ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC vs.
Revision 1.324 by root, Sat Jan 23 20:15:57 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
96# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
97# endif 111# endif
98# endif 112# endif
99 113
100# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
102# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
103# else 117# else
104# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
105# endif 119# endif
106# endif 120# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
136#include <fcntl.h> 159#include <fcntl.h>
137#include <stddef.h> 160#include <stddef.h>
138 161
139#include <stdio.h> 162#include <stdio.h>
140 163
154#ifndef _WIN32 177#ifndef _WIN32
155# include <sys/time.h> 178# include <sys/time.h>
156# include <sys/wait.h> 179# include <sys/wait.h>
157# include <unistd.h> 180# include <unistd.h>
158#else 181#else
182# include <io.h>
159# define WIN32_LEAN_AND_MEAN 183# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 184# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 185# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 186# define EV_SELECT_IS_WINSOCKET 1
163# endif 187# endif
164#endif 188#endif
165 189
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 190/* this block tries to deduce configuration from header-defined symbols and defaults */
167 191
192/* try to deduce the maximum number of signals on this platform */
193#if defined (EV_NSIG)
194/* use what's provided */
195#elif defined (NSIG)
196# define EV_NSIG (NSIG)
197#elif defined(_NSIG)
198# define EV_NSIG (_NSIG)
199#elif defined (SIGMAX)
200# define EV_NSIG (SIGMAX+1)
201#elif defined (SIG_MAX)
202# define EV_NSIG (SIG_MAX+1)
203#elif defined (_SIG_MAX)
204# define EV_NSIG (_SIG_MAX+1)
205#elif defined (MAXSIG)
206# define EV_NSIG (MAXSIG+1)
207#elif defined (MAX_SIG)
208# define EV_NSIG (MAX_SIG+1)
209#elif defined (SIGARRAYSIZE)
210# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
211#elif defined (_sys_nsig)
212# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
213#else
214# error "unable to find value for NSIG, please report"
215/* to make it compile regardless, just remove the above line */
216# define EV_NSIG 65
217#endif
218
219#ifndef EV_USE_CLOCK_SYSCALL
220# if __linux && __GLIBC__ >= 2
221# define EV_USE_CLOCK_SYSCALL 1
222# else
223# define EV_USE_CLOCK_SYSCALL 0
224# endif
225#endif
226
168#ifndef EV_USE_MONOTONIC 227#ifndef EV_USE_MONOTONIC
228# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
229# define EV_USE_MONOTONIC 1
230# else
169# define EV_USE_MONOTONIC 0 231# define EV_USE_MONOTONIC 0
232# endif
170#endif 233#endif
171 234
172#ifndef EV_USE_REALTIME 235#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 236# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 237#endif
175 238
176#ifndef EV_USE_NANOSLEEP 239#ifndef EV_USE_NANOSLEEP
240# if _POSIX_C_SOURCE >= 199309L
241# define EV_USE_NANOSLEEP 1
242# else
177# define EV_USE_NANOSLEEP 0 243# define EV_USE_NANOSLEEP 0
244# endif
178#endif 245#endif
179 246
180#ifndef EV_USE_SELECT 247#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 248# define EV_USE_SELECT 1
182#endif 249#endif
235# else 302# else
236# define EV_USE_EVENTFD 0 303# define EV_USE_EVENTFD 0
237# endif 304# endif
238#endif 305#endif
239 306
307#ifndef EV_USE_SIGNALFD
308# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
309# define EV_USE_SIGNALFD 1
310# else
311# define EV_USE_SIGNALFD 0
312# endif
313#endif
314
315#if 0 /* debugging */
316# define EV_VERIFY 3
317# define EV_USE_4HEAP 1
318# define EV_HEAP_CACHE_AT 1
319#endif
320
321#ifndef EV_VERIFY
322# define EV_VERIFY !EV_MINIMAL
323#endif
324
240#ifndef EV_USE_4HEAP 325#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 326# define EV_USE_4HEAP !EV_MINIMAL
242#endif 327#endif
243 328
244#ifndef EV_HEAP_CACHE_AT 329#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 330# define EV_HEAP_CACHE_AT !EV_MINIMAL
331#endif
332
333/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
334/* which makes programs even slower. might work on other unices, too. */
335#if EV_USE_CLOCK_SYSCALL
336# include <syscall.h>
337# ifdef SYS_clock_gettime
338# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
339# undef EV_USE_MONOTONIC
340# define EV_USE_MONOTONIC 1
341# else
342# undef EV_USE_CLOCK_SYSCALL
343# define EV_USE_CLOCK_SYSCALL 0
344# endif
246#endif 345#endif
247 346
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 347/* this block fixes any misconfiguration where we know we run into trouble otherwise */
249 348
250#ifndef CLOCK_MONOTONIC 349#ifndef CLOCK_MONOTONIC
267# include <sys/select.h> 366# include <sys/select.h>
268# endif 367# endif
269#endif 368#endif
270 369
271#if EV_USE_INOTIFY 370#if EV_USE_INOTIFY
371# include <sys/utsname.h>
372# include <sys/statfs.h>
272# include <sys/inotify.h> 373# include <sys/inotify.h>
374/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
375# ifndef IN_DONT_FOLLOW
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378# endif
273#endif 379#endif
274 380
275#if EV_SELECT_IS_WINSOCKET 381#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h> 382# include <winsock.h>
277#endif 383#endif
278 384
279#if EV_USE_EVENTFD 385#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 386/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 387# include <stdint.h>
388# ifndef EFD_NONBLOCK
389# define EFD_NONBLOCK O_NONBLOCK
390# endif
391# ifndef EFD_CLOEXEC
392# ifdef O_CLOEXEC
393# define EFD_CLOEXEC O_CLOEXEC
394# else
395# define EFD_CLOEXEC 02000000
396# endif
397# endif
282# ifdef __cplusplus 398# ifdef __cplusplus
283extern "C" { 399extern "C" {
284# endif 400# endif
285int eventfd (unsigned int initval, int flags); 401int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus 402# ifdef __cplusplus
287} 403}
288# endif 404# endif
289#endif 405#endif
290 406
407#if EV_USE_SIGNALFD
408/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
409# include <stdint.h>
410# ifndef SFD_NONBLOCK
411# define SFD_NONBLOCK O_NONBLOCK
412# endif
413# ifndef SFD_CLOEXEC
414# ifdef O_CLOEXEC
415# define SFD_CLOEXEC O_CLOEXEC
416# else
417# define SFD_CLOEXEC 02000000
418# endif
419# endif
420# ifdef __cplusplus
421extern "C" {
422# endif
423int signalfd (int fd, const sigset_t *mask, int flags);
424
425struct signalfd_siginfo
426{
427 uint32_t ssi_signo;
428 char pad[128 - sizeof (uint32_t)];
429};
430# ifdef __cplusplus
431}
432# endif
433#endif
434
435
291/**/ 436/**/
437
438#if EV_VERIFY >= 3
439# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
440#else
441# define EV_FREQUENT_CHECK do { } while (0)
442#endif
292 443
293/* 444/*
294 * This is used to avoid floating point rounding problems. 445 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics 446 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding 447 * to ensure progress, time-wise, even when rounding
300 */ 451 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 452#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
302 453
303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 454#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 455#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
306 456
307#if __GNUC__ >= 4 457#if __GNUC__ >= 4
308# define expect(expr,value) __builtin_expect ((expr),(value)) 458# define expect(expr,value) __builtin_expect ((expr),(value))
309# define noinline __attribute__ ((noinline)) 459# define noinline __attribute__ ((noinline))
310#else 460#else
323# define inline_speed static noinline 473# define inline_speed static noinline
324#else 474#else
325# define inline_speed static inline 475# define inline_speed static inline
326#endif 476#endif
327 477
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 478#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
479
480#if EV_MINPRI == EV_MAXPRI
481# define ABSPRI(w) (((W)w), 0)
482#else
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 483# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
484#endif
330 485
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 486#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 487#define EMPTY2(a,b) /* used to suppress some warnings */
333 488
334typedef ev_watcher *W; 489typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 491typedef ev_watcher_time *WT;
337 492
338#define ev_active(w) ((W)(w))->active 493#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 494#define ev_at(w) ((WT)(w))->at
340 495
341#if EV_USE_MONOTONIC 496#if EV_USE_REALTIME
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 497/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */ 498/* giving it a reasonably high chance of working on typical architetcures */
499static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
500#endif
501
502#if EV_USE_MONOTONIC
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 503static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
504#endif
505
506#ifndef EV_FD_TO_WIN32_HANDLE
507# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
508#endif
509#ifndef EV_WIN32_HANDLE_TO_FD
510# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
511#endif
512#ifndef EV_WIN32_CLOSE_FD
513# define EV_WIN32_CLOSE_FD(fd) close (fd)
345#endif 514#endif
346 515
347#ifdef _WIN32 516#ifdef _WIN32
348# include "ev_win32.c" 517# include "ev_win32.c"
349#endif 518#endif
357{ 526{
358 syserr_cb = cb; 527 syserr_cb = cb;
359} 528}
360 529
361static void noinline 530static void noinline
362syserr (const char *msg) 531ev_syserr (const char *msg)
363{ 532{
364 if (!msg) 533 if (!msg)
365 msg = "(libev) system error"; 534 msg = "(libev) system error";
366 535
367 if (syserr_cb) 536 if (syserr_cb)
413#define ev_malloc(size) ev_realloc (0, (size)) 582#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 583#define ev_free(ptr) ev_realloc ((ptr), 0)
415 584
416/*****************************************************************************/ 585/*****************************************************************************/
417 586
587/* set in reify when reification needed */
588#define EV_ANFD_REIFY 1
589
590/* file descriptor info structure */
418typedef struct 591typedef struct
419{ 592{
420 WL head; 593 WL head;
421 unsigned char events; 594 unsigned char events; /* the events watched for */
595 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
596 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 597 unsigned char unused;
598#if EV_USE_EPOLL
599 unsigned int egen; /* generation counter to counter epoll bugs */
600#endif
423#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
424 SOCKET handle; 602 SOCKET handle;
425#endif 603#endif
426} ANFD; 604} ANFD;
427 605
606/* stores the pending event set for a given watcher */
428typedef struct 607typedef struct
429{ 608{
430 W w; 609 W w;
431 int events; 610 int events; /* the pending event set for the given watcher */
432} ANPENDING; 611} ANPENDING;
433 612
434#if EV_USE_INOTIFY 613#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 614/* hash table entry per inotify-id */
436typedef struct 615typedef struct
439} ANFS; 618} ANFS;
440#endif 619#endif
441 620
442/* Heap Entry */ 621/* Heap Entry */
443#if EV_HEAP_CACHE_AT 622#if EV_HEAP_CACHE_AT
623 /* a heap element */
444 typedef struct { 624 typedef struct {
445 ev_tstamp at; 625 ev_tstamp at;
446 WT w; 626 WT w;
447 } ANHE; 627 } ANHE;
448 628
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 629 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 630 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 631 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 632#else
633 /* a heap element */
453 typedef WT ANHE; 634 typedef WT ANHE;
454 635
455 #define ANHE_w(he) (he) 636 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 637 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 638 #define ANHE_at_cache(he)
458#endif 639#endif
459 640
460#if EV_MULTIPLICITY 641#if EV_MULTIPLICITY
461 642
462 struct ev_loop 643 struct ev_loop
481 662
482 static int ev_default_loop_ptr; 663 static int ev_default_loop_ptr;
483 664
484#endif 665#endif
485 666
667#if EV_MINIMAL < 2
668# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
669# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
670# define EV_INVOKE_PENDING invoke_cb (EV_A)
671#else
672# define EV_RELEASE_CB (void)0
673# define EV_ACQUIRE_CB (void)0
674# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
675#endif
676
677#define EVUNLOOP_RECURSE 0x80
678
486/*****************************************************************************/ 679/*****************************************************************************/
487 680
681#ifndef EV_HAVE_EV_TIME
488ev_tstamp 682ev_tstamp
489ev_time (void) 683ev_time (void)
490{ 684{
491#if EV_USE_REALTIME 685#if EV_USE_REALTIME
686 if (expect_true (have_realtime))
687 {
492 struct timespec ts; 688 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 689 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 690 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 691 }
692#endif
693
496 struct timeval tv; 694 struct timeval tv;
497 gettimeofday (&tv, 0); 695 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 696 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 697}
698#endif
501 699
502ev_tstamp inline_size 700inline_size ev_tstamp
503get_clock (void) 701get_clock (void)
504{ 702{
505#if EV_USE_MONOTONIC 703#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 704 if (expect_true (have_monotonic))
507 { 705 {
540 struct timeval tv; 738 struct timeval tv;
541 739
542 tv.tv_sec = (time_t)delay; 740 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 741 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544 742
743 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
744 /* something not guaranteed by newer posix versions, but guaranteed */
745 /* by older ones */
545 select (0, 0, 0, 0, &tv); 746 select (0, 0, 0, 0, &tv);
546#endif 747#endif
547 } 748 }
548} 749}
549 750
550/*****************************************************************************/ 751/*****************************************************************************/
551 752
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 753#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 754
554int inline_size 755/* find a suitable new size for the given array, */
756/* hopefully by rounding to a ncie-to-malloc size */
757inline_size int
555array_nextsize (int elem, int cur, int cnt) 758array_nextsize (int elem, int cur, int cnt)
556{ 759{
557 int ncur = cur + 1; 760 int ncur = cur + 1;
558 761
559 do 762 do
576array_realloc (int elem, void *base, int *cur, int cnt) 779array_realloc (int elem, void *base, int *cur, int cnt)
577{ 780{
578 *cur = array_nextsize (elem, *cur, cnt); 781 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 782 return ev_realloc (base, elem * *cur);
580} 783}
784
785#define array_init_zero(base,count) \
786 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 787
582#define array_needsize(type,base,cur,cnt,init) \ 788#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 789 if (expect_false ((cnt) > (cur))) \
584 { \ 790 { \
585 int ocur_ = (cur); \ 791 int ocur_ = (cur); \
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 803 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 804 }
599#endif 805#endif
600 806
601#define array_free(stem, idx) \ 807#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 808 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 809
604/*****************************************************************************/ 810/*****************************************************************************/
811
812/* dummy callback for pending events */
813static void noinline
814pendingcb (EV_P_ ev_prepare *w, int revents)
815{
816}
605 817
606void noinline 818void noinline
607ev_feed_event (EV_P_ void *w, int revents) 819ev_feed_event (EV_P_ void *w, int revents)
608{ 820{
609 W w_ = (W)w; 821 W w_ = (W)w;
618 pendings [pri][w_->pending - 1].w = w_; 830 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 831 pendings [pri][w_->pending - 1].events = revents;
620 } 832 }
621} 833}
622 834
623void inline_speed 835inline_speed void
836feed_reverse (EV_P_ W w)
837{
838 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
839 rfeeds [rfeedcnt++] = w;
840}
841
842inline_size void
843feed_reverse_done (EV_P_ int revents)
844{
845 do
846 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
847 while (rfeedcnt);
848}
849
850inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 851queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 852{
626 int i; 853 int i;
627 854
628 for (i = 0; i < eventcnt; ++i) 855 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 856 ev_feed_event (EV_A_ events [i], type);
630} 857}
631 858
632/*****************************************************************************/ 859/*****************************************************************************/
633 860
634void inline_size 861inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 862fd_event_nc (EV_P_ int fd, int revents)
649{ 863{
650 ANFD *anfd = anfds + fd; 864 ANFD *anfd = anfds + fd;
651 ev_io *w; 865 ev_io *w;
652 866
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 867 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 871 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 872 ev_feed_event (EV_A_ (W)w, ev);
659 } 873 }
660} 874}
661 875
876/* do not submit kernel events for fds that have reify set */
877/* because that means they changed while we were polling for new events */
878inline_speed void
879fd_event (EV_P_ int fd, int revents)
880{
881 ANFD *anfd = anfds + fd;
882
883 if (expect_true (!anfd->reify))
884 fd_event_nc (EV_A_ fd, revents);
885}
886
662void 887void
663ev_feed_fd_event (EV_P_ int fd, int revents) 888ev_feed_fd_event (EV_P_ int fd, int revents)
664{ 889{
665 if (fd >= 0 && fd < anfdmax) 890 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 891 fd_event_nc (EV_A_ fd, revents);
667} 892}
668 893
669void inline_size 894/* make sure the external fd watch events are in-sync */
895/* with the kernel/libev internal state */
896inline_size void
670fd_reify (EV_P) 897fd_reify (EV_P)
671{ 898{
672 int i; 899 int i;
673 900
674 for (i = 0; i < fdchangecnt; ++i) 901 for (i = 0; i < fdchangecnt; ++i)
683 events |= (unsigned char)w->events; 910 events |= (unsigned char)w->events;
684 911
685#if EV_SELECT_IS_WINSOCKET 912#if EV_SELECT_IS_WINSOCKET
686 if (events) 913 if (events)
687 { 914 {
688 unsigned long argp; 915 unsigned long arg;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 916 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
692 anfd->handle = _get_osfhandle (fd);
693 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 917 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
695 } 918 }
696#endif 919#endif
697 920
698 { 921 {
699 unsigned char o_events = anfd->events; 922 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify; 923 unsigned char o_reify = anfd->reify;
701 924
702 anfd->reify = 0; 925 anfd->reify = 0;
703 anfd->events = events; 926 anfd->events = events;
704 927
705 if (o_events != events || o_reify & EV_IOFDSET) 928 if (o_events != events || o_reify & EV__IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 929 backend_modify (EV_A_ fd, o_events, events);
707 } 930 }
708 } 931 }
709 932
710 fdchangecnt = 0; 933 fdchangecnt = 0;
711} 934}
712 935
713void inline_size 936/* something about the given fd changed */
937inline_size void
714fd_change (EV_P_ int fd, int flags) 938fd_change (EV_P_ int fd, int flags)
715{ 939{
716 unsigned char reify = anfds [fd].reify; 940 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 941 anfds [fd].reify |= flags;
718 942
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 946 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 947 fdchanges [fdchangecnt - 1] = fd;
724 } 948 }
725} 949}
726 950
727void inline_speed 951/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
952inline_speed void
728fd_kill (EV_P_ int fd) 953fd_kill (EV_P_ int fd)
729{ 954{
730 ev_io *w; 955 ev_io *w;
731 956
732 while ((w = (ev_io *)anfds [fd].head)) 957 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 959 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 960 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 961 }
737} 962}
738 963
739int inline_size 964/* check whether the given fd is atcually valid, for error recovery */
965inline_size int
740fd_valid (int fd) 966fd_valid (int fd)
741{ 967{
742#ifdef _WIN32 968#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 969 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
744#else 970#else
745 return fcntl (fd, F_GETFD) != -1; 971 return fcntl (fd, F_GETFD) != -1;
746#endif 972#endif
747} 973}
748 974
752{ 978{
753 int fd; 979 int fd;
754 980
755 for (fd = 0; fd < anfdmax; ++fd) 981 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 982 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 983 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 984 fd_kill (EV_A_ fd);
759} 985}
760 986
761/* called on ENOMEM in select/poll to kill some fds and retry */ 987/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 988static void noinline
766 992
767 for (fd = anfdmax; fd--; ) 993 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events) 994 if (anfds [fd].events)
769 { 995 {
770 fd_kill (EV_A_ fd); 996 fd_kill (EV_A_ fd);
771 return; 997 break;
772 } 998 }
773} 999}
774 1000
775/* usually called after fork if backend needs to re-arm all fds from scratch */ 1001/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline 1002static void noinline
780 1006
781 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 1008 if (anfds [fd].events)
783 { 1009 {
784 anfds [fd].events = 0; 1010 anfds [fd].events = 0;
1011 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1012 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 1013 }
787} 1014}
788 1015
789/*****************************************************************************/ 1016/*****************************************************************************/
790 1017
803#if EV_USE_4HEAP 1030#if EV_USE_4HEAP
804 1031
805#define DHEAP 4 1032#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1033#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1034#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808 1035#define UPHEAP_DONE(p,k) ((p) == (k))
809/* towards the root */
810void inline_speed
811upheap (ANHE *heap, int k)
812{
813 ANHE he = heap [k];
814
815 for (;;)
816 {
817 int p = HPARENT (k);
818
819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
820 break;
821
822 heap [k] = heap [p];
823 ev_active (ANHE_w (heap [k])) = k;
824 k = p;
825 }
826
827 heap [k] = he;
828 ev_active (ANHE_w (he)) = k;
829}
830 1036
831/* away from the root */ 1037/* away from the root */
832void inline_speed 1038inline_speed void
833downheap (ANHE *heap, int N, int k) 1039downheap (ANHE *heap, int N, int k)
834{ 1040{
835 ANHE he = heap [k]; 1041 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0; 1042 ANHE *E = heap + N + HEAP0;
837 1043
838 for (;;) 1044 for (;;)
839 { 1045 {
840 ev_tstamp minat; 1046 ev_tstamp minat;
841 ANHE *minpos; 1047 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1048 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
843 1049
844 // find minimum child 1050 /* find minimum child */
845 if (expect_true (pos + DHEAP - 1 < E)) 1051 if (expect_true (pos + DHEAP - 1 < E))
846 { 1052 {
847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1053 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1054 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1055 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 1076
871 heap [k] = he; 1077 heap [k] = he;
872 ev_active (ANHE_w (he)) = k; 1078 ev_active (ANHE_w (he)) = k;
873} 1079}
874 1080
875#else // 4HEAP 1081#else /* 4HEAP */
876 1082
877#define HEAP0 1 1083#define HEAP0 1
878#define HPARENT(k) ((k) >> 1) 1084#define HPARENT(k) ((k) >> 1)
1085#define UPHEAP_DONE(p,k) (!(p))
879 1086
880/* towards the root */ 1087/* away from the root */
881void inline_speed 1088inline_speed void
882upheap (ANHE *heap, int k) 1089downheap (ANHE *heap, int N, int k)
883{ 1090{
884 ANHE he = heap [k]; 1091 ANHE he = heap [k];
885 1092
886 for (;;) 1093 for (;;)
887 { 1094 {
888 int p = HPARENT (k); 1095 int c = k << 1;
889 1096
890 /* maybe we could use a dummy element at heap [0]? */ 1097 if (c >= N + HEAP0)
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break; 1098 break;
893 1099
894 heap [k] = heap [p];
895 ev_active (ANHE_w (heap [k])) = k;
896 k = p;
897 }
898
899 heap [k] = he;
900 ev_active (ANHE_w (heap [k])) = k;
901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
908
909 for (;;)
910 {
911 int c = k << 1;
912
913 if (c > N)
914 break;
915
916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1100 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
917 ? 1 : 0; 1101 ? 1 : 0;
918 1102
919 if (ANHE_at (he) <= ANHE_at (heap [c])) 1103 if (ANHE_at (he) <= ANHE_at (heap [c]))
920 break; 1104 break;
921 1105
928 heap [k] = he; 1112 heap [k] = he;
929 ev_active (ANHE_w (he)) = k; 1113 ev_active (ANHE_w (he)) = k;
930} 1114}
931#endif 1115#endif
932 1116
933void inline_size 1117/* towards the root */
1118inline_speed void
1119upheap (ANHE *heap, int k)
1120{
1121 ANHE he = heap [k];
1122
1123 for (;;)
1124 {
1125 int p = HPARENT (k);
1126
1127 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1128 break;
1129
1130 heap [k] = heap [p];
1131 ev_active (ANHE_w (heap [k])) = k;
1132 k = p;
1133 }
1134
1135 heap [k] = he;
1136 ev_active (ANHE_w (he)) = k;
1137}
1138
1139/* move an element suitably so it is in a correct place */
1140inline_size void
934adjustheap (ANHE *heap, int N, int k) 1141adjustheap (ANHE *heap, int N, int k)
935{ 1142{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1143 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
937 upheap (heap, k); 1144 upheap (heap, k);
938 else 1145 else
939 downheap (heap, N, k); 1146 downheap (heap, N, k);
940} 1147}
941 1148
1149/* rebuild the heap: this function is used only once and executed rarely */
1150inline_size void
1151reheap (ANHE *heap, int N)
1152{
1153 int i;
1154
1155 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1156 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1157 for (i = 0; i < N; ++i)
1158 upheap (heap, i + HEAP0);
1159}
1160
942/*****************************************************************************/ 1161/*****************************************************************************/
943 1162
1163/* associate signal watchers to a signal signal */
944typedef struct 1164typedef struct
945{ 1165{
1166 EV_ATOMIC_T pending;
1167#if EV_MULTIPLICITY
1168 EV_P;
1169#endif
946 WL head; 1170 WL head;
947 EV_ATOMIC_T gotsig;
948} ANSIG; 1171} ANSIG;
949 1172
950static ANSIG *signals; 1173static ANSIG signals [EV_NSIG - 1];
951static int signalmax;
952
953static EV_ATOMIC_T gotsig;
954
955void inline_size
956signals_init (ANSIG *base, int count)
957{
958 while (count--)
959 {
960 base->head = 0;
961 base->gotsig = 0;
962
963 ++base;
964 }
965}
966 1174
967/*****************************************************************************/ 1175/*****************************************************************************/
968 1176
969void inline_speed 1177/* used to prepare libev internal fd's */
1178/* this is not fork-safe */
1179inline_speed void
970fd_intern (int fd) 1180fd_intern (int fd)
971{ 1181{
972#ifdef _WIN32 1182#ifdef _WIN32
973 int arg = 1; 1183 unsigned long arg = 1;
974 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1184 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
975#else 1185#else
976 fcntl (fd, F_SETFD, FD_CLOEXEC); 1186 fcntl (fd, F_SETFD, FD_CLOEXEC);
977 fcntl (fd, F_SETFL, O_NONBLOCK); 1187 fcntl (fd, F_SETFL, O_NONBLOCK);
978#endif 1188#endif
979} 1189}
980 1190
981static void noinline 1191static void noinline
982evpipe_init (EV_P) 1192evpipe_init (EV_P)
983{ 1193{
984 if (!ev_is_active (&pipeev)) 1194 if (!ev_is_active (&pipe_w))
985 { 1195 {
986#if EV_USE_EVENTFD 1196#if EV_USE_EVENTFD
1197 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1198 if (evfd < 0 && errno == EINVAL)
987 if ((evfd = eventfd (0, 0)) >= 0) 1199 evfd = eventfd (0, 0);
1200
1201 if (evfd >= 0)
988 { 1202 {
989 evpipe [0] = -1; 1203 evpipe [0] = -1;
990 fd_intern (evfd); 1204 fd_intern (evfd); /* doing it twice doesn't hurt */
991 ev_io_set (&pipeev, evfd, EV_READ); 1205 ev_io_set (&pipe_w, evfd, EV_READ);
992 } 1206 }
993 else 1207 else
994#endif 1208#endif
995 { 1209 {
996 while (pipe (evpipe)) 1210 while (pipe (evpipe))
997 syserr ("(libev) error creating signal/async pipe"); 1211 ev_syserr ("(libev) error creating signal/async pipe");
998 1212
999 fd_intern (evpipe [0]); 1213 fd_intern (evpipe [0]);
1000 fd_intern (evpipe [1]); 1214 fd_intern (evpipe [1]);
1001 ev_io_set (&pipeev, evpipe [0], EV_READ); 1215 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1002 } 1216 }
1003 1217
1004 ev_io_start (EV_A_ &pipeev); 1218 ev_io_start (EV_A_ &pipe_w);
1005 ev_unref (EV_A); /* watcher should not keep loop alive */ 1219 ev_unref (EV_A); /* watcher should not keep loop alive */
1006 } 1220 }
1007} 1221}
1008 1222
1009void inline_size 1223inline_size void
1010evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1224evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1011{ 1225{
1012 if (!*flag) 1226 if (!*flag)
1013 { 1227 {
1014 int old_errno = errno; /* save errno because write might clobber it */ 1228 int old_errno = errno; /* save errno because write might clobber it */
1027 1241
1028 errno = old_errno; 1242 errno = old_errno;
1029 } 1243 }
1030} 1244}
1031 1245
1246/* called whenever the libev signal pipe */
1247/* got some events (signal, async) */
1032static void 1248static void
1033pipecb (EV_P_ ev_io *iow, int revents) 1249pipecb (EV_P_ ev_io *iow, int revents)
1034{ 1250{
1251 int i;
1252
1035#if EV_USE_EVENTFD 1253#if EV_USE_EVENTFD
1036 if (evfd >= 0) 1254 if (evfd >= 0)
1037 { 1255 {
1038 uint64_t counter; 1256 uint64_t counter;
1039 read (evfd, &counter, sizeof (uint64_t)); 1257 read (evfd, &counter, sizeof (uint64_t));
1043 { 1261 {
1044 char dummy; 1262 char dummy;
1045 read (evpipe [0], &dummy, 1); 1263 read (evpipe [0], &dummy, 1);
1046 } 1264 }
1047 1265
1048 if (gotsig && ev_is_default_loop (EV_A)) 1266 if (sig_pending)
1049 { 1267 {
1050 int signum; 1268 sig_pending = 0;
1051 gotsig = 0;
1052 1269
1053 for (signum = signalmax; signum--; ) 1270 for (i = EV_NSIG - 1; i--; )
1054 if (signals [signum].gotsig) 1271 if (expect_false (signals [i].pending))
1055 ev_feed_signal_event (EV_A_ signum + 1); 1272 ev_feed_signal_event (EV_A_ i + 1);
1056 } 1273 }
1057 1274
1058#if EV_ASYNC_ENABLE 1275#if EV_ASYNC_ENABLE
1059 if (gotasync) 1276 if (async_pending)
1060 { 1277 {
1061 int i; 1278 async_pending = 0;
1062 gotasync = 0;
1063 1279
1064 for (i = asynccnt; i--; ) 1280 for (i = asynccnt; i--; )
1065 if (asyncs [i]->sent) 1281 if (asyncs [i]->sent)
1066 { 1282 {
1067 asyncs [i]->sent = 0; 1283 asyncs [i]->sent = 0;
1075 1291
1076static void 1292static void
1077ev_sighandler (int signum) 1293ev_sighandler (int signum)
1078{ 1294{
1079#if EV_MULTIPLICITY 1295#if EV_MULTIPLICITY
1080 struct ev_loop *loop = &default_loop_struct; 1296 EV_P = signals [signum - 1].loop;
1081#endif 1297#endif
1082 1298
1083#if _WIN32 1299#ifdef _WIN32
1084 signal (signum, ev_sighandler); 1300 signal (signum, ev_sighandler);
1085#endif 1301#endif
1086 1302
1087 signals [signum - 1].gotsig = 1; 1303 signals [signum - 1].pending = 1;
1088 evpipe_write (EV_A_ &gotsig); 1304 evpipe_write (EV_A_ &sig_pending);
1089} 1305}
1090 1306
1091void noinline 1307void noinline
1092ev_feed_signal_event (EV_P_ int signum) 1308ev_feed_signal_event (EV_P_ int signum)
1093{ 1309{
1094 WL w; 1310 WL w;
1095 1311
1312 if (expect_false (signum <= 0 || signum > EV_NSIG))
1313 return;
1314
1315 --signum;
1316
1096#if EV_MULTIPLICITY 1317#if EV_MULTIPLICITY
1097 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1318 /* it is permissible to try to feed a signal to the wrong loop */
1098#endif 1319 /* or, likely more useful, feeding a signal nobody is waiting for */
1099 1320
1100 --signum; 1321 if (expect_false (signals [signum].loop != EV_A))
1101
1102 if (signum < 0 || signum >= signalmax)
1103 return; 1322 return;
1323#endif
1104 1324
1105 signals [signum].gotsig = 0; 1325 signals [signum].pending = 0;
1106 1326
1107 for (w = signals [signum].head; w; w = w->next) 1327 for (w = signals [signum].head; w; w = w->next)
1108 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1328 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1109} 1329}
1110 1330
1331#if EV_USE_SIGNALFD
1332static void
1333sigfdcb (EV_P_ ev_io *iow, int revents)
1334{
1335 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1336
1337 for (;;)
1338 {
1339 ssize_t res = read (sigfd, si, sizeof (si));
1340
1341 /* not ISO-C, as res might be -1, but works with SuS */
1342 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1343 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1344
1345 if (res < (ssize_t)sizeof (si))
1346 break;
1347 }
1348}
1349#endif
1350
1111/*****************************************************************************/ 1351/*****************************************************************************/
1112 1352
1113static WL childs [EV_PID_HASHSIZE]; 1353static WL childs [EV_PID_HASHSIZE];
1114 1354
1115#ifndef _WIN32 1355#ifndef _WIN32
1118 1358
1119#ifndef WIFCONTINUED 1359#ifndef WIFCONTINUED
1120# define WIFCONTINUED(status) 0 1360# define WIFCONTINUED(status) 0
1121#endif 1361#endif
1122 1362
1123void inline_speed 1363/* handle a single child status event */
1364inline_speed void
1124child_reap (EV_P_ int chain, int pid, int status) 1365child_reap (EV_P_ int chain, int pid, int status)
1125{ 1366{
1126 ev_child *w; 1367 ev_child *w;
1127 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1368 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1128 1369
1141 1382
1142#ifndef WCONTINUED 1383#ifndef WCONTINUED
1143# define WCONTINUED 0 1384# define WCONTINUED 0
1144#endif 1385#endif
1145 1386
1387/* called on sigchld etc., calls waitpid */
1146static void 1388static void
1147childcb (EV_P_ ev_signal *sw, int revents) 1389childcb (EV_P_ ev_signal *sw, int revents)
1148{ 1390{
1149 int pid, status; 1391 int pid, status;
1150 1392
1231 /* kqueue is borked on everything but netbsd apparently */ 1473 /* kqueue is borked on everything but netbsd apparently */
1232 /* it usually doesn't work correctly on anything but sockets and pipes */ 1474 /* it usually doesn't work correctly on anything but sockets and pipes */
1233 flags &= ~EVBACKEND_KQUEUE; 1475 flags &= ~EVBACKEND_KQUEUE;
1234#endif 1476#endif
1235#ifdef __APPLE__ 1477#ifdef __APPLE__
1236 // flags &= ~EVBACKEND_KQUEUE; for documentation 1478 /* only select works correctly on that "unix-certified" platform */
1237 flags &= ~EVBACKEND_POLL; 1479 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1480 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1238#endif 1481#endif
1239 1482
1240 return flags; 1483 return flags;
1241} 1484}
1242 1485
1256ev_backend (EV_P) 1499ev_backend (EV_P)
1257{ 1500{
1258 return backend; 1501 return backend;
1259} 1502}
1260 1503
1504#if EV_MINIMAL < 2
1261unsigned int 1505unsigned int
1262ev_loop_count (EV_P) 1506ev_loop_count (EV_P)
1263{ 1507{
1264 return loop_count; 1508 return loop_count;
1265} 1509}
1266 1510
1511unsigned int
1512ev_loop_depth (EV_P)
1513{
1514 return loop_depth;
1515}
1516
1267void 1517void
1268ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1518ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1269{ 1519{
1270 io_blocktime = interval; 1520 io_blocktime = interval;
1271} 1521}
1274ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1524ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1275{ 1525{
1276 timeout_blocktime = interval; 1526 timeout_blocktime = interval;
1277} 1527}
1278 1528
1529void
1530ev_set_userdata (EV_P_ void *data)
1531{
1532 userdata = data;
1533}
1534
1535void *
1536ev_userdata (EV_P)
1537{
1538 return userdata;
1539}
1540
1541void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1542{
1543 invoke_cb = invoke_pending_cb;
1544}
1545
1546void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1547{
1548 release_cb = release;
1549 acquire_cb = acquire;
1550}
1551#endif
1552
1553/* initialise a loop structure, must be zero-initialised */
1279static void noinline 1554static void noinline
1280loop_init (EV_P_ unsigned int flags) 1555loop_init (EV_P_ unsigned int flags)
1281{ 1556{
1282 if (!backend) 1557 if (!backend)
1283 { 1558 {
1559#if EV_USE_REALTIME
1560 if (!have_realtime)
1561 {
1562 struct timespec ts;
1563
1564 if (!clock_gettime (CLOCK_REALTIME, &ts))
1565 have_realtime = 1;
1566 }
1567#endif
1568
1284#if EV_USE_MONOTONIC 1569#if EV_USE_MONOTONIC
1570 if (!have_monotonic)
1285 { 1571 {
1286 struct timespec ts; 1572 struct timespec ts;
1573
1287 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1574 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1288 have_monotonic = 1; 1575 have_monotonic = 1;
1289 } 1576 }
1290#endif 1577#endif
1578
1579 /* pid check not overridable via env */
1580#ifndef _WIN32
1581 if (flags & EVFLAG_FORKCHECK)
1582 curpid = getpid ();
1583#endif
1584
1585 if (!(flags & EVFLAG_NOENV)
1586 && !enable_secure ()
1587 && getenv ("LIBEV_FLAGS"))
1588 flags = atoi (getenv ("LIBEV_FLAGS"));
1291 1589
1292 ev_rt_now = ev_time (); 1590 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1591 mn_now = get_clock ();
1294 now_floor = mn_now; 1592 now_floor = mn_now;
1295 rtmn_diff = ev_rt_now - mn_now; 1593 rtmn_diff = ev_rt_now - mn_now;
1594#if EV_MINIMAL < 2
1595 invoke_cb = ev_invoke_pending;
1596#endif
1296 1597
1297 io_blocktime = 0.; 1598 io_blocktime = 0.;
1298 timeout_blocktime = 0.; 1599 timeout_blocktime = 0.;
1299 backend = 0; 1600 backend = 0;
1300 backend_fd = -1; 1601 backend_fd = -1;
1301 gotasync = 0; 1602 sig_pending = 0;
1603#if EV_ASYNC_ENABLE
1604 async_pending = 0;
1605#endif
1302#if EV_USE_INOTIFY 1606#if EV_USE_INOTIFY
1303 fs_fd = -2; 1607 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1304#endif 1608#endif
1305 1609#if EV_USE_SIGNALFD
1306 /* pid check not overridable via env */ 1610 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1307#ifndef _WIN32
1308 if (flags & EVFLAG_FORKCHECK)
1309 curpid = getpid ();
1310#endif 1611#endif
1311
1312 if (!(flags & EVFLAG_NOENV)
1313 && !enable_secure ()
1314 && getenv ("LIBEV_FLAGS"))
1315 flags = atoi (getenv ("LIBEV_FLAGS"));
1316 1612
1317 if (!(flags & 0x0000ffffU)) 1613 if (!(flags & 0x0000ffffU))
1318 flags |= ev_recommended_backends (); 1614 flags |= ev_recommended_backends ();
1319 1615
1320#if EV_USE_PORT 1616#if EV_USE_PORT
1331#endif 1627#endif
1332#if EV_USE_SELECT 1628#if EV_USE_SELECT
1333 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1629 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1334#endif 1630#endif
1335 1631
1632 ev_prepare_init (&pending_w, pendingcb);
1633
1336 ev_init (&pipeev, pipecb); 1634 ev_init (&pipe_w, pipecb);
1337 ev_set_priority (&pipeev, EV_MAXPRI); 1635 ev_set_priority (&pipe_w, EV_MAXPRI);
1338 } 1636 }
1339} 1637}
1340 1638
1639/* free up a loop structure */
1341static void noinline 1640static void noinline
1342loop_destroy (EV_P) 1641loop_destroy (EV_P)
1343{ 1642{
1344 int i; 1643 int i;
1345 1644
1346 if (ev_is_active (&pipeev)) 1645 if (ev_is_active (&pipe_w))
1347 { 1646 {
1348 ev_ref (EV_A); /* signal watcher */ 1647 /*ev_ref (EV_A);*/
1349 ev_io_stop (EV_A_ &pipeev); 1648 /*ev_io_stop (EV_A_ &pipe_w);*/
1350 1649
1351#if EV_USE_EVENTFD 1650#if EV_USE_EVENTFD
1352 if (evfd >= 0) 1651 if (evfd >= 0)
1353 close (evfd); 1652 close (evfd);
1354#endif 1653#endif
1355 1654
1356 if (evpipe [0] >= 0) 1655 if (evpipe [0] >= 0)
1357 { 1656 {
1358 close (evpipe [0]); 1657 EV_WIN32_CLOSE_FD (evpipe [0]);
1359 close (evpipe [1]); 1658 EV_WIN32_CLOSE_FD (evpipe [1]);
1360 } 1659 }
1361 } 1660 }
1661
1662#if EV_USE_SIGNALFD
1663 if (ev_is_active (&sigfd_w))
1664 close (sigfd);
1665#endif
1362 1666
1363#if EV_USE_INOTIFY 1667#if EV_USE_INOTIFY
1364 if (fs_fd >= 0) 1668 if (fs_fd >= 0)
1365 close (fs_fd); 1669 close (fs_fd);
1366#endif 1670#endif
1390#if EV_IDLE_ENABLE 1694#if EV_IDLE_ENABLE
1391 array_free (idle, [i]); 1695 array_free (idle, [i]);
1392#endif 1696#endif
1393 } 1697 }
1394 1698
1395 ev_free (anfds); anfdmax = 0; 1699 ev_free (anfds); anfds = 0; anfdmax = 0;
1396 1700
1397 /* have to use the microsoft-never-gets-it-right macro */ 1701 /* have to use the microsoft-never-gets-it-right macro */
1702 array_free (rfeed, EMPTY);
1398 array_free (fdchange, EMPTY); 1703 array_free (fdchange, EMPTY);
1399 array_free (timer, EMPTY); 1704 array_free (timer, EMPTY);
1400#if EV_PERIODIC_ENABLE 1705#if EV_PERIODIC_ENABLE
1401 array_free (periodic, EMPTY); 1706 array_free (periodic, EMPTY);
1402#endif 1707#endif
1411 1716
1412 backend = 0; 1717 backend = 0;
1413} 1718}
1414 1719
1415#if EV_USE_INOTIFY 1720#if EV_USE_INOTIFY
1416void inline_size infy_fork (EV_P); 1721inline_size void infy_fork (EV_P);
1417#endif 1722#endif
1418 1723
1419void inline_size 1724inline_size void
1420loop_fork (EV_P) 1725loop_fork (EV_P)
1421{ 1726{
1422#if EV_USE_PORT 1727#if EV_USE_PORT
1423 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1728 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1424#endif 1729#endif
1430#endif 1735#endif
1431#if EV_USE_INOTIFY 1736#if EV_USE_INOTIFY
1432 infy_fork (EV_A); 1737 infy_fork (EV_A);
1433#endif 1738#endif
1434 1739
1435 if (ev_is_active (&pipeev)) 1740 if (ev_is_active (&pipe_w))
1436 { 1741 {
1437 /* this "locks" the handlers against writing to the pipe */ 1742 /* this "locks" the handlers against writing to the pipe */
1438 /* while we modify the fd vars */ 1743 /* while we modify the fd vars */
1439 gotsig = 1; 1744 sig_pending = 1;
1440#if EV_ASYNC_ENABLE 1745#if EV_ASYNC_ENABLE
1441 gotasync = 1; 1746 async_pending = 1;
1442#endif 1747#endif
1443 1748
1444 ev_ref (EV_A); 1749 ev_ref (EV_A);
1445 ev_io_stop (EV_A_ &pipeev); 1750 ev_io_stop (EV_A_ &pipe_w);
1446 1751
1447#if EV_USE_EVENTFD 1752#if EV_USE_EVENTFD
1448 if (evfd >= 0) 1753 if (evfd >= 0)
1449 close (evfd); 1754 close (evfd);
1450#endif 1755#endif
1451 1756
1452 if (evpipe [0] >= 0) 1757 if (evpipe [0] >= 0)
1453 { 1758 {
1454 close (evpipe [0]); 1759 EV_WIN32_CLOSE_FD (evpipe [0]);
1455 close (evpipe [1]); 1760 EV_WIN32_CLOSE_FD (evpipe [1]);
1456 } 1761 }
1457 1762
1458 evpipe_init (EV_A); 1763 evpipe_init (EV_A);
1459 /* now iterate over everything, in case we missed something */ 1764 /* now iterate over everything, in case we missed something */
1460 pipecb (EV_A_ &pipeev, EV_READ); 1765 pipecb (EV_A_ &pipe_w, EV_READ);
1461 } 1766 }
1462 1767
1463 postfork = 0; 1768 postfork = 0;
1464} 1769}
1465 1770
1466#if EV_MULTIPLICITY 1771#if EV_MULTIPLICITY
1772
1467struct ev_loop * 1773struct ev_loop *
1468ev_loop_new (unsigned int flags) 1774ev_loop_new (unsigned int flags)
1469{ 1775{
1470 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1776 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1471 1777
1472 memset (loop, 0, sizeof (struct ev_loop)); 1778 memset (EV_A, 0, sizeof (struct ev_loop));
1473
1474 loop_init (EV_A_ flags); 1779 loop_init (EV_A_ flags);
1475 1780
1476 if (ev_backend (EV_A)) 1781 if (ev_backend (EV_A))
1477 return loop; 1782 return EV_A;
1478 1783
1479 return 0; 1784 return 0;
1480} 1785}
1481 1786
1482void 1787void
1488 1793
1489void 1794void
1490ev_loop_fork (EV_P) 1795ev_loop_fork (EV_P)
1491{ 1796{
1492 postfork = 1; /* must be in line with ev_default_fork */ 1797 postfork = 1; /* must be in line with ev_default_fork */
1798}
1799#endif /* multiplicity */
1800
1801#if EV_VERIFY
1802static void noinline
1803verify_watcher (EV_P_ W w)
1804{
1805 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1806
1807 if (w->pending)
1808 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1809}
1810
1811static void noinline
1812verify_heap (EV_P_ ANHE *heap, int N)
1813{
1814 int i;
1815
1816 for (i = HEAP0; i < N + HEAP0; ++i)
1817 {
1818 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1819 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1820 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1821
1822 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1823 }
1824}
1825
1826static void noinline
1827array_verify (EV_P_ W *ws, int cnt)
1828{
1829 while (cnt--)
1830 {
1831 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1832 verify_watcher (EV_A_ ws [cnt]);
1833 }
1834}
1835#endif
1836
1837#if EV_MINIMAL < 2
1838void
1839ev_loop_verify (EV_P)
1840{
1841#if EV_VERIFY
1842 int i;
1843 WL w;
1844
1845 assert (activecnt >= -1);
1846
1847 assert (fdchangemax >= fdchangecnt);
1848 for (i = 0; i < fdchangecnt; ++i)
1849 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1850
1851 assert (anfdmax >= 0);
1852 for (i = 0; i < anfdmax; ++i)
1853 for (w = anfds [i].head; w; w = w->next)
1854 {
1855 verify_watcher (EV_A_ (W)w);
1856 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1857 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1858 }
1859
1860 assert (timermax >= timercnt);
1861 verify_heap (EV_A_ timers, timercnt);
1862
1863#if EV_PERIODIC_ENABLE
1864 assert (periodicmax >= periodiccnt);
1865 verify_heap (EV_A_ periodics, periodiccnt);
1866#endif
1867
1868 for (i = NUMPRI; i--; )
1869 {
1870 assert (pendingmax [i] >= pendingcnt [i]);
1871#if EV_IDLE_ENABLE
1872 assert (idleall >= 0);
1873 assert (idlemax [i] >= idlecnt [i]);
1874 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1875#endif
1876 }
1877
1878#if EV_FORK_ENABLE
1879 assert (forkmax >= forkcnt);
1880 array_verify (EV_A_ (W *)forks, forkcnt);
1881#endif
1882
1883#if EV_ASYNC_ENABLE
1884 assert (asyncmax >= asynccnt);
1885 array_verify (EV_A_ (W *)asyncs, asynccnt);
1886#endif
1887
1888 assert (preparemax >= preparecnt);
1889 array_verify (EV_A_ (W *)prepares, preparecnt);
1890
1891 assert (checkmax >= checkcnt);
1892 array_verify (EV_A_ (W *)checks, checkcnt);
1893
1894# if 0
1895 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1896 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1897# endif
1898#endif
1493} 1899}
1494#endif 1900#endif
1495 1901
1496#if EV_MULTIPLICITY 1902#if EV_MULTIPLICITY
1497struct ev_loop * 1903struct ev_loop *
1502#endif 1908#endif
1503{ 1909{
1504 if (!ev_default_loop_ptr) 1910 if (!ev_default_loop_ptr)
1505 { 1911 {
1506#if EV_MULTIPLICITY 1912#if EV_MULTIPLICITY
1507 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1913 EV_P = ev_default_loop_ptr = &default_loop_struct;
1508#else 1914#else
1509 ev_default_loop_ptr = 1; 1915 ev_default_loop_ptr = 1;
1510#endif 1916#endif
1511 1917
1512 loop_init (EV_A_ flags); 1918 loop_init (EV_A_ flags);
1529 1935
1530void 1936void
1531ev_default_destroy (void) 1937ev_default_destroy (void)
1532{ 1938{
1533#if EV_MULTIPLICITY 1939#if EV_MULTIPLICITY
1534 struct ev_loop *loop = ev_default_loop_ptr; 1940 EV_P = ev_default_loop_ptr;
1535#endif 1941#endif
1942
1943 ev_default_loop_ptr = 0;
1536 1944
1537#ifndef _WIN32 1945#ifndef _WIN32
1538 ev_ref (EV_A); /* child watcher */ 1946 ev_ref (EV_A); /* child watcher */
1539 ev_signal_stop (EV_A_ &childev); 1947 ev_signal_stop (EV_A_ &childev);
1540#endif 1948#endif
1544 1952
1545void 1953void
1546ev_default_fork (void) 1954ev_default_fork (void)
1547{ 1955{
1548#if EV_MULTIPLICITY 1956#if EV_MULTIPLICITY
1549 struct ev_loop *loop = ev_default_loop_ptr; 1957 EV_P = ev_default_loop_ptr;
1550#endif 1958#endif
1551 1959
1552 if (backend)
1553 postfork = 1; /* must be in line with ev_loop_fork */ 1960 postfork = 1; /* must be in line with ev_loop_fork */
1554} 1961}
1555 1962
1556/*****************************************************************************/ 1963/*****************************************************************************/
1557 1964
1558void 1965void
1559ev_invoke (EV_P_ void *w, int revents) 1966ev_invoke (EV_P_ void *w, int revents)
1560{ 1967{
1561 EV_CB_INVOKE ((W)w, revents); 1968 EV_CB_INVOKE ((W)w, revents);
1562} 1969}
1563 1970
1564void inline_speed 1971unsigned int
1565call_pending (EV_P) 1972ev_pending_count (EV_P)
1973{
1974 int pri;
1975 unsigned int count = 0;
1976
1977 for (pri = NUMPRI; pri--; )
1978 count += pendingcnt [pri];
1979
1980 return count;
1981}
1982
1983void noinline
1984ev_invoke_pending (EV_P)
1566{ 1985{
1567 int pri; 1986 int pri;
1568 1987
1569 for (pri = NUMPRI; pri--; ) 1988 for (pri = NUMPRI; pri--; )
1570 while (pendingcnt [pri]) 1989 while (pendingcnt [pri])
1571 { 1990 {
1572 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1991 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1573 1992
1574 if (expect_true (p->w))
1575 {
1576 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1993 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1994 /* ^ this is no longer true, as pending_w could be here */
1577 1995
1578 p->w->pending = 0; 1996 p->w->pending = 0;
1579 EV_CB_INVOKE (p->w, p->events); 1997 EV_CB_INVOKE (p->w, p->events);
1580 } 1998 EV_FREQUENT_CHECK;
1581 } 1999 }
1582} 2000}
1583 2001
1584#if EV_IDLE_ENABLE 2002#if EV_IDLE_ENABLE
1585void inline_size 2003/* make idle watchers pending. this handles the "call-idle */
2004/* only when higher priorities are idle" logic */
2005inline_size void
1586idle_reify (EV_P) 2006idle_reify (EV_P)
1587{ 2007{
1588 if (expect_false (idleall)) 2008 if (expect_false (idleall))
1589 { 2009 {
1590 int pri; 2010 int pri;
1602 } 2022 }
1603 } 2023 }
1604} 2024}
1605#endif 2025#endif
1606 2026
1607void inline_size 2027/* make timers pending */
2028inline_size void
1608timers_reify (EV_P) 2029timers_reify (EV_P)
1609{ 2030{
2031 EV_FREQUENT_CHECK;
2032
1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2033 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1611 { 2034 {
1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2035 do
1613
1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1615
1616 /* first reschedule or stop timer */
1617 if (w->repeat)
1618 { 2036 {
2037 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2038
2039 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2040
2041 /* first reschedule or stop timer */
2042 if (w->repeat)
2043 {
1619 ev_at (w) += w->repeat; 2044 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now) 2045 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now; 2046 ev_at (w) = mn_now;
1622 2047
1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2048 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1624 2049
1625 ANHE_at_set (timers [HEAP0]); 2050 ANHE_at_cache (timers [HEAP0]);
1626 downheap (timers, timercnt, HEAP0); 2051 downheap (timers, timercnt, HEAP0);
2052 }
2053 else
2054 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2055
2056 EV_FREQUENT_CHECK;
2057 feed_reverse (EV_A_ (W)w);
1627 } 2058 }
1628 else 2059 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1630 2060
1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2061 feed_reverse_done (EV_A_ EV_TIMEOUT);
1632 } 2062 }
1633} 2063}
1634 2064
1635#if EV_PERIODIC_ENABLE 2065#if EV_PERIODIC_ENABLE
1636void inline_size 2066/* make periodics pending */
2067inline_size void
1637periodics_reify (EV_P) 2068periodics_reify (EV_P)
1638{ 2069{
2070 EV_FREQUENT_CHECK;
2071
1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2072 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1640 { 2073 {
1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2074 int feed_count = 0;
1642 2075
1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2076 do
1644
1645 /* first reschedule or stop timer */
1646 if (w->reschedule_cb)
1647 { 2077 {
2078 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2079
2080 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2081
2082 /* first reschedule or stop timer */
2083 if (w->reschedule_cb)
2084 {
1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2085 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649 2086
1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2087 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651 2088
1652 ANHE_at_set (periodics [HEAP0]); 2089 ANHE_at_cache (periodics [HEAP0]);
1653 downheap (periodics, periodiccnt, HEAP0); 2090 downheap (periodics, periodiccnt, HEAP0);
2091 }
2092 else if (w->interval)
2093 {
2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 /* if next trigger time is not sufficiently in the future, put it there */
2096 /* this might happen because of floating point inexactness */
2097 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2098 {
2099 ev_at (w) += w->interval;
2100
2101 /* if interval is unreasonably low we might still have a time in the past */
2102 /* so correct this. this will make the periodic very inexact, but the user */
2103 /* has effectively asked to get triggered more often than possible */
2104 if (ev_at (w) < ev_rt_now)
2105 ev_at (w) = ev_rt_now;
2106 }
2107
2108 ANHE_at_cache (periodics [HEAP0]);
2109 downheap (periodics, periodiccnt, HEAP0);
2110 }
2111 else
2112 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2113
2114 EV_FREQUENT_CHECK;
2115 feed_reverse (EV_A_ (W)w);
1654 } 2116 }
1655 else if (w->interval) 2117 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1656 {
1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663 2118
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1672 downheap (periodics, periodiccnt, HEAP0);
1673 }
1674 else
1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1676
1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2119 feed_reverse_done (EV_A_ EV_PERIODIC);
1678 } 2120 }
1679} 2121}
1680 2122
2123/* simply recalculate all periodics */
2124/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1681static void noinline 2125static void noinline
1682periodics_reschedule (EV_P) 2126periodics_reschedule (EV_P)
1683{ 2127{
1684 int i; 2128 int i;
1685 2129
1691 if (w->reschedule_cb) 2135 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2136 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval) 2137 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2138 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695 2139
1696 ANHE_at_set (periodics [i]); 2140 ANHE_at_cache (periodics [i]);
1697 } 2141 }
1698 2142
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 2143 reheap (periodics, periodiccnt);
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 2144}
2145#endif
2146
2147/* adjust all timers by a given offset */
2148static void noinline
2149timers_reschedule (EV_P_ ev_tstamp adjust)
2150{
2151 int i;
2152
1701 for (i = 0; i < periodiccnt; ++i) 2153 for (i = 0; i < timercnt; ++i)
1702 upheap (periodics, i + HEAP0); 2154 {
2155 ANHE *he = timers + i + HEAP0;
2156 ANHE_w (*he)->at += adjust;
2157 ANHE_at_cache (*he);
2158 }
1703} 2159}
1704#endif
1705 2160
1706void inline_speed 2161/* fetch new monotonic and realtime times from the kernel */
2162/* also detect if there was a timejump, and act accordingly */
2163inline_speed void
1707time_update (EV_P_ ev_tstamp max_block) 2164time_update (EV_P_ ev_tstamp max_block)
1708{ 2165{
1709 int i;
1710
1711#if EV_USE_MONOTONIC 2166#if EV_USE_MONOTONIC
1712 if (expect_true (have_monotonic)) 2167 if (expect_true (have_monotonic))
1713 { 2168 {
2169 int i;
1714 ev_tstamp odiff = rtmn_diff; 2170 ev_tstamp odiff = rtmn_diff;
1715 2171
1716 mn_now = get_clock (); 2172 mn_now = get_clock ();
1717 2173
1718 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2174 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1744 ev_rt_now = ev_time (); 2200 ev_rt_now = ev_time ();
1745 mn_now = get_clock (); 2201 mn_now = get_clock ();
1746 now_floor = mn_now; 2202 now_floor = mn_now;
1747 } 2203 }
1748 2204
2205 /* no timer adjustment, as the monotonic clock doesn't jump */
2206 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1749# if EV_PERIODIC_ENABLE 2207# if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A); 2208 periodics_reschedule (EV_A);
1751# endif 2209# endif
1752 /* no timer adjustment, as the monotonic clock doesn't jump */
1753 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1754 } 2210 }
1755 else 2211 else
1756#endif 2212#endif
1757 { 2213 {
1758 ev_rt_now = ev_time (); 2214 ev_rt_now = ev_time ();
1759 2215
1760 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2216 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1761 { 2217 {
2218 /* adjust timers. this is easy, as the offset is the same for all of them */
2219 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1762#if EV_PERIODIC_ENABLE 2220#if EV_PERIODIC_ENABLE
1763 periodics_reschedule (EV_A); 2221 periodics_reschedule (EV_A);
1764#endif 2222#endif
1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1766 for (i = 0; i < timercnt; ++i)
1767 {
1768 ANHE *he = timers + i + HEAP0;
1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1772 } 2223 }
1773 2224
1774 mn_now = ev_rt_now; 2225 mn_now = ev_rt_now;
1775 } 2226 }
1776} 2227}
1777 2228
1778void 2229void
1779ev_ref (EV_P)
1780{
1781 ++activecnt;
1782}
1783
1784void
1785ev_unref (EV_P)
1786{
1787 --activecnt;
1788}
1789
1790static int loop_done;
1791
1792void
1793ev_loop (EV_P_ int flags) 2230ev_loop (EV_P_ int flags)
1794{ 2231{
2232#if EV_MINIMAL < 2
2233 ++loop_depth;
2234#endif
2235
2236 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2237
1795 loop_done = EVUNLOOP_CANCEL; 2238 loop_done = EVUNLOOP_CANCEL;
1796 2239
1797 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2240 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1798 2241
1799 do 2242 do
1800 { 2243 {
2244#if EV_VERIFY >= 2
2245 ev_loop_verify (EV_A);
2246#endif
2247
1801#ifndef _WIN32 2248#ifndef _WIN32
1802 if (expect_false (curpid)) /* penalise the forking check even more */ 2249 if (expect_false (curpid)) /* penalise the forking check even more */
1803 if (expect_false (getpid () != curpid)) 2250 if (expect_false (getpid () != curpid))
1804 { 2251 {
1805 curpid = getpid (); 2252 curpid = getpid ();
1811 /* we might have forked, so queue fork handlers */ 2258 /* we might have forked, so queue fork handlers */
1812 if (expect_false (postfork)) 2259 if (expect_false (postfork))
1813 if (forkcnt) 2260 if (forkcnt)
1814 { 2261 {
1815 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2262 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1816 call_pending (EV_A); 2263 EV_INVOKE_PENDING;
1817 } 2264 }
1818#endif 2265#endif
1819 2266
1820 /* queue prepare watchers (and execute them) */ 2267 /* queue prepare watchers (and execute them) */
1821 if (expect_false (preparecnt)) 2268 if (expect_false (preparecnt))
1822 { 2269 {
1823 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2270 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1824 call_pending (EV_A); 2271 EV_INVOKE_PENDING;
1825 } 2272 }
1826 2273
1827 if (expect_false (!activecnt)) 2274 if (expect_false (loop_done))
1828 break; 2275 break;
1829 2276
1830 /* we might have forked, so reify kernel state if necessary */ 2277 /* we might have forked, so reify kernel state if necessary */
1831 if (expect_false (postfork)) 2278 if (expect_false (postfork))
1832 loop_fork (EV_A); 2279 loop_fork (EV_A);
1839 ev_tstamp waittime = 0.; 2286 ev_tstamp waittime = 0.;
1840 ev_tstamp sleeptime = 0.; 2287 ev_tstamp sleeptime = 0.;
1841 2288
1842 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2289 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1843 { 2290 {
2291 /* remember old timestamp for io_blocktime calculation */
2292 ev_tstamp prev_mn_now = mn_now;
2293
1844 /* update time to cancel out callback processing overhead */ 2294 /* update time to cancel out callback processing overhead */
1845 time_update (EV_A_ 1e100); 2295 time_update (EV_A_ 1e100);
1846 2296
1847 waittime = MAX_BLOCKTIME; 2297 waittime = MAX_BLOCKTIME;
1848 2298
1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2308 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1859 if (waittime > to) waittime = to; 2309 if (waittime > to) waittime = to;
1860 } 2310 }
1861#endif 2311#endif
1862 2312
2313 /* don't let timeouts decrease the waittime below timeout_blocktime */
1863 if (expect_false (waittime < timeout_blocktime)) 2314 if (expect_false (waittime < timeout_blocktime))
1864 waittime = timeout_blocktime; 2315 waittime = timeout_blocktime;
1865 2316
1866 sleeptime = waittime - backend_fudge; 2317 /* extra check because io_blocktime is commonly 0 */
1867
1868 if (expect_true (sleeptime > io_blocktime)) 2318 if (expect_false (io_blocktime))
1869 sleeptime = io_blocktime;
1870
1871 if (sleeptime)
1872 { 2319 {
2320 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2321
2322 if (sleeptime > waittime - backend_fudge)
2323 sleeptime = waittime - backend_fudge;
2324
2325 if (expect_true (sleeptime > 0.))
2326 {
1873 ev_sleep (sleeptime); 2327 ev_sleep (sleeptime);
1874 waittime -= sleeptime; 2328 waittime -= sleeptime;
2329 }
1875 } 2330 }
1876 } 2331 }
1877 2332
2333#if EV_MINIMAL < 2
1878 ++loop_count; 2334 ++loop_count;
2335#endif
2336 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1879 backend_poll (EV_A_ waittime); 2337 backend_poll (EV_A_ waittime);
2338 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1880 2339
1881 /* update ev_rt_now, do magic */ 2340 /* update ev_rt_now, do magic */
1882 time_update (EV_A_ waittime + sleeptime); 2341 time_update (EV_A_ waittime + sleeptime);
1883 } 2342 }
1884 2343
1895 2354
1896 /* queue check watchers, to be executed first */ 2355 /* queue check watchers, to be executed first */
1897 if (expect_false (checkcnt)) 2356 if (expect_false (checkcnt))
1898 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2357 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1899 2358
1900 call_pending (EV_A); 2359 EV_INVOKE_PENDING;
1901 } 2360 }
1902 while (expect_true ( 2361 while (expect_true (
1903 activecnt 2362 activecnt
1904 && !loop_done 2363 && !loop_done
1905 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2364 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1906 )); 2365 ));
1907 2366
1908 if (loop_done == EVUNLOOP_ONE) 2367 if (loop_done == EVUNLOOP_ONE)
1909 loop_done = EVUNLOOP_CANCEL; 2368 loop_done = EVUNLOOP_CANCEL;
2369
2370#if EV_MINIMAL < 2
2371 --loop_depth;
2372#endif
1910} 2373}
1911 2374
1912void 2375void
1913ev_unloop (EV_P_ int how) 2376ev_unloop (EV_P_ int how)
1914{ 2377{
1915 loop_done = how; 2378 loop_done = how;
1916} 2379}
1917 2380
2381void
2382ev_ref (EV_P)
2383{
2384 ++activecnt;
2385}
2386
2387void
2388ev_unref (EV_P)
2389{
2390 --activecnt;
2391}
2392
2393void
2394ev_now_update (EV_P)
2395{
2396 time_update (EV_A_ 1e100);
2397}
2398
2399void
2400ev_suspend (EV_P)
2401{
2402 ev_now_update (EV_A);
2403}
2404
2405void
2406ev_resume (EV_P)
2407{
2408 ev_tstamp mn_prev = mn_now;
2409
2410 ev_now_update (EV_A);
2411 timers_reschedule (EV_A_ mn_now - mn_prev);
2412#if EV_PERIODIC_ENABLE
2413 /* TODO: really do this? */
2414 periodics_reschedule (EV_A);
2415#endif
2416}
2417
1918/*****************************************************************************/ 2418/*****************************************************************************/
2419/* singly-linked list management, used when the expected list length is short */
1919 2420
1920void inline_size 2421inline_size void
1921wlist_add (WL *head, WL elem) 2422wlist_add (WL *head, WL elem)
1922{ 2423{
1923 elem->next = *head; 2424 elem->next = *head;
1924 *head = elem; 2425 *head = elem;
1925} 2426}
1926 2427
1927void inline_size 2428inline_size void
1928wlist_del (WL *head, WL elem) 2429wlist_del (WL *head, WL elem)
1929{ 2430{
1930 while (*head) 2431 while (*head)
1931 { 2432 {
1932 if (*head == elem) 2433 if (expect_true (*head == elem))
1933 { 2434 {
1934 *head = elem->next; 2435 *head = elem->next;
1935 return; 2436 break;
1936 } 2437 }
1937 2438
1938 head = &(*head)->next; 2439 head = &(*head)->next;
1939 } 2440 }
1940} 2441}
1941 2442
1942void inline_speed 2443/* internal, faster, version of ev_clear_pending */
2444inline_speed void
1943clear_pending (EV_P_ W w) 2445clear_pending (EV_P_ W w)
1944{ 2446{
1945 if (w->pending) 2447 if (w->pending)
1946 { 2448 {
1947 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2449 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1948 w->pending = 0; 2450 w->pending = 0;
1949 } 2451 }
1950} 2452}
1951 2453
1952int 2454int
1956 int pending = w_->pending; 2458 int pending = w_->pending;
1957 2459
1958 if (expect_true (pending)) 2460 if (expect_true (pending))
1959 { 2461 {
1960 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2462 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2463 p->w = (W)&pending_w;
1961 w_->pending = 0; 2464 w_->pending = 0;
1962 p->w = 0;
1963 return p->events; 2465 return p->events;
1964 } 2466 }
1965 else 2467 else
1966 return 0; 2468 return 0;
1967} 2469}
1968 2470
1969void inline_size 2471inline_size void
1970pri_adjust (EV_P_ W w) 2472pri_adjust (EV_P_ W w)
1971{ 2473{
1972 int pri = w->priority; 2474 int pri = ev_priority (w);
1973 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2475 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1974 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2476 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1975 w->priority = pri; 2477 ev_set_priority (w, pri);
1976} 2478}
1977 2479
1978void inline_speed 2480inline_speed void
1979ev_start (EV_P_ W w, int active) 2481ev_start (EV_P_ W w, int active)
1980{ 2482{
1981 pri_adjust (EV_A_ w); 2483 pri_adjust (EV_A_ w);
1982 w->active = active; 2484 w->active = active;
1983 ev_ref (EV_A); 2485 ev_ref (EV_A);
1984} 2486}
1985 2487
1986void inline_size 2488inline_size void
1987ev_stop (EV_P_ W w) 2489ev_stop (EV_P_ W w)
1988{ 2490{
1989 ev_unref (EV_A); 2491 ev_unref (EV_A);
1990 w->active = 0; 2492 w->active = 0;
1991} 2493}
1998 int fd = w->fd; 2500 int fd = w->fd;
1999 2501
2000 if (expect_false (ev_is_active (w))) 2502 if (expect_false (ev_is_active (w)))
2001 return; 2503 return;
2002 2504
2003 assert (("ev_io_start called with negative fd", fd >= 0)); 2505 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2506 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2507
2508 EV_FREQUENT_CHECK;
2004 2509
2005 ev_start (EV_A_ (W)w, 1); 2510 ev_start (EV_A_ (W)w, 1);
2006 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2511 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2007 wlist_add (&anfds[fd].head, (WL)w); 2512 wlist_add (&anfds[fd].head, (WL)w);
2008 2513
2009 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2514 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2010 w->events &= ~EV_IOFDSET; 2515 w->events &= ~EV__IOFDSET;
2516
2517 EV_FREQUENT_CHECK;
2011} 2518}
2012 2519
2013void noinline 2520void noinline
2014ev_io_stop (EV_P_ ev_io *w) 2521ev_io_stop (EV_P_ ev_io *w)
2015{ 2522{
2016 clear_pending (EV_A_ (W)w); 2523 clear_pending (EV_A_ (W)w);
2017 if (expect_false (!ev_is_active (w))) 2524 if (expect_false (!ev_is_active (w)))
2018 return; 2525 return;
2019 2526
2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2527 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2528
2529 EV_FREQUENT_CHECK;
2021 2530
2022 wlist_del (&anfds[w->fd].head, (WL)w); 2531 wlist_del (&anfds[w->fd].head, (WL)w);
2023 ev_stop (EV_A_ (W)w); 2532 ev_stop (EV_A_ (W)w);
2024 2533
2025 fd_change (EV_A_ w->fd, 1); 2534 fd_change (EV_A_ w->fd, 1);
2535
2536 EV_FREQUENT_CHECK;
2026} 2537}
2027 2538
2028void noinline 2539void noinline
2029ev_timer_start (EV_P_ ev_timer *w) 2540ev_timer_start (EV_P_ ev_timer *w)
2030{ 2541{
2031 if (expect_false (ev_is_active (w))) 2542 if (expect_false (ev_is_active (w)))
2032 return; 2543 return;
2033 2544
2034 ev_at (w) += mn_now; 2545 ev_at (w) += mn_now;
2035 2546
2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2547 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2037 2548
2549 EV_FREQUENT_CHECK;
2550
2551 ++timercnt;
2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2552 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2553 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2040 ANHE_w (timers [ev_active (w)]) = (WT)w; 2554 ANHE_w (timers [ev_active (w)]) = (WT)w;
2041 ANHE_at_set (timers [ev_active (w)]); 2555 ANHE_at_cache (timers [ev_active (w)]);
2042 upheap (timers, ev_active (w)); 2556 upheap (timers, ev_active (w));
2043 2557
2558 EV_FREQUENT_CHECK;
2559
2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2560 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2045} 2561}
2046 2562
2047void noinline 2563void noinline
2048ev_timer_stop (EV_P_ ev_timer *w) 2564ev_timer_stop (EV_P_ ev_timer *w)
2049{ 2565{
2050 clear_pending (EV_A_ (W)w); 2566 clear_pending (EV_A_ (W)w);
2051 if (expect_false (!ev_is_active (w))) 2567 if (expect_false (!ev_is_active (w)))
2052 return; 2568 return;
2053 2569
2570 EV_FREQUENT_CHECK;
2571
2054 { 2572 {
2055 int active = ev_active (w); 2573 int active = ev_active (w);
2056 2574
2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2575 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2058 2576
2577 --timercnt;
2578
2059 if (expect_true (active < timercnt + HEAP0 - 1)) 2579 if (expect_true (active < timercnt + HEAP0))
2060 { 2580 {
2061 timers [active] = timers [timercnt + HEAP0 - 1]; 2581 timers [active] = timers [timercnt + HEAP0];
2062 adjustheap (timers, timercnt, active); 2582 adjustheap (timers, timercnt, active);
2063 } 2583 }
2064
2065 --timercnt;
2066 } 2584 }
2585
2586 EV_FREQUENT_CHECK;
2067 2587
2068 ev_at (w) -= mn_now; 2588 ev_at (w) -= mn_now;
2069 2589
2070 ev_stop (EV_A_ (W)w); 2590 ev_stop (EV_A_ (W)w);
2071} 2591}
2072 2592
2073void noinline 2593void noinline
2074ev_timer_again (EV_P_ ev_timer *w) 2594ev_timer_again (EV_P_ ev_timer *w)
2075{ 2595{
2596 EV_FREQUENT_CHECK;
2597
2076 if (ev_is_active (w)) 2598 if (ev_is_active (w))
2077 { 2599 {
2078 if (w->repeat) 2600 if (w->repeat)
2079 { 2601 {
2080 ev_at (w) = mn_now + w->repeat; 2602 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]); 2603 ANHE_at_cache (timers [ev_active (w)]);
2082 adjustheap (timers, timercnt, ev_active (w)); 2604 adjustheap (timers, timercnt, ev_active (w));
2083 } 2605 }
2084 else 2606 else
2085 ev_timer_stop (EV_A_ w); 2607 ev_timer_stop (EV_A_ w);
2086 } 2608 }
2087 else if (w->repeat) 2609 else if (w->repeat)
2088 { 2610 {
2089 ev_at (w) = w->repeat; 2611 ev_at (w) = w->repeat;
2090 ev_timer_start (EV_A_ w); 2612 ev_timer_start (EV_A_ w);
2091 } 2613 }
2614
2615 EV_FREQUENT_CHECK;
2616}
2617
2618ev_tstamp
2619ev_timer_remaining (EV_P_ ev_timer *w)
2620{
2621 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2092} 2622}
2093 2623
2094#if EV_PERIODIC_ENABLE 2624#if EV_PERIODIC_ENABLE
2095void noinline 2625void noinline
2096ev_periodic_start (EV_P_ ev_periodic *w) 2626ev_periodic_start (EV_P_ ev_periodic *w)
2100 2630
2101 if (w->reschedule_cb) 2631 if (w->reschedule_cb)
2102 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2632 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2103 else if (w->interval) 2633 else if (w->interval)
2104 { 2634 {
2105 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2635 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2106 /* this formula differs from the one in periodic_reify because we do not always round up */ 2636 /* this formula differs from the one in periodic_reify because we do not always round up */
2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2637 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2108 } 2638 }
2109 else 2639 else
2110 ev_at (w) = w->offset; 2640 ev_at (w) = w->offset;
2111 2641
2642 EV_FREQUENT_CHECK;
2643
2644 ++periodiccnt;
2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2645 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2646 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2114 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2647 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2115 ANHE_at_set (periodics [ev_active (w)]); 2648 ANHE_at_cache (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w)); 2649 upheap (periodics, ev_active (w));
2117 2650
2651 EV_FREQUENT_CHECK;
2652
2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2653 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2119} 2654}
2120 2655
2121void noinline 2656void noinline
2122ev_periodic_stop (EV_P_ ev_periodic *w) 2657ev_periodic_stop (EV_P_ ev_periodic *w)
2123{ 2658{
2124 clear_pending (EV_A_ (W)w); 2659 clear_pending (EV_A_ (W)w);
2125 if (expect_false (!ev_is_active (w))) 2660 if (expect_false (!ev_is_active (w)))
2126 return; 2661 return;
2127 2662
2663 EV_FREQUENT_CHECK;
2664
2128 { 2665 {
2129 int active = ev_active (w); 2666 int active = ev_active (w);
2130 2667
2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2668 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2132 2669
2670 --periodiccnt;
2671
2133 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2672 if (expect_true (active < periodiccnt + HEAP0))
2134 { 2673 {
2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2674 periodics [active] = periodics [periodiccnt + HEAP0];
2136 adjustheap (periodics, periodiccnt, active); 2675 adjustheap (periodics, periodiccnt, active);
2137 } 2676 }
2138
2139 --periodiccnt;
2140 } 2677 }
2678
2679 EV_FREQUENT_CHECK;
2141 2680
2142 ev_stop (EV_A_ (W)w); 2681 ev_stop (EV_A_ (W)w);
2143} 2682}
2144 2683
2145void noinline 2684void noinline
2156#endif 2695#endif
2157 2696
2158void noinline 2697void noinline
2159ev_signal_start (EV_P_ ev_signal *w) 2698ev_signal_start (EV_P_ ev_signal *w)
2160{ 2699{
2161#if EV_MULTIPLICITY
2162 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2163#endif
2164 if (expect_false (ev_is_active (w))) 2700 if (expect_false (ev_is_active (w)))
2165 return; 2701 return;
2166 2702
2167 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2703 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2168 2704
2169 evpipe_init (EV_A); 2705#if EV_MULTIPLICITY
2706 assert (("libev: a signal must not be attached to two different loops",
2707 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2170 2708
2709 signals [w->signum - 1].loop = EV_A;
2710#endif
2711
2712 EV_FREQUENT_CHECK;
2713
2714#if EV_USE_SIGNALFD
2715 if (sigfd == -2)
2171 { 2716 {
2172#ifndef _WIN32 2717 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2173 sigset_t full, prev; 2718 if (sigfd < 0 && errno == EINVAL)
2174 sigfillset (&full); 2719 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2175 sigprocmask (SIG_SETMASK, &full, &prev);
2176#endif
2177 2720
2178 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2721 if (sigfd >= 0)
2722 {
2723 fd_intern (sigfd); /* doing it twice will not hurt */
2179 2724
2180#ifndef _WIN32 2725 sigemptyset (&sigfd_set);
2181 sigprocmask (SIG_SETMASK, &prev, 0); 2726
2182#endif 2727 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2728 ev_set_priority (&sigfd_w, EV_MAXPRI);
2729 ev_io_start (EV_A_ &sigfd_w);
2730 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2731 }
2183 } 2732 }
2733
2734 if (sigfd >= 0)
2735 {
2736 /* TODO: check .head */
2737 sigaddset (&sigfd_set, w->signum);
2738 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2739
2740 signalfd (sigfd, &sigfd_set, 0);
2741 }
2742#endif
2184 2743
2185 ev_start (EV_A_ (W)w, 1); 2744 ev_start (EV_A_ (W)w, 1);
2186 wlist_add (&signals [w->signum - 1].head, (WL)w); 2745 wlist_add (&signals [w->signum - 1].head, (WL)w);
2187 2746
2188 if (!((WL)w)->next) 2747 if (!((WL)w)->next)
2748# if EV_USE_SIGNALFD
2749 if (sigfd < 0) /*TODO*/
2750# endif
2189 { 2751 {
2190#if _WIN32 2752# ifdef _WIN32
2753 evpipe_init (EV_A);
2754
2191 signal (w->signum, ev_sighandler); 2755 signal (w->signum, ev_sighandler);
2192#else 2756# else
2193 struct sigaction sa; 2757 struct sigaction sa;
2758
2759 evpipe_init (EV_A);
2760
2194 sa.sa_handler = ev_sighandler; 2761 sa.sa_handler = ev_sighandler;
2195 sigfillset (&sa.sa_mask); 2762 sigfillset (&sa.sa_mask);
2196 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2763 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2197 sigaction (w->signum, &sa, 0); 2764 sigaction (w->signum, &sa, 0);
2765
2766 sigemptyset (&sa.sa_mask);
2767 sigaddset (&sa.sa_mask, w->signum);
2768 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2198#endif 2769#endif
2199 } 2770 }
2771
2772 EV_FREQUENT_CHECK;
2200} 2773}
2201 2774
2202void noinline 2775void noinline
2203ev_signal_stop (EV_P_ ev_signal *w) 2776ev_signal_stop (EV_P_ ev_signal *w)
2204{ 2777{
2205 clear_pending (EV_A_ (W)w); 2778 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w))) 2779 if (expect_false (!ev_is_active (w)))
2207 return; 2780 return;
2208 2781
2782 EV_FREQUENT_CHECK;
2783
2209 wlist_del (&signals [w->signum - 1].head, (WL)w); 2784 wlist_del (&signals [w->signum - 1].head, (WL)w);
2210 ev_stop (EV_A_ (W)w); 2785 ev_stop (EV_A_ (W)w);
2211 2786
2212 if (!signals [w->signum - 1].head) 2787 if (!signals [w->signum - 1].head)
2788 {
2789#if EV_MULTIPLICITY
2790 signals [w->signum - 1].loop = 0; /* unattach from signal */
2791#endif
2792#if EV_USE_SIGNALFD
2793 if (sigfd >= 0)
2794 {
2795 sigset_t ss;
2796
2797 sigemptyset (&ss);
2798 sigaddset (&ss, w->signum);
2799 sigdelset (&sigfd_set, w->signum);
2800
2801 signalfd (sigfd, &sigfd_set, 0);
2802 sigprocmask (SIG_UNBLOCK, &ss, 0);
2803 }
2804 else
2805#endif
2213 signal (w->signum, SIG_DFL); 2806 signal (w->signum, SIG_DFL);
2807 }
2808
2809 EV_FREQUENT_CHECK;
2214} 2810}
2215 2811
2216void 2812void
2217ev_child_start (EV_P_ ev_child *w) 2813ev_child_start (EV_P_ ev_child *w)
2218{ 2814{
2219#if EV_MULTIPLICITY 2815#if EV_MULTIPLICITY
2220 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2816 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2221#endif 2817#endif
2222 if (expect_false (ev_is_active (w))) 2818 if (expect_false (ev_is_active (w)))
2223 return; 2819 return;
2224 2820
2821 EV_FREQUENT_CHECK;
2822
2225 ev_start (EV_A_ (W)w, 1); 2823 ev_start (EV_A_ (W)w, 1);
2226 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2824 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2825
2826 EV_FREQUENT_CHECK;
2227} 2827}
2228 2828
2229void 2829void
2230ev_child_stop (EV_P_ ev_child *w) 2830ev_child_stop (EV_P_ ev_child *w)
2231{ 2831{
2232 clear_pending (EV_A_ (W)w); 2832 clear_pending (EV_A_ (W)w);
2233 if (expect_false (!ev_is_active (w))) 2833 if (expect_false (!ev_is_active (w)))
2234 return; 2834 return;
2235 2835
2836 EV_FREQUENT_CHECK;
2837
2236 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2838 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2237 ev_stop (EV_A_ (W)w); 2839 ev_stop (EV_A_ (W)w);
2840
2841 EV_FREQUENT_CHECK;
2238} 2842}
2239 2843
2240#if EV_STAT_ENABLE 2844#if EV_STAT_ENABLE
2241 2845
2242# ifdef _WIN32 2846# ifdef _WIN32
2243# undef lstat 2847# undef lstat
2244# define lstat(a,b) _stati64 (a,b) 2848# define lstat(a,b) _stati64 (a,b)
2245# endif 2849# endif
2246 2850
2247#define DEF_STAT_INTERVAL 5.0074891 2851#define DEF_STAT_INTERVAL 5.0074891
2852#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2248#define MIN_STAT_INTERVAL 0.1074891 2853#define MIN_STAT_INTERVAL 0.1074891
2249 2854
2250static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2855static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2251 2856
2252#if EV_USE_INOTIFY 2857#if EV_USE_INOTIFY
2253# define EV_INOTIFY_BUFSIZE 8192 2858# define EV_INOTIFY_BUFSIZE 8192
2255static void noinline 2860static void noinline
2256infy_add (EV_P_ ev_stat *w) 2861infy_add (EV_P_ ev_stat *w)
2257{ 2862{
2258 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2863 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2259 2864
2260 if (w->wd < 0) 2865 if (w->wd >= 0)
2866 {
2867 struct statfs sfs;
2868
2869 /* now local changes will be tracked by inotify, but remote changes won't */
2870 /* unless the filesystem is known to be local, we therefore still poll */
2871 /* also do poll on <2.6.25, but with normal frequency */
2872
2873 if (!fs_2625)
2874 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2875 else if (!statfs (w->path, &sfs)
2876 && (sfs.f_type == 0x1373 /* devfs */
2877 || sfs.f_type == 0xEF53 /* ext2/3 */
2878 || sfs.f_type == 0x3153464a /* jfs */
2879 || sfs.f_type == 0x52654973 /* reiser3 */
2880 || sfs.f_type == 0x01021994 /* tempfs */
2881 || sfs.f_type == 0x58465342 /* xfs */))
2882 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2883 else
2884 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2261 { 2885 }
2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2886 else
2887 {
2888 /* can't use inotify, continue to stat */
2889 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2263 2890
2264 /* monitor some parent directory for speedup hints */ 2891 /* if path is not there, monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2892 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2266 /* but an efficiency issue only */ 2893 /* but an efficiency issue only */
2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2894 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2268 { 2895 {
2269 char path [4096]; 2896 char path [4096];
2270 strcpy (path, w->path); 2897 strcpy (path, w->path);
2274 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2901 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2275 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2902 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2276 2903
2277 char *pend = strrchr (path, '/'); 2904 char *pend = strrchr (path, '/');
2278 2905
2279 if (!pend) 2906 if (!pend || pend == path)
2280 break; /* whoops, no '/', complain to your admin */ 2907 break;
2281 2908
2282 *pend = 0; 2909 *pend = 0;
2283 w->wd = inotify_add_watch (fs_fd, path, mask); 2910 w->wd = inotify_add_watch (fs_fd, path, mask);
2284 } 2911 }
2285 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2912 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2286 } 2913 }
2287 } 2914 }
2288 else
2289 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2290 2915
2291 if (w->wd >= 0) 2916 if (w->wd >= 0)
2292 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2917 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2918
2919 /* now re-arm timer, if required */
2920 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2921 ev_timer_again (EV_A_ &w->timer);
2922 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2293} 2923}
2294 2924
2295static void noinline 2925static void noinline
2296infy_del (EV_P_ ev_stat *w) 2926infy_del (EV_P_ ev_stat *w)
2297{ 2927{
2311 2941
2312static void noinline 2942static void noinline
2313infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2943infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2314{ 2944{
2315 if (slot < 0) 2945 if (slot < 0)
2316 /* overflow, need to check for all hahs slots */ 2946 /* overflow, need to check for all hash slots */
2317 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2947 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2318 infy_wd (EV_A_ slot, wd, ev); 2948 infy_wd (EV_A_ slot, wd, ev);
2319 else 2949 else
2320 { 2950 {
2321 WL w_; 2951 WL w_;
2327 2957
2328 if (w->wd == wd || wd == -1) 2958 if (w->wd == wd || wd == -1)
2329 { 2959 {
2330 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2960 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2331 { 2961 {
2962 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2332 w->wd = -1; 2963 w->wd = -1;
2333 infy_add (EV_A_ w); /* re-add, no matter what */ 2964 infy_add (EV_A_ w); /* re-add, no matter what */
2334 } 2965 }
2335 2966
2336 stat_timer_cb (EV_A_ &w->timer, 0); 2967 stat_timer_cb (EV_A_ &w->timer, 0);
2349 2980
2350 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2981 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2351 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2982 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2352} 2983}
2353 2984
2354void inline_size 2985inline_size void
2986check_2625 (EV_P)
2987{
2988 /* kernels < 2.6.25 are borked
2989 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2990 */
2991 struct utsname buf;
2992 int major, minor, micro;
2993
2994 if (uname (&buf))
2995 return;
2996
2997 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2998 return;
2999
3000 if (major < 2
3001 || (major == 2 && minor < 6)
3002 || (major == 2 && minor == 6 && micro < 25))
3003 return;
3004
3005 fs_2625 = 1;
3006}
3007
3008inline_size int
3009infy_newfd (void)
3010{
3011#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3012 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3013 if (fd >= 0)
3014 return fd;
3015#endif
3016 return inotify_init ();
3017}
3018
3019inline_size void
2355infy_init (EV_P) 3020infy_init (EV_P)
2356{ 3021{
2357 if (fs_fd != -2) 3022 if (fs_fd != -2)
2358 return; 3023 return;
2359 3024
3025 fs_fd = -1;
3026
3027 check_2625 (EV_A);
3028
2360 fs_fd = inotify_init (); 3029 fs_fd = infy_newfd ();
2361 3030
2362 if (fs_fd >= 0) 3031 if (fs_fd >= 0)
2363 { 3032 {
3033 fd_intern (fs_fd);
2364 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3034 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2365 ev_set_priority (&fs_w, EV_MAXPRI); 3035 ev_set_priority (&fs_w, EV_MAXPRI);
2366 ev_io_start (EV_A_ &fs_w); 3036 ev_io_start (EV_A_ &fs_w);
3037 ev_unref (EV_A);
2367 } 3038 }
2368} 3039}
2369 3040
2370void inline_size 3041inline_size void
2371infy_fork (EV_P) 3042infy_fork (EV_P)
2372{ 3043{
2373 int slot; 3044 int slot;
2374 3045
2375 if (fs_fd < 0) 3046 if (fs_fd < 0)
2376 return; 3047 return;
2377 3048
3049 ev_ref (EV_A);
3050 ev_io_stop (EV_A_ &fs_w);
2378 close (fs_fd); 3051 close (fs_fd);
2379 fs_fd = inotify_init (); 3052 fs_fd = infy_newfd ();
3053
3054 if (fs_fd >= 0)
3055 {
3056 fd_intern (fs_fd);
3057 ev_io_set (&fs_w, fs_fd, EV_READ);
3058 ev_io_start (EV_A_ &fs_w);
3059 ev_unref (EV_A);
3060 }
2380 3061
2381 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3062 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2382 { 3063 {
2383 WL w_ = fs_hash [slot].head; 3064 WL w_ = fs_hash [slot].head;
2384 fs_hash [slot].head = 0; 3065 fs_hash [slot].head = 0;
2391 w->wd = -1; 3072 w->wd = -1;
2392 3073
2393 if (fs_fd >= 0) 3074 if (fs_fd >= 0)
2394 infy_add (EV_A_ w); /* re-add, no matter what */ 3075 infy_add (EV_A_ w); /* re-add, no matter what */
2395 else 3076 else
3077 {
3078 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3079 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2396 ev_timer_start (EV_A_ &w->timer); 3080 ev_timer_again (EV_A_ &w->timer);
3081 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3082 }
2397 } 3083 }
2398
2399 } 3084 }
2400} 3085}
2401 3086
3087#endif
3088
3089#ifdef _WIN32
3090# define EV_LSTAT(p,b) _stati64 (p, b)
3091#else
3092# define EV_LSTAT(p,b) lstat (p, b)
2402#endif 3093#endif
2403 3094
2404void 3095void
2405ev_stat_stat (EV_P_ ev_stat *w) 3096ev_stat_stat (EV_P_ ev_stat *w)
2406{ 3097{
2413static void noinline 3104static void noinline
2414stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3105stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2415{ 3106{
2416 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3107 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2417 3108
2418 /* we copy this here each the time so that */ 3109 ev_statdata prev = w->attr;
2419 /* prev has the old value when the callback gets invoked */
2420 w->prev = w->attr;
2421 ev_stat_stat (EV_A_ w); 3110 ev_stat_stat (EV_A_ w);
2422 3111
2423 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3112 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2424 if ( 3113 if (
2425 w->prev.st_dev != w->attr.st_dev 3114 prev.st_dev != w->attr.st_dev
2426 || w->prev.st_ino != w->attr.st_ino 3115 || prev.st_ino != w->attr.st_ino
2427 || w->prev.st_mode != w->attr.st_mode 3116 || prev.st_mode != w->attr.st_mode
2428 || w->prev.st_nlink != w->attr.st_nlink 3117 || prev.st_nlink != w->attr.st_nlink
2429 || w->prev.st_uid != w->attr.st_uid 3118 || prev.st_uid != w->attr.st_uid
2430 || w->prev.st_gid != w->attr.st_gid 3119 || prev.st_gid != w->attr.st_gid
2431 || w->prev.st_rdev != w->attr.st_rdev 3120 || prev.st_rdev != w->attr.st_rdev
2432 || w->prev.st_size != w->attr.st_size 3121 || prev.st_size != w->attr.st_size
2433 || w->prev.st_atime != w->attr.st_atime 3122 || prev.st_atime != w->attr.st_atime
2434 || w->prev.st_mtime != w->attr.st_mtime 3123 || prev.st_mtime != w->attr.st_mtime
2435 || w->prev.st_ctime != w->attr.st_ctime 3124 || prev.st_ctime != w->attr.st_ctime
2436 ) { 3125 ) {
3126 /* we only update w->prev on actual differences */
3127 /* in case we test more often than invoke the callback, */
3128 /* to ensure that prev is always different to attr */
3129 w->prev = prev;
3130
2437 #if EV_USE_INOTIFY 3131 #if EV_USE_INOTIFY
3132 if (fs_fd >= 0)
3133 {
2438 infy_del (EV_A_ w); 3134 infy_del (EV_A_ w);
2439 infy_add (EV_A_ w); 3135 infy_add (EV_A_ w);
2440 ev_stat_stat (EV_A_ w); /* avoid race... */ 3136 ev_stat_stat (EV_A_ w); /* avoid race... */
3137 }
2441 #endif 3138 #endif
2442 3139
2443 ev_feed_event (EV_A_ w, EV_STAT); 3140 ev_feed_event (EV_A_ w, EV_STAT);
2444 } 3141 }
2445} 3142}
2448ev_stat_start (EV_P_ ev_stat *w) 3145ev_stat_start (EV_P_ ev_stat *w)
2449{ 3146{
2450 if (expect_false (ev_is_active (w))) 3147 if (expect_false (ev_is_active (w)))
2451 return; 3148 return;
2452 3149
2453 /* since we use memcmp, we need to clear any padding data etc. */
2454 memset (&w->prev, 0, sizeof (ev_statdata));
2455 memset (&w->attr, 0, sizeof (ev_statdata));
2456
2457 ev_stat_stat (EV_A_ w); 3150 ev_stat_stat (EV_A_ w);
2458 3151
3152 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2459 if (w->interval < MIN_STAT_INTERVAL) 3153 w->interval = MIN_STAT_INTERVAL;
2460 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2461 3154
2462 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3155 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2463 ev_set_priority (&w->timer, ev_priority (w)); 3156 ev_set_priority (&w->timer, ev_priority (w));
2464 3157
2465#if EV_USE_INOTIFY 3158#if EV_USE_INOTIFY
2466 infy_init (EV_A); 3159 infy_init (EV_A);
2467 3160
2468 if (fs_fd >= 0) 3161 if (fs_fd >= 0)
2469 infy_add (EV_A_ w); 3162 infy_add (EV_A_ w);
2470 else 3163 else
2471#endif 3164#endif
3165 {
2472 ev_timer_start (EV_A_ &w->timer); 3166 ev_timer_again (EV_A_ &w->timer);
3167 ev_unref (EV_A);
3168 }
2473 3169
2474 ev_start (EV_A_ (W)w, 1); 3170 ev_start (EV_A_ (W)w, 1);
3171
3172 EV_FREQUENT_CHECK;
2475} 3173}
2476 3174
2477void 3175void
2478ev_stat_stop (EV_P_ ev_stat *w) 3176ev_stat_stop (EV_P_ ev_stat *w)
2479{ 3177{
2480 clear_pending (EV_A_ (W)w); 3178 clear_pending (EV_A_ (W)w);
2481 if (expect_false (!ev_is_active (w))) 3179 if (expect_false (!ev_is_active (w)))
2482 return; 3180 return;
2483 3181
3182 EV_FREQUENT_CHECK;
3183
2484#if EV_USE_INOTIFY 3184#if EV_USE_INOTIFY
2485 infy_del (EV_A_ w); 3185 infy_del (EV_A_ w);
2486#endif 3186#endif
3187
3188 if (ev_is_active (&w->timer))
3189 {
3190 ev_ref (EV_A);
2487 ev_timer_stop (EV_A_ &w->timer); 3191 ev_timer_stop (EV_A_ &w->timer);
3192 }
2488 3193
2489 ev_stop (EV_A_ (W)w); 3194 ev_stop (EV_A_ (W)w);
3195
3196 EV_FREQUENT_CHECK;
2490} 3197}
2491#endif 3198#endif
2492 3199
2493#if EV_IDLE_ENABLE 3200#if EV_IDLE_ENABLE
2494void 3201void
2496{ 3203{
2497 if (expect_false (ev_is_active (w))) 3204 if (expect_false (ev_is_active (w)))
2498 return; 3205 return;
2499 3206
2500 pri_adjust (EV_A_ (W)w); 3207 pri_adjust (EV_A_ (W)w);
3208
3209 EV_FREQUENT_CHECK;
2501 3210
2502 { 3211 {
2503 int active = ++idlecnt [ABSPRI (w)]; 3212 int active = ++idlecnt [ABSPRI (w)];
2504 3213
2505 ++idleall; 3214 ++idleall;
2506 ev_start (EV_A_ (W)w, active); 3215 ev_start (EV_A_ (W)w, active);
2507 3216
2508 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3217 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2509 idles [ABSPRI (w)][active - 1] = w; 3218 idles [ABSPRI (w)][active - 1] = w;
2510 } 3219 }
3220
3221 EV_FREQUENT_CHECK;
2511} 3222}
2512 3223
2513void 3224void
2514ev_idle_stop (EV_P_ ev_idle *w) 3225ev_idle_stop (EV_P_ ev_idle *w)
2515{ 3226{
2516 clear_pending (EV_A_ (W)w); 3227 clear_pending (EV_A_ (W)w);
2517 if (expect_false (!ev_is_active (w))) 3228 if (expect_false (!ev_is_active (w)))
2518 return; 3229 return;
2519 3230
3231 EV_FREQUENT_CHECK;
3232
2520 { 3233 {
2521 int active = ev_active (w); 3234 int active = ev_active (w);
2522 3235
2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3236 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2524 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3237 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2525 3238
2526 ev_stop (EV_A_ (W)w); 3239 ev_stop (EV_A_ (W)w);
2527 --idleall; 3240 --idleall;
2528 } 3241 }
3242
3243 EV_FREQUENT_CHECK;
2529} 3244}
2530#endif 3245#endif
2531 3246
2532void 3247void
2533ev_prepare_start (EV_P_ ev_prepare *w) 3248ev_prepare_start (EV_P_ ev_prepare *w)
2534{ 3249{
2535 if (expect_false (ev_is_active (w))) 3250 if (expect_false (ev_is_active (w)))
2536 return; 3251 return;
3252
3253 EV_FREQUENT_CHECK;
2537 3254
2538 ev_start (EV_A_ (W)w, ++preparecnt); 3255 ev_start (EV_A_ (W)w, ++preparecnt);
2539 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3256 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2540 prepares [preparecnt - 1] = w; 3257 prepares [preparecnt - 1] = w;
3258
3259 EV_FREQUENT_CHECK;
2541} 3260}
2542 3261
2543void 3262void
2544ev_prepare_stop (EV_P_ ev_prepare *w) 3263ev_prepare_stop (EV_P_ ev_prepare *w)
2545{ 3264{
2546 clear_pending (EV_A_ (W)w); 3265 clear_pending (EV_A_ (W)w);
2547 if (expect_false (!ev_is_active (w))) 3266 if (expect_false (!ev_is_active (w)))
2548 return; 3267 return;
2549 3268
3269 EV_FREQUENT_CHECK;
3270
2550 { 3271 {
2551 int active = ev_active (w); 3272 int active = ev_active (w);
2552 3273
2553 prepares [active - 1] = prepares [--preparecnt]; 3274 prepares [active - 1] = prepares [--preparecnt];
2554 ev_active (prepares [active - 1]) = active; 3275 ev_active (prepares [active - 1]) = active;
2555 } 3276 }
2556 3277
2557 ev_stop (EV_A_ (W)w); 3278 ev_stop (EV_A_ (W)w);
3279
3280 EV_FREQUENT_CHECK;
2558} 3281}
2559 3282
2560void 3283void
2561ev_check_start (EV_P_ ev_check *w) 3284ev_check_start (EV_P_ ev_check *w)
2562{ 3285{
2563 if (expect_false (ev_is_active (w))) 3286 if (expect_false (ev_is_active (w)))
2564 return; 3287 return;
3288
3289 EV_FREQUENT_CHECK;
2565 3290
2566 ev_start (EV_A_ (W)w, ++checkcnt); 3291 ev_start (EV_A_ (W)w, ++checkcnt);
2567 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3292 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2568 checks [checkcnt - 1] = w; 3293 checks [checkcnt - 1] = w;
3294
3295 EV_FREQUENT_CHECK;
2569} 3296}
2570 3297
2571void 3298void
2572ev_check_stop (EV_P_ ev_check *w) 3299ev_check_stop (EV_P_ ev_check *w)
2573{ 3300{
2574 clear_pending (EV_A_ (W)w); 3301 clear_pending (EV_A_ (W)w);
2575 if (expect_false (!ev_is_active (w))) 3302 if (expect_false (!ev_is_active (w)))
2576 return; 3303 return;
2577 3304
3305 EV_FREQUENT_CHECK;
3306
2578 { 3307 {
2579 int active = ev_active (w); 3308 int active = ev_active (w);
2580 3309
2581 checks [active - 1] = checks [--checkcnt]; 3310 checks [active - 1] = checks [--checkcnt];
2582 ev_active (checks [active - 1]) = active; 3311 ev_active (checks [active - 1]) = active;
2583 } 3312 }
2584 3313
2585 ev_stop (EV_A_ (W)w); 3314 ev_stop (EV_A_ (W)w);
3315
3316 EV_FREQUENT_CHECK;
2586} 3317}
2587 3318
2588#if EV_EMBED_ENABLE 3319#if EV_EMBED_ENABLE
2589void noinline 3320void noinline
2590ev_embed_sweep (EV_P_ ev_embed *w) 3321ev_embed_sweep (EV_P_ ev_embed *w)
2607embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3338embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2608{ 3339{
2609 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3340 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2610 3341
2611 { 3342 {
2612 struct ev_loop *loop = w->other; 3343 EV_P = w->other;
2613 3344
2614 while (fdchangecnt) 3345 while (fdchangecnt)
2615 { 3346 {
2616 fd_reify (EV_A); 3347 fd_reify (EV_A);
2617 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3348 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2618 } 3349 }
2619 } 3350 }
2620} 3351}
2621 3352
3353static void
3354embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3355{
3356 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3357
3358 ev_embed_stop (EV_A_ w);
3359
3360 {
3361 EV_P = w->other;
3362
3363 ev_loop_fork (EV_A);
3364 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3365 }
3366
3367 ev_embed_start (EV_A_ w);
3368}
3369
2622#if 0 3370#if 0
2623static void 3371static void
2624embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3372embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2625{ 3373{
2626 ev_idle_stop (EV_A_ idle); 3374 ev_idle_stop (EV_A_ idle);
2632{ 3380{
2633 if (expect_false (ev_is_active (w))) 3381 if (expect_false (ev_is_active (w)))
2634 return; 3382 return;
2635 3383
2636 { 3384 {
2637 struct ev_loop *loop = w->other; 3385 EV_P = w->other;
2638 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3386 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2639 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3387 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2640 } 3388 }
3389
3390 EV_FREQUENT_CHECK;
2641 3391
2642 ev_set_priority (&w->io, ev_priority (w)); 3392 ev_set_priority (&w->io, ev_priority (w));
2643 ev_io_start (EV_A_ &w->io); 3393 ev_io_start (EV_A_ &w->io);
2644 3394
2645 ev_prepare_init (&w->prepare, embed_prepare_cb); 3395 ev_prepare_init (&w->prepare, embed_prepare_cb);
2646 ev_set_priority (&w->prepare, EV_MINPRI); 3396 ev_set_priority (&w->prepare, EV_MINPRI);
2647 ev_prepare_start (EV_A_ &w->prepare); 3397 ev_prepare_start (EV_A_ &w->prepare);
2648 3398
3399 ev_fork_init (&w->fork, embed_fork_cb);
3400 ev_fork_start (EV_A_ &w->fork);
3401
2649 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3402 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2650 3403
2651 ev_start (EV_A_ (W)w, 1); 3404 ev_start (EV_A_ (W)w, 1);
3405
3406 EV_FREQUENT_CHECK;
2652} 3407}
2653 3408
2654void 3409void
2655ev_embed_stop (EV_P_ ev_embed *w) 3410ev_embed_stop (EV_P_ ev_embed *w)
2656{ 3411{
2657 clear_pending (EV_A_ (W)w); 3412 clear_pending (EV_A_ (W)w);
2658 if (expect_false (!ev_is_active (w))) 3413 if (expect_false (!ev_is_active (w)))
2659 return; 3414 return;
2660 3415
3416 EV_FREQUENT_CHECK;
3417
2661 ev_io_stop (EV_A_ &w->io); 3418 ev_io_stop (EV_A_ &w->io);
2662 ev_prepare_stop (EV_A_ &w->prepare); 3419 ev_prepare_stop (EV_A_ &w->prepare);
3420 ev_fork_stop (EV_A_ &w->fork);
2663 3421
2664 ev_stop (EV_A_ (W)w); 3422 EV_FREQUENT_CHECK;
2665} 3423}
2666#endif 3424#endif
2667 3425
2668#if EV_FORK_ENABLE 3426#if EV_FORK_ENABLE
2669void 3427void
2670ev_fork_start (EV_P_ ev_fork *w) 3428ev_fork_start (EV_P_ ev_fork *w)
2671{ 3429{
2672 if (expect_false (ev_is_active (w))) 3430 if (expect_false (ev_is_active (w)))
2673 return; 3431 return;
3432
3433 EV_FREQUENT_CHECK;
2674 3434
2675 ev_start (EV_A_ (W)w, ++forkcnt); 3435 ev_start (EV_A_ (W)w, ++forkcnt);
2676 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3436 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2677 forks [forkcnt - 1] = w; 3437 forks [forkcnt - 1] = w;
3438
3439 EV_FREQUENT_CHECK;
2678} 3440}
2679 3441
2680void 3442void
2681ev_fork_stop (EV_P_ ev_fork *w) 3443ev_fork_stop (EV_P_ ev_fork *w)
2682{ 3444{
2683 clear_pending (EV_A_ (W)w); 3445 clear_pending (EV_A_ (W)w);
2684 if (expect_false (!ev_is_active (w))) 3446 if (expect_false (!ev_is_active (w)))
2685 return; 3447 return;
2686 3448
3449 EV_FREQUENT_CHECK;
3450
2687 { 3451 {
2688 int active = ev_active (w); 3452 int active = ev_active (w);
2689 3453
2690 forks [active - 1] = forks [--forkcnt]; 3454 forks [active - 1] = forks [--forkcnt];
2691 ev_active (forks [active - 1]) = active; 3455 ev_active (forks [active - 1]) = active;
2692 } 3456 }
2693 3457
2694 ev_stop (EV_A_ (W)w); 3458 ev_stop (EV_A_ (W)w);
3459
3460 EV_FREQUENT_CHECK;
2695} 3461}
2696#endif 3462#endif
2697 3463
2698#if EV_ASYNC_ENABLE 3464#if EV_ASYNC_ENABLE
2699void 3465void
2701{ 3467{
2702 if (expect_false (ev_is_active (w))) 3468 if (expect_false (ev_is_active (w)))
2703 return; 3469 return;
2704 3470
2705 evpipe_init (EV_A); 3471 evpipe_init (EV_A);
3472
3473 EV_FREQUENT_CHECK;
2706 3474
2707 ev_start (EV_A_ (W)w, ++asynccnt); 3475 ev_start (EV_A_ (W)w, ++asynccnt);
2708 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3476 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2709 asyncs [asynccnt - 1] = w; 3477 asyncs [asynccnt - 1] = w;
3478
3479 EV_FREQUENT_CHECK;
2710} 3480}
2711 3481
2712void 3482void
2713ev_async_stop (EV_P_ ev_async *w) 3483ev_async_stop (EV_P_ ev_async *w)
2714{ 3484{
2715 clear_pending (EV_A_ (W)w); 3485 clear_pending (EV_A_ (W)w);
2716 if (expect_false (!ev_is_active (w))) 3486 if (expect_false (!ev_is_active (w)))
2717 return; 3487 return;
2718 3488
3489 EV_FREQUENT_CHECK;
3490
2719 { 3491 {
2720 int active = ev_active (w); 3492 int active = ev_active (w);
2721 3493
2722 asyncs [active - 1] = asyncs [--asynccnt]; 3494 asyncs [active - 1] = asyncs [--asynccnt];
2723 ev_active (asyncs [active - 1]) = active; 3495 ev_active (asyncs [active - 1]) = active;
2724 } 3496 }
2725 3497
2726 ev_stop (EV_A_ (W)w); 3498 ev_stop (EV_A_ (W)w);
3499
3500 EV_FREQUENT_CHECK;
2727} 3501}
2728 3502
2729void 3503void
2730ev_async_send (EV_P_ ev_async *w) 3504ev_async_send (EV_P_ ev_async *w)
2731{ 3505{
2732 w->sent = 1; 3506 w->sent = 1;
2733 evpipe_write (EV_A_ &gotasync); 3507 evpipe_write (EV_A_ &async_pending);
2734} 3508}
2735#endif 3509#endif
2736 3510
2737/*****************************************************************************/ 3511/*****************************************************************************/
2738 3512
2748once_cb (EV_P_ struct ev_once *once, int revents) 3522once_cb (EV_P_ struct ev_once *once, int revents)
2749{ 3523{
2750 void (*cb)(int revents, void *arg) = once->cb; 3524 void (*cb)(int revents, void *arg) = once->cb;
2751 void *arg = once->arg; 3525 void *arg = once->arg;
2752 3526
2753 ev_io_stop (EV_A_ &once->io); 3527 ev_io_stop (EV_A_ &once->io);
2754 ev_timer_stop (EV_A_ &once->to); 3528 ev_timer_stop (EV_A_ &once->to);
2755 ev_free (once); 3529 ev_free (once);
2756 3530
2757 cb (revents, arg); 3531 cb (revents, arg);
2758} 3532}
2759 3533
2760static void 3534static void
2761once_cb_io (EV_P_ ev_io *w, int revents) 3535once_cb_io (EV_P_ ev_io *w, int revents)
2762{ 3536{
2763 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3537 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3538
3539 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2764} 3540}
2765 3541
2766static void 3542static void
2767once_cb_to (EV_P_ ev_timer *w, int revents) 3543once_cb_to (EV_P_ ev_timer *w, int revents)
2768{ 3544{
2769 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3545 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3546
3547 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2770} 3548}
2771 3549
2772void 3550void
2773ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3551ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2774{ 3552{
2796 ev_timer_set (&once->to, timeout, 0.); 3574 ev_timer_set (&once->to, timeout, 0.);
2797 ev_timer_start (EV_A_ &once->to); 3575 ev_timer_start (EV_A_ &once->to);
2798 } 3576 }
2799} 3577}
2800 3578
3579/*****************************************************************************/
3580
3581#if EV_WALK_ENABLE
3582void
3583ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3584{
3585 int i, j;
3586 ev_watcher_list *wl, *wn;
3587
3588 if (types & (EV_IO | EV_EMBED))
3589 for (i = 0; i < anfdmax; ++i)
3590 for (wl = anfds [i].head; wl; )
3591 {
3592 wn = wl->next;
3593
3594#if EV_EMBED_ENABLE
3595 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3596 {
3597 if (types & EV_EMBED)
3598 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3599 }
3600 else
3601#endif
3602#if EV_USE_INOTIFY
3603 if (ev_cb ((ev_io *)wl) == infy_cb)
3604 ;
3605 else
3606#endif
3607 if ((ev_io *)wl != &pipe_w)
3608 if (types & EV_IO)
3609 cb (EV_A_ EV_IO, wl);
3610
3611 wl = wn;
3612 }
3613
3614 if (types & (EV_TIMER | EV_STAT))
3615 for (i = timercnt + HEAP0; i-- > HEAP0; )
3616#if EV_STAT_ENABLE
3617 /*TODO: timer is not always active*/
3618 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3619 {
3620 if (types & EV_STAT)
3621 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3622 }
3623 else
3624#endif
3625 if (types & EV_TIMER)
3626 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3627
3628#if EV_PERIODIC_ENABLE
3629 if (types & EV_PERIODIC)
3630 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3631 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3632#endif
3633
3634#if EV_IDLE_ENABLE
3635 if (types & EV_IDLE)
3636 for (j = NUMPRI; i--; )
3637 for (i = idlecnt [j]; i--; )
3638 cb (EV_A_ EV_IDLE, idles [j][i]);
3639#endif
3640
3641#if EV_FORK_ENABLE
3642 if (types & EV_FORK)
3643 for (i = forkcnt; i--; )
3644 if (ev_cb (forks [i]) != embed_fork_cb)
3645 cb (EV_A_ EV_FORK, forks [i]);
3646#endif
3647
3648#if EV_ASYNC_ENABLE
3649 if (types & EV_ASYNC)
3650 for (i = asynccnt; i--; )
3651 cb (EV_A_ EV_ASYNC, asyncs [i]);
3652#endif
3653
3654 if (types & EV_PREPARE)
3655 for (i = preparecnt; i--; )
3656#if EV_EMBED_ENABLE
3657 if (ev_cb (prepares [i]) != embed_prepare_cb)
3658#endif
3659 cb (EV_A_ EV_PREPARE, prepares [i]);
3660
3661 if (types & EV_CHECK)
3662 for (i = checkcnt; i--; )
3663 cb (EV_A_ EV_CHECK, checks [i]);
3664
3665 if (types & EV_SIGNAL)
3666 for (i = 0; i < EV_NSIG - 1; ++i)
3667 for (wl = signals [i].head; wl; )
3668 {
3669 wn = wl->next;
3670 cb (EV_A_ EV_SIGNAL, wl);
3671 wl = wn;
3672 }
3673
3674 if (types & EV_CHILD)
3675 for (i = EV_PID_HASHSIZE; i--; )
3676 for (wl = childs [i]; wl; )
3677 {
3678 wn = wl->next;
3679 cb (EV_A_ EV_CHILD, wl);
3680 wl = wn;
3681 }
3682/* EV_STAT 0x00001000 /* stat data changed */
3683/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3684}
3685#endif
3686
2801#if EV_MULTIPLICITY 3687#if EV_MULTIPLICITY
2802 #include "ev_wrap.h" 3688 #include "ev_wrap.h"
2803#endif 3689#endif
2804 3690
2805#ifdef __cplusplus 3691#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines