ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.207 by root, Thu Jan 31 13:10:56 2008 UTC vs.
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC

39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
118# else 119# else
119# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
120# endif 121# endif
121# endif 122# endif
122 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
123#endif 132#endif
124 133
125#include <math.h> 134#include <math.h>
126#include <stdlib.h> 135#include <stdlib.h>
127#include <fcntl.h> 136#include <fcntl.h>
152# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
154# endif 163# endif
155#endif 164#endif
156 165
157/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
158 167
159#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
160# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
161#endif 170#endif
162 171
179# define EV_USE_POLL 1 188# define EV_USE_POLL 1
180# endif 189# endif
181#endif 190#endif
182 191
183#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
184# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
185#endif 198#endif
186 199
187#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
189#endif 202#endif
191#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 205# define EV_USE_PORT 0
193#endif 206#endif
194 207
195#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
196# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
197#endif 214#endif
198 215
199#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 217# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
210# else 227# else
211# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
212# endif 229# endif
213#endif 230#endif
214 231
215/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 249
217#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
220#endif 253#endif
239# include <sys/inotify.h> 272# include <sys/inotify.h>
240#endif 273#endif
241 274
242#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 276# include <winsock.h>
277#endif
278
279#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
244#endif 289#endif
245 290
246/**/ 291/**/
247 292
248/* 293/*
263# define expect(expr,value) __builtin_expect ((expr),(value)) 308# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 309# define noinline __attribute__ ((noinline))
265#else 310#else
266# define expect(expr,value) (expr) 311# define expect(expr,value) (expr)
267# define noinline 312# define noinline
268# if __STDC_VERSION__ < 199901L 313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 314# define inline
270# endif 315# endif
271#endif 316#endif
272 317
273#define expect_false(expr) expect ((expr) != 0, 0) 318#define expect_false(expr) expect ((expr) != 0, 0)
288 333
289typedef ev_watcher *W; 334typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
292 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
293#if EV_USE_MONOTONIC 341#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 343/* giving it a reasonably high chance of working on typical architetcures */
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 345#endif
323 perror (msg); 371 perror (msg);
324 abort (); 372 abort ();
325 } 373 }
326} 374}
327 375
376static void *
377ev_realloc_emul (void *ptr, long size)
378{
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389}
390
328static void *(*alloc)(void *ptr, long size); 391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 392
330void 393void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 394ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 395{
333 alloc = cb; 396 alloc = cb;
334} 397}
335 398
336inline_speed void * 399inline_speed void *
337ev_realloc (void *ptr, long size) 400ev_realloc (void *ptr, long size)
338{ 401{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 402 ptr = alloc (ptr, size);
340 403
341 if (!ptr && size) 404 if (!ptr && size)
342 { 405 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 407 abort ();
367 W w; 430 W w;
368 int events; 431 int events;
369} ANPENDING; 432} ANPENDING;
370 433
371#if EV_USE_INOTIFY 434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
372typedef struct 436typedef struct
373{ 437{
374 WL head; 438 WL head;
375} ANFS; 439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
376#endif 458#endif
377 459
378#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
379 461
380 struct ev_loop 462 struct ev_loop
451 ts.tv_sec = (time_t)delay; 533 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 535
454 nanosleep (&ts, 0); 536 nanosleep (&ts, 0);
455#elif defined(_WIN32) 537#elif defined(_WIN32)
456 Sleep (delay * 1e3); 538 Sleep ((unsigned long)(delay * 1e3));
457#else 539#else
458 struct timeval tv; 540 struct timeval tv;
459 541
460 tv.tv_sec = (time_t)delay; 542 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
464#endif 546#endif
465 } 547 }
466} 548}
467 549
468/*****************************************************************************/ 550/*****************************************************************************/
551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
469 553
470int inline_size 554int inline_size
471array_nextsize (int elem, int cur, int cnt) 555array_nextsize (int elem, int cur, int cnt)
472{ 556{
473 int ncur = cur + 1; 557 int ncur = cur + 1;
474 558
475 do 559 do
476 ncur <<= 1; 560 ncur <<= 1;
477 while (cnt > ncur); 561 while (cnt > ncur);
478 562
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 565 {
482 ncur *= elem; 566 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 568 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 569 ncur /= elem;
486 } 570 }
487 571
488 return ncur; 572 return ncur;
702 } 786 }
703} 787}
704 788
705/*****************************************************************************/ 789/*****************************************************************************/
706 790
791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808
809/* towards the root */
707void inline_speed 810void inline_speed
708upheap (WT *heap, int k) 811upheap (ANHE *heap, int k)
709{ 812{
710 WT w = heap [k]; 813 ANHE he = heap [k];
711 814
712 while (k) 815 for (;;)
713 { 816 {
714 int p = (k - 1) >> 1; 817 int p = HPARENT (k);
715 818
716 if (heap [p]->at <= w->at) 819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
717 break; 820 break;
718 821
719 heap [k] = heap [p]; 822 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 823 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 824 k = p;
722 } 825 }
723 826
724 heap [k] = w; 827 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 828 ev_active (ANHE_w (he)) = k;
726} 829}
727 830
831/* away from the root */
728void inline_speed 832void inline_speed
729downheap (WT *heap, int N, int k) 833downheap (ANHE *heap, int N, int k)
730{ 834{
731 WT w = heap [k]; 835 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0;
732 837
733 for (;;) 838 for (;;)
734 { 839 {
735 int c = (k << 1) + 1; 840 ev_tstamp minat;
841 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
736 843
737 if (c >= N) 844 // find minimum child
845 if (expect_true (pos + DHEAP - 1 < E))
846 {
847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else if (pos < E)
853 {
854 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else
738 break; 860 break;
739 861
862 if (ANHE_at (he) <= minat)
863 break;
864
865 heap [k] = *minpos;
866 ev_active (ANHE_w (*minpos)) = k;
867
868 k = minpos - heap;
869 }
870
871 heap [k] = he;
872 ev_active (ANHE_w (he)) = k;
873}
874
875#else // 4HEAP
876
877#define HEAP0 1
878#define HPARENT(k) ((k) >> 1)
879
880/* towards the root */
881void inline_speed
882upheap (ANHE *heap, int k)
883{
884 ANHE he = heap [k];
885
886 for (;;)
887 {
888 int p = HPARENT (k);
889
890 /* maybe we could use a dummy element at heap [0]? */
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break;
893
894 heap [k] = heap [p];
895 ev_active (ANHE_w (heap [k])) = k;
896 k = p;
897 }
898
899 heap [k] = he;
900 ev_active (ANHE_w (heap [k])) = k;
901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
908
909 for (;;)
910 {
911 int c = k << 1;
912
913 if (c > N)
914 break;
915
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
741 ? 1 : 0; 917 ? 1 : 0;
742 918
743 if (w->at <= heap [c]->at) 919 if (ANHE_at (he) <= ANHE_at (heap [c]))
744 break; 920 break;
745 921
746 heap [k] = heap [c]; 922 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1; 923 ev_active (ANHE_w (heap [k])) = k;
748 924
749 k = c; 925 k = c;
750 } 926 }
751 927
752 heap [k] = w; 928 heap [k] = he;
753 ((W)heap [k])->active = k + 1; 929 ev_active (ANHE_w (he)) = k;
754} 930}
931#endif
755 932
756void inline_size 933void inline_size
757adjustheap (WT *heap, int N, int k) 934adjustheap (ANHE *heap, int N, int k)
758{ 935{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
759 upheap (heap, k); 937 upheap (heap, k);
938 else
760 downheap (heap, N, k); 939 downheap (heap, N, k);
761} 940}
762 941
763/*****************************************************************************/ 942/*****************************************************************************/
764 943
765typedef struct 944typedef struct
802static void noinline 981static void noinline
803evpipe_init (EV_P) 982evpipe_init (EV_P)
804{ 983{
805 if (!ev_is_active (&pipeev)) 984 if (!ev_is_active (&pipeev))
806 { 985 {
986#if EV_USE_EVENTFD
987 if ((evfd = eventfd (0, 0)) >= 0)
988 {
989 evpipe [0] = -1;
990 fd_intern (evfd);
991 ev_io_set (&pipeev, evfd, EV_READ);
992 }
993 else
994#endif
995 {
807 while (pipe (evpipe)) 996 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 997 syserr ("(libev) error creating signal/async pipe");
809 998
810 fd_intern (evpipe [0]); 999 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1000 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1001 ev_io_set (&pipeev, evpipe [0], EV_READ);
1002 }
1003
814 ev_io_start (EV_A_ &pipeev); 1004 ev_io_start (EV_A_ &pipeev);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1005 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1006 }
817} 1007}
818 1008
819void inline_size 1009void inline_size
820evpipe_write (EV_P_ int sig, int async) 1010evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1011{
822 if (!(gotasync || gotsig)) 1012 if (!*flag)
823 { 1013 {
824 int old_errno = errno; 1014 int old_errno = errno; /* save errno because write might clobber it */
825 1015
826 if (sig) gotsig = 1; 1016 *flag = 1;
827 if (async) gotasync = 1;
828 1017
1018#if EV_USE_EVENTFD
1019 if (evfd >= 0)
1020 {
1021 uint64_t counter = 1;
1022 write (evfd, &counter, sizeof (uint64_t));
1023 }
1024 else
1025#endif
829 write (evpipe [1], &old_errno, 1); 1026 write (evpipe [1], &old_errno, 1);
1027
830 errno = old_errno; 1028 errno = old_errno;
831 } 1029 }
832} 1030}
833 1031
834static void 1032static void
835pipecb (EV_P_ ev_io *iow, int revents) 1033pipecb (EV_P_ ev_io *iow, int revents)
836{ 1034{
1035#if EV_USE_EVENTFD
1036 if (evfd >= 0)
837 { 1037 {
838 int dummy; 1038 uint64_t counter;
1039 read (evfd, &counter, sizeof (uint64_t));
1040 }
1041 else
1042#endif
1043 {
1044 char dummy;
839 read (evpipe [0], &dummy, 1); 1045 read (evpipe [0], &dummy, 1);
840 } 1046 }
841 1047
842 if (gotsig) 1048 if (gotsig && ev_is_default_loop (EV_A))
843 { 1049 {
844 int signum; 1050 int signum;
845 gotsig = 0; 1051 gotsig = 0;
846 1052
847 for (signum = signalmax; signum--; ) 1053 for (signum = signalmax; signum--; )
848 if (signals [signum].gotsig) 1054 if (signals [signum].gotsig)
849 ev_feed_signal_event (EV_A_ signum + 1); 1055 ev_feed_signal_event (EV_A_ signum + 1);
850 } 1056 }
851 1057
1058#if EV_ASYNC_ENABLE
852 if (gotasync) 1059 if (gotasync)
853 { 1060 {
854 int i; 1061 int i;
855 gotasync = 0; 1062 gotasync = 0;
856 1063
859 { 1066 {
860 asyncs [i]->sent = 0; 1067 asyncs [i]->sent = 0;
861 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 1068 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
862 } 1069 }
863 } 1070 }
1071#endif
864} 1072}
865 1073
866/*****************************************************************************/ 1074/*****************************************************************************/
867 1075
868static void 1076static void
869sighandler (int signum) 1077ev_sighandler (int signum)
870{ 1078{
871#if EV_MULTIPLICITY 1079#if EV_MULTIPLICITY
872 struct ev_loop *loop = &default_loop_struct; 1080 struct ev_loop *loop = &default_loop_struct;
873#endif 1081#endif
874 1082
875#if _WIN32 1083#if _WIN32
876 signal (signum, sighandler); 1084 signal (signum, ev_sighandler);
877#endif 1085#endif
878 1086
879 signals [signum - 1].gotsig = 1; 1087 signals [signum - 1].gotsig = 1;
880 evpipe_write (EV_A_ 1, 0); 1088 evpipe_write (EV_A_ &gotsig);
881} 1089}
882 1090
883void noinline 1091void noinline
884ev_feed_signal_event (EV_P_ int signum) 1092ev_feed_signal_event (EV_P_ int signum)
885{ 1093{
911#ifndef WIFCONTINUED 1119#ifndef WIFCONTINUED
912# define WIFCONTINUED(status) 0 1120# define WIFCONTINUED(status) 0
913#endif 1121#endif
914 1122
915void inline_speed 1123void inline_speed
916child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1124child_reap (EV_P_ int chain, int pid, int status)
917{ 1125{
918 ev_child *w; 1126 ev_child *w;
919 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1127 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
920 1128
921 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1129 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
922 { 1130 {
923 if ((w->pid == pid || !w->pid) 1131 if ((w->pid == pid || !w->pid)
924 && (!traced || (w->flags & 1))) 1132 && (!traced || (w->flags & 1)))
925 { 1133 {
926 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1134 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
927 w->rpid = pid; 1135 w->rpid = pid;
928 w->rstatus = status; 1136 w->rstatus = status;
929 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1137 ev_feed_event (EV_A_ (W)w, EV_CHILD);
930 } 1138 }
931 } 1139 }
945 if (!WCONTINUED 1153 if (!WCONTINUED
946 || errno != EINVAL 1154 || errno != EINVAL
947 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1155 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
948 return; 1156 return;
949 1157
950 /* make sure we are called again until all childs have been reaped */ 1158 /* make sure we are called again until all children have been reaped */
951 /* we need to do it this way so that the callback gets called before we continue */ 1159 /* we need to do it this way so that the callback gets called before we continue */
952 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1160 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
953 1161
954 child_reap (EV_A_ sw, pid, pid, status); 1162 child_reap (EV_A_ pid, pid, status);
955 if (EV_PID_HASHSIZE > 1) 1163 if (EV_PID_HASHSIZE > 1)
956 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1164 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
957} 1165}
958 1166
959#endif 1167#endif
960 1168
961/*****************************************************************************/ 1169/*****************************************************************************/
1079 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1287 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1080 have_monotonic = 1; 1288 have_monotonic = 1;
1081 } 1289 }
1082#endif 1290#endif
1083 1291
1084 ev_rt_now = ev_time (); 1292 ev_rt_now = ev_time ();
1085 mn_now = get_clock (); 1293 mn_now = get_clock ();
1086 now_floor = mn_now; 1294 now_floor = mn_now;
1087 rtmn_diff = ev_rt_now - mn_now; 1295 rtmn_diff = ev_rt_now - mn_now;
1088 1296
1089 io_blocktime = 0.; 1297 io_blocktime = 0.;
1090 timeout_blocktime = 0.; 1298 timeout_blocktime = 0.;
1299 backend = 0;
1300 backend_fd = -1;
1301 gotasync = 0;
1302#if EV_USE_INOTIFY
1303 fs_fd = -2;
1304#endif
1091 1305
1092 /* pid check not overridable via env */ 1306 /* pid check not overridable via env */
1093#ifndef _WIN32 1307#ifndef _WIN32
1094 if (flags & EVFLAG_FORKCHECK) 1308 if (flags & EVFLAG_FORKCHECK)
1095 curpid = getpid (); 1309 curpid = getpid ();
1098 if (!(flags & EVFLAG_NOENV) 1312 if (!(flags & EVFLAG_NOENV)
1099 && !enable_secure () 1313 && !enable_secure ()
1100 && getenv ("LIBEV_FLAGS")) 1314 && getenv ("LIBEV_FLAGS"))
1101 flags = atoi (getenv ("LIBEV_FLAGS")); 1315 flags = atoi (getenv ("LIBEV_FLAGS"));
1102 1316
1103 if (!(flags & 0x0000ffffUL)) 1317 if (!(flags & 0x0000ffffU))
1104 flags |= ev_recommended_backends (); 1318 flags |= ev_recommended_backends ();
1105
1106 backend = 0;
1107 backend_fd = -1;
1108#if EV_USE_INOTIFY
1109 fs_fd = -2;
1110#endif
1111 1319
1112#if EV_USE_PORT 1320#if EV_USE_PORT
1113 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1321 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1114#endif 1322#endif
1115#if EV_USE_KQUEUE 1323#if EV_USE_KQUEUE
1138 if (ev_is_active (&pipeev)) 1346 if (ev_is_active (&pipeev))
1139 { 1347 {
1140 ev_ref (EV_A); /* signal watcher */ 1348 ev_ref (EV_A); /* signal watcher */
1141 ev_io_stop (EV_A_ &pipeev); 1349 ev_io_stop (EV_A_ &pipeev);
1142 1350
1143 close (evpipe [0]); evpipe [0] = 0; 1351#if EV_USE_EVENTFD
1144 close (evpipe [1]); evpipe [1] = 0; 1352 if (evfd >= 0)
1353 close (evfd);
1354#endif
1355
1356 if (evpipe [0] >= 0)
1357 {
1358 close (evpipe [0]);
1359 close (evpipe [1]);
1360 }
1145 } 1361 }
1146 1362
1147#if EV_USE_INOTIFY 1363#if EV_USE_INOTIFY
1148 if (fs_fd >= 0) 1364 if (fs_fd >= 0)
1149 close (fs_fd); 1365 close (fs_fd);
1187#if EV_FORK_ENABLE 1403#if EV_FORK_ENABLE
1188 array_free (fork, EMPTY); 1404 array_free (fork, EMPTY);
1189#endif 1405#endif
1190 array_free (prepare, EMPTY); 1406 array_free (prepare, EMPTY);
1191 array_free (check, EMPTY); 1407 array_free (check, EMPTY);
1408#if EV_ASYNC_ENABLE
1409 array_free (async, EMPTY);
1410#endif
1192 1411
1193 backend = 0; 1412 backend = 0;
1194} 1413}
1195 1414
1415#if EV_USE_INOTIFY
1196void inline_size infy_fork (EV_P); 1416void inline_size infy_fork (EV_P);
1417#endif
1197 1418
1198void inline_size 1419void inline_size
1199loop_fork (EV_P) 1420loop_fork (EV_P)
1200{ 1421{
1201#if EV_USE_PORT 1422#if EV_USE_PORT
1212#endif 1433#endif
1213 1434
1214 if (ev_is_active (&pipeev)) 1435 if (ev_is_active (&pipeev))
1215 { 1436 {
1216 /* this "locks" the handlers against writing to the pipe */ 1437 /* this "locks" the handlers against writing to the pipe */
1438 /* while we modify the fd vars */
1439 gotsig = 1;
1440#if EV_ASYNC_ENABLE
1217 gotsig = gotasync = 1; 1441 gotasync = 1;
1442#endif
1218 1443
1219 ev_ref (EV_A); 1444 ev_ref (EV_A);
1220 ev_io_stop (EV_A_ &pipeev); 1445 ev_io_stop (EV_A_ &pipeev);
1446
1447#if EV_USE_EVENTFD
1448 if (evfd >= 0)
1449 close (evfd);
1450#endif
1451
1452 if (evpipe [0] >= 0)
1453 {
1221 close (evpipe [0]); 1454 close (evpipe [0]);
1222 close (evpipe [1]); 1455 close (evpipe [1]);
1456 }
1223 1457
1224 evpipe_init (EV_A); 1458 evpipe_init (EV_A);
1225 /* now iterate over everything */ 1459 /* now iterate over everything, in case we missed something */
1226 evcb (EV_A_ &pipeev, EV_READ); 1460 pipecb (EV_A_ &pipeev, EV_READ);
1227 } 1461 }
1228 1462
1229 postfork = 0; 1463 postfork = 0;
1230} 1464}
1231 1465
1255void 1489void
1256ev_loop_fork (EV_P) 1490ev_loop_fork (EV_P)
1257{ 1491{
1258 postfork = 1; /* must be in line with ev_default_fork */ 1492 postfork = 1; /* must be in line with ev_default_fork */
1259} 1493}
1260
1261#endif 1494#endif
1262 1495
1263#if EV_MULTIPLICITY 1496#if EV_MULTIPLICITY
1264struct ev_loop * 1497struct ev_loop *
1265ev_default_loop_init (unsigned int flags) 1498ev_default_loop_init (unsigned int flags)
1346 EV_CB_INVOKE (p->w, p->events); 1579 EV_CB_INVOKE (p->w, p->events);
1347 } 1580 }
1348 } 1581 }
1349} 1582}
1350 1583
1351void inline_size
1352timers_reify (EV_P)
1353{
1354 while (timercnt && ((WT)timers [0])->at <= mn_now)
1355 {
1356 ev_timer *w = (ev_timer *)timers [0];
1357
1358 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1359
1360 /* first reschedule or stop timer */
1361 if (w->repeat)
1362 {
1363 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1364
1365 ((WT)w)->at += w->repeat;
1366 if (((WT)w)->at < mn_now)
1367 ((WT)w)->at = mn_now;
1368
1369 downheap (timers, timercnt, 0);
1370 }
1371 else
1372 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1373
1374 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1375 }
1376}
1377
1378#if EV_PERIODIC_ENABLE
1379void inline_size
1380periodics_reify (EV_P)
1381{
1382 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1383 {
1384 ev_periodic *w = (ev_periodic *)periodics [0];
1385
1386 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1387
1388 /* first reschedule or stop timer */
1389 if (w->reschedule_cb)
1390 {
1391 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1392 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1393 downheap (periodics, periodiccnt, 0);
1394 }
1395 else if (w->interval)
1396 {
1397 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1398 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1399 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1400 downheap (periodics, periodiccnt, 0);
1401 }
1402 else
1403 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1404
1405 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1406 }
1407}
1408
1409static void noinline
1410periodics_reschedule (EV_P)
1411{
1412 int i;
1413
1414 /* adjust periodics after time jump */
1415 for (i = 0; i < periodiccnt; ++i)
1416 {
1417 ev_periodic *w = (ev_periodic *)periodics [i];
1418
1419 if (w->reschedule_cb)
1420 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1421 else if (w->interval)
1422 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1423 }
1424
1425 /* now rebuild the heap */
1426 for (i = periodiccnt >> 1; i--; )
1427 downheap (periodics, periodiccnt, i);
1428}
1429#endif
1430
1431#if EV_IDLE_ENABLE 1584#if EV_IDLE_ENABLE
1432void inline_size 1585void inline_size
1433idle_reify (EV_P) 1586idle_reify (EV_P)
1434{ 1587{
1435 if (expect_false (idleall)) 1588 if (expect_false (idleall))
1446 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1599 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1447 break; 1600 break;
1448 } 1601 }
1449 } 1602 }
1450 } 1603 }
1604}
1605#endif
1606
1607void inline_size
1608timers_reify (EV_P)
1609{
1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1611 {
1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1613
1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1615
1616 /* first reschedule or stop timer */
1617 if (w->repeat)
1618 {
1619 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now;
1622
1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1624
1625 ANHE_at_set (timers [HEAP0]);
1626 downheap (timers, timercnt, HEAP0);
1627 }
1628 else
1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1630
1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1632 }
1633}
1634
1635#if EV_PERIODIC_ENABLE
1636void inline_size
1637periodics_reify (EV_P)
1638{
1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1640 {
1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1642
1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1644
1645 /* first reschedule or stop timer */
1646 if (w->reschedule_cb)
1647 {
1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649
1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651
1652 ANHE_at_set (periodics [HEAP0]);
1653 downheap (periodics, periodiccnt, HEAP0);
1654 }
1655 else if (w->interval)
1656 {
1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1672 downheap (periodics, periodiccnt, HEAP0);
1673 }
1674 else
1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1676
1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1678 }
1679}
1680
1681static void noinline
1682periodics_reschedule (EV_P)
1683{
1684 int i;
1685
1686 /* adjust periodics after time jump */
1687 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1688 {
1689 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1690
1691 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695
1696 ANHE_at_set (periodics [i]);
1697 }
1698
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1701 for (i = 0; i < periodiccnt; ++i)
1702 upheap (periodics, i + HEAP0);
1451} 1703}
1452#endif 1704#endif
1453 1705
1454void inline_speed 1706void inline_speed
1455time_update (EV_P_ ev_tstamp max_block) 1707time_update (EV_P_ ev_tstamp max_block)
1484 */ 1736 */
1485 for (i = 4; --i; ) 1737 for (i = 4; --i; )
1486 { 1738 {
1487 rtmn_diff = ev_rt_now - mn_now; 1739 rtmn_diff = ev_rt_now - mn_now;
1488 1740
1489 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1741 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1490 return; /* all is well */ 1742 return; /* all is well */
1491 1743
1492 ev_rt_now = ev_time (); 1744 ev_rt_now = ev_time ();
1493 mn_now = get_clock (); 1745 mn_now = get_clock ();
1494 now_floor = mn_now; 1746 now_floor = mn_now;
1510#if EV_PERIODIC_ENABLE 1762#if EV_PERIODIC_ENABLE
1511 periodics_reschedule (EV_A); 1763 periodics_reschedule (EV_A);
1512#endif 1764#endif
1513 /* adjust timers. this is easy, as the offset is the same for all of them */ 1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1514 for (i = 0; i < timercnt; ++i) 1766 for (i = 0; i < timercnt; ++i)
1767 {
1768 ANHE *he = timers + i + HEAP0;
1515 ((WT)timers [i])->at += ev_rt_now - mn_now; 1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1516 } 1772 }
1517 1773
1518 mn_now = ev_rt_now; 1774 mn_now = ev_rt_now;
1519 } 1775 }
1520} 1776}
1534static int loop_done; 1790static int loop_done;
1535 1791
1536void 1792void
1537ev_loop (EV_P_ int flags) 1793ev_loop (EV_P_ int flags)
1538{ 1794{
1539 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1795 loop_done = EVUNLOOP_CANCEL;
1540 ? EVUNLOOP_ONE
1541 : EVUNLOOP_CANCEL;
1542 1796
1543 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1797 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1544 1798
1545 do 1799 do
1546 { 1800 {
1592 1846
1593 waittime = MAX_BLOCKTIME; 1847 waittime = MAX_BLOCKTIME;
1594 1848
1595 if (timercnt) 1849 if (timercnt)
1596 { 1850 {
1597 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1851 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1598 if (waittime > to) waittime = to; 1852 if (waittime > to) waittime = to;
1599 } 1853 }
1600 1854
1601#if EV_PERIODIC_ENABLE 1855#if EV_PERIODIC_ENABLE
1602 if (periodiccnt) 1856 if (periodiccnt)
1603 { 1857 {
1604 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1605 if (waittime > to) waittime = to; 1859 if (waittime > to) waittime = to;
1606 } 1860 }
1607#endif 1861#endif
1608 1862
1609 if (expect_false (waittime < timeout_blocktime)) 1863 if (expect_false (waittime < timeout_blocktime))
1642 /* queue check watchers, to be executed first */ 1896 /* queue check watchers, to be executed first */
1643 if (expect_false (checkcnt)) 1897 if (expect_false (checkcnt))
1644 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1898 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1645 1899
1646 call_pending (EV_A); 1900 call_pending (EV_A);
1647
1648 } 1901 }
1649 while (expect_true (activecnt && !loop_done)); 1902 while (expect_true (
1903 activecnt
1904 && !loop_done
1905 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1906 ));
1650 1907
1651 if (loop_done == EVUNLOOP_ONE) 1908 if (loop_done == EVUNLOOP_ONE)
1652 loop_done = EVUNLOOP_CANCEL; 1909 loop_done = EVUNLOOP_CANCEL;
1653} 1910}
1654 1911
1758{ 2015{
1759 clear_pending (EV_A_ (W)w); 2016 clear_pending (EV_A_ (W)w);
1760 if (expect_false (!ev_is_active (w))) 2017 if (expect_false (!ev_is_active (w)))
1761 return; 2018 return;
1762 2019
1763 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1764 2021
1765 wlist_del (&anfds[w->fd].head, (WL)w); 2022 wlist_del (&anfds[w->fd].head, (WL)w);
1766 ev_stop (EV_A_ (W)w); 2023 ev_stop (EV_A_ (W)w);
1767 2024
1768 fd_change (EV_A_ w->fd, 1); 2025 fd_change (EV_A_ w->fd, 1);
1772ev_timer_start (EV_P_ ev_timer *w) 2029ev_timer_start (EV_P_ ev_timer *w)
1773{ 2030{
1774 if (expect_false (ev_is_active (w))) 2031 if (expect_false (ev_is_active (w)))
1775 return; 2032 return;
1776 2033
1777 ((WT)w)->at += mn_now; 2034 ev_at (w) += mn_now;
1778 2035
1779 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1780 2037
1781 ev_start (EV_A_ (W)w, ++timercnt); 2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1782 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1783 timers [timercnt - 1] = (WT)w; 2040 ANHE_w (timers [ev_active (w)]) = (WT)w;
1784 upheap (timers, timercnt - 1); 2041 ANHE_at_set (timers [ev_active (w)]);
2042 upheap (timers, ev_active (w));
1785 2043
1786 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1787} 2045}
1788 2046
1789void noinline 2047void noinline
1790ev_timer_stop (EV_P_ ev_timer *w) 2048ev_timer_stop (EV_P_ ev_timer *w)
1791{ 2049{
1792 clear_pending (EV_A_ (W)w); 2050 clear_pending (EV_A_ (W)w);
1793 if (expect_false (!ev_is_active (w))) 2051 if (expect_false (!ev_is_active (w)))
1794 return; 2052 return;
1795 2053
1796 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1797
1798 { 2054 {
1799 int active = ((W)w)->active; 2055 int active = ev_active (w);
1800 2056
2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2058
1801 if (expect_true (--active < --timercnt)) 2059 if (expect_true (active < timercnt + HEAP0 - 1))
1802 { 2060 {
1803 timers [active] = timers [timercnt]; 2061 timers [active] = timers [timercnt + HEAP0 - 1];
1804 adjustheap (timers, timercnt, active); 2062 adjustheap (timers, timercnt, active);
1805 } 2063 }
2064
2065 --timercnt;
1806 } 2066 }
1807 2067
1808 ((WT)w)->at -= mn_now; 2068 ev_at (w) -= mn_now;
1809 2069
1810 ev_stop (EV_A_ (W)w); 2070 ev_stop (EV_A_ (W)w);
1811} 2071}
1812 2072
1813void noinline 2073void noinline
1815{ 2075{
1816 if (ev_is_active (w)) 2076 if (ev_is_active (w))
1817 { 2077 {
1818 if (w->repeat) 2078 if (w->repeat)
1819 { 2079 {
1820 ((WT)w)->at = mn_now + w->repeat; 2080 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]);
1821 adjustheap (timers, timercnt, ((W)w)->active - 1); 2082 adjustheap (timers, timercnt, ev_active (w));
1822 } 2083 }
1823 else 2084 else
1824 ev_timer_stop (EV_A_ w); 2085 ev_timer_stop (EV_A_ w);
1825 } 2086 }
1826 else if (w->repeat) 2087 else if (w->repeat)
1827 { 2088 {
1828 w->at = w->repeat; 2089 ev_at (w) = w->repeat;
1829 ev_timer_start (EV_A_ w); 2090 ev_timer_start (EV_A_ w);
1830 } 2091 }
1831} 2092}
1832 2093
1833#if EV_PERIODIC_ENABLE 2094#if EV_PERIODIC_ENABLE
1836{ 2097{
1837 if (expect_false (ev_is_active (w))) 2098 if (expect_false (ev_is_active (w)))
1838 return; 2099 return;
1839 2100
1840 if (w->reschedule_cb) 2101 if (w->reschedule_cb)
1841 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2102 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842 else if (w->interval) 2103 else if (w->interval)
1843 { 2104 {
1844 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2105 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1845 /* this formula differs from the one in periodic_reify because we do not always round up */ 2106 /* this formula differs from the one in periodic_reify because we do not always round up */
1846 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1847 } 2108 }
1848 else 2109 else
1849 ((WT)w)->at = w->offset; 2110 ev_at (w) = w->offset;
1850 2111
1851 ev_start (EV_A_ (W)w, ++periodiccnt); 2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1852 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1853 periodics [periodiccnt - 1] = (WT)w; 2114 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1854 upheap (periodics, periodiccnt - 1); 2115 ANHE_at_set (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w));
1855 2117
1856 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1857} 2119}
1858 2120
1859void noinline 2121void noinline
1860ev_periodic_stop (EV_P_ ev_periodic *w) 2122ev_periodic_stop (EV_P_ ev_periodic *w)
1861{ 2123{
1862 clear_pending (EV_A_ (W)w); 2124 clear_pending (EV_A_ (W)w);
1863 if (expect_false (!ev_is_active (w))) 2125 if (expect_false (!ev_is_active (w)))
1864 return; 2126 return;
1865 2127
1866 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1867
1868 { 2128 {
1869 int active = ((W)w)->active; 2129 int active = ev_active (w);
1870 2130
2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2132
1871 if (expect_true (--active < --periodiccnt)) 2133 if (expect_true (active < periodiccnt + HEAP0 - 1))
1872 { 2134 {
1873 periodics [active] = periodics [periodiccnt]; 2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1874 adjustheap (periodics, periodiccnt, active); 2136 adjustheap (periodics, periodiccnt, active);
1875 } 2137 }
2138
2139 --periodiccnt;
1876 } 2140 }
1877 2141
1878 ev_stop (EV_A_ (W)w); 2142 ev_stop (EV_A_ (W)w);
1879} 2143}
1880 2144
1922 wlist_add (&signals [w->signum - 1].head, (WL)w); 2186 wlist_add (&signals [w->signum - 1].head, (WL)w);
1923 2187
1924 if (!((WL)w)->next) 2188 if (!((WL)w)->next)
1925 { 2189 {
1926#if _WIN32 2190#if _WIN32
1927 signal (w->signum, sighandler); 2191 signal (w->signum, ev_sighandler);
1928#else 2192#else
1929 struct sigaction sa; 2193 struct sigaction sa;
1930 sa.sa_handler = sighandler; 2194 sa.sa_handler = ev_sighandler;
1931 sigfillset (&sa.sa_mask); 2195 sigfillset (&sa.sa_mask);
1932 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2196 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1933 sigaction (w->signum, &sa, 0); 2197 sigaction (w->signum, &sa, 0);
1934#endif 2198#endif
1935 } 2199 }
1996 if (w->wd < 0) 2260 if (w->wd < 0)
1997 { 2261 {
1998 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1999 2263
2000 /* monitor some parent directory for speedup hints */ 2264 /* monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */
2266 /* but an efficiency issue only */
2001 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2002 { 2268 {
2003 char path [4096]; 2269 char path [4096];
2004 strcpy (path, w->path); 2270 strcpy (path, w->path);
2005 2271
2250 clear_pending (EV_A_ (W)w); 2516 clear_pending (EV_A_ (W)w);
2251 if (expect_false (!ev_is_active (w))) 2517 if (expect_false (!ev_is_active (w)))
2252 return; 2518 return;
2253 2519
2254 { 2520 {
2255 int active = ((W)w)->active; 2521 int active = ev_active (w);
2256 2522
2257 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2258 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2524 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2259 2525
2260 ev_stop (EV_A_ (W)w); 2526 ev_stop (EV_A_ (W)w);
2261 --idleall; 2527 --idleall;
2262 } 2528 }
2263} 2529}
2280 clear_pending (EV_A_ (W)w); 2546 clear_pending (EV_A_ (W)w);
2281 if (expect_false (!ev_is_active (w))) 2547 if (expect_false (!ev_is_active (w)))
2282 return; 2548 return;
2283 2549
2284 { 2550 {
2285 int active = ((W)w)->active; 2551 int active = ev_active (w);
2552
2286 prepares [active - 1] = prepares [--preparecnt]; 2553 prepares [active - 1] = prepares [--preparecnt];
2287 ((W)prepares [active - 1])->active = active; 2554 ev_active (prepares [active - 1]) = active;
2288 } 2555 }
2289 2556
2290 ev_stop (EV_A_ (W)w); 2557 ev_stop (EV_A_ (W)w);
2291} 2558}
2292 2559
2307 clear_pending (EV_A_ (W)w); 2574 clear_pending (EV_A_ (W)w);
2308 if (expect_false (!ev_is_active (w))) 2575 if (expect_false (!ev_is_active (w)))
2309 return; 2576 return;
2310 2577
2311 { 2578 {
2312 int active = ((W)w)->active; 2579 int active = ev_active (w);
2580
2313 checks [active - 1] = checks [--checkcnt]; 2581 checks [active - 1] = checks [--checkcnt];
2314 ((W)checks [active - 1])->active = active; 2582 ev_active (checks [active - 1]) = active;
2315 } 2583 }
2316 2584
2317 ev_stop (EV_A_ (W)w); 2585 ev_stop (EV_A_ (W)w);
2318} 2586}
2319 2587
2415 clear_pending (EV_A_ (W)w); 2683 clear_pending (EV_A_ (W)w);
2416 if (expect_false (!ev_is_active (w))) 2684 if (expect_false (!ev_is_active (w)))
2417 return; 2685 return;
2418 2686
2419 { 2687 {
2420 int active = ((W)w)->active; 2688 int active = ev_active (w);
2689
2421 forks [active - 1] = forks [--forkcnt]; 2690 forks [active - 1] = forks [--forkcnt];
2422 ((W)forks [active - 1])->active = active; 2691 ev_active (forks [active - 1]) = active;
2423 } 2692 }
2424 2693
2425 ev_stop (EV_A_ (W)w); 2694 ev_stop (EV_A_ (W)w);
2426} 2695}
2427#endif 2696#endif
2446 clear_pending (EV_A_ (W)w); 2715 clear_pending (EV_A_ (W)w);
2447 if (expect_false (!ev_is_active (w))) 2716 if (expect_false (!ev_is_active (w)))
2448 return; 2717 return;
2449 2718
2450 { 2719 {
2451 int active = ((W)w)->active; 2720 int active = ev_active (w);
2721
2452 asyncs [active - 1] = asyncs [--asynccnt]; 2722 asyncs [active - 1] = asyncs [--asynccnt];
2453 ((W)asyncs [active - 1])->active = active; 2723 ev_active (asyncs [active - 1]) = active;
2454 } 2724 }
2455 2725
2456 ev_stop (EV_A_ (W)w); 2726 ev_stop (EV_A_ (W)w);
2457} 2727}
2458 2728
2459void 2729void
2460ev_async_send (EV_P_ ev_async *w) 2730ev_async_send (EV_P_ ev_async *w)
2461{ 2731{
2462 w->sent = 1; 2732 w->sent = 1;
2463 evpipe_write (EV_A_ 0, 1); 2733 evpipe_write (EV_A_ &gotasync);
2464} 2734}
2465#endif 2735#endif
2466 2736
2467/*****************************************************************************/ 2737/*****************************************************************************/
2468 2738

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines