ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC vs.
Revision 1.328 by root, Sun Feb 14 19:23:19 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
96# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
97# endif 111# endif
98# endif 112# endif
99 113
100# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
102# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
103# else 117# else
104# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
105# endif 119# endif
106# endif 120# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
136#include <fcntl.h> 159#include <fcntl.h>
137#include <stddef.h> 160#include <stddef.h>
138 161
139#include <stdio.h> 162#include <stdio.h>
140 163
141#include <assert.h> 164#include <assert.h>
142#include <errno.h> 165#include <errno.h>
143#include <sys/types.h> 166#include <sys/types.h>
144#include <time.h> 167#include <time.h>
168#include <limits.h>
145 169
146#include <signal.h> 170#include <signal.h>
147 171
148#ifdef EV_H 172#ifdef EV_H
149# include EV_H 173# include EV_H
154#ifndef _WIN32 178#ifndef _WIN32
155# include <sys/time.h> 179# include <sys/time.h>
156# include <sys/wait.h> 180# include <sys/wait.h>
157# include <unistd.h> 181# include <unistd.h>
158#else 182#else
183# include <io.h>
159# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 185# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
163# endif 188# endif
164#endif 189#endif
165 190
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 191/* this block tries to deduce configuration from header-defined symbols and defaults */
167 192
193/* try to deduce the maximum number of signals on this platform */
194#if defined (EV_NSIG)
195/* use what's provided */
196#elif defined (NSIG)
197# define EV_NSIG (NSIG)
198#elif defined(_NSIG)
199# define EV_NSIG (_NSIG)
200#elif defined (SIGMAX)
201# define EV_NSIG (SIGMAX+1)
202#elif defined (SIG_MAX)
203# define EV_NSIG (SIG_MAX+1)
204#elif defined (_SIG_MAX)
205# define EV_NSIG (_SIG_MAX+1)
206#elif defined (MAXSIG)
207# define EV_NSIG (MAXSIG+1)
208#elif defined (MAX_SIG)
209# define EV_NSIG (MAX_SIG+1)
210#elif defined (SIGARRAYSIZE)
211# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
212#elif defined (_sys_nsig)
213# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
214#else
215# error "unable to find value for NSIG, please report"
216/* to make it compile regardless, just remove the above line */
217# define EV_NSIG 65
218#endif
219
220#ifndef EV_USE_CLOCK_SYSCALL
221# if __linux && __GLIBC__ >= 2
222# define EV_USE_CLOCK_SYSCALL 1
223# else
224# define EV_USE_CLOCK_SYSCALL 0
225# endif
226#endif
227
168#ifndef EV_USE_MONOTONIC 228#ifndef EV_USE_MONOTONIC
229# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
230# define EV_USE_MONOTONIC 1
231# else
169# define EV_USE_MONOTONIC 0 232# define EV_USE_MONOTONIC 0
233# endif
170#endif 234#endif
171 235
172#ifndef EV_USE_REALTIME 236#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 237# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 238#endif
175 239
176#ifndef EV_USE_NANOSLEEP 240#ifndef EV_USE_NANOSLEEP
241# if _POSIX_C_SOURCE >= 199309L
242# define EV_USE_NANOSLEEP 1
243# else
177# define EV_USE_NANOSLEEP 0 244# define EV_USE_NANOSLEEP 0
245# endif
178#endif 246#endif
179 247
180#ifndef EV_USE_SELECT 248#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 249# define EV_USE_SELECT 1
182#endif 250#endif
235# else 303# else
236# define EV_USE_EVENTFD 0 304# define EV_USE_EVENTFD 0
237# endif 305# endif
238#endif 306#endif
239 307
308#ifndef EV_USE_SIGNALFD
309# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
310# define EV_USE_SIGNALFD 1
311# else
312# define EV_USE_SIGNALFD 0
313# endif
314#endif
315
316#if 0 /* debugging */
317# define EV_VERIFY 3
318# define EV_USE_4HEAP 1
319# define EV_HEAP_CACHE_AT 1
320#endif
321
322#ifndef EV_VERIFY
323# define EV_VERIFY !EV_MINIMAL
324#endif
325
240#ifndef EV_USE_4HEAP 326#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 327# define EV_USE_4HEAP !EV_MINIMAL
242#endif 328#endif
243 329
244#ifndef EV_HEAP_CACHE_AT 330#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 331# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif 332#endif
247 333
334/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
335/* which makes programs even slower. might work on other unices, too. */
336#if EV_USE_CLOCK_SYSCALL
337# include <syscall.h>
338# ifdef SYS_clock_gettime
339# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
340# undef EV_USE_MONOTONIC
341# define EV_USE_MONOTONIC 1
342# else
343# undef EV_USE_CLOCK_SYSCALL
344# define EV_USE_CLOCK_SYSCALL 0
345# endif
346#endif
347
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 348/* this block fixes any misconfiguration where we know we run into trouble otherwise */
349
350#ifdef _AIX
351/* AIX has a completely broken poll.h header */
352# undef EV_USE_POLL
353# define EV_USE_POLL 0
354#endif
249 355
250#ifndef CLOCK_MONOTONIC 356#ifndef CLOCK_MONOTONIC
251# undef EV_USE_MONOTONIC 357# undef EV_USE_MONOTONIC
252# define EV_USE_MONOTONIC 0 358# define EV_USE_MONOTONIC 0
253#endif 359#endif
267# include <sys/select.h> 373# include <sys/select.h>
268# endif 374# endif
269#endif 375#endif
270 376
271#if EV_USE_INOTIFY 377#if EV_USE_INOTIFY
378# include <sys/utsname.h>
379# include <sys/statfs.h>
272# include <sys/inotify.h> 380# include <sys/inotify.h>
381/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
382# ifndef IN_DONT_FOLLOW
383# undef EV_USE_INOTIFY
384# define EV_USE_INOTIFY 0
385# endif
273#endif 386#endif
274 387
275#if EV_SELECT_IS_WINSOCKET 388#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h> 389# include <winsock.h>
277#endif 390#endif
278 391
279#if EV_USE_EVENTFD 392#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 393/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 394# include <stdint.h>
395# ifndef EFD_NONBLOCK
396# define EFD_NONBLOCK O_NONBLOCK
397# endif
398# ifndef EFD_CLOEXEC
399# ifdef O_CLOEXEC
400# define EFD_CLOEXEC O_CLOEXEC
401# else
402# define EFD_CLOEXEC 02000000
403# endif
404# endif
282# ifdef __cplusplus 405# ifdef __cplusplus
283extern "C" { 406extern "C" {
284# endif 407# endif
285int eventfd (unsigned int initval, int flags); 408int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus 409# ifdef __cplusplus
287} 410}
288# endif 411# endif
289#endif 412#endif
290 413
414#if EV_USE_SIGNALFD
415/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
416# include <stdint.h>
417# ifndef SFD_NONBLOCK
418# define SFD_NONBLOCK O_NONBLOCK
419# endif
420# ifndef SFD_CLOEXEC
421# ifdef O_CLOEXEC
422# define SFD_CLOEXEC O_CLOEXEC
423# else
424# define SFD_CLOEXEC 02000000
425# endif
426# endif
427# ifdef __cplusplus
428extern "C" {
429# endif
430int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
437# ifdef __cplusplus
438}
439# endif
440#endif
441
442
291/**/ 443/**/
444
445#if EV_VERIFY >= 3
446# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
447#else
448# define EV_FREQUENT_CHECK do { } while (0)
449#endif
292 450
293/* 451/*
294 * This is used to avoid floating point rounding problems. 452 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics 453 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding 454 * to ensure progress, time-wise, even when rounding
300 */ 458 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 459#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
302 460
303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
306 463
307#if __GNUC__ >= 4 464#if __GNUC__ >= 4
308# define expect(expr,value) __builtin_expect ((expr),(value)) 465# define expect(expr,value) __builtin_expect ((expr),(value))
309# define noinline __attribute__ ((noinline)) 466# define noinline __attribute__ ((noinline))
310#else 467#else
323# define inline_speed static noinline 480# define inline_speed static noinline
324#else 481#else
325# define inline_speed static inline 482# define inline_speed static inline
326#endif 483#endif
327 484
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 485#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
486
487#if EV_MINPRI == EV_MAXPRI
488# define ABSPRI(w) (((W)w), 0)
489#else
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 490# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
491#endif
330 492
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 493#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 494#define EMPTY2(a,b) /* used to suppress some warnings */
333 495
334typedef ev_watcher *W; 496typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 498typedef ev_watcher_time *WT;
337 499
338#define ev_active(w) ((W)(w))->active 500#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 501#define ev_at(w) ((WT)(w))->at
340 502
341#if EV_USE_MONOTONIC 503#if EV_USE_REALTIME
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 504/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */ 505/* giving it a reasonably high chance of working on typical architetcures */
506static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
507#endif
508
509#if EV_USE_MONOTONIC
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 510static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
511#endif
512
513#ifndef EV_FD_TO_WIN32_HANDLE
514# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
515#endif
516#ifndef EV_WIN32_HANDLE_TO_FD
517# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
518#endif
519#ifndef EV_WIN32_CLOSE_FD
520# define EV_WIN32_CLOSE_FD(fd) close (fd)
345#endif 521#endif
346 522
347#ifdef _WIN32 523#ifdef _WIN32
348# include "ev_win32.c" 524# include "ev_win32.c"
349#endif 525#endif
357{ 533{
358 syserr_cb = cb; 534 syserr_cb = cb;
359} 535}
360 536
361static void noinline 537static void noinline
362syserr (const char *msg) 538ev_syserr (const char *msg)
363{ 539{
364 if (!msg) 540 if (!msg)
365 msg = "(libev) system error"; 541 msg = "(libev) system error";
366 542
367 if (syserr_cb) 543 if (syserr_cb)
413#define ev_malloc(size) ev_realloc (0, (size)) 589#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 590#define ev_free(ptr) ev_realloc ((ptr), 0)
415 591
416/*****************************************************************************/ 592/*****************************************************************************/
417 593
594/* set in reify when reification needed */
595#define EV_ANFD_REIFY 1
596
597/* file descriptor info structure */
418typedef struct 598typedef struct
419{ 599{
420 WL head; 600 WL head;
421 unsigned char events; 601 unsigned char events; /* the events watched for */
602 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
603 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 604 unsigned char unused;
605#if EV_USE_EPOLL
606 unsigned int egen; /* generation counter to counter epoll bugs */
607#endif
423#if EV_SELECT_IS_WINSOCKET 608#if EV_SELECT_IS_WINSOCKET
424 SOCKET handle; 609 SOCKET handle;
425#endif 610#endif
426} ANFD; 611} ANFD;
427 612
613/* stores the pending event set for a given watcher */
428typedef struct 614typedef struct
429{ 615{
430 W w; 616 W w;
431 int events; 617 int events; /* the pending event set for the given watcher */
432} ANPENDING; 618} ANPENDING;
433 619
434#if EV_USE_INOTIFY 620#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 621/* hash table entry per inotify-id */
436typedef struct 622typedef struct
439} ANFS; 625} ANFS;
440#endif 626#endif
441 627
442/* Heap Entry */ 628/* Heap Entry */
443#if EV_HEAP_CACHE_AT 629#if EV_HEAP_CACHE_AT
630 /* a heap element */
444 typedef struct { 631 typedef struct {
445 ev_tstamp at; 632 ev_tstamp at;
446 WT w; 633 WT w;
447 } ANHE; 634 } ANHE;
448 635
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 636 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 637 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 638 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 639#else
640 /* a heap element */
453 typedef WT ANHE; 641 typedef WT ANHE;
454 642
455 #define ANHE_w(he) (he) 643 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 644 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 645 #define ANHE_at_cache(he)
458#endif 646#endif
459 647
460#if EV_MULTIPLICITY 648#if EV_MULTIPLICITY
461 649
462 struct ev_loop 650 struct ev_loop
481 669
482 static int ev_default_loop_ptr; 670 static int ev_default_loop_ptr;
483 671
484#endif 672#endif
485 673
674#if EV_MINIMAL < 2
675# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
676# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
677# define EV_INVOKE_PENDING invoke_cb (EV_A)
678#else
679# define EV_RELEASE_CB (void)0
680# define EV_ACQUIRE_CB (void)0
681# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
682#endif
683
684#define EVUNLOOP_RECURSE 0x80
685
486/*****************************************************************************/ 686/*****************************************************************************/
487 687
688#ifndef EV_HAVE_EV_TIME
488ev_tstamp 689ev_tstamp
489ev_time (void) 690ev_time (void)
490{ 691{
491#if EV_USE_REALTIME 692#if EV_USE_REALTIME
693 if (expect_true (have_realtime))
694 {
492 struct timespec ts; 695 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 696 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 697 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 698 }
699#endif
700
496 struct timeval tv; 701 struct timeval tv;
497 gettimeofday (&tv, 0); 702 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 703 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 704}
705#endif
501 706
502ev_tstamp inline_size 707inline_size ev_tstamp
503get_clock (void) 708get_clock (void)
504{ 709{
505#if EV_USE_MONOTONIC 710#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 711 if (expect_true (have_monotonic))
507 { 712 {
540 struct timeval tv; 745 struct timeval tv;
541 746
542 tv.tv_sec = (time_t)delay; 747 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 748 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544 749
750 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
751 /* something not guaranteed by newer posix versions, but guaranteed */
752 /* by older ones */
545 select (0, 0, 0, 0, &tv); 753 select (0, 0, 0, 0, &tv);
546#endif 754#endif
547 } 755 }
548} 756}
549 757
550/*****************************************************************************/ 758/*****************************************************************************/
551 759
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 760#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 761
554int inline_size 762/* find a suitable new size for the given array, */
763/* hopefully by rounding to a ncie-to-malloc size */
764inline_size int
555array_nextsize (int elem, int cur, int cnt) 765array_nextsize (int elem, int cur, int cnt)
556{ 766{
557 int ncur = cur + 1; 767 int ncur = cur + 1;
558 768
559 do 769 do
576array_realloc (int elem, void *base, int *cur, int cnt) 786array_realloc (int elem, void *base, int *cur, int cnt)
577{ 787{
578 *cur = array_nextsize (elem, *cur, cnt); 788 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 789 return ev_realloc (base, elem * *cur);
580} 790}
791
792#define array_init_zero(base,count) \
793 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 794
582#define array_needsize(type,base,cur,cnt,init) \ 795#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 796 if (expect_false ((cnt) > (cur))) \
584 { \ 797 { \
585 int ocur_ = (cur); \ 798 int ocur_ = (cur); \
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 810 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 811 }
599#endif 812#endif
600 813
601#define array_free(stem, idx) \ 814#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 815 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 816
604/*****************************************************************************/ 817/*****************************************************************************/
818
819/* dummy callback for pending events */
820static void noinline
821pendingcb (EV_P_ ev_prepare *w, int revents)
822{
823}
605 824
606void noinline 825void noinline
607ev_feed_event (EV_P_ void *w, int revents) 826ev_feed_event (EV_P_ void *w, int revents)
608{ 827{
609 W w_ = (W)w; 828 W w_ = (W)w;
618 pendings [pri][w_->pending - 1].w = w_; 837 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 838 pendings [pri][w_->pending - 1].events = revents;
620 } 839 }
621} 840}
622 841
623void inline_speed 842inline_speed void
843feed_reverse (EV_P_ W w)
844{
845 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
846 rfeeds [rfeedcnt++] = w;
847}
848
849inline_size void
850feed_reverse_done (EV_P_ int revents)
851{
852 do
853 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
854 while (rfeedcnt);
855}
856
857inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 858queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 859{
626 int i; 860 int i;
627 861
628 for (i = 0; i < eventcnt; ++i) 862 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 863 ev_feed_event (EV_A_ events [i], type);
630} 864}
631 865
632/*****************************************************************************/ 866/*****************************************************************************/
633 867
634void inline_size 868inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 869fd_event_nc (EV_P_ int fd, int revents)
649{ 870{
650 ANFD *anfd = anfds + fd; 871 ANFD *anfd = anfds + fd;
651 ev_io *w; 872 ev_io *w;
652 873
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 874 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 878 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 879 ev_feed_event (EV_A_ (W)w, ev);
659 } 880 }
660} 881}
661 882
883/* do not submit kernel events for fds that have reify set */
884/* because that means they changed while we were polling for new events */
885inline_speed void
886fd_event (EV_P_ int fd, int revents)
887{
888 ANFD *anfd = anfds + fd;
889
890 if (expect_true (!anfd->reify))
891 fd_event_nc (EV_A_ fd, revents);
892}
893
662void 894void
663ev_feed_fd_event (EV_P_ int fd, int revents) 895ev_feed_fd_event (EV_P_ int fd, int revents)
664{ 896{
665 if (fd >= 0 && fd < anfdmax) 897 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 898 fd_event_nc (EV_A_ fd, revents);
667} 899}
668 900
669void inline_size 901/* make sure the external fd watch events are in-sync */
902/* with the kernel/libev internal state */
903inline_size void
670fd_reify (EV_P) 904fd_reify (EV_P)
671{ 905{
672 int i; 906 int i;
673 907
674 for (i = 0; i < fdchangecnt; ++i) 908 for (i = 0; i < fdchangecnt; ++i)
683 events |= (unsigned char)w->events; 917 events |= (unsigned char)w->events;
684 918
685#if EV_SELECT_IS_WINSOCKET 919#if EV_SELECT_IS_WINSOCKET
686 if (events) 920 if (events)
687 { 921 {
688 unsigned long argp; 922 unsigned long arg;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 923 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
692 anfd->handle = _get_osfhandle (fd);
693 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 924 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
695 } 925 }
696#endif 926#endif
697 927
698 { 928 {
699 unsigned char o_events = anfd->events; 929 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify; 930 unsigned char o_reify = anfd->reify;
701 931
702 anfd->reify = 0; 932 anfd->reify = 0;
703 anfd->events = events; 933 anfd->events = events;
704 934
705 if (o_events != events || o_reify & EV_IOFDSET) 935 if (o_events != events || o_reify & EV__IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 936 backend_modify (EV_A_ fd, o_events, events);
707 } 937 }
708 } 938 }
709 939
710 fdchangecnt = 0; 940 fdchangecnt = 0;
711} 941}
712 942
713void inline_size 943/* something about the given fd changed */
944inline_size void
714fd_change (EV_P_ int fd, int flags) 945fd_change (EV_P_ int fd, int flags)
715{ 946{
716 unsigned char reify = anfds [fd].reify; 947 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 948 anfds [fd].reify |= flags;
718 949
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 953 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 954 fdchanges [fdchangecnt - 1] = fd;
724 } 955 }
725} 956}
726 957
727void inline_speed 958/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
959inline_speed void
728fd_kill (EV_P_ int fd) 960fd_kill (EV_P_ int fd)
729{ 961{
730 ev_io *w; 962 ev_io *w;
731 963
732 while ((w = (ev_io *)anfds [fd].head)) 964 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 966 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 967 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 968 }
737} 969}
738 970
739int inline_size 971/* check whether the given fd is atcually valid, for error recovery */
972inline_size int
740fd_valid (int fd) 973fd_valid (int fd)
741{ 974{
742#ifdef _WIN32 975#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 976 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
744#else 977#else
745 return fcntl (fd, F_GETFD) != -1; 978 return fcntl (fd, F_GETFD) != -1;
746#endif 979#endif
747} 980}
748 981
752{ 985{
753 int fd; 986 int fd;
754 987
755 for (fd = 0; fd < anfdmax; ++fd) 988 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 989 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 990 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 991 fd_kill (EV_A_ fd);
759} 992}
760 993
761/* called on ENOMEM in select/poll to kill some fds and retry */ 994/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 995static void noinline
766 999
767 for (fd = anfdmax; fd--; ) 1000 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events) 1001 if (anfds [fd].events)
769 { 1002 {
770 fd_kill (EV_A_ fd); 1003 fd_kill (EV_A_ fd);
771 return; 1004 break;
772 } 1005 }
773} 1006}
774 1007
775/* usually called after fork if backend needs to re-arm all fds from scratch */ 1008/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline 1009static void noinline
780 1013
781 for (fd = 0; fd < anfdmax; ++fd) 1014 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 1015 if (anfds [fd].events)
783 { 1016 {
784 anfds [fd].events = 0; 1017 anfds [fd].events = 0;
1018 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1019 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 1020 }
787} 1021}
788 1022
789/*****************************************************************************/ 1023/*****************************************************************************/
790 1024
803#if EV_USE_4HEAP 1037#if EV_USE_4HEAP
804 1038
805#define DHEAP 4 1039#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1040#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1041#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808 1042#define UPHEAP_DONE(p,k) ((p) == (k))
809/* towards the root */
810void inline_speed
811upheap (ANHE *heap, int k)
812{
813 ANHE he = heap [k];
814
815 for (;;)
816 {
817 int p = HPARENT (k);
818
819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
820 break;
821
822 heap [k] = heap [p];
823 ev_active (ANHE_w (heap [k])) = k;
824 k = p;
825 }
826
827 heap [k] = he;
828 ev_active (ANHE_w (he)) = k;
829}
830 1043
831/* away from the root */ 1044/* away from the root */
832void inline_speed 1045inline_speed void
833downheap (ANHE *heap, int N, int k) 1046downheap (ANHE *heap, int N, int k)
834{ 1047{
835 ANHE he = heap [k]; 1048 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0; 1049 ANHE *E = heap + N + HEAP0;
837 1050
838 for (;;) 1051 for (;;)
839 { 1052 {
840 ev_tstamp minat; 1053 ev_tstamp minat;
841 ANHE *minpos; 1054 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1055 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
843 1056
844 // find minimum child 1057 /* find minimum child */
845 if (expect_true (pos + DHEAP - 1 < E)) 1058 if (expect_true (pos + DHEAP - 1 < E))
846 { 1059 {
847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1060 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1061 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1062 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 1083
871 heap [k] = he; 1084 heap [k] = he;
872 ev_active (ANHE_w (he)) = k; 1085 ev_active (ANHE_w (he)) = k;
873} 1086}
874 1087
875#else // 4HEAP 1088#else /* 4HEAP */
876 1089
877#define HEAP0 1 1090#define HEAP0 1
878#define HPARENT(k) ((k) >> 1) 1091#define HPARENT(k) ((k) >> 1)
1092#define UPHEAP_DONE(p,k) (!(p))
879 1093
880/* towards the root */ 1094/* away from the root */
881void inline_speed 1095inline_speed void
882upheap (ANHE *heap, int k) 1096downheap (ANHE *heap, int N, int k)
883{ 1097{
884 ANHE he = heap [k]; 1098 ANHE he = heap [k];
885 1099
886 for (;;) 1100 for (;;)
887 { 1101 {
888 int p = HPARENT (k); 1102 int c = k << 1;
889 1103
890 /* maybe we could use a dummy element at heap [0]? */ 1104 if (c >= N + HEAP0)
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break; 1105 break;
893 1106
894 heap [k] = heap [p];
895 ev_active (ANHE_w (heap [k])) = k;
896 k = p;
897 }
898
899 heap [k] = he;
900 ev_active (ANHE_w (heap [k])) = k;
901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
908
909 for (;;)
910 {
911 int c = k << 1;
912
913 if (c > N)
914 break;
915
916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1107 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
917 ? 1 : 0; 1108 ? 1 : 0;
918 1109
919 if (ANHE_at (he) <= ANHE_at (heap [c])) 1110 if (ANHE_at (he) <= ANHE_at (heap [c]))
920 break; 1111 break;
921 1112
928 heap [k] = he; 1119 heap [k] = he;
929 ev_active (ANHE_w (he)) = k; 1120 ev_active (ANHE_w (he)) = k;
930} 1121}
931#endif 1122#endif
932 1123
933void inline_size 1124/* towards the root */
1125inline_speed void
1126upheap (ANHE *heap, int k)
1127{
1128 ANHE he = heap [k];
1129
1130 for (;;)
1131 {
1132 int p = HPARENT (k);
1133
1134 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1135 break;
1136
1137 heap [k] = heap [p];
1138 ev_active (ANHE_w (heap [k])) = k;
1139 k = p;
1140 }
1141
1142 heap [k] = he;
1143 ev_active (ANHE_w (he)) = k;
1144}
1145
1146/* move an element suitably so it is in a correct place */
1147inline_size void
934adjustheap (ANHE *heap, int N, int k) 1148adjustheap (ANHE *heap, int N, int k)
935{ 1149{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1150 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
937 upheap (heap, k); 1151 upheap (heap, k);
938 else 1152 else
939 downheap (heap, N, k); 1153 downheap (heap, N, k);
940} 1154}
941 1155
1156/* rebuild the heap: this function is used only once and executed rarely */
1157inline_size void
1158reheap (ANHE *heap, int N)
1159{
1160 int i;
1161
1162 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1163 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1164 for (i = 0; i < N; ++i)
1165 upheap (heap, i + HEAP0);
1166}
1167
942/*****************************************************************************/ 1168/*****************************************************************************/
943 1169
1170/* associate signal watchers to a signal signal */
944typedef struct 1171typedef struct
945{ 1172{
1173 EV_ATOMIC_T pending;
1174#if EV_MULTIPLICITY
1175 EV_P;
1176#endif
946 WL head; 1177 WL head;
947 EV_ATOMIC_T gotsig;
948} ANSIG; 1178} ANSIG;
949 1179
950static ANSIG *signals; 1180static ANSIG signals [EV_NSIG - 1];
951static int signalmax;
952
953static EV_ATOMIC_T gotsig;
954
955void inline_size
956signals_init (ANSIG *base, int count)
957{
958 while (count--)
959 {
960 base->head = 0;
961 base->gotsig = 0;
962
963 ++base;
964 }
965}
966 1181
967/*****************************************************************************/ 1182/*****************************************************************************/
968 1183
969void inline_speed 1184/* used to prepare libev internal fd's */
1185/* this is not fork-safe */
1186inline_speed void
970fd_intern (int fd) 1187fd_intern (int fd)
971{ 1188{
972#ifdef _WIN32 1189#ifdef _WIN32
973 int arg = 1; 1190 unsigned long arg = 1;
974 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1191 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
975#else 1192#else
976 fcntl (fd, F_SETFD, FD_CLOEXEC); 1193 fcntl (fd, F_SETFD, FD_CLOEXEC);
977 fcntl (fd, F_SETFL, O_NONBLOCK); 1194 fcntl (fd, F_SETFL, O_NONBLOCK);
978#endif 1195#endif
979} 1196}
980 1197
981static void noinline 1198static void noinline
982evpipe_init (EV_P) 1199evpipe_init (EV_P)
983{ 1200{
984 if (!ev_is_active (&pipeev)) 1201 if (!ev_is_active (&pipe_w))
985 { 1202 {
986#if EV_USE_EVENTFD 1203#if EV_USE_EVENTFD
1204 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1205 if (evfd < 0 && errno == EINVAL)
987 if ((evfd = eventfd (0, 0)) >= 0) 1206 evfd = eventfd (0, 0);
1207
1208 if (evfd >= 0)
988 { 1209 {
989 evpipe [0] = -1; 1210 evpipe [0] = -1;
990 fd_intern (evfd); 1211 fd_intern (evfd); /* doing it twice doesn't hurt */
991 ev_io_set (&pipeev, evfd, EV_READ); 1212 ev_io_set (&pipe_w, evfd, EV_READ);
992 } 1213 }
993 else 1214 else
994#endif 1215#endif
995 { 1216 {
996 while (pipe (evpipe)) 1217 while (pipe (evpipe))
997 syserr ("(libev) error creating signal/async pipe"); 1218 ev_syserr ("(libev) error creating signal/async pipe");
998 1219
999 fd_intern (evpipe [0]); 1220 fd_intern (evpipe [0]);
1000 fd_intern (evpipe [1]); 1221 fd_intern (evpipe [1]);
1001 ev_io_set (&pipeev, evpipe [0], EV_READ); 1222 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1002 } 1223 }
1003 1224
1004 ev_io_start (EV_A_ &pipeev); 1225 ev_io_start (EV_A_ &pipe_w);
1005 ev_unref (EV_A); /* watcher should not keep loop alive */ 1226 ev_unref (EV_A); /* watcher should not keep loop alive */
1006 } 1227 }
1007} 1228}
1008 1229
1009void inline_size 1230inline_size void
1010evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1231evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1011{ 1232{
1012 if (!*flag) 1233 if (!*flag)
1013 { 1234 {
1014 int old_errno = errno; /* save errno because write might clobber it */ 1235 int old_errno = errno; /* save errno because write might clobber it */
1027 1248
1028 errno = old_errno; 1249 errno = old_errno;
1029 } 1250 }
1030} 1251}
1031 1252
1253/* called whenever the libev signal pipe */
1254/* got some events (signal, async) */
1032static void 1255static void
1033pipecb (EV_P_ ev_io *iow, int revents) 1256pipecb (EV_P_ ev_io *iow, int revents)
1034{ 1257{
1258 int i;
1259
1035#if EV_USE_EVENTFD 1260#if EV_USE_EVENTFD
1036 if (evfd >= 0) 1261 if (evfd >= 0)
1037 { 1262 {
1038 uint64_t counter; 1263 uint64_t counter;
1039 read (evfd, &counter, sizeof (uint64_t)); 1264 read (evfd, &counter, sizeof (uint64_t));
1043 { 1268 {
1044 char dummy; 1269 char dummy;
1045 read (evpipe [0], &dummy, 1); 1270 read (evpipe [0], &dummy, 1);
1046 } 1271 }
1047 1272
1048 if (gotsig && ev_is_default_loop (EV_A)) 1273 if (sig_pending)
1049 { 1274 {
1050 int signum; 1275 sig_pending = 0;
1051 gotsig = 0;
1052 1276
1053 for (signum = signalmax; signum--; ) 1277 for (i = EV_NSIG - 1; i--; )
1054 if (signals [signum].gotsig) 1278 if (expect_false (signals [i].pending))
1055 ev_feed_signal_event (EV_A_ signum + 1); 1279 ev_feed_signal_event (EV_A_ i + 1);
1056 } 1280 }
1057 1281
1058#if EV_ASYNC_ENABLE 1282#if EV_ASYNC_ENABLE
1059 if (gotasync) 1283 if (async_pending)
1060 { 1284 {
1061 int i; 1285 async_pending = 0;
1062 gotasync = 0;
1063 1286
1064 for (i = asynccnt; i--; ) 1287 for (i = asynccnt; i--; )
1065 if (asyncs [i]->sent) 1288 if (asyncs [i]->sent)
1066 { 1289 {
1067 asyncs [i]->sent = 0; 1290 asyncs [i]->sent = 0;
1075 1298
1076static void 1299static void
1077ev_sighandler (int signum) 1300ev_sighandler (int signum)
1078{ 1301{
1079#if EV_MULTIPLICITY 1302#if EV_MULTIPLICITY
1080 struct ev_loop *loop = &default_loop_struct; 1303 EV_P = signals [signum - 1].loop;
1081#endif 1304#endif
1082 1305
1083#if _WIN32 1306#ifdef _WIN32
1084 signal (signum, ev_sighandler); 1307 signal (signum, ev_sighandler);
1085#endif 1308#endif
1086 1309
1087 signals [signum - 1].gotsig = 1; 1310 signals [signum - 1].pending = 1;
1088 evpipe_write (EV_A_ &gotsig); 1311 evpipe_write (EV_A_ &sig_pending);
1089} 1312}
1090 1313
1091void noinline 1314void noinline
1092ev_feed_signal_event (EV_P_ int signum) 1315ev_feed_signal_event (EV_P_ int signum)
1093{ 1316{
1094 WL w; 1317 WL w;
1095 1318
1319 if (expect_false (signum <= 0 || signum > EV_NSIG))
1320 return;
1321
1322 --signum;
1323
1096#if EV_MULTIPLICITY 1324#if EV_MULTIPLICITY
1097 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1325 /* it is permissible to try to feed a signal to the wrong loop */
1098#endif 1326 /* or, likely more useful, feeding a signal nobody is waiting for */
1099 1327
1100 --signum; 1328 if (expect_false (signals [signum].loop != EV_A))
1101
1102 if (signum < 0 || signum >= signalmax)
1103 return; 1329 return;
1330#endif
1104 1331
1105 signals [signum].gotsig = 0; 1332 signals [signum].pending = 0;
1106 1333
1107 for (w = signals [signum].head; w; w = w->next) 1334 for (w = signals [signum].head; w; w = w->next)
1108 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1335 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1109} 1336}
1110 1337
1338#if EV_USE_SIGNALFD
1339static void
1340sigfdcb (EV_P_ ev_io *iow, int revents)
1341{
1342 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1343
1344 for (;;)
1345 {
1346 ssize_t res = read (sigfd, si, sizeof (si));
1347
1348 /* not ISO-C, as res might be -1, but works with SuS */
1349 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1350 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1351
1352 if (res < (ssize_t)sizeof (si))
1353 break;
1354 }
1355}
1356#endif
1357
1111/*****************************************************************************/ 1358/*****************************************************************************/
1112 1359
1113static WL childs [EV_PID_HASHSIZE]; 1360static WL childs [EV_PID_HASHSIZE];
1114 1361
1115#ifndef _WIN32 1362#ifndef _WIN32
1118 1365
1119#ifndef WIFCONTINUED 1366#ifndef WIFCONTINUED
1120# define WIFCONTINUED(status) 0 1367# define WIFCONTINUED(status) 0
1121#endif 1368#endif
1122 1369
1123void inline_speed 1370/* handle a single child status event */
1371inline_speed void
1124child_reap (EV_P_ int chain, int pid, int status) 1372child_reap (EV_P_ int chain, int pid, int status)
1125{ 1373{
1126 ev_child *w; 1374 ev_child *w;
1127 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1375 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1128 1376
1141 1389
1142#ifndef WCONTINUED 1390#ifndef WCONTINUED
1143# define WCONTINUED 0 1391# define WCONTINUED 0
1144#endif 1392#endif
1145 1393
1394/* called on sigchld etc., calls waitpid */
1146static void 1395static void
1147childcb (EV_P_ ev_signal *sw, int revents) 1396childcb (EV_P_ ev_signal *sw, int revents)
1148{ 1397{
1149 int pid, status; 1398 int pid, status;
1150 1399
1231 /* kqueue is borked on everything but netbsd apparently */ 1480 /* kqueue is borked on everything but netbsd apparently */
1232 /* it usually doesn't work correctly on anything but sockets and pipes */ 1481 /* it usually doesn't work correctly on anything but sockets and pipes */
1233 flags &= ~EVBACKEND_KQUEUE; 1482 flags &= ~EVBACKEND_KQUEUE;
1234#endif 1483#endif
1235#ifdef __APPLE__ 1484#ifdef __APPLE__
1236 // flags &= ~EVBACKEND_KQUEUE; for documentation 1485 /* only select works correctly on that "unix-certified" platform */
1237 flags &= ~EVBACKEND_POLL; 1486 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1487 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1238#endif 1488#endif
1239 1489
1240 return flags; 1490 return flags;
1241} 1491}
1242 1492
1256ev_backend (EV_P) 1506ev_backend (EV_P)
1257{ 1507{
1258 return backend; 1508 return backend;
1259} 1509}
1260 1510
1511#if EV_MINIMAL < 2
1261unsigned int 1512unsigned int
1262ev_loop_count (EV_P) 1513ev_loop_count (EV_P)
1263{ 1514{
1264 return loop_count; 1515 return loop_count;
1265} 1516}
1266 1517
1518unsigned int
1519ev_loop_depth (EV_P)
1520{
1521 return loop_depth;
1522}
1523
1267void 1524void
1268ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1525ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1269{ 1526{
1270 io_blocktime = interval; 1527 io_blocktime = interval;
1271} 1528}
1274ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1531ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1275{ 1532{
1276 timeout_blocktime = interval; 1533 timeout_blocktime = interval;
1277} 1534}
1278 1535
1536void
1537ev_set_userdata (EV_P_ void *data)
1538{
1539 userdata = data;
1540}
1541
1542void *
1543ev_userdata (EV_P)
1544{
1545 return userdata;
1546}
1547
1548void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1549{
1550 invoke_cb = invoke_pending_cb;
1551}
1552
1553void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1554{
1555 release_cb = release;
1556 acquire_cb = acquire;
1557}
1558#endif
1559
1560/* initialise a loop structure, must be zero-initialised */
1279static void noinline 1561static void noinline
1280loop_init (EV_P_ unsigned int flags) 1562loop_init (EV_P_ unsigned int flags)
1281{ 1563{
1282 if (!backend) 1564 if (!backend)
1283 { 1565 {
1566#if EV_USE_REALTIME
1567 if (!have_realtime)
1568 {
1569 struct timespec ts;
1570
1571 if (!clock_gettime (CLOCK_REALTIME, &ts))
1572 have_realtime = 1;
1573 }
1574#endif
1575
1284#if EV_USE_MONOTONIC 1576#if EV_USE_MONOTONIC
1577 if (!have_monotonic)
1285 { 1578 {
1286 struct timespec ts; 1579 struct timespec ts;
1580
1287 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1581 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1288 have_monotonic = 1; 1582 have_monotonic = 1;
1289 } 1583 }
1290#endif 1584#endif
1585
1586 /* pid check not overridable via env */
1587#ifndef _WIN32
1588 if (flags & EVFLAG_FORKCHECK)
1589 curpid = getpid ();
1590#endif
1591
1592 if (!(flags & EVFLAG_NOENV)
1593 && !enable_secure ()
1594 && getenv ("LIBEV_FLAGS"))
1595 flags = atoi (getenv ("LIBEV_FLAGS"));
1291 1596
1292 ev_rt_now = ev_time (); 1597 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1598 mn_now = get_clock ();
1294 now_floor = mn_now; 1599 now_floor = mn_now;
1295 rtmn_diff = ev_rt_now - mn_now; 1600 rtmn_diff = ev_rt_now - mn_now;
1601#if EV_MINIMAL < 2
1602 invoke_cb = ev_invoke_pending;
1603#endif
1296 1604
1297 io_blocktime = 0.; 1605 io_blocktime = 0.;
1298 timeout_blocktime = 0.; 1606 timeout_blocktime = 0.;
1299 backend = 0; 1607 backend = 0;
1300 backend_fd = -1; 1608 backend_fd = -1;
1301 gotasync = 0; 1609 sig_pending = 0;
1610#if EV_ASYNC_ENABLE
1611 async_pending = 0;
1612#endif
1302#if EV_USE_INOTIFY 1613#if EV_USE_INOTIFY
1303 fs_fd = -2; 1614 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1304#endif 1615#endif
1305 1616#if EV_USE_SIGNALFD
1306 /* pid check not overridable via env */ 1617 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1307#ifndef _WIN32
1308 if (flags & EVFLAG_FORKCHECK)
1309 curpid = getpid ();
1310#endif 1618#endif
1311
1312 if (!(flags & EVFLAG_NOENV)
1313 && !enable_secure ()
1314 && getenv ("LIBEV_FLAGS"))
1315 flags = atoi (getenv ("LIBEV_FLAGS"));
1316 1619
1317 if (!(flags & 0x0000ffffU)) 1620 if (!(flags & 0x0000ffffU))
1318 flags |= ev_recommended_backends (); 1621 flags |= ev_recommended_backends ();
1319 1622
1320#if EV_USE_PORT 1623#if EV_USE_PORT
1331#endif 1634#endif
1332#if EV_USE_SELECT 1635#if EV_USE_SELECT
1333 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1636 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1334#endif 1637#endif
1335 1638
1639 ev_prepare_init (&pending_w, pendingcb);
1640
1336 ev_init (&pipeev, pipecb); 1641 ev_init (&pipe_w, pipecb);
1337 ev_set_priority (&pipeev, EV_MAXPRI); 1642 ev_set_priority (&pipe_w, EV_MAXPRI);
1338 } 1643 }
1339} 1644}
1340 1645
1646/* free up a loop structure */
1341static void noinline 1647static void noinline
1342loop_destroy (EV_P) 1648loop_destroy (EV_P)
1343{ 1649{
1344 int i; 1650 int i;
1345 1651
1346 if (ev_is_active (&pipeev)) 1652 if (ev_is_active (&pipe_w))
1347 { 1653 {
1348 ev_ref (EV_A); /* signal watcher */ 1654 /*ev_ref (EV_A);*/
1349 ev_io_stop (EV_A_ &pipeev); 1655 /*ev_io_stop (EV_A_ &pipe_w);*/
1350 1656
1351#if EV_USE_EVENTFD 1657#if EV_USE_EVENTFD
1352 if (evfd >= 0) 1658 if (evfd >= 0)
1353 close (evfd); 1659 close (evfd);
1354#endif 1660#endif
1355 1661
1356 if (evpipe [0] >= 0) 1662 if (evpipe [0] >= 0)
1357 { 1663 {
1358 close (evpipe [0]); 1664 EV_WIN32_CLOSE_FD (evpipe [0]);
1359 close (evpipe [1]); 1665 EV_WIN32_CLOSE_FD (evpipe [1]);
1360 } 1666 }
1361 } 1667 }
1668
1669#if EV_USE_SIGNALFD
1670 if (ev_is_active (&sigfd_w))
1671 close (sigfd);
1672#endif
1362 1673
1363#if EV_USE_INOTIFY 1674#if EV_USE_INOTIFY
1364 if (fs_fd >= 0) 1675 if (fs_fd >= 0)
1365 close (fs_fd); 1676 close (fs_fd);
1366#endif 1677#endif
1390#if EV_IDLE_ENABLE 1701#if EV_IDLE_ENABLE
1391 array_free (idle, [i]); 1702 array_free (idle, [i]);
1392#endif 1703#endif
1393 } 1704 }
1394 1705
1395 ev_free (anfds); anfdmax = 0; 1706 ev_free (anfds); anfds = 0; anfdmax = 0;
1396 1707
1397 /* have to use the microsoft-never-gets-it-right macro */ 1708 /* have to use the microsoft-never-gets-it-right macro */
1709 array_free (rfeed, EMPTY);
1398 array_free (fdchange, EMPTY); 1710 array_free (fdchange, EMPTY);
1399 array_free (timer, EMPTY); 1711 array_free (timer, EMPTY);
1400#if EV_PERIODIC_ENABLE 1712#if EV_PERIODIC_ENABLE
1401 array_free (periodic, EMPTY); 1713 array_free (periodic, EMPTY);
1402#endif 1714#endif
1411 1723
1412 backend = 0; 1724 backend = 0;
1413} 1725}
1414 1726
1415#if EV_USE_INOTIFY 1727#if EV_USE_INOTIFY
1416void inline_size infy_fork (EV_P); 1728inline_size void infy_fork (EV_P);
1417#endif 1729#endif
1418 1730
1419void inline_size 1731inline_size void
1420loop_fork (EV_P) 1732loop_fork (EV_P)
1421{ 1733{
1422#if EV_USE_PORT 1734#if EV_USE_PORT
1423 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1735 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1424#endif 1736#endif
1430#endif 1742#endif
1431#if EV_USE_INOTIFY 1743#if EV_USE_INOTIFY
1432 infy_fork (EV_A); 1744 infy_fork (EV_A);
1433#endif 1745#endif
1434 1746
1435 if (ev_is_active (&pipeev)) 1747 if (ev_is_active (&pipe_w))
1436 { 1748 {
1437 /* this "locks" the handlers against writing to the pipe */ 1749 /* this "locks" the handlers against writing to the pipe */
1438 /* while we modify the fd vars */ 1750 /* while we modify the fd vars */
1439 gotsig = 1; 1751 sig_pending = 1;
1440#if EV_ASYNC_ENABLE 1752#if EV_ASYNC_ENABLE
1441 gotasync = 1; 1753 async_pending = 1;
1442#endif 1754#endif
1443 1755
1444 ev_ref (EV_A); 1756 ev_ref (EV_A);
1445 ev_io_stop (EV_A_ &pipeev); 1757 ev_io_stop (EV_A_ &pipe_w);
1446 1758
1447#if EV_USE_EVENTFD 1759#if EV_USE_EVENTFD
1448 if (evfd >= 0) 1760 if (evfd >= 0)
1449 close (evfd); 1761 close (evfd);
1450#endif 1762#endif
1451 1763
1452 if (evpipe [0] >= 0) 1764 if (evpipe [0] >= 0)
1453 { 1765 {
1454 close (evpipe [0]); 1766 EV_WIN32_CLOSE_FD (evpipe [0]);
1455 close (evpipe [1]); 1767 EV_WIN32_CLOSE_FD (evpipe [1]);
1456 } 1768 }
1457 1769
1458 evpipe_init (EV_A); 1770 evpipe_init (EV_A);
1459 /* now iterate over everything, in case we missed something */ 1771 /* now iterate over everything, in case we missed something */
1460 pipecb (EV_A_ &pipeev, EV_READ); 1772 pipecb (EV_A_ &pipe_w, EV_READ);
1461 } 1773 }
1462 1774
1463 postfork = 0; 1775 postfork = 0;
1464} 1776}
1465 1777
1466#if EV_MULTIPLICITY 1778#if EV_MULTIPLICITY
1779
1467struct ev_loop * 1780struct ev_loop *
1468ev_loop_new (unsigned int flags) 1781ev_loop_new (unsigned int flags)
1469{ 1782{
1470 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1783 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1471 1784
1472 memset (loop, 0, sizeof (struct ev_loop)); 1785 memset (EV_A, 0, sizeof (struct ev_loop));
1473
1474 loop_init (EV_A_ flags); 1786 loop_init (EV_A_ flags);
1475 1787
1476 if (ev_backend (EV_A)) 1788 if (ev_backend (EV_A))
1477 return loop; 1789 return EV_A;
1478 1790
1479 return 0; 1791 return 0;
1480} 1792}
1481 1793
1482void 1794void
1488 1800
1489void 1801void
1490ev_loop_fork (EV_P) 1802ev_loop_fork (EV_P)
1491{ 1803{
1492 postfork = 1; /* must be in line with ev_default_fork */ 1804 postfork = 1; /* must be in line with ev_default_fork */
1805}
1806#endif /* multiplicity */
1807
1808#if EV_VERIFY
1809static void noinline
1810verify_watcher (EV_P_ W w)
1811{
1812 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1813
1814 if (w->pending)
1815 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1816}
1817
1818static void noinline
1819verify_heap (EV_P_ ANHE *heap, int N)
1820{
1821 int i;
1822
1823 for (i = HEAP0; i < N + HEAP0; ++i)
1824 {
1825 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1826 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1827 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1828
1829 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1830 }
1831}
1832
1833static void noinline
1834array_verify (EV_P_ W *ws, int cnt)
1835{
1836 while (cnt--)
1837 {
1838 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1839 verify_watcher (EV_A_ ws [cnt]);
1840 }
1841}
1842#endif
1843
1844#if EV_MINIMAL < 2
1845void
1846ev_loop_verify (EV_P)
1847{
1848#if EV_VERIFY
1849 int i;
1850 WL w;
1851
1852 assert (activecnt >= -1);
1853
1854 assert (fdchangemax >= fdchangecnt);
1855 for (i = 0; i < fdchangecnt; ++i)
1856 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1857
1858 assert (anfdmax >= 0);
1859 for (i = 0; i < anfdmax; ++i)
1860 for (w = anfds [i].head; w; w = w->next)
1861 {
1862 verify_watcher (EV_A_ (W)w);
1863 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1864 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1865 }
1866
1867 assert (timermax >= timercnt);
1868 verify_heap (EV_A_ timers, timercnt);
1869
1870#if EV_PERIODIC_ENABLE
1871 assert (periodicmax >= periodiccnt);
1872 verify_heap (EV_A_ periodics, periodiccnt);
1873#endif
1874
1875 for (i = NUMPRI; i--; )
1876 {
1877 assert (pendingmax [i] >= pendingcnt [i]);
1878#if EV_IDLE_ENABLE
1879 assert (idleall >= 0);
1880 assert (idlemax [i] >= idlecnt [i]);
1881 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1882#endif
1883 }
1884
1885#if EV_FORK_ENABLE
1886 assert (forkmax >= forkcnt);
1887 array_verify (EV_A_ (W *)forks, forkcnt);
1888#endif
1889
1890#if EV_ASYNC_ENABLE
1891 assert (asyncmax >= asynccnt);
1892 array_verify (EV_A_ (W *)asyncs, asynccnt);
1893#endif
1894
1895 assert (preparemax >= preparecnt);
1896 array_verify (EV_A_ (W *)prepares, preparecnt);
1897
1898 assert (checkmax >= checkcnt);
1899 array_verify (EV_A_ (W *)checks, checkcnt);
1900
1901# if 0
1902 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1903 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1904# endif
1905#endif
1493} 1906}
1494#endif 1907#endif
1495 1908
1496#if EV_MULTIPLICITY 1909#if EV_MULTIPLICITY
1497struct ev_loop * 1910struct ev_loop *
1502#endif 1915#endif
1503{ 1916{
1504 if (!ev_default_loop_ptr) 1917 if (!ev_default_loop_ptr)
1505 { 1918 {
1506#if EV_MULTIPLICITY 1919#if EV_MULTIPLICITY
1507 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1920 EV_P = ev_default_loop_ptr = &default_loop_struct;
1508#else 1921#else
1509 ev_default_loop_ptr = 1; 1922 ev_default_loop_ptr = 1;
1510#endif 1923#endif
1511 1924
1512 loop_init (EV_A_ flags); 1925 loop_init (EV_A_ flags);
1529 1942
1530void 1943void
1531ev_default_destroy (void) 1944ev_default_destroy (void)
1532{ 1945{
1533#if EV_MULTIPLICITY 1946#if EV_MULTIPLICITY
1534 struct ev_loop *loop = ev_default_loop_ptr; 1947 EV_P = ev_default_loop_ptr;
1535#endif 1948#endif
1949
1950 ev_default_loop_ptr = 0;
1536 1951
1537#ifndef _WIN32 1952#ifndef _WIN32
1538 ev_ref (EV_A); /* child watcher */ 1953 ev_ref (EV_A); /* child watcher */
1539 ev_signal_stop (EV_A_ &childev); 1954 ev_signal_stop (EV_A_ &childev);
1540#endif 1955#endif
1544 1959
1545void 1960void
1546ev_default_fork (void) 1961ev_default_fork (void)
1547{ 1962{
1548#if EV_MULTIPLICITY 1963#if EV_MULTIPLICITY
1549 struct ev_loop *loop = ev_default_loop_ptr; 1964 EV_P = ev_default_loop_ptr;
1550#endif 1965#endif
1551 1966
1552 if (backend)
1553 postfork = 1; /* must be in line with ev_loop_fork */ 1967 postfork = 1; /* must be in line with ev_loop_fork */
1554} 1968}
1555 1969
1556/*****************************************************************************/ 1970/*****************************************************************************/
1557 1971
1558void 1972void
1559ev_invoke (EV_P_ void *w, int revents) 1973ev_invoke (EV_P_ void *w, int revents)
1560{ 1974{
1561 EV_CB_INVOKE ((W)w, revents); 1975 EV_CB_INVOKE ((W)w, revents);
1562} 1976}
1563 1977
1564void inline_speed 1978unsigned int
1565call_pending (EV_P) 1979ev_pending_count (EV_P)
1980{
1981 int pri;
1982 unsigned int count = 0;
1983
1984 for (pri = NUMPRI; pri--; )
1985 count += pendingcnt [pri];
1986
1987 return count;
1988}
1989
1990void noinline
1991ev_invoke_pending (EV_P)
1566{ 1992{
1567 int pri; 1993 int pri;
1568 1994
1569 for (pri = NUMPRI; pri--; ) 1995 for (pri = NUMPRI; pri--; )
1570 while (pendingcnt [pri]) 1996 while (pendingcnt [pri])
1571 { 1997 {
1572 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1998 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1573 1999
1574 if (expect_true (p->w))
1575 {
1576 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2000 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2001 /* ^ this is no longer true, as pending_w could be here */
1577 2002
1578 p->w->pending = 0; 2003 p->w->pending = 0;
1579 EV_CB_INVOKE (p->w, p->events); 2004 EV_CB_INVOKE (p->w, p->events);
1580 } 2005 EV_FREQUENT_CHECK;
1581 } 2006 }
1582} 2007}
1583 2008
1584#if EV_IDLE_ENABLE 2009#if EV_IDLE_ENABLE
1585void inline_size 2010/* make idle watchers pending. this handles the "call-idle */
2011/* only when higher priorities are idle" logic */
2012inline_size void
1586idle_reify (EV_P) 2013idle_reify (EV_P)
1587{ 2014{
1588 if (expect_false (idleall)) 2015 if (expect_false (idleall))
1589 { 2016 {
1590 int pri; 2017 int pri;
1602 } 2029 }
1603 } 2030 }
1604} 2031}
1605#endif 2032#endif
1606 2033
1607void inline_size 2034/* make timers pending */
2035inline_size void
1608timers_reify (EV_P) 2036timers_reify (EV_P)
1609{ 2037{
2038 EV_FREQUENT_CHECK;
2039
1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2040 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1611 { 2041 {
1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2042 do
1613
1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1615
1616 /* first reschedule or stop timer */
1617 if (w->repeat)
1618 { 2043 {
2044 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2045
2046 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2047
2048 /* first reschedule or stop timer */
2049 if (w->repeat)
2050 {
1619 ev_at (w) += w->repeat; 2051 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now) 2052 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now; 2053 ev_at (w) = mn_now;
1622 2054
1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2055 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1624 2056
1625 ANHE_at_set (timers [HEAP0]); 2057 ANHE_at_cache (timers [HEAP0]);
1626 downheap (timers, timercnt, HEAP0); 2058 downheap (timers, timercnt, HEAP0);
2059 }
2060 else
2061 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2062
2063 EV_FREQUENT_CHECK;
2064 feed_reverse (EV_A_ (W)w);
1627 } 2065 }
1628 else 2066 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1630 2067
1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2068 feed_reverse_done (EV_A_ EV_TIMEOUT);
1632 } 2069 }
1633} 2070}
1634 2071
1635#if EV_PERIODIC_ENABLE 2072#if EV_PERIODIC_ENABLE
1636void inline_size 2073/* make periodics pending */
2074inline_size void
1637periodics_reify (EV_P) 2075periodics_reify (EV_P)
1638{ 2076{
2077 EV_FREQUENT_CHECK;
2078
1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2079 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1640 { 2080 {
1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2081 int feed_count = 0;
1642 2082
1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2083 do
1644
1645 /* first reschedule or stop timer */
1646 if (w->reschedule_cb)
1647 { 2084 {
2085 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2086
2087 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2088
2089 /* first reschedule or stop timer */
2090 if (w->reschedule_cb)
2091 {
1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2092 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649 2093
1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2094 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651 2095
1652 ANHE_at_set (periodics [HEAP0]); 2096 ANHE_at_cache (periodics [HEAP0]);
1653 downheap (periodics, periodiccnt, HEAP0); 2097 downheap (periodics, periodiccnt, HEAP0);
2098 }
2099 else if (w->interval)
2100 {
2101 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2102 /* if next trigger time is not sufficiently in the future, put it there */
2103 /* this might happen because of floating point inexactness */
2104 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2105 {
2106 ev_at (w) += w->interval;
2107
2108 /* if interval is unreasonably low we might still have a time in the past */
2109 /* so correct this. this will make the periodic very inexact, but the user */
2110 /* has effectively asked to get triggered more often than possible */
2111 if (ev_at (w) < ev_rt_now)
2112 ev_at (w) = ev_rt_now;
2113 }
2114
2115 ANHE_at_cache (periodics [HEAP0]);
2116 downheap (periodics, periodiccnt, HEAP0);
2117 }
2118 else
2119 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2120
2121 EV_FREQUENT_CHECK;
2122 feed_reverse (EV_A_ (W)w);
1654 } 2123 }
1655 else if (w->interval) 2124 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1656 {
1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663 2125
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1672 downheap (periodics, periodiccnt, HEAP0);
1673 }
1674 else
1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1676
1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2126 feed_reverse_done (EV_A_ EV_PERIODIC);
1678 } 2127 }
1679} 2128}
1680 2129
2130/* simply recalculate all periodics */
2131/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1681static void noinline 2132static void noinline
1682periodics_reschedule (EV_P) 2133periodics_reschedule (EV_P)
1683{ 2134{
1684 int i; 2135 int i;
1685 2136
1691 if (w->reschedule_cb) 2142 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2143 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval) 2144 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2145 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695 2146
1696 ANHE_at_set (periodics [i]); 2147 ANHE_at_cache (periodics [i]);
1697 } 2148 }
1698 2149
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 2150 reheap (periodics, periodiccnt);
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 2151}
2152#endif
2153
2154/* adjust all timers by a given offset */
2155static void noinline
2156timers_reschedule (EV_P_ ev_tstamp adjust)
2157{
2158 int i;
2159
1701 for (i = 0; i < periodiccnt; ++i) 2160 for (i = 0; i < timercnt; ++i)
1702 upheap (periodics, i + HEAP0); 2161 {
2162 ANHE *he = timers + i + HEAP0;
2163 ANHE_w (*he)->at += adjust;
2164 ANHE_at_cache (*he);
2165 }
1703} 2166}
1704#endif
1705 2167
1706void inline_speed 2168/* fetch new monotonic and realtime times from the kernel */
2169/* also detect if there was a timejump, and act accordingly */
2170inline_speed void
1707time_update (EV_P_ ev_tstamp max_block) 2171time_update (EV_P_ ev_tstamp max_block)
1708{ 2172{
1709 int i;
1710
1711#if EV_USE_MONOTONIC 2173#if EV_USE_MONOTONIC
1712 if (expect_true (have_monotonic)) 2174 if (expect_true (have_monotonic))
1713 { 2175 {
2176 int i;
1714 ev_tstamp odiff = rtmn_diff; 2177 ev_tstamp odiff = rtmn_diff;
1715 2178
1716 mn_now = get_clock (); 2179 mn_now = get_clock ();
1717 2180
1718 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2181 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1744 ev_rt_now = ev_time (); 2207 ev_rt_now = ev_time ();
1745 mn_now = get_clock (); 2208 mn_now = get_clock ();
1746 now_floor = mn_now; 2209 now_floor = mn_now;
1747 } 2210 }
1748 2211
2212 /* no timer adjustment, as the monotonic clock doesn't jump */
2213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1749# if EV_PERIODIC_ENABLE 2214# if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A); 2215 periodics_reschedule (EV_A);
1751# endif 2216# endif
1752 /* no timer adjustment, as the monotonic clock doesn't jump */
1753 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1754 } 2217 }
1755 else 2218 else
1756#endif 2219#endif
1757 { 2220 {
1758 ev_rt_now = ev_time (); 2221 ev_rt_now = ev_time ();
1759 2222
1760 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2223 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1761 { 2224 {
2225 /* adjust timers. this is easy, as the offset is the same for all of them */
2226 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1762#if EV_PERIODIC_ENABLE 2227#if EV_PERIODIC_ENABLE
1763 periodics_reschedule (EV_A); 2228 periodics_reschedule (EV_A);
1764#endif 2229#endif
1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1766 for (i = 0; i < timercnt; ++i)
1767 {
1768 ANHE *he = timers + i + HEAP0;
1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1772 } 2230 }
1773 2231
1774 mn_now = ev_rt_now; 2232 mn_now = ev_rt_now;
1775 } 2233 }
1776} 2234}
1777 2235
1778void 2236void
1779ev_ref (EV_P)
1780{
1781 ++activecnt;
1782}
1783
1784void
1785ev_unref (EV_P)
1786{
1787 --activecnt;
1788}
1789
1790static int loop_done;
1791
1792void
1793ev_loop (EV_P_ int flags) 2237ev_loop (EV_P_ int flags)
1794{ 2238{
2239#if EV_MINIMAL < 2
2240 ++loop_depth;
2241#endif
2242
2243 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2244
1795 loop_done = EVUNLOOP_CANCEL; 2245 loop_done = EVUNLOOP_CANCEL;
1796 2246
1797 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2247 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1798 2248
1799 do 2249 do
1800 { 2250 {
2251#if EV_VERIFY >= 2
2252 ev_loop_verify (EV_A);
2253#endif
2254
1801#ifndef _WIN32 2255#ifndef _WIN32
1802 if (expect_false (curpid)) /* penalise the forking check even more */ 2256 if (expect_false (curpid)) /* penalise the forking check even more */
1803 if (expect_false (getpid () != curpid)) 2257 if (expect_false (getpid () != curpid))
1804 { 2258 {
1805 curpid = getpid (); 2259 curpid = getpid ();
1811 /* we might have forked, so queue fork handlers */ 2265 /* we might have forked, so queue fork handlers */
1812 if (expect_false (postfork)) 2266 if (expect_false (postfork))
1813 if (forkcnt) 2267 if (forkcnt)
1814 { 2268 {
1815 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2269 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1816 call_pending (EV_A); 2270 EV_INVOKE_PENDING;
1817 } 2271 }
1818#endif 2272#endif
1819 2273
1820 /* queue prepare watchers (and execute them) */ 2274 /* queue prepare watchers (and execute them) */
1821 if (expect_false (preparecnt)) 2275 if (expect_false (preparecnt))
1822 { 2276 {
1823 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2277 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1824 call_pending (EV_A); 2278 EV_INVOKE_PENDING;
1825 } 2279 }
1826 2280
1827 if (expect_false (!activecnt)) 2281 if (expect_false (loop_done))
1828 break; 2282 break;
1829 2283
1830 /* we might have forked, so reify kernel state if necessary */ 2284 /* we might have forked, so reify kernel state if necessary */
1831 if (expect_false (postfork)) 2285 if (expect_false (postfork))
1832 loop_fork (EV_A); 2286 loop_fork (EV_A);
1839 ev_tstamp waittime = 0.; 2293 ev_tstamp waittime = 0.;
1840 ev_tstamp sleeptime = 0.; 2294 ev_tstamp sleeptime = 0.;
1841 2295
1842 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2296 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1843 { 2297 {
2298 /* remember old timestamp for io_blocktime calculation */
2299 ev_tstamp prev_mn_now = mn_now;
2300
1844 /* update time to cancel out callback processing overhead */ 2301 /* update time to cancel out callback processing overhead */
1845 time_update (EV_A_ 1e100); 2302 time_update (EV_A_ 1e100);
1846 2303
1847 waittime = MAX_BLOCKTIME; 2304 waittime = MAX_BLOCKTIME;
1848 2305
1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2315 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1859 if (waittime > to) waittime = to; 2316 if (waittime > to) waittime = to;
1860 } 2317 }
1861#endif 2318#endif
1862 2319
2320 /* don't let timeouts decrease the waittime below timeout_blocktime */
1863 if (expect_false (waittime < timeout_blocktime)) 2321 if (expect_false (waittime < timeout_blocktime))
1864 waittime = timeout_blocktime; 2322 waittime = timeout_blocktime;
1865 2323
1866 sleeptime = waittime - backend_fudge; 2324 /* extra check because io_blocktime is commonly 0 */
1867
1868 if (expect_true (sleeptime > io_blocktime)) 2325 if (expect_false (io_blocktime))
1869 sleeptime = io_blocktime;
1870
1871 if (sleeptime)
1872 { 2326 {
2327 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2328
2329 if (sleeptime > waittime - backend_fudge)
2330 sleeptime = waittime - backend_fudge;
2331
2332 if (expect_true (sleeptime > 0.))
2333 {
1873 ev_sleep (sleeptime); 2334 ev_sleep (sleeptime);
1874 waittime -= sleeptime; 2335 waittime -= sleeptime;
2336 }
1875 } 2337 }
1876 } 2338 }
1877 2339
2340#if EV_MINIMAL < 2
1878 ++loop_count; 2341 ++loop_count;
2342#endif
2343 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1879 backend_poll (EV_A_ waittime); 2344 backend_poll (EV_A_ waittime);
2345 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1880 2346
1881 /* update ev_rt_now, do magic */ 2347 /* update ev_rt_now, do magic */
1882 time_update (EV_A_ waittime + sleeptime); 2348 time_update (EV_A_ waittime + sleeptime);
1883 } 2349 }
1884 2350
1895 2361
1896 /* queue check watchers, to be executed first */ 2362 /* queue check watchers, to be executed first */
1897 if (expect_false (checkcnt)) 2363 if (expect_false (checkcnt))
1898 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2364 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1899 2365
1900 call_pending (EV_A); 2366 EV_INVOKE_PENDING;
1901 } 2367 }
1902 while (expect_true ( 2368 while (expect_true (
1903 activecnt 2369 activecnt
1904 && !loop_done 2370 && !loop_done
1905 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2371 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1906 )); 2372 ));
1907 2373
1908 if (loop_done == EVUNLOOP_ONE) 2374 if (loop_done == EVUNLOOP_ONE)
1909 loop_done = EVUNLOOP_CANCEL; 2375 loop_done = EVUNLOOP_CANCEL;
2376
2377#if EV_MINIMAL < 2
2378 --loop_depth;
2379#endif
1910} 2380}
1911 2381
1912void 2382void
1913ev_unloop (EV_P_ int how) 2383ev_unloop (EV_P_ int how)
1914{ 2384{
1915 loop_done = how; 2385 loop_done = how;
1916} 2386}
1917 2387
2388void
2389ev_ref (EV_P)
2390{
2391 ++activecnt;
2392}
2393
2394void
2395ev_unref (EV_P)
2396{
2397 --activecnt;
2398}
2399
2400void
2401ev_now_update (EV_P)
2402{
2403 time_update (EV_A_ 1e100);
2404}
2405
2406void
2407ev_suspend (EV_P)
2408{
2409 ev_now_update (EV_A);
2410}
2411
2412void
2413ev_resume (EV_P)
2414{
2415 ev_tstamp mn_prev = mn_now;
2416
2417 ev_now_update (EV_A);
2418 timers_reschedule (EV_A_ mn_now - mn_prev);
2419#if EV_PERIODIC_ENABLE
2420 /* TODO: really do this? */
2421 periodics_reschedule (EV_A);
2422#endif
2423}
2424
1918/*****************************************************************************/ 2425/*****************************************************************************/
2426/* singly-linked list management, used when the expected list length is short */
1919 2427
1920void inline_size 2428inline_size void
1921wlist_add (WL *head, WL elem) 2429wlist_add (WL *head, WL elem)
1922{ 2430{
1923 elem->next = *head; 2431 elem->next = *head;
1924 *head = elem; 2432 *head = elem;
1925} 2433}
1926 2434
1927void inline_size 2435inline_size void
1928wlist_del (WL *head, WL elem) 2436wlist_del (WL *head, WL elem)
1929{ 2437{
1930 while (*head) 2438 while (*head)
1931 { 2439 {
1932 if (*head == elem) 2440 if (expect_true (*head == elem))
1933 { 2441 {
1934 *head = elem->next; 2442 *head = elem->next;
1935 return; 2443 break;
1936 } 2444 }
1937 2445
1938 head = &(*head)->next; 2446 head = &(*head)->next;
1939 } 2447 }
1940} 2448}
1941 2449
1942void inline_speed 2450/* internal, faster, version of ev_clear_pending */
2451inline_speed void
1943clear_pending (EV_P_ W w) 2452clear_pending (EV_P_ W w)
1944{ 2453{
1945 if (w->pending) 2454 if (w->pending)
1946 { 2455 {
1947 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2456 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1948 w->pending = 0; 2457 w->pending = 0;
1949 } 2458 }
1950} 2459}
1951 2460
1952int 2461int
1956 int pending = w_->pending; 2465 int pending = w_->pending;
1957 2466
1958 if (expect_true (pending)) 2467 if (expect_true (pending))
1959 { 2468 {
1960 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2469 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2470 p->w = (W)&pending_w;
1961 w_->pending = 0; 2471 w_->pending = 0;
1962 p->w = 0;
1963 return p->events; 2472 return p->events;
1964 } 2473 }
1965 else 2474 else
1966 return 0; 2475 return 0;
1967} 2476}
1968 2477
1969void inline_size 2478inline_size void
1970pri_adjust (EV_P_ W w) 2479pri_adjust (EV_P_ W w)
1971{ 2480{
1972 int pri = w->priority; 2481 int pri = ev_priority (w);
1973 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2482 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1974 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2483 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1975 w->priority = pri; 2484 ev_set_priority (w, pri);
1976} 2485}
1977 2486
1978void inline_speed 2487inline_speed void
1979ev_start (EV_P_ W w, int active) 2488ev_start (EV_P_ W w, int active)
1980{ 2489{
1981 pri_adjust (EV_A_ w); 2490 pri_adjust (EV_A_ w);
1982 w->active = active; 2491 w->active = active;
1983 ev_ref (EV_A); 2492 ev_ref (EV_A);
1984} 2493}
1985 2494
1986void inline_size 2495inline_size void
1987ev_stop (EV_P_ W w) 2496ev_stop (EV_P_ W w)
1988{ 2497{
1989 ev_unref (EV_A); 2498 ev_unref (EV_A);
1990 w->active = 0; 2499 w->active = 0;
1991} 2500}
1998 int fd = w->fd; 2507 int fd = w->fd;
1999 2508
2000 if (expect_false (ev_is_active (w))) 2509 if (expect_false (ev_is_active (w)))
2001 return; 2510 return;
2002 2511
2003 assert (("ev_io_start called with negative fd", fd >= 0)); 2512 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2513 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2514
2515 EV_FREQUENT_CHECK;
2004 2516
2005 ev_start (EV_A_ (W)w, 1); 2517 ev_start (EV_A_ (W)w, 1);
2006 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2518 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2007 wlist_add (&anfds[fd].head, (WL)w); 2519 wlist_add (&anfds[fd].head, (WL)w);
2008 2520
2009 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2521 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2010 w->events &= ~EV_IOFDSET; 2522 w->events &= ~EV__IOFDSET;
2523
2524 EV_FREQUENT_CHECK;
2011} 2525}
2012 2526
2013void noinline 2527void noinline
2014ev_io_stop (EV_P_ ev_io *w) 2528ev_io_stop (EV_P_ ev_io *w)
2015{ 2529{
2016 clear_pending (EV_A_ (W)w); 2530 clear_pending (EV_A_ (W)w);
2017 if (expect_false (!ev_is_active (w))) 2531 if (expect_false (!ev_is_active (w)))
2018 return; 2532 return;
2019 2533
2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2534 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2535
2536 EV_FREQUENT_CHECK;
2021 2537
2022 wlist_del (&anfds[w->fd].head, (WL)w); 2538 wlist_del (&anfds[w->fd].head, (WL)w);
2023 ev_stop (EV_A_ (W)w); 2539 ev_stop (EV_A_ (W)w);
2024 2540
2025 fd_change (EV_A_ w->fd, 1); 2541 fd_change (EV_A_ w->fd, 1);
2542
2543 EV_FREQUENT_CHECK;
2026} 2544}
2027 2545
2028void noinline 2546void noinline
2029ev_timer_start (EV_P_ ev_timer *w) 2547ev_timer_start (EV_P_ ev_timer *w)
2030{ 2548{
2031 if (expect_false (ev_is_active (w))) 2549 if (expect_false (ev_is_active (w)))
2032 return; 2550 return;
2033 2551
2034 ev_at (w) += mn_now; 2552 ev_at (w) += mn_now;
2035 2553
2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2554 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2037 2555
2556 EV_FREQUENT_CHECK;
2557
2558 ++timercnt;
2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2559 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2560 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2040 ANHE_w (timers [ev_active (w)]) = (WT)w; 2561 ANHE_w (timers [ev_active (w)]) = (WT)w;
2041 ANHE_at_set (timers [ev_active (w)]); 2562 ANHE_at_cache (timers [ev_active (w)]);
2042 upheap (timers, ev_active (w)); 2563 upheap (timers, ev_active (w));
2043 2564
2565 EV_FREQUENT_CHECK;
2566
2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2567 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2045} 2568}
2046 2569
2047void noinline 2570void noinline
2048ev_timer_stop (EV_P_ ev_timer *w) 2571ev_timer_stop (EV_P_ ev_timer *w)
2049{ 2572{
2050 clear_pending (EV_A_ (W)w); 2573 clear_pending (EV_A_ (W)w);
2051 if (expect_false (!ev_is_active (w))) 2574 if (expect_false (!ev_is_active (w)))
2052 return; 2575 return;
2053 2576
2577 EV_FREQUENT_CHECK;
2578
2054 { 2579 {
2055 int active = ev_active (w); 2580 int active = ev_active (w);
2056 2581
2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2582 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2058 2583
2584 --timercnt;
2585
2059 if (expect_true (active < timercnt + HEAP0 - 1)) 2586 if (expect_true (active < timercnt + HEAP0))
2060 { 2587 {
2061 timers [active] = timers [timercnt + HEAP0 - 1]; 2588 timers [active] = timers [timercnt + HEAP0];
2062 adjustheap (timers, timercnt, active); 2589 adjustheap (timers, timercnt, active);
2063 } 2590 }
2064
2065 --timercnt;
2066 } 2591 }
2067 2592
2068 ev_at (w) -= mn_now; 2593 ev_at (w) -= mn_now;
2069 2594
2070 ev_stop (EV_A_ (W)w); 2595 ev_stop (EV_A_ (W)w);
2596
2597 EV_FREQUENT_CHECK;
2071} 2598}
2072 2599
2073void noinline 2600void noinline
2074ev_timer_again (EV_P_ ev_timer *w) 2601ev_timer_again (EV_P_ ev_timer *w)
2075{ 2602{
2603 EV_FREQUENT_CHECK;
2604
2076 if (ev_is_active (w)) 2605 if (ev_is_active (w))
2077 { 2606 {
2078 if (w->repeat) 2607 if (w->repeat)
2079 { 2608 {
2080 ev_at (w) = mn_now + w->repeat; 2609 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]); 2610 ANHE_at_cache (timers [ev_active (w)]);
2082 adjustheap (timers, timercnt, ev_active (w)); 2611 adjustheap (timers, timercnt, ev_active (w));
2083 } 2612 }
2084 else 2613 else
2085 ev_timer_stop (EV_A_ w); 2614 ev_timer_stop (EV_A_ w);
2086 } 2615 }
2087 else if (w->repeat) 2616 else if (w->repeat)
2088 { 2617 {
2089 ev_at (w) = w->repeat; 2618 ev_at (w) = w->repeat;
2090 ev_timer_start (EV_A_ w); 2619 ev_timer_start (EV_A_ w);
2091 } 2620 }
2621
2622 EV_FREQUENT_CHECK;
2623}
2624
2625ev_tstamp
2626ev_timer_remaining (EV_P_ ev_timer *w)
2627{
2628 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2092} 2629}
2093 2630
2094#if EV_PERIODIC_ENABLE 2631#if EV_PERIODIC_ENABLE
2095void noinline 2632void noinline
2096ev_periodic_start (EV_P_ ev_periodic *w) 2633ev_periodic_start (EV_P_ ev_periodic *w)
2100 2637
2101 if (w->reschedule_cb) 2638 if (w->reschedule_cb)
2102 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2639 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2103 else if (w->interval) 2640 else if (w->interval)
2104 { 2641 {
2105 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2642 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2106 /* this formula differs from the one in periodic_reify because we do not always round up */ 2643 /* this formula differs from the one in periodic_reify because we do not always round up */
2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2644 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2108 } 2645 }
2109 else 2646 else
2110 ev_at (w) = w->offset; 2647 ev_at (w) = w->offset;
2111 2648
2649 EV_FREQUENT_CHECK;
2650
2651 ++periodiccnt;
2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2652 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2653 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2114 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2654 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2115 ANHE_at_set (periodics [ev_active (w)]); 2655 ANHE_at_cache (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w)); 2656 upheap (periodics, ev_active (w));
2117 2657
2658 EV_FREQUENT_CHECK;
2659
2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2660 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2119} 2661}
2120 2662
2121void noinline 2663void noinline
2122ev_periodic_stop (EV_P_ ev_periodic *w) 2664ev_periodic_stop (EV_P_ ev_periodic *w)
2123{ 2665{
2124 clear_pending (EV_A_ (W)w); 2666 clear_pending (EV_A_ (W)w);
2125 if (expect_false (!ev_is_active (w))) 2667 if (expect_false (!ev_is_active (w)))
2126 return; 2668 return;
2127 2669
2670 EV_FREQUENT_CHECK;
2671
2128 { 2672 {
2129 int active = ev_active (w); 2673 int active = ev_active (w);
2130 2674
2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2675 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2132 2676
2677 --periodiccnt;
2678
2133 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2679 if (expect_true (active < periodiccnt + HEAP0))
2134 { 2680 {
2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2681 periodics [active] = periodics [periodiccnt + HEAP0];
2136 adjustheap (periodics, periodiccnt, active); 2682 adjustheap (periodics, periodiccnt, active);
2137 } 2683 }
2138
2139 --periodiccnt;
2140 } 2684 }
2141 2685
2142 ev_stop (EV_A_ (W)w); 2686 ev_stop (EV_A_ (W)w);
2687
2688 EV_FREQUENT_CHECK;
2143} 2689}
2144 2690
2145void noinline 2691void noinline
2146ev_periodic_again (EV_P_ ev_periodic *w) 2692ev_periodic_again (EV_P_ ev_periodic *w)
2147{ 2693{
2156#endif 2702#endif
2157 2703
2158void noinline 2704void noinline
2159ev_signal_start (EV_P_ ev_signal *w) 2705ev_signal_start (EV_P_ ev_signal *w)
2160{ 2706{
2161#if EV_MULTIPLICITY
2162 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2163#endif
2164 if (expect_false (ev_is_active (w))) 2707 if (expect_false (ev_is_active (w)))
2165 return; 2708 return;
2166 2709
2167 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2710 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2168 2711
2169 evpipe_init (EV_A); 2712#if EV_MULTIPLICITY
2713 assert (("libev: a signal must not be attached to two different loops",
2714 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2170 2715
2716 signals [w->signum - 1].loop = EV_A;
2717#endif
2718
2719 EV_FREQUENT_CHECK;
2720
2721#if EV_USE_SIGNALFD
2722 if (sigfd == -2)
2171 { 2723 {
2172#ifndef _WIN32 2724 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2173 sigset_t full, prev; 2725 if (sigfd < 0 && errno == EINVAL)
2174 sigfillset (&full); 2726 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2175 sigprocmask (SIG_SETMASK, &full, &prev);
2176#endif
2177 2727
2178 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2728 if (sigfd >= 0)
2729 {
2730 fd_intern (sigfd); /* doing it twice will not hurt */
2179 2731
2180#ifndef _WIN32 2732 sigemptyset (&sigfd_set);
2181 sigprocmask (SIG_SETMASK, &prev, 0); 2733
2182#endif 2734 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2735 ev_set_priority (&sigfd_w, EV_MAXPRI);
2736 ev_io_start (EV_A_ &sigfd_w);
2737 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2738 }
2183 } 2739 }
2740
2741 if (sigfd >= 0)
2742 {
2743 /* TODO: check .head */
2744 sigaddset (&sigfd_set, w->signum);
2745 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2746
2747 signalfd (sigfd, &sigfd_set, 0);
2748 }
2749#endif
2184 2750
2185 ev_start (EV_A_ (W)w, 1); 2751 ev_start (EV_A_ (W)w, 1);
2186 wlist_add (&signals [w->signum - 1].head, (WL)w); 2752 wlist_add (&signals [w->signum - 1].head, (WL)w);
2187 2753
2188 if (!((WL)w)->next) 2754 if (!((WL)w)->next)
2755# if EV_USE_SIGNALFD
2756 if (sigfd < 0) /*TODO*/
2757# endif
2189 { 2758 {
2190#if _WIN32 2759# ifdef _WIN32
2760 evpipe_init (EV_A);
2761
2191 signal (w->signum, ev_sighandler); 2762 signal (w->signum, ev_sighandler);
2192#else 2763# else
2193 struct sigaction sa; 2764 struct sigaction sa;
2765
2766 evpipe_init (EV_A);
2767
2194 sa.sa_handler = ev_sighandler; 2768 sa.sa_handler = ev_sighandler;
2195 sigfillset (&sa.sa_mask); 2769 sigfillset (&sa.sa_mask);
2196 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2770 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2197 sigaction (w->signum, &sa, 0); 2771 sigaction (w->signum, &sa, 0);
2772
2773 sigemptyset (&sa.sa_mask);
2774 sigaddset (&sa.sa_mask, w->signum);
2775 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2198#endif 2776#endif
2199 } 2777 }
2778
2779 EV_FREQUENT_CHECK;
2200} 2780}
2201 2781
2202void noinline 2782void noinline
2203ev_signal_stop (EV_P_ ev_signal *w) 2783ev_signal_stop (EV_P_ ev_signal *w)
2204{ 2784{
2205 clear_pending (EV_A_ (W)w); 2785 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w))) 2786 if (expect_false (!ev_is_active (w)))
2207 return; 2787 return;
2208 2788
2789 EV_FREQUENT_CHECK;
2790
2209 wlist_del (&signals [w->signum - 1].head, (WL)w); 2791 wlist_del (&signals [w->signum - 1].head, (WL)w);
2210 ev_stop (EV_A_ (W)w); 2792 ev_stop (EV_A_ (W)w);
2211 2793
2212 if (!signals [w->signum - 1].head) 2794 if (!signals [w->signum - 1].head)
2795 {
2796#if EV_MULTIPLICITY
2797 signals [w->signum - 1].loop = 0; /* unattach from signal */
2798#endif
2799#if EV_USE_SIGNALFD
2800 if (sigfd >= 0)
2801 {
2802 sigset_t ss;
2803
2804 sigemptyset (&ss);
2805 sigaddset (&ss, w->signum);
2806 sigdelset (&sigfd_set, w->signum);
2807
2808 signalfd (sigfd, &sigfd_set, 0);
2809 sigprocmask (SIG_UNBLOCK, &ss, 0);
2810 }
2811 else
2812#endif
2213 signal (w->signum, SIG_DFL); 2813 signal (w->signum, SIG_DFL);
2814 }
2815
2816 EV_FREQUENT_CHECK;
2214} 2817}
2215 2818
2216void 2819void
2217ev_child_start (EV_P_ ev_child *w) 2820ev_child_start (EV_P_ ev_child *w)
2218{ 2821{
2219#if EV_MULTIPLICITY 2822#if EV_MULTIPLICITY
2220 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2823 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2221#endif 2824#endif
2222 if (expect_false (ev_is_active (w))) 2825 if (expect_false (ev_is_active (w)))
2223 return; 2826 return;
2224 2827
2828 EV_FREQUENT_CHECK;
2829
2225 ev_start (EV_A_ (W)w, 1); 2830 ev_start (EV_A_ (W)w, 1);
2226 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2831 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2832
2833 EV_FREQUENT_CHECK;
2227} 2834}
2228 2835
2229void 2836void
2230ev_child_stop (EV_P_ ev_child *w) 2837ev_child_stop (EV_P_ ev_child *w)
2231{ 2838{
2232 clear_pending (EV_A_ (W)w); 2839 clear_pending (EV_A_ (W)w);
2233 if (expect_false (!ev_is_active (w))) 2840 if (expect_false (!ev_is_active (w)))
2234 return; 2841 return;
2235 2842
2843 EV_FREQUENT_CHECK;
2844
2236 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2845 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2237 ev_stop (EV_A_ (W)w); 2846 ev_stop (EV_A_ (W)w);
2847
2848 EV_FREQUENT_CHECK;
2238} 2849}
2239 2850
2240#if EV_STAT_ENABLE 2851#if EV_STAT_ENABLE
2241 2852
2242# ifdef _WIN32 2853# ifdef _WIN32
2243# undef lstat 2854# undef lstat
2244# define lstat(a,b) _stati64 (a,b) 2855# define lstat(a,b) _stati64 (a,b)
2245# endif 2856# endif
2246 2857
2247#define DEF_STAT_INTERVAL 5.0074891 2858#define DEF_STAT_INTERVAL 5.0074891
2859#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2248#define MIN_STAT_INTERVAL 0.1074891 2860#define MIN_STAT_INTERVAL 0.1074891
2249 2861
2250static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2862static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2251 2863
2252#if EV_USE_INOTIFY 2864#if EV_USE_INOTIFY
2253# define EV_INOTIFY_BUFSIZE 8192 2865
2866/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2867# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2254 2868
2255static void noinline 2869static void noinline
2256infy_add (EV_P_ ev_stat *w) 2870infy_add (EV_P_ ev_stat *w)
2257{ 2871{
2258 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2872 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2259 2873
2260 if (w->wd < 0) 2874 if (w->wd >= 0)
2875 {
2876 struct statfs sfs;
2877
2878 /* now local changes will be tracked by inotify, but remote changes won't */
2879 /* unless the filesystem is known to be local, we therefore still poll */
2880 /* also do poll on <2.6.25, but with normal frequency */
2881
2882 if (!fs_2625)
2883 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2884 else if (!statfs (w->path, &sfs)
2885 && (sfs.f_type == 0x1373 /* devfs */
2886 || sfs.f_type == 0xEF53 /* ext2/3 */
2887 || sfs.f_type == 0x3153464a /* jfs */
2888 || sfs.f_type == 0x52654973 /* reiser3 */
2889 || sfs.f_type == 0x01021994 /* tempfs */
2890 || sfs.f_type == 0x58465342 /* xfs */))
2891 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2892 else
2893 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2261 { 2894 }
2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2895 else
2896 {
2897 /* can't use inotify, continue to stat */
2898 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2263 2899
2264 /* monitor some parent directory for speedup hints */ 2900 /* if path is not there, monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2901 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2266 /* but an efficiency issue only */ 2902 /* but an efficiency issue only */
2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2903 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2268 { 2904 {
2269 char path [4096]; 2905 char path [4096];
2270 strcpy (path, w->path); 2906 strcpy (path, w->path);
2274 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2910 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2275 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2911 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2276 2912
2277 char *pend = strrchr (path, '/'); 2913 char *pend = strrchr (path, '/');
2278 2914
2279 if (!pend) 2915 if (!pend || pend == path)
2280 break; /* whoops, no '/', complain to your admin */ 2916 break;
2281 2917
2282 *pend = 0; 2918 *pend = 0;
2283 w->wd = inotify_add_watch (fs_fd, path, mask); 2919 w->wd = inotify_add_watch (fs_fd, path, mask);
2284 } 2920 }
2285 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2921 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2286 } 2922 }
2287 } 2923 }
2288 else
2289 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2290 2924
2291 if (w->wd >= 0) 2925 if (w->wd >= 0)
2292 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2926 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2927
2928 /* now re-arm timer, if required */
2929 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2930 ev_timer_again (EV_A_ &w->timer);
2931 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2293} 2932}
2294 2933
2295static void noinline 2934static void noinline
2296infy_del (EV_P_ ev_stat *w) 2935infy_del (EV_P_ ev_stat *w)
2297{ 2936{
2311 2950
2312static void noinline 2951static void noinline
2313infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2952infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2314{ 2953{
2315 if (slot < 0) 2954 if (slot < 0)
2316 /* overflow, need to check for all hahs slots */ 2955 /* overflow, need to check for all hash slots */
2317 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2956 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2318 infy_wd (EV_A_ slot, wd, ev); 2957 infy_wd (EV_A_ slot, wd, ev);
2319 else 2958 else
2320 { 2959 {
2321 WL w_; 2960 WL w_;
2327 2966
2328 if (w->wd == wd || wd == -1) 2967 if (w->wd == wd || wd == -1)
2329 { 2968 {
2330 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2969 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2331 { 2970 {
2971 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2332 w->wd = -1; 2972 w->wd = -1;
2333 infy_add (EV_A_ w); /* re-add, no matter what */ 2973 infy_add (EV_A_ w); /* re-add, no matter what */
2334 } 2974 }
2335 2975
2336 stat_timer_cb (EV_A_ &w->timer, 0); 2976 stat_timer_cb (EV_A_ &w->timer, 0);
2341 2981
2342static void 2982static void
2343infy_cb (EV_P_ ev_io *w, int revents) 2983infy_cb (EV_P_ ev_io *w, int revents)
2344{ 2984{
2345 char buf [EV_INOTIFY_BUFSIZE]; 2985 char buf [EV_INOTIFY_BUFSIZE];
2346 struct inotify_event *ev = (struct inotify_event *)buf;
2347 int ofs; 2986 int ofs;
2348 int len = read (fs_fd, buf, sizeof (buf)); 2987 int len = read (fs_fd, buf, sizeof (buf));
2349 2988
2350 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2989 for (ofs = 0; ofs < len; )
2990 {
2991 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2351 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2992 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2993 ofs += sizeof (struct inotify_event) + ev->len;
2994 }
2352} 2995}
2353 2996
2354void inline_size 2997inline_size void
2998check_2625 (EV_P)
2999{
3000 /* kernels < 2.6.25 are borked
3001 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3002 */
3003 struct utsname buf;
3004 int major, minor, micro;
3005
3006 if (uname (&buf))
3007 return;
3008
3009 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
3010 return;
3011
3012 if (major < 2
3013 || (major == 2 && minor < 6)
3014 || (major == 2 && minor == 6 && micro < 25))
3015 return;
3016
3017 fs_2625 = 1;
3018}
3019
3020inline_size int
3021infy_newfd (void)
3022{
3023#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3024 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3025 if (fd >= 0)
3026 return fd;
3027#endif
3028 return inotify_init ();
3029}
3030
3031inline_size void
2355infy_init (EV_P) 3032infy_init (EV_P)
2356{ 3033{
2357 if (fs_fd != -2) 3034 if (fs_fd != -2)
2358 return; 3035 return;
2359 3036
3037 fs_fd = -1;
3038
3039 check_2625 (EV_A);
3040
2360 fs_fd = inotify_init (); 3041 fs_fd = infy_newfd ();
2361 3042
2362 if (fs_fd >= 0) 3043 if (fs_fd >= 0)
2363 { 3044 {
3045 fd_intern (fs_fd);
2364 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3046 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2365 ev_set_priority (&fs_w, EV_MAXPRI); 3047 ev_set_priority (&fs_w, EV_MAXPRI);
2366 ev_io_start (EV_A_ &fs_w); 3048 ev_io_start (EV_A_ &fs_w);
3049 ev_unref (EV_A);
2367 } 3050 }
2368} 3051}
2369 3052
2370void inline_size 3053inline_size void
2371infy_fork (EV_P) 3054infy_fork (EV_P)
2372{ 3055{
2373 int slot; 3056 int slot;
2374 3057
2375 if (fs_fd < 0) 3058 if (fs_fd < 0)
2376 return; 3059 return;
2377 3060
3061 ev_ref (EV_A);
3062 ev_io_stop (EV_A_ &fs_w);
2378 close (fs_fd); 3063 close (fs_fd);
2379 fs_fd = inotify_init (); 3064 fs_fd = infy_newfd ();
3065
3066 if (fs_fd >= 0)
3067 {
3068 fd_intern (fs_fd);
3069 ev_io_set (&fs_w, fs_fd, EV_READ);
3070 ev_io_start (EV_A_ &fs_w);
3071 ev_unref (EV_A);
3072 }
2380 3073
2381 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3074 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2382 { 3075 {
2383 WL w_ = fs_hash [slot].head; 3076 WL w_ = fs_hash [slot].head;
2384 fs_hash [slot].head = 0; 3077 fs_hash [slot].head = 0;
2391 w->wd = -1; 3084 w->wd = -1;
2392 3085
2393 if (fs_fd >= 0) 3086 if (fs_fd >= 0)
2394 infy_add (EV_A_ w); /* re-add, no matter what */ 3087 infy_add (EV_A_ w); /* re-add, no matter what */
2395 else 3088 else
3089 {
3090 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3091 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2396 ev_timer_start (EV_A_ &w->timer); 3092 ev_timer_again (EV_A_ &w->timer);
3093 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3094 }
2397 } 3095 }
2398
2399 } 3096 }
2400} 3097}
2401 3098
3099#endif
3100
3101#ifdef _WIN32
3102# define EV_LSTAT(p,b) _stati64 (p, b)
3103#else
3104# define EV_LSTAT(p,b) lstat (p, b)
2402#endif 3105#endif
2403 3106
2404void 3107void
2405ev_stat_stat (EV_P_ ev_stat *w) 3108ev_stat_stat (EV_P_ ev_stat *w)
2406{ 3109{
2413static void noinline 3116static void noinline
2414stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3117stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2415{ 3118{
2416 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3119 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2417 3120
2418 /* we copy this here each the time so that */ 3121 ev_statdata prev = w->attr;
2419 /* prev has the old value when the callback gets invoked */
2420 w->prev = w->attr;
2421 ev_stat_stat (EV_A_ w); 3122 ev_stat_stat (EV_A_ w);
2422 3123
2423 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3124 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2424 if ( 3125 if (
2425 w->prev.st_dev != w->attr.st_dev 3126 prev.st_dev != w->attr.st_dev
2426 || w->prev.st_ino != w->attr.st_ino 3127 || prev.st_ino != w->attr.st_ino
2427 || w->prev.st_mode != w->attr.st_mode 3128 || prev.st_mode != w->attr.st_mode
2428 || w->prev.st_nlink != w->attr.st_nlink 3129 || prev.st_nlink != w->attr.st_nlink
2429 || w->prev.st_uid != w->attr.st_uid 3130 || prev.st_uid != w->attr.st_uid
2430 || w->prev.st_gid != w->attr.st_gid 3131 || prev.st_gid != w->attr.st_gid
2431 || w->prev.st_rdev != w->attr.st_rdev 3132 || prev.st_rdev != w->attr.st_rdev
2432 || w->prev.st_size != w->attr.st_size 3133 || prev.st_size != w->attr.st_size
2433 || w->prev.st_atime != w->attr.st_atime 3134 || prev.st_atime != w->attr.st_atime
2434 || w->prev.st_mtime != w->attr.st_mtime 3135 || prev.st_mtime != w->attr.st_mtime
2435 || w->prev.st_ctime != w->attr.st_ctime 3136 || prev.st_ctime != w->attr.st_ctime
2436 ) { 3137 ) {
3138 /* we only update w->prev on actual differences */
3139 /* in case we test more often than invoke the callback, */
3140 /* to ensure that prev is always different to attr */
3141 w->prev = prev;
3142
2437 #if EV_USE_INOTIFY 3143 #if EV_USE_INOTIFY
3144 if (fs_fd >= 0)
3145 {
2438 infy_del (EV_A_ w); 3146 infy_del (EV_A_ w);
2439 infy_add (EV_A_ w); 3147 infy_add (EV_A_ w);
2440 ev_stat_stat (EV_A_ w); /* avoid race... */ 3148 ev_stat_stat (EV_A_ w); /* avoid race... */
3149 }
2441 #endif 3150 #endif
2442 3151
2443 ev_feed_event (EV_A_ w, EV_STAT); 3152 ev_feed_event (EV_A_ w, EV_STAT);
2444 } 3153 }
2445} 3154}
2448ev_stat_start (EV_P_ ev_stat *w) 3157ev_stat_start (EV_P_ ev_stat *w)
2449{ 3158{
2450 if (expect_false (ev_is_active (w))) 3159 if (expect_false (ev_is_active (w)))
2451 return; 3160 return;
2452 3161
2453 /* since we use memcmp, we need to clear any padding data etc. */
2454 memset (&w->prev, 0, sizeof (ev_statdata));
2455 memset (&w->attr, 0, sizeof (ev_statdata));
2456
2457 ev_stat_stat (EV_A_ w); 3162 ev_stat_stat (EV_A_ w);
2458 3163
3164 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2459 if (w->interval < MIN_STAT_INTERVAL) 3165 w->interval = MIN_STAT_INTERVAL;
2460 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2461 3166
2462 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3167 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2463 ev_set_priority (&w->timer, ev_priority (w)); 3168 ev_set_priority (&w->timer, ev_priority (w));
2464 3169
2465#if EV_USE_INOTIFY 3170#if EV_USE_INOTIFY
2466 infy_init (EV_A); 3171 infy_init (EV_A);
2467 3172
2468 if (fs_fd >= 0) 3173 if (fs_fd >= 0)
2469 infy_add (EV_A_ w); 3174 infy_add (EV_A_ w);
2470 else 3175 else
2471#endif 3176#endif
3177 {
2472 ev_timer_start (EV_A_ &w->timer); 3178 ev_timer_again (EV_A_ &w->timer);
3179 ev_unref (EV_A);
3180 }
2473 3181
2474 ev_start (EV_A_ (W)w, 1); 3182 ev_start (EV_A_ (W)w, 1);
3183
3184 EV_FREQUENT_CHECK;
2475} 3185}
2476 3186
2477void 3187void
2478ev_stat_stop (EV_P_ ev_stat *w) 3188ev_stat_stop (EV_P_ ev_stat *w)
2479{ 3189{
2480 clear_pending (EV_A_ (W)w); 3190 clear_pending (EV_A_ (W)w);
2481 if (expect_false (!ev_is_active (w))) 3191 if (expect_false (!ev_is_active (w)))
2482 return; 3192 return;
2483 3193
3194 EV_FREQUENT_CHECK;
3195
2484#if EV_USE_INOTIFY 3196#if EV_USE_INOTIFY
2485 infy_del (EV_A_ w); 3197 infy_del (EV_A_ w);
2486#endif 3198#endif
3199
3200 if (ev_is_active (&w->timer))
3201 {
3202 ev_ref (EV_A);
2487 ev_timer_stop (EV_A_ &w->timer); 3203 ev_timer_stop (EV_A_ &w->timer);
3204 }
2488 3205
2489 ev_stop (EV_A_ (W)w); 3206 ev_stop (EV_A_ (W)w);
3207
3208 EV_FREQUENT_CHECK;
2490} 3209}
2491#endif 3210#endif
2492 3211
2493#if EV_IDLE_ENABLE 3212#if EV_IDLE_ENABLE
2494void 3213void
2496{ 3215{
2497 if (expect_false (ev_is_active (w))) 3216 if (expect_false (ev_is_active (w)))
2498 return; 3217 return;
2499 3218
2500 pri_adjust (EV_A_ (W)w); 3219 pri_adjust (EV_A_ (W)w);
3220
3221 EV_FREQUENT_CHECK;
2501 3222
2502 { 3223 {
2503 int active = ++idlecnt [ABSPRI (w)]; 3224 int active = ++idlecnt [ABSPRI (w)];
2504 3225
2505 ++idleall; 3226 ++idleall;
2506 ev_start (EV_A_ (W)w, active); 3227 ev_start (EV_A_ (W)w, active);
2507 3228
2508 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3229 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2509 idles [ABSPRI (w)][active - 1] = w; 3230 idles [ABSPRI (w)][active - 1] = w;
2510 } 3231 }
3232
3233 EV_FREQUENT_CHECK;
2511} 3234}
2512 3235
2513void 3236void
2514ev_idle_stop (EV_P_ ev_idle *w) 3237ev_idle_stop (EV_P_ ev_idle *w)
2515{ 3238{
2516 clear_pending (EV_A_ (W)w); 3239 clear_pending (EV_A_ (W)w);
2517 if (expect_false (!ev_is_active (w))) 3240 if (expect_false (!ev_is_active (w)))
2518 return; 3241 return;
2519 3242
3243 EV_FREQUENT_CHECK;
3244
2520 { 3245 {
2521 int active = ev_active (w); 3246 int active = ev_active (w);
2522 3247
2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3248 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2524 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3249 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2525 3250
2526 ev_stop (EV_A_ (W)w); 3251 ev_stop (EV_A_ (W)w);
2527 --idleall; 3252 --idleall;
2528 } 3253 }
3254
3255 EV_FREQUENT_CHECK;
2529} 3256}
2530#endif 3257#endif
2531 3258
2532void 3259void
2533ev_prepare_start (EV_P_ ev_prepare *w) 3260ev_prepare_start (EV_P_ ev_prepare *w)
2534{ 3261{
2535 if (expect_false (ev_is_active (w))) 3262 if (expect_false (ev_is_active (w)))
2536 return; 3263 return;
3264
3265 EV_FREQUENT_CHECK;
2537 3266
2538 ev_start (EV_A_ (W)w, ++preparecnt); 3267 ev_start (EV_A_ (W)w, ++preparecnt);
2539 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3268 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2540 prepares [preparecnt - 1] = w; 3269 prepares [preparecnt - 1] = w;
3270
3271 EV_FREQUENT_CHECK;
2541} 3272}
2542 3273
2543void 3274void
2544ev_prepare_stop (EV_P_ ev_prepare *w) 3275ev_prepare_stop (EV_P_ ev_prepare *w)
2545{ 3276{
2546 clear_pending (EV_A_ (W)w); 3277 clear_pending (EV_A_ (W)w);
2547 if (expect_false (!ev_is_active (w))) 3278 if (expect_false (!ev_is_active (w)))
2548 return; 3279 return;
2549 3280
3281 EV_FREQUENT_CHECK;
3282
2550 { 3283 {
2551 int active = ev_active (w); 3284 int active = ev_active (w);
2552 3285
2553 prepares [active - 1] = prepares [--preparecnt]; 3286 prepares [active - 1] = prepares [--preparecnt];
2554 ev_active (prepares [active - 1]) = active; 3287 ev_active (prepares [active - 1]) = active;
2555 } 3288 }
2556 3289
2557 ev_stop (EV_A_ (W)w); 3290 ev_stop (EV_A_ (W)w);
3291
3292 EV_FREQUENT_CHECK;
2558} 3293}
2559 3294
2560void 3295void
2561ev_check_start (EV_P_ ev_check *w) 3296ev_check_start (EV_P_ ev_check *w)
2562{ 3297{
2563 if (expect_false (ev_is_active (w))) 3298 if (expect_false (ev_is_active (w)))
2564 return; 3299 return;
3300
3301 EV_FREQUENT_CHECK;
2565 3302
2566 ev_start (EV_A_ (W)w, ++checkcnt); 3303 ev_start (EV_A_ (W)w, ++checkcnt);
2567 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3304 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2568 checks [checkcnt - 1] = w; 3305 checks [checkcnt - 1] = w;
3306
3307 EV_FREQUENT_CHECK;
2569} 3308}
2570 3309
2571void 3310void
2572ev_check_stop (EV_P_ ev_check *w) 3311ev_check_stop (EV_P_ ev_check *w)
2573{ 3312{
2574 clear_pending (EV_A_ (W)w); 3313 clear_pending (EV_A_ (W)w);
2575 if (expect_false (!ev_is_active (w))) 3314 if (expect_false (!ev_is_active (w)))
2576 return; 3315 return;
2577 3316
3317 EV_FREQUENT_CHECK;
3318
2578 { 3319 {
2579 int active = ev_active (w); 3320 int active = ev_active (w);
2580 3321
2581 checks [active - 1] = checks [--checkcnt]; 3322 checks [active - 1] = checks [--checkcnt];
2582 ev_active (checks [active - 1]) = active; 3323 ev_active (checks [active - 1]) = active;
2583 } 3324 }
2584 3325
2585 ev_stop (EV_A_ (W)w); 3326 ev_stop (EV_A_ (W)w);
3327
3328 EV_FREQUENT_CHECK;
2586} 3329}
2587 3330
2588#if EV_EMBED_ENABLE 3331#if EV_EMBED_ENABLE
2589void noinline 3332void noinline
2590ev_embed_sweep (EV_P_ ev_embed *w) 3333ev_embed_sweep (EV_P_ ev_embed *w)
2607embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3350embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2608{ 3351{
2609 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3352 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2610 3353
2611 { 3354 {
2612 struct ev_loop *loop = w->other; 3355 EV_P = w->other;
2613 3356
2614 while (fdchangecnt) 3357 while (fdchangecnt)
2615 { 3358 {
2616 fd_reify (EV_A); 3359 fd_reify (EV_A);
2617 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3360 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2618 } 3361 }
2619 } 3362 }
2620} 3363}
2621 3364
3365static void
3366embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3367{
3368 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3369
3370 ev_embed_stop (EV_A_ w);
3371
3372 {
3373 EV_P = w->other;
3374
3375 ev_loop_fork (EV_A);
3376 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3377 }
3378
3379 ev_embed_start (EV_A_ w);
3380}
3381
2622#if 0 3382#if 0
2623static void 3383static void
2624embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3384embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2625{ 3385{
2626 ev_idle_stop (EV_A_ idle); 3386 ev_idle_stop (EV_A_ idle);
2632{ 3392{
2633 if (expect_false (ev_is_active (w))) 3393 if (expect_false (ev_is_active (w)))
2634 return; 3394 return;
2635 3395
2636 { 3396 {
2637 struct ev_loop *loop = w->other; 3397 EV_P = w->other;
2638 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3398 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2639 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3399 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2640 } 3400 }
3401
3402 EV_FREQUENT_CHECK;
2641 3403
2642 ev_set_priority (&w->io, ev_priority (w)); 3404 ev_set_priority (&w->io, ev_priority (w));
2643 ev_io_start (EV_A_ &w->io); 3405 ev_io_start (EV_A_ &w->io);
2644 3406
2645 ev_prepare_init (&w->prepare, embed_prepare_cb); 3407 ev_prepare_init (&w->prepare, embed_prepare_cb);
2646 ev_set_priority (&w->prepare, EV_MINPRI); 3408 ev_set_priority (&w->prepare, EV_MINPRI);
2647 ev_prepare_start (EV_A_ &w->prepare); 3409 ev_prepare_start (EV_A_ &w->prepare);
2648 3410
3411 ev_fork_init (&w->fork, embed_fork_cb);
3412 ev_fork_start (EV_A_ &w->fork);
3413
2649 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3414 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2650 3415
2651 ev_start (EV_A_ (W)w, 1); 3416 ev_start (EV_A_ (W)w, 1);
3417
3418 EV_FREQUENT_CHECK;
2652} 3419}
2653 3420
2654void 3421void
2655ev_embed_stop (EV_P_ ev_embed *w) 3422ev_embed_stop (EV_P_ ev_embed *w)
2656{ 3423{
2657 clear_pending (EV_A_ (W)w); 3424 clear_pending (EV_A_ (W)w);
2658 if (expect_false (!ev_is_active (w))) 3425 if (expect_false (!ev_is_active (w)))
2659 return; 3426 return;
2660 3427
3428 EV_FREQUENT_CHECK;
3429
2661 ev_io_stop (EV_A_ &w->io); 3430 ev_io_stop (EV_A_ &w->io);
2662 ev_prepare_stop (EV_A_ &w->prepare); 3431 ev_prepare_stop (EV_A_ &w->prepare);
3432 ev_fork_stop (EV_A_ &w->fork);
2663 3433
2664 ev_stop (EV_A_ (W)w); 3434 ev_stop (EV_A_ (W)w);
3435
3436 EV_FREQUENT_CHECK;
2665} 3437}
2666#endif 3438#endif
2667 3439
2668#if EV_FORK_ENABLE 3440#if EV_FORK_ENABLE
2669void 3441void
2670ev_fork_start (EV_P_ ev_fork *w) 3442ev_fork_start (EV_P_ ev_fork *w)
2671{ 3443{
2672 if (expect_false (ev_is_active (w))) 3444 if (expect_false (ev_is_active (w)))
2673 return; 3445 return;
3446
3447 EV_FREQUENT_CHECK;
2674 3448
2675 ev_start (EV_A_ (W)w, ++forkcnt); 3449 ev_start (EV_A_ (W)w, ++forkcnt);
2676 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3450 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2677 forks [forkcnt - 1] = w; 3451 forks [forkcnt - 1] = w;
3452
3453 EV_FREQUENT_CHECK;
2678} 3454}
2679 3455
2680void 3456void
2681ev_fork_stop (EV_P_ ev_fork *w) 3457ev_fork_stop (EV_P_ ev_fork *w)
2682{ 3458{
2683 clear_pending (EV_A_ (W)w); 3459 clear_pending (EV_A_ (W)w);
2684 if (expect_false (!ev_is_active (w))) 3460 if (expect_false (!ev_is_active (w)))
2685 return; 3461 return;
2686 3462
3463 EV_FREQUENT_CHECK;
3464
2687 { 3465 {
2688 int active = ev_active (w); 3466 int active = ev_active (w);
2689 3467
2690 forks [active - 1] = forks [--forkcnt]; 3468 forks [active - 1] = forks [--forkcnt];
2691 ev_active (forks [active - 1]) = active; 3469 ev_active (forks [active - 1]) = active;
2692 } 3470 }
2693 3471
2694 ev_stop (EV_A_ (W)w); 3472 ev_stop (EV_A_ (W)w);
3473
3474 EV_FREQUENT_CHECK;
2695} 3475}
2696#endif 3476#endif
2697 3477
2698#if EV_ASYNC_ENABLE 3478#if EV_ASYNC_ENABLE
2699void 3479void
2701{ 3481{
2702 if (expect_false (ev_is_active (w))) 3482 if (expect_false (ev_is_active (w)))
2703 return; 3483 return;
2704 3484
2705 evpipe_init (EV_A); 3485 evpipe_init (EV_A);
3486
3487 EV_FREQUENT_CHECK;
2706 3488
2707 ev_start (EV_A_ (W)w, ++asynccnt); 3489 ev_start (EV_A_ (W)w, ++asynccnt);
2708 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3490 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2709 asyncs [asynccnt - 1] = w; 3491 asyncs [asynccnt - 1] = w;
3492
3493 EV_FREQUENT_CHECK;
2710} 3494}
2711 3495
2712void 3496void
2713ev_async_stop (EV_P_ ev_async *w) 3497ev_async_stop (EV_P_ ev_async *w)
2714{ 3498{
2715 clear_pending (EV_A_ (W)w); 3499 clear_pending (EV_A_ (W)w);
2716 if (expect_false (!ev_is_active (w))) 3500 if (expect_false (!ev_is_active (w)))
2717 return; 3501 return;
2718 3502
3503 EV_FREQUENT_CHECK;
3504
2719 { 3505 {
2720 int active = ev_active (w); 3506 int active = ev_active (w);
2721 3507
2722 asyncs [active - 1] = asyncs [--asynccnt]; 3508 asyncs [active - 1] = asyncs [--asynccnt];
2723 ev_active (asyncs [active - 1]) = active; 3509 ev_active (asyncs [active - 1]) = active;
2724 } 3510 }
2725 3511
2726 ev_stop (EV_A_ (W)w); 3512 ev_stop (EV_A_ (W)w);
3513
3514 EV_FREQUENT_CHECK;
2727} 3515}
2728 3516
2729void 3517void
2730ev_async_send (EV_P_ ev_async *w) 3518ev_async_send (EV_P_ ev_async *w)
2731{ 3519{
2732 w->sent = 1; 3520 w->sent = 1;
2733 evpipe_write (EV_A_ &gotasync); 3521 evpipe_write (EV_A_ &async_pending);
2734} 3522}
2735#endif 3523#endif
2736 3524
2737/*****************************************************************************/ 3525/*****************************************************************************/
2738 3526
2748once_cb (EV_P_ struct ev_once *once, int revents) 3536once_cb (EV_P_ struct ev_once *once, int revents)
2749{ 3537{
2750 void (*cb)(int revents, void *arg) = once->cb; 3538 void (*cb)(int revents, void *arg) = once->cb;
2751 void *arg = once->arg; 3539 void *arg = once->arg;
2752 3540
2753 ev_io_stop (EV_A_ &once->io); 3541 ev_io_stop (EV_A_ &once->io);
2754 ev_timer_stop (EV_A_ &once->to); 3542 ev_timer_stop (EV_A_ &once->to);
2755 ev_free (once); 3543 ev_free (once);
2756 3544
2757 cb (revents, arg); 3545 cb (revents, arg);
2758} 3546}
2759 3547
2760static void 3548static void
2761once_cb_io (EV_P_ ev_io *w, int revents) 3549once_cb_io (EV_P_ ev_io *w, int revents)
2762{ 3550{
2763 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3551 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3552
3553 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2764} 3554}
2765 3555
2766static void 3556static void
2767once_cb_to (EV_P_ ev_timer *w, int revents) 3557once_cb_to (EV_P_ ev_timer *w, int revents)
2768{ 3558{
2769 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3559 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3560
3561 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2770} 3562}
2771 3563
2772void 3564void
2773ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3565ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2774{ 3566{
2796 ev_timer_set (&once->to, timeout, 0.); 3588 ev_timer_set (&once->to, timeout, 0.);
2797 ev_timer_start (EV_A_ &once->to); 3589 ev_timer_start (EV_A_ &once->to);
2798 } 3590 }
2799} 3591}
2800 3592
3593/*****************************************************************************/
3594
3595#if EV_WALK_ENABLE
3596void
3597ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3598{
3599 int i, j;
3600 ev_watcher_list *wl, *wn;
3601
3602 if (types & (EV_IO | EV_EMBED))
3603 for (i = 0; i < anfdmax; ++i)
3604 for (wl = anfds [i].head; wl; )
3605 {
3606 wn = wl->next;
3607
3608#if EV_EMBED_ENABLE
3609 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3610 {
3611 if (types & EV_EMBED)
3612 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3613 }
3614 else
3615#endif
3616#if EV_USE_INOTIFY
3617 if (ev_cb ((ev_io *)wl) == infy_cb)
3618 ;
3619 else
3620#endif
3621 if ((ev_io *)wl != &pipe_w)
3622 if (types & EV_IO)
3623 cb (EV_A_ EV_IO, wl);
3624
3625 wl = wn;
3626 }
3627
3628 if (types & (EV_TIMER | EV_STAT))
3629 for (i = timercnt + HEAP0; i-- > HEAP0; )
3630#if EV_STAT_ENABLE
3631 /*TODO: timer is not always active*/
3632 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3633 {
3634 if (types & EV_STAT)
3635 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3636 }
3637 else
3638#endif
3639 if (types & EV_TIMER)
3640 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3641
3642#if EV_PERIODIC_ENABLE
3643 if (types & EV_PERIODIC)
3644 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3645 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3646#endif
3647
3648#if EV_IDLE_ENABLE
3649 if (types & EV_IDLE)
3650 for (j = NUMPRI; i--; )
3651 for (i = idlecnt [j]; i--; )
3652 cb (EV_A_ EV_IDLE, idles [j][i]);
3653#endif
3654
3655#if EV_FORK_ENABLE
3656 if (types & EV_FORK)
3657 for (i = forkcnt; i--; )
3658 if (ev_cb (forks [i]) != embed_fork_cb)
3659 cb (EV_A_ EV_FORK, forks [i]);
3660#endif
3661
3662#if EV_ASYNC_ENABLE
3663 if (types & EV_ASYNC)
3664 for (i = asynccnt; i--; )
3665 cb (EV_A_ EV_ASYNC, asyncs [i]);
3666#endif
3667
3668 if (types & EV_PREPARE)
3669 for (i = preparecnt; i--; )
3670#if EV_EMBED_ENABLE
3671 if (ev_cb (prepares [i]) != embed_prepare_cb)
3672#endif
3673 cb (EV_A_ EV_PREPARE, prepares [i]);
3674
3675 if (types & EV_CHECK)
3676 for (i = checkcnt; i--; )
3677 cb (EV_A_ EV_CHECK, checks [i]);
3678
3679 if (types & EV_SIGNAL)
3680 for (i = 0; i < EV_NSIG - 1; ++i)
3681 for (wl = signals [i].head; wl; )
3682 {
3683 wn = wl->next;
3684 cb (EV_A_ EV_SIGNAL, wl);
3685 wl = wn;
3686 }
3687
3688 if (types & EV_CHILD)
3689 for (i = EV_PID_HASHSIZE; i--; )
3690 for (wl = childs [i]; wl; )
3691 {
3692 wn = wl->next;
3693 cb (EV_A_ EV_CHILD, wl);
3694 wl = wn;
3695 }
3696/* EV_STAT 0x00001000 /* stat data changed */
3697/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3698}
3699#endif
3700
2801#if EV_MULTIPLICITY 3701#if EV_MULTIPLICITY
2802 #include "ev_wrap.h" 3702 #include "ev_wrap.h"
2803#endif 3703#endif
2804 3704
2805#ifdef __cplusplus 3705#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines