ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.237 by root, Wed May 7 15:16:56 2008 UTC vs.
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC

235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 249
242#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
422 W w; 430 W w;
423 int events; 431 int events;
424} ANPENDING; 432} ANPENDING;
425 433
426#if EV_USE_INOTIFY 434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
427typedef struct 436typedef struct
428{ 437{
429 WL head; 438 WL head;
430} ANFS; 439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
431#endif 458#endif
432 459
433#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
434 461
435 struct ev_loop 462 struct ev_loop
760} 787}
761 788
762/*****************************************************************************/ 789/*****************************************************************************/
763 790
764/* 791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
765 * at the moment we allow libev the luxury of two heaps, 798 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 800 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 801 * the difference is about 5% with 50000+ watchers.
769 */ 802 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 803#if EV_USE_4HEAP
772 804
773#define DHEAP 4 805#define DHEAP 4
774#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
775 808
776/* towards the root */ 809/* towards the root */
777void inline_speed 810void inline_speed
778upheap (WT *heap, int k) 811upheap (ANHE *heap, int k)
779{ 812{
780 WT w = heap [k]; 813 ANHE he = heap [k];
781 814
782 for (;;) 815 for (;;)
783 { 816 {
784 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0; 817 int p = HPARENT (k);
785 818
786 if (p >= HEAP0 || heap [p]->at <= w->at) 819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
787 break; 820 break;
788 821
789 heap [k] = heap [p]; 822 heap [k] = heap [p];
790 ev_active (heap [k]) = k; 823 ev_active (ANHE_w (heap [k])) = k;
791 k = p; 824 k = p;
792 } 825 }
793 826
794 heap [k] = w; 827 heap [k] = he;
795 ev_active (heap [k]) = k; 828 ev_active (ANHE_w (he)) = k;
796} 829}
797 830
798/* away from the root */ 831/* away from the root */
799void inline_speed 832void inline_speed
800downheap (WT *heap, int N, int k) 833downheap (ANHE *heap, int N, int k)
801{ 834{
802 WT w = heap [k]; 835 ANHE he = heap [k];
803 WT *E = heap + N + HEAP0; 836 ANHE *E = heap + N + HEAP0;
804 837
805 for (;;) 838 for (;;)
806 { 839 {
807 ev_tstamp minat; 840 ev_tstamp minat;
808 WT *minpos; 841 ANHE *minpos;
809 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
810 843
811 // find minimum child 844 // find minimum child
812 if (expect_true (pos + DHEAP - 1 < E)) 845 if (expect_true (pos + DHEAP - 1 < E))
813 { 846 {
814 /* fast path */
815 (minpos = pos + 0), (minat = (*minpos)->at); 847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
816 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
817 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
818 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 850 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else if (pos < E)
853 {
854 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
819 } 858 }
820 else 859 else
821 {
822 /* slow path */
823 if (pos >= E)
824 break;
825 (minpos = pos + 0), (minat = (*minpos)->at);
826 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
827 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
828 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
829 }
830
831 if (w->at <= minat)
832 break; 860 break;
833 861
834 ev_active (*minpos) = k; 862 if (ANHE_at (he) <= minat)
863 break;
864
835 heap [k] = *minpos; 865 heap [k] = *minpos;
866 ev_active (ANHE_w (*minpos)) = k;
836 867
837 k = minpos - heap; 868 k = minpos - heap;
838 } 869 }
839 870
840 heap [k] = w; 871 heap [k] = he;
841 ev_active (heap [k]) = k; 872 ev_active (ANHE_w (he)) = k;
842} 873}
843 874
844#else // 4HEAP 875#else // 4HEAP
845 876
846#define HEAP0 1 877#define HEAP0 1
878#define HPARENT(k) ((k) >> 1)
847 879
848/* towards the root */ 880/* towards the root */
849void inline_speed 881void inline_speed
850upheap (WT *heap, int k) 882upheap (ANHE *heap, int k)
851{ 883{
852 WT w = heap [k]; 884 ANHE he = heap [k];
853 885
854 for (;;) 886 for (;;)
855 { 887 {
856 int p = k >> 1; 888 int p = HPARENT (k);
857 889
858 /* maybe we could use a dummy element at heap [0]? */ 890 /* maybe we could use a dummy element at heap [0]? */
859 if (!p || heap [p]->at <= w->at) 891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
860 break; 892 break;
861 893
862 heap [k] = heap [p]; 894 heap [k] = heap [p];
863 ev_active (heap [k]) = k; 895 ev_active (ANHE_w (heap [k])) = k;
864 k = p; 896 k = p;
865 } 897 }
866 898
867 heap [k] = w; 899 heap [k] = he;
868 ev_active (heap [k]) = k; 900 ev_active (ANHE_w (heap [k])) = k;
869} 901}
870 902
871/* away from the root */ 903/* away from the root */
872void inline_speed 904void inline_speed
873downheap (WT *heap, int N, int k) 905downheap (ANHE *heap, int N, int k)
874{ 906{
875 WT w = heap [k]; 907 ANHE he = heap [k];
876 908
877 for (;;) 909 for (;;)
878 { 910 {
879 int c = k << 1; 911 int c = k << 1;
880 912
881 if (c > N) 913 if (c > N)
882 break; 914 break;
883 915
884 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
885 ? 1 : 0; 917 ? 1 : 0;
886 918
887 if (w->at <= heap [c]->at) 919 if (ANHE_at (he) <= ANHE_at (heap [c]))
888 break; 920 break;
889 921
890 heap [k] = heap [c]; 922 heap [k] = heap [c];
891 ((W)heap [k])->active = k; 923 ev_active (ANHE_w (heap [k])) = k;
892 924
893 k = c; 925 k = c;
894 } 926 }
895 927
896 heap [k] = w; 928 heap [k] = he;
897 ev_active (heap [k]) = k; 929 ev_active (ANHE_w (he)) = k;
898} 930}
899#endif 931#endif
900 932
901void inline_size 933void inline_size
902adjustheap (WT *heap, int N, int k) 934adjustheap (ANHE *heap, int N, int k)
903{ 935{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
904 upheap (heap, k); 937 upheap (heap, k);
938 else
905 downheap (heap, N, k); 939 downheap (heap, N, k);
906} 940}
907 941
908/*****************************************************************************/ 942/*****************************************************************************/
909 943
910typedef struct 944typedef struct
1571#endif 1605#endif
1572 1606
1573void inline_size 1607void inline_size
1574timers_reify (EV_P) 1608timers_reify (EV_P)
1575{ 1609{
1576 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1577 { 1611 {
1578 ev_timer *w = (ev_timer *)timers [HEAP0]; 1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1579 1613
1580 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1581 1615
1582 /* first reschedule or stop timer */ 1616 /* first reschedule or stop timer */
1583 if (w->repeat) 1617 if (w->repeat)
1584 { 1618 {
1585 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1586
1587 ev_at (w) += w->repeat; 1619 ev_at (w) += w->repeat;
1588 if (ev_at (w) < mn_now) 1620 if (ev_at (w) < mn_now)
1589 ev_at (w) = mn_now; 1621 ev_at (w) = mn_now;
1590 1622
1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1624
1625 ANHE_at_set (timers [HEAP0]);
1591 downheap (timers, timercnt, HEAP0); 1626 downheap (timers, timercnt, HEAP0);
1592 } 1627 }
1593 else 1628 else
1594 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1595 1630
1599 1634
1600#if EV_PERIODIC_ENABLE 1635#if EV_PERIODIC_ENABLE
1601void inline_size 1636void inline_size
1602periodics_reify (EV_P) 1637periodics_reify (EV_P)
1603{ 1638{
1604 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1605 { 1640 {
1606 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1607 1642
1608 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1609 1644
1610 /* first reschedule or stop timer */ 1645 /* first reschedule or stop timer */
1611 if (w->reschedule_cb) 1646 if (w->reschedule_cb)
1612 { 1647 {
1613 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649
1614 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651
1652 ANHE_at_set (periodics [HEAP0]);
1615 downheap (periodics, periodiccnt, 1); 1653 downheap (periodics, periodiccnt, HEAP0);
1616 } 1654 }
1617 else if (w->interval) 1655 else if (w->interval)
1618 { 1656 {
1619 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1620 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval; 1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1621 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now)); 1661 {
1662 ev_at (w) += w->interval;
1663
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1622 downheap (periodics, periodiccnt, HEAP0); 1672 downheap (periodics, periodiccnt, HEAP0);
1623 } 1673 }
1624 else 1674 else
1625 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 1676
1632periodics_reschedule (EV_P) 1682periodics_reschedule (EV_P)
1633{ 1683{
1634 int i; 1684 int i;
1635 1685
1636 /* adjust periodics after time jump */ 1686 /* adjust periodics after time jump */
1637 for (i = 1; i <= periodiccnt; ++i) 1687 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1638 { 1688 {
1639 ev_periodic *w = (ev_periodic *)periodics [i]; 1689 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1640 1690
1641 if (w->reschedule_cb) 1691 if (w->reschedule_cb)
1642 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval) 1693 else if (w->interval)
1644 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1645 }
1646 1695
1647 /* now rebuild the heap */ 1696 ANHE_at_set (periodics [i]);
1648 for (i = periodiccnt >> 1; --i; ) 1697 }
1698
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1701 for (i = 0; i < periodiccnt; ++i)
1649 downheap (periodics, periodiccnt, i + HEAP0); 1702 upheap (periodics, i + HEAP0);
1650} 1703}
1651#endif 1704#endif
1652 1705
1653void inline_speed 1706void inline_speed
1654time_update (EV_P_ ev_tstamp max_block) 1707time_update (EV_P_ ev_tstamp max_block)
1708 { 1761 {
1709#if EV_PERIODIC_ENABLE 1762#if EV_PERIODIC_ENABLE
1710 periodics_reschedule (EV_A); 1763 periodics_reschedule (EV_A);
1711#endif 1764#endif
1712 /* adjust timers. this is easy, as the offset is the same for all of them */ 1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1713 for (i = 1; i <= timercnt; ++i) 1766 for (i = 0; i < timercnt; ++i)
1714 ev_at (timers [i]) += ev_rt_now - mn_now; 1767 {
1768 ANHE *he = timers + i + HEAP0;
1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1715 } 1772 }
1716 1773
1717 mn_now = ev_rt_now; 1774 mn_now = ev_rt_now;
1718 } 1775 }
1719} 1776}
1789 1846
1790 waittime = MAX_BLOCKTIME; 1847 waittime = MAX_BLOCKTIME;
1791 1848
1792 if (timercnt) 1849 if (timercnt)
1793 { 1850 {
1794 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 1851 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1795 if (waittime > to) waittime = to; 1852 if (waittime > to) waittime = to;
1796 } 1853 }
1797 1854
1798#if EV_PERIODIC_ENABLE 1855#if EV_PERIODIC_ENABLE
1799 if (periodiccnt) 1856 if (periodiccnt)
1800 { 1857 {
1801 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1802 if (waittime > to) waittime = to; 1859 if (waittime > to) waittime = to;
1803 } 1860 }
1804#endif 1861#endif
1805 1862
1806 if (expect_false (waittime < timeout_blocktime)) 1863 if (expect_false (waittime < timeout_blocktime))
1958{ 2015{
1959 clear_pending (EV_A_ (W)w); 2016 clear_pending (EV_A_ (W)w);
1960 if (expect_false (!ev_is_active (w))) 2017 if (expect_false (!ev_is_active (w)))
1961 return; 2018 return;
1962 2019
1963 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1964 2021
1965 wlist_del (&anfds[w->fd].head, (WL)w); 2022 wlist_del (&anfds[w->fd].head, (WL)w);
1966 ev_stop (EV_A_ (W)w); 2023 ev_stop (EV_A_ (W)w);
1967 2024
1968 fd_change (EV_A_ w->fd, 1); 2025 fd_change (EV_A_ w->fd, 1);
1977 ev_at (w) += mn_now; 2034 ev_at (w) += mn_now;
1978 2035
1979 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1980 2037
1981 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1982 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1983 timers [ev_active (w)] = (WT)w; 2040 ANHE_w (timers [ev_active (w)]) = (WT)w;
2041 ANHE_at_set (timers [ev_active (w)]);
1984 upheap (timers, ev_active (w)); 2042 upheap (timers, ev_active (w));
1985 2043
1986 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1987} 2045}
1988 2046
1989void noinline 2047void noinline
1990ev_timer_stop (EV_P_ ev_timer *w) 2048ev_timer_stop (EV_P_ ev_timer *w)
1991{ 2049{
1994 return; 2052 return;
1995 2053
1996 { 2054 {
1997 int active = ev_active (w); 2055 int active = ev_active (w);
1998 2056
1999 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2000 2058
2001 if (expect_true (active < timercnt + HEAP0 - 1)) 2059 if (expect_true (active < timercnt + HEAP0 - 1))
2002 { 2060 {
2003 timers [active] = timers [timercnt + HEAP0 - 1]; 2061 timers [active] = timers [timercnt + HEAP0 - 1];
2004 adjustheap (timers, timercnt, active); 2062 adjustheap (timers, timercnt, active);
2018 if (ev_is_active (w)) 2076 if (ev_is_active (w))
2019 { 2077 {
2020 if (w->repeat) 2078 if (w->repeat)
2021 { 2079 {
2022 ev_at (w) = mn_now + w->repeat; 2080 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]);
2023 adjustheap (timers, timercnt, ev_active (w)); 2082 adjustheap (timers, timercnt, ev_active (w));
2024 } 2083 }
2025 else 2084 else
2026 ev_timer_stop (EV_A_ w); 2085 ev_timer_stop (EV_A_ w);
2027 } 2086 }
2049 } 2108 }
2050 else 2109 else
2051 ev_at (w) = w->offset; 2110 ev_at (w) = w->offset;
2052 2111
2053 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
2054 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2055 periodics [ev_active (w)] = (WT)w; 2114 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2115 ANHE_at_set (periodics [ev_active (w)]);
2056 upheap (periodics, ev_active (w)); 2116 upheap (periodics, ev_active (w));
2057 2117
2058 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2059} 2119}
2060 2120
2061void noinline 2121void noinline
2062ev_periodic_stop (EV_P_ ev_periodic *w) 2122ev_periodic_stop (EV_P_ ev_periodic *w)
2063{ 2123{
2066 return; 2126 return;
2067 2127
2068 { 2128 {
2069 int active = ev_active (w); 2129 int active = ev_active (w);
2070 2130
2071 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2072 2132
2073 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2133 if (expect_true (active < periodiccnt + HEAP0 - 1))
2074 { 2134 {
2075 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
2076 adjustheap (periodics, periodiccnt, active); 2136 adjustheap (periodics, periodiccnt, active);

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines