ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.221 by root, Sun Apr 6 12:44:49 2008 UTC vs.
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC

235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 249
242#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
269#endif 277#endif
270 278
271#if EV_USE_EVENTFD 279#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
274int eventfd (unsigned int initval, int flags); 285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
275#endif 289#endif
276 290
277/**/ 291/**/
278 292
279/* 293/*
294# define expect(expr,value) __builtin_expect ((expr),(value)) 308# define expect(expr,value) __builtin_expect ((expr),(value))
295# define noinline __attribute__ ((noinline)) 309# define noinline __attribute__ ((noinline))
296#else 310#else
297# define expect(expr,value) (expr) 311# define expect(expr,value) (expr)
298# define noinline 312# define noinline
299# if __STDC_VERSION__ < 199901L 313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
300# define inline 314# define inline
301# endif 315# endif
302#endif 316#endif
303 317
304#define expect_false(expr) expect ((expr) != 0, 0) 318#define expect_false(expr) expect ((expr) != 0, 0)
319 333
320typedef ev_watcher *W; 334typedef ev_watcher *W;
321typedef ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
322typedef ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
323 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
324#if EV_USE_MONOTONIC 341#if EV_USE_MONOTONIC
325/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
326/* giving it a reasonably high chance of working on typical architetcures */ 343/* giving it a reasonably high chance of working on typical architetcures */
327static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
328#endif 345#endif
354 perror (msg); 371 perror (msg);
355 abort (); 372 abort ();
356 } 373 }
357} 374}
358 375
376static void *
377ev_realloc_emul (void *ptr, long size)
378{
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389}
390
359static void *(*alloc)(void *ptr, long size); 391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
360 392
361void 393void
362ev_set_allocator (void *(*cb)(void *ptr, long size)) 394ev_set_allocator (void *(*cb)(void *ptr, long size))
363{ 395{
364 alloc = cb; 396 alloc = cb;
365} 397}
366 398
367inline_speed void * 399inline_speed void *
368ev_realloc (void *ptr, long size) 400ev_realloc (void *ptr, long size)
369{ 401{
370 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 402 ptr = alloc (ptr, size);
371 403
372 if (!ptr && size) 404 if (!ptr && size)
373 { 405 {
374 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
375 abort (); 407 abort ();
398 W w; 430 W w;
399 int events; 431 int events;
400} ANPENDING; 432} ANPENDING;
401 433
402#if EV_USE_INOTIFY 434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
403typedef struct 436typedef struct
404{ 437{
405 WL head; 438 WL head;
406} ANFS; 439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
407#endif 458#endif
408 459
409#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
410 461
411 struct ev_loop 462 struct ev_loop
496 } 547 }
497} 548}
498 549
499/*****************************************************************************/ 550/*****************************************************************************/
500 551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
501int inline_size 554int inline_size
502array_nextsize (int elem, int cur, int cnt) 555array_nextsize (int elem, int cur, int cnt)
503{ 556{
504 int ncur = cur + 1; 557 int ncur = cur + 1;
505 558
506 do 559 do
507 ncur <<= 1; 560 ncur <<= 1;
508 while (cnt > ncur); 561 while (cnt > ncur);
509 562
510 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
511 if (elem * ncur > 4096) 564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
512 { 565 {
513 ncur *= elem; 566 ncur *= elem;
514 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
515 ncur = ncur - sizeof (void *) * 4; 568 ncur = ncur - sizeof (void *) * 4;
516 ncur /= elem; 569 ncur /= elem;
517 } 570 }
518 571
519 return ncur; 572 return ncur;
733 } 786 }
734} 787}
735 788
736/*****************************************************************************/ 789/*****************************************************************************/
737 790
791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808
809/* towards the root */
738void inline_speed 810void inline_speed
739upheap (WT *heap, int k) 811upheap (ANHE *heap, int k)
740{ 812{
741 WT w = heap [k]; 813 ANHE he = heap [k];
742 814
743 while (k) 815 for (;;)
744 { 816 {
745 int p = (k - 1) >> 1; 817 int p = HPARENT (k);
746 818
747 if (heap [p]->at <= w->at) 819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
748 break; 820 break;
749 821
750 heap [k] = heap [p]; 822 heap [k] = heap [p];
751 ((W)heap [k])->active = k + 1; 823 ev_active (ANHE_w (heap [k])) = k;
752 k = p; 824 k = p;
753 } 825 }
754 826
755 heap [k] = w; 827 heap [k] = he;
756 ((W)heap [k])->active = k + 1; 828 ev_active (ANHE_w (he)) = k;
757} 829}
758 830
831/* away from the root */
759void inline_speed 832void inline_speed
760downheap (WT *heap, int N, int k) 833downheap (ANHE *heap, int N, int k)
761{ 834{
762 WT w = heap [k]; 835 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0;
763 837
764 for (;;) 838 for (;;)
765 { 839 {
766 int c = (k << 1) + 1; 840 ev_tstamp minat;
841 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
767 843
768 if (c >= N) 844 // find minimum child
845 if (expect_true (pos + DHEAP - 1 < E))
846 {
847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else if (pos < E)
853 {
854 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else
769 break; 860 break;
770 861
862 if (ANHE_at (he) <= minat)
863 break;
864
865 heap [k] = *minpos;
866 ev_active (ANHE_w (*minpos)) = k;
867
868 k = minpos - heap;
869 }
870
871 heap [k] = he;
872 ev_active (ANHE_w (he)) = k;
873}
874
875#else // 4HEAP
876
877#define HEAP0 1
878#define HPARENT(k) ((k) >> 1)
879
880/* towards the root */
881void inline_speed
882upheap (ANHE *heap, int k)
883{
884 ANHE he = heap [k];
885
886 for (;;)
887 {
888 int p = HPARENT (k);
889
890 /* maybe we could use a dummy element at heap [0]? */
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break;
893
894 heap [k] = heap [p];
895 ev_active (ANHE_w (heap [k])) = k;
896 k = p;
897 }
898
899 heap [k] = he;
900 ev_active (ANHE_w (heap [k])) = k;
901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
908
909 for (;;)
910 {
911 int c = k << 1;
912
913 if (c > N)
914 break;
915
771 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
772 ? 1 : 0; 917 ? 1 : 0;
773 918
774 if (w->at <= heap [c]->at) 919 if (ANHE_at (he) <= ANHE_at (heap [c]))
775 break; 920 break;
776 921
777 heap [k] = heap [c]; 922 heap [k] = heap [c];
778 ((W)heap [k])->active = k + 1; 923 ev_active (ANHE_w (heap [k])) = k;
779 924
780 k = c; 925 k = c;
781 } 926 }
782 927
783 heap [k] = w; 928 heap [k] = he;
784 ((W)heap [k])->active = k + 1; 929 ev_active (ANHE_w (he)) = k;
785} 930}
931#endif
786 932
787void inline_size 933void inline_size
788adjustheap (WT *heap, int N, int k) 934adjustheap (ANHE *heap, int N, int k)
789{ 935{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
790 upheap (heap, k); 937 upheap (heap, k);
938 else
791 downheap (heap, N, k); 939 downheap (heap, N, k);
792} 940}
793 941
794/*****************************************************************************/ 942/*****************************************************************************/
795 943
796typedef struct 944typedef struct
885pipecb (EV_P_ ev_io *iow, int revents) 1033pipecb (EV_P_ ev_io *iow, int revents)
886{ 1034{
887#if EV_USE_EVENTFD 1035#if EV_USE_EVENTFD
888 if (evfd >= 0) 1036 if (evfd >= 0)
889 { 1037 {
890 uint64_t counter = 1; 1038 uint64_t counter;
891 read (evfd, &counter, sizeof (uint64_t)); 1039 read (evfd, &counter, sizeof (uint64_t));
892 } 1040 }
893 else 1041 else
894#endif 1042#endif
895 { 1043 {
1164 if (!(flags & EVFLAG_NOENV) 1312 if (!(flags & EVFLAG_NOENV)
1165 && !enable_secure () 1313 && !enable_secure ()
1166 && getenv ("LIBEV_FLAGS")) 1314 && getenv ("LIBEV_FLAGS"))
1167 flags = atoi (getenv ("LIBEV_FLAGS")); 1315 flags = atoi (getenv ("LIBEV_FLAGS"));
1168 1316
1169 if (!(flags & 0x0000ffffUL)) 1317 if (!(flags & 0x0000ffffU))
1170 flags |= ev_recommended_backends (); 1318 flags |= ev_recommended_backends ();
1171 1319
1172#if EV_USE_PORT 1320#if EV_USE_PORT
1173 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1321 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1174#endif 1322#endif
1262#endif 1410#endif
1263 1411
1264 backend = 0; 1412 backend = 0;
1265} 1413}
1266 1414
1415#if EV_USE_INOTIFY
1267void inline_size infy_fork (EV_P); 1416void inline_size infy_fork (EV_P);
1417#endif
1268 1418
1269void inline_size 1419void inline_size
1270loop_fork (EV_P) 1420loop_fork (EV_P)
1271{ 1421{
1272#if EV_USE_PORT 1422#if EV_USE_PORT
1339void 1489void
1340ev_loop_fork (EV_P) 1490ev_loop_fork (EV_P)
1341{ 1491{
1342 postfork = 1; /* must be in line with ev_default_fork */ 1492 postfork = 1; /* must be in line with ev_default_fork */
1343} 1493}
1344
1345#endif 1494#endif
1346 1495
1347#if EV_MULTIPLICITY 1496#if EV_MULTIPLICITY
1348struct ev_loop * 1497struct ev_loop *
1349ev_default_loop_init (unsigned int flags) 1498ev_default_loop_init (unsigned int flags)
1430 EV_CB_INVOKE (p->w, p->events); 1579 EV_CB_INVOKE (p->w, p->events);
1431 } 1580 }
1432 } 1581 }
1433} 1582}
1434 1583
1435void inline_size
1436timers_reify (EV_P)
1437{
1438 while (timercnt && ((WT)timers [0])->at <= mn_now)
1439 {
1440 ev_timer *w = (ev_timer *)timers [0];
1441
1442 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1443
1444 /* first reschedule or stop timer */
1445 if (w->repeat)
1446 {
1447 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1448
1449 ((WT)w)->at += w->repeat;
1450 if (((WT)w)->at < mn_now)
1451 ((WT)w)->at = mn_now;
1452
1453 downheap (timers, timercnt, 0);
1454 }
1455 else
1456 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1457
1458 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1459 }
1460}
1461
1462#if EV_PERIODIC_ENABLE
1463void inline_size
1464periodics_reify (EV_P)
1465{
1466 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1467 {
1468 ev_periodic *w = (ev_periodic *)periodics [0];
1469
1470 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->reschedule_cb)
1474 {
1475 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1476 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1477 downheap (periodics, periodiccnt, 0);
1478 }
1479 else if (w->interval)
1480 {
1481 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1482 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1483 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1484 downheap (periodics, periodiccnt, 0);
1485 }
1486 else
1487 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1488
1489 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1490 }
1491}
1492
1493static void noinline
1494periodics_reschedule (EV_P)
1495{
1496 int i;
1497
1498 /* adjust periodics after time jump */
1499 for (i = 0; i < periodiccnt; ++i)
1500 {
1501 ev_periodic *w = (ev_periodic *)periodics [i];
1502
1503 if (w->reschedule_cb)
1504 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1505 else if (w->interval)
1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1507 }
1508
1509 /* now rebuild the heap */
1510 for (i = periodiccnt >> 1; i--; )
1511 downheap (periodics, periodiccnt, i);
1512}
1513#endif
1514
1515#if EV_IDLE_ENABLE 1584#if EV_IDLE_ENABLE
1516void inline_size 1585void inline_size
1517idle_reify (EV_P) 1586idle_reify (EV_P)
1518{ 1587{
1519 if (expect_false (idleall)) 1588 if (expect_false (idleall))
1530 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1599 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1531 break; 1600 break;
1532 } 1601 }
1533 } 1602 }
1534 } 1603 }
1604}
1605#endif
1606
1607void inline_size
1608timers_reify (EV_P)
1609{
1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1611 {
1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1613
1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1615
1616 /* first reschedule or stop timer */
1617 if (w->repeat)
1618 {
1619 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now;
1622
1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1624
1625 ANHE_at_set (timers [HEAP0]);
1626 downheap (timers, timercnt, HEAP0);
1627 }
1628 else
1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1630
1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1632 }
1633}
1634
1635#if EV_PERIODIC_ENABLE
1636void inline_size
1637periodics_reify (EV_P)
1638{
1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1640 {
1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1642
1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1644
1645 /* first reschedule or stop timer */
1646 if (w->reschedule_cb)
1647 {
1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649
1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651
1652 ANHE_at_set (periodics [HEAP0]);
1653 downheap (periodics, periodiccnt, HEAP0);
1654 }
1655 else if (w->interval)
1656 {
1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1672 downheap (periodics, periodiccnt, HEAP0);
1673 }
1674 else
1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1676
1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1678 }
1679}
1680
1681static void noinline
1682periodics_reschedule (EV_P)
1683{
1684 int i;
1685
1686 /* adjust periodics after time jump */
1687 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1688 {
1689 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1690
1691 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695
1696 ANHE_at_set (periodics [i]);
1697 }
1698
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1701 for (i = 0; i < periodiccnt; ++i)
1702 upheap (periodics, i + HEAP0);
1535} 1703}
1536#endif 1704#endif
1537 1705
1538void inline_speed 1706void inline_speed
1539time_update (EV_P_ ev_tstamp max_block) 1707time_update (EV_P_ ev_tstamp max_block)
1568 */ 1736 */
1569 for (i = 4; --i; ) 1737 for (i = 4; --i; )
1570 { 1738 {
1571 rtmn_diff = ev_rt_now - mn_now; 1739 rtmn_diff = ev_rt_now - mn_now;
1572 1740
1573 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1741 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1574 return; /* all is well */ 1742 return; /* all is well */
1575 1743
1576 ev_rt_now = ev_time (); 1744 ev_rt_now = ev_time ();
1577 mn_now = get_clock (); 1745 mn_now = get_clock ();
1578 now_floor = mn_now; 1746 now_floor = mn_now;
1594#if EV_PERIODIC_ENABLE 1762#if EV_PERIODIC_ENABLE
1595 periodics_reschedule (EV_A); 1763 periodics_reschedule (EV_A);
1596#endif 1764#endif
1597 /* adjust timers. this is easy, as the offset is the same for all of them */ 1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1598 for (i = 0; i < timercnt; ++i) 1766 for (i = 0; i < timercnt; ++i)
1767 {
1768 ANHE *he = timers + i + HEAP0;
1599 ((WT)timers [i])->at += ev_rt_now - mn_now; 1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1600 } 1772 }
1601 1773
1602 mn_now = ev_rt_now; 1774 mn_now = ev_rt_now;
1603 } 1775 }
1604} 1776}
1674 1846
1675 waittime = MAX_BLOCKTIME; 1847 waittime = MAX_BLOCKTIME;
1676 1848
1677 if (timercnt) 1849 if (timercnt)
1678 { 1850 {
1679 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1851 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1680 if (waittime > to) waittime = to; 1852 if (waittime > to) waittime = to;
1681 } 1853 }
1682 1854
1683#if EV_PERIODIC_ENABLE 1855#if EV_PERIODIC_ENABLE
1684 if (periodiccnt) 1856 if (periodiccnt)
1685 { 1857 {
1686 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1687 if (waittime > to) waittime = to; 1859 if (waittime > to) waittime = to;
1688 } 1860 }
1689#endif 1861#endif
1690 1862
1691 if (expect_false (waittime < timeout_blocktime)) 1863 if (expect_false (waittime < timeout_blocktime))
1843{ 2015{
1844 clear_pending (EV_A_ (W)w); 2016 clear_pending (EV_A_ (W)w);
1845 if (expect_false (!ev_is_active (w))) 2017 if (expect_false (!ev_is_active (w)))
1846 return; 2018 return;
1847 2019
1848 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1849 2021
1850 wlist_del (&anfds[w->fd].head, (WL)w); 2022 wlist_del (&anfds[w->fd].head, (WL)w);
1851 ev_stop (EV_A_ (W)w); 2023 ev_stop (EV_A_ (W)w);
1852 2024
1853 fd_change (EV_A_ w->fd, 1); 2025 fd_change (EV_A_ w->fd, 1);
1857ev_timer_start (EV_P_ ev_timer *w) 2029ev_timer_start (EV_P_ ev_timer *w)
1858{ 2030{
1859 if (expect_false (ev_is_active (w))) 2031 if (expect_false (ev_is_active (w)))
1860 return; 2032 return;
1861 2033
1862 ((WT)w)->at += mn_now; 2034 ev_at (w) += mn_now;
1863 2035
1864 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1865 2037
1866 ev_start (EV_A_ (W)w, ++timercnt); 2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1867 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1868 timers [timercnt - 1] = (WT)w; 2040 ANHE_w (timers [ev_active (w)]) = (WT)w;
1869 upheap (timers, timercnt - 1); 2041 ANHE_at_set (timers [ev_active (w)]);
2042 upheap (timers, ev_active (w));
1870 2043
1871 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1872} 2045}
1873 2046
1874void noinline 2047void noinline
1875ev_timer_stop (EV_P_ ev_timer *w) 2048ev_timer_stop (EV_P_ ev_timer *w)
1876{ 2049{
1877 clear_pending (EV_A_ (W)w); 2050 clear_pending (EV_A_ (W)w);
1878 if (expect_false (!ev_is_active (w))) 2051 if (expect_false (!ev_is_active (w)))
1879 return; 2052 return;
1880 2053
1881 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1882
1883 { 2054 {
1884 int active = ((W)w)->active; 2055 int active = ev_active (w);
1885 2056
2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2058
1886 if (expect_true (--active < --timercnt)) 2059 if (expect_true (active < timercnt + HEAP0 - 1))
1887 { 2060 {
1888 timers [active] = timers [timercnt]; 2061 timers [active] = timers [timercnt + HEAP0 - 1];
1889 adjustheap (timers, timercnt, active); 2062 adjustheap (timers, timercnt, active);
1890 } 2063 }
2064
2065 --timercnt;
1891 } 2066 }
1892 2067
1893 ((WT)w)->at -= mn_now; 2068 ev_at (w) -= mn_now;
1894 2069
1895 ev_stop (EV_A_ (W)w); 2070 ev_stop (EV_A_ (W)w);
1896} 2071}
1897 2072
1898void noinline 2073void noinline
1900{ 2075{
1901 if (ev_is_active (w)) 2076 if (ev_is_active (w))
1902 { 2077 {
1903 if (w->repeat) 2078 if (w->repeat)
1904 { 2079 {
1905 ((WT)w)->at = mn_now + w->repeat; 2080 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]);
1906 adjustheap (timers, timercnt, ((W)w)->active - 1); 2082 adjustheap (timers, timercnt, ev_active (w));
1907 } 2083 }
1908 else 2084 else
1909 ev_timer_stop (EV_A_ w); 2085 ev_timer_stop (EV_A_ w);
1910 } 2086 }
1911 else if (w->repeat) 2087 else if (w->repeat)
1912 { 2088 {
1913 w->at = w->repeat; 2089 ev_at (w) = w->repeat;
1914 ev_timer_start (EV_A_ w); 2090 ev_timer_start (EV_A_ w);
1915 } 2091 }
1916} 2092}
1917 2093
1918#if EV_PERIODIC_ENABLE 2094#if EV_PERIODIC_ENABLE
1921{ 2097{
1922 if (expect_false (ev_is_active (w))) 2098 if (expect_false (ev_is_active (w)))
1923 return; 2099 return;
1924 2100
1925 if (w->reschedule_cb) 2101 if (w->reschedule_cb)
1926 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2102 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1927 else if (w->interval) 2103 else if (w->interval)
1928 { 2104 {
1929 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2105 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1930 /* this formula differs from the one in periodic_reify because we do not always round up */ 2106 /* this formula differs from the one in periodic_reify because we do not always round up */
1931 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1932 } 2108 }
1933 else 2109 else
1934 ((WT)w)->at = w->offset; 2110 ev_at (w) = w->offset;
1935 2111
1936 ev_start (EV_A_ (W)w, ++periodiccnt); 2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1937 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1938 periodics [periodiccnt - 1] = (WT)w; 2114 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1939 upheap (periodics, periodiccnt - 1); 2115 ANHE_at_set (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w));
1940 2117
1941 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1942} 2119}
1943 2120
1944void noinline 2121void noinline
1945ev_periodic_stop (EV_P_ ev_periodic *w) 2122ev_periodic_stop (EV_P_ ev_periodic *w)
1946{ 2123{
1947 clear_pending (EV_A_ (W)w); 2124 clear_pending (EV_A_ (W)w);
1948 if (expect_false (!ev_is_active (w))) 2125 if (expect_false (!ev_is_active (w)))
1949 return; 2126 return;
1950 2127
1951 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1952
1953 { 2128 {
1954 int active = ((W)w)->active; 2129 int active = ev_active (w);
1955 2130
2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2132
1956 if (expect_true (--active < --periodiccnt)) 2133 if (expect_true (active < periodiccnt + HEAP0 - 1))
1957 { 2134 {
1958 periodics [active] = periodics [periodiccnt]; 2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1959 adjustheap (periodics, periodiccnt, active); 2136 adjustheap (periodics, periodiccnt, active);
1960 } 2137 }
2138
2139 --periodiccnt;
1961 } 2140 }
1962 2141
1963 ev_stop (EV_A_ (W)w); 2142 ev_stop (EV_A_ (W)w);
1964} 2143}
1965 2144
2081 if (w->wd < 0) 2260 if (w->wd < 0)
2082 { 2261 {
2083 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2084 2263
2085 /* monitor some parent directory for speedup hints */ 2264 /* monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */
2266 /* but an efficiency issue only */
2086 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2087 { 2268 {
2088 char path [4096]; 2269 char path [4096];
2089 strcpy (path, w->path); 2270 strcpy (path, w->path);
2090 2271
2335 clear_pending (EV_A_ (W)w); 2516 clear_pending (EV_A_ (W)w);
2336 if (expect_false (!ev_is_active (w))) 2517 if (expect_false (!ev_is_active (w)))
2337 return; 2518 return;
2338 2519
2339 { 2520 {
2340 int active = ((W)w)->active; 2521 int active = ev_active (w);
2341 2522
2342 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2343 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2524 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2344 2525
2345 ev_stop (EV_A_ (W)w); 2526 ev_stop (EV_A_ (W)w);
2346 --idleall; 2527 --idleall;
2347 } 2528 }
2348} 2529}
2365 clear_pending (EV_A_ (W)w); 2546 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w))) 2547 if (expect_false (!ev_is_active (w)))
2367 return; 2548 return;
2368 2549
2369 { 2550 {
2370 int active = ((W)w)->active; 2551 int active = ev_active (w);
2552
2371 prepares [active - 1] = prepares [--preparecnt]; 2553 prepares [active - 1] = prepares [--preparecnt];
2372 ((W)prepares [active - 1])->active = active; 2554 ev_active (prepares [active - 1]) = active;
2373 } 2555 }
2374 2556
2375 ev_stop (EV_A_ (W)w); 2557 ev_stop (EV_A_ (W)w);
2376} 2558}
2377 2559
2392 clear_pending (EV_A_ (W)w); 2574 clear_pending (EV_A_ (W)w);
2393 if (expect_false (!ev_is_active (w))) 2575 if (expect_false (!ev_is_active (w)))
2394 return; 2576 return;
2395 2577
2396 { 2578 {
2397 int active = ((W)w)->active; 2579 int active = ev_active (w);
2580
2398 checks [active - 1] = checks [--checkcnt]; 2581 checks [active - 1] = checks [--checkcnt];
2399 ((W)checks [active - 1])->active = active; 2582 ev_active (checks [active - 1]) = active;
2400 } 2583 }
2401 2584
2402 ev_stop (EV_A_ (W)w); 2585 ev_stop (EV_A_ (W)w);
2403} 2586}
2404 2587
2500 clear_pending (EV_A_ (W)w); 2683 clear_pending (EV_A_ (W)w);
2501 if (expect_false (!ev_is_active (w))) 2684 if (expect_false (!ev_is_active (w)))
2502 return; 2685 return;
2503 2686
2504 { 2687 {
2505 int active = ((W)w)->active; 2688 int active = ev_active (w);
2689
2506 forks [active - 1] = forks [--forkcnt]; 2690 forks [active - 1] = forks [--forkcnt];
2507 ((W)forks [active - 1])->active = active; 2691 ev_active (forks [active - 1]) = active;
2508 } 2692 }
2509 2693
2510 ev_stop (EV_A_ (W)w); 2694 ev_stop (EV_A_ (W)w);
2511} 2695}
2512#endif 2696#endif
2531 clear_pending (EV_A_ (W)w); 2715 clear_pending (EV_A_ (W)w);
2532 if (expect_false (!ev_is_active (w))) 2716 if (expect_false (!ev_is_active (w)))
2533 return; 2717 return;
2534 2718
2535 { 2719 {
2536 int active = ((W)w)->active; 2720 int active = ev_active (w);
2721
2537 asyncs [active - 1] = asyncs [--asynccnt]; 2722 asyncs [active - 1] = asyncs [--asynccnt];
2538 ((W)asyncs [active - 1])->active = active; 2723 ev_active (asyncs [active - 1]) = active;
2539 } 2724 }
2540 2725
2541 ev_stop (EV_A_ (W)w); 2726 ev_stop (EV_A_ (W)w);
2542} 2727}
2543 2728

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines