ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC vs.
Revision 1.478 by root, Sun Oct 11 13:38:44 2015 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
160# include <windows.h> 207# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
163# endif 210# endif
211# undef EV_AVOID_STDIO
164#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
165 221
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
167 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
258# endif
259#endif
260
261#if !(_POSIX_TIMERS > 0)
262# ifndef EV_USE_MONOTONIC
263# define EV_USE_MONOTONIC 0
264# endif
265# ifndef EV_USE_REALTIME
266# define EV_USE_REALTIME 0
267# endif
268#endif
269
168#ifndef EV_USE_MONOTONIC 270#ifndef EV_USE_MONOTONIC
271# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272# define EV_USE_MONOTONIC EV_FEATURE_OS
273# else
169# define EV_USE_MONOTONIC 0 274# define EV_USE_MONOTONIC 0
275# endif
170#endif 276#endif
171 277
172#ifndef EV_USE_REALTIME 278#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 279# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 280#endif
175 281
176#ifndef EV_USE_NANOSLEEP 282#ifndef EV_USE_NANOSLEEP
283# if _POSIX_C_SOURCE >= 199309L
284# define EV_USE_NANOSLEEP EV_FEATURE_OS
285# else
177# define EV_USE_NANOSLEEP 0 286# define EV_USE_NANOSLEEP 0
287# endif
178#endif 288#endif
179 289
180#ifndef EV_USE_SELECT 290#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 291# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 292#endif
183 293
184#ifndef EV_USE_POLL 294#ifndef EV_USE_POLL
185# ifdef _WIN32 295# ifdef _WIN32
186# define EV_USE_POLL 0 296# define EV_USE_POLL 0
187# else 297# else
188# define EV_USE_POLL 1 298# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 299# endif
190#endif 300#endif
191 301
192#ifndef EV_USE_EPOLL 302#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 304# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 305# else
196# define EV_USE_EPOLL 0 306# define EV_USE_EPOLL 0
197# endif 307# endif
198#endif 308#endif
199 309
205# define EV_USE_PORT 0 315# define EV_USE_PORT 0
206#endif 316#endif
207 317
208#ifndef EV_USE_INOTIFY 318#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 320# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 321# else
212# define EV_USE_INOTIFY 0 322# define EV_USE_INOTIFY 0
213# endif 323# endif
214#endif 324#endif
215 325
216#ifndef EV_PID_HASHSIZE 326#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 327# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 328#endif
223 329
224#ifndef EV_INOTIFY_HASHSIZE 330#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 331# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 332#endif
231 333
232#ifndef EV_USE_EVENTFD 334#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 335# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 336# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 337# else
236# define EV_USE_EVENTFD 0 338# define EV_USE_EVENTFD 0
237# endif 339# endif
238#endif 340#endif
239 341
342#ifndef EV_USE_SIGNALFD
343# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344# define EV_USE_SIGNALFD EV_FEATURE_OS
345# else
346# define EV_USE_SIGNALFD 0
347# endif
348#endif
349
350#if 0 /* debugging */
351# define EV_VERIFY 3
352# define EV_USE_4HEAP 1
353# define EV_HEAP_CACHE_AT 1
354#endif
355
356#ifndef EV_VERIFY
357# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358#endif
359
240#ifndef EV_USE_4HEAP 360#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 361# define EV_USE_4HEAP EV_FEATURE_DATA
242#endif 362#endif
243 363
244#ifndef EV_HEAP_CACHE_AT 364#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 365# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366#endif
367
368#ifdef ANDROID
369/* supposedly, android doesn't typedef fd_mask */
370# undef EV_USE_SELECT
371# define EV_USE_SELECT 0
372/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373# undef EV_USE_CLOCK_SYSCALL
374# define EV_USE_CLOCK_SYSCALL 0
375#endif
376
377/* aix's poll.h seems to cause lots of trouble */
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385/* which makes programs even slower. might work on other unices, too. */
386#if EV_USE_CLOCK_SYSCALL
387# include <sys/syscall.h>
388# ifdef SYS_clock_gettime
389# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390# undef EV_USE_MONOTONIC
391# define EV_USE_MONOTONIC 1
392# else
393# undef EV_USE_CLOCK_SYSCALL
394# define EV_USE_CLOCK_SYSCALL 0
395# endif
246#endif 396#endif
247 397
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 398/* this block fixes any misconfiguration where we know we run into trouble otherwise */
249 399
250#ifndef CLOCK_MONOTONIC 400#ifndef CLOCK_MONOTONIC
261# undef EV_USE_INOTIFY 411# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0 412# define EV_USE_INOTIFY 0
263#endif 413#endif
264 414
265#if !EV_USE_NANOSLEEP 415#if !EV_USE_NANOSLEEP
266# ifndef _WIN32 416/* hp-ux has it in sys/time.h, which we unconditionally include above */
417# if !defined _WIN32 && !defined __hpux
267# include <sys/select.h> 418# include <sys/select.h>
268# endif 419# endif
269#endif 420#endif
270 421
271#if EV_USE_INOTIFY 422#if EV_USE_INOTIFY
423# include <sys/statfs.h>
272# include <sys/inotify.h> 424# include <sys/inotify.h>
425/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426# ifndef IN_DONT_FOLLOW
427# undef EV_USE_INOTIFY
428# define EV_USE_INOTIFY 0
273#endif 429# endif
274
275#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h>
277#endif 430#endif
278 431
279#if EV_USE_EVENTFD 432#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 434# include <stdint.h>
282# ifdef __cplusplus 435# ifndef EFD_NONBLOCK
283extern "C" { 436# define EFD_NONBLOCK O_NONBLOCK
284# endif 437# endif
285int eventfd (unsigned int initval, int flags); 438# ifndef EFD_CLOEXEC
286# ifdef __cplusplus 439# ifdef O_CLOEXEC
287} 440# define EFD_CLOEXEC O_CLOEXEC
441# else
442# define EFD_CLOEXEC 02000000
443# endif
288# endif 444# endif
445EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446#endif
447
448#if EV_USE_SIGNALFD
449/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450# include <stdint.h>
451# ifndef SFD_NONBLOCK
452# define SFD_NONBLOCK O_NONBLOCK
453# endif
454# ifndef SFD_CLOEXEC
455# ifdef O_CLOEXEC
456# define SFD_CLOEXEC O_CLOEXEC
457# else
458# define SFD_CLOEXEC 02000000
459# endif
460# endif
461EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463struct signalfd_siginfo
464{
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467};
289#endif 468#endif
290 469
291/**/ 470/**/
292 471
472#if EV_VERIFY >= 3
473# define EV_FREQUENT_CHECK ev_verify (EV_A)
474#else
475# define EV_FREQUENT_CHECK do { } while (0)
476#endif
477
293/* 478/*
294 * This is used to avoid floating point rounding problems. 479 * This is used to work around floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000. 480 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */ 481 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 482#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
302 484
303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 485#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 486#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
306 487
488#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490
491/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492/* ECB.H BEGIN */
493/*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
533#ifndef ECB_H
534#define ECB_H
535
536/* 16 bits major, 16 bits minor */
537#define ECB_VERSION 0x00010004
538
539#ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
307#if __GNUC__ >= 4 546 #if __GNUC__
308# define expect(expr,value) __builtin_expect ((expr),(value)) 547 typedef signed long long int64_t;
309# define noinline __attribute__ ((noinline)) 548 typedef unsigned long long uint64_t;
549 #else /* _MSC_VER || __BORLANDC__ */
550 typedef signed __int64 int64_t;
551 typedef unsigned __int64 uint64_t;
552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
310#else 562#else
311# define expect(expr,value) (expr) 563 #include <inttypes.h>
312# define noinline 564 #if UINTMAX_MAX > 0xffffffffU
313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 565 #define ECB_PTRSIZE 8
314# define inline 566 #else
567 #define ECB_PTRSIZE 4
568 #endif
315# endif 569#endif
570
571#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
572#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
573
574/* work around x32 idiocy by defining proper macros */
575#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576 #if _ILP32
577 #define ECB_AMD64_X32 1
578 #else
579 #define ECB_AMD64 1
316#endif 580 #endif
581#endif
317 582
583/* many compilers define _GNUC_ to some versions but then only implement
584 * what their idiot authors think are the "more important" extensions,
585 * causing enormous grief in return for some better fake benchmark numbers.
586 * or so.
587 * we try to detect these and simply assume they are not gcc - if they have
588 * an issue with that they should have done it right in the first place.
589 */
590#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591 #define ECB_GCC_VERSION(major,minor) 0
592#else
593 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594#endif
595
596#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597
598#if __clang__ && defined __has_builtin
599 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600#else
601 #define ECB_CLANG_BUILTIN(x) 0
602#endif
603
604#if __clang__ && defined __has_extension
605 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606#else
607 #define ECB_CLANG_EXTENSION(x) 0
608#endif
609
610#define ECB_CPP (__cplusplus+0)
611#define ECB_CPP11 (__cplusplus >= 201103L)
612
613#if ECB_CPP
614 #define ECB_C 0
615 #define ECB_STDC_VERSION 0
616#else
617 #define ECB_C 1
618 #define ECB_STDC_VERSION __STDC_VERSION__
619#endif
620
621#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
622#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
623
624#if ECB_CPP
625 #define ECB_EXTERN_C extern "C"
626 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627 #define ECB_EXTERN_C_END }
628#else
629 #define ECB_EXTERN_C extern
630 #define ECB_EXTERN_C_BEG
631 #define ECB_EXTERN_C_END
632#endif
633
634/*****************************************************************************/
635
636/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
638
639#if ECB_NO_THREADS
640 #define ECB_NO_SMP 1
641#endif
642
643#if ECB_NO_SMP
644 #define ECB_MEMORY_FENCE do { } while (0)
645#endif
646
647/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
648#if __xlC__ && ECB_CPP
649 #include <builtins.h>
650#endif
651
652#ifndef ECB_MEMORY_FENCE
653 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
654 #if __i386 || __i386__
655 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
656 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
657 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
658 #elif ECB_GCC_AMD64
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
660 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
661 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
662 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
664 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
665 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
666 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
667 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
668 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
669 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
670 #elif __aarch64__
671 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
672 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
673 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
674 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
675 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
676 #elif defined __s390__ || defined __s390x__
677 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
678 #elif defined __mips__
679 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
680 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
681 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
682 #elif defined __alpha__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
684 #elif defined __hppa__
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
686 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
687 #elif defined __ia64__
688 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
689 #elif defined __m68k__
690 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
691 #elif defined __m88k__
692 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
693 #elif defined __sh__
694 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
695 #endif
696 #endif
697#endif
698
699#ifndef ECB_MEMORY_FENCE
700 #if ECB_GCC_VERSION(4,7)
701 /* see comment below (stdatomic.h) about the C11 memory model. */
702 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
703 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
704 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
705
706 #elif ECB_CLANG_EXTENSION(c_atomic)
707 /* see comment below (stdatomic.h) about the C11 memory model. */
708 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
709 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
710 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
711
712 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
713 #define ECB_MEMORY_FENCE __sync_synchronize ()
714 #elif _MSC_VER >= 1500 /* VC++ 2008 */
715 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
716 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
717 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
718 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
719 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
720 #elif _MSC_VER >= 1400 /* VC++ 2005 */
721 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
722 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
723 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
724 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
725 #elif defined _WIN32
726 #include <WinNT.h>
727 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
728 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
729 #include <mbarrier.h>
730 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
731 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
732 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
733 #elif __xlC__
734 #define ECB_MEMORY_FENCE __sync ()
735 #endif
736#endif
737
738#ifndef ECB_MEMORY_FENCE
739 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
740 /* we assume that these memory fences work on all variables/all memory accesses, */
741 /* not just C11 atomics and atomic accesses */
742 #include <stdatomic.h>
743 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
744 /* any fence other than seq_cst, which isn't very efficient for us. */
745 /* Why that is, we don't know - either the C11 memory model is quite useless */
746 /* for most usages, or gcc and clang have a bug */
747 /* I *currently* lean towards the latter, and inefficiently implement */
748 /* all three of ecb's fences as a seq_cst fence */
749 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
750 /* for all __atomic_thread_fence's except seq_cst */
751 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
752 #endif
753#endif
754
755#ifndef ECB_MEMORY_FENCE
756 #if !ECB_AVOID_PTHREADS
757 /*
758 * if you get undefined symbol references to pthread_mutex_lock,
759 * or failure to find pthread.h, then you should implement
760 * the ECB_MEMORY_FENCE operations for your cpu/compiler
761 * OR provide pthread.h and link against the posix thread library
762 * of your system.
763 */
764 #include <pthread.h>
765 #define ECB_NEEDS_PTHREADS 1
766 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
767
768 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
769 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
770 #endif
771#endif
772
773#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
774 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
775#endif
776
777#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
778 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
779#endif
780
781/*****************************************************************************/
782
783#if ECB_CPP
784 #define ecb_inline static inline
785#elif ECB_GCC_VERSION(2,5)
786 #define ecb_inline static __inline__
787#elif ECB_C99
788 #define ecb_inline static inline
789#else
790 #define ecb_inline static
791#endif
792
793#if ECB_GCC_VERSION(3,3)
794 #define ecb_restrict __restrict__
795#elif ECB_C99
796 #define ecb_restrict restrict
797#else
798 #define ecb_restrict
799#endif
800
801typedef int ecb_bool;
802
803#define ECB_CONCAT_(a, b) a ## b
804#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
805#define ECB_STRINGIFY_(a) # a
806#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
807#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
808
809#define ecb_function_ ecb_inline
810
811#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
812 #define ecb_attribute(attrlist) __attribute__ (attrlist)
813#else
814 #define ecb_attribute(attrlist)
815#endif
816
817#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
818 #define ecb_is_constant(expr) __builtin_constant_p (expr)
819#else
820 /* possible C11 impl for integral types
821 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
822 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
823
824 #define ecb_is_constant(expr) 0
825#endif
826
827#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
828 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
829#else
830 #define ecb_expect(expr,value) (expr)
831#endif
832
833#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
834 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
835#else
836 #define ecb_prefetch(addr,rw,locality)
837#endif
838
839/* no emulation for ecb_decltype */
840#if ECB_CPP11
841 // older implementations might have problems with decltype(x)::type, work around it
842 template<class T> struct ecb_decltype_t { typedef T type; };
843 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
844#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
845 #define ecb_decltype(x) __typeof__ (x)
846#endif
847
848#if _MSC_VER >= 1300
849 #define ecb_deprecated __declspec (deprecated)
850#else
851 #define ecb_deprecated ecb_attribute ((__deprecated__))
852#endif
853
854#if _MSC_VER >= 1500
855 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
856#elif ECB_GCC_VERSION(4,5)
857 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
858#else
859 #define ecb_deprecated_message(msg) ecb_deprecated
860#endif
861
862#if _MSC_VER >= 1400
863 #define ecb_noinline __declspec (noinline)
864#else
865 #define ecb_noinline ecb_attribute ((__noinline__))
866#endif
867
868#define ecb_unused ecb_attribute ((__unused__))
869#define ecb_const ecb_attribute ((__const__))
870#define ecb_pure ecb_attribute ((__pure__))
871
872#if ECB_C11 || __IBMC_NORETURN
873 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
874 #define ecb_noreturn _Noreturn
875#elif ECB_CPP11
876 #define ecb_noreturn [[noreturn]]
877#elif _MSC_VER >= 1200
878 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
879 #define ecb_noreturn __declspec (noreturn)
880#else
881 #define ecb_noreturn ecb_attribute ((__noreturn__))
882#endif
883
884#if ECB_GCC_VERSION(4,3)
885 #define ecb_artificial ecb_attribute ((__artificial__))
886 #define ecb_hot ecb_attribute ((__hot__))
887 #define ecb_cold ecb_attribute ((__cold__))
888#else
889 #define ecb_artificial
890 #define ecb_hot
891 #define ecb_cold
892#endif
893
894/* put around conditional expressions if you are very sure that the */
895/* expression is mostly true or mostly false. note that these return */
896/* booleans, not the expression. */
318#define expect_false(expr) expect ((expr) != 0, 0) 897#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
319#define expect_true(expr) expect ((expr) != 0, 1) 898#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
899/* for compatibility to the rest of the world */
900#define ecb_likely(expr) ecb_expect_true (expr)
901#define ecb_unlikely(expr) ecb_expect_false (expr)
902
903/* count trailing zero bits and count # of one bits */
904#if ECB_GCC_VERSION(3,4) \
905 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
906 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
907 && ECB_CLANG_BUILTIN(__builtin_popcount))
908 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
909 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
910 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
911 #define ecb_ctz32(x) __builtin_ctz (x)
912 #define ecb_ctz64(x) __builtin_ctzll (x)
913 #define ecb_popcount32(x) __builtin_popcount (x)
914 /* no popcountll */
915#else
916 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
917 ecb_function_ ecb_const int
918 ecb_ctz32 (uint32_t x)
919 {
920 int r = 0;
921
922 x &= ~x + 1; /* this isolates the lowest bit */
923
924#if ECB_branchless_on_i386
925 r += !!(x & 0xaaaaaaaa) << 0;
926 r += !!(x & 0xcccccccc) << 1;
927 r += !!(x & 0xf0f0f0f0) << 2;
928 r += !!(x & 0xff00ff00) << 3;
929 r += !!(x & 0xffff0000) << 4;
930#else
931 if (x & 0xaaaaaaaa) r += 1;
932 if (x & 0xcccccccc) r += 2;
933 if (x & 0xf0f0f0f0) r += 4;
934 if (x & 0xff00ff00) r += 8;
935 if (x & 0xffff0000) r += 16;
936#endif
937
938 return r;
939 }
940
941 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
942 ecb_function_ ecb_const int
943 ecb_ctz64 (uint64_t x)
944 {
945 int shift = x & 0xffffffffU ? 0 : 32;
946 return ecb_ctz32 (x >> shift) + shift;
947 }
948
949 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
950 ecb_function_ ecb_const int
951 ecb_popcount32 (uint32_t x)
952 {
953 x -= (x >> 1) & 0x55555555;
954 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
955 x = ((x >> 4) + x) & 0x0f0f0f0f;
956 x *= 0x01010101;
957
958 return x >> 24;
959 }
960
961 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
962 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
963 {
964 int r = 0;
965
966 if (x >> 16) { x >>= 16; r += 16; }
967 if (x >> 8) { x >>= 8; r += 8; }
968 if (x >> 4) { x >>= 4; r += 4; }
969 if (x >> 2) { x >>= 2; r += 2; }
970 if (x >> 1) { r += 1; }
971
972 return r;
973 }
974
975 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
976 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
977 {
978 int r = 0;
979
980 if (x >> 32) { x >>= 32; r += 32; }
981
982 return r + ecb_ld32 (x);
983 }
984#endif
985
986ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
987ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
988ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
989ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
990
991ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
992ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
993{
994 return ( (x * 0x0802U & 0x22110U)
995 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
996}
997
998ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
999ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1000{
1001 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1002 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1003 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1004 x = ( x >> 8 ) | ( x << 8);
1005
1006 return x;
1007}
1008
1009ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1010ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1011{
1012 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1013 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1014 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1015 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1016 x = ( x >> 16 ) | ( x << 16);
1017
1018 return x;
1019}
1020
1021/* popcount64 is only available on 64 bit cpus as gcc builtin */
1022/* so for this version we are lazy */
1023ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1024ecb_function_ ecb_const int
1025ecb_popcount64 (uint64_t x)
1026{
1027 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1028}
1029
1030ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1031ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1032ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1033ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1034ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1035ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1036ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1037ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1038
1039ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1040ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1041ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1042ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1043ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1044ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1045ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1046ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1047
1048#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1049 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1050 #define ecb_bswap16(x) __builtin_bswap16 (x)
1051 #else
1052 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1053 #endif
1054 #define ecb_bswap32(x) __builtin_bswap32 (x)
1055 #define ecb_bswap64(x) __builtin_bswap64 (x)
1056#elif _MSC_VER
1057 #include <stdlib.h>
1058 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1059 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1060 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1061#else
1062 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1063 ecb_function_ ecb_const uint16_t
1064 ecb_bswap16 (uint16_t x)
1065 {
1066 return ecb_rotl16 (x, 8);
1067 }
1068
1069 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1070 ecb_function_ ecb_const uint32_t
1071 ecb_bswap32 (uint32_t x)
1072 {
1073 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1074 }
1075
1076 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1077 ecb_function_ ecb_const uint64_t
1078 ecb_bswap64 (uint64_t x)
1079 {
1080 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1081 }
1082#endif
1083
1084#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1085 #define ecb_unreachable() __builtin_unreachable ()
1086#else
1087 /* this seems to work fine, but gcc always emits a warning for it :/ */
1088 ecb_inline ecb_noreturn void ecb_unreachable (void);
1089 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1090#endif
1091
1092/* try to tell the compiler that some condition is definitely true */
1093#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1094
1095ecb_inline ecb_const unsigned char ecb_byteorder_helper (void);
1096ecb_inline ecb_const unsigned char
1097ecb_byteorder_helper (void)
1098{
1099 /* the union code still generates code under pressure in gcc, */
1100 /* but less than using pointers, and always seems to */
1101 /* successfully return a constant. */
1102 /* the reason why we have this horrible preprocessor mess */
1103 /* is to avoid it in all cases, at least on common architectures */
1104 /* or when using a recent enough gcc version (>= 4.6) */
1105#if ((__i386 || __i386__) && !__VOS__) || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64
1106 return 0x44;
1107#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1108 return 0x44;
1109#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1110 return 0x11;
1111#else
1112 union
1113 {
1114 uint32_t i;
1115 uint8_t c;
1116 } u = { 0x11223344 };
1117 return u.c;
1118#endif
1119}
1120
1121ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1122ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1123ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1124ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1125
1126#if ECB_GCC_VERSION(3,0) || ECB_C99
1127 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1128#else
1129 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1130#endif
1131
1132#if ECB_CPP
1133 template<typename T>
1134 static inline T ecb_div_rd (T val, T div)
1135 {
1136 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1137 }
1138 template<typename T>
1139 static inline T ecb_div_ru (T val, T div)
1140 {
1141 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1142 }
1143#else
1144 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1145 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1146#endif
1147
1148#if ecb_cplusplus_does_not_suck
1149 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1150 template<typename T, int N>
1151 static inline int ecb_array_length (const T (&arr)[N])
1152 {
1153 return N;
1154 }
1155#else
1156 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1157#endif
1158
1159/*******************************************************************************/
1160/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1161
1162/* basically, everything uses "ieee pure-endian" floating point numbers */
1163/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1164#if 0 \
1165 || __i386 || __i386__ \
1166 || ECB_GCC_AMD64 \
1167 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1168 || defined __s390__ || defined __s390x__ \
1169 || defined __mips__ \
1170 || defined __alpha__ \
1171 || defined __hppa__ \
1172 || defined __ia64__ \
1173 || defined __m68k__ \
1174 || defined __m88k__ \
1175 || defined __sh__ \
1176 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1177 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1178 || defined __aarch64__
1179 #define ECB_STDFP 1
1180 #include <string.h> /* for memcpy */
1181#else
1182 #define ECB_STDFP 0
1183#endif
1184
1185#ifndef ECB_NO_LIBM
1186
1187 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1188
1189 /* only the oldest of old doesn't have this one. solaris. */
1190 #ifdef INFINITY
1191 #define ECB_INFINITY INFINITY
1192 #else
1193 #define ECB_INFINITY HUGE_VAL
1194 #endif
1195
1196 #ifdef NAN
1197 #define ECB_NAN NAN
1198 #else
1199 #define ECB_NAN ECB_INFINITY
1200 #endif
1201
1202 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1203 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1204 #define ecb_frexpf(x,e) frexpf ((x), (e))
1205 #else
1206 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1207 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1208 #endif
1209
1210 /* converts an ieee half/binary16 to a float */
1211 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1212 ecb_function_ ecb_const float
1213 ecb_binary16_to_float (uint16_t x)
1214 {
1215 int e = (x >> 10) & 0x1f;
1216 int m = x & 0x3ff;
1217 float r;
1218
1219 if (!e ) r = ecb_ldexpf (m , -24);
1220 else if (e != 31) r = ecb_ldexpf (m + 0x400, e - 25);
1221 else if (m ) r = ECB_NAN;
1222 else r = ECB_INFINITY;
1223
1224 return x & 0x8000 ? -r : r;
1225 }
1226
1227 /* convert a float to ieee single/binary32 */
1228 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1229 ecb_function_ ecb_const uint32_t
1230 ecb_float_to_binary32 (float x)
1231 {
1232 uint32_t r;
1233
1234 #if ECB_STDFP
1235 memcpy (&r, &x, 4);
1236 #else
1237 /* slow emulation, works for anything but -0 */
1238 uint32_t m;
1239 int e;
1240
1241 if (x == 0e0f ) return 0x00000000U;
1242 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1243 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1244 if (x != x ) return 0x7fbfffffU;
1245
1246 m = ecb_frexpf (x, &e) * 0x1000000U;
1247
1248 r = m & 0x80000000U;
1249
1250 if (r)
1251 m = -m;
1252
1253 if (e <= -126)
1254 {
1255 m &= 0xffffffU;
1256 m >>= (-125 - e);
1257 e = -126;
1258 }
1259
1260 r |= (e + 126) << 23;
1261 r |= m & 0x7fffffU;
1262 #endif
1263
1264 return r;
1265 }
1266
1267 /* converts an ieee single/binary32 to a float */
1268 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1269 ecb_function_ ecb_const float
1270 ecb_binary32_to_float (uint32_t x)
1271 {
1272 float r;
1273
1274 #if ECB_STDFP
1275 memcpy (&r, &x, 4);
1276 #else
1277 /* emulation, only works for normals and subnormals and +0 */
1278 int neg = x >> 31;
1279 int e = (x >> 23) & 0xffU;
1280
1281 x &= 0x7fffffU;
1282
1283 if (e)
1284 x |= 0x800000U;
1285 else
1286 e = 1;
1287
1288 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1289 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1290
1291 r = neg ? -r : r;
1292 #endif
1293
1294 return r;
1295 }
1296
1297 /* convert a double to ieee double/binary64 */
1298 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1299 ecb_function_ ecb_const uint64_t
1300 ecb_double_to_binary64 (double x)
1301 {
1302 uint64_t r;
1303
1304 #if ECB_STDFP
1305 memcpy (&r, &x, 8);
1306 #else
1307 /* slow emulation, works for anything but -0 */
1308 uint64_t m;
1309 int e;
1310
1311 if (x == 0e0 ) return 0x0000000000000000U;
1312 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1313 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1314 if (x != x ) return 0X7ff7ffffffffffffU;
1315
1316 m = frexp (x, &e) * 0x20000000000000U;
1317
1318 r = m & 0x8000000000000000;;
1319
1320 if (r)
1321 m = -m;
1322
1323 if (e <= -1022)
1324 {
1325 m &= 0x1fffffffffffffU;
1326 m >>= (-1021 - e);
1327 e = -1022;
1328 }
1329
1330 r |= ((uint64_t)(e + 1022)) << 52;
1331 r |= m & 0xfffffffffffffU;
1332 #endif
1333
1334 return r;
1335 }
1336
1337 /* converts an ieee double/binary64 to a double */
1338 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1339 ecb_function_ ecb_const double
1340 ecb_binary64_to_double (uint64_t x)
1341 {
1342 double r;
1343
1344 #if ECB_STDFP
1345 memcpy (&r, &x, 8);
1346 #else
1347 /* emulation, only works for normals and subnormals and +0 */
1348 int neg = x >> 63;
1349 int e = (x >> 52) & 0x7ffU;
1350
1351 x &= 0xfffffffffffffU;
1352
1353 if (e)
1354 x |= 0x10000000000000U;
1355 else
1356 e = 1;
1357
1358 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1359 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1360
1361 r = neg ? -r : r;
1362 #endif
1363
1364 return r;
1365 }
1366
1367#endif
1368
1369#endif
1370
1371/* ECB.H END */
1372
1373#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1374/* if your architecture doesn't need memory fences, e.g. because it is
1375 * single-cpu/core, or if you use libev in a project that doesn't use libev
1376 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1377 * libev, in which cases the memory fences become nops.
1378 * alternatively, you can remove this #error and link against libpthread,
1379 * which will then provide the memory fences.
1380 */
1381# error "memory fences not defined for your architecture, please report"
1382#endif
1383
1384#ifndef ECB_MEMORY_FENCE
1385# define ECB_MEMORY_FENCE do { } while (0)
1386# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1387# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1388#endif
1389
1390#define expect_false(cond) ecb_expect_false (cond)
1391#define expect_true(cond) ecb_expect_true (cond)
1392#define noinline ecb_noinline
1393
320#define inline_size static inline 1394#define inline_size ecb_inline
321 1395
322#if EV_MINIMAL 1396#if EV_FEATURE_CODE
1397# define inline_speed ecb_inline
1398#else
323# define inline_speed static noinline 1399# define inline_speed static noinline
1400#endif
1401
1402#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1403
1404#if EV_MINPRI == EV_MAXPRI
1405# define ABSPRI(w) (((W)w), 0)
324#else 1406#else
325# define inline_speed static inline
326#endif
327
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1407# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1408#endif
330 1409
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1410#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 1411#define EMPTY2(a,b) /* used to suppress some warnings */
333 1412
334typedef ev_watcher *W; 1413typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 1415typedef ev_watcher_time *WT;
337 1416
338#define ev_active(w) ((W)(w))->active 1417#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 1418#define ev_at(w) ((WT)(w))->at
340 1419
1420#if EV_USE_REALTIME
1421/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1422/* giving it a reasonably high chance of working on typical architectures */
1423static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1424#endif
1425
341#if EV_USE_MONOTONIC 1426#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1427static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1428#endif
1429
1430#ifndef EV_FD_TO_WIN32_HANDLE
1431# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1432#endif
1433#ifndef EV_WIN32_HANDLE_TO_FD
1434# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1435#endif
1436#ifndef EV_WIN32_CLOSE_FD
1437# define EV_WIN32_CLOSE_FD(fd) close (fd)
345#endif 1438#endif
346 1439
347#ifdef _WIN32 1440#ifdef _WIN32
348# include "ev_win32.c" 1441# include "ev_win32.c"
349#endif 1442#endif
350 1443
351/*****************************************************************************/ 1444/*****************************************************************************/
352 1445
1446/* define a suitable floor function (only used by periodics atm) */
1447
1448#if EV_USE_FLOOR
1449# include <math.h>
1450# define ev_floor(v) floor (v)
1451#else
1452
1453#include <float.h>
1454
1455/* a floor() replacement function, should be independent of ev_tstamp type */
1456static ev_tstamp noinline
1457ev_floor (ev_tstamp v)
1458{
1459 /* the choice of shift factor is not terribly important */
1460#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1461 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1462#else
1463 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1464#endif
1465
1466 /* argument too large for an unsigned long? */
1467 if (expect_false (v >= shift))
1468 {
1469 ev_tstamp f;
1470
1471 if (v == v - 1.)
1472 return v; /* very large number */
1473
1474 f = shift * ev_floor (v * (1. / shift));
1475 return f + ev_floor (v - f);
1476 }
1477
1478 /* special treatment for negative args? */
1479 if (expect_false (v < 0.))
1480 {
1481 ev_tstamp f = -ev_floor (-v);
1482
1483 return f - (f == v ? 0 : 1);
1484 }
1485
1486 /* fits into an unsigned long */
1487 return (unsigned long)v;
1488}
1489
1490#endif
1491
1492/*****************************************************************************/
1493
1494#ifdef __linux
1495# include <sys/utsname.h>
1496#endif
1497
1498static unsigned int noinline ecb_cold
1499ev_linux_version (void)
1500{
1501#ifdef __linux
1502 unsigned int v = 0;
1503 struct utsname buf;
1504 int i;
1505 char *p = buf.release;
1506
1507 if (uname (&buf))
1508 return 0;
1509
1510 for (i = 3+1; --i; )
1511 {
1512 unsigned int c = 0;
1513
1514 for (;;)
1515 {
1516 if (*p >= '0' && *p <= '9')
1517 c = c * 10 + *p++ - '0';
1518 else
1519 {
1520 p += *p == '.';
1521 break;
1522 }
1523 }
1524
1525 v = (v << 8) | c;
1526 }
1527
1528 return v;
1529#else
1530 return 0;
1531#endif
1532}
1533
1534/*****************************************************************************/
1535
1536#if EV_AVOID_STDIO
1537static void noinline ecb_cold
1538ev_printerr (const char *msg)
1539{
1540 write (STDERR_FILENO, msg, strlen (msg));
1541}
1542#endif
1543
353static void (*syserr_cb)(const char *msg); 1544static void (*syserr_cb)(const char *msg) EV_THROW;
354 1545
355void 1546void ecb_cold
356ev_set_syserr_cb (void (*cb)(const char *msg)) 1547ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
357{ 1548{
358 syserr_cb = cb; 1549 syserr_cb = cb;
359} 1550}
360 1551
361static void noinline 1552static void noinline ecb_cold
362syserr (const char *msg) 1553ev_syserr (const char *msg)
363{ 1554{
364 if (!msg) 1555 if (!msg)
365 msg = "(libev) system error"; 1556 msg = "(libev) system error";
366 1557
367 if (syserr_cb) 1558 if (syserr_cb)
368 syserr_cb (msg); 1559 syserr_cb (msg);
369 else 1560 else
370 { 1561 {
1562#if EV_AVOID_STDIO
1563 ev_printerr (msg);
1564 ev_printerr (": ");
1565 ev_printerr (strerror (errno));
1566 ev_printerr ("\n");
1567#else
371 perror (msg); 1568 perror (msg);
1569#endif
372 abort (); 1570 abort ();
373 } 1571 }
374} 1572}
375 1573
376static void * 1574static void *
377ev_realloc_emul (void *ptr, long size) 1575ev_realloc_emul (void *ptr, long size) EV_THROW
378{ 1576{
379 /* some systems, notably openbsd and darwin, fail to properly 1577 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and 1578 * implement realloc (x, 0) (as required by both ansi c-89 and
381 * the single unix specification, so work around them here. 1579 * the single unix specification, so work around them here.
1580 * recently, also (at least) fedora and debian started breaking it,
1581 * despite documenting it otherwise.
382 */ 1582 */
383 1583
384 if (size) 1584 if (size)
385 return realloc (ptr, size); 1585 return realloc (ptr, size);
386 1586
387 free (ptr); 1587 free (ptr);
388 return 0; 1588 return 0;
389} 1589}
390 1590
391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1591static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
392 1592
393void 1593void ecb_cold
394ev_set_allocator (void *(*cb)(void *ptr, long size)) 1594ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
395{ 1595{
396 alloc = cb; 1596 alloc = cb;
397} 1597}
398 1598
399inline_speed void * 1599inline_speed void *
401{ 1601{
402 ptr = alloc (ptr, size); 1602 ptr = alloc (ptr, size);
403 1603
404 if (!ptr && size) 1604 if (!ptr && size)
405 { 1605 {
1606#if EV_AVOID_STDIO
1607 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1608#else
406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1609 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1610#endif
407 abort (); 1611 abort ();
408 } 1612 }
409 1613
410 return ptr; 1614 return ptr;
411} 1615}
413#define ev_malloc(size) ev_realloc (0, (size)) 1617#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 1618#define ev_free(ptr) ev_realloc ((ptr), 0)
415 1619
416/*****************************************************************************/ 1620/*****************************************************************************/
417 1621
1622/* set in reify when reification needed */
1623#define EV_ANFD_REIFY 1
1624
1625/* file descriptor info structure */
418typedef struct 1626typedef struct
419{ 1627{
420 WL head; 1628 WL head;
421 unsigned char events; 1629 unsigned char events; /* the events watched for */
1630 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1631 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 1632 unsigned char unused;
1633#if EV_USE_EPOLL
1634 unsigned int egen; /* generation counter to counter epoll bugs */
1635#endif
423#if EV_SELECT_IS_WINSOCKET 1636#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
424 SOCKET handle; 1637 SOCKET handle;
425#endif 1638#endif
1639#if EV_USE_IOCP
1640 OVERLAPPED or, ow;
1641#endif
426} ANFD; 1642} ANFD;
427 1643
1644/* stores the pending event set for a given watcher */
428typedef struct 1645typedef struct
429{ 1646{
430 W w; 1647 W w;
431 int events; 1648 int events; /* the pending event set for the given watcher */
432} ANPENDING; 1649} ANPENDING;
433 1650
434#if EV_USE_INOTIFY 1651#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 1652/* hash table entry per inotify-id */
436typedef struct 1653typedef struct
439} ANFS; 1656} ANFS;
440#endif 1657#endif
441 1658
442/* Heap Entry */ 1659/* Heap Entry */
443#if EV_HEAP_CACHE_AT 1660#if EV_HEAP_CACHE_AT
1661 /* a heap element */
444 typedef struct { 1662 typedef struct {
445 ev_tstamp at; 1663 ev_tstamp at;
446 WT w; 1664 WT w;
447 } ANHE; 1665 } ANHE;
448 1666
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1667 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1668 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 1669 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 1670#else
1671 /* a heap element */
453 typedef WT ANHE; 1672 typedef WT ANHE;
454 1673
455 #define ANHE_w(he) (he) 1674 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 1675 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 1676 #define ANHE_at_cache(he)
458#endif 1677#endif
459 1678
460#if EV_MULTIPLICITY 1679#if EV_MULTIPLICITY
461 1680
462 struct ev_loop 1681 struct ev_loop
468 #undef VAR 1687 #undef VAR
469 }; 1688 };
470 #include "ev_wrap.h" 1689 #include "ev_wrap.h"
471 1690
472 static struct ev_loop default_loop_struct; 1691 static struct ev_loop default_loop_struct;
473 struct ev_loop *ev_default_loop_ptr; 1692 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
474 1693
475#else 1694#else
476 1695
477 ev_tstamp ev_rt_now; 1696 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
478 #define VAR(name,decl) static decl; 1697 #define VAR(name,decl) static decl;
479 #include "ev_vars.h" 1698 #include "ev_vars.h"
480 #undef VAR 1699 #undef VAR
481 1700
482 static int ev_default_loop_ptr; 1701 static int ev_default_loop_ptr;
483 1702
484#endif 1703#endif
485 1704
1705#if EV_FEATURE_API
1706# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1707# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1708# define EV_INVOKE_PENDING invoke_cb (EV_A)
1709#else
1710# define EV_RELEASE_CB (void)0
1711# define EV_ACQUIRE_CB (void)0
1712# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1713#endif
1714
1715#define EVBREAK_RECURSE 0x80
1716
486/*****************************************************************************/ 1717/*****************************************************************************/
487 1718
1719#ifndef EV_HAVE_EV_TIME
488ev_tstamp 1720ev_tstamp
489ev_time (void) 1721ev_time (void) EV_THROW
490{ 1722{
491#if EV_USE_REALTIME 1723#if EV_USE_REALTIME
1724 if (expect_true (have_realtime))
1725 {
492 struct timespec ts; 1726 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 1727 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 1728 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 1729 }
1730#endif
1731
496 struct timeval tv; 1732 struct timeval tv;
497 gettimeofday (&tv, 0); 1733 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 1734 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 1735}
1736#endif
501 1737
502ev_tstamp inline_size 1738inline_size ev_tstamp
503get_clock (void) 1739get_clock (void)
504{ 1740{
505#if EV_USE_MONOTONIC 1741#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 1742 if (expect_true (have_monotonic))
507 { 1743 {
514 return ev_time (); 1750 return ev_time ();
515} 1751}
516 1752
517#if EV_MULTIPLICITY 1753#if EV_MULTIPLICITY
518ev_tstamp 1754ev_tstamp
519ev_now (EV_P) 1755ev_now (EV_P) EV_THROW
520{ 1756{
521 return ev_rt_now; 1757 return ev_rt_now;
522} 1758}
523#endif 1759#endif
524 1760
525void 1761void
526ev_sleep (ev_tstamp delay) 1762ev_sleep (ev_tstamp delay) EV_THROW
527{ 1763{
528 if (delay > 0.) 1764 if (delay > 0.)
529 { 1765 {
530#if EV_USE_NANOSLEEP 1766#if EV_USE_NANOSLEEP
531 struct timespec ts; 1767 struct timespec ts;
532 1768
533 ts.tv_sec = (time_t)delay; 1769 EV_TS_SET (ts, delay);
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0); 1770 nanosleep (&ts, 0);
537#elif defined(_WIN32) 1771#elif defined _WIN32
538 Sleep ((unsigned long)(delay * 1e3)); 1772 Sleep ((unsigned long)(delay * 1e3));
539#else 1773#else
540 struct timeval tv; 1774 struct timeval tv;
541 1775
542 tv.tv_sec = (time_t)delay; 1776 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1777 /* something not guaranteed by newer posix versions, but guaranteed */
544 1778 /* by older ones */
1779 EV_TV_SET (tv, delay);
545 select (0, 0, 0, 0, &tv); 1780 select (0, 0, 0, 0, &tv);
546#endif 1781#endif
547 } 1782 }
548} 1783}
549 1784
550/*****************************************************************************/ 1785/*****************************************************************************/
551 1786
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1787#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 1788
554int inline_size 1789/* find a suitable new size for the given array, */
1790/* hopefully by rounding to a nice-to-malloc size */
1791inline_size int
555array_nextsize (int elem, int cur, int cnt) 1792array_nextsize (int elem, int cur, int cnt)
556{ 1793{
557 int ncur = cur + 1; 1794 int ncur = cur + 1;
558 1795
559 do 1796 do
560 ncur <<= 1; 1797 ncur <<= 1;
561 while (cnt > ncur); 1798 while (cnt > ncur);
562 1799
563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1800 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1801 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
565 { 1802 {
566 ncur *= elem; 1803 ncur *= elem;
567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1804 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
568 ncur = ncur - sizeof (void *) * 4; 1805 ncur = ncur - sizeof (void *) * 4;
570 } 1807 }
571 1808
572 return ncur; 1809 return ncur;
573} 1810}
574 1811
575static noinline void * 1812static void * noinline ecb_cold
576array_realloc (int elem, void *base, int *cur, int cnt) 1813array_realloc (int elem, void *base, int *cur, int cnt)
577{ 1814{
578 *cur = array_nextsize (elem, *cur, cnt); 1815 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 1816 return ev_realloc (base, elem * *cur);
580} 1817}
1818
1819#define array_init_zero(base,count) \
1820 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 1821
582#define array_needsize(type,base,cur,cnt,init) \ 1822#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 1823 if (expect_false ((cnt) > (cur))) \
584 { \ 1824 { \
585 int ocur_ = (cur); \ 1825 int ecb_unused ocur_ = (cur); \
586 (base) = (type *)array_realloc \ 1826 (base) = (type *)array_realloc \
587 (sizeof (type), (base), &(cur), (cnt)); \ 1827 (sizeof (type), (base), &(cur), (cnt)); \
588 init ((base) + (ocur_), (cur) - ocur_); \ 1828 init ((base) + (ocur_), (cur) - ocur_); \
589 } 1829 }
590 1830
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1837 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 1838 }
599#endif 1839#endif
600 1840
601#define array_free(stem, idx) \ 1841#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1842 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 1843
604/*****************************************************************************/ 1844/*****************************************************************************/
605 1845
1846/* dummy callback for pending events */
1847static void noinline
1848pendingcb (EV_P_ ev_prepare *w, int revents)
1849{
1850}
1851
606void noinline 1852void noinline
607ev_feed_event (EV_P_ void *w, int revents) 1853ev_feed_event (EV_P_ void *w, int revents) EV_THROW
608{ 1854{
609 W w_ = (W)w; 1855 W w_ = (W)w;
610 int pri = ABSPRI (w_); 1856 int pri = ABSPRI (w_);
611 1857
612 if (expect_false (w_->pending)) 1858 if (expect_false (w_->pending))
616 w_->pending = ++pendingcnt [pri]; 1862 w_->pending = ++pendingcnt [pri];
617 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1863 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
618 pendings [pri][w_->pending - 1].w = w_; 1864 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 1865 pendings [pri][w_->pending - 1].events = revents;
620 } 1866 }
621}
622 1867
623void inline_speed 1868 pendingpri = NUMPRI - 1;
1869}
1870
1871inline_speed void
1872feed_reverse (EV_P_ W w)
1873{
1874 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1875 rfeeds [rfeedcnt++] = w;
1876}
1877
1878inline_size void
1879feed_reverse_done (EV_P_ int revents)
1880{
1881 do
1882 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1883 while (rfeedcnt);
1884}
1885
1886inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 1887queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 1888{
626 int i; 1889 int i;
627 1890
628 for (i = 0; i < eventcnt; ++i) 1891 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 1892 ev_feed_event (EV_A_ events [i], type);
630} 1893}
631 1894
632/*****************************************************************************/ 1895/*****************************************************************************/
633 1896
634void inline_size 1897inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 1898fd_event_nocheck (EV_P_ int fd, int revents)
649{ 1899{
650 ANFD *anfd = anfds + fd; 1900 ANFD *anfd = anfds + fd;
651 ev_io *w; 1901 ev_io *w;
652 1902
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1903 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 1907 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 1908 ev_feed_event (EV_A_ (W)w, ev);
659 } 1909 }
660} 1910}
661 1911
1912/* do not submit kernel events for fds that have reify set */
1913/* because that means they changed while we were polling for new events */
1914inline_speed void
1915fd_event (EV_P_ int fd, int revents)
1916{
1917 ANFD *anfd = anfds + fd;
1918
1919 if (expect_true (!anfd->reify))
1920 fd_event_nocheck (EV_A_ fd, revents);
1921}
1922
662void 1923void
663ev_feed_fd_event (EV_P_ int fd, int revents) 1924ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
664{ 1925{
665 if (fd >= 0 && fd < anfdmax) 1926 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 1927 fd_event_nocheck (EV_A_ fd, revents);
667} 1928}
668 1929
669void inline_size 1930/* make sure the external fd watch events are in-sync */
1931/* with the kernel/libev internal state */
1932inline_size void
670fd_reify (EV_P) 1933fd_reify (EV_P)
671{ 1934{
672 int i; 1935 int i;
1936
1937#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1938 for (i = 0; i < fdchangecnt; ++i)
1939 {
1940 int fd = fdchanges [i];
1941 ANFD *anfd = anfds + fd;
1942
1943 if (anfd->reify & EV__IOFDSET && anfd->head)
1944 {
1945 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1946
1947 if (handle != anfd->handle)
1948 {
1949 unsigned long arg;
1950
1951 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1952
1953 /* handle changed, but fd didn't - we need to do it in two steps */
1954 backend_modify (EV_A_ fd, anfd->events, 0);
1955 anfd->events = 0;
1956 anfd->handle = handle;
1957 }
1958 }
1959 }
1960#endif
673 1961
674 for (i = 0; i < fdchangecnt; ++i) 1962 for (i = 0; i < fdchangecnt; ++i)
675 { 1963 {
676 int fd = fdchanges [i]; 1964 int fd = fdchanges [i];
677 ANFD *anfd = anfds + fd; 1965 ANFD *anfd = anfds + fd;
678 ev_io *w; 1966 ev_io *w;
679 1967
680 unsigned char events = 0; 1968 unsigned char o_events = anfd->events;
1969 unsigned char o_reify = anfd->reify;
681 1970
682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1971 anfd->reify = 0;
683 events |= (unsigned char)w->events;
684 1972
685#if EV_SELECT_IS_WINSOCKET 1973 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
686 if (events)
687 { 1974 {
688 unsigned long argp; 1975 anfd->events = 0;
689 #ifdef EV_FD_TO_WIN32_HANDLE 1976
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1977 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
691 #else 1978 anfd->events |= (unsigned char)w->events;
692 anfd->handle = _get_osfhandle (fd); 1979
693 #endif 1980 if (o_events != anfd->events)
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1981 o_reify = EV__IOFDSET; /* actually |= */
695 } 1982 }
696#endif
697 1983
698 { 1984 if (o_reify & EV__IOFDSET)
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
702 anfd->reify = 0;
703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 1985 backend_modify (EV_A_ fd, o_events, anfd->events);
707 }
708 } 1986 }
709 1987
710 fdchangecnt = 0; 1988 fdchangecnt = 0;
711} 1989}
712 1990
713void inline_size 1991/* something about the given fd changed */
1992inline_size void
714fd_change (EV_P_ int fd, int flags) 1993fd_change (EV_P_ int fd, int flags)
715{ 1994{
716 unsigned char reify = anfds [fd].reify; 1995 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 1996 anfds [fd].reify |= flags;
718 1997
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2001 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 2002 fdchanges [fdchangecnt - 1] = fd;
724 } 2003 }
725} 2004}
726 2005
727void inline_speed 2006/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2007inline_speed void ecb_cold
728fd_kill (EV_P_ int fd) 2008fd_kill (EV_P_ int fd)
729{ 2009{
730 ev_io *w; 2010 ev_io *w;
731 2011
732 while ((w = (ev_io *)anfds [fd].head)) 2012 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 2014 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2015 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 2016 }
737} 2017}
738 2018
739int inline_size 2019/* check whether the given fd is actually valid, for error recovery */
2020inline_size int ecb_cold
740fd_valid (int fd) 2021fd_valid (int fd)
741{ 2022{
742#ifdef _WIN32 2023#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 2024 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
744#else 2025#else
745 return fcntl (fd, F_GETFD) != -1; 2026 return fcntl (fd, F_GETFD) != -1;
746#endif 2027#endif
747} 2028}
748 2029
749/* called on EBADF to verify fds */ 2030/* called on EBADF to verify fds */
750static void noinline 2031static void noinline ecb_cold
751fd_ebadf (EV_P) 2032fd_ebadf (EV_P)
752{ 2033{
753 int fd; 2034 int fd;
754 2035
755 for (fd = 0; fd < anfdmax; ++fd) 2036 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 2037 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 2038 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 2039 fd_kill (EV_A_ fd);
759} 2040}
760 2041
761/* called on ENOMEM in select/poll to kill some fds and retry */ 2042/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 2043static void noinline ecb_cold
763fd_enomem (EV_P) 2044fd_enomem (EV_P)
764{ 2045{
765 int fd; 2046 int fd;
766 2047
767 for (fd = anfdmax; fd--; ) 2048 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events) 2049 if (anfds [fd].events)
769 { 2050 {
770 fd_kill (EV_A_ fd); 2051 fd_kill (EV_A_ fd);
771 return; 2052 break;
772 } 2053 }
773} 2054}
774 2055
775/* usually called after fork if backend needs to re-arm all fds from scratch */ 2056/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline 2057static void noinline
780 2061
781 for (fd = 0; fd < anfdmax; ++fd) 2062 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 2063 if (anfds [fd].events)
783 { 2064 {
784 anfds [fd].events = 0; 2065 anfds [fd].events = 0;
2066 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2067 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 2068 }
787} 2069}
788 2070
2071/* used to prepare libev internal fd's */
2072/* this is not fork-safe */
2073inline_speed void
2074fd_intern (int fd)
2075{
2076#ifdef _WIN32
2077 unsigned long arg = 1;
2078 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2079#else
2080 fcntl (fd, F_SETFD, FD_CLOEXEC);
2081 fcntl (fd, F_SETFL, O_NONBLOCK);
2082#endif
2083}
2084
789/*****************************************************************************/ 2085/*****************************************************************************/
790 2086
791/* 2087/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not 2088 * the heap functions want a real array index. array index 0 is guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2089 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree. 2090 * the branching factor of the d-tree.
795 */ 2091 */
796 2092
797/* 2093/*
803#if EV_USE_4HEAP 2099#if EV_USE_4HEAP
804 2100
805#define DHEAP 4 2101#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2102#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2103#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808 2104#define UPHEAP_DONE(p,k) ((p) == (k))
809/* towards the root */
810void inline_speed
811upheap (ANHE *heap, int k)
812{
813 ANHE he = heap [k];
814
815 for (;;)
816 {
817 int p = HPARENT (k);
818
819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
820 break;
821
822 heap [k] = heap [p];
823 ev_active (ANHE_w (heap [k])) = k;
824 k = p;
825 }
826
827 heap [k] = he;
828 ev_active (ANHE_w (he)) = k;
829}
830 2105
831/* away from the root */ 2106/* away from the root */
832void inline_speed 2107inline_speed void
833downheap (ANHE *heap, int N, int k) 2108downheap (ANHE *heap, int N, int k)
834{ 2109{
835 ANHE he = heap [k]; 2110 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0; 2111 ANHE *E = heap + N + HEAP0;
837 2112
838 for (;;) 2113 for (;;)
839 { 2114 {
840 ev_tstamp minat; 2115 ev_tstamp minat;
841 ANHE *minpos; 2116 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 2117 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
843 2118
844 // find minimum child 2119 /* find minimum child */
845 if (expect_true (pos + DHEAP - 1 < E)) 2120 if (expect_true (pos + DHEAP - 1 < E))
846 { 2121 {
847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2122 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2123 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2124 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 2145
871 heap [k] = he; 2146 heap [k] = he;
872 ev_active (ANHE_w (he)) = k; 2147 ev_active (ANHE_w (he)) = k;
873} 2148}
874 2149
875#else // 4HEAP 2150#else /* 4HEAP */
876 2151
877#define HEAP0 1 2152#define HEAP0 1
878#define HPARENT(k) ((k) >> 1) 2153#define HPARENT(k) ((k) >> 1)
2154#define UPHEAP_DONE(p,k) (!(p))
879 2155
880/* towards the root */ 2156/* away from the root */
881void inline_speed 2157inline_speed void
882upheap (ANHE *heap, int k) 2158downheap (ANHE *heap, int N, int k)
883{ 2159{
884 ANHE he = heap [k]; 2160 ANHE he = heap [k];
885 2161
886 for (;;) 2162 for (;;)
887 { 2163 {
888 int p = HPARENT (k); 2164 int c = k << 1;
889 2165
890 /* maybe we could use a dummy element at heap [0]? */ 2166 if (c >= N + HEAP0)
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break; 2167 break;
893 2168
894 heap [k] = heap [p];
895 ev_active (ANHE_w (heap [k])) = k;
896 k = p;
897 }
898
899 heap [k] = he;
900 ev_active (ANHE_w (heap [k])) = k;
901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
908
909 for (;;)
910 {
911 int c = k << 1;
912
913 if (c > N)
914 break;
915
916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2169 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
917 ? 1 : 0; 2170 ? 1 : 0;
918 2171
919 if (ANHE_at (he) <= ANHE_at (heap [c])) 2172 if (ANHE_at (he) <= ANHE_at (heap [c]))
920 break; 2173 break;
921 2174
928 heap [k] = he; 2181 heap [k] = he;
929 ev_active (ANHE_w (he)) = k; 2182 ev_active (ANHE_w (he)) = k;
930} 2183}
931#endif 2184#endif
932 2185
933void inline_size 2186/* towards the root */
2187inline_speed void
2188upheap (ANHE *heap, int k)
2189{
2190 ANHE he = heap [k];
2191
2192 for (;;)
2193 {
2194 int p = HPARENT (k);
2195
2196 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2197 break;
2198
2199 heap [k] = heap [p];
2200 ev_active (ANHE_w (heap [k])) = k;
2201 k = p;
2202 }
2203
2204 heap [k] = he;
2205 ev_active (ANHE_w (he)) = k;
2206}
2207
2208/* move an element suitably so it is in a correct place */
2209inline_size void
934adjustheap (ANHE *heap, int N, int k) 2210adjustheap (ANHE *heap, int N, int k)
935{ 2211{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2212 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
937 upheap (heap, k); 2213 upheap (heap, k);
938 else 2214 else
939 downheap (heap, N, k); 2215 downheap (heap, N, k);
940} 2216}
941 2217
2218/* rebuild the heap: this function is used only once and executed rarely */
2219inline_size void
2220reheap (ANHE *heap, int N)
2221{
2222 int i;
2223
2224 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2225 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2226 for (i = 0; i < N; ++i)
2227 upheap (heap, i + HEAP0);
2228}
2229
942/*****************************************************************************/ 2230/*****************************************************************************/
943 2231
2232/* associate signal watchers to a signal signal */
944typedef struct 2233typedef struct
945{ 2234{
2235 EV_ATOMIC_T pending;
2236#if EV_MULTIPLICITY
2237 EV_P;
2238#endif
946 WL head; 2239 WL head;
947 EV_ATOMIC_T gotsig;
948} ANSIG; 2240} ANSIG;
949 2241
950static ANSIG *signals; 2242static ANSIG signals [EV_NSIG - 1];
951static int signalmax;
952
953static EV_ATOMIC_T gotsig;
954
955void inline_size
956signals_init (ANSIG *base, int count)
957{
958 while (count--)
959 {
960 base->head = 0;
961 base->gotsig = 0;
962
963 ++base;
964 }
965}
966 2243
967/*****************************************************************************/ 2244/*****************************************************************************/
968 2245
969void inline_speed 2246#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
970fd_intern (int fd)
971{
972#ifdef _WIN32
973 int arg = 1;
974 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
975#else
976 fcntl (fd, F_SETFD, FD_CLOEXEC);
977 fcntl (fd, F_SETFL, O_NONBLOCK);
978#endif
979}
980 2247
981static void noinline 2248static void noinline ecb_cold
982evpipe_init (EV_P) 2249evpipe_init (EV_P)
983{ 2250{
984 if (!ev_is_active (&pipeev)) 2251 if (!ev_is_active (&pipe_w))
2252 {
2253 int fds [2];
2254
2255# if EV_USE_EVENTFD
2256 fds [0] = -1;
2257 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2258 if (fds [1] < 0 && errno == EINVAL)
2259 fds [1] = eventfd (0, 0);
2260
2261 if (fds [1] < 0)
2262# endif
2263 {
2264 while (pipe (fds))
2265 ev_syserr ("(libev) error creating signal/async pipe");
2266
2267 fd_intern (fds [0]);
2268 }
2269
2270 evpipe [0] = fds [0];
2271
2272 if (evpipe [1] < 0)
2273 evpipe [1] = fds [1]; /* first call, set write fd */
2274 else
2275 {
2276 /* on subsequent calls, do not change evpipe [1] */
2277 /* so that evpipe_write can always rely on its value. */
2278 /* this branch does not do anything sensible on windows, */
2279 /* so must not be executed on windows */
2280
2281 dup2 (fds [1], evpipe [1]);
2282 close (fds [1]);
2283 }
2284
2285 fd_intern (evpipe [1]);
2286
2287 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2288 ev_io_start (EV_A_ &pipe_w);
2289 ev_unref (EV_A); /* watcher should not keep loop alive */
985 { 2290 }
2291}
2292
2293inline_speed void
2294evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2295{
2296 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2297
2298 if (expect_true (*flag))
2299 return;
2300
2301 *flag = 1;
2302 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2303
2304 pipe_write_skipped = 1;
2305
2306 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2307
2308 if (pipe_write_wanted)
2309 {
2310 int old_errno;
2311
2312 pipe_write_skipped = 0;
2313 ECB_MEMORY_FENCE_RELEASE;
2314
2315 old_errno = errno; /* save errno because write will clobber it */
2316
986#if EV_USE_EVENTFD 2317#if EV_USE_EVENTFD
987 if ((evfd = eventfd (0, 0)) >= 0) 2318 if (evpipe [0] < 0)
988 { 2319 {
989 evpipe [0] = -1; 2320 uint64_t counter = 1;
990 fd_intern (evfd); 2321 write (evpipe [1], &counter, sizeof (uint64_t));
991 ev_io_set (&pipeev, evfd, EV_READ);
992 } 2322 }
993 else 2323 else
994#endif 2324#endif
995 { 2325 {
996 while (pipe (evpipe)) 2326#ifdef _WIN32
997 syserr ("(libev) error creating signal/async pipe"); 2327 WSABUF buf;
998 2328 DWORD sent;
999 fd_intern (evpipe [0]); 2329 buf.buf = &buf;
1000 fd_intern (evpipe [1]); 2330 buf.len = 1;
1001 ev_io_set (&pipeev, evpipe [0], EV_READ); 2331 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2332#else
2333 write (evpipe [1], &(evpipe [1]), 1);
2334#endif
1002 } 2335 }
1003 2336
1004 ev_io_start (EV_A_ &pipeev); 2337 errno = old_errno;
1005 ev_unref (EV_A); /* watcher should not keep loop alive */
1006 }
1007}
1008
1009void inline_size
1010evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1011{
1012 if (!*flag)
1013 { 2338 }
1014 int old_errno = errno; /* save errno because write might clobber it */ 2339}
1015 2340
1016 *flag = 1; 2341/* called whenever the libev signal pipe */
2342/* got some events (signal, async) */
2343static void
2344pipecb (EV_P_ ev_io *iow, int revents)
2345{
2346 int i;
1017 2347
2348 if (revents & EV_READ)
2349 {
1018#if EV_USE_EVENTFD 2350#if EV_USE_EVENTFD
1019 if (evfd >= 0) 2351 if (evpipe [0] < 0)
1020 { 2352 {
1021 uint64_t counter = 1; 2353 uint64_t counter;
1022 write (evfd, &counter, sizeof (uint64_t)); 2354 read (evpipe [1], &counter, sizeof (uint64_t));
1023 } 2355 }
1024 else 2356 else
1025#endif 2357#endif
1026 write (evpipe [1], &old_errno, 1); 2358 {
1027
1028 errno = old_errno;
1029 }
1030}
1031
1032static void
1033pipecb (EV_P_ ev_io *iow, int revents)
1034{
1035#if EV_USE_EVENTFD
1036 if (evfd >= 0)
1037 {
1038 uint64_t counter;
1039 read (evfd, &counter, sizeof (uint64_t));
1040 }
1041 else
1042#endif
1043 {
1044 char dummy; 2359 char dummy[4];
2360#ifdef _WIN32
2361 WSABUF buf;
2362 DWORD recvd;
2363 DWORD flags = 0;
2364 buf.buf = dummy;
2365 buf.len = sizeof (dummy);
2366 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2367#else
1045 read (evpipe [0], &dummy, 1); 2368 read (evpipe [0], &dummy, sizeof (dummy));
2369#endif
2370 }
2371 }
2372
2373 pipe_write_skipped = 0;
2374
2375 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2376
2377#if EV_SIGNAL_ENABLE
2378 if (sig_pending)
1046 } 2379 {
2380 sig_pending = 0;
1047 2381
1048 if (gotsig && ev_is_default_loop (EV_A)) 2382 ECB_MEMORY_FENCE;
1049 {
1050 int signum;
1051 gotsig = 0;
1052 2383
1053 for (signum = signalmax; signum--; ) 2384 for (i = EV_NSIG - 1; i--; )
1054 if (signals [signum].gotsig) 2385 if (expect_false (signals [i].pending))
1055 ev_feed_signal_event (EV_A_ signum + 1); 2386 ev_feed_signal_event (EV_A_ i + 1);
1056 } 2387 }
2388#endif
1057 2389
1058#if EV_ASYNC_ENABLE 2390#if EV_ASYNC_ENABLE
1059 if (gotasync) 2391 if (async_pending)
1060 { 2392 {
1061 int i; 2393 async_pending = 0;
1062 gotasync = 0; 2394
2395 ECB_MEMORY_FENCE;
1063 2396
1064 for (i = asynccnt; i--; ) 2397 for (i = asynccnt; i--; )
1065 if (asyncs [i]->sent) 2398 if (asyncs [i]->sent)
1066 { 2399 {
1067 asyncs [i]->sent = 0; 2400 asyncs [i]->sent = 0;
2401 ECB_MEMORY_FENCE_RELEASE;
1068 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2402 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1069 } 2403 }
1070 } 2404 }
1071#endif 2405#endif
1072} 2406}
1073 2407
1074/*****************************************************************************/ 2408/*****************************************************************************/
1075 2409
2410void
2411ev_feed_signal (int signum) EV_THROW
2412{
2413#if EV_MULTIPLICITY
2414 EV_P;
2415 ECB_MEMORY_FENCE_ACQUIRE;
2416 EV_A = signals [signum - 1].loop;
2417
2418 if (!EV_A)
2419 return;
2420#endif
2421
2422 signals [signum - 1].pending = 1;
2423 evpipe_write (EV_A_ &sig_pending);
2424}
2425
1076static void 2426static void
1077ev_sighandler (int signum) 2427ev_sighandler (int signum)
1078{ 2428{
2429#ifdef _WIN32
2430 signal (signum, ev_sighandler);
2431#endif
2432
2433 ev_feed_signal (signum);
2434}
2435
2436void noinline
2437ev_feed_signal_event (EV_P_ int signum) EV_THROW
2438{
2439 WL w;
2440
2441 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2442 return;
2443
2444 --signum;
2445
1079#if EV_MULTIPLICITY 2446#if EV_MULTIPLICITY
1080 struct ev_loop *loop = &default_loop_struct; 2447 /* it is permissible to try to feed a signal to the wrong loop */
1081#endif 2448 /* or, likely more useful, feeding a signal nobody is waiting for */
1082 2449
1083#if _WIN32 2450 if (expect_false (signals [signum].loop != EV_A))
1084 signal (signum, ev_sighandler);
1085#endif
1086
1087 signals [signum - 1].gotsig = 1;
1088 evpipe_write (EV_A_ &gotsig);
1089}
1090
1091void noinline
1092ev_feed_signal_event (EV_P_ int signum)
1093{
1094 WL w;
1095
1096#if EV_MULTIPLICITY
1097 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1098#endif
1099
1100 --signum;
1101
1102 if (signum < 0 || signum >= signalmax)
1103 return; 2451 return;
2452#endif
1104 2453
1105 signals [signum].gotsig = 0; 2454 signals [signum].pending = 0;
2455 ECB_MEMORY_FENCE_RELEASE;
1106 2456
1107 for (w = signals [signum].head; w; w = w->next) 2457 for (w = signals [signum].head; w; w = w->next)
1108 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2458 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1109} 2459}
1110 2460
2461#if EV_USE_SIGNALFD
2462static void
2463sigfdcb (EV_P_ ev_io *iow, int revents)
2464{
2465 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2466
2467 for (;;)
2468 {
2469 ssize_t res = read (sigfd, si, sizeof (si));
2470
2471 /* not ISO-C, as res might be -1, but works with SuS */
2472 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2473 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2474
2475 if (res < (ssize_t)sizeof (si))
2476 break;
2477 }
2478}
2479#endif
2480
2481#endif
2482
1111/*****************************************************************************/ 2483/*****************************************************************************/
1112 2484
2485#if EV_CHILD_ENABLE
1113static WL childs [EV_PID_HASHSIZE]; 2486static WL childs [EV_PID_HASHSIZE];
1114
1115#ifndef _WIN32
1116 2487
1117static ev_signal childev; 2488static ev_signal childev;
1118 2489
1119#ifndef WIFCONTINUED 2490#ifndef WIFCONTINUED
1120# define WIFCONTINUED(status) 0 2491# define WIFCONTINUED(status) 0
1121#endif 2492#endif
1122 2493
1123void inline_speed 2494/* handle a single child status event */
2495inline_speed void
1124child_reap (EV_P_ int chain, int pid, int status) 2496child_reap (EV_P_ int chain, int pid, int status)
1125{ 2497{
1126 ev_child *w; 2498 ev_child *w;
1127 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2499 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1128 2500
1129 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2501 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1130 { 2502 {
1131 if ((w->pid == pid || !w->pid) 2503 if ((w->pid == pid || !w->pid)
1132 && (!traced || (w->flags & 1))) 2504 && (!traced || (w->flags & 1)))
1133 { 2505 {
1134 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2506 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1141 2513
1142#ifndef WCONTINUED 2514#ifndef WCONTINUED
1143# define WCONTINUED 0 2515# define WCONTINUED 0
1144#endif 2516#endif
1145 2517
2518/* called on sigchld etc., calls waitpid */
1146static void 2519static void
1147childcb (EV_P_ ev_signal *sw, int revents) 2520childcb (EV_P_ ev_signal *sw, int revents)
1148{ 2521{
1149 int pid, status; 2522 int pid, status;
1150 2523
1158 /* make sure we are called again until all children have been reaped */ 2531 /* make sure we are called again until all children have been reaped */
1159 /* we need to do it this way so that the callback gets called before we continue */ 2532 /* we need to do it this way so that the callback gets called before we continue */
1160 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2533 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1161 2534
1162 child_reap (EV_A_ pid, pid, status); 2535 child_reap (EV_A_ pid, pid, status);
1163 if (EV_PID_HASHSIZE > 1) 2536 if ((EV_PID_HASHSIZE) > 1)
1164 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2537 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1165} 2538}
1166 2539
1167#endif 2540#endif
1168 2541
1169/*****************************************************************************/ 2542/*****************************************************************************/
1170 2543
2544#if EV_USE_IOCP
2545# include "ev_iocp.c"
2546#endif
1171#if EV_USE_PORT 2547#if EV_USE_PORT
1172# include "ev_port.c" 2548# include "ev_port.c"
1173#endif 2549#endif
1174#if EV_USE_KQUEUE 2550#if EV_USE_KQUEUE
1175# include "ev_kqueue.c" 2551# include "ev_kqueue.c"
1182#endif 2558#endif
1183#if EV_USE_SELECT 2559#if EV_USE_SELECT
1184# include "ev_select.c" 2560# include "ev_select.c"
1185#endif 2561#endif
1186 2562
1187int 2563int ecb_cold
1188ev_version_major (void) 2564ev_version_major (void) EV_THROW
1189{ 2565{
1190 return EV_VERSION_MAJOR; 2566 return EV_VERSION_MAJOR;
1191} 2567}
1192 2568
1193int 2569int ecb_cold
1194ev_version_minor (void) 2570ev_version_minor (void) EV_THROW
1195{ 2571{
1196 return EV_VERSION_MINOR; 2572 return EV_VERSION_MINOR;
1197} 2573}
1198 2574
1199/* return true if we are running with elevated privileges and should ignore env variables */ 2575/* return true if we are running with elevated privileges and should ignore env variables */
1200int inline_size 2576int inline_size ecb_cold
1201enable_secure (void) 2577enable_secure (void)
1202{ 2578{
1203#ifdef _WIN32 2579#ifdef _WIN32
1204 return 0; 2580 return 0;
1205#else 2581#else
1206 return getuid () != geteuid () 2582 return getuid () != geteuid ()
1207 || getgid () != getegid (); 2583 || getgid () != getegid ();
1208#endif 2584#endif
1209} 2585}
1210 2586
1211unsigned int 2587unsigned int ecb_cold
1212ev_supported_backends (void) 2588ev_supported_backends (void) EV_THROW
1213{ 2589{
1214 unsigned int flags = 0; 2590 unsigned int flags = 0;
1215 2591
1216 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2592 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1217 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2593 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1220 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2596 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1221 2597
1222 return flags; 2598 return flags;
1223} 2599}
1224 2600
1225unsigned int 2601unsigned int ecb_cold
1226ev_recommended_backends (void) 2602ev_recommended_backends (void) EV_THROW
1227{ 2603{
1228 unsigned int flags = ev_supported_backends (); 2604 unsigned int flags = ev_supported_backends ();
1229 2605
1230#ifndef __NetBSD__ 2606#ifndef __NetBSD__
1231 /* kqueue is borked on everything but netbsd apparently */ 2607 /* kqueue is borked on everything but netbsd apparently */
1232 /* it usually doesn't work correctly on anything but sockets and pipes */ 2608 /* it usually doesn't work correctly on anything but sockets and pipes */
1233 flags &= ~EVBACKEND_KQUEUE; 2609 flags &= ~EVBACKEND_KQUEUE;
1234#endif 2610#endif
1235#ifdef __APPLE__ 2611#ifdef __APPLE__
1236 // flags &= ~EVBACKEND_KQUEUE; for documentation 2612 /* only select works correctly on that "unix-certified" platform */
1237 flags &= ~EVBACKEND_POLL; 2613 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2614 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2615#endif
2616#ifdef __FreeBSD__
2617 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1238#endif 2618#endif
1239 2619
1240 return flags; 2620 return flags;
1241} 2621}
1242 2622
2623unsigned int ecb_cold
2624ev_embeddable_backends (void) EV_THROW
2625{
2626 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2627
2628 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2629 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2630 flags &= ~EVBACKEND_EPOLL;
2631
2632 return flags;
2633}
2634
1243unsigned int 2635unsigned int
1244ev_embeddable_backends (void) 2636ev_backend (EV_P) EV_THROW
1245{ 2637{
1246 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2638 return backend;
1247
1248 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1249 /* please fix it and tell me how to detect the fix */
1250 flags &= ~EVBACKEND_EPOLL;
1251
1252 return flags;
1253} 2639}
1254 2640
2641#if EV_FEATURE_API
1255unsigned int 2642unsigned int
1256ev_backend (EV_P) 2643ev_iteration (EV_P) EV_THROW
1257{ 2644{
1258 return backend; 2645 return loop_count;
1259} 2646}
1260 2647
1261unsigned int 2648unsigned int
1262ev_loop_count (EV_P) 2649ev_depth (EV_P) EV_THROW
1263{ 2650{
1264 return loop_count; 2651 return loop_depth;
1265} 2652}
1266 2653
1267void 2654void
1268ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2655ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1269{ 2656{
1270 io_blocktime = interval; 2657 io_blocktime = interval;
1271} 2658}
1272 2659
1273void 2660void
1274ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2661ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1275{ 2662{
1276 timeout_blocktime = interval; 2663 timeout_blocktime = interval;
1277} 2664}
1278 2665
2666void
2667ev_set_userdata (EV_P_ void *data) EV_THROW
2668{
2669 userdata = data;
2670}
2671
2672void *
2673ev_userdata (EV_P) EV_THROW
2674{
2675 return userdata;
2676}
2677
2678void
2679ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2680{
2681 invoke_cb = invoke_pending_cb;
2682}
2683
2684void
2685ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2686{
2687 release_cb = release;
2688 acquire_cb = acquire;
2689}
2690#endif
2691
2692/* initialise a loop structure, must be zero-initialised */
1279static void noinline 2693static void noinline ecb_cold
1280loop_init (EV_P_ unsigned int flags) 2694loop_init (EV_P_ unsigned int flags) EV_THROW
1281{ 2695{
1282 if (!backend) 2696 if (!backend)
1283 { 2697 {
2698 origflags = flags;
2699
2700#if EV_USE_REALTIME
2701 if (!have_realtime)
2702 {
2703 struct timespec ts;
2704
2705 if (!clock_gettime (CLOCK_REALTIME, &ts))
2706 have_realtime = 1;
2707 }
2708#endif
2709
1284#if EV_USE_MONOTONIC 2710#if EV_USE_MONOTONIC
2711 if (!have_monotonic)
1285 { 2712 {
1286 struct timespec ts; 2713 struct timespec ts;
2714
1287 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2715 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1288 have_monotonic = 1; 2716 have_monotonic = 1;
1289 } 2717 }
1290#endif
1291
1292 ev_rt_now = ev_time ();
1293 mn_now = get_clock ();
1294 now_floor = mn_now;
1295 rtmn_diff = ev_rt_now - mn_now;
1296
1297 io_blocktime = 0.;
1298 timeout_blocktime = 0.;
1299 backend = 0;
1300 backend_fd = -1;
1301 gotasync = 0;
1302#if EV_USE_INOTIFY
1303 fs_fd = -2;
1304#endif 2718#endif
1305 2719
1306 /* pid check not overridable via env */ 2720 /* pid check not overridable via env */
1307#ifndef _WIN32 2721#ifndef _WIN32
1308 if (flags & EVFLAG_FORKCHECK) 2722 if (flags & EVFLAG_FORKCHECK)
1312 if (!(flags & EVFLAG_NOENV) 2726 if (!(flags & EVFLAG_NOENV)
1313 && !enable_secure () 2727 && !enable_secure ()
1314 && getenv ("LIBEV_FLAGS")) 2728 && getenv ("LIBEV_FLAGS"))
1315 flags = atoi (getenv ("LIBEV_FLAGS")); 2729 flags = atoi (getenv ("LIBEV_FLAGS"));
1316 2730
1317 if (!(flags & 0x0000ffffU)) 2731 ev_rt_now = ev_time ();
2732 mn_now = get_clock ();
2733 now_floor = mn_now;
2734 rtmn_diff = ev_rt_now - mn_now;
2735#if EV_FEATURE_API
2736 invoke_cb = ev_invoke_pending;
2737#endif
2738
2739 io_blocktime = 0.;
2740 timeout_blocktime = 0.;
2741 backend = 0;
2742 backend_fd = -1;
2743 sig_pending = 0;
2744#if EV_ASYNC_ENABLE
2745 async_pending = 0;
2746#endif
2747 pipe_write_skipped = 0;
2748 pipe_write_wanted = 0;
2749 evpipe [0] = -1;
2750 evpipe [1] = -1;
2751#if EV_USE_INOTIFY
2752 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2753#endif
2754#if EV_USE_SIGNALFD
2755 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2756#endif
2757
2758 if (!(flags & EVBACKEND_MASK))
1318 flags |= ev_recommended_backends (); 2759 flags |= ev_recommended_backends ();
1319 2760
2761#if EV_USE_IOCP
2762 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2763#endif
1320#if EV_USE_PORT 2764#if EV_USE_PORT
1321 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2765 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1322#endif 2766#endif
1323#if EV_USE_KQUEUE 2767#if EV_USE_KQUEUE
1324 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2768 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1331#endif 2775#endif
1332#if EV_USE_SELECT 2776#if EV_USE_SELECT
1333 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2777 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1334#endif 2778#endif
1335 2779
2780 ev_prepare_init (&pending_w, pendingcb);
2781
2782#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1336 ev_init (&pipeev, pipecb); 2783 ev_init (&pipe_w, pipecb);
1337 ev_set_priority (&pipeev, EV_MAXPRI); 2784 ev_set_priority (&pipe_w, EV_MAXPRI);
2785#endif
1338 } 2786 }
1339} 2787}
1340 2788
1341static void noinline 2789/* free up a loop structure */
2790void ecb_cold
1342loop_destroy (EV_P) 2791ev_loop_destroy (EV_P)
1343{ 2792{
1344 int i; 2793 int i;
1345 2794
2795#if EV_MULTIPLICITY
2796 /* mimic free (0) */
2797 if (!EV_A)
2798 return;
2799#endif
2800
2801#if EV_CLEANUP_ENABLE
2802 /* queue cleanup watchers (and execute them) */
2803 if (expect_false (cleanupcnt))
2804 {
2805 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2806 EV_INVOKE_PENDING;
2807 }
2808#endif
2809
2810#if EV_CHILD_ENABLE
2811 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2812 {
2813 ev_ref (EV_A); /* child watcher */
2814 ev_signal_stop (EV_A_ &childev);
2815 }
2816#endif
2817
1346 if (ev_is_active (&pipeev)) 2818 if (ev_is_active (&pipe_w))
1347 { 2819 {
1348 ev_ref (EV_A); /* signal watcher */ 2820 /*ev_ref (EV_A);*/
1349 ev_io_stop (EV_A_ &pipeev); 2821 /*ev_io_stop (EV_A_ &pipe_w);*/
1350 2822
2823 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2824 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2825 }
2826
1351#if EV_USE_EVENTFD 2827#if EV_USE_SIGNALFD
1352 if (evfd >= 0) 2828 if (ev_is_active (&sigfd_w))
1353 close (evfd); 2829 close (sigfd);
1354#endif 2830#endif
1355
1356 if (evpipe [0] >= 0)
1357 {
1358 close (evpipe [0]);
1359 close (evpipe [1]);
1360 }
1361 }
1362 2831
1363#if EV_USE_INOTIFY 2832#if EV_USE_INOTIFY
1364 if (fs_fd >= 0) 2833 if (fs_fd >= 0)
1365 close (fs_fd); 2834 close (fs_fd);
1366#endif 2835#endif
1367 2836
1368 if (backend_fd >= 0) 2837 if (backend_fd >= 0)
1369 close (backend_fd); 2838 close (backend_fd);
1370 2839
2840#if EV_USE_IOCP
2841 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2842#endif
1371#if EV_USE_PORT 2843#if EV_USE_PORT
1372 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2844 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1373#endif 2845#endif
1374#if EV_USE_KQUEUE 2846#if EV_USE_KQUEUE
1375 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2847 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1390#if EV_IDLE_ENABLE 2862#if EV_IDLE_ENABLE
1391 array_free (idle, [i]); 2863 array_free (idle, [i]);
1392#endif 2864#endif
1393 } 2865 }
1394 2866
1395 ev_free (anfds); anfdmax = 0; 2867 ev_free (anfds); anfds = 0; anfdmax = 0;
1396 2868
1397 /* have to use the microsoft-never-gets-it-right macro */ 2869 /* have to use the microsoft-never-gets-it-right macro */
2870 array_free (rfeed, EMPTY);
1398 array_free (fdchange, EMPTY); 2871 array_free (fdchange, EMPTY);
1399 array_free (timer, EMPTY); 2872 array_free (timer, EMPTY);
1400#if EV_PERIODIC_ENABLE 2873#if EV_PERIODIC_ENABLE
1401 array_free (periodic, EMPTY); 2874 array_free (periodic, EMPTY);
1402#endif 2875#endif
1403#if EV_FORK_ENABLE 2876#if EV_FORK_ENABLE
1404 array_free (fork, EMPTY); 2877 array_free (fork, EMPTY);
1405#endif 2878#endif
2879#if EV_CLEANUP_ENABLE
2880 array_free (cleanup, EMPTY);
2881#endif
1406 array_free (prepare, EMPTY); 2882 array_free (prepare, EMPTY);
1407 array_free (check, EMPTY); 2883 array_free (check, EMPTY);
1408#if EV_ASYNC_ENABLE 2884#if EV_ASYNC_ENABLE
1409 array_free (async, EMPTY); 2885 array_free (async, EMPTY);
1410#endif 2886#endif
1411 2887
1412 backend = 0; 2888 backend = 0;
2889
2890#if EV_MULTIPLICITY
2891 if (ev_is_default_loop (EV_A))
2892#endif
2893 ev_default_loop_ptr = 0;
2894#if EV_MULTIPLICITY
2895 else
2896 ev_free (EV_A);
2897#endif
1413} 2898}
1414 2899
1415#if EV_USE_INOTIFY 2900#if EV_USE_INOTIFY
1416void inline_size infy_fork (EV_P); 2901inline_size void infy_fork (EV_P);
1417#endif 2902#endif
1418 2903
1419void inline_size 2904inline_size void
1420loop_fork (EV_P) 2905loop_fork (EV_P)
1421{ 2906{
1422#if EV_USE_PORT 2907#if EV_USE_PORT
1423 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2908 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1424#endif 2909#endif
1430#endif 2915#endif
1431#if EV_USE_INOTIFY 2916#if EV_USE_INOTIFY
1432 infy_fork (EV_A); 2917 infy_fork (EV_A);
1433#endif 2918#endif
1434 2919
1435 if (ev_is_active (&pipeev)) 2920#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2921 if (ev_is_active (&pipe_w) && postfork != 2)
2922 {
2923 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2924
2925 ev_ref (EV_A);
2926 ev_io_stop (EV_A_ &pipe_w);
2927
2928 if (evpipe [0] >= 0)
2929 EV_WIN32_CLOSE_FD (evpipe [0]);
2930
2931 evpipe_init (EV_A);
2932 /* iterate over everything, in case we missed something before */
2933 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1436 { 2934 }
1437 /* this "locks" the handlers against writing to the pipe */ 2935#endif
1438 /* while we modify the fd vars */ 2936
1439 gotsig = 1; 2937 postfork = 0;
2938}
2939
2940#if EV_MULTIPLICITY
2941
2942struct ev_loop * ecb_cold
2943ev_loop_new (unsigned int flags) EV_THROW
2944{
2945 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2946
2947 memset (EV_A, 0, sizeof (struct ev_loop));
2948 loop_init (EV_A_ flags);
2949
2950 if (ev_backend (EV_A))
2951 return EV_A;
2952
2953 ev_free (EV_A);
2954 return 0;
2955}
2956
2957#endif /* multiplicity */
2958
2959#if EV_VERIFY
2960static void noinline ecb_cold
2961verify_watcher (EV_P_ W w)
2962{
2963 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2964
2965 if (w->pending)
2966 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2967}
2968
2969static void noinline ecb_cold
2970verify_heap (EV_P_ ANHE *heap, int N)
2971{
2972 int i;
2973
2974 for (i = HEAP0; i < N + HEAP0; ++i)
2975 {
2976 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2977 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2978 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2979
2980 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2981 }
2982}
2983
2984static void noinline ecb_cold
2985array_verify (EV_P_ W *ws, int cnt)
2986{
2987 while (cnt--)
2988 {
2989 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2990 verify_watcher (EV_A_ ws [cnt]);
2991 }
2992}
2993#endif
2994
2995#if EV_FEATURE_API
2996void ecb_cold
2997ev_verify (EV_P) EV_THROW
2998{
2999#if EV_VERIFY
3000 int i;
3001 WL w, w2;
3002
3003 assert (activecnt >= -1);
3004
3005 assert (fdchangemax >= fdchangecnt);
3006 for (i = 0; i < fdchangecnt; ++i)
3007 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3008
3009 assert (anfdmax >= 0);
3010 for (i = 0; i < anfdmax; ++i)
3011 {
3012 int j = 0;
3013
3014 for (w = w2 = anfds [i].head; w; w = w->next)
3015 {
3016 verify_watcher (EV_A_ (W)w);
3017
3018 if (j++ & 1)
3019 {
3020 assert (("libev: io watcher list contains a loop", w != w2));
3021 w2 = w2->next;
3022 }
3023
3024 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3025 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3026 }
3027 }
3028
3029 assert (timermax >= timercnt);
3030 verify_heap (EV_A_ timers, timercnt);
3031
3032#if EV_PERIODIC_ENABLE
3033 assert (periodicmax >= periodiccnt);
3034 verify_heap (EV_A_ periodics, periodiccnt);
3035#endif
3036
3037 for (i = NUMPRI; i--; )
3038 {
3039 assert (pendingmax [i] >= pendingcnt [i]);
3040#if EV_IDLE_ENABLE
3041 assert (idleall >= 0);
3042 assert (idlemax [i] >= idlecnt [i]);
3043 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3044#endif
3045 }
3046
3047#if EV_FORK_ENABLE
3048 assert (forkmax >= forkcnt);
3049 array_verify (EV_A_ (W *)forks, forkcnt);
3050#endif
3051
3052#if EV_CLEANUP_ENABLE
3053 assert (cleanupmax >= cleanupcnt);
3054 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3055#endif
3056
1440#if EV_ASYNC_ENABLE 3057#if EV_ASYNC_ENABLE
1441 gotasync = 1; 3058 assert (asyncmax >= asynccnt);
3059 array_verify (EV_A_ (W *)asyncs, asynccnt);
3060#endif
3061
3062#if EV_PREPARE_ENABLE
3063 assert (preparemax >= preparecnt);
3064 array_verify (EV_A_ (W *)prepares, preparecnt);
3065#endif
3066
3067#if EV_CHECK_ENABLE
3068 assert (checkmax >= checkcnt);
3069 array_verify (EV_A_ (W *)checks, checkcnt);
3070#endif
3071
3072# if 0
3073#if EV_CHILD_ENABLE
3074 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3075 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3076#endif
1442#endif 3077# endif
1443
1444 ev_ref (EV_A);
1445 ev_io_stop (EV_A_ &pipeev);
1446
1447#if EV_USE_EVENTFD
1448 if (evfd >= 0)
1449 close (evfd);
1450#endif 3078#endif
1451
1452 if (evpipe [0] >= 0)
1453 {
1454 close (evpipe [0]);
1455 close (evpipe [1]);
1456 }
1457
1458 evpipe_init (EV_A);
1459 /* now iterate over everything, in case we missed something */
1460 pipecb (EV_A_ &pipeev, EV_READ);
1461 }
1462
1463 postfork = 0;
1464} 3079}
3080#endif
1465 3081
1466#if EV_MULTIPLICITY 3082#if EV_MULTIPLICITY
1467struct ev_loop * 3083struct ev_loop * ecb_cold
1468ev_loop_new (unsigned int flags)
1469{
1470 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1471
1472 memset (loop, 0, sizeof (struct ev_loop));
1473
1474 loop_init (EV_A_ flags);
1475
1476 if (ev_backend (EV_A))
1477 return loop;
1478
1479 return 0;
1480}
1481
1482void
1483ev_loop_destroy (EV_P)
1484{
1485 loop_destroy (EV_A);
1486 ev_free (loop);
1487}
1488
1489void
1490ev_loop_fork (EV_P)
1491{
1492 postfork = 1; /* must be in line with ev_default_fork */
1493}
1494#endif
1495
1496#if EV_MULTIPLICITY
1497struct ev_loop *
1498ev_default_loop_init (unsigned int flags)
1499#else 3084#else
1500int 3085int
3086#endif
1501ev_default_loop (unsigned int flags) 3087ev_default_loop (unsigned int flags) EV_THROW
1502#endif
1503{ 3088{
1504 if (!ev_default_loop_ptr) 3089 if (!ev_default_loop_ptr)
1505 { 3090 {
1506#if EV_MULTIPLICITY 3091#if EV_MULTIPLICITY
1507 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3092 EV_P = ev_default_loop_ptr = &default_loop_struct;
1508#else 3093#else
1509 ev_default_loop_ptr = 1; 3094 ev_default_loop_ptr = 1;
1510#endif 3095#endif
1511 3096
1512 loop_init (EV_A_ flags); 3097 loop_init (EV_A_ flags);
1513 3098
1514 if (ev_backend (EV_A)) 3099 if (ev_backend (EV_A))
1515 { 3100 {
1516#ifndef _WIN32 3101#if EV_CHILD_ENABLE
1517 ev_signal_init (&childev, childcb, SIGCHLD); 3102 ev_signal_init (&childev, childcb, SIGCHLD);
1518 ev_set_priority (&childev, EV_MAXPRI); 3103 ev_set_priority (&childev, EV_MAXPRI);
1519 ev_signal_start (EV_A_ &childev); 3104 ev_signal_start (EV_A_ &childev);
1520 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3105 ev_unref (EV_A); /* child watcher should not keep loop alive */
1521#endif 3106#endif
1526 3111
1527 return ev_default_loop_ptr; 3112 return ev_default_loop_ptr;
1528} 3113}
1529 3114
1530void 3115void
1531ev_default_destroy (void) 3116ev_loop_fork (EV_P) EV_THROW
1532{ 3117{
1533#if EV_MULTIPLICITY 3118 postfork = 1;
1534 struct ev_loop *loop = ev_default_loop_ptr;
1535#endif
1536
1537#ifndef _WIN32
1538 ev_ref (EV_A); /* child watcher */
1539 ev_signal_stop (EV_A_ &childev);
1540#endif
1541
1542 loop_destroy (EV_A);
1543}
1544
1545void
1546ev_default_fork (void)
1547{
1548#if EV_MULTIPLICITY
1549 struct ev_loop *loop = ev_default_loop_ptr;
1550#endif
1551
1552 if (backend)
1553 postfork = 1; /* must be in line with ev_loop_fork */
1554} 3119}
1555 3120
1556/*****************************************************************************/ 3121/*****************************************************************************/
1557 3122
1558void 3123void
1559ev_invoke (EV_P_ void *w, int revents) 3124ev_invoke (EV_P_ void *w, int revents)
1560{ 3125{
1561 EV_CB_INVOKE ((W)w, revents); 3126 EV_CB_INVOKE ((W)w, revents);
1562} 3127}
1563 3128
1564void inline_speed 3129unsigned int
1565call_pending (EV_P) 3130ev_pending_count (EV_P) EV_THROW
1566{ 3131{
1567 int pri; 3132 int pri;
3133 unsigned int count = 0;
1568 3134
1569 for (pri = NUMPRI; pri--; ) 3135 for (pri = NUMPRI; pri--; )
3136 count += pendingcnt [pri];
3137
3138 return count;
3139}
3140
3141void noinline
3142ev_invoke_pending (EV_P)
3143{
3144 pendingpri = NUMPRI;
3145
3146 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3147 {
3148 --pendingpri;
3149
1570 while (pendingcnt [pri]) 3150 while (pendingcnt [pendingpri])
1571 {
1572 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1573
1574 if (expect_true (p->w))
1575 { 3151 {
1576 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3152 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1577 3153
1578 p->w->pending = 0; 3154 p->w->pending = 0;
1579 EV_CB_INVOKE (p->w, p->events); 3155 EV_CB_INVOKE (p->w, p->events);
3156 EV_FREQUENT_CHECK;
1580 } 3157 }
1581 } 3158 }
1582} 3159}
1583 3160
1584#if EV_IDLE_ENABLE 3161#if EV_IDLE_ENABLE
1585void inline_size 3162/* make idle watchers pending. this handles the "call-idle */
3163/* only when higher priorities are idle" logic */
3164inline_size void
1586idle_reify (EV_P) 3165idle_reify (EV_P)
1587{ 3166{
1588 if (expect_false (idleall)) 3167 if (expect_false (idleall))
1589 { 3168 {
1590 int pri; 3169 int pri;
1602 } 3181 }
1603 } 3182 }
1604} 3183}
1605#endif 3184#endif
1606 3185
1607void inline_size 3186/* make timers pending */
3187inline_size void
1608timers_reify (EV_P) 3188timers_reify (EV_P)
1609{ 3189{
3190 EV_FREQUENT_CHECK;
3191
1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3192 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1611 { 3193 {
1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3194 do
1613
1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1615
1616 /* first reschedule or stop timer */
1617 if (w->repeat)
1618 { 3195 {
3196 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3197
3198 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3199
3200 /* first reschedule or stop timer */
3201 if (w->repeat)
3202 {
1619 ev_at (w) += w->repeat; 3203 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now) 3204 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now; 3205 ev_at (w) = mn_now;
1622 3206
1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3207 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1624 3208
1625 ANHE_at_set (timers [HEAP0]); 3209 ANHE_at_cache (timers [HEAP0]);
1626 downheap (timers, timercnt, HEAP0); 3210 downheap (timers, timercnt, HEAP0);
3211 }
3212 else
3213 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3214
3215 EV_FREQUENT_CHECK;
3216 feed_reverse (EV_A_ (W)w);
1627 } 3217 }
1628 else 3218 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1630 3219
1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3220 feed_reverse_done (EV_A_ EV_TIMER);
1632 } 3221 }
1633} 3222}
1634 3223
1635#if EV_PERIODIC_ENABLE 3224#if EV_PERIODIC_ENABLE
1636void inline_size 3225
3226static void noinline
3227periodic_recalc (EV_P_ ev_periodic *w)
3228{
3229 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3230 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3231
3232 /* the above almost always errs on the low side */
3233 while (at <= ev_rt_now)
3234 {
3235 ev_tstamp nat = at + w->interval;
3236
3237 /* when resolution fails us, we use ev_rt_now */
3238 if (expect_false (nat == at))
3239 {
3240 at = ev_rt_now;
3241 break;
3242 }
3243
3244 at = nat;
3245 }
3246
3247 ev_at (w) = at;
3248}
3249
3250/* make periodics pending */
3251inline_size void
1637periodics_reify (EV_P) 3252periodics_reify (EV_P)
1638{ 3253{
3254 EV_FREQUENT_CHECK;
3255
1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3256 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1640 { 3257 {
1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3258 do
1642
1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1644
1645 /* first reschedule or stop timer */
1646 if (w->reschedule_cb)
1647 { 3259 {
3260 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3261
3262 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3263
3264 /* first reschedule or stop timer */
3265 if (w->reschedule_cb)
3266 {
1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3267 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649 3268
1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3269 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651 3270
1652 ANHE_at_set (periodics [HEAP0]); 3271 ANHE_at_cache (periodics [HEAP0]);
1653 downheap (periodics, periodiccnt, HEAP0); 3272 downheap (periodics, periodiccnt, HEAP0);
3273 }
3274 else if (w->interval)
3275 {
3276 periodic_recalc (EV_A_ w);
3277 ANHE_at_cache (periodics [HEAP0]);
3278 downheap (periodics, periodiccnt, HEAP0);
3279 }
3280 else
3281 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3282
3283 EV_FREQUENT_CHECK;
3284 feed_reverse (EV_A_ (W)w);
1654 } 3285 }
1655 else if (w->interval) 3286 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1656 {
1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663 3287
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1672 downheap (periodics, periodiccnt, HEAP0);
1673 }
1674 else
1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1676
1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3288 feed_reverse_done (EV_A_ EV_PERIODIC);
1678 } 3289 }
1679} 3290}
1680 3291
3292/* simply recalculate all periodics */
3293/* TODO: maybe ensure that at least one event happens when jumping forward? */
1681static void noinline 3294static void noinline ecb_cold
1682periodics_reschedule (EV_P) 3295periodics_reschedule (EV_P)
1683{ 3296{
1684 int i; 3297 int i;
1685 3298
1686 /* adjust periodics after time jump */ 3299 /* adjust periodics after time jump */
1689 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3302 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1690 3303
1691 if (w->reschedule_cb) 3304 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3305 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval) 3306 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3307 periodic_recalc (EV_A_ w);
1695 3308
1696 ANHE_at_set (periodics [i]); 3309 ANHE_at_cache (periodics [i]);
1697 } 3310 }
1698 3311
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 3312 reheap (periodics, periodiccnt);
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 3313}
3314#endif
3315
3316/* adjust all timers by a given offset */
3317static void noinline ecb_cold
3318timers_reschedule (EV_P_ ev_tstamp adjust)
3319{
3320 int i;
3321
1701 for (i = 0; i < periodiccnt; ++i) 3322 for (i = 0; i < timercnt; ++i)
1702 upheap (periodics, i + HEAP0); 3323 {
3324 ANHE *he = timers + i + HEAP0;
3325 ANHE_w (*he)->at += adjust;
3326 ANHE_at_cache (*he);
3327 }
1703} 3328}
1704#endif
1705 3329
1706void inline_speed 3330/* fetch new monotonic and realtime times from the kernel */
3331/* also detect if there was a timejump, and act accordingly */
3332inline_speed void
1707time_update (EV_P_ ev_tstamp max_block) 3333time_update (EV_P_ ev_tstamp max_block)
1708{ 3334{
1709 int i;
1710
1711#if EV_USE_MONOTONIC 3335#if EV_USE_MONOTONIC
1712 if (expect_true (have_monotonic)) 3336 if (expect_true (have_monotonic))
1713 { 3337 {
3338 int i;
1714 ev_tstamp odiff = rtmn_diff; 3339 ev_tstamp odiff = rtmn_diff;
1715 3340
1716 mn_now = get_clock (); 3341 mn_now = get_clock ();
1717 3342
1718 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3343 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1734 * doesn't hurt either as we only do this on time-jumps or 3359 * doesn't hurt either as we only do this on time-jumps or
1735 * in the unlikely event of having been preempted here. 3360 * in the unlikely event of having been preempted here.
1736 */ 3361 */
1737 for (i = 4; --i; ) 3362 for (i = 4; --i; )
1738 { 3363 {
3364 ev_tstamp diff;
1739 rtmn_diff = ev_rt_now - mn_now; 3365 rtmn_diff = ev_rt_now - mn_now;
1740 3366
3367 diff = odiff - rtmn_diff;
3368
1741 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3369 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1742 return; /* all is well */ 3370 return; /* all is well */
1743 3371
1744 ev_rt_now = ev_time (); 3372 ev_rt_now = ev_time ();
1745 mn_now = get_clock (); 3373 mn_now = get_clock ();
1746 now_floor = mn_now; 3374 now_floor = mn_now;
1747 } 3375 }
1748 3376
3377 /* no timer adjustment, as the monotonic clock doesn't jump */
3378 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1749# if EV_PERIODIC_ENABLE 3379# if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A); 3380 periodics_reschedule (EV_A);
1751# endif 3381# endif
1752 /* no timer adjustment, as the monotonic clock doesn't jump */
1753 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1754 } 3382 }
1755 else 3383 else
1756#endif 3384#endif
1757 { 3385 {
1758 ev_rt_now = ev_time (); 3386 ev_rt_now = ev_time ();
1759 3387
1760 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3388 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1761 { 3389 {
3390 /* adjust timers. this is easy, as the offset is the same for all of them */
3391 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1762#if EV_PERIODIC_ENABLE 3392#if EV_PERIODIC_ENABLE
1763 periodics_reschedule (EV_A); 3393 periodics_reschedule (EV_A);
1764#endif 3394#endif
1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1766 for (i = 0; i < timercnt; ++i)
1767 {
1768 ANHE *he = timers + i + HEAP0;
1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1772 } 3395 }
1773 3396
1774 mn_now = ev_rt_now; 3397 mn_now = ev_rt_now;
1775 } 3398 }
1776} 3399}
1777 3400
1778void 3401int
1779ev_ref (EV_P)
1780{
1781 ++activecnt;
1782}
1783
1784void
1785ev_unref (EV_P)
1786{
1787 --activecnt;
1788}
1789
1790static int loop_done;
1791
1792void
1793ev_loop (EV_P_ int flags) 3402ev_run (EV_P_ int flags)
1794{ 3403{
3404#if EV_FEATURE_API
3405 ++loop_depth;
3406#endif
3407
3408 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3409
1795 loop_done = EVUNLOOP_CANCEL; 3410 loop_done = EVBREAK_CANCEL;
1796 3411
1797 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3412 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1798 3413
1799 do 3414 do
1800 { 3415 {
3416#if EV_VERIFY >= 2
3417 ev_verify (EV_A);
3418#endif
3419
1801#ifndef _WIN32 3420#ifndef _WIN32
1802 if (expect_false (curpid)) /* penalise the forking check even more */ 3421 if (expect_false (curpid)) /* penalise the forking check even more */
1803 if (expect_false (getpid () != curpid)) 3422 if (expect_false (getpid () != curpid))
1804 { 3423 {
1805 curpid = getpid (); 3424 curpid = getpid ();
1811 /* we might have forked, so queue fork handlers */ 3430 /* we might have forked, so queue fork handlers */
1812 if (expect_false (postfork)) 3431 if (expect_false (postfork))
1813 if (forkcnt) 3432 if (forkcnt)
1814 { 3433 {
1815 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3434 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1816 call_pending (EV_A); 3435 EV_INVOKE_PENDING;
1817 } 3436 }
1818#endif 3437#endif
1819 3438
3439#if EV_PREPARE_ENABLE
1820 /* queue prepare watchers (and execute them) */ 3440 /* queue prepare watchers (and execute them) */
1821 if (expect_false (preparecnt)) 3441 if (expect_false (preparecnt))
1822 { 3442 {
1823 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3443 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1824 call_pending (EV_A); 3444 EV_INVOKE_PENDING;
1825 } 3445 }
3446#endif
1826 3447
1827 if (expect_false (!activecnt)) 3448 if (expect_false (loop_done))
1828 break; 3449 break;
1829 3450
1830 /* we might have forked, so reify kernel state if necessary */ 3451 /* we might have forked, so reify kernel state if necessary */
1831 if (expect_false (postfork)) 3452 if (expect_false (postfork))
1832 loop_fork (EV_A); 3453 loop_fork (EV_A);
1837 /* calculate blocking time */ 3458 /* calculate blocking time */
1838 { 3459 {
1839 ev_tstamp waittime = 0.; 3460 ev_tstamp waittime = 0.;
1840 ev_tstamp sleeptime = 0.; 3461 ev_tstamp sleeptime = 0.;
1841 3462
3463 /* remember old timestamp for io_blocktime calculation */
3464 ev_tstamp prev_mn_now = mn_now;
3465
3466 /* update time to cancel out callback processing overhead */
3467 time_update (EV_A_ 1e100);
3468
3469 /* from now on, we want a pipe-wake-up */
3470 pipe_write_wanted = 1;
3471
3472 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3473
1842 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3474 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1843 { 3475 {
1844 /* update time to cancel out callback processing overhead */
1845 time_update (EV_A_ 1e100);
1846
1847 waittime = MAX_BLOCKTIME; 3476 waittime = MAX_BLOCKTIME;
1848 3477
1849 if (timercnt) 3478 if (timercnt)
1850 { 3479 {
1851 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3480 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1852 if (waittime > to) waittime = to; 3481 if (waittime > to) waittime = to;
1853 } 3482 }
1854 3483
1855#if EV_PERIODIC_ENABLE 3484#if EV_PERIODIC_ENABLE
1856 if (periodiccnt) 3485 if (periodiccnt)
1857 { 3486 {
1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3487 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1859 if (waittime > to) waittime = to; 3488 if (waittime > to) waittime = to;
1860 } 3489 }
1861#endif 3490#endif
1862 3491
3492 /* don't let timeouts decrease the waittime below timeout_blocktime */
1863 if (expect_false (waittime < timeout_blocktime)) 3493 if (expect_false (waittime < timeout_blocktime))
1864 waittime = timeout_blocktime; 3494 waittime = timeout_blocktime;
1865 3495
1866 sleeptime = waittime - backend_fudge; 3496 /* at this point, we NEED to wait, so we have to ensure */
3497 /* to pass a minimum nonzero value to the backend */
3498 if (expect_false (waittime < backend_mintime))
3499 waittime = backend_mintime;
1867 3500
3501 /* extra check because io_blocktime is commonly 0 */
1868 if (expect_true (sleeptime > io_blocktime)) 3502 if (expect_false (io_blocktime))
1869 sleeptime = io_blocktime;
1870
1871 if (sleeptime)
1872 { 3503 {
3504 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3505
3506 if (sleeptime > waittime - backend_mintime)
3507 sleeptime = waittime - backend_mintime;
3508
3509 if (expect_true (sleeptime > 0.))
3510 {
1873 ev_sleep (sleeptime); 3511 ev_sleep (sleeptime);
1874 waittime -= sleeptime; 3512 waittime -= sleeptime;
3513 }
1875 } 3514 }
1876 } 3515 }
1877 3516
3517#if EV_FEATURE_API
1878 ++loop_count; 3518 ++loop_count;
3519#endif
3520 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1879 backend_poll (EV_A_ waittime); 3521 backend_poll (EV_A_ waittime);
3522 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3523
3524 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3525
3526 ECB_MEMORY_FENCE_ACQUIRE;
3527 if (pipe_write_skipped)
3528 {
3529 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3530 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3531 }
3532
1880 3533
1881 /* update ev_rt_now, do magic */ 3534 /* update ev_rt_now, do magic */
1882 time_update (EV_A_ waittime + sleeptime); 3535 time_update (EV_A_ waittime + sleeptime);
1883 } 3536 }
1884 3537
1891#if EV_IDLE_ENABLE 3544#if EV_IDLE_ENABLE
1892 /* queue idle watchers unless other events are pending */ 3545 /* queue idle watchers unless other events are pending */
1893 idle_reify (EV_A); 3546 idle_reify (EV_A);
1894#endif 3547#endif
1895 3548
3549#if EV_CHECK_ENABLE
1896 /* queue check watchers, to be executed first */ 3550 /* queue check watchers, to be executed first */
1897 if (expect_false (checkcnt)) 3551 if (expect_false (checkcnt))
1898 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3552 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3553#endif
1899 3554
1900 call_pending (EV_A); 3555 EV_INVOKE_PENDING;
1901 } 3556 }
1902 while (expect_true ( 3557 while (expect_true (
1903 activecnt 3558 activecnt
1904 && !loop_done 3559 && !loop_done
1905 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3560 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1906 )); 3561 ));
1907 3562
1908 if (loop_done == EVUNLOOP_ONE) 3563 if (loop_done == EVBREAK_ONE)
1909 loop_done = EVUNLOOP_CANCEL; 3564 loop_done = EVBREAK_CANCEL;
3565
3566#if EV_FEATURE_API
3567 --loop_depth;
3568#endif
3569
3570 return activecnt;
1910} 3571}
1911 3572
1912void 3573void
1913ev_unloop (EV_P_ int how) 3574ev_break (EV_P_ int how) EV_THROW
1914{ 3575{
1915 loop_done = how; 3576 loop_done = how;
1916} 3577}
1917 3578
3579void
3580ev_ref (EV_P) EV_THROW
3581{
3582 ++activecnt;
3583}
3584
3585void
3586ev_unref (EV_P) EV_THROW
3587{
3588 --activecnt;
3589}
3590
3591void
3592ev_now_update (EV_P) EV_THROW
3593{
3594 time_update (EV_A_ 1e100);
3595}
3596
3597void
3598ev_suspend (EV_P) EV_THROW
3599{
3600 ev_now_update (EV_A);
3601}
3602
3603void
3604ev_resume (EV_P) EV_THROW
3605{
3606 ev_tstamp mn_prev = mn_now;
3607
3608 ev_now_update (EV_A);
3609 timers_reschedule (EV_A_ mn_now - mn_prev);
3610#if EV_PERIODIC_ENABLE
3611 /* TODO: really do this? */
3612 periodics_reschedule (EV_A);
3613#endif
3614}
3615
1918/*****************************************************************************/ 3616/*****************************************************************************/
3617/* singly-linked list management, used when the expected list length is short */
1919 3618
1920void inline_size 3619inline_size void
1921wlist_add (WL *head, WL elem) 3620wlist_add (WL *head, WL elem)
1922{ 3621{
1923 elem->next = *head; 3622 elem->next = *head;
1924 *head = elem; 3623 *head = elem;
1925} 3624}
1926 3625
1927void inline_size 3626inline_size void
1928wlist_del (WL *head, WL elem) 3627wlist_del (WL *head, WL elem)
1929{ 3628{
1930 while (*head) 3629 while (*head)
1931 { 3630 {
1932 if (*head == elem) 3631 if (expect_true (*head == elem))
1933 { 3632 {
1934 *head = elem->next; 3633 *head = elem->next;
1935 return; 3634 break;
1936 } 3635 }
1937 3636
1938 head = &(*head)->next; 3637 head = &(*head)->next;
1939 } 3638 }
1940} 3639}
1941 3640
1942void inline_speed 3641/* internal, faster, version of ev_clear_pending */
3642inline_speed void
1943clear_pending (EV_P_ W w) 3643clear_pending (EV_P_ W w)
1944{ 3644{
1945 if (w->pending) 3645 if (w->pending)
1946 { 3646 {
1947 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3647 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1948 w->pending = 0; 3648 w->pending = 0;
1949 } 3649 }
1950} 3650}
1951 3651
1952int 3652int
1953ev_clear_pending (EV_P_ void *w) 3653ev_clear_pending (EV_P_ void *w) EV_THROW
1954{ 3654{
1955 W w_ = (W)w; 3655 W w_ = (W)w;
1956 int pending = w_->pending; 3656 int pending = w_->pending;
1957 3657
1958 if (expect_true (pending)) 3658 if (expect_true (pending))
1959 { 3659 {
1960 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3660 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3661 p->w = (W)&pending_w;
1961 w_->pending = 0; 3662 w_->pending = 0;
1962 p->w = 0;
1963 return p->events; 3663 return p->events;
1964 } 3664 }
1965 else 3665 else
1966 return 0; 3666 return 0;
1967} 3667}
1968 3668
1969void inline_size 3669inline_size void
1970pri_adjust (EV_P_ W w) 3670pri_adjust (EV_P_ W w)
1971{ 3671{
1972 int pri = w->priority; 3672 int pri = ev_priority (w);
1973 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3673 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1974 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3674 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1975 w->priority = pri; 3675 ev_set_priority (w, pri);
1976} 3676}
1977 3677
1978void inline_speed 3678inline_speed void
1979ev_start (EV_P_ W w, int active) 3679ev_start (EV_P_ W w, int active)
1980{ 3680{
1981 pri_adjust (EV_A_ w); 3681 pri_adjust (EV_A_ w);
1982 w->active = active; 3682 w->active = active;
1983 ev_ref (EV_A); 3683 ev_ref (EV_A);
1984} 3684}
1985 3685
1986void inline_size 3686inline_size void
1987ev_stop (EV_P_ W w) 3687ev_stop (EV_P_ W w)
1988{ 3688{
1989 ev_unref (EV_A); 3689 ev_unref (EV_A);
1990 w->active = 0; 3690 w->active = 0;
1991} 3691}
1992 3692
1993/*****************************************************************************/ 3693/*****************************************************************************/
1994 3694
1995void noinline 3695void noinline
1996ev_io_start (EV_P_ ev_io *w) 3696ev_io_start (EV_P_ ev_io *w) EV_THROW
1997{ 3697{
1998 int fd = w->fd; 3698 int fd = w->fd;
1999 3699
2000 if (expect_false (ev_is_active (w))) 3700 if (expect_false (ev_is_active (w)))
2001 return; 3701 return;
2002 3702
2003 assert (("ev_io_start called with negative fd", fd >= 0)); 3703 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3704 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3705
3706 EV_FREQUENT_CHECK;
2004 3707
2005 ev_start (EV_A_ (W)w, 1); 3708 ev_start (EV_A_ (W)w, 1);
2006 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3709 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2007 wlist_add (&anfds[fd].head, (WL)w); 3710 wlist_add (&anfds[fd].head, (WL)w);
2008 3711
3712 /* common bug, apparently */
3713 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3714
2009 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3715 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2010 w->events &= ~EV_IOFDSET; 3716 w->events &= ~EV__IOFDSET;
3717
3718 EV_FREQUENT_CHECK;
2011} 3719}
2012 3720
2013void noinline 3721void noinline
2014ev_io_stop (EV_P_ ev_io *w) 3722ev_io_stop (EV_P_ ev_io *w) EV_THROW
2015{ 3723{
2016 clear_pending (EV_A_ (W)w); 3724 clear_pending (EV_A_ (W)w);
2017 if (expect_false (!ev_is_active (w))) 3725 if (expect_false (!ev_is_active (w)))
2018 return; 3726 return;
2019 3727
2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3728 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3729
3730 EV_FREQUENT_CHECK;
2021 3731
2022 wlist_del (&anfds[w->fd].head, (WL)w); 3732 wlist_del (&anfds[w->fd].head, (WL)w);
2023 ev_stop (EV_A_ (W)w); 3733 ev_stop (EV_A_ (W)w);
2024 3734
2025 fd_change (EV_A_ w->fd, 1); 3735 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3736
3737 EV_FREQUENT_CHECK;
2026} 3738}
2027 3739
2028void noinline 3740void noinline
2029ev_timer_start (EV_P_ ev_timer *w) 3741ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2030{ 3742{
2031 if (expect_false (ev_is_active (w))) 3743 if (expect_false (ev_is_active (w)))
2032 return; 3744 return;
2033 3745
2034 ev_at (w) += mn_now; 3746 ev_at (w) += mn_now;
2035 3747
2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3748 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2037 3749
3750 EV_FREQUENT_CHECK;
3751
3752 ++timercnt;
2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 3753 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 3754 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2040 ANHE_w (timers [ev_active (w)]) = (WT)w; 3755 ANHE_w (timers [ev_active (w)]) = (WT)w;
2041 ANHE_at_set (timers [ev_active (w)]); 3756 ANHE_at_cache (timers [ev_active (w)]);
2042 upheap (timers, ev_active (w)); 3757 upheap (timers, ev_active (w));
2043 3758
3759 EV_FREQUENT_CHECK;
3760
2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3761 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2045} 3762}
2046 3763
2047void noinline 3764void noinline
2048ev_timer_stop (EV_P_ ev_timer *w) 3765ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2049{ 3766{
2050 clear_pending (EV_A_ (W)w); 3767 clear_pending (EV_A_ (W)w);
2051 if (expect_false (!ev_is_active (w))) 3768 if (expect_false (!ev_is_active (w)))
2052 return; 3769 return;
2053 3770
3771 EV_FREQUENT_CHECK;
3772
2054 { 3773 {
2055 int active = ev_active (w); 3774 int active = ev_active (w);
2056 3775
2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3776 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2058 3777
3778 --timercnt;
3779
2059 if (expect_true (active < timercnt + HEAP0 - 1)) 3780 if (expect_true (active < timercnt + HEAP0))
2060 { 3781 {
2061 timers [active] = timers [timercnt + HEAP0 - 1]; 3782 timers [active] = timers [timercnt + HEAP0];
2062 adjustheap (timers, timercnt, active); 3783 adjustheap (timers, timercnt, active);
2063 } 3784 }
2064
2065 --timercnt;
2066 } 3785 }
2067 3786
2068 ev_at (w) -= mn_now; 3787 ev_at (w) -= mn_now;
2069 3788
2070 ev_stop (EV_A_ (W)w); 3789 ev_stop (EV_A_ (W)w);
3790
3791 EV_FREQUENT_CHECK;
2071} 3792}
2072 3793
2073void noinline 3794void noinline
2074ev_timer_again (EV_P_ ev_timer *w) 3795ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2075{ 3796{
3797 EV_FREQUENT_CHECK;
3798
3799 clear_pending (EV_A_ (W)w);
3800
2076 if (ev_is_active (w)) 3801 if (ev_is_active (w))
2077 { 3802 {
2078 if (w->repeat) 3803 if (w->repeat)
2079 { 3804 {
2080 ev_at (w) = mn_now + w->repeat; 3805 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]); 3806 ANHE_at_cache (timers [ev_active (w)]);
2082 adjustheap (timers, timercnt, ev_active (w)); 3807 adjustheap (timers, timercnt, ev_active (w));
2083 } 3808 }
2084 else 3809 else
2085 ev_timer_stop (EV_A_ w); 3810 ev_timer_stop (EV_A_ w);
2086 } 3811 }
2087 else if (w->repeat) 3812 else if (w->repeat)
2088 { 3813 {
2089 ev_at (w) = w->repeat; 3814 ev_at (w) = w->repeat;
2090 ev_timer_start (EV_A_ w); 3815 ev_timer_start (EV_A_ w);
2091 } 3816 }
3817
3818 EV_FREQUENT_CHECK;
3819}
3820
3821ev_tstamp
3822ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3823{
3824 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2092} 3825}
2093 3826
2094#if EV_PERIODIC_ENABLE 3827#if EV_PERIODIC_ENABLE
2095void noinline 3828void noinline
2096ev_periodic_start (EV_P_ ev_periodic *w) 3829ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2097{ 3830{
2098 if (expect_false (ev_is_active (w))) 3831 if (expect_false (ev_is_active (w)))
2099 return; 3832 return;
2100 3833
2101 if (w->reschedule_cb) 3834 if (w->reschedule_cb)
2102 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3835 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2103 else if (w->interval) 3836 else if (w->interval)
2104 { 3837 {
2105 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3838 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2106 /* this formula differs from the one in periodic_reify because we do not always round up */ 3839 periodic_recalc (EV_A_ w);
2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2108 } 3840 }
2109 else 3841 else
2110 ev_at (w) = w->offset; 3842 ev_at (w) = w->offset;
2111 3843
3844 EV_FREQUENT_CHECK;
3845
3846 ++periodiccnt;
2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 3847 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 3848 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2114 ANHE_w (periodics [ev_active (w)]) = (WT)w; 3849 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2115 ANHE_at_set (periodics [ev_active (w)]); 3850 ANHE_at_cache (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w)); 3851 upheap (periodics, ev_active (w));
2117 3852
3853 EV_FREQUENT_CHECK;
3854
2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3855 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2119} 3856}
2120 3857
2121void noinline 3858void noinline
2122ev_periodic_stop (EV_P_ ev_periodic *w) 3859ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2123{ 3860{
2124 clear_pending (EV_A_ (W)w); 3861 clear_pending (EV_A_ (W)w);
2125 if (expect_false (!ev_is_active (w))) 3862 if (expect_false (!ev_is_active (w)))
2126 return; 3863 return;
2127 3864
3865 EV_FREQUENT_CHECK;
3866
2128 { 3867 {
2129 int active = ev_active (w); 3868 int active = ev_active (w);
2130 3869
2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 3870 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2132 3871
3872 --periodiccnt;
3873
2133 if (expect_true (active < periodiccnt + HEAP0 - 1)) 3874 if (expect_true (active < periodiccnt + HEAP0))
2134 { 3875 {
2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 3876 periodics [active] = periodics [periodiccnt + HEAP0];
2136 adjustheap (periodics, periodiccnt, active); 3877 adjustheap (periodics, periodiccnt, active);
2137 } 3878 }
2138
2139 --periodiccnt;
2140 } 3879 }
2141 3880
2142 ev_stop (EV_A_ (W)w); 3881 ev_stop (EV_A_ (W)w);
3882
3883 EV_FREQUENT_CHECK;
2143} 3884}
2144 3885
2145void noinline 3886void noinline
2146ev_periodic_again (EV_P_ ev_periodic *w) 3887ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2147{ 3888{
2148 /* TODO: use adjustheap and recalculation */ 3889 /* TODO: use adjustheap and recalculation */
2149 ev_periodic_stop (EV_A_ w); 3890 ev_periodic_stop (EV_A_ w);
2150 ev_periodic_start (EV_A_ w); 3891 ev_periodic_start (EV_A_ w);
2151} 3892}
2153 3894
2154#ifndef SA_RESTART 3895#ifndef SA_RESTART
2155# define SA_RESTART 0 3896# define SA_RESTART 0
2156#endif 3897#endif
2157 3898
3899#if EV_SIGNAL_ENABLE
3900
2158void noinline 3901void noinline
2159ev_signal_start (EV_P_ ev_signal *w) 3902ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2160{ 3903{
2161#if EV_MULTIPLICITY
2162 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2163#endif
2164 if (expect_false (ev_is_active (w))) 3904 if (expect_false (ev_is_active (w)))
2165 return; 3905 return;
2166 3906
2167 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3907 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2168 3908
2169 evpipe_init (EV_A); 3909#if EV_MULTIPLICITY
3910 assert (("libev: a signal must not be attached to two different loops",
3911 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2170 3912
3913 signals [w->signum - 1].loop = EV_A;
3914 ECB_MEMORY_FENCE_RELEASE;
3915#endif
3916
3917 EV_FREQUENT_CHECK;
3918
3919#if EV_USE_SIGNALFD
3920 if (sigfd == -2)
2171 { 3921 {
2172#ifndef _WIN32 3922 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2173 sigset_t full, prev; 3923 if (sigfd < 0 && errno == EINVAL)
2174 sigfillset (&full); 3924 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2175 sigprocmask (SIG_SETMASK, &full, &prev);
2176#endif
2177 3925
2178 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3926 if (sigfd >= 0)
3927 {
3928 fd_intern (sigfd); /* doing it twice will not hurt */
2179 3929
2180#ifndef _WIN32 3930 sigemptyset (&sigfd_set);
2181 sigprocmask (SIG_SETMASK, &prev, 0); 3931
2182#endif 3932 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3933 ev_set_priority (&sigfd_w, EV_MAXPRI);
3934 ev_io_start (EV_A_ &sigfd_w);
3935 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3936 }
2183 } 3937 }
3938
3939 if (sigfd >= 0)
3940 {
3941 /* TODO: check .head */
3942 sigaddset (&sigfd_set, w->signum);
3943 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3944
3945 signalfd (sigfd, &sigfd_set, 0);
3946 }
3947#endif
2184 3948
2185 ev_start (EV_A_ (W)w, 1); 3949 ev_start (EV_A_ (W)w, 1);
2186 wlist_add (&signals [w->signum - 1].head, (WL)w); 3950 wlist_add (&signals [w->signum - 1].head, (WL)w);
2187 3951
2188 if (!((WL)w)->next) 3952 if (!((WL)w)->next)
3953# if EV_USE_SIGNALFD
3954 if (sigfd < 0) /*TODO*/
3955# endif
2189 { 3956 {
2190#if _WIN32 3957# ifdef _WIN32
3958 evpipe_init (EV_A);
3959
2191 signal (w->signum, ev_sighandler); 3960 signal (w->signum, ev_sighandler);
2192#else 3961# else
2193 struct sigaction sa; 3962 struct sigaction sa;
3963
3964 evpipe_init (EV_A);
3965
2194 sa.sa_handler = ev_sighandler; 3966 sa.sa_handler = ev_sighandler;
2195 sigfillset (&sa.sa_mask); 3967 sigfillset (&sa.sa_mask);
2196 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3968 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2197 sigaction (w->signum, &sa, 0); 3969 sigaction (w->signum, &sa, 0);
3970
3971 if (origflags & EVFLAG_NOSIGMASK)
3972 {
3973 sigemptyset (&sa.sa_mask);
3974 sigaddset (&sa.sa_mask, w->signum);
3975 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3976 }
2198#endif 3977#endif
2199 } 3978 }
3979
3980 EV_FREQUENT_CHECK;
2200} 3981}
2201 3982
2202void noinline 3983void noinline
2203ev_signal_stop (EV_P_ ev_signal *w) 3984ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2204{ 3985{
2205 clear_pending (EV_A_ (W)w); 3986 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w))) 3987 if (expect_false (!ev_is_active (w)))
2207 return; 3988 return;
2208 3989
3990 EV_FREQUENT_CHECK;
3991
2209 wlist_del (&signals [w->signum - 1].head, (WL)w); 3992 wlist_del (&signals [w->signum - 1].head, (WL)w);
2210 ev_stop (EV_A_ (W)w); 3993 ev_stop (EV_A_ (W)w);
2211 3994
2212 if (!signals [w->signum - 1].head) 3995 if (!signals [w->signum - 1].head)
3996 {
3997#if EV_MULTIPLICITY
3998 signals [w->signum - 1].loop = 0; /* unattach from signal */
3999#endif
4000#if EV_USE_SIGNALFD
4001 if (sigfd >= 0)
4002 {
4003 sigset_t ss;
4004
4005 sigemptyset (&ss);
4006 sigaddset (&ss, w->signum);
4007 sigdelset (&sigfd_set, w->signum);
4008
4009 signalfd (sigfd, &sigfd_set, 0);
4010 sigprocmask (SIG_UNBLOCK, &ss, 0);
4011 }
4012 else
4013#endif
2213 signal (w->signum, SIG_DFL); 4014 signal (w->signum, SIG_DFL);
4015 }
4016
4017 EV_FREQUENT_CHECK;
2214} 4018}
4019
4020#endif
4021
4022#if EV_CHILD_ENABLE
2215 4023
2216void 4024void
2217ev_child_start (EV_P_ ev_child *w) 4025ev_child_start (EV_P_ ev_child *w) EV_THROW
2218{ 4026{
2219#if EV_MULTIPLICITY 4027#if EV_MULTIPLICITY
2220 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4028 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2221#endif 4029#endif
2222 if (expect_false (ev_is_active (w))) 4030 if (expect_false (ev_is_active (w)))
2223 return; 4031 return;
2224 4032
4033 EV_FREQUENT_CHECK;
4034
2225 ev_start (EV_A_ (W)w, 1); 4035 ev_start (EV_A_ (W)w, 1);
2226 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4036 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4037
4038 EV_FREQUENT_CHECK;
2227} 4039}
2228 4040
2229void 4041void
2230ev_child_stop (EV_P_ ev_child *w) 4042ev_child_stop (EV_P_ ev_child *w) EV_THROW
2231{ 4043{
2232 clear_pending (EV_A_ (W)w); 4044 clear_pending (EV_A_ (W)w);
2233 if (expect_false (!ev_is_active (w))) 4045 if (expect_false (!ev_is_active (w)))
2234 return; 4046 return;
2235 4047
4048 EV_FREQUENT_CHECK;
4049
2236 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4050 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2237 ev_stop (EV_A_ (W)w); 4051 ev_stop (EV_A_ (W)w);
4052
4053 EV_FREQUENT_CHECK;
2238} 4054}
4055
4056#endif
2239 4057
2240#if EV_STAT_ENABLE 4058#if EV_STAT_ENABLE
2241 4059
2242# ifdef _WIN32 4060# ifdef _WIN32
2243# undef lstat 4061# undef lstat
2244# define lstat(a,b) _stati64 (a,b) 4062# define lstat(a,b) _stati64 (a,b)
2245# endif 4063# endif
2246 4064
2247#define DEF_STAT_INTERVAL 5.0074891 4065#define DEF_STAT_INTERVAL 5.0074891
4066#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2248#define MIN_STAT_INTERVAL 0.1074891 4067#define MIN_STAT_INTERVAL 0.1074891
2249 4068
2250static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4069static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2251 4070
2252#if EV_USE_INOTIFY 4071#if EV_USE_INOTIFY
2253# define EV_INOTIFY_BUFSIZE 8192 4072
4073/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4074# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2254 4075
2255static void noinline 4076static void noinline
2256infy_add (EV_P_ ev_stat *w) 4077infy_add (EV_P_ ev_stat *w)
2257{ 4078{
2258 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4079 w->wd = inotify_add_watch (fs_fd, w->path,
4080 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4081 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4082 | IN_DONT_FOLLOW | IN_MASK_ADD);
2259 4083
2260 if (w->wd < 0) 4084 if (w->wd >= 0)
4085 {
4086 struct statfs sfs;
4087
4088 /* now local changes will be tracked by inotify, but remote changes won't */
4089 /* unless the filesystem is known to be local, we therefore still poll */
4090 /* also do poll on <2.6.25, but with normal frequency */
4091
4092 if (!fs_2625)
4093 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4094 else if (!statfs (w->path, &sfs)
4095 && (sfs.f_type == 0x1373 /* devfs */
4096 || sfs.f_type == 0x4006 /* fat */
4097 || sfs.f_type == 0x4d44 /* msdos */
4098 || sfs.f_type == 0xEF53 /* ext2/3 */
4099 || sfs.f_type == 0x72b6 /* jffs2 */
4100 || sfs.f_type == 0x858458f6 /* ramfs */
4101 || sfs.f_type == 0x5346544e /* ntfs */
4102 || sfs.f_type == 0x3153464a /* jfs */
4103 || sfs.f_type == 0x9123683e /* btrfs */
4104 || sfs.f_type == 0x52654973 /* reiser3 */
4105 || sfs.f_type == 0x01021994 /* tmpfs */
4106 || sfs.f_type == 0x58465342 /* xfs */))
4107 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4108 else
4109 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2261 { 4110 }
2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4111 else
4112 {
4113 /* can't use inotify, continue to stat */
4114 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2263 4115
2264 /* monitor some parent directory for speedup hints */ 4116 /* if path is not there, monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4117 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2266 /* but an efficiency issue only */ 4118 /* but an efficiency issue only */
2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4119 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2268 { 4120 {
2269 char path [4096]; 4121 char path [4096];
2270 strcpy (path, w->path); 4122 strcpy (path, w->path);
2274 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4126 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2275 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4127 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2276 4128
2277 char *pend = strrchr (path, '/'); 4129 char *pend = strrchr (path, '/');
2278 4130
2279 if (!pend) 4131 if (!pend || pend == path)
2280 break; /* whoops, no '/', complain to your admin */ 4132 break;
2281 4133
2282 *pend = 0; 4134 *pend = 0;
2283 w->wd = inotify_add_watch (fs_fd, path, mask); 4135 w->wd = inotify_add_watch (fs_fd, path, mask);
2284 } 4136 }
2285 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4137 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2286 } 4138 }
2287 } 4139 }
2288 else
2289 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2290 4140
2291 if (w->wd >= 0) 4141 if (w->wd >= 0)
2292 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4142 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4143
4144 /* now re-arm timer, if required */
4145 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4146 ev_timer_again (EV_A_ &w->timer);
4147 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2293} 4148}
2294 4149
2295static void noinline 4150static void noinline
2296infy_del (EV_P_ ev_stat *w) 4151infy_del (EV_P_ ev_stat *w)
2297{ 4152{
2300 4155
2301 if (wd < 0) 4156 if (wd < 0)
2302 return; 4157 return;
2303 4158
2304 w->wd = -2; 4159 w->wd = -2;
2305 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4160 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2306 wlist_del (&fs_hash [slot].head, (WL)w); 4161 wlist_del (&fs_hash [slot].head, (WL)w);
2307 4162
2308 /* remove this watcher, if others are watching it, they will rearm */ 4163 /* remove this watcher, if others are watching it, they will rearm */
2309 inotify_rm_watch (fs_fd, wd); 4164 inotify_rm_watch (fs_fd, wd);
2310} 4165}
2311 4166
2312static void noinline 4167static void noinline
2313infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4168infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2314{ 4169{
2315 if (slot < 0) 4170 if (slot < 0)
2316 /* overflow, need to check for all hahs slots */ 4171 /* overflow, need to check for all hash slots */
2317 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4172 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2318 infy_wd (EV_A_ slot, wd, ev); 4173 infy_wd (EV_A_ slot, wd, ev);
2319 else 4174 else
2320 { 4175 {
2321 WL w_; 4176 WL w_;
2322 4177
2323 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4178 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2324 { 4179 {
2325 ev_stat *w = (ev_stat *)w_; 4180 ev_stat *w = (ev_stat *)w_;
2326 w_ = w_->next; /* lets us remove this watcher and all before it */ 4181 w_ = w_->next; /* lets us remove this watcher and all before it */
2327 4182
2328 if (w->wd == wd || wd == -1) 4183 if (w->wd == wd || wd == -1)
2329 { 4184 {
2330 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4185 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2331 { 4186 {
4187 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2332 w->wd = -1; 4188 w->wd = -1;
2333 infy_add (EV_A_ w); /* re-add, no matter what */ 4189 infy_add (EV_A_ w); /* re-add, no matter what */
2334 } 4190 }
2335 4191
2336 stat_timer_cb (EV_A_ &w->timer, 0); 4192 stat_timer_cb (EV_A_ &w->timer, 0);
2341 4197
2342static void 4198static void
2343infy_cb (EV_P_ ev_io *w, int revents) 4199infy_cb (EV_P_ ev_io *w, int revents)
2344{ 4200{
2345 char buf [EV_INOTIFY_BUFSIZE]; 4201 char buf [EV_INOTIFY_BUFSIZE];
2346 struct inotify_event *ev = (struct inotify_event *)buf;
2347 int ofs; 4202 int ofs;
2348 int len = read (fs_fd, buf, sizeof (buf)); 4203 int len = read (fs_fd, buf, sizeof (buf));
2349 4204
2350 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4205 for (ofs = 0; ofs < len; )
4206 {
4207 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2351 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4208 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4209 ofs += sizeof (struct inotify_event) + ev->len;
4210 }
2352} 4211}
2353 4212
2354void inline_size 4213inline_size void ecb_cold
4214ev_check_2625 (EV_P)
4215{
4216 /* kernels < 2.6.25 are borked
4217 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4218 */
4219 if (ev_linux_version () < 0x020619)
4220 return;
4221
4222 fs_2625 = 1;
4223}
4224
4225inline_size int
4226infy_newfd (void)
4227{
4228#if defined IN_CLOEXEC && defined IN_NONBLOCK
4229 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4230 if (fd >= 0)
4231 return fd;
4232#endif
4233 return inotify_init ();
4234}
4235
4236inline_size void
2355infy_init (EV_P) 4237infy_init (EV_P)
2356{ 4238{
2357 if (fs_fd != -2) 4239 if (fs_fd != -2)
2358 return; 4240 return;
2359 4241
4242 fs_fd = -1;
4243
4244 ev_check_2625 (EV_A);
4245
2360 fs_fd = inotify_init (); 4246 fs_fd = infy_newfd ();
2361 4247
2362 if (fs_fd >= 0) 4248 if (fs_fd >= 0)
2363 { 4249 {
4250 fd_intern (fs_fd);
2364 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4251 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2365 ev_set_priority (&fs_w, EV_MAXPRI); 4252 ev_set_priority (&fs_w, EV_MAXPRI);
2366 ev_io_start (EV_A_ &fs_w); 4253 ev_io_start (EV_A_ &fs_w);
4254 ev_unref (EV_A);
2367 } 4255 }
2368} 4256}
2369 4257
2370void inline_size 4258inline_size void
2371infy_fork (EV_P) 4259infy_fork (EV_P)
2372{ 4260{
2373 int slot; 4261 int slot;
2374 4262
2375 if (fs_fd < 0) 4263 if (fs_fd < 0)
2376 return; 4264 return;
2377 4265
4266 ev_ref (EV_A);
4267 ev_io_stop (EV_A_ &fs_w);
2378 close (fs_fd); 4268 close (fs_fd);
2379 fs_fd = inotify_init (); 4269 fs_fd = infy_newfd ();
2380 4270
4271 if (fs_fd >= 0)
4272 {
4273 fd_intern (fs_fd);
4274 ev_io_set (&fs_w, fs_fd, EV_READ);
4275 ev_io_start (EV_A_ &fs_w);
4276 ev_unref (EV_A);
4277 }
4278
2381 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4279 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2382 { 4280 {
2383 WL w_ = fs_hash [slot].head; 4281 WL w_ = fs_hash [slot].head;
2384 fs_hash [slot].head = 0; 4282 fs_hash [slot].head = 0;
2385 4283
2386 while (w_) 4284 while (w_)
2391 w->wd = -1; 4289 w->wd = -1;
2392 4290
2393 if (fs_fd >= 0) 4291 if (fs_fd >= 0)
2394 infy_add (EV_A_ w); /* re-add, no matter what */ 4292 infy_add (EV_A_ w); /* re-add, no matter what */
2395 else 4293 else
4294 {
4295 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4296 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2396 ev_timer_start (EV_A_ &w->timer); 4297 ev_timer_again (EV_A_ &w->timer);
4298 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4299 }
2397 } 4300 }
2398
2399 } 4301 }
2400} 4302}
2401 4303
4304#endif
4305
4306#ifdef _WIN32
4307# define EV_LSTAT(p,b) _stati64 (p, b)
4308#else
4309# define EV_LSTAT(p,b) lstat (p, b)
2402#endif 4310#endif
2403 4311
2404void 4312void
2405ev_stat_stat (EV_P_ ev_stat *w) 4313ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2406{ 4314{
2407 if (lstat (w->path, &w->attr) < 0) 4315 if (lstat (w->path, &w->attr) < 0)
2408 w->attr.st_nlink = 0; 4316 w->attr.st_nlink = 0;
2409 else if (!w->attr.st_nlink) 4317 else if (!w->attr.st_nlink)
2410 w->attr.st_nlink = 1; 4318 w->attr.st_nlink = 1;
2413static void noinline 4321static void noinline
2414stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4322stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2415{ 4323{
2416 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4324 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2417 4325
2418 /* we copy this here each the time so that */ 4326 ev_statdata prev = w->attr;
2419 /* prev has the old value when the callback gets invoked */
2420 w->prev = w->attr;
2421 ev_stat_stat (EV_A_ w); 4327 ev_stat_stat (EV_A_ w);
2422 4328
2423 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4329 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2424 if ( 4330 if (
2425 w->prev.st_dev != w->attr.st_dev 4331 prev.st_dev != w->attr.st_dev
2426 || w->prev.st_ino != w->attr.st_ino 4332 || prev.st_ino != w->attr.st_ino
2427 || w->prev.st_mode != w->attr.st_mode 4333 || prev.st_mode != w->attr.st_mode
2428 || w->prev.st_nlink != w->attr.st_nlink 4334 || prev.st_nlink != w->attr.st_nlink
2429 || w->prev.st_uid != w->attr.st_uid 4335 || prev.st_uid != w->attr.st_uid
2430 || w->prev.st_gid != w->attr.st_gid 4336 || prev.st_gid != w->attr.st_gid
2431 || w->prev.st_rdev != w->attr.st_rdev 4337 || prev.st_rdev != w->attr.st_rdev
2432 || w->prev.st_size != w->attr.st_size 4338 || prev.st_size != w->attr.st_size
2433 || w->prev.st_atime != w->attr.st_atime 4339 || prev.st_atime != w->attr.st_atime
2434 || w->prev.st_mtime != w->attr.st_mtime 4340 || prev.st_mtime != w->attr.st_mtime
2435 || w->prev.st_ctime != w->attr.st_ctime 4341 || prev.st_ctime != w->attr.st_ctime
2436 ) { 4342 ) {
4343 /* we only update w->prev on actual differences */
4344 /* in case we test more often than invoke the callback, */
4345 /* to ensure that prev is always different to attr */
4346 w->prev = prev;
4347
2437 #if EV_USE_INOTIFY 4348 #if EV_USE_INOTIFY
4349 if (fs_fd >= 0)
4350 {
2438 infy_del (EV_A_ w); 4351 infy_del (EV_A_ w);
2439 infy_add (EV_A_ w); 4352 infy_add (EV_A_ w);
2440 ev_stat_stat (EV_A_ w); /* avoid race... */ 4353 ev_stat_stat (EV_A_ w); /* avoid race... */
4354 }
2441 #endif 4355 #endif
2442 4356
2443 ev_feed_event (EV_A_ w, EV_STAT); 4357 ev_feed_event (EV_A_ w, EV_STAT);
2444 } 4358 }
2445} 4359}
2446 4360
2447void 4361void
2448ev_stat_start (EV_P_ ev_stat *w) 4362ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2449{ 4363{
2450 if (expect_false (ev_is_active (w))) 4364 if (expect_false (ev_is_active (w)))
2451 return; 4365 return;
2452 4366
2453 /* since we use memcmp, we need to clear any padding data etc. */
2454 memset (&w->prev, 0, sizeof (ev_statdata));
2455 memset (&w->attr, 0, sizeof (ev_statdata));
2456
2457 ev_stat_stat (EV_A_ w); 4367 ev_stat_stat (EV_A_ w);
2458 4368
4369 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2459 if (w->interval < MIN_STAT_INTERVAL) 4370 w->interval = MIN_STAT_INTERVAL;
2460 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2461 4371
2462 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4372 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2463 ev_set_priority (&w->timer, ev_priority (w)); 4373 ev_set_priority (&w->timer, ev_priority (w));
2464 4374
2465#if EV_USE_INOTIFY 4375#if EV_USE_INOTIFY
2466 infy_init (EV_A); 4376 infy_init (EV_A);
2467 4377
2468 if (fs_fd >= 0) 4378 if (fs_fd >= 0)
2469 infy_add (EV_A_ w); 4379 infy_add (EV_A_ w);
2470 else 4380 else
2471#endif 4381#endif
4382 {
2472 ev_timer_start (EV_A_ &w->timer); 4383 ev_timer_again (EV_A_ &w->timer);
4384 ev_unref (EV_A);
4385 }
2473 4386
2474 ev_start (EV_A_ (W)w, 1); 4387 ev_start (EV_A_ (W)w, 1);
4388
4389 EV_FREQUENT_CHECK;
2475} 4390}
2476 4391
2477void 4392void
2478ev_stat_stop (EV_P_ ev_stat *w) 4393ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2479{ 4394{
2480 clear_pending (EV_A_ (W)w); 4395 clear_pending (EV_A_ (W)w);
2481 if (expect_false (!ev_is_active (w))) 4396 if (expect_false (!ev_is_active (w)))
2482 return; 4397 return;
2483 4398
4399 EV_FREQUENT_CHECK;
4400
2484#if EV_USE_INOTIFY 4401#if EV_USE_INOTIFY
2485 infy_del (EV_A_ w); 4402 infy_del (EV_A_ w);
2486#endif 4403#endif
4404
4405 if (ev_is_active (&w->timer))
4406 {
4407 ev_ref (EV_A);
2487 ev_timer_stop (EV_A_ &w->timer); 4408 ev_timer_stop (EV_A_ &w->timer);
4409 }
2488 4410
2489 ev_stop (EV_A_ (W)w); 4411 ev_stop (EV_A_ (W)w);
4412
4413 EV_FREQUENT_CHECK;
2490} 4414}
2491#endif 4415#endif
2492 4416
2493#if EV_IDLE_ENABLE 4417#if EV_IDLE_ENABLE
2494void 4418void
2495ev_idle_start (EV_P_ ev_idle *w) 4419ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2496{ 4420{
2497 if (expect_false (ev_is_active (w))) 4421 if (expect_false (ev_is_active (w)))
2498 return; 4422 return;
2499 4423
2500 pri_adjust (EV_A_ (W)w); 4424 pri_adjust (EV_A_ (W)w);
4425
4426 EV_FREQUENT_CHECK;
2501 4427
2502 { 4428 {
2503 int active = ++idlecnt [ABSPRI (w)]; 4429 int active = ++idlecnt [ABSPRI (w)];
2504 4430
2505 ++idleall; 4431 ++idleall;
2506 ev_start (EV_A_ (W)w, active); 4432 ev_start (EV_A_ (W)w, active);
2507 4433
2508 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4434 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2509 idles [ABSPRI (w)][active - 1] = w; 4435 idles [ABSPRI (w)][active - 1] = w;
2510 } 4436 }
4437
4438 EV_FREQUENT_CHECK;
2511} 4439}
2512 4440
2513void 4441void
2514ev_idle_stop (EV_P_ ev_idle *w) 4442ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2515{ 4443{
2516 clear_pending (EV_A_ (W)w); 4444 clear_pending (EV_A_ (W)w);
2517 if (expect_false (!ev_is_active (w))) 4445 if (expect_false (!ev_is_active (w)))
2518 return; 4446 return;
2519 4447
4448 EV_FREQUENT_CHECK;
4449
2520 { 4450 {
2521 int active = ev_active (w); 4451 int active = ev_active (w);
2522 4452
2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4453 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2524 ev_active (idles [ABSPRI (w)][active - 1]) = active; 4454 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2525 4455
2526 ev_stop (EV_A_ (W)w); 4456 ev_stop (EV_A_ (W)w);
2527 --idleall; 4457 --idleall;
2528 } 4458 }
2529}
2530#endif
2531 4459
4460 EV_FREQUENT_CHECK;
4461}
4462#endif
4463
4464#if EV_PREPARE_ENABLE
2532void 4465void
2533ev_prepare_start (EV_P_ ev_prepare *w) 4466ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2534{ 4467{
2535 if (expect_false (ev_is_active (w))) 4468 if (expect_false (ev_is_active (w)))
2536 return; 4469 return;
4470
4471 EV_FREQUENT_CHECK;
2537 4472
2538 ev_start (EV_A_ (W)w, ++preparecnt); 4473 ev_start (EV_A_ (W)w, ++preparecnt);
2539 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4474 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2540 prepares [preparecnt - 1] = w; 4475 prepares [preparecnt - 1] = w;
4476
4477 EV_FREQUENT_CHECK;
2541} 4478}
2542 4479
2543void 4480void
2544ev_prepare_stop (EV_P_ ev_prepare *w) 4481ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2545{ 4482{
2546 clear_pending (EV_A_ (W)w); 4483 clear_pending (EV_A_ (W)w);
2547 if (expect_false (!ev_is_active (w))) 4484 if (expect_false (!ev_is_active (w)))
2548 return; 4485 return;
2549 4486
4487 EV_FREQUENT_CHECK;
4488
2550 { 4489 {
2551 int active = ev_active (w); 4490 int active = ev_active (w);
2552 4491
2553 prepares [active - 1] = prepares [--preparecnt]; 4492 prepares [active - 1] = prepares [--preparecnt];
2554 ev_active (prepares [active - 1]) = active; 4493 ev_active (prepares [active - 1]) = active;
2555 } 4494 }
2556 4495
2557 ev_stop (EV_A_ (W)w); 4496 ev_stop (EV_A_ (W)w);
2558}
2559 4497
4498 EV_FREQUENT_CHECK;
4499}
4500#endif
4501
4502#if EV_CHECK_ENABLE
2560void 4503void
2561ev_check_start (EV_P_ ev_check *w) 4504ev_check_start (EV_P_ ev_check *w) EV_THROW
2562{ 4505{
2563 if (expect_false (ev_is_active (w))) 4506 if (expect_false (ev_is_active (w)))
2564 return; 4507 return;
4508
4509 EV_FREQUENT_CHECK;
2565 4510
2566 ev_start (EV_A_ (W)w, ++checkcnt); 4511 ev_start (EV_A_ (W)w, ++checkcnt);
2567 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4512 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2568 checks [checkcnt - 1] = w; 4513 checks [checkcnt - 1] = w;
4514
4515 EV_FREQUENT_CHECK;
2569} 4516}
2570 4517
2571void 4518void
2572ev_check_stop (EV_P_ ev_check *w) 4519ev_check_stop (EV_P_ ev_check *w) EV_THROW
2573{ 4520{
2574 clear_pending (EV_A_ (W)w); 4521 clear_pending (EV_A_ (W)w);
2575 if (expect_false (!ev_is_active (w))) 4522 if (expect_false (!ev_is_active (w)))
2576 return; 4523 return;
2577 4524
4525 EV_FREQUENT_CHECK;
4526
2578 { 4527 {
2579 int active = ev_active (w); 4528 int active = ev_active (w);
2580 4529
2581 checks [active - 1] = checks [--checkcnt]; 4530 checks [active - 1] = checks [--checkcnt];
2582 ev_active (checks [active - 1]) = active; 4531 ev_active (checks [active - 1]) = active;
2583 } 4532 }
2584 4533
2585 ev_stop (EV_A_ (W)w); 4534 ev_stop (EV_A_ (W)w);
4535
4536 EV_FREQUENT_CHECK;
2586} 4537}
4538#endif
2587 4539
2588#if EV_EMBED_ENABLE 4540#if EV_EMBED_ENABLE
2589void noinline 4541void noinline
2590ev_embed_sweep (EV_P_ ev_embed *w) 4542ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2591{ 4543{
2592 ev_loop (w->other, EVLOOP_NONBLOCK); 4544 ev_run (w->other, EVRUN_NOWAIT);
2593} 4545}
2594 4546
2595static void 4547static void
2596embed_io_cb (EV_P_ ev_io *io, int revents) 4548embed_io_cb (EV_P_ ev_io *io, int revents)
2597{ 4549{
2598 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4550 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2599 4551
2600 if (ev_cb (w)) 4552 if (ev_cb (w))
2601 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4553 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2602 else 4554 else
2603 ev_loop (w->other, EVLOOP_NONBLOCK); 4555 ev_run (w->other, EVRUN_NOWAIT);
2604} 4556}
2605 4557
2606static void 4558static void
2607embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4559embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2608{ 4560{
2609 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4561 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2610 4562
2611 { 4563 {
2612 struct ev_loop *loop = w->other; 4564 EV_P = w->other;
2613 4565
2614 while (fdchangecnt) 4566 while (fdchangecnt)
2615 { 4567 {
2616 fd_reify (EV_A); 4568 fd_reify (EV_A);
2617 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4569 ev_run (EV_A_ EVRUN_NOWAIT);
2618 } 4570 }
2619 } 4571 }
4572}
4573
4574static void
4575embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4576{
4577 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4578
4579 ev_embed_stop (EV_A_ w);
4580
4581 {
4582 EV_P = w->other;
4583
4584 ev_loop_fork (EV_A);
4585 ev_run (EV_A_ EVRUN_NOWAIT);
4586 }
4587
4588 ev_embed_start (EV_A_ w);
2620} 4589}
2621 4590
2622#if 0 4591#if 0
2623static void 4592static void
2624embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4593embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2626 ev_idle_stop (EV_A_ idle); 4595 ev_idle_stop (EV_A_ idle);
2627} 4596}
2628#endif 4597#endif
2629 4598
2630void 4599void
2631ev_embed_start (EV_P_ ev_embed *w) 4600ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2632{ 4601{
2633 if (expect_false (ev_is_active (w))) 4602 if (expect_false (ev_is_active (w)))
2634 return; 4603 return;
2635 4604
2636 { 4605 {
2637 struct ev_loop *loop = w->other; 4606 EV_P = w->other;
2638 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4607 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2639 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4608 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2640 } 4609 }
4610
4611 EV_FREQUENT_CHECK;
2641 4612
2642 ev_set_priority (&w->io, ev_priority (w)); 4613 ev_set_priority (&w->io, ev_priority (w));
2643 ev_io_start (EV_A_ &w->io); 4614 ev_io_start (EV_A_ &w->io);
2644 4615
2645 ev_prepare_init (&w->prepare, embed_prepare_cb); 4616 ev_prepare_init (&w->prepare, embed_prepare_cb);
2646 ev_set_priority (&w->prepare, EV_MINPRI); 4617 ev_set_priority (&w->prepare, EV_MINPRI);
2647 ev_prepare_start (EV_A_ &w->prepare); 4618 ev_prepare_start (EV_A_ &w->prepare);
2648 4619
4620 ev_fork_init (&w->fork, embed_fork_cb);
4621 ev_fork_start (EV_A_ &w->fork);
4622
2649 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4623 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2650 4624
2651 ev_start (EV_A_ (W)w, 1); 4625 ev_start (EV_A_ (W)w, 1);
4626
4627 EV_FREQUENT_CHECK;
2652} 4628}
2653 4629
2654void 4630void
2655ev_embed_stop (EV_P_ ev_embed *w) 4631ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2656{ 4632{
2657 clear_pending (EV_A_ (W)w); 4633 clear_pending (EV_A_ (W)w);
2658 if (expect_false (!ev_is_active (w))) 4634 if (expect_false (!ev_is_active (w)))
2659 return; 4635 return;
2660 4636
4637 EV_FREQUENT_CHECK;
4638
2661 ev_io_stop (EV_A_ &w->io); 4639 ev_io_stop (EV_A_ &w->io);
2662 ev_prepare_stop (EV_A_ &w->prepare); 4640 ev_prepare_stop (EV_A_ &w->prepare);
4641 ev_fork_stop (EV_A_ &w->fork);
2663 4642
2664 ev_stop (EV_A_ (W)w); 4643 ev_stop (EV_A_ (W)w);
4644
4645 EV_FREQUENT_CHECK;
2665} 4646}
2666#endif 4647#endif
2667 4648
2668#if EV_FORK_ENABLE 4649#if EV_FORK_ENABLE
2669void 4650void
2670ev_fork_start (EV_P_ ev_fork *w) 4651ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2671{ 4652{
2672 if (expect_false (ev_is_active (w))) 4653 if (expect_false (ev_is_active (w)))
2673 return; 4654 return;
4655
4656 EV_FREQUENT_CHECK;
2674 4657
2675 ev_start (EV_A_ (W)w, ++forkcnt); 4658 ev_start (EV_A_ (W)w, ++forkcnt);
2676 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4659 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2677 forks [forkcnt - 1] = w; 4660 forks [forkcnt - 1] = w;
4661
4662 EV_FREQUENT_CHECK;
2678} 4663}
2679 4664
2680void 4665void
2681ev_fork_stop (EV_P_ ev_fork *w) 4666ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2682{ 4667{
2683 clear_pending (EV_A_ (W)w); 4668 clear_pending (EV_A_ (W)w);
2684 if (expect_false (!ev_is_active (w))) 4669 if (expect_false (!ev_is_active (w)))
2685 return; 4670 return;
2686 4671
4672 EV_FREQUENT_CHECK;
4673
2687 { 4674 {
2688 int active = ev_active (w); 4675 int active = ev_active (w);
2689 4676
2690 forks [active - 1] = forks [--forkcnt]; 4677 forks [active - 1] = forks [--forkcnt];
2691 ev_active (forks [active - 1]) = active; 4678 ev_active (forks [active - 1]) = active;
2692 } 4679 }
2693 4680
2694 ev_stop (EV_A_ (W)w); 4681 ev_stop (EV_A_ (W)w);
4682
4683 EV_FREQUENT_CHECK;
4684}
4685#endif
4686
4687#if EV_CLEANUP_ENABLE
4688void
4689ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4690{
4691 if (expect_false (ev_is_active (w)))
4692 return;
4693
4694 EV_FREQUENT_CHECK;
4695
4696 ev_start (EV_A_ (W)w, ++cleanupcnt);
4697 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4698 cleanups [cleanupcnt - 1] = w;
4699
4700 /* cleanup watchers should never keep a refcount on the loop */
4701 ev_unref (EV_A);
4702 EV_FREQUENT_CHECK;
4703}
4704
4705void
4706ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4707{
4708 clear_pending (EV_A_ (W)w);
4709 if (expect_false (!ev_is_active (w)))
4710 return;
4711
4712 EV_FREQUENT_CHECK;
4713 ev_ref (EV_A);
4714
4715 {
4716 int active = ev_active (w);
4717
4718 cleanups [active - 1] = cleanups [--cleanupcnt];
4719 ev_active (cleanups [active - 1]) = active;
4720 }
4721
4722 ev_stop (EV_A_ (W)w);
4723
4724 EV_FREQUENT_CHECK;
2695} 4725}
2696#endif 4726#endif
2697 4727
2698#if EV_ASYNC_ENABLE 4728#if EV_ASYNC_ENABLE
2699void 4729void
2700ev_async_start (EV_P_ ev_async *w) 4730ev_async_start (EV_P_ ev_async *w) EV_THROW
2701{ 4731{
2702 if (expect_false (ev_is_active (w))) 4732 if (expect_false (ev_is_active (w)))
2703 return; 4733 return;
2704 4734
4735 w->sent = 0;
4736
2705 evpipe_init (EV_A); 4737 evpipe_init (EV_A);
4738
4739 EV_FREQUENT_CHECK;
2706 4740
2707 ev_start (EV_A_ (W)w, ++asynccnt); 4741 ev_start (EV_A_ (W)w, ++asynccnt);
2708 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4742 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2709 asyncs [asynccnt - 1] = w; 4743 asyncs [asynccnt - 1] = w;
4744
4745 EV_FREQUENT_CHECK;
2710} 4746}
2711 4747
2712void 4748void
2713ev_async_stop (EV_P_ ev_async *w) 4749ev_async_stop (EV_P_ ev_async *w) EV_THROW
2714{ 4750{
2715 clear_pending (EV_A_ (W)w); 4751 clear_pending (EV_A_ (W)w);
2716 if (expect_false (!ev_is_active (w))) 4752 if (expect_false (!ev_is_active (w)))
2717 return; 4753 return;
2718 4754
4755 EV_FREQUENT_CHECK;
4756
2719 { 4757 {
2720 int active = ev_active (w); 4758 int active = ev_active (w);
2721 4759
2722 asyncs [active - 1] = asyncs [--asynccnt]; 4760 asyncs [active - 1] = asyncs [--asynccnt];
2723 ev_active (asyncs [active - 1]) = active; 4761 ev_active (asyncs [active - 1]) = active;
2724 } 4762 }
2725 4763
2726 ev_stop (EV_A_ (W)w); 4764 ev_stop (EV_A_ (W)w);
4765
4766 EV_FREQUENT_CHECK;
2727} 4767}
2728 4768
2729void 4769void
2730ev_async_send (EV_P_ ev_async *w) 4770ev_async_send (EV_P_ ev_async *w) EV_THROW
2731{ 4771{
2732 w->sent = 1; 4772 w->sent = 1;
2733 evpipe_write (EV_A_ &gotasync); 4773 evpipe_write (EV_A_ &async_pending);
2734} 4774}
2735#endif 4775#endif
2736 4776
2737/*****************************************************************************/ 4777/*****************************************************************************/
2738 4778
2748once_cb (EV_P_ struct ev_once *once, int revents) 4788once_cb (EV_P_ struct ev_once *once, int revents)
2749{ 4789{
2750 void (*cb)(int revents, void *arg) = once->cb; 4790 void (*cb)(int revents, void *arg) = once->cb;
2751 void *arg = once->arg; 4791 void *arg = once->arg;
2752 4792
2753 ev_io_stop (EV_A_ &once->io); 4793 ev_io_stop (EV_A_ &once->io);
2754 ev_timer_stop (EV_A_ &once->to); 4794 ev_timer_stop (EV_A_ &once->to);
2755 ev_free (once); 4795 ev_free (once);
2756 4796
2757 cb (revents, arg); 4797 cb (revents, arg);
2758} 4798}
2759 4799
2760static void 4800static void
2761once_cb_io (EV_P_ ev_io *w, int revents) 4801once_cb_io (EV_P_ ev_io *w, int revents)
2762{ 4802{
2763 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4803 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4804
4805 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2764} 4806}
2765 4807
2766static void 4808static void
2767once_cb_to (EV_P_ ev_timer *w, int revents) 4809once_cb_to (EV_P_ ev_timer *w, int revents)
2768{ 4810{
2769 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4811 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4812
4813 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2770} 4814}
2771 4815
2772void 4816void
2773ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4817ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2774{ 4818{
2775 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4819 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2776 4820
2777 if (expect_false (!once)) 4821 if (expect_false (!once))
2778 { 4822 {
2779 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4823 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2780 return; 4824 return;
2781 } 4825 }
2782 4826
2783 once->cb = cb; 4827 once->cb = cb;
2784 once->arg = arg; 4828 once->arg = arg;
2796 ev_timer_set (&once->to, timeout, 0.); 4840 ev_timer_set (&once->to, timeout, 0.);
2797 ev_timer_start (EV_A_ &once->to); 4841 ev_timer_start (EV_A_ &once->to);
2798 } 4842 }
2799} 4843}
2800 4844
4845/*****************************************************************************/
4846
4847#if EV_WALK_ENABLE
4848void ecb_cold
4849ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4850{
4851 int i, j;
4852 ev_watcher_list *wl, *wn;
4853
4854 if (types & (EV_IO | EV_EMBED))
4855 for (i = 0; i < anfdmax; ++i)
4856 for (wl = anfds [i].head; wl; )
4857 {
4858 wn = wl->next;
4859
4860#if EV_EMBED_ENABLE
4861 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4862 {
4863 if (types & EV_EMBED)
4864 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4865 }
4866 else
4867#endif
4868#if EV_USE_INOTIFY
4869 if (ev_cb ((ev_io *)wl) == infy_cb)
4870 ;
4871 else
4872#endif
4873 if ((ev_io *)wl != &pipe_w)
4874 if (types & EV_IO)
4875 cb (EV_A_ EV_IO, wl);
4876
4877 wl = wn;
4878 }
4879
4880 if (types & (EV_TIMER | EV_STAT))
4881 for (i = timercnt + HEAP0; i-- > HEAP0; )
4882#if EV_STAT_ENABLE
4883 /*TODO: timer is not always active*/
4884 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4885 {
4886 if (types & EV_STAT)
4887 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4888 }
4889 else
4890#endif
4891 if (types & EV_TIMER)
4892 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4893
4894#if EV_PERIODIC_ENABLE
4895 if (types & EV_PERIODIC)
4896 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4897 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4898#endif
4899
4900#if EV_IDLE_ENABLE
4901 if (types & EV_IDLE)
4902 for (j = NUMPRI; j--; )
4903 for (i = idlecnt [j]; i--; )
4904 cb (EV_A_ EV_IDLE, idles [j][i]);
4905#endif
4906
4907#if EV_FORK_ENABLE
4908 if (types & EV_FORK)
4909 for (i = forkcnt; i--; )
4910 if (ev_cb (forks [i]) != embed_fork_cb)
4911 cb (EV_A_ EV_FORK, forks [i]);
4912#endif
4913
4914#if EV_ASYNC_ENABLE
4915 if (types & EV_ASYNC)
4916 for (i = asynccnt; i--; )
4917 cb (EV_A_ EV_ASYNC, asyncs [i]);
4918#endif
4919
4920#if EV_PREPARE_ENABLE
4921 if (types & EV_PREPARE)
4922 for (i = preparecnt; i--; )
4923# if EV_EMBED_ENABLE
4924 if (ev_cb (prepares [i]) != embed_prepare_cb)
4925# endif
4926 cb (EV_A_ EV_PREPARE, prepares [i]);
4927#endif
4928
4929#if EV_CHECK_ENABLE
4930 if (types & EV_CHECK)
4931 for (i = checkcnt; i--; )
4932 cb (EV_A_ EV_CHECK, checks [i]);
4933#endif
4934
4935#if EV_SIGNAL_ENABLE
4936 if (types & EV_SIGNAL)
4937 for (i = 0; i < EV_NSIG - 1; ++i)
4938 for (wl = signals [i].head; wl; )
4939 {
4940 wn = wl->next;
4941 cb (EV_A_ EV_SIGNAL, wl);
4942 wl = wn;
4943 }
4944#endif
4945
4946#if EV_CHILD_ENABLE
4947 if (types & EV_CHILD)
4948 for (i = (EV_PID_HASHSIZE); i--; )
4949 for (wl = childs [i]; wl; )
4950 {
4951 wn = wl->next;
4952 cb (EV_A_ EV_CHILD, wl);
4953 wl = wn;
4954 }
4955#endif
4956/* EV_STAT 0x00001000 /* stat data changed */
4957/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4958}
4959#endif
4960
2801#if EV_MULTIPLICITY 4961#if EV_MULTIPLICITY
2802 #include "ev_wrap.h" 4962 #include "ev_wrap.h"
2803#endif 4963#endif
2804 4964
2805#ifdef __cplusplus
2806}
2807#endif
2808

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines