect_false (!ev_is_active (w)))
2192 return; 2518 return;
2193 2519
2194 { 2520 {
2195 int active = ((W)w)->active; 2521 int active = ev_active (w);
2196 2522
2197 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2198 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2524 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2199 2525
2200 ev_stop (EV_A_ (W)w); 2526 ev_stop (EV_A_ (W)w);
2201 --idleall; 2527 --idleall;
2202 } 2528 }
2203} 2529}
2220 clear_pending (EV_A_ (W)w); 2546 clear_pending (EV_A_ (W)w);
2221 if (expect_false (!ev_is_active (w))) 2547 if (expect_false (!ev_is_active (w)))
2222 return; 2548 return;
2223 2549
2224 { 2550 {
2225 int active = ((W)w)->active; 2551 int active = ev_active (w);
2552
2226 prepares [active - 1] = prepares [--preparecnt]; 2553 prepares [active - 1] = prepares [--preparecnt];
2227 ((W)prepares [active - 1])->active = active; 2554 ev_active (prepares [active - 1]) = active;
2228 } 2555 }
2229 2556
2230 ev_stop (EV_A_ (W)w); 2557 ev_stop (EV_A_ (W)w);
2231} 2558}
2232 2559
2247 clear_pending (EV_A_ (W)w); 2574 clear_pending (EV_A_ (W)w);
2248 if (expect_false (!ev_is_active (w))) 2575 if (expect_false (!ev_is_active (w)))
2249 return; 2576 return;
2250 2577
2251 { 2578 {
2252 int active = ((W)w)->active; 2579 int active = ev_active (w);
2580
2253 checks [active - 1] = checks [--checkcnt]; 2581 checks [active - 1] = checks [--checkcnt];
2254 ((W)checks [active - 1])->active = active; 2582 ev_active (checks [active - 1]) = active;
2255 } 2583 }
2256 2584
2257 ev_stop (EV_A_ (W)w); 2585 ev_stop (EV_A_ (W)w);
2258} 2586}
2259 2587
2355 clear_pending (EV_A_ (W)w); 2683 clear_pending (EV_A_ (W)w);
2356 if (expect_false (!ev_is_active (w))) 2684 if (expect_false (!ev_is_active (w)))
2357 return; 2685 return;
2358 2686
2359 { 2687 {
2360 int active = ((W)w)->active; 2688 int active = ev_active (w);
2689
2361 forks [active - 1] = forks [--forkcnt]; 2690 forks [active - 1] = forks [--forkcnt];
2362 ((W)forks [active - 1])->active = active; 2691 ev_active (forks [active - 1]) = active;
2363 } 2692 }
2364 2693
2365 ev_stop (EV_A_ (W)w); 2694 ev_stop (EV_A_ (W)w);
2695}
2696#endif
2697
2698#if EV_ASYNC_ENABLE
2699void
2700ev_async_start (EV_P_ ev_async *w)
2701{
2702 if (expect_false (ev_is_active (w)))
2703 return;
2704
2705 evpipe_init (EV_A);
2706
2707 ev_start (EV_A_ (W)w, ++asynccnt);
2708 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2709 asyncs [asynccnt - 1] = w;
2710}
2711
2712void
2713ev_async_stop (EV_P_ ev_async *w)
2714{
2715 clear_pending (EV_A_ (W)w);
2716 if (expect_false (!ev_is_active (w)))
2717 return;
2718
2719 {
2720 int active = ev_active (w);
2721
2722 asyncs [active - 1] = asyncs [--asynccnt];
2723 ev_active (asyncs [active - 1]) = active;
2724 }
2725
2726 ev_stop (EV_A_ (W)w);
2727}
2728
2729void
2730ev_async_send (EV_P_ ev_async *w)
2731{
2732 w->sent = 1;
2733 evpipe_write (EV_A_ &gotasync);
2366} 2734}
2367#endif 2735#endif
2368 2736
2369/*****************************************************************************/ 2737/*****************************************************************************/
2370 2738

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines