ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC vs.
Revision 1.295 by root, Wed Jul 8 04:29:31 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
126# define EV_USE_EVENTFD 1 140# define EV_USE_EVENTFD 1
127# else 141# else
128# define EV_USE_EVENTFD 0 142# define EV_USE_EVENTFD 0
129# endif 143# endif
130# endif 144# endif
131 145
132#endif 146#endif
133 147
134#include <math.h> 148#include <math.h>
135#include <stdlib.h> 149#include <stdlib.h>
136#include <fcntl.h> 150#include <fcntl.h>
154#ifndef _WIN32 168#ifndef _WIN32
155# include <sys/time.h> 169# include <sys/time.h>
156# include <sys/wait.h> 170# include <sys/wait.h>
157# include <unistd.h> 171# include <unistd.h>
158#else 172#else
173# include <io.h>
159# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 175# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
163# endif 178# endif
164#endif 179#endif
165 180
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
167 182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
190
168#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
169# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
170#endif 197#endif
171 198
172#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 201#endif
175 202
176#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
177# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
178#endif 209#endif
179 210
180#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
182#endif 213#endif
235# else 266# else
236# define EV_USE_EVENTFD 0 267# define EV_USE_EVENTFD 0
237# endif 268# endif
238#endif 269#endif
239 270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
240#ifndef EV_USE_4HEAP 281#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 282# define EV_USE_4HEAP !EV_MINIMAL
242#endif 283#endif
243 284
244#ifndef EV_HEAP_CACHE_AT 285#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
246#endif 301#endif
247 302
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
249 304
250#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
267# include <sys/select.h> 322# include <sys/select.h>
268# endif 323# endif
269#endif 324#endif
270 325
271#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
272# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
273#endif 335#endif
274 336
275#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h> 338# include <winsock.h>
277#endif 339#endif
287} 349}
288# endif 350# endif
289#endif 351#endif
290 352
291/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
292 360
293/* 361/*
294 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
323# define inline_speed static noinline 391# define inline_speed static noinline
324#else 392#else
325# define inline_speed static inline 393# define inline_speed static inline
326#endif 394#endif
327 395
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
330 403
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
333 406
334typedef ev_watcher *W; 407typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
337 410
338#define ev_active(w) ((W)(w))->active 411#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 412#define ev_at(w) ((WT)(w))->at
340 413
341#if EV_USE_MONOTONIC 414#if EV_USE_REALTIME
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
345#endif 422#endif
346 423
347#ifdef _WIN32 424#ifdef _WIN32
348# include "ev_win32.c" 425# include "ev_win32.c"
357{ 434{
358 syserr_cb = cb; 435 syserr_cb = cb;
359} 436}
360 437
361static void noinline 438static void noinline
362syserr (const char *msg) 439ev_syserr (const char *msg)
363{ 440{
364 if (!msg) 441 if (!msg)
365 msg = "(libev) system error"; 442 msg = "(libev) system error";
366 443
367 if (syserr_cb) 444 if (syserr_cb)
413#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
415 492
416/*****************************************************************************/ 493/*****************************************************************************/
417 494
495/* file descriptor info structure */
418typedef struct 496typedef struct
419{ 497{
420 WL head; 498 WL head;
421 unsigned char events; 499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 502 unsigned char unused;
503#if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505#endif
423#if EV_SELECT_IS_WINSOCKET 506#if EV_SELECT_IS_WINSOCKET
424 SOCKET handle; 507 SOCKET handle;
425#endif 508#endif
426} ANFD; 509} ANFD;
427 510
511/* stores the pending event set for a given watcher */
428typedef struct 512typedef struct
429{ 513{
430 W w; 514 W w;
431 int events; 515 int events; /* the pending event set for the given watcher */
432} ANPENDING; 516} ANPENDING;
433 517
434#if EV_USE_INOTIFY 518#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 519/* hash table entry per inotify-id */
436typedef struct 520typedef struct
439} ANFS; 523} ANFS;
440#endif 524#endif
441 525
442/* Heap Entry */ 526/* Heap Entry */
443#if EV_HEAP_CACHE_AT 527#if EV_HEAP_CACHE_AT
528 /* a heap element */
444 typedef struct { 529 typedef struct {
445 ev_tstamp at; 530 ev_tstamp at;
446 WT w; 531 WT w;
447 } ANHE; 532 } ANHE;
448 533
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 534 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 535 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 537#else
538 /* a heap element */
453 typedef WT ANHE; 539 typedef WT ANHE;
454 540
455 #define ANHE_w(he) (he) 541 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 542 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 543 #define ANHE_at_cache(he)
458#endif 544#endif
459 545
460#if EV_MULTIPLICITY 546#if EV_MULTIPLICITY
461 547
462 struct ev_loop 548 struct ev_loop
483 569
484#endif 570#endif
485 571
486/*****************************************************************************/ 572/*****************************************************************************/
487 573
574#ifndef EV_HAVE_EV_TIME
488ev_tstamp 575ev_tstamp
489ev_time (void) 576ev_time (void)
490{ 577{
491#if EV_USE_REALTIME 578#if EV_USE_REALTIME
579 if (expect_true (have_realtime))
580 {
492 struct timespec ts; 581 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 582 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 583 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 584 }
585#endif
586
496 struct timeval tv; 587 struct timeval tv;
497 gettimeofday (&tv, 0); 588 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 589 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 590}
591#endif
501 592
502ev_tstamp inline_size 593inline_size ev_tstamp
503get_clock (void) 594get_clock (void)
504{ 595{
505#if EV_USE_MONOTONIC 596#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 597 if (expect_true (have_monotonic))
507 { 598 {
540 struct timeval tv; 631 struct timeval tv;
541 632
542 tv.tv_sec = (time_t)delay; 633 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 634 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544 635
636 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
637 /* somehting not guaranteed by newer posix versions, but guaranteed */
638 /* by older ones */
545 select (0, 0, 0, 0, &tv); 639 select (0, 0, 0, 0, &tv);
546#endif 640#endif
547 } 641 }
548} 642}
549 643
550/*****************************************************************************/ 644/*****************************************************************************/
551 645
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 646#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 647
554int inline_size 648/* find a suitable new size for the given array, */
649/* hopefully by rounding to a ncie-to-malloc size */
650inline_size int
555array_nextsize (int elem, int cur, int cnt) 651array_nextsize (int elem, int cur, int cnt)
556{ 652{
557 int ncur = cur + 1; 653 int ncur = cur + 1;
558 654
559 do 655 do
576array_realloc (int elem, void *base, int *cur, int cnt) 672array_realloc (int elem, void *base, int *cur, int cnt)
577{ 673{
578 *cur = array_nextsize (elem, *cur, cnt); 674 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 675 return ev_realloc (base, elem * *cur);
580} 676}
677
678#define array_init_zero(base,count) \
679 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 680
582#define array_needsize(type,base,cur,cnt,init) \ 681#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 682 if (expect_false ((cnt) > (cur))) \
584 { \ 683 { \
585 int ocur_ = (cur); \ 684 int ocur_ = (cur); \
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 696 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 697 }
599#endif 698#endif
600 699
601#define array_free(stem, idx) \ 700#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 701 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 702
604/*****************************************************************************/ 703/*****************************************************************************/
704
705/* dummy callback for pending events */
706static void noinline
707pendingcb (EV_P_ ev_prepare *w, int revents)
708{
709}
605 710
606void noinline 711void noinline
607ev_feed_event (EV_P_ void *w, int revents) 712ev_feed_event (EV_P_ void *w, int revents)
608{ 713{
609 W w_ = (W)w; 714 W w_ = (W)w;
618 pendings [pri][w_->pending - 1].w = w_; 723 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 724 pendings [pri][w_->pending - 1].events = revents;
620 } 725 }
621} 726}
622 727
623void inline_speed 728inline_speed void
729feed_reverse (EV_P_ W w)
730{
731 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
732 rfeeds [rfeedcnt++] = w;
733}
734
735inline_size void
736feed_reverse_done (EV_P_ int revents)
737{
738 do
739 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
740 while (rfeedcnt);
741}
742
743inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 744queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 745{
626 int i; 746 int i;
627 747
628 for (i = 0; i < eventcnt; ++i) 748 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 749 ev_feed_event (EV_A_ events [i], type);
630} 750}
631 751
632/*****************************************************************************/ 752/*****************************************************************************/
633 753
634void inline_size 754inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 755fd_event (EV_P_ int fd, int revents)
649{ 756{
650 ANFD *anfd = anfds + fd; 757 ANFD *anfd = anfds + fd;
651 ev_io *w; 758 ev_io *w;
652 759
664{ 771{
665 if (fd >= 0 && fd < anfdmax) 772 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 773 fd_event (EV_A_ fd, revents);
667} 774}
668 775
669void inline_size 776/* make sure the external fd watch events are in-sync */
777/* with the kernel/libev internal state */
778inline_size void
670fd_reify (EV_P) 779fd_reify (EV_P)
671{ 780{
672 int i; 781 int i;
673 782
674 for (i = 0; i < fdchangecnt; ++i) 783 for (i = 0; i < fdchangecnt; ++i)
683 events |= (unsigned char)w->events; 792 events |= (unsigned char)w->events;
684 793
685#if EV_SELECT_IS_WINSOCKET 794#if EV_SELECT_IS_WINSOCKET
686 if (events) 795 if (events)
687 { 796 {
688 unsigned long argp; 797 unsigned long arg;
689 #ifdef EV_FD_TO_WIN32_HANDLE 798 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 799 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else 800 #else
692 anfd->handle = _get_osfhandle (fd); 801 anfd->handle = _get_osfhandle (fd);
693 #endif 802 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 803 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
695 } 804 }
696#endif 805#endif
697 806
698 { 807 {
699 unsigned char o_events = anfd->events; 808 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify; 809 unsigned char o_reify = anfd->reify;
701 810
702 anfd->reify = 0; 811 anfd->reify = 0;
703 anfd->events = events; 812 anfd->events = events;
704 813
705 if (o_events != events || o_reify & EV_IOFDSET) 814 if (o_events != events || o_reify & EV__IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 815 backend_modify (EV_A_ fd, o_events, events);
707 } 816 }
708 } 817 }
709 818
710 fdchangecnt = 0; 819 fdchangecnt = 0;
711} 820}
712 821
713void inline_size 822/* something about the given fd changed */
823inline_size void
714fd_change (EV_P_ int fd, int flags) 824fd_change (EV_P_ int fd, int flags)
715{ 825{
716 unsigned char reify = anfds [fd].reify; 826 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 827 anfds [fd].reify |= flags;
718 828
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 832 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 833 fdchanges [fdchangecnt - 1] = fd;
724 } 834 }
725} 835}
726 836
727void inline_speed 837/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
838inline_speed void
728fd_kill (EV_P_ int fd) 839fd_kill (EV_P_ int fd)
729{ 840{
730 ev_io *w; 841 ev_io *w;
731 842
732 while ((w = (ev_io *)anfds [fd].head)) 843 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 845 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 846 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 847 }
737} 848}
738 849
739int inline_size 850/* check whether the given fd is atcually valid, for error recovery */
851inline_size int
740fd_valid (int fd) 852fd_valid (int fd)
741{ 853{
742#ifdef _WIN32 854#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 855 return _get_osfhandle (fd) != -1;
744#else 856#else
752{ 864{
753 int fd; 865 int fd;
754 866
755 for (fd = 0; fd < anfdmax; ++fd) 867 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 868 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 869 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 870 fd_kill (EV_A_ fd);
759} 871}
760 872
761/* called on ENOMEM in select/poll to kill some fds and retry */ 873/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 874static void noinline
780 892
781 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 894 if (anfds [fd].events)
783 { 895 {
784 anfds [fd].events = 0; 896 anfds [fd].events = 0;
897 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 898 fd_change (EV_A_ fd, EV__IOFDSET | 1);
786 } 899 }
787} 900}
788 901
789/*****************************************************************************/ 902/*****************************************************************************/
790 903
803#if EV_USE_4HEAP 916#if EV_USE_4HEAP
804 917
805#define DHEAP 4 918#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 919#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 920#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808 921#define UPHEAP_DONE(p,k) ((p) == (k))
809/* towards the root */
810void inline_speed
811upheap (ANHE *heap, int k)
812{
813 ANHE he = heap [k];
814
815 for (;;)
816 {
817 int p = HPARENT (k);
818
819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
820 break;
821
822 heap [k] = heap [p];
823 ev_active (ANHE_w (heap [k])) = k;
824 k = p;
825 }
826
827 heap [k] = he;
828 ev_active (ANHE_w (he)) = k;
829}
830 922
831/* away from the root */ 923/* away from the root */
832void inline_speed 924inline_speed void
833downheap (ANHE *heap, int N, int k) 925downheap (ANHE *heap, int N, int k)
834{ 926{
835 ANHE he = heap [k]; 927 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0; 928 ANHE *E = heap + N + HEAP0;
837 929
838 for (;;) 930 for (;;)
839 { 931 {
840 ev_tstamp minat; 932 ev_tstamp minat;
841 ANHE *minpos; 933 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 934 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
843 935
844 // find minimum child 936 /* find minimum child */
845 if (expect_true (pos + DHEAP - 1 < E)) 937 if (expect_true (pos + DHEAP - 1 < E))
846 { 938 {
847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 939 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 940 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 941 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 962
871 heap [k] = he; 963 heap [k] = he;
872 ev_active (ANHE_w (he)) = k; 964 ev_active (ANHE_w (he)) = k;
873} 965}
874 966
875#else // 4HEAP 967#else /* 4HEAP */
876 968
877#define HEAP0 1 969#define HEAP0 1
878#define HPARENT(k) ((k) >> 1) 970#define HPARENT(k) ((k) >> 1)
971#define UPHEAP_DONE(p,k) (!(p))
879 972
880/* towards the root */ 973/* away from the root */
881void inline_speed 974inline_speed void
882upheap (ANHE *heap, int k) 975downheap (ANHE *heap, int N, int k)
883{ 976{
884 ANHE he = heap [k]; 977 ANHE he = heap [k];
885 978
886 for (;;) 979 for (;;)
887 { 980 {
888 int p = HPARENT (k); 981 int c = k << 1;
889 982
890 /* maybe we could use a dummy element at heap [0]? */ 983 if (c > N + HEAP0 - 1)
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break; 984 break;
893 985
894 heap [k] = heap [p];
895 ev_active (ANHE_w (heap [k])) = k;
896 k = p;
897 }
898
899 heap [k] = he;
900 ev_active (ANHE_w (heap [k])) = k;
901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
908
909 for (;;)
910 {
911 int c = k << 1;
912
913 if (c > N)
914 break;
915
916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 986 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
917 ? 1 : 0; 987 ? 1 : 0;
918 988
919 if (ANHE_at (he) <= ANHE_at (heap [c])) 989 if (ANHE_at (he) <= ANHE_at (heap [c]))
920 break; 990 break;
921 991
928 heap [k] = he; 998 heap [k] = he;
929 ev_active (ANHE_w (he)) = k; 999 ev_active (ANHE_w (he)) = k;
930} 1000}
931#endif 1001#endif
932 1002
933void inline_size 1003/* towards the root */
1004inline_speed void
1005upheap (ANHE *heap, int k)
1006{
1007 ANHE he = heap [k];
1008
1009 for (;;)
1010 {
1011 int p = HPARENT (k);
1012
1013 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1014 break;
1015
1016 heap [k] = heap [p];
1017 ev_active (ANHE_w (heap [k])) = k;
1018 k = p;
1019 }
1020
1021 heap [k] = he;
1022 ev_active (ANHE_w (he)) = k;
1023}
1024
1025/* move an element suitably so it is in a correct place */
1026inline_size void
934adjustheap (ANHE *heap, int N, int k) 1027adjustheap (ANHE *heap, int N, int k)
935{ 1028{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1029 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
937 upheap (heap, k); 1030 upheap (heap, k);
938 else 1031 else
939 downheap (heap, N, k); 1032 downheap (heap, N, k);
940} 1033}
941 1034
1035/* rebuild the heap: this function is used only once and executed rarely */
1036inline_size void
1037reheap (ANHE *heap, int N)
1038{
1039 int i;
1040
1041 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1042 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1043 for (i = 0; i < N; ++i)
1044 upheap (heap, i + HEAP0);
1045}
1046
942/*****************************************************************************/ 1047/*****************************************************************************/
943 1048
1049/* associate signal watchers to a signal signal */
944typedef struct 1050typedef struct
945{ 1051{
946 WL head; 1052 WL head;
947 EV_ATOMIC_T gotsig; 1053 EV_ATOMIC_T gotsig;
948} ANSIG; 1054} ANSIG;
950static ANSIG *signals; 1056static ANSIG *signals;
951static int signalmax; 1057static int signalmax;
952 1058
953static EV_ATOMIC_T gotsig; 1059static EV_ATOMIC_T gotsig;
954 1060
955void inline_size
956signals_init (ANSIG *base, int count)
957{
958 while (count--)
959 {
960 base->head = 0;
961 base->gotsig = 0;
962
963 ++base;
964 }
965}
966
967/*****************************************************************************/ 1061/*****************************************************************************/
968 1062
969void inline_speed 1063/* used to prepare libev internal fd's */
1064/* this is not fork-safe */
1065inline_speed void
970fd_intern (int fd) 1066fd_intern (int fd)
971{ 1067{
972#ifdef _WIN32 1068#ifdef _WIN32
973 int arg = 1; 1069 unsigned long arg = 1;
974 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1070 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
975#else 1071#else
976 fcntl (fd, F_SETFD, FD_CLOEXEC); 1072 fcntl (fd, F_SETFD, FD_CLOEXEC);
977 fcntl (fd, F_SETFL, O_NONBLOCK); 1073 fcntl (fd, F_SETFL, O_NONBLOCK);
978#endif 1074#endif
979} 1075}
980 1076
981static void noinline 1077static void noinline
982evpipe_init (EV_P) 1078evpipe_init (EV_P)
983{ 1079{
984 if (!ev_is_active (&pipeev)) 1080 if (!ev_is_active (&pipe_w))
985 { 1081 {
986#if EV_USE_EVENTFD 1082#if EV_USE_EVENTFD
987 if ((evfd = eventfd (0, 0)) >= 0) 1083 if ((evfd = eventfd (0, 0)) >= 0)
988 { 1084 {
989 evpipe [0] = -1; 1085 evpipe [0] = -1;
990 fd_intern (evfd); 1086 fd_intern (evfd);
991 ev_io_set (&pipeev, evfd, EV_READ); 1087 ev_io_set (&pipe_w, evfd, EV_READ);
992 } 1088 }
993 else 1089 else
994#endif 1090#endif
995 { 1091 {
996 while (pipe (evpipe)) 1092 while (pipe (evpipe))
997 syserr ("(libev) error creating signal/async pipe"); 1093 ev_syserr ("(libev) error creating signal/async pipe");
998 1094
999 fd_intern (evpipe [0]); 1095 fd_intern (evpipe [0]);
1000 fd_intern (evpipe [1]); 1096 fd_intern (evpipe [1]);
1001 ev_io_set (&pipeev, evpipe [0], EV_READ); 1097 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1002 } 1098 }
1003 1099
1004 ev_io_start (EV_A_ &pipeev); 1100 ev_io_start (EV_A_ &pipe_w);
1005 ev_unref (EV_A); /* watcher should not keep loop alive */ 1101 ev_unref (EV_A); /* watcher should not keep loop alive */
1006 } 1102 }
1007} 1103}
1008 1104
1009void inline_size 1105inline_size void
1010evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1106evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1011{ 1107{
1012 if (!*flag) 1108 if (!*flag)
1013 { 1109 {
1014 int old_errno = errno; /* save errno because write might clobber it */ 1110 int old_errno = errno; /* save errno because write might clobber it */
1027 1123
1028 errno = old_errno; 1124 errno = old_errno;
1029 } 1125 }
1030} 1126}
1031 1127
1128/* called whenever the libev signal pipe */
1129/* got some events (signal, async) */
1032static void 1130static void
1033pipecb (EV_P_ ev_io *iow, int revents) 1131pipecb (EV_P_ ev_io *iow, int revents)
1034{ 1132{
1035#if EV_USE_EVENTFD 1133#if EV_USE_EVENTFD
1036 if (evfd >= 0) 1134 if (evfd >= 0)
1092ev_feed_signal_event (EV_P_ int signum) 1190ev_feed_signal_event (EV_P_ int signum)
1093{ 1191{
1094 WL w; 1192 WL w;
1095 1193
1096#if EV_MULTIPLICITY 1194#if EV_MULTIPLICITY
1097 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1195 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1098#endif 1196#endif
1099 1197
1100 --signum; 1198 --signum;
1101 1199
1102 if (signum < 0 || signum >= signalmax) 1200 if (signum < 0 || signum >= signalmax)
1118 1216
1119#ifndef WIFCONTINUED 1217#ifndef WIFCONTINUED
1120# define WIFCONTINUED(status) 0 1218# define WIFCONTINUED(status) 0
1121#endif 1219#endif
1122 1220
1123void inline_speed 1221/* handle a single child status event */
1222inline_speed void
1124child_reap (EV_P_ int chain, int pid, int status) 1223child_reap (EV_P_ int chain, int pid, int status)
1125{ 1224{
1126 ev_child *w; 1225 ev_child *w;
1127 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1226 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1128 1227
1141 1240
1142#ifndef WCONTINUED 1241#ifndef WCONTINUED
1143# define WCONTINUED 0 1242# define WCONTINUED 0
1144#endif 1243#endif
1145 1244
1245/* called on sigchld etc., calls waitpid */
1146static void 1246static void
1147childcb (EV_P_ ev_signal *sw, int revents) 1247childcb (EV_P_ ev_signal *sw, int revents)
1148{ 1248{
1149 int pid, status; 1249 int pid, status;
1150 1250
1231 /* kqueue is borked on everything but netbsd apparently */ 1331 /* kqueue is borked on everything but netbsd apparently */
1232 /* it usually doesn't work correctly on anything but sockets and pipes */ 1332 /* it usually doesn't work correctly on anything but sockets and pipes */
1233 flags &= ~EVBACKEND_KQUEUE; 1333 flags &= ~EVBACKEND_KQUEUE;
1234#endif 1334#endif
1235#ifdef __APPLE__ 1335#ifdef __APPLE__
1236 // flags &= ~EVBACKEND_KQUEUE; for documentation 1336 /* only select works correctly on that "unix-certified" platform */
1237 flags &= ~EVBACKEND_POLL; 1337 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1338 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1238#endif 1339#endif
1239 1340
1240 return flags; 1341 return flags;
1241} 1342}
1242 1343
1262ev_loop_count (EV_P) 1363ev_loop_count (EV_P)
1263{ 1364{
1264 return loop_count; 1365 return loop_count;
1265} 1366}
1266 1367
1368unsigned int
1369ev_loop_depth (EV_P)
1370{
1371 return loop_depth;
1372}
1373
1267void 1374void
1268ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1375ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1269{ 1376{
1270 io_blocktime = interval; 1377 io_blocktime = interval;
1271} 1378}
1274ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1381ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1275{ 1382{
1276 timeout_blocktime = interval; 1383 timeout_blocktime = interval;
1277} 1384}
1278 1385
1386/* initialise a loop structure, must be zero-initialised */
1279static void noinline 1387static void noinline
1280loop_init (EV_P_ unsigned int flags) 1388loop_init (EV_P_ unsigned int flags)
1281{ 1389{
1282 if (!backend) 1390 if (!backend)
1283 { 1391 {
1392#if EV_USE_REALTIME
1393 if (!have_realtime)
1394 {
1395 struct timespec ts;
1396
1397 if (!clock_gettime (CLOCK_REALTIME, &ts))
1398 have_realtime = 1;
1399 }
1400#endif
1401
1284#if EV_USE_MONOTONIC 1402#if EV_USE_MONOTONIC
1403 if (!have_monotonic)
1285 { 1404 {
1286 struct timespec ts; 1405 struct timespec ts;
1406
1287 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1407 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1288 have_monotonic = 1; 1408 have_monotonic = 1;
1289 } 1409 }
1290#endif 1410#endif
1291 1411
1292 ev_rt_now = ev_time (); 1412 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1413 mn_now = get_clock ();
1294 now_floor = mn_now; 1414 now_floor = mn_now;
1331#endif 1451#endif
1332#if EV_USE_SELECT 1452#if EV_USE_SELECT
1333 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1453 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1334#endif 1454#endif
1335 1455
1456 ev_prepare_init (&pending_w, pendingcb);
1457
1336 ev_init (&pipeev, pipecb); 1458 ev_init (&pipe_w, pipecb);
1337 ev_set_priority (&pipeev, EV_MAXPRI); 1459 ev_set_priority (&pipe_w, EV_MAXPRI);
1338 } 1460 }
1339} 1461}
1340 1462
1463/* free up a loop structure */
1341static void noinline 1464static void noinline
1342loop_destroy (EV_P) 1465loop_destroy (EV_P)
1343{ 1466{
1344 int i; 1467 int i;
1345 1468
1346 if (ev_is_active (&pipeev)) 1469 if (ev_is_active (&pipe_w))
1347 { 1470 {
1348 ev_ref (EV_A); /* signal watcher */ 1471 ev_ref (EV_A); /* signal watcher */
1349 ev_io_stop (EV_A_ &pipeev); 1472 ev_io_stop (EV_A_ &pipe_w);
1350 1473
1351#if EV_USE_EVENTFD 1474#if EV_USE_EVENTFD
1352 if (evfd >= 0) 1475 if (evfd >= 0)
1353 close (evfd); 1476 close (evfd);
1354#endif 1477#endif
1393 } 1516 }
1394 1517
1395 ev_free (anfds); anfdmax = 0; 1518 ev_free (anfds); anfdmax = 0;
1396 1519
1397 /* have to use the microsoft-never-gets-it-right macro */ 1520 /* have to use the microsoft-never-gets-it-right macro */
1521 array_free (rfeed, EMPTY);
1398 array_free (fdchange, EMPTY); 1522 array_free (fdchange, EMPTY);
1399 array_free (timer, EMPTY); 1523 array_free (timer, EMPTY);
1400#if EV_PERIODIC_ENABLE 1524#if EV_PERIODIC_ENABLE
1401 array_free (periodic, EMPTY); 1525 array_free (periodic, EMPTY);
1402#endif 1526#endif
1411 1535
1412 backend = 0; 1536 backend = 0;
1413} 1537}
1414 1538
1415#if EV_USE_INOTIFY 1539#if EV_USE_INOTIFY
1416void inline_size infy_fork (EV_P); 1540inline_size void infy_fork (EV_P);
1417#endif 1541#endif
1418 1542
1419void inline_size 1543inline_size void
1420loop_fork (EV_P) 1544loop_fork (EV_P)
1421{ 1545{
1422#if EV_USE_PORT 1546#if EV_USE_PORT
1423 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1547 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1424#endif 1548#endif
1430#endif 1554#endif
1431#if EV_USE_INOTIFY 1555#if EV_USE_INOTIFY
1432 infy_fork (EV_A); 1556 infy_fork (EV_A);
1433#endif 1557#endif
1434 1558
1435 if (ev_is_active (&pipeev)) 1559 if (ev_is_active (&pipe_w))
1436 { 1560 {
1437 /* this "locks" the handlers against writing to the pipe */ 1561 /* this "locks" the handlers against writing to the pipe */
1438 /* while we modify the fd vars */ 1562 /* while we modify the fd vars */
1439 gotsig = 1; 1563 gotsig = 1;
1440#if EV_ASYNC_ENABLE 1564#if EV_ASYNC_ENABLE
1441 gotasync = 1; 1565 gotasync = 1;
1442#endif 1566#endif
1443 1567
1444 ev_ref (EV_A); 1568 ev_ref (EV_A);
1445 ev_io_stop (EV_A_ &pipeev); 1569 ev_io_stop (EV_A_ &pipe_w);
1446 1570
1447#if EV_USE_EVENTFD 1571#if EV_USE_EVENTFD
1448 if (evfd >= 0) 1572 if (evfd >= 0)
1449 close (evfd); 1573 close (evfd);
1450#endif 1574#endif
1455 close (evpipe [1]); 1579 close (evpipe [1]);
1456 } 1580 }
1457 1581
1458 evpipe_init (EV_A); 1582 evpipe_init (EV_A);
1459 /* now iterate over everything, in case we missed something */ 1583 /* now iterate over everything, in case we missed something */
1460 pipecb (EV_A_ &pipeev, EV_READ); 1584 pipecb (EV_A_ &pipe_w, EV_READ);
1461 } 1585 }
1462 1586
1463 postfork = 0; 1587 postfork = 0;
1464} 1588}
1465 1589
1466#if EV_MULTIPLICITY 1590#if EV_MULTIPLICITY
1591
1467struct ev_loop * 1592struct ev_loop *
1468ev_loop_new (unsigned int flags) 1593ev_loop_new (unsigned int flags)
1469{ 1594{
1470 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1595 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1471 1596
1489void 1614void
1490ev_loop_fork (EV_P) 1615ev_loop_fork (EV_P)
1491{ 1616{
1492 postfork = 1; /* must be in line with ev_default_fork */ 1617 postfork = 1; /* must be in line with ev_default_fork */
1493} 1618}
1619
1620#if EV_VERIFY
1621static void noinline
1622verify_watcher (EV_P_ W w)
1623{
1624 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1625
1626 if (w->pending)
1627 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1628}
1629
1630static void noinline
1631verify_heap (EV_P_ ANHE *heap, int N)
1632{
1633 int i;
1634
1635 for (i = HEAP0; i < N + HEAP0; ++i)
1636 {
1637 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1638 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1639 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1640
1641 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1642 }
1643}
1644
1645static void noinline
1646array_verify (EV_P_ W *ws, int cnt)
1647{
1648 while (cnt--)
1649 {
1650 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1651 verify_watcher (EV_A_ ws [cnt]);
1652 }
1653}
1654#endif
1655
1656void
1657ev_loop_verify (EV_P)
1658{
1659#if EV_VERIFY
1660 int i;
1661 WL w;
1662
1663 assert (activecnt >= -1);
1664
1665 assert (fdchangemax >= fdchangecnt);
1666 for (i = 0; i < fdchangecnt; ++i)
1667 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1668
1669 assert (anfdmax >= 0);
1670 for (i = 0; i < anfdmax; ++i)
1671 for (w = anfds [i].head; w; w = w->next)
1672 {
1673 verify_watcher (EV_A_ (W)w);
1674 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1675 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1676 }
1677
1678 assert (timermax >= timercnt);
1679 verify_heap (EV_A_ timers, timercnt);
1680
1681#if EV_PERIODIC_ENABLE
1682 assert (periodicmax >= periodiccnt);
1683 verify_heap (EV_A_ periodics, periodiccnt);
1684#endif
1685
1686 for (i = NUMPRI; i--; )
1687 {
1688 assert (pendingmax [i] >= pendingcnt [i]);
1689#if EV_IDLE_ENABLE
1690 assert (idleall >= 0);
1691 assert (idlemax [i] >= idlecnt [i]);
1692 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1693#endif
1694 }
1695
1696#if EV_FORK_ENABLE
1697 assert (forkmax >= forkcnt);
1698 array_verify (EV_A_ (W *)forks, forkcnt);
1699#endif
1700
1701#if EV_ASYNC_ENABLE
1702 assert (asyncmax >= asynccnt);
1703 array_verify (EV_A_ (W *)asyncs, asynccnt);
1704#endif
1705
1706 assert (preparemax >= preparecnt);
1707 array_verify (EV_A_ (W *)prepares, preparecnt);
1708
1709 assert (checkmax >= checkcnt);
1710 array_verify (EV_A_ (W *)checks, checkcnt);
1711
1712# if 0
1713 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1714 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1494#endif 1715# endif
1716#endif
1717}
1718
1719#endif /* multiplicity */
1495 1720
1496#if EV_MULTIPLICITY 1721#if EV_MULTIPLICITY
1497struct ev_loop * 1722struct ev_loop *
1498ev_default_loop_init (unsigned int flags) 1723ev_default_loop_init (unsigned int flags)
1499#else 1724#else
1532{ 1757{
1533#if EV_MULTIPLICITY 1758#if EV_MULTIPLICITY
1534 struct ev_loop *loop = ev_default_loop_ptr; 1759 struct ev_loop *loop = ev_default_loop_ptr;
1535#endif 1760#endif
1536 1761
1762 ev_default_loop_ptr = 0;
1763
1537#ifndef _WIN32 1764#ifndef _WIN32
1538 ev_ref (EV_A); /* child watcher */ 1765 ev_ref (EV_A); /* child watcher */
1539 ev_signal_stop (EV_A_ &childev); 1766 ev_signal_stop (EV_A_ &childev);
1540#endif 1767#endif
1541 1768
1547{ 1774{
1548#if EV_MULTIPLICITY 1775#if EV_MULTIPLICITY
1549 struct ev_loop *loop = ev_default_loop_ptr; 1776 struct ev_loop *loop = ev_default_loop_ptr;
1550#endif 1777#endif
1551 1778
1552 if (backend)
1553 postfork = 1; /* must be in line with ev_loop_fork */ 1779 postfork = 1; /* must be in line with ev_loop_fork */
1554} 1780}
1555 1781
1556/*****************************************************************************/ 1782/*****************************************************************************/
1557 1783
1558void 1784void
1559ev_invoke (EV_P_ void *w, int revents) 1785ev_invoke (EV_P_ void *w, int revents)
1560{ 1786{
1561 EV_CB_INVOKE ((W)w, revents); 1787 EV_CB_INVOKE ((W)w, revents);
1562} 1788}
1563 1789
1564void inline_speed 1790inline_speed void
1565call_pending (EV_P) 1791call_pending (EV_P)
1566{ 1792{
1567 int pri; 1793 int pri;
1568 1794
1569 for (pri = NUMPRI; pri--; ) 1795 for (pri = NUMPRI; pri--; )
1570 while (pendingcnt [pri]) 1796 while (pendingcnt [pri])
1571 { 1797 {
1572 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1798 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1573 1799
1574 if (expect_true (p->w))
1575 {
1576 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1800 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1801 /* ^ this is no longer true, as pending_w could be here */
1577 1802
1578 p->w->pending = 0; 1803 p->w->pending = 0;
1579 EV_CB_INVOKE (p->w, p->events); 1804 EV_CB_INVOKE (p->w, p->events);
1580 } 1805 EV_FREQUENT_CHECK;
1581 } 1806 }
1582} 1807}
1583 1808
1584#if EV_IDLE_ENABLE 1809#if EV_IDLE_ENABLE
1585void inline_size 1810/* make idle watchers pending. this handles the "call-idle */
1811/* only when higher priorities are idle" logic */
1812inline_size void
1586idle_reify (EV_P) 1813idle_reify (EV_P)
1587{ 1814{
1588 if (expect_false (idleall)) 1815 if (expect_false (idleall))
1589 { 1816 {
1590 int pri; 1817 int pri;
1602 } 1829 }
1603 } 1830 }
1604} 1831}
1605#endif 1832#endif
1606 1833
1607void inline_size 1834/* make timers pending */
1835inline_size void
1608timers_reify (EV_P) 1836timers_reify (EV_P)
1609{ 1837{
1838 EV_FREQUENT_CHECK;
1839
1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1840 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1611 { 1841 {
1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1842 do
1613
1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1615
1616 /* first reschedule or stop timer */
1617 if (w->repeat)
1618 { 1843 {
1844 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1845
1846 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1847
1848 /* first reschedule or stop timer */
1849 if (w->repeat)
1850 {
1619 ev_at (w) += w->repeat; 1851 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now) 1852 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now; 1853 ev_at (w) = mn_now;
1622 1854
1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1855 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1624 1856
1625 ANHE_at_set (timers [HEAP0]); 1857 ANHE_at_cache (timers [HEAP0]);
1626 downheap (timers, timercnt, HEAP0); 1858 downheap (timers, timercnt, HEAP0);
1859 }
1860 else
1861 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1862
1863 EV_FREQUENT_CHECK;
1864 feed_reverse (EV_A_ (W)w);
1627 } 1865 }
1628 else 1866 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1630 1867
1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1868 feed_reverse_done (EV_A_ EV_TIMEOUT);
1632 } 1869 }
1633} 1870}
1634 1871
1635#if EV_PERIODIC_ENABLE 1872#if EV_PERIODIC_ENABLE
1636void inline_size 1873/* make periodics pending */
1874inline_size void
1637periodics_reify (EV_P) 1875periodics_reify (EV_P)
1638{ 1876{
1877 EV_FREQUENT_CHECK;
1878
1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 1879 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1640 { 1880 {
1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1881 int feed_count = 0;
1642 1882
1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1883 do
1644
1645 /* first reschedule or stop timer */
1646 if (w->reschedule_cb)
1647 { 1884 {
1885 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1886
1887 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1888
1889 /* first reschedule or stop timer */
1890 if (w->reschedule_cb)
1891 {
1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1892 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649 1893
1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 1894 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651 1895
1652 ANHE_at_set (periodics [HEAP0]); 1896 ANHE_at_cache (periodics [HEAP0]);
1653 downheap (periodics, periodiccnt, HEAP0); 1897 downheap (periodics, periodiccnt, HEAP0);
1898 }
1899 else if (w->interval)
1900 {
1901 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1902 /* if next trigger time is not sufficiently in the future, put it there */
1903 /* this might happen because of floating point inexactness */
1904 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1905 {
1906 ev_at (w) += w->interval;
1907
1908 /* if interval is unreasonably low we might still have a time in the past */
1909 /* so correct this. this will make the periodic very inexact, but the user */
1910 /* has effectively asked to get triggered more often than possible */
1911 if (ev_at (w) < ev_rt_now)
1912 ev_at (w) = ev_rt_now;
1913 }
1914
1915 ANHE_at_cache (periodics [HEAP0]);
1916 downheap (periodics, periodiccnt, HEAP0);
1917 }
1918 else
1919 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1920
1921 EV_FREQUENT_CHECK;
1922 feed_reverse (EV_A_ (W)w);
1654 } 1923 }
1655 else if (w->interval) 1924 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1656 {
1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663 1925
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1672 downheap (periodics, periodiccnt, HEAP0);
1673 }
1674 else
1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1676
1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1926 feed_reverse_done (EV_A_ EV_PERIODIC);
1678 } 1927 }
1679} 1928}
1680 1929
1930/* simply recalculate all periodics */
1931/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1681static void noinline 1932static void noinline
1682periodics_reschedule (EV_P) 1933periodics_reschedule (EV_P)
1683{ 1934{
1684 int i; 1935 int i;
1685 1936
1691 if (w->reschedule_cb) 1942 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1943 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval) 1944 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1945 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695 1946
1696 ANHE_at_set (periodics [i]); 1947 ANHE_at_cache (periodics [i]);
1697 } 1948 }
1698 1949
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 1950 reheap (periodics, periodiccnt);
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 1951}
1952#endif
1953
1954/* adjust all timers by a given offset */
1955static void noinline
1956timers_reschedule (EV_P_ ev_tstamp adjust)
1957{
1958 int i;
1959
1701 for (i = 0; i < periodiccnt; ++i) 1960 for (i = 0; i < timercnt; ++i)
1702 upheap (periodics, i + HEAP0); 1961 {
1962 ANHE *he = timers + i + HEAP0;
1963 ANHE_w (*he)->at += adjust;
1964 ANHE_at_cache (*he);
1965 }
1703} 1966}
1704#endif
1705 1967
1706void inline_speed 1968/* fetch new monotonic and realtime times from the kernel */
1969/* also detetc if there was a timejump, and act accordingly */
1970inline_speed void
1707time_update (EV_P_ ev_tstamp max_block) 1971time_update (EV_P_ ev_tstamp max_block)
1708{ 1972{
1709 int i;
1710
1711#if EV_USE_MONOTONIC 1973#if EV_USE_MONOTONIC
1712 if (expect_true (have_monotonic)) 1974 if (expect_true (have_monotonic))
1713 { 1975 {
1976 int i;
1714 ev_tstamp odiff = rtmn_diff; 1977 ev_tstamp odiff = rtmn_diff;
1715 1978
1716 mn_now = get_clock (); 1979 mn_now = get_clock ();
1717 1980
1718 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 1981 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1744 ev_rt_now = ev_time (); 2007 ev_rt_now = ev_time ();
1745 mn_now = get_clock (); 2008 mn_now = get_clock ();
1746 now_floor = mn_now; 2009 now_floor = mn_now;
1747 } 2010 }
1748 2011
2012 /* no timer adjustment, as the monotonic clock doesn't jump */
2013 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1749# if EV_PERIODIC_ENABLE 2014# if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A); 2015 periodics_reschedule (EV_A);
1751# endif 2016# endif
1752 /* no timer adjustment, as the monotonic clock doesn't jump */
1753 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1754 } 2017 }
1755 else 2018 else
1756#endif 2019#endif
1757 { 2020 {
1758 ev_rt_now = ev_time (); 2021 ev_rt_now = ev_time ();
1759 2022
1760 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2023 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1761 { 2024 {
2025 /* adjust timers. this is easy, as the offset is the same for all of them */
2026 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1762#if EV_PERIODIC_ENABLE 2027#if EV_PERIODIC_ENABLE
1763 periodics_reschedule (EV_A); 2028 periodics_reschedule (EV_A);
1764#endif 2029#endif
1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1766 for (i = 0; i < timercnt; ++i)
1767 {
1768 ANHE *he = timers + i + HEAP0;
1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1772 } 2030 }
1773 2031
1774 mn_now = ev_rt_now; 2032 mn_now = ev_rt_now;
1775 } 2033 }
1776} 2034}
1777 2035
1778void 2036void
1779ev_ref (EV_P)
1780{
1781 ++activecnt;
1782}
1783
1784void
1785ev_unref (EV_P)
1786{
1787 --activecnt;
1788}
1789
1790static int loop_done;
1791
1792void
1793ev_loop (EV_P_ int flags) 2037ev_loop (EV_P_ int flags)
1794{ 2038{
2039 ++loop_depth;
2040
1795 loop_done = EVUNLOOP_CANCEL; 2041 loop_done = EVUNLOOP_CANCEL;
1796 2042
1797 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2043 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1798 2044
1799 do 2045 do
1800 { 2046 {
2047#if EV_VERIFY >= 2
2048 ev_loop_verify (EV_A);
2049#endif
2050
1801#ifndef _WIN32 2051#ifndef _WIN32
1802 if (expect_false (curpid)) /* penalise the forking check even more */ 2052 if (expect_false (curpid)) /* penalise the forking check even more */
1803 if (expect_false (getpid () != curpid)) 2053 if (expect_false (getpid () != curpid))
1804 { 2054 {
1805 curpid = getpid (); 2055 curpid = getpid ();
1822 { 2072 {
1823 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2073 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1824 call_pending (EV_A); 2074 call_pending (EV_A);
1825 } 2075 }
1826 2076
1827 if (expect_false (!activecnt))
1828 break;
1829
1830 /* we might have forked, so reify kernel state if necessary */ 2077 /* we might have forked, so reify kernel state if necessary */
1831 if (expect_false (postfork)) 2078 if (expect_false (postfork))
1832 loop_fork (EV_A); 2079 loop_fork (EV_A);
1833 2080
1834 /* update fd-related kernel structures */ 2081 /* update fd-related kernel structures */
1839 ev_tstamp waittime = 0.; 2086 ev_tstamp waittime = 0.;
1840 ev_tstamp sleeptime = 0.; 2087 ev_tstamp sleeptime = 0.;
1841 2088
1842 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2089 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1843 { 2090 {
2091 /* remember old timestamp for io_blocktime calculation */
2092 ev_tstamp prev_mn_now = mn_now;
2093
1844 /* update time to cancel out callback processing overhead */ 2094 /* update time to cancel out callback processing overhead */
1845 time_update (EV_A_ 1e100); 2095 time_update (EV_A_ 1e100);
1846 2096
1847 waittime = MAX_BLOCKTIME; 2097 waittime = MAX_BLOCKTIME;
1848 2098
1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2108 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1859 if (waittime > to) waittime = to; 2109 if (waittime > to) waittime = to;
1860 } 2110 }
1861#endif 2111#endif
1862 2112
2113 /* don't let timeouts decrease the waittime below timeout_blocktime */
1863 if (expect_false (waittime < timeout_blocktime)) 2114 if (expect_false (waittime < timeout_blocktime))
1864 waittime = timeout_blocktime; 2115 waittime = timeout_blocktime;
1865 2116
1866 sleeptime = waittime - backend_fudge; 2117 /* extra check because io_blocktime is commonly 0 */
1867
1868 if (expect_true (sleeptime > io_blocktime)) 2118 if (expect_false (io_blocktime))
1869 sleeptime = io_blocktime;
1870
1871 if (sleeptime)
1872 { 2119 {
2120 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2121
2122 if (sleeptime > waittime - backend_fudge)
2123 sleeptime = waittime - backend_fudge;
2124
2125 if (expect_true (sleeptime > 0.))
2126 {
1873 ev_sleep (sleeptime); 2127 ev_sleep (sleeptime);
1874 waittime -= sleeptime; 2128 waittime -= sleeptime;
2129 }
1875 } 2130 }
1876 } 2131 }
1877 2132
1878 ++loop_count; 2133 ++loop_count;
1879 backend_poll (EV_A_ waittime); 2134 backend_poll (EV_A_ waittime);
1905 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2160 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1906 )); 2161 ));
1907 2162
1908 if (loop_done == EVUNLOOP_ONE) 2163 if (loop_done == EVUNLOOP_ONE)
1909 loop_done = EVUNLOOP_CANCEL; 2164 loop_done = EVUNLOOP_CANCEL;
2165
2166 --loop_depth;
1910} 2167}
1911 2168
1912void 2169void
1913ev_unloop (EV_P_ int how) 2170ev_unloop (EV_P_ int how)
1914{ 2171{
1915 loop_done = how; 2172 loop_done = how;
1916} 2173}
1917 2174
2175void
2176ev_ref (EV_P)
2177{
2178 ++activecnt;
2179}
2180
2181void
2182ev_unref (EV_P)
2183{
2184 --activecnt;
2185}
2186
2187void
2188ev_now_update (EV_P)
2189{
2190 time_update (EV_A_ 1e100);
2191}
2192
2193void
2194ev_suspend (EV_P)
2195{
2196 ev_now_update (EV_A);
2197}
2198
2199void
2200ev_resume (EV_P)
2201{
2202 ev_tstamp mn_prev = mn_now;
2203
2204 ev_now_update (EV_A);
2205 timers_reschedule (EV_A_ mn_now - mn_prev);
2206#if EV_PERIODIC_ENABLE
2207 /* TODO: really do this? */
2208 periodics_reschedule (EV_A);
2209#endif
2210}
2211
1918/*****************************************************************************/ 2212/*****************************************************************************/
2213/* singly-linked list management, used when the expected list length is short */
1919 2214
1920void inline_size 2215inline_size void
1921wlist_add (WL *head, WL elem) 2216wlist_add (WL *head, WL elem)
1922{ 2217{
1923 elem->next = *head; 2218 elem->next = *head;
1924 *head = elem; 2219 *head = elem;
1925} 2220}
1926 2221
1927void inline_size 2222inline_size void
1928wlist_del (WL *head, WL elem) 2223wlist_del (WL *head, WL elem)
1929{ 2224{
1930 while (*head) 2225 while (*head)
1931 { 2226 {
1932 if (*head == elem) 2227 if (*head == elem)
1937 2232
1938 head = &(*head)->next; 2233 head = &(*head)->next;
1939 } 2234 }
1940} 2235}
1941 2236
1942void inline_speed 2237/* internal, faster, version of ev_clear_pending */
2238inline_speed void
1943clear_pending (EV_P_ W w) 2239clear_pending (EV_P_ W w)
1944{ 2240{
1945 if (w->pending) 2241 if (w->pending)
1946 { 2242 {
1947 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2243 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1948 w->pending = 0; 2244 w->pending = 0;
1949 } 2245 }
1950} 2246}
1951 2247
1952int 2248int
1956 int pending = w_->pending; 2252 int pending = w_->pending;
1957 2253
1958 if (expect_true (pending)) 2254 if (expect_true (pending))
1959 { 2255 {
1960 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2256 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2257 p->w = (W)&pending_w;
1961 w_->pending = 0; 2258 w_->pending = 0;
1962 p->w = 0;
1963 return p->events; 2259 return p->events;
1964 } 2260 }
1965 else 2261 else
1966 return 0; 2262 return 0;
1967} 2263}
1968 2264
1969void inline_size 2265inline_size void
1970pri_adjust (EV_P_ W w) 2266pri_adjust (EV_P_ W w)
1971{ 2267{
1972 int pri = w->priority; 2268 int pri = ev_priority (w);
1973 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2269 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1974 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2270 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1975 w->priority = pri; 2271 ev_set_priority (w, pri);
1976} 2272}
1977 2273
1978void inline_speed 2274inline_speed void
1979ev_start (EV_P_ W w, int active) 2275ev_start (EV_P_ W w, int active)
1980{ 2276{
1981 pri_adjust (EV_A_ w); 2277 pri_adjust (EV_A_ w);
1982 w->active = active; 2278 w->active = active;
1983 ev_ref (EV_A); 2279 ev_ref (EV_A);
1984} 2280}
1985 2281
1986void inline_size 2282inline_size void
1987ev_stop (EV_P_ W w) 2283ev_stop (EV_P_ W w)
1988{ 2284{
1989 ev_unref (EV_A); 2285 ev_unref (EV_A);
1990 w->active = 0; 2286 w->active = 0;
1991} 2287}
1998 int fd = w->fd; 2294 int fd = w->fd;
1999 2295
2000 if (expect_false (ev_is_active (w))) 2296 if (expect_false (ev_is_active (w)))
2001 return; 2297 return;
2002 2298
2003 assert (("ev_io_start called with negative fd", fd >= 0)); 2299 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2300 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2301
2302 EV_FREQUENT_CHECK;
2004 2303
2005 ev_start (EV_A_ (W)w, 1); 2304 ev_start (EV_A_ (W)w, 1);
2006 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2305 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2007 wlist_add (&anfds[fd].head, (WL)w); 2306 wlist_add (&anfds[fd].head, (WL)w);
2008 2307
2009 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2308 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2010 w->events &= ~EV_IOFDSET; 2309 w->events &= ~EV__IOFDSET;
2310
2311 EV_FREQUENT_CHECK;
2011} 2312}
2012 2313
2013void noinline 2314void noinline
2014ev_io_stop (EV_P_ ev_io *w) 2315ev_io_stop (EV_P_ ev_io *w)
2015{ 2316{
2016 clear_pending (EV_A_ (W)w); 2317 clear_pending (EV_A_ (W)w);
2017 if (expect_false (!ev_is_active (w))) 2318 if (expect_false (!ev_is_active (w)))
2018 return; 2319 return;
2019 2320
2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2321 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2322
2323 EV_FREQUENT_CHECK;
2021 2324
2022 wlist_del (&anfds[w->fd].head, (WL)w); 2325 wlist_del (&anfds[w->fd].head, (WL)w);
2023 ev_stop (EV_A_ (W)w); 2326 ev_stop (EV_A_ (W)w);
2024 2327
2025 fd_change (EV_A_ w->fd, 1); 2328 fd_change (EV_A_ w->fd, 1);
2329
2330 EV_FREQUENT_CHECK;
2026} 2331}
2027 2332
2028void noinline 2333void noinline
2029ev_timer_start (EV_P_ ev_timer *w) 2334ev_timer_start (EV_P_ ev_timer *w)
2030{ 2335{
2031 if (expect_false (ev_is_active (w))) 2336 if (expect_false (ev_is_active (w)))
2032 return; 2337 return;
2033 2338
2034 ev_at (w) += mn_now; 2339 ev_at (w) += mn_now;
2035 2340
2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2341 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2037 2342
2343 EV_FREQUENT_CHECK;
2344
2345 ++timercnt;
2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2346 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2347 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2040 ANHE_w (timers [ev_active (w)]) = (WT)w; 2348 ANHE_w (timers [ev_active (w)]) = (WT)w;
2041 ANHE_at_set (timers [ev_active (w)]); 2349 ANHE_at_cache (timers [ev_active (w)]);
2042 upheap (timers, ev_active (w)); 2350 upheap (timers, ev_active (w));
2043 2351
2352 EV_FREQUENT_CHECK;
2353
2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2354 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2045} 2355}
2046 2356
2047void noinline 2357void noinline
2048ev_timer_stop (EV_P_ ev_timer *w) 2358ev_timer_stop (EV_P_ ev_timer *w)
2049{ 2359{
2050 clear_pending (EV_A_ (W)w); 2360 clear_pending (EV_A_ (W)w);
2051 if (expect_false (!ev_is_active (w))) 2361 if (expect_false (!ev_is_active (w)))
2052 return; 2362 return;
2053 2363
2364 EV_FREQUENT_CHECK;
2365
2054 { 2366 {
2055 int active = ev_active (w); 2367 int active = ev_active (w);
2056 2368
2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2369 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2058 2370
2371 --timercnt;
2372
2059 if (expect_true (active < timercnt + HEAP0 - 1)) 2373 if (expect_true (active < timercnt + HEAP0))
2060 { 2374 {
2061 timers [active] = timers [timercnt + HEAP0 - 1]; 2375 timers [active] = timers [timercnt + HEAP0];
2062 adjustheap (timers, timercnt, active); 2376 adjustheap (timers, timercnt, active);
2063 } 2377 }
2064
2065 --timercnt;
2066 } 2378 }
2379
2380 EV_FREQUENT_CHECK;
2067 2381
2068 ev_at (w) -= mn_now; 2382 ev_at (w) -= mn_now;
2069 2383
2070 ev_stop (EV_A_ (W)w); 2384 ev_stop (EV_A_ (W)w);
2071} 2385}
2072 2386
2073void noinline 2387void noinline
2074ev_timer_again (EV_P_ ev_timer *w) 2388ev_timer_again (EV_P_ ev_timer *w)
2075{ 2389{
2390 EV_FREQUENT_CHECK;
2391
2076 if (ev_is_active (w)) 2392 if (ev_is_active (w))
2077 { 2393 {
2078 if (w->repeat) 2394 if (w->repeat)
2079 { 2395 {
2080 ev_at (w) = mn_now + w->repeat; 2396 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]); 2397 ANHE_at_cache (timers [ev_active (w)]);
2082 adjustheap (timers, timercnt, ev_active (w)); 2398 adjustheap (timers, timercnt, ev_active (w));
2083 } 2399 }
2084 else 2400 else
2085 ev_timer_stop (EV_A_ w); 2401 ev_timer_stop (EV_A_ w);
2086 } 2402 }
2087 else if (w->repeat) 2403 else if (w->repeat)
2088 { 2404 {
2089 ev_at (w) = w->repeat; 2405 ev_at (w) = w->repeat;
2090 ev_timer_start (EV_A_ w); 2406 ev_timer_start (EV_A_ w);
2091 } 2407 }
2408
2409 EV_FREQUENT_CHECK;
2092} 2410}
2093 2411
2094#if EV_PERIODIC_ENABLE 2412#if EV_PERIODIC_ENABLE
2095void noinline 2413void noinline
2096ev_periodic_start (EV_P_ ev_periodic *w) 2414ev_periodic_start (EV_P_ ev_periodic *w)
2100 2418
2101 if (w->reschedule_cb) 2419 if (w->reschedule_cb)
2102 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2420 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2103 else if (w->interval) 2421 else if (w->interval)
2104 { 2422 {
2105 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2423 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2106 /* this formula differs from the one in periodic_reify because we do not always round up */ 2424 /* this formula differs from the one in periodic_reify because we do not always round up */
2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2425 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2108 } 2426 }
2109 else 2427 else
2110 ev_at (w) = w->offset; 2428 ev_at (w) = w->offset;
2111 2429
2430 EV_FREQUENT_CHECK;
2431
2432 ++periodiccnt;
2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2433 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2434 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2114 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2435 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2115 ANHE_at_set (periodics [ev_active (w)]); 2436 ANHE_at_cache (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w)); 2437 upheap (periodics, ev_active (w));
2117 2438
2439 EV_FREQUENT_CHECK;
2440
2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2441 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2119} 2442}
2120 2443
2121void noinline 2444void noinline
2122ev_periodic_stop (EV_P_ ev_periodic *w) 2445ev_periodic_stop (EV_P_ ev_periodic *w)
2123{ 2446{
2124 clear_pending (EV_A_ (W)w); 2447 clear_pending (EV_A_ (W)w);
2125 if (expect_false (!ev_is_active (w))) 2448 if (expect_false (!ev_is_active (w)))
2126 return; 2449 return;
2127 2450
2451 EV_FREQUENT_CHECK;
2452
2128 { 2453 {
2129 int active = ev_active (w); 2454 int active = ev_active (w);
2130 2455
2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2456 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2132 2457
2458 --periodiccnt;
2459
2133 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2460 if (expect_true (active < periodiccnt + HEAP0))
2134 { 2461 {
2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2462 periodics [active] = periodics [periodiccnt + HEAP0];
2136 adjustheap (periodics, periodiccnt, active); 2463 adjustheap (periodics, periodiccnt, active);
2137 } 2464 }
2138
2139 --periodiccnt;
2140 } 2465 }
2466
2467 EV_FREQUENT_CHECK;
2141 2468
2142 ev_stop (EV_A_ (W)w); 2469 ev_stop (EV_A_ (W)w);
2143} 2470}
2144 2471
2145void noinline 2472void noinline
2157 2484
2158void noinline 2485void noinline
2159ev_signal_start (EV_P_ ev_signal *w) 2486ev_signal_start (EV_P_ ev_signal *w)
2160{ 2487{
2161#if EV_MULTIPLICITY 2488#if EV_MULTIPLICITY
2162 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2489 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2163#endif 2490#endif
2164 if (expect_false (ev_is_active (w))) 2491 if (expect_false (ev_is_active (w)))
2165 return; 2492 return;
2166 2493
2167 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2494 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2168 2495
2169 evpipe_init (EV_A); 2496 evpipe_init (EV_A);
2497
2498 EV_FREQUENT_CHECK;
2170 2499
2171 { 2500 {
2172#ifndef _WIN32 2501#ifndef _WIN32
2173 sigset_t full, prev; 2502 sigset_t full, prev;
2174 sigfillset (&full); 2503 sigfillset (&full);
2175 sigprocmask (SIG_SETMASK, &full, &prev); 2504 sigprocmask (SIG_SETMASK, &full, &prev);
2176#endif 2505#endif
2177 2506
2178 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2507 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2179 2508
2180#ifndef _WIN32 2509#ifndef _WIN32
2181 sigprocmask (SIG_SETMASK, &prev, 0); 2510 sigprocmask (SIG_SETMASK, &prev, 0);
2182#endif 2511#endif
2183 } 2512 }
2195 sigfillset (&sa.sa_mask); 2524 sigfillset (&sa.sa_mask);
2196 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2525 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2197 sigaction (w->signum, &sa, 0); 2526 sigaction (w->signum, &sa, 0);
2198#endif 2527#endif
2199 } 2528 }
2529
2530 EV_FREQUENT_CHECK;
2200} 2531}
2201 2532
2202void noinline 2533void noinline
2203ev_signal_stop (EV_P_ ev_signal *w) 2534ev_signal_stop (EV_P_ ev_signal *w)
2204{ 2535{
2205 clear_pending (EV_A_ (W)w); 2536 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w))) 2537 if (expect_false (!ev_is_active (w)))
2207 return; 2538 return;
2208 2539
2540 EV_FREQUENT_CHECK;
2541
2209 wlist_del (&signals [w->signum - 1].head, (WL)w); 2542 wlist_del (&signals [w->signum - 1].head, (WL)w);
2210 ev_stop (EV_A_ (W)w); 2543 ev_stop (EV_A_ (W)w);
2211 2544
2212 if (!signals [w->signum - 1].head) 2545 if (!signals [w->signum - 1].head)
2213 signal (w->signum, SIG_DFL); 2546 signal (w->signum, SIG_DFL);
2547
2548 EV_FREQUENT_CHECK;
2214} 2549}
2215 2550
2216void 2551void
2217ev_child_start (EV_P_ ev_child *w) 2552ev_child_start (EV_P_ ev_child *w)
2218{ 2553{
2219#if EV_MULTIPLICITY 2554#if EV_MULTIPLICITY
2220 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2555 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2221#endif 2556#endif
2222 if (expect_false (ev_is_active (w))) 2557 if (expect_false (ev_is_active (w)))
2223 return; 2558 return;
2224 2559
2560 EV_FREQUENT_CHECK;
2561
2225 ev_start (EV_A_ (W)w, 1); 2562 ev_start (EV_A_ (W)w, 1);
2226 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2563 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2564
2565 EV_FREQUENT_CHECK;
2227} 2566}
2228 2567
2229void 2568void
2230ev_child_stop (EV_P_ ev_child *w) 2569ev_child_stop (EV_P_ ev_child *w)
2231{ 2570{
2232 clear_pending (EV_A_ (W)w); 2571 clear_pending (EV_A_ (W)w);
2233 if (expect_false (!ev_is_active (w))) 2572 if (expect_false (!ev_is_active (w)))
2234 return; 2573 return;
2235 2574
2575 EV_FREQUENT_CHECK;
2576
2236 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2577 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2237 ev_stop (EV_A_ (W)w); 2578 ev_stop (EV_A_ (W)w);
2579
2580 EV_FREQUENT_CHECK;
2238} 2581}
2239 2582
2240#if EV_STAT_ENABLE 2583#if EV_STAT_ENABLE
2241 2584
2242# ifdef _WIN32 2585# ifdef _WIN32
2243# undef lstat 2586# undef lstat
2244# define lstat(a,b) _stati64 (a,b) 2587# define lstat(a,b) _stati64 (a,b)
2245# endif 2588# endif
2246 2589
2247#define DEF_STAT_INTERVAL 5.0074891 2590#define DEF_STAT_INTERVAL 5.0074891
2591#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2248#define MIN_STAT_INTERVAL 0.1074891 2592#define MIN_STAT_INTERVAL 0.1074891
2249 2593
2250static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2594static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2251 2595
2252#if EV_USE_INOTIFY 2596#if EV_USE_INOTIFY
2253# define EV_INOTIFY_BUFSIZE 8192 2597# define EV_INOTIFY_BUFSIZE 8192
2257{ 2601{
2258 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2602 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2259 2603
2260 if (w->wd < 0) 2604 if (w->wd < 0)
2261 { 2605 {
2606 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2607 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2263 2608
2264 /* monitor some parent directory for speedup hints */ 2609 /* monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2610 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2266 /* but an efficiency issue only */ 2611 /* but an efficiency issue only */
2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2612 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2268 { 2613 {
2269 char path [4096]; 2614 char path [4096];
2270 strcpy (path, w->path); 2615 strcpy (path, w->path);
2274 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2619 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2275 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2620 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2276 2621
2277 char *pend = strrchr (path, '/'); 2622 char *pend = strrchr (path, '/');
2278 2623
2279 if (!pend) 2624 if (!pend || pend == path)
2280 break; /* whoops, no '/', complain to your admin */ 2625 break;
2281 2626
2282 *pend = 0; 2627 *pend = 0;
2283 w->wd = inotify_add_watch (fs_fd, path, mask); 2628 w->wd = inotify_add_watch (fs_fd, path, mask);
2284 } 2629 }
2285 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2630 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2286 } 2631 }
2287 } 2632 }
2288 else
2289 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2290 2633
2291 if (w->wd >= 0) 2634 if (w->wd >= 0)
2635 {
2292 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2636 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2637
2638 /* now local changes will be tracked by inotify, but remote changes won't */
2639 /* unless the filesystem it known to be local, we therefore still poll */
2640 /* also do poll on <2.6.25, but with normal frequency */
2641 struct statfs sfs;
2642
2643 if (fs_2625 && !statfs (w->path, &sfs))
2644 if (sfs.f_type == 0x1373 /* devfs */
2645 || sfs.f_type == 0xEF53 /* ext2/3 */
2646 || sfs.f_type == 0x3153464a /* jfs */
2647 || sfs.f_type == 0x52654973 /* reiser3 */
2648 || sfs.f_type == 0x01021994 /* tempfs */
2649 || sfs.f_type == 0x58465342 /* xfs */)
2650 return;
2651
2652 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2653 ev_timer_again (EV_A_ &w->timer);
2654 }
2293} 2655}
2294 2656
2295static void noinline 2657static void noinline
2296infy_del (EV_P_ ev_stat *w) 2658infy_del (EV_P_ ev_stat *w)
2297{ 2659{
2311 2673
2312static void noinline 2674static void noinline
2313infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2675infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2314{ 2676{
2315 if (slot < 0) 2677 if (slot < 0)
2316 /* overflow, need to check for all hahs slots */ 2678 /* overflow, need to check for all hash slots */
2317 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2679 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2318 infy_wd (EV_A_ slot, wd, ev); 2680 infy_wd (EV_A_ slot, wd, ev);
2319 else 2681 else
2320 { 2682 {
2321 WL w_; 2683 WL w_;
2327 2689
2328 if (w->wd == wd || wd == -1) 2690 if (w->wd == wd || wd == -1)
2329 { 2691 {
2330 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2692 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2331 { 2693 {
2694 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2332 w->wd = -1; 2695 w->wd = -1;
2333 infy_add (EV_A_ w); /* re-add, no matter what */ 2696 infy_add (EV_A_ w); /* re-add, no matter what */
2334 } 2697 }
2335 2698
2336 stat_timer_cb (EV_A_ &w->timer, 0); 2699 stat_timer_cb (EV_A_ &w->timer, 0);
2349 2712
2350 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2713 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2351 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2714 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2352} 2715}
2353 2716
2354void inline_size 2717inline_size void
2718check_2625 (EV_P)
2719{
2720 /* kernels < 2.6.25 are borked
2721 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2722 */
2723 struct utsname buf;
2724 int major, minor, micro;
2725
2726 if (uname (&buf))
2727 return;
2728
2729 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2730 return;
2731
2732 if (major < 2
2733 || (major == 2 && minor < 6)
2734 || (major == 2 && minor == 6 && micro < 25))
2735 return;
2736
2737 fs_2625 = 1;
2738}
2739
2740inline_size void
2355infy_init (EV_P) 2741infy_init (EV_P)
2356{ 2742{
2357 if (fs_fd != -2) 2743 if (fs_fd != -2)
2358 return; 2744 return;
2745
2746 fs_fd = -1;
2747
2748 check_2625 (EV_A);
2359 2749
2360 fs_fd = inotify_init (); 2750 fs_fd = inotify_init ();
2361 2751
2362 if (fs_fd >= 0) 2752 if (fs_fd >= 0)
2363 { 2753 {
2365 ev_set_priority (&fs_w, EV_MAXPRI); 2755 ev_set_priority (&fs_w, EV_MAXPRI);
2366 ev_io_start (EV_A_ &fs_w); 2756 ev_io_start (EV_A_ &fs_w);
2367 } 2757 }
2368} 2758}
2369 2759
2370void inline_size 2760inline_size void
2371infy_fork (EV_P) 2761infy_fork (EV_P)
2372{ 2762{
2373 int slot; 2763 int slot;
2374 2764
2375 if (fs_fd < 0) 2765 if (fs_fd < 0)
2391 w->wd = -1; 2781 w->wd = -1;
2392 2782
2393 if (fs_fd >= 0) 2783 if (fs_fd >= 0)
2394 infy_add (EV_A_ w); /* re-add, no matter what */ 2784 infy_add (EV_A_ w); /* re-add, no matter what */
2395 else 2785 else
2396 ev_timer_start (EV_A_ &w->timer); 2786 ev_timer_again (EV_A_ &w->timer);
2397 } 2787 }
2398
2399 } 2788 }
2400} 2789}
2401 2790
2791#endif
2792
2793#ifdef _WIN32
2794# define EV_LSTAT(p,b) _stati64 (p, b)
2795#else
2796# define EV_LSTAT(p,b) lstat (p, b)
2402#endif 2797#endif
2403 2798
2404void 2799void
2405ev_stat_stat (EV_P_ ev_stat *w) 2800ev_stat_stat (EV_P_ ev_stat *w)
2406{ 2801{
2433 || w->prev.st_atime != w->attr.st_atime 2828 || w->prev.st_atime != w->attr.st_atime
2434 || w->prev.st_mtime != w->attr.st_mtime 2829 || w->prev.st_mtime != w->attr.st_mtime
2435 || w->prev.st_ctime != w->attr.st_ctime 2830 || w->prev.st_ctime != w->attr.st_ctime
2436 ) { 2831 ) {
2437 #if EV_USE_INOTIFY 2832 #if EV_USE_INOTIFY
2833 if (fs_fd >= 0)
2834 {
2438 infy_del (EV_A_ w); 2835 infy_del (EV_A_ w);
2439 infy_add (EV_A_ w); 2836 infy_add (EV_A_ w);
2440 ev_stat_stat (EV_A_ w); /* avoid race... */ 2837 ev_stat_stat (EV_A_ w); /* avoid race... */
2838 }
2441 #endif 2839 #endif
2442 2840
2443 ev_feed_event (EV_A_ w, EV_STAT); 2841 ev_feed_event (EV_A_ w, EV_STAT);
2444 } 2842 }
2445} 2843}
2448ev_stat_start (EV_P_ ev_stat *w) 2846ev_stat_start (EV_P_ ev_stat *w)
2449{ 2847{
2450 if (expect_false (ev_is_active (w))) 2848 if (expect_false (ev_is_active (w)))
2451 return; 2849 return;
2452 2850
2453 /* since we use memcmp, we need to clear any padding data etc. */
2454 memset (&w->prev, 0, sizeof (ev_statdata));
2455 memset (&w->attr, 0, sizeof (ev_statdata));
2456
2457 ev_stat_stat (EV_A_ w); 2851 ev_stat_stat (EV_A_ w);
2458 2852
2853 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2459 if (w->interval < MIN_STAT_INTERVAL) 2854 w->interval = MIN_STAT_INTERVAL;
2460 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2461 2855
2462 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2856 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2463 ev_set_priority (&w->timer, ev_priority (w)); 2857 ev_set_priority (&w->timer, ev_priority (w));
2464 2858
2465#if EV_USE_INOTIFY 2859#if EV_USE_INOTIFY
2466 infy_init (EV_A); 2860 infy_init (EV_A);
2467 2861
2468 if (fs_fd >= 0) 2862 if (fs_fd >= 0)
2469 infy_add (EV_A_ w); 2863 infy_add (EV_A_ w);
2470 else 2864 else
2471#endif 2865#endif
2472 ev_timer_start (EV_A_ &w->timer); 2866 ev_timer_again (EV_A_ &w->timer);
2473 2867
2474 ev_start (EV_A_ (W)w, 1); 2868 ev_start (EV_A_ (W)w, 1);
2869
2870 EV_FREQUENT_CHECK;
2475} 2871}
2476 2872
2477void 2873void
2478ev_stat_stop (EV_P_ ev_stat *w) 2874ev_stat_stop (EV_P_ ev_stat *w)
2479{ 2875{
2480 clear_pending (EV_A_ (W)w); 2876 clear_pending (EV_A_ (W)w);
2481 if (expect_false (!ev_is_active (w))) 2877 if (expect_false (!ev_is_active (w)))
2482 return; 2878 return;
2483 2879
2880 EV_FREQUENT_CHECK;
2881
2484#if EV_USE_INOTIFY 2882#if EV_USE_INOTIFY
2485 infy_del (EV_A_ w); 2883 infy_del (EV_A_ w);
2486#endif 2884#endif
2487 ev_timer_stop (EV_A_ &w->timer); 2885 ev_timer_stop (EV_A_ &w->timer);
2488 2886
2489 ev_stop (EV_A_ (W)w); 2887 ev_stop (EV_A_ (W)w);
2888
2889 EV_FREQUENT_CHECK;
2490} 2890}
2491#endif 2891#endif
2492 2892
2493#if EV_IDLE_ENABLE 2893#if EV_IDLE_ENABLE
2494void 2894void
2496{ 2896{
2497 if (expect_false (ev_is_active (w))) 2897 if (expect_false (ev_is_active (w)))
2498 return; 2898 return;
2499 2899
2500 pri_adjust (EV_A_ (W)w); 2900 pri_adjust (EV_A_ (W)w);
2901
2902 EV_FREQUENT_CHECK;
2501 2903
2502 { 2904 {
2503 int active = ++idlecnt [ABSPRI (w)]; 2905 int active = ++idlecnt [ABSPRI (w)];
2504 2906
2505 ++idleall; 2907 ++idleall;
2506 ev_start (EV_A_ (W)w, active); 2908 ev_start (EV_A_ (W)w, active);
2507 2909
2508 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2910 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2509 idles [ABSPRI (w)][active - 1] = w; 2911 idles [ABSPRI (w)][active - 1] = w;
2510 } 2912 }
2913
2914 EV_FREQUENT_CHECK;
2511} 2915}
2512 2916
2513void 2917void
2514ev_idle_stop (EV_P_ ev_idle *w) 2918ev_idle_stop (EV_P_ ev_idle *w)
2515{ 2919{
2516 clear_pending (EV_A_ (W)w); 2920 clear_pending (EV_A_ (W)w);
2517 if (expect_false (!ev_is_active (w))) 2921 if (expect_false (!ev_is_active (w)))
2518 return; 2922 return;
2519 2923
2924 EV_FREQUENT_CHECK;
2925
2520 { 2926 {
2521 int active = ev_active (w); 2927 int active = ev_active (w);
2522 2928
2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2929 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2524 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2930 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2525 2931
2526 ev_stop (EV_A_ (W)w); 2932 ev_stop (EV_A_ (W)w);
2527 --idleall; 2933 --idleall;
2528 } 2934 }
2935
2936 EV_FREQUENT_CHECK;
2529} 2937}
2530#endif 2938#endif
2531 2939
2532void 2940void
2533ev_prepare_start (EV_P_ ev_prepare *w) 2941ev_prepare_start (EV_P_ ev_prepare *w)
2534{ 2942{
2535 if (expect_false (ev_is_active (w))) 2943 if (expect_false (ev_is_active (w)))
2536 return; 2944 return;
2945
2946 EV_FREQUENT_CHECK;
2537 2947
2538 ev_start (EV_A_ (W)w, ++preparecnt); 2948 ev_start (EV_A_ (W)w, ++preparecnt);
2539 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2949 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2540 prepares [preparecnt - 1] = w; 2950 prepares [preparecnt - 1] = w;
2951
2952 EV_FREQUENT_CHECK;
2541} 2953}
2542 2954
2543void 2955void
2544ev_prepare_stop (EV_P_ ev_prepare *w) 2956ev_prepare_stop (EV_P_ ev_prepare *w)
2545{ 2957{
2546 clear_pending (EV_A_ (W)w); 2958 clear_pending (EV_A_ (W)w);
2547 if (expect_false (!ev_is_active (w))) 2959 if (expect_false (!ev_is_active (w)))
2548 return; 2960 return;
2549 2961
2962 EV_FREQUENT_CHECK;
2963
2550 { 2964 {
2551 int active = ev_active (w); 2965 int active = ev_active (w);
2552 2966
2553 prepares [active - 1] = prepares [--preparecnt]; 2967 prepares [active - 1] = prepares [--preparecnt];
2554 ev_active (prepares [active - 1]) = active; 2968 ev_active (prepares [active - 1]) = active;
2555 } 2969 }
2556 2970
2557 ev_stop (EV_A_ (W)w); 2971 ev_stop (EV_A_ (W)w);
2972
2973 EV_FREQUENT_CHECK;
2558} 2974}
2559 2975
2560void 2976void
2561ev_check_start (EV_P_ ev_check *w) 2977ev_check_start (EV_P_ ev_check *w)
2562{ 2978{
2563 if (expect_false (ev_is_active (w))) 2979 if (expect_false (ev_is_active (w)))
2564 return; 2980 return;
2981
2982 EV_FREQUENT_CHECK;
2565 2983
2566 ev_start (EV_A_ (W)w, ++checkcnt); 2984 ev_start (EV_A_ (W)w, ++checkcnt);
2567 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2985 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2568 checks [checkcnt - 1] = w; 2986 checks [checkcnt - 1] = w;
2987
2988 EV_FREQUENT_CHECK;
2569} 2989}
2570 2990
2571void 2991void
2572ev_check_stop (EV_P_ ev_check *w) 2992ev_check_stop (EV_P_ ev_check *w)
2573{ 2993{
2574 clear_pending (EV_A_ (W)w); 2994 clear_pending (EV_A_ (W)w);
2575 if (expect_false (!ev_is_active (w))) 2995 if (expect_false (!ev_is_active (w)))
2576 return; 2996 return;
2577 2997
2998 EV_FREQUENT_CHECK;
2999
2578 { 3000 {
2579 int active = ev_active (w); 3001 int active = ev_active (w);
2580 3002
2581 checks [active - 1] = checks [--checkcnt]; 3003 checks [active - 1] = checks [--checkcnt];
2582 ev_active (checks [active - 1]) = active; 3004 ev_active (checks [active - 1]) = active;
2583 } 3005 }
2584 3006
2585 ev_stop (EV_A_ (W)w); 3007 ev_stop (EV_A_ (W)w);
3008
3009 EV_FREQUENT_CHECK;
2586} 3010}
2587 3011
2588#if EV_EMBED_ENABLE 3012#if EV_EMBED_ENABLE
2589void noinline 3013void noinline
2590ev_embed_sweep (EV_P_ ev_embed *w) 3014ev_embed_sweep (EV_P_ ev_embed *w)
2617 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3041 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2618 } 3042 }
2619 } 3043 }
2620} 3044}
2621 3045
3046static void
3047embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3048{
3049 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3050
3051 ev_embed_stop (EV_A_ w);
3052
3053 {
3054 struct ev_loop *loop = w->other;
3055
3056 ev_loop_fork (EV_A);
3057 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3058 }
3059
3060 ev_embed_start (EV_A_ w);
3061}
3062
2622#if 0 3063#if 0
2623static void 3064static void
2624embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3065embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2625{ 3066{
2626 ev_idle_stop (EV_A_ idle); 3067 ev_idle_stop (EV_A_ idle);
2633 if (expect_false (ev_is_active (w))) 3074 if (expect_false (ev_is_active (w)))
2634 return; 3075 return;
2635 3076
2636 { 3077 {
2637 struct ev_loop *loop = w->other; 3078 struct ev_loop *loop = w->other;
2638 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3079 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2639 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3080 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2640 } 3081 }
3082
3083 EV_FREQUENT_CHECK;
2641 3084
2642 ev_set_priority (&w->io, ev_priority (w)); 3085 ev_set_priority (&w->io, ev_priority (w));
2643 ev_io_start (EV_A_ &w->io); 3086 ev_io_start (EV_A_ &w->io);
2644 3087
2645 ev_prepare_init (&w->prepare, embed_prepare_cb); 3088 ev_prepare_init (&w->prepare, embed_prepare_cb);
2646 ev_set_priority (&w->prepare, EV_MINPRI); 3089 ev_set_priority (&w->prepare, EV_MINPRI);
2647 ev_prepare_start (EV_A_ &w->prepare); 3090 ev_prepare_start (EV_A_ &w->prepare);
2648 3091
3092 ev_fork_init (&w->fork, embed_fork_cb);
3093 ev_fork_start (EV_A_ &w->fork);
3094
2649 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3095 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2650 3096
2651 ev_start (EV_A_ (W)w, 1); 3097 ev_start (EV_A_ (W)w, 1);
3098
3099 EV_FREQUENT_CHECK;
2652} 3100}
2653 3101
2654void 3102void
2655ev_embed_stop (EV_P_ ev_embed *w) 3103ev_embed_stop (EV_P_ ev_embed *w)
2656{ 3104{
2657 clear_pending (EV_A_ (W)w); 3105 clear_pending (EV_A_ (W)w);
2658 if (expect_false (!ev_is_active (w))) 3106 if (expect_false (!ev_is_active (w)))
2659 return; 3107 return;
2660 3108
3109 EV_FREQUENT_CHECK;
3110
2661 ev_io_stop (EV_A_ &w->io); 3111 ev_io_stop (EV_A_ &w->io);
2662 ev_prepare_stop (EV_A_ &w->prepare); 3112 ev_prepare_stop (EV_A_ &w->prepare);
3113 ev_fork_stop (EV_A_ &w->fork);
2663 3114
2664 ev_stop (EV_A_ (W)w); 3115 EV_FREQUENT_CHECK;
2665} 3116}
2666#endif 3117#endif
2667 3118
2668#if EV_FORK_ENABLE 3119#if EV_FORK_ENABLE
2669void 3120void
2670ev_fork_start (EV_P_ ev_fork *w) 3121ev_fork_start (EV_P_ ev_fork *w)
2671{ 3122{
2672 if (expect_false (ev_is_active (w))) 3123 if (expect_false (ev_is_active (w)))
2673 return; 3124 return;
3125
3126 EV_FREQUENT_CHECK;
2674 3127
2675 ev_start (EV_A_ (W)w, ++forkcnt); 3128 ev_start (EV_A_ (W)w, ++forkcnt);
2676 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3129 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2677 forks [forkcnt - 1] = w; 3130 forks [forkcnt - 1] = w;
3131
3132 EV_FREQUENT_CHECK;
2678} 3133}
2679 3134
2680void 3135void
2681ev_fork_stop (EV_P_ ev_fork *w) 3136ev_fork_stop (EV_P_ ev_fork *w)
2682{ 3137{
2683 clear_pending (EV_A_ (W)w); 3138 clear_pending (EV_A_ (W)w);
2684 if (expect_false (!ev_is_active (w))) 3139 if (expect_false (!ev_is_active (w)))
2685 return; 3140 return;
2686 3141
3142 EV_FREQUENT_CHECK;
3143
2687 { 3144 {
2688 int active = ev_active (w); 3145 int active = ev_active (w);
2689 3146
2690 forks [active - 1] = forks [--forkcnt]; 3147 forks [active - 1] = forks [--forkcnt];
2691 ev_active (forks [active - 1]) = active; 3148 ev_active (forks [active - 1]) = active;
2692 } 3149 }
2693 3150
2694 ev_stop (EV_A_ (W)w); 3151 ev_stop (EV_A_ (W)w);
3152
3153 EV_FREQUENT_CHECK;
2695} 3154}
2696#endif 3155#endif
2697 3156
2698#if EV_ASYNC_ENABLE 3157#if EV_ASYNC_ENABLE
2699void 3158void
2701{ 3160{
2702 if (expect_false (ev_is_active (w))) 3161 if (expect_false (ev_is_active (w)))
2703 return; 3162 return;
2704 3163
2705 evpipe_init (EV_A); 3164 evpipe_init (EV_A);
3165
3166 EV_FREQUENT_CHECK;
2706 3167
2707 ev_start (EV_A_ (W)w, ++asynccnt); 3168 ev_start (EV_A_ (W)w, ++asynccnt);
2708 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3169 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2709 asyncs [asynccnt - 1] = w; 3170 asyncs [asynccnt - 1] = w;
3171
3172 EV_FREQUENT_CHECK;
2710} 3173}
2711 3174
2712void 3175void
2713ev_async_stop (EV_P_ ev_async *w) 3176ev_async_stop (EV_P_ ev_async *w)
2714{ 3177{
2715 clear_pending (EV_A_ (W)w); 3178 clear_pending (EV_A_ (W)w);
2716 if (expect_false (!ev_is_active (w))) 3179 if (expect_false (!ev_is_active (w)))
2717 return; 3180 return;
2718 3181
3182 EV_FREQUENT_CHECK;
3183
2719 { 3184 {
2720 int active = ev_active (w); 3185 int active = ev_active (w);
2721 3186
2722 asyncs [active - 1] = asyncs [--asynccnt]; 3187 asyncs [active - 1] = asyncs [--asynccnt];
2723 ev_active (asyncs [active - 1]) = active; 3188 ev_active (asyncs [active - 1]) = active;
2724 } 3189 }
2725 3190
2726 ev_stop (EV_A_ (W)w); 3191 ev_stop (EV_A_ (W)w);
3192
3193 EV_FREQUENT_CHECK;
2727} 3194}
2728 3195
2729void 3196void
2730ev_async_send (EV_P_ ev_async *w) 3197ev_async_send (EV_P_ ev_async *w)
2731{ 3198{
2748once_cb (EV_P_ struct ev_once *once, int revents) 3215once_cb (EV_P_ struct ev_once *once, int revents)
2749{ 3216{
2750 void (*cb)(int revents, void *arg) = once->cb; 3217 void (*cb)(int revents, void *arg) = once->cb;
2751 void *arg = once->arg; 3218 void *arg = once->arg;
2752 3219
2753 ev_io_stop (EV_A_ &once->io); 3220 ev_io_stop (EV_A_ &once->io);
2754 ev_timer_stop (EV_A_ &once->to); 3221 ev_timer_stop (EV_A_ &once->to);
2755 ev_free (once); 3222 ev_free (once);
2756 3223
2757 cb (revents, arg); 3224 cb (revents, arg);
2758} 3225}
2759 3226
2760static void 3227static void
2761once_cb_io (EV_P_ ev_io *w, int revents) 3228once_cb_io (EV_P_ ev_io *w, int revents)
2762{ 3229{
2763 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3230 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3231
3232 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2764} 3233}
2765 3234
2766static void 3235static void
2767once_cb_to (EV_P_ ev_timer *w, int revents) 3236once_cb_to (EV_P_ ev_timer *w, int revents)
2768{ 3237{
2769 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3238 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3239
3240 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2770} 3241}
2771 3242
2772void 3243void
2773ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3244ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2774{ 3245{
2796 ev_timer_set (&once->to, timeout, 0.); 3267 ev_timer_set (&once->to, timeout, 0.);
2797 ev_timer_start (EV_A_ &once->to); 3268 ev_timer_start (EV_A_ &once->to);
2798 } 3269 }
2799} 3270}
2800 3271
3272/*****************************************************************************/
3273
3274#if EV_WALK_ENABLE
3275void
3276ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3277{
3278 int i, j;
3279 ev_watcher_list *wl, *wn;
3280
3281 if (types & (EV_IO | EV_EMBED))
3282 for (i = 0; i < anfdmax; ++i)
3283 for (wl = anfds [i].head; wl; )
3284 {
3285 wn = wl->next;
3286
3287#if EV_EMBED_ENABLE
3288 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3289 {
3290 if (types & EV_EMBED)
3291 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3292 }
3293 else
3294#endif
3295#if EV_USE_INOTIFY
3296 if (ev_cb ((ev_io *)wl) == infy_cb)
3297 ;
3298 else
3299#endif
3300 if ((ev_io *)wl != &pipe_w)
3301 if (types & EV_IO)
3302 cb (EV_A_ EV_IO, wl);
3303
3304 wl = wn;
3305 }
3306
3307 if (types & (EV_TIMER | EV_STAT))
3308 for (i = timercnt + HEAP0; i-- > HEAP0; )
3309#if EV_STAT_ENABLE
3310 /*TODO: timer is not always active*/
3311 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3312 {
3313 if (types & EV_STAT)
3314 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3315 }
3316 else
3317#endif
3318 if (types & EV_TIMER)
3319 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3320
3321#if EV_PERIODIC_ENABLE
3322 if (types & EV_PERIODIC)
3323 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3324 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3325#endif
3326
3327#if EV_IDLE_ENABLE
3328 if (types & EV_IDLE)
3329 for (j = NUMPRI; i--; )
3330 for (i = idlecnt [j]; i--; )
3331 cb (EV_A_ EV_IDLE, idles [j][i]);
3332#endif
3333
3334#if EV_FORK_ENABLE
3335 if (types & EV_FORK)
3336 for (i = forkcnt; i--; )
3337 if (ev_cb (forks [i]) != embed_fork_cb)
3338 cb (EV_A_ EV_FORK, forks [i]);
3339#endif
3340
3341#if EV_ASYNC_ENABLE
3342 if (types & EV_ASYNC)
3343 for (i = asynccnt; i--; )
3344 cb (EV_A_ EV_ASYNC, asyncs [i]);
3345#endif
3346
3347 if (types & EV_PREPARE)
3348 for (i = preparecnt; i--; )
3349#if EV_EMBED_ENABLE
3350 if (ev_cb (prepares [i]) != embed_prepare_cb)
3351#endif
3352 cb (EV_A_ EV_PREPARE, prepares [i]);
3353
3354 if (types & EV_CHECK)
3355 for (i = checkcnt; i--; )
3356 cb (EV_A_ EV_CHECK, checks [i]);
3357
3358 if (types & EV_SIGNAL)
3359 for (i = 0; i < signalmax; ++i)
3360 for (wl = signals [i].head; wl; )
3361 {
3362 wn = wl->next;
3363 cb (EV_A_ EV_SIGNAL, wl);
3364 wl = wn;
3365 }
3366
3367 if (types & EV_CHILD)
3368 for (i = EV_PID_HASHSIZE; i--; )
3369 for (wl = childs [i]; wl; )
3370 {
3371 wn = wl->next;
3372 cb (EV_A_ EV_CHILD, wl);
3373 wl = wn;
3374 }
3375/* EV_STAT 0x00001000 /* stat data changed */
3376/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3377}
3378#endif
3379
2801#if EV_MULTIPLICITY 3380#if EV_MULTIPLICITY
2802 #include "ev_wrap.h" 3381 #include "ev_wrap.h"
2803#endif 3382#endif
2804 3383
2805#ifdef __cplusplus 3384#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines