ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC vs.
Revision 1.490 by root, Thu Jun 20 22:44:59 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h> 167/* OS X, in its infinite idiocy, actually HARDCODES
168 * a limit of 1024 into their select. Where people have brains,
169 * OS X engineers apparently have a vacuum. Or maybe they were
170 * ordered to have a vacuum, or they do anything for money.
171 * This might help. Or not.
172 * Note that this must be defined early, as other include files
173 * will rely on this define as well.
174 */
175#define _DARWIN_UNLIMITED_SELECT 1
176
135#include <stdlib.h> 177#include <stdlib.h>
178#include <string.h>
136#include <fcntl.h> 179#include <fcntl.h>
137#include <stddef.h> 180#include <stddef.h>
138 181
139#include <stdio.h> 182#include <stdio.h>
140 183
141#include <assert.h> 184#include <assert.h>
142#include <errno.h> 185#include <errno.h>
143#include <sys/types.h> 186#include <sys/types.h>
144#include <time.h> 187#include <time.h>
188#include <limits.h>
145 189
146#include <signal.h> 190#include <signal.h>
147 191
148#ifdef EV_H 192#ifdef EV_H
149# include EV_H 193# include EV_H
150#else 194#else
151# include "ev.h" 195# include "ev.h"
196#endif
197
198#if EV_NO_THREADS
199# undef EV_NO_SMP
200# define EV_NO_SMP 1
201# undef ECB_NO_THREADS
202# define ECB_NO_THREADS 1
203#endif
204#if EV_NO_SMP
205# undef EV_NO_SMP
206# define ECB_NO_SMP 1
152#endif 207#endif
153 208
154#ifndef _WIN32 209#ifndef _WIN32
155# include <sys/time.h> 210# include <sys/time.h>
156# include <sys/wait.h> 211# include <sys/wait.h>
157# include <unistd.h> 212# include <unistd.h>
158#else 213#else
214# include <io.h>
159# define WIN32_LEAN_AND_MEAN 215# define WIN32_LEAN_AND_MEAN
216# include <winsock2.h>
160# include <windows.h> 217# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 218# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 219# define EV_SELECT_IS_WINSOCKET 1
163# endif 220# endif
221# undef EV_AVOID_STDIO
164#endif 222#endif
165 223
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 224/* this block tries to deduce configuration from header-defined symbols and defaults */
167 225
226/* try to deduce the maximum number of signals on this platform */
227#if defined EV_NSIG
228/* use what's provided */
229#elif defined NSIG
230# define EV_NSIG (NSIG)
231#elif defined _NSIG
232# define EV_NSIG (_NSIG)
233#elif defined SIGMAX
234# define EV_NSIG (SIGMAX+1)
235#elif defined SIG_MAX
236# define EV_NSIG (SIG_MAX+1)
237#elif defined _SIG_MAX
238# define EV_NSIG (_SIG_MAX+1)
239#elif defined MAXSIG
240# define EV_NSIG (MAXSIG+1)
241#elif defined MAX_SIG
242# define EV_NSIG (MAX_SIG+1)
243#elif defined SIGARRAYSIZE
244# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
245#elif defined _sys_nsig
246# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
247#else
248# define EV_NSIG (8 * sizeof (sigset_t) + 1)
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
260# endif
261#endif
262
263#if !(_POSIX_TIMERS > 0)
264# ifndef EV_USE_MONOTONIC
265# define EV_USE_MONOTONIC 0
266# endif
267# ifndef EV_USE_REALTIME
268# define EV_USE_REALTIME 0
269# endif
270#endif
271
168#ifndef EV_USE_MONOTONIC 272#ifndef EV_USE_MONOTONIC
273# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
274# define EV_USE_MONOTONIC EV_FEATURE_OS
275# else
169# define EV_USE_MONOTONIC 0 276# define EV_USE_MONOTONIC 0
277# endif
170#endif 278#endif
171 279
172#ifndef EV_USE_REALTIME 280#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 281# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 282#endif
175 283
176#ifndef EV_USE_NANOSLEEP 284#ifndef EV_USE_NANOSLEEP
285# if _POSIX_C_SOURCE >= 199309L
286# define EV_USE_NANOSLEEP EV_FEATURE_OS
287# else
177# define EV_USE_NANOSLEEP 0 288# define EV_USE_NANOSLEEP 0
289# endif
178#endif 290#endif
179 291
180#ifndef EV_USE_SELECT 292#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 293# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 294#endif
183 295
184#ifndef EV_USE_POLL 296#ifndef EV_USE_POLL
185# ifdef _WIN32 297# ifdef _WIN32
186# define EV_USE_POLL 0 298# define EV_USE_POLL 0
187# else 299# else
188# define EV_USE_POLL 1 300# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 301# endif
190#endif 302#endif
191 303
192#ifndef EV_USE_EPOLL 304#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 305# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 306# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 307# else
196# define EV_USE_EPOLL 0 308# define EV_USE_EPOLL 0
197# endif 309# endif
198#endif 310#endif
199 311
203 315
204#ifndef EV_USE_PORT 316#ifndef EV_USE_PORT
205# define EV_USE_PORT 0 317# define EV_USE_PORT 0
206#endif 318#endif
207 319
320#ifndef EV_USE_LINUXAIO
321# define EV_USE_LINUXAIO 0
322#endif
323
208#ifndef EV_USE_INOTIFY 324#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 325# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 326# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 327# else
212# define EV_USE_INOTIFY 0 328# define EV_USE_INOTIFY 0
213# endif 329# endif
214#endif 330#endif
215 331
216#ifndef EV_PID_HASHSIZE 332#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 333# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 334#endif
223 335
224#ifndef EV_INOTIFY_HASHSIZE 336#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 337# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 338#endif
231 339
232#ifndef EV_USE_EVENTFD 340#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 341# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 342# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 343# else
236# define EV_USE_EVENTFD 0 344# define EV_USE_EVENTFD 0
237# endif 345# endif
238#endif 346#endif
239 347
348#ifndef EV_USE_SIGNALFD
349# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
350# define EV_USE_SIGNALFD EV_FEATURE_OS
351# else
352# define EV_USE_SIGNALFD 0
353# endif
354#endif
355
356#if 0 /* debugging */
357# define EV_VERIFY 3
358# define EV_USE_4HEAP 1
359# define EV_HEAP_CACHE_AT 1
360#endif
361
362#ifndef EV_VERIFY
363# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
364#endif
365
240#ifndef EV_USE_4HEAP 366#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 367# define EV_USE_4HEAP EV_FEATURE_DATA
242#endif 368#endif
243 369
244#ifndef EV_HEAP_CACHE_AT 370#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 371# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
372#endif
373
374#ifdef __ANDROID__
375/* supposedly, android doesn't typedef fd_mask */
376# undef EV_USE_SELECT
377# define EV_USE_SELECT 0
378/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
379# undef EV_USE_CLOCK_SYSCALL
380# define EV_USE_CLOCK_SYSCALL 0
381#endif
382
383/* aix's poll.h seems to cause lots of trouble */
384#ifdef _AIX
385/* AIX has a completely broken poll.h header */
386# undef EV_USE_POLL
387# define EV_USE_POLL 0
388#endif
389
390#if EV_USE_LINUXAIO
391# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
392#endif
393
394/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
395/* which makes programs even slower. might work on other unices, too. */
396#if EV_USE_CLOCK_SYSCALL
397# include <sys/syscall.h>
398# ifdef SYS_clock_gettime
399# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
400# undef EV_USE_MONOTONIC
401# define EV_USE_MONOTONIC 1
402# else
403# undef EV_USE_CLOCK_SYSCALL
404# define EV_USE_CLOCK_SYSCALL 0
405# endif
246#endif 406#endif
247 407
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 408/* this block fixes any misconfiguration where we know we run into trouble otherwise */
249 409
250#ifndef CLOCK_MONOTONIC 410#ifndef CLOCK_MONOTONIC
261# undef EV_USE_INOTIFY 421# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0 422# define EV_USE_INOTIFY 0
263#endif 423#endif
264 424
265#if !EV_USE_NANOSLEEP 425#if !EV_USE_NANOSLEEP
266# ifndef _WIN32 426/* hp-ux has it in sys/time.h, which we unconditionally include above */
427# if !defined _WIN32 && !defined __hpux
267# include <sys/select.h> 428# include <sys/select.h>
268# endif 429# endif
269#endif 430#endif
270 431
271#if EV_USE_INOTIFY 432#if EV_USE_INOTIFY
433# include <sys/statfs.h>
272# include <sys/inotify.h> 434# include <sys/inotify.h>
435/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
436# ifndef IN_DONT_FOLLOW
437# undef EV_USE_INOTIFY
438# define EV_USE_INOTIFY 0
273#endif 439# endif
274
275#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h>
277#endif 440#endif
278 441
279#if EV_USE_EVENTFD 442#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 443/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 444# include <stdint.h>
282# ifdef __cplusplus 445# ifndef EFD_NONBLOCK
283extern "C" { 446# define EFD_NONBLOCK O_NONBLOCK
284# endif 447# endif
285int eventfd (unsigned int initval, int flags); 448# ifndef EFD_CLOEXEC
286# ifdef __cplusplus 449# ifdef O_CLOEXEC
287} 450# define EFD_CLOEXEC O_CLOEXEC
451# else
452# define EFD_CLOEXEC 02000000
453# endif
288# endif 454# endif
455EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
456#endif
457
458#if EV_USE_SIGNALFD
459/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
460# include <stdint.h>
461# ifndef SFD_NONBLOCK
462# define SFD_NONBLOCK O_NONBLOCK
463# endif
464# ifndef SFD_CLOEXEC
465# ifdef O_CLOEXEC
466# define SFD_CLOEXEC O_CLOEXEC
467# else
468# define SFD_CLOEXEC 02000000
469# endif
470# endif
471EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
472
473struct signalfd_siginfo
474{
475 uint32_t ssi_signo;
476 char pad[128 - sizeof (uint32_t)];
477};
289#endif 478#endif
290 479
291/**/ 480/**/
292 481
482#if EV_VERIFY >= 3
483# define EV_FREQUENT_CHECK ev_verify (EV_A)
484#else
485# define EV_FREQUENT_CHECK do { } while (0)
486#endif
487
293/* 488/*
294 * This is used to avoid floating point rounding problems. 489 * This is used to work around floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000. 490 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */ 491 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 492#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
493/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
302 494
303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 495#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 496#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
306 497
498#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
499#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
500
501/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
502/* ECB.H BEGIN */
503/*
504 * libecb - http://software.schmorp.de/pkg/libecb
505 *
506 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
507 * Copyright (©) 2011 Emanuele Giaquinta
508 * All rights reserved.
509 *
510 * Redistribution and use in source and binary forms, with or without modifica-
511 * tion, are permitted provided that the following conditions are met:
512 *
513 * 1. Redistributions of source code must retain the above copyright notice,
514 * this list of conditions and the following disclaimer.
515 *
516 * 2. Redistributions in binary form must reproduce the above copyright
517 * notice, this list of conditions and the following disclaimer in the
518 * documentation and/or other materials provided with the distribution.
519 *
520 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
521 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
522 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
523 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
524 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
525 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
526 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
527 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
528 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
529 * OF THE POSSIBILITY OF SUCH DAMAGE.
530 *
531 * Alternatively, the contents of this file may be used under the terms of
532 * the GNU General Public License ("GPL") version 2 or any later version,
533 * in which case the provisions of the GPL are applicable instead of
534 * the above. If you wish to allow the use of your version of this file
535 * only under the terms of the GPL and not to allow others to use your
536 * version of this file under the BSD license, indicate your decision
537 * by deleting the provisions above and replace them with the notice
538 * and other provisions required by the GPL. If you do not delete the
539 * provisions above, a recipient may use your version of this file under
540 * either the BSD or the GPL.
541 */
542
543#ifndef ECB_H
544#define ECB_H
545
546/* 16 bits major, 16 bits minor */
547#define ECB_VERSION 0x00010005
548
549#ifdef _WIN32
550 typedef signed char int8_t;
551 typedef unsigned char uint8_t;
552 typedef signed short int16_t;
553 typedef unsigned short uint16_t;
554 typedef signed int int32_t;
555 typedef unsigned int uint32_t;
307#if __GNUC__ >= 4 556 #if __GNUC__
557 typedef signed long long int64_t;
558 typedef unsigned long long uint64_t;
559 #else /* _MSC_VER || __BORLANDC__ */
560 typedef signed __int64 int64_t;
561 typedef unsigned __int64 uint64_t;
562 #endif
563 #ifdef _WIN64
564 #define ECB_PTRSIZE 8
565 typedef uint64_t uintptr_t;
566 typedef int64_t intptr_t;
567 #else
568 #define ECB_PTRSIZE 4
569 typedef uint32_t uintptr_t;
570 typedef int32_t intptr_t;
571 #endif
572#else
573 #include <inttypes.h>
574 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
575 #define ECB_PTRSIZE 8
576 #else
577 #define ECB_PTRSIZE 4
578 #endif
579#endif
580
581#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
582#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
583
584/* work around x32 idiocy by defining proper macros */
585#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
586 #if _ILP32
587 #define ECB_AMD64_X32 1
588 #else
589 #define ECB_AMD64 1
590 #endif
591#endif
592
593/* many compilers define _GNUC_ to some versions but then only implement
594 * what their idiot authors think are the "more important" extensions,
595 * causing enormous grief in return for some better fake benchmark numbers.
596 * or so.
597 * we try to detect these and simply assume they are not gcc - if they have
598 * an issue with that they should have done it right in the first place.
599 */
600#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
601 #define ECB_GCC_VERSION(major,minor) 0
602#else
603 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
604#endif
605
606#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
607
608#if __clang__ && defined __has_builtin
609 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
610#else
611 #define ECB_CLANG_BUILTIN(x) 0
612#endif
613
614#if __clang__ && defined __has_extension
615 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
616#else
617 #define ECB_CLANG_EXTENSION(x) 0
618#endif
619
620#define ECB_CPP (__cplusplus+0)
621#define ECB_CPP11 (__cplusplus >= 201103L)
622#define ECB_CPP14 (__cplusplus >= 201402L)
623#define ECB_CPP17 (__cplusplus >= 201703L)
624
625#if ECB_CPP
626 #define ECB_C 0
627 #define ECB_STDC_VERSION 0
628#else
629 #define ECB_C 1
630 #define ECB_STDC_VERSION __STDC_VERSION__
631#endif
632
633#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
634#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
635#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
636
637#if ECB_CPP
638 #define ECB_EXTERN_C extern "C"
639 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
640 #define ECB_EXTERN_C_END }
641#else
642 #define ECB_EXTERN_C extern
643 #define ECB_EXTERN_C_BEG
644 #define ECB_EXTERN_C_END
645#endif
646
647/*****************************************************************************/
648
649/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
650/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
651
652#if ECB_NO_THREADS
653 #define ECB_NO_SMP 1
654#endif
655
656#if ECB_NO_SMP
657 #define ECB_MEMORY_FENCE do { } while (0)
658#endif
659
660/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
661#if __xlC__ && ECB_CPP
662 #include <builtins.h>
663#endif
664
665#if 1400 <= _MSC_VER
666 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
667#endif
668
669#ifndef ECB_MEMORY_FENCE
670 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
671 #if __i386 || __i386__
672 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
673 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
674 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
675 #elif ECB_GCC_AMD64
676 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
677 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
678 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
679 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
680 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
681 #elif defined __ARM_ARCH_2__ \
682 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
683 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
684 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
685 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
686 || defined __ARM_ARCH_5TEJ__
687 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
688 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
689 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
690 || defined __ARM_ARCH_6T2__
691 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
692 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
693 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
694 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
695 #elif __aarch64__
696 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
697 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
698 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
699 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
700 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
701 #elif defined __s390__ || defined __s390x__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
703 #elif defined __mips__
704 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
705 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
706 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
707 #elif defined __alpha__
708 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
709 #elif defined __hppa__
710 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
711 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
712 #elif defined __ia64__
713 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
714 #elif defined __m68k__
715 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
716 #elif defined __m88k__
717 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
718 #elif defined __sh__
719 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
720 #endif
721 #endif
722#endif
723
724#ifndef ECB_MEMORY_FENCE
725 #if ECB_GCC_VERSION(4,7)
726 /* see comment below (stdatomic.h) about the C11 memory model. */
727 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
728 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
729 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
730
731 #elif ECB_CLANG_EXTENSION(c_atomic)
732 /* see comment below (stdatomic.h) about the C11 memory model. */
733 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
734 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
735 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
736
737 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
738 #define ECB_MEMORY_FENCE __sync_synchronize ()
739 #elif _MSC_VER >= 1500 /* VC++ 2008 */
740 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
741 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
742 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
743 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
744 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
745 #elif _MSC_VER >= 1400 /* VC++ 2005 */
746 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
747 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
748 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
749 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
750 #elif defined _WIN32
751 #include <WinNT.h>
752 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
753 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
754 #include <mbarrier.h>
755 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
756 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
757 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
758 #elif __xlC__
759 #define ECB_MEMORY_FENCE __sync ()
760 #endif
761#endif
762
763#ifndef ECB_MEMORY_FENCE
764 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
765 /* we assume that these memory fences work on all variables/all memory accesses, */
766 /* not just C11 atomics and atomic accesses */
767 #include <stdatomic.h>
768 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
769 /* any fence other than seq_cst, which isn't very efficient for us. */
770 /* Why that is, we don't know - either the C11 memory model is quite useless */
771 /* for most usages, or gcc and clang have a bug */
772 /* I *currently* lean towards the latter, and inefficiently implement */
773 /* all three of ecb's fences as a seq_cst fence */
774 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
775 /* for all __atomic_thread_fence's except seq_cst */
776 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
777 #endif
778#endif
779
780#ifndef ECB_MEMORY_FENCE
781 #if !ECB_AVOID_PTHREADS
782 /*
783 * if you get undefined symbol references to pthread_mutex_lock,
784 * or failure to find pthread.h, then you should implement
785 * the ECB_MEMORY_FENCE operations for your cpu/compiler
786 * OR provide pthread.h and link against the posix thread library
787 * of your system.
788 */
789 #include <pthread.h>
790 #define ECB_NEEDS_PTHREADS 1
791 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
792
793 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
794 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
795 #endif
796#endif
797
798#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
799 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
800#endif
801
802#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
803 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
804#endif
805
806/*****************************************************************************/
807
808#if ECB_CPP
809 #define ecb_inline static inline
810#elif ECB_GCC_VERSION(2,5)
811 #define ecb_inline static __inline__
812#elif ECB_C99
813 #define ecb_inline static inline
814#else
815 #define ecb_inline static
816#endif
817
818#if ECB_GCC_VERSION(3,3)
819 #define ecb_restrict __restrict__
820#elif ECB_C99
821 #define ecb_restrict restrict
822#else
823 #define ecb_restrict
824#endif
825
826typedef int ecb_bool;
827
828#define ECB_CONCAT_(a, b) a ## b
829#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
830#define ECB_STRINGIFY_(a) # a
831#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
832#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
833
834#define ecb_function_ ecb_inline
835
836#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
837 #define ecb_attribute(attrlist) __attribute__ (attrlist)
838#else
839 #define ecb_attribute(attrlist)
840#endif
841
842#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
843 #define ecb_is_constant(expr) __builtin_constant_p (expr)
844#else
845 /* possible C11 impl for integral types
846 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
847 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
848
849 #define ecb_is_constant(expr) 0
850#endif
851
852#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
308# define expect(expr,value) __builtin_expect ((expr),(value)) 853 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
309# define noinline __attribute__ ((noinline))
310#else 854#else
311# define expect(expr,value) (expr) 855 #define ecb_expect(expr,value) (expr)
312# define noinline
313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
314# define inline
315# endif 856#endif
316#endif
317 857
858#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
859 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
860#else
861 #define ecb_prefetch(addr,rw,locality)
862#endif
863
864/* no emulation for ecb_decltype */
865#if ECB_CPP11
866 // older implementations might have problems with decltype(x)::type, work around it
867 template<class T> struct ecb_decltype_t { typedef T type; };
868 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
869#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
870 #define ecb_decltype(x) __typeof__ (x)
871#endif
872
873#if _MSC_VER >= 1300
874 #define ecb_deprecated __declspec (deprecated)
875#else
876 #define ecb_deprecated ecb_attribute ((__deprecated__))
877#endif
878
879#if _MSC_VER >= 1500
880 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
881#elif ECB_GCC_VERSION(4,5)
882 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
883#else
884 #define ecb_deprecated_message(msg) ecb_deprecated
885#endif
886
887#if _MSC_VER >= 1400
888 #define ecb_noinline __declspec (noinline)
889#else
890 #define ecb_noinline ecb_attribute ((__noinline__))
891#endif
892
893#define ecb_unused ecb_attribute ((__unused__))
894#define ecb_const ecb_attribute ((__const__))
895#define ecb_pure ecb_attribute ((__pure__))
896
897#if ECB_C11 || __IBMC_NORETURN
898 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
899 #define ecb_noreturn _Noreturn
900#elif ECB_CPP11
901 #define ecb_noreturn [[noreturn]]
902#elif _MSC_VER >= 1200
903 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
904 #define ecb_noreturn __declspec (noreturn)
905#else
906 #define ecb_noreturn ecb_attribute ((__noreturn__))
907#endif
908
909#if ECB_GCC_VERSION(4,3)
910 #define ecb_artificial ecb_attribute ((__artificial__))
911 #define ecb_hot ecb_attribute ((__hot__))
912 #define ecb_cold ecb_attribute ((__cold__))
913#else
914 #define ecb_artificial
915 #define ecb_hot
916 #define ecb_cold
917#endif
918
919/* put around conditional expressions if you are very sure that the */
920/* expression is mostly true or mostly false. note that these return */
921/* booleans, not the expression. */
318#define expect_false(expr) expect ((expr) != 0, 0) 922#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
319#define expect_true(expr) expect ((expr) != 0, 1) 923#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
924/* for compatibility to the rest of the world */
925#define ecb_likely(expr) ecb_expect_true (expr)
926#define ecb_unlikely(expr) ecb_expect_false (expr)
927
928/* count trailing zero bits and count # of one bits */
929#if ECB_GCC_VERSION(3,4) \
930 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
931 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
932 && ECB_CLANG_BUILTIN(__builtin_popcount))
933 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
934 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
935 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
936 #define ecb_ctz32(x) __builtin_ctz (x)
937 #define ecb_ctz64(x) __builtin_ctzll (x)
938 #define ecb_popcount32(x) __builtin_popcount (x)
939 /* no popcountll */
940#else
941 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
942 ecb_function_ ecb_const int
943 ecb_ctz32 (uint32_t x)
944 {
945#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
946 unsigned long r;
947 _BitScanForward (&r, x);
948 return (int)r;
949#else
950 int r = 0;
951
952 x &= ~x + 1; /* this isolates the lowest bit */
953
954#if ECB_branchless_on_i386
955 r += !!(x & 0xaaaaaaaa) << 0;
956 r += !!(x & 0xcccccccc) << 1;
957 r += !!(x & 0xf0f0f0f0) << 2;
958 r += !!(x & 0xff00ff00) << 3;
959 r += !!(x & 0xffff0000) << 4;
960#else
961 if (x & 0xaaaaaaaa) r += 1;
962 if (x & 0xcccccccc) r += 2;
963 if (x & 0xf0f0f0f0) r += 4;
964 if (x & 0xff00ff00) r += 8;
965 if (x & 0xffff0000) r += 16;
966#endif
967
968 return r;
969#endif
970 }
971
972 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
973 ecb_function_ ecb_const int
974 ecb_ctz64 (uint64_t x)
975 {
976#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
977 unsigned long r;
978 _BitScanForward64 (&r, x);
979 return (int)r;
980#else
981 int shift = x & 0xffffffff ? 0 : 32;
982 return ecb_ctz32 (x >> shift) + shift;
983#endif
984 }
985
986 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
987 ecb_function_ ecb_const int
988 ecb_popcount32 (uint32_t x)
989 {
990 x -= (x >> 1) & 0x55555555;
991 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
992 x = ((x >> 4) + x) & 0x0f0f0f0f;
993 x *= 0x01010101;
994
995 return x >> 24;
996 }
997
998 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
999 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1000 {
1001#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1002 unsigned long r;
1003 _BitScanReverse (&r, x);
1004 return (int)r;
1005#else
1006 int r = 0;
1007
1008 if (x >> 16) { x >>= 16; r += 16; }
1009 if (x >> 8) { x >>= 8; r += 8; }
1010 if (x >> 4) { x >>= 4; r += 4; }
1011 if (x >> 2) { x >>= 2; r += 2; }
1012 if (x >> 1) { r += 1; }
1013
1014 return r;
1015#endif
1016 }
1017
1018 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1019 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1020 {
1021#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1022 unsigned long r;
1023 _BitScanReverse64 (&r, x);
1024 return (int)r;
1025#else
1026 int r = 0;
1027
1028 if (x >> 32) { x >>= 32; r += 32; }
1029
1030 return r + ecb_ld32 (x);
1031#endif
1032 }
1033#endif
1034
1035ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1036ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1037ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1038ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1039
1040ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1041ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1042{
1043 return ( (x * 0x0802U & 0x22110U)
1044 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1045}
1046
1047ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1048ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1049{
1050 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1051 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1052 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1053 x = ( x >> 8 ) | ( x << 8);
1054
1055 return x;
1056}
1057
1058ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1059ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1060{
1061 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1062 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1063 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1064 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1065 x = ( x >> 16 ) | ( x << 16);
1066
1067 return x;
1068}
1069
1070/* popcount64 is only available on 64 bit cpus as gcc builtin */
1071/* so for this version we are lazy */
1072ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1073ecb_function_ ecb_const int
1074ecb_popcount64 (uint64_t x)
1075{
1076 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1077}
1078
1079ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1080ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1081ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1082ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1083ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1084ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1085ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1086ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1087
1088ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1089ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1090ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1091ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1092ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1093ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1094ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1095ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1096
1097#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1098 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1099 #define ecb_bswap16(x) __builtin_bswap16 (x)
1100 #else
1101 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1102 #endif
1103 #define ecb_bswap32(x) __builtin_bswap32 (x)
1104 #define ecb_bswap64(x) __builtin_bswap64 (x)
1105#elif _MSC_VER
1106 #include <stdlib.h>
1107 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1108 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1109 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1110#else
1111 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1112 ecb_function_ ecb_const uint16_t
1113 ecb_bswap16 (uint16_t x)
1114 {
1115 return ecb_rotl16 (x, 8);
1116 }
1117
1118 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1119 ecb_function_ ecb_const uint32_t
1120 ecb_bswap32 (uint32_t x)
1121 {
1122 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1123 }
1124
1125 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1126 ecb_function_ ecb_const uint64_t
1127 ecb_bswap64 (uint64_t x)
1128 {
1129 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1130 }
1131#endif
1132
1133#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1134 #define ecb_unreachable() __builtin_unreachable ()
1135#else
1136 /* this seems to work fine, but gcc always emits a warning for it :/ */
1137 ecb_inline ecb_noreturn void ecb_unreachable (void);
1138 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1139#endif
1140
1141/* try to tell the compiler that some condition is definitely true */
1142#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1143
1144ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1145ecb_inline ecb_const uint32_t
1146ecb_byteorder_helper (void)
1147{
1148 /* the union code still generates code under pressure in gcc, */
1149 /* but less than using pointers, and always seems to */
1150 /* successfully return a constant. */
1151 /* the reason why we have this horrible preprocessor mess */
1152 /* is to avoid it in all cases, at least on common architectures */
1153 /* or when using a recent enough gcc version (>= 4.6) */
1154#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1155 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1156 #define ECB_LITTLE_ENDIAN 1
1157 return 0x44332211;
1158#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1159 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1160 #define ECB_BIG_ENDIAN 1
1161 return 0x11223344;
1162#else
1163 union
1164 {
1165 uint8_t c[4];
1166 uint32_t u;
1167 } u = { 0x11, 0x22, 0x33, 0x44 };
1168 return u.u;
1169#endif
1170}
1171
1172ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1173ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1174ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1175ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1176
1177#if ECB_GCC_VERSION(3,0) || ECB_C99
1178 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1179#else
1180 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1181#endif
1182
1183#if ECB_CPP
1184 template<typename T>
1185 static inline T ecb_div_rd (T val, T div)
1186 {
1187 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1188 }
1189 template<typename T>
1190 static inline T ecb_div_ru (T val, T div)
1191 {
1192 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1193 }
1194#else
1195 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1196 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1197#endif
1198
1199#if ecb_cplusplus_does_not_suck
1200 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1201 template<typename T, int N>
1202 static inline int ecb_array_length (const T (&arr)[N])
1203 {
1204 return N;
1205 }
1206#else
1207 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1208#endif
1209
1210ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1211ecb_function_ ecb_const uint32_t
1212ecb_binary16_to_binary32 (uint32_t x)
1213{
1214 unsigned int s = (x & 0x8000) << (31 - 15);
1215 int e = (x >> 10) & 0x001f;
1216 unsigned int m = x & 0x03ff;
1217
1218 if (ecb_expect_false (e == 31))
1219 /* infinity or NaN */
1220 e = 255 - (127 - 15);
1221 else if (ecb_expect_false (!e))
1222 {
1223 if (ecb_expect_true (!m))
1224 /* zero, handled by code below by forcing e to 0 */
1225 e = 0 - (127 - 15);
1226 else
1227 {
1228 /* subnormal, renormalise */
1229 unsigned int s = 10 - ecb_ld32 (m);
1230
1231 m = (m << s) & 0x3ff; /* mask implicit bit */
1232 e -= s - 1;
1233 }
1234 }
1235
1236 /* e and m now are normalised, or zero, (or inf or nan) */
1237 e += 127 - 15;
1238
1239 return s | (e << 23) | (m << (23 - 10));
1240}
1241
1242ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1243ecb_function_ ecb_const uint16_t
1244ecb_binary32_to_binary16 (uint32_t x)
1245{
1246 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1247 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1248 unsigned int m = x & 0x007fffff;
1249
1250 x &= 0x7fffffff;
1251
1252 /* if it's within range of binary16 normals, use fast path */
1253 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1254 {
1255 /* mantissa round-to-even */
1256 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1257
1258 /* handle overflow */
1259 if (ecb_expect_false (m >= 0x00800000))
1260 {
1261 m >>= 1;
1262 e += 1;
1263 }
1264
1265 return s | (e << 10) | (m >> (23 - 10));
1266 }
1267
1268 /* handle large numbers and infinity */
1269 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1270 return s | 0x7c00;
1271
1272 /* handle zero, subnormals and small numbers */
1273 if (ecb_expect_true (x < 0x38800000))
1274 {
1275 /* zero */
1276 if (ecb_expect_true (!x))
1277 return s;
1278
1279 /* handle subnormals */
1280
1281 /* too small, will be zero */
1282 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1283 return s;
1284
1285 m |= 0x00800000; /* make implicit bit explicit */
1286
1287 /* very tricky - we need to round to the nearest e (+10) bit value */
1288 {
1289 unsigned int bits = 14 - e;
1290 unsigned int half = (1 << (bits - 1)) - 1;
1291 unsigned int even = (m >> bits) & 1;
1292
1293 /* if this overflows, we will end up with a normalised number */
1294 m = (m + half + even) >> bits;
1295 }
1296
1297 return s | m;
1298 }
1299
1300 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1301 m >>= 13;
1302
1303 return s | 0x7c00 | m | !m;
1304}
1305
1306/*******************************************************************************/
1307/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1308
1309/* basically, everything uses "ieee pure-endian" floating point numbers */
1310/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1311#if 0 \
1312 || __i386 || __i386__ \
1313 || ECB_GCC_AMD64 \
1314 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1315 || defined __s390__ || defined __s390x__ \
1316 || defined __mips__ \
1317 || defined __alpha__ \
1318 || defined __hppa__ \
1319 || defined __ia64__ \
1320 || defined __m68k__ \
1321 || defined __m88k__ \
1322 || defined __sh__ \
1323 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1324 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1325 || defined __aarch64__
1326 #define ECB_STDFP 1
1327 #include <string.h> /* for memcpy */
1328#else
1329 #define ECB_STDFP 0
1330#endif
1331
1332#ifndef ECB_NO_LIBM
1333
1334 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1335
1336 /* only the oldest of old doesn't have this one. solaris. */
1337 #ifdef INFINITY
1338 #define ECB_INFINITY INFINITY
1339 #else
1340 #define ECB_INFINITY HUGE_VAL
1341 #endif
1342
1343 #ifdef NAN
1344 #define ECB_NAN NAN
1345 #else
1346 #define ECB_NAN ECB_INFINITY
1347 #endif
1348
1349 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1350 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1351 #define ecb_frexpf(x,e) frexpf ((x), (e))
1352 #else
1353 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1354 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1355 #endif
1356
1357 /* convert a float to ieee single/binary32 */
1358 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1359 ecb_function_ ecb_const uint32_t
1360 ecb_float_to_binary32 (float x)
1361 {
1362 uint32_t r;
1363
1364 #if ECB_STDFP
1365 memcpy (&r, &x, 4);
1366 #else
1367 /* slow emulation, works for anything but -0 */
1368 uint32_t m;
1369 int e;
1370
1371 if (x == 0e0f ) return 0x00000000U;
1372 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1373 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1374 if (x != x ) return 0x7fbfffffU;
1375
1376 m = ecb_frexpf (x, &e) * 0x1000000U;
1377
1378 r = m & 0x80000000U;
1379
1380 if (r)
1381 m = -m;
1382
1383 if (e <= -126)
1384 {
1385 m &= 0xffffffU;
1386 m >>= (-125 - e);
1387 e = -126;
1388 }
1389
1390 r |= (e + 126) << 23;
1391 r |= m & 0x7fffffU;
1392 #endif
1393
1394 return r;
1395 }
1396
1397 /* converts an ieee single/binary32 to a float */
1398 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1399 ecb_function_ ecb_const float
1400 ecb_binary32_to_float (uint32_t x)
1401 {
1402 float r;
1403
1404 #if ECB_STDFP
1405 memcpy (&r, &x, 4);
1406 #else
1407 /* emulation, only works for normals and subnormals and +0 */
1408 int neg = x >> 31;
1409 int e = (x >> 23) & 0xffU;
1410
1411 x &= 0x7fffffU;
1412
1413 if (e)
1414 x |= 0x800000U;
1415 else
1416 e = 1;
1417
1418 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1419 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1420
1421 r = neg ? -r : r;
1422 #endif
1423
1424 return r;
1425 }
1426
1427 /* convert a double to ieee double/binary64 */
1428 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1429 ecb_function_ ecb_const uint64_t
1430 ecb_double_to_binary64 (double x)
1431 {
1432 uint64_t r;
1433
1434 #if ECB_STDFP
1435 memcpy (&r, &x, 8);
1436 #else
1437 /* slow emulation, works for anything but -0 */
1438 uint64_t m;
1439 int e;
1440
1441 if (x == 0e0 ) return 0x0000000000000000U;
1442 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1443 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1444 if (x != x ) return 0X7ff7ffffffffffffU;
1445
1446 m = frexp (x, &e) * 0x20000000000000U;
1447
1448 r = m & 0x8000000000000000;;
1449
1450 if (r)
1451 m = -m;
1452
1453 if (e <= -1022)
1454 {
1455 m &= 0x1fffffffffffffU;
1456 m >>= (-1021 - e);
1457 e = -1022;
1458 }
1459
1460 r |= ((uint64_t)(e + 1022)) << 52;
1461 r |= m & 0xfffffffffffffU;
1462 #endif
1463
1464 return r;
1465 }
1466
1467 /* converts an ieee double/binary64 to a double */
1468 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1469 ecb_function_ ecb_const double
1470 ecb_binary64_to_double (uint64_t x)
1471 {
1472 double r;
1473
1474 #if ECB_STDFP
1475 memcpy (&r, &x, 8);
1476 #else
1477 /* emulation, only works for normals and subnormals and +0 */
1478 int neg = x >> 63;
1479 int e = (x >> 52) & 0x7ffU;
1480
1481 x &= 0xfffffffffffffU;
1482
1483 if (e)
1484 x |= 0x10000000000000U;
1485 else
1486 e = 1;
1487
1488 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1489 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1490
1491 r = neg ? -r : r;
1492 #endif
1493
1494 return r;
1495 }
1496
1497 /* convert a float to ieee half/binary16 */
1498 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1499 ecb_function_ ecb_const uint16_t
1500 ecb_float_to_binary16 (float x)
1501 {
1502 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1503 }
1504
1505 /* convert an ieee half/binary16 to float */
1506 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1507 ecb_function_ ecb_const float
1508 ecb_binary16_to_float (uint16_t x)
1509 {
1510 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1511 }
1512
1513#endif
1514
1515#endif
1516
1517/* ECB.H END */
1518
1519#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1520/* if your architecture doesn't need memory fences, e.g. because it is
1521 * single-cpu/core, or if you use libev in a project that doesn't use libev
1522 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1523 * libev, in which cases the memory fences become nops.
1524 * alternatively, you can remove this #error and link against libpthread,
1525 * which will then provide the memory fences.
1526 */
1527# error "memory fences not defined for your architecture, please report"
1528#endif
1529
1530#ifndef ECB_MEMORY_FENCE
1531# define ECB_MEMORY_FENCE do { } while (0)
1532# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1533# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1534#endif
1535
1536#define expect_false(cond) ecb_expect_false (cond)
1537#define expect_true(cond) ecb_expect_true (cond)
1538#define noinline ecb_noinline
1539
320#define inline_size static inline 1540#define inline_size ecb_inline
321 1541
322#if EV_MINIMAL 1542#if EV_FEATURE_CODE
323# define inline_speed static noinline
324#else
325# define inline_speed static inline 1543# define inline_speed ecb_inline
1544#else
1545# define inline_speed noinline static
326#endif 1546#endif
327 1547
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1548#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1549
1550#if EV_MINPRI == EV_MAXPRI
1551# define ABSPRI(w) (((W)w), 0)
1552#else
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1553# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1554#endif
330 1555
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1556#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */
333 1557
334typedef ev_watcher *W; 1558typedef ev_watcher *W;
335typedef ev_watcher_list *WL; 1559typedef ev_watcher_list *WL;
336typedef ev_watcher_time *WT; 1560typedef ev_watcher_time *WT;
337 1561
338#define ev_active(w) ((W)(w))->active 1562#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 1563#define ev_at(w) ((WT)(w))->at
340 1564
1565#if EV_USE_REALTIME
1566/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1567/* giving it a reasonably high chance of working on typical architectures */
1568static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1569#endif
1570
341#if EV_USE_MONOTONIC 1571#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1572static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1573#endif
1574
1575#ifndef EV_FD_TO_WIN32_HANDLE
1576# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1577#endif
1578#ifndef EV_WIN32_HANDLE_TO_FD
1579# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1580#endif
1581#ifndef EV_WIN32_CLOSE_FD
1582# define EV_WIN32_CLOSE_FD(fd) close (fd)
345#endif 1583#endif
346 1584
347#ifdef _WIN32 1585#ifdef _WIN32
348# include "ev_win32.c" 1586# include "ev_win32.c"
349#endif 1587#endif
350 1588
351/*****************************************************************************/ 1589/*****************************************************************************/
352 1590
1591/* define a suitable floor function (only used by periodics atm) */
1592
1593#if EV_USE_FLOOR
1594# include <math.h>
1595# define ev_floor(v) floor (v)
1596#else
1597
1598#include <float.h>
1599
1600/* a floor() replacement function, should be independent of ev_tstamp type */
1601noinline
1602static ev_tstamp
1603ev_floor (ev_tstamp v)
1604{
1605 /* the choice of shift factor is not terribly important */
1606#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1607 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1608#else
1609 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1610#endif
1611
1612 /* argument too large for an unsigned long? */
1613 if (expect_false (v >= shift))
1614 {
1615 ev_tstamp f;
1616
1617 if (v == v - 1.)
1618 return v; /* very large number */
1619
1620 f = shift * ev_floor (v * (1. / shift));
1621 return f + ev_floor (v - f);
1622 }
1623
1624 /* special treatment for negative args? */
1625 if (expect_false (v < 0.))
1626 {
1627 ev_tstamp f = -ev_floor (-v);
1628
1629 return f - (f == v ? 0 : 1);
1630 }
1631
1632 /* fits into an unsigned long */
1633 return (unsigned long)v;
1634}
1635
1636#endif
1637
1638/*****************************************************************************/
1639
1640#ifdef __linux
1641# include <sys/utsname.h>
1642#endif
1643
1644noinline ecb_cold
1645static unsigned int
1646ev_linux_version (void)
1647{
1648#ifdef __linux
1649 unsigned int v = 0;
1650 struct utsname buf;
1651 int i;
1652 char *p = buf.release;
1653
1654 if (uname (&buf))
1655 return 0;
1656
1657 for (i = 3+1; --i; )
1658 {
1659 unsigned int c = 0;
1660
1661 for (;;)
1662 {
1663 if (*p >= '0' && *p <= '9')
1664 c = c * 10 + *p++ - '0';
1665 else
1666 {
1667 p += *p == '.';
1668 break;
1669 }
1670 }
1671
1672 v = (v << 8) | c;
1673 }
1674
1675 return v;
1676#else
1677 return 0;
1678#endif
1679}
1680
1681/*****************************************************************************/
1682
1683#if EV_AVOID_STDIO
1684noinline ecb_cold
1685static void
1686ev_printerr (const char *msg)
1687{
1688 write (STDERR_FILENO, msg, strlen (msg));
1689}
1690#endif
1691
353static void (*syserr_cb)(const char *msg); 1692static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
354 1693
1694ecb_cold
355void 1695void
356ev_set_syserr_cb (void (*cb)(const char *msg)) 1696ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
357{ 1697{
358 syserr_cb = cb; 1698 syserr_cb = cb;
359} 1699}
360 1700
361static void noinline 1701noinline ecb_cold
1702static void
362syserr (const char *msg) 1703ev_syserr (const char *msg)
363{ 1704{
364 if (!msg) 1705 if (!msg)
365 msg = "(libev) system error"; 1706 msg = "(libev) system error";
366 1707
367 if (syserr_cb) 1708 if (syserr_cb)
368 syserr_cb (msg); 1709 syserr_cb (msg);
369 else 1710 else
370 { 1711 {
1712#if EV_AVOID_STDIO
1713 ev_printerr (msg);
1714 ev_printerr (": ");
1715 ev_printerr (strerror (errno));
1716 ev_printerr ("\n");
1717#else
371 perror (msg); 1718 perror (msg);
1719#endif
372 abort (); 1720 abort ();
373 } 1721 }
374} 1722}
375 1723
376static void * 1724static void *
377ev_realloc_emul (void *ptr, long size) 1725ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
378{ 1726{
379 /* some systems, notably openbsd and darwin, fail to properly 1727 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and 1728 * implement realloc (x, 0) (as required by both ansi c-89 and
381 * the single unix specification, so work around them here. 1729 * the single unix specification, so work around them here.
1730 * recently, also (at least) fedora and debian started breaking it,
1731 * despite documenting it otherwise.
382 */ 1732 */
383 1733
384 if (size) 1734 if (size)
385 return realloc (ptr, size); 1735 return realloc (ptr, size);
386 1736
387 free (ptr); 1737 free (ptr);
388 return 0; 1738 return 0;
389} 1739}
390 1740
391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1741static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
392 1742
1743ecb_cold
393void 1744void
394ev_set_allocator (void *(*cb)(void *ptr, long size)) 1745ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
395{ 1746{
396 alloc = cb; 1747 alloc = cb;
397} 1748}
398 1749
399inline_speed void * 1750inline_speed void *
401{ 1752{
402 ptr = alloc (ptr, size); 1753 ptr = alloc (ptr, size);
403 1754
404 if (!ptr && size) 1755 if (!ptr && size)
405 { 1756 {
1757#if EV_AVOID_STDIO
1758 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1759#else
406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1760 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1761#endif
407 abort (); 1762 abort ();
408 } 1763 }
409 1764
410 return ptr; 1765 return ptr;
411} 1766}
413#define ev_malloc(size) ev_realloc (0, (size)) 1768#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 1769#define ev_free(ptr) ev_realloc ((ptr), 0)
415 1770
416/*****************************************************************************/ 1771/*****************************************************************************/
417 1772
1773/* set in reify when reification needed */
1774#define EV_ANFD_REIFY 1
1775
1776/* file descriptor info structure */
418typedef struct 1777typedef struct
419{ 1778{
420 WL head; 1779 WL head;
421 unsigned char events; 1780 unsigned char events; /* the events watched for */
1781 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1782 unsigned char emask; /* some backends store the actual kernel mask in here */
422 unsigned char reify; 1783 unsigned char unused;
1784#if EV_USE_EPOLL
1785 unsigned int egen; /* generation counter to counter epoll bugs */
1786#endif
423#if EV_SELECT_IS_WINSOCKET 1787#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
424 SOCKET handle; 1788 SOCKET handle;
425#endif 1789#endif
1790#if EV_USE_IOCP
1791 OVERLAPPED or, ow;
1792#endif
426} ANFD; 1793} ANFD;
427 1794
1795/* stores the pending event set for a given watcher */
428typedef struct 1796typedef struct
429{ 1797{
430 W w; 1798 W w;
431 int events; 1799 int events; /* the pending event set for the given watcher */
432} ANPENDING; 1800} ANPENDING;
433 1801
434#if EV_USE_INOTIFY 1802#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 1803/* hash table entry per inotify-id */
436typedef struct 1804typedef struct
439} ANFS; 1807} ANFS;
440#endif 1808#endif
441 1809
442/* Heap Entry */ 1810/* Heap Entry */
443#if EV_HEAP_CACHE_AT 1811#if EV_HEAP_CACHE_AT
1812 /* a heap element */
444 typedef struct { 1813 typedef struct {
445 ev_tstamp at; 1814 ev_tstamp at;
446 WT w; 1815 WT w;
447 } ANHE; 1816 } ANHE;
448 1817
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1818 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1819 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 1820 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 1821#else
1822 /* a heap element */
453 typedef WT ANHE; 1823 typedef WT ANHE;
454 1824
455 #define ANHE_w(he) (he) 1825 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 1826 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 1827 #define ANHE_at_cache(he)
458#endif 1828#endif
459 1829
460#if EV_MULTIPLICITY 1830#if EV_MULTIPLICITY
461 1831
462 struct ev_loop 1832 struct ev_loop
468 #undef VAR 1838 #undef VAR
469 }; 1839 };
470 #include "ev_wrap.h" 1840 #include "ev_wrap.h"
471 1841
472 static struct ev_loop default_loop_struct; 1842 static struct ev_loop default_loop_struct;
473 struct ev_loop *ev_default_loop_ptr; 1843 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
474 1844
475#else 1845#else
476 1846
477 ev_tstamp ev_rt_now; 1847 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
478 #define VAR(name,decl) static decl; 1848 #define VAR(name,decl) static decl;
479 #include "ev_vars.h" 1849 #include "ev_vars.h"
480 #undef VAR 1850 #undef VAR
481 1851
482 static int ev_default_loop_ptr; 1852 static int ev_default_loop_ptr;
483 1853
484#endif 1854#endif
485 1855
1856#if EV_FEATURE_API
1857# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1858# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1859# define EV_INVOKE_PENDING invoke_cb (EV_A)
1860#else
1861# define EV_RELEASE_CB (void)0
1862# define EV_ACQUIRE_CB (void)0
1863# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1864#endif
1865
1866#define EVBREAK_RECURSE 0x80
1867
486/*****************************************************************************/ 1868/*****************************************************************************/
487 1869
1870#ifndef EV_HAVE_EV_TIME
488ev_tstamp 1871ev_tstamp
489ev_time (void) 1872ev_time (void) EV_NOEXCEPT
490{ 1873{
491#if EV_USE_REALTIME 1874#if EV_USE_REALTIME
1875 if (expect_true (have_realtime))
1876 {
492 struct timespec ts; 1877 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 1878 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 1879 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 1880 }
1881#endif
1882
496 struct timeval tv; 1883 struct timeval tv;
497 gettimeofday (&tv, 0); 1884 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 1885 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 1886}
1887#endif
501 1888
502ev_tstamp inline_size 1889inline_size ev_tstamp
503get_clock (void) 1890get_clock (void)
504{ 1891{
505#if EV_USE_MONOTONIC 1892#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 1893 if (expect_true (have_monotonic))
507 { 1894 {
514 return ev_time (); 1901 return ev_time ();
515} 1902}
516 1903
517#if EV_MULTIPLICITY 1904#if EV_MULTIPLICITY
518ev_tstamp 1905ev_tstamp
519ev_now (EV_P) 1906ev_now (EV_P) EV_NOEXCEPT
520{ 1907{
521 return ev_rt_now; 1908 return ev_rt_now;
522} 1909}
523#endif 1910#endif
524 1911
525void 1912void
526ev_sleep (ev_tstamp delay) 1913ev_sleep (ev_tstamp delay) EV_NOEXCEPT
527{ 1914{
528 if (delay > 0.) 1915 if (delay > 0.)
529 { 1916 {
530#if EV_USE_NANOSLEEP 1917#if EV_USE_NANOSLEEP
531 struct timespec ts; 1918 struct timespec ts;
532 1919
533 ts.tv_sec = (time_t)delay; 1920 EV_TS_SET (ts, delay);
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0); 1921 nanosleep (&ts, 0);
537#elif defined(_WIN32) 1922#elif defined _WIN32
1923 /* maybe this should round up, as ms is very low resolution */
1924 /* compared to select (µs) or nanosleep (ns) */
538 Sleep ((unsigned long)(delay * 1e3)); 1925 Sleep ((unsigned long)(delay * 1e3));
539#else 1926#else
540 struct timeval tv; 1927 struct timeval tv;
541 1928
542 tv.tv_sec = (time_t)delay; 1929 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1930 /* something not guaranteed by newer posix versions, but guaranteed */
544 1931 /* by older ones */
1932 EV_TV_SET (tv, delay);
545 select (0, 0, 0, 0, &tv); 1933 select (0, 0, 0, 0, &tv);
546#endif 1934#endif
547 } 1935 }
548} 1936}
549 1937
550/*****************************************************************************/ 1938/*****************************************************************************/
551 1939
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1940#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 1941
554int inline_size 1942/* find a suitable new size for the given array, */
1943/* hopefully by rounding to a nice-to-malloc size */
1944inline_size int
555array_nextsize (int elem, int cur, int cnt) 1945array_nextsize (int elem, int cur, int cnt)
556{ 1946{
557 int ncur = cur + 1; 1947 int ncur = cur + 1;
558 1948
559 do 1949 do
560 ncur <<= 1; 1950 ncur <<= 1;
561 while (cnt > ncur); 1951 while (cnt > ncur);
562 1952
563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1953 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1954 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
565 { 1955 {
566 ncur *= elem; 1956 ncur *= elem;
567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1957 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
568 ncur = ncur - sizeof (void *) * 4; 1958 ncur = ncur - sizeof (void *) * 4;
570 } 1960 }
571 1961
572 return ncur; 1962 return ncur;
573} 1963}
574 1964
575static noinline void * 1965noinline ecb_cold
1966static void *
576array_realloc (int elem, void *base, int *cur, int cnt) 1967array_realloc (int elem, void *base, int *cur, int cnt)
577{ 1968{
578 *cur = array_nextsize (elem, *cur, cnt); 1969 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 1970 return ev_realloc (base, elem * *cur);
580} 1971}
1972
1973#define array_needsize_noinit(base,count)
1974
1975#define array_needsize_zerofill(base,count) \
1976 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 1977
582#define array_needsize(type,base,cur,cnt,init) \ 1978#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 1979 if (expect_false ((cnt) > (cur))) \
584 { \ 1980 { \
585 int ocur_ = (cur); \ 1981 ecb_unused int ocur_ = (cur); \
586 (base) = (type *)array_realloc \ 1982 (base) = (type *)array_realloc \
587 (sizeof (type), (base), &(cur), (cnt)); \ 1983 (sizeof (type), (base), &(cur), (cnt)); \
588 init ((base) + (ocur_), (cur) - ocur_); \ 1984 init ((base) + (ocur_), (cur) - ocur_); \
589 } 1985 }
590 1986
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1993 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 1994 }
599#endif 1995#endif
600 1996
601#define array_free(stem, idx) \ 1997#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1998 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 1999
604/*****************************************************************************/ 2000/*****************************************************************************/
605 2001
2002/* dummy callback for pending events */
606void noinline 2003noinline
2004static void
2005pendingcb (EV_P_ ev_prepare *w, int revents)
2006{
2007}
2008
2009noinline
2010void
607ev_feed_event (EV_P_ void *w, int revents) 2011ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
608{ 2012{
609 W w_ = (W)w; 2013 W w_ = (W)w;
610 int pri = ABSPRI (w_); 2014 int pri = ABSPRI (w_);
611 2015
612 if (expect_false (w_->pending)) 2016 if (expect_false (w_->pending))
613 pendings [pri][w_->pending - 1].events |= revents; 2017 pendings [pri][w_->pending - 1].events |= revents;
614 else 2018 else
615 { 2019 {
616 w_->pending = ++pendingcnt [pri]; 2020 w_->pending = ++pendingcnt [pri];
617 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2021 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
618 pendings [pri][w_->pending - 1].w = w_; 2022 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 2023 pendings [pri][w_->pending - 1].events = revents;
620 } 2024 }
621}
622 2025
623void inline_speed 2026 pendingpri = NUMPRI - 1;
2027}
2028
2029inline_speed void
2030feed_reverse (EV_P_ W w)
2031{
2032 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2033 rfeeds [rfeedcnt++] = w;
2034}
2035
2036inline_size void
2037feed_reverse_done (EV_P_ int revents)
2038{
2039 do
2040 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2041 while (rfeedcnt);
2042}
2043
2044inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 2045queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 2046{
626 int i; 2047 int i;
627 2048
628 for (i = 0; i < eventcnt; ++i) 2049 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 2050 ev_feed_event (EV_A_ events [i], type);
630} 2051}
631 2052
632/*****************************************************************************/ 2053/*****************************************************************************/
633 2054
634void inline_size 2055inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 2056fd_event_nocheck (EV_P_ int fd, int revents)
649{ 2057{
650 ANFD *anfd = anfds + fd; 2058 ANFD *anfd = anfds + fd;
651 ev_io *w; 2059 ev_io *w;
652 2060
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2061 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 2065 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 2066 ev_feed_event (EV_A_ (W)w, ev);
659 } 2067 }
660} 2068}
661 2069
662void 2070/* do not submit kernel events for fds that have reify set */
2071/* because that means they changed while we were polling for new events */
2072inline_speed void
663ev_feed_fd_event (EV_P_ int fd, int revents) 2073fd_event (EV_P_ int fd, int revents)
2074{
2075 ANFD *anfd = anfds + fd;
2076
2077 if (expect_true (!anfd->reify))
2078 fd_event_nocheck (EV_A_ fd, revents);
2079}
2080
2081void
2082ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
664{ 2083{
665 if (fd >= 0 && fd < anfdmax) 2084 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 2085 fd_event_nocheck (EV_A_ fd, revents);
667} 2086}
668 2087
669void inline_size 2088/* make sure the external fd watch events are in-sync */
2089/* with the kernel/libev internal state */
2090inline_size void
670fd_reify (EV_P) 2091fd_reify (EV_P)
671{ 2092{
672 int i; 2093 int i;
2094
2095#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2096 for (i = 0; i < fdchangecnt; ++i)
2097 {
2098 int fd = fdchanges [i];
2099 ANFD *anfd = anfds + fd;
2100
2101 if (anfd->reify & EV__IOFDSET && anfd->head)
2102 {
2103 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2104
2105 if (handle != anfd->handle)
2106 {
2107 unsigned long arg;
2108
2109 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2110
2111 /* handle changed, but fd didn't - we need to do it in two steps */
2112 backend_modify (EV_A_ fd, anfd->events, 0);
2113 anfd->events = 0;
2114 anfd->handle = handle;
2115 }
2116 }
2117 }
2118#endif
673 2119
674 for (i = 0; i < fdchangecnt; ++i) 2120 for (i = 0; i < fdchangecnt; ++i)
675 { 2121 {
676 int fd = fdchanges [i]; 2122 int fd = fdchanges [i];
677 ANFD *anfd = anfds + fd; 2123 ANFD *anfd = anfds + fd;
678 ev_io *w; 2124 ev_io *w;
679 2125
680 unsigned char events = 0; 2126 unsigned char o_events = anfd->events;
2127 unsigned char o_reify = anfd->reify;
681 2128
682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2129 anfd->reify = 0;
683 events |= (unsigned char)w->events;
684 2130
685#if EV_SELECT_IS_WINSOCKET 2131 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
686 if (events)
687 { 2132 {
688 unsigned long argp; 2133 anfd->events = 0;
689 #ifdef EV_FD_TO_WIN32_HANDLE 2134
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2135 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
691 #else 2136 anfd->events |= (unsigned char)w->events;
692 anfd->handle = _get_osfhandle (fd); 2137
693 #endif 2138 if (o_events != anfd->events)
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2139 o_reify = EV__IOFDSET; /* actually |= */
695 } 2140 }
696#endif
697 2141
698 { 2142 if (o_reify & EV__IOFDSET)
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
702 anfd->reify = 0;
703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 2143 backend_modify (EV_A_ fd, o_events, anfd->events);
707 }
708 } 2144 }
709 2145
710 fdchangecnt = 0; 2146 fdchangecnt = 0;
711} 2147}
712 2148
2149/* something about the given fd changed */
713void inline_size 2150inline_size
2151void
714fd_change (EV_P_ int fd, int flags) 2152fd_change (EV_P_ int fd, int flags)
715{ 2153{
716 unsigned char reify = anfds [fd].reify; 2154 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 2155 anfds [fd].reify |= flags;
718 2156
719 if (expect_true (!reify)) 2157 if (expect_true (!reify))
720 { 2158 {
721 ++fdchangecnt; 2159 ++fdchangecnt;
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2160 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
723 fdchanges [fdchangecnt - 1] = fd; 2161 fdchanges [fdchangecnt - 1] = fd;
724 } 2162 }
725} 2163}
726 2164
727void inline_speed 2165/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2166inline_speed ecb_cold void
728fd_kill (EV_P_ int fd) 2167fd_kill (EV_P_ int fd)
729{ 2168{
730 ev_io *w; 2169 ev_io *w;
731 2170
732 while ((w = (ev_io *)anfds [fd].head)) 2171 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 2173 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2174 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 2175 }
737} 2176}
738 2177
739int inline_size 2178/* check whether the given fd is actually valid, for error recovery */
2179inline_size ecb_cold int
740fd_valid (int fd) 2180fd_valid (int fd)
741{ 2181{
742#ifdef _WIN32 2182#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 2183 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
744#else 2184#else
745 return fcntl (fd, F_GETFD) != -1; 2185 return fcntl (fd, F_GETFD) != -1;
746#endif 2186#endif
747} 2187}
748 2188
749/* called on EBADF to verify fds */ 2189/* called on EBADF to verify fds */
750static void noinline 2190noinline ecb_cold
2191static void
751fd_ebadf (EV_P) 2192fd_ebadf (EV_P)
752{ 2193{
753 int fd; 2194 int fd;
754 2195
755 for (fd = 0; fd < anfdmax; ++fd) 2196 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 2197 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 2198 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 2199 fd_kill (EV_A_ fd);
759} 2200}
760 2201
761/* called on ENOMEM in select/poll to kill some fds and retry */ 2202/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 2203noinline ecb_cold
2204static void
763fd_enomem (EV_P) 2205fd_enomem (EV_P)
764{ 2206{
765 int fd; 2207 int fd;
766 2208
767 for (fd = anfdmax; fd--; ) 2209 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events) 2210 if (anfds [fd].events)
769 { 2211 {
770 fd_kill (EV_A_ fd); 2212 fd_kill (EV_A_ fd);
771 return; 2213 break;
772 } 2214 }
773} 2215}
774 2216
775/* usually called after fork if backend needs to re-arm all fds from scratch */ 2217/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline 2218noinline
2219static void
777fd_rearm_all (EV_P) 2220fd_rearm_all (EV_P)
778{ 2221{
779 int fd; 2222 int fd;
780 2223
781 for (fd = 0; fd < anfdmax; ++fd) 2224 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 2225 if (anfds [fd].events)
783 { 2226 {
784 anfds [fd].events = 0; 2227 anfds [fd].events = 0;
2228 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 2229 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 2230 }
787} 2231}
788 2232
2233/* used to prepare libev internal fd's */
2234/* this is not fork-safe */
2235inline_speed void
2236fd_intern (int fd)
2237{
2238#ifdef _WIN32
2239 unsigned long arg = 1;
2240 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2241#else
2242 fcntl (fd, F_SETFD, FD_CLOEXEC);
2243 fcntl (fd, F_SETFL, O_NONBLOCK);
2244#endif
2245}
2246
789/*****************************************************************************/ 2247/*****************************************************************************/
790 2248
791/* 2249/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not 2250 * the heap functions want a real array index. array index 0 is guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2251 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree. 2252 * the branching factor of the d-tree.
795 */ 2253 */
796 2254
797/* 2255/*
803#if EV_USE_4HEAP 2261#if EV_USE_4HEAP
804 2262
805#define DHEAP 4 2263#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2264#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2265#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808 2266#define UPHEAP_DONE(p,k) ((p) == (k))
809/* towards the root */
810void inline_speed
811upheap (ANHE *heap, int k)
812{
813 ANHE he = heap [k];
814
815 for (;;)
816 {
817 int p = HPARENT (k);
818
819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
820 break;
821
822 heap [k] = heap [p];
823 ev_active (ANHE_w (heap [k])) = k;
824 k = p;
825 }
826
827 heap [k] = he;
828 ev_active (ANHE_w (he)) = k;
829}
830 2267
831/* away from the root */ 2268/* away from the root */
832void inline_speed 2269inline_speed void
833downheap (ANHE *heap, int N, int k) 2270downheap (ANHE *heap, int N, int k)
834{ 2271{
835 ANHE he = heap [k]; 2272 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0; 2273 ANHE *E = heap + N + HEAP0;
837 2274
838 for (;;) 2275 for (;;)
839 { 2276 {
840 ev_tstamp minat; 2277 ev_tstamp minat;
841 ANHE *minpos; 2278 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 2279 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
843 2280
844 // find minimum child 2281 /* find minimum child */
845 if (expect_true (pos + DHEAP - 1 < E)) 2282 if (expect_true (pos + DHEAP - 1 < E))
846 { 2283 {
847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2284 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2285 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2286 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 2307
871 heap [k] = he; 2308 heap [k] = he;
872 ev_active (ANHE_w (he)) = k; 2309 ev_active (ANHE_w (he)) = k;
873} 2310}
874 2311
875#else // 4HEAP 2312#else /* 4HEAP */
876 2313
877#define HEAP0 1 2314#define HEAP0 1
878#define HPARENT(k) ((k) >> 1) 2315#define HPARENT(k) ((k) >> 1)
2316#define UPHEAP_DONE(p,k) (!(p))
879 2317
880/* towards the root */ 2318/* away from the root */
881void inline_speed 2319inline_speed void
882upheap (ANHE *heap, int k) 2320downheap (ANHE *heap, int N, int k)
883{ 2321{
884 ANHE he = heap [k]; 2322 ANHE he = heap [k];
885 2323
886 for (;;) 2324 for (;;)
887 { 2325 {
888 int p = HPARENT (k); 2326 int c = k << 1;
889 2327
890 /* maybe we could use a dummy element at heap [0]? */ 2328 if (c >= N + HEAP0)
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break; 2329 break;
893 2330
894 heap [k] = heap [p];
895 ev_active (ANHE_w (heap [k])) = k;
896 k = p;
897 }
898
899 heap [k] = he;
900 ev_active (ANHE_w (heap [k])) = k;
901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
908
909 for (;;)
910 {
911 int c = k << 1;
912
913 if (c > N)
914 break;
915
916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2331 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
917 ? 1 : 0; 2332 ? 1 : 0;
918 2333
919 if (ANHE_at (he) <= ANHE_at (heap [c])) 2334 if (ANHE_at (he) <= ANHE_at (heap [c]))
920 break; 2335 break;
921 2336
928 heap [k] = he; 2343 heap [k] = he;
929 ev_active (ANHE_w (he)) = k; 2344 ev_active (ANHE_w (he)) = k;
930} 2345}
931#endif 2346#endif
932 2347
933void inline_size 2348/* towards the root */
2349inline_speed void
2350upheap (ANHE *heap, int k)
2351{
2352 ANHE he = heap [k];
2353
2354 for (;;)
2355 {
2356 int p = HPARENT (k);
2357
2358 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2359 break;
2360
2361 heap [k] = heap [p];
2362 ev_active (ANHE_w (heap [k])) = k;
2363 k = p;
2364 }
2365
2366 heap [k] = he;
2367 ev_active (ANHE_w (he)) = k;
2368}
2369
2370/* move an element suitably so it is in a correct place */
2371inline_size void
934adjustheap (ANHE *heap, int N, int k) 2372adjustheap (ANHE *heap, int N, int k)
935{ 2373{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2374 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
937 upheap (heap, k); 2375 upheap (heap, k);
938 else 2376 else
939 downheap (heap, N, k); 2377 downheap (heap, N, k);
940} 2378}
941 2379
2380/* rebuild the heap: this function is used only once and executed rarely */
2381inline_size void
2382reheap (ANHE *heap, int N)
2383{
2384 int i;
2385
2386 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2387 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2388 for (i = 0; i < N; ++i)
2389 upheap (heap, i + HEAP0);
2390}
2391
942/*****************************************************************************/ 2392/*****************************************************************************/
943 2393
2394/* associate signal watchers to a signal signal */
944typedef struct 2395typedef struct
945{ 2396{
2397 EV_ATOMIC_T pending;
2398#if EV_MULTIPLICITY
2399 EV_P;
2400#endif
946 WL head; 2401 WL head;
947 EV_ATOMIC_T gotsig;
948} ANSIG; 2402} ANSIG;
949 2403
950static ANSIG *signals; 2404static ANSIG signals [EV_NSIG - 1];
951static int signalmax;
952
953static EV_ATOMIC_T gotsig;
954
955void inline_size
956signals_init (ANSIG *base, int count)
957{
958 while (count--)
959 {
960 base->head = 0;
961 base->gotsig = 0;
962
963 ++base;
964 }
965}
966 2405
967/*****************************************************************************/ 2406/*****************************************************************************/
968 2407
969void inline_speed 2408#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
970fd_intern (int fd)
971{
972#ifdef _WIN32
973 int arg = 1;
974 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
975#else
976 fcntl (fd, F_SETFD, FD_CLOEXEC);
977 fcntl (fd, F_SETFL, O_NONBLOCK);
978#endif
979}
980 2409
981static void noinline 2410noinline ecb_cold
2411static void
982evpipe_init (EV_P) 2412evpipe_init (EV_P)
983{ 2413{
984 if (!ev_is_active (&pipeev)) 2414 if (!ev_is_active (&pipe_w))
2415 {
2416 int fds [2];
2417
2418# if EV_USE_EVENTFD
2419 fds [0] = -1;
2420 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2421 if (fds [1] < 0 && errno == EINVAL)
2422 fds [1] = eventfd (0, 0);
2423
2424 if (fds [1] < 0)
2425# endif
2426 {
2427 while (pipe (fds))
2428 ev_syserr ("(libev) error creating signal/async pipe");
2429
2430 fd_intern (fds [0]);
2431 }
2432
2433 evpipe [0] = fds [0];
2434
2435 if (evpipe [1] < 0)
2436 evpipe [1] = fds [1]; /* first call, set write fd */
2437 else
2438 {
2439 /* on subsequent calls, do not change evpipe [1] */
2440 /* so that evpipe_write can always rely on its value. */
2441 /* this branch does not do anything sensible on windows, */
2442 /* so must not be executed on windows */
2443
2444 dup2 (fds [1], evpipe [1]);
2445 close (fds [1]);
2446 }
2447
2448 fd_intern (evpipe [1]);
2449
2450 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2451 ev_io_start (EV_A_ &pipe_w);
2452 ev_unref (EV_A); /* watcher should not keep loop alive */
985 { 2453 }
2454}
2455
2456inline_speed void
2457evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2458{
2459 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2460
2461 if (expect_true (*flag))
2462 return;
2463
2464 *flag = 1;
2465 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2466
2467 pipe_write_skipped = 1;
2468
2469 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2470
2471 if (pipe_write_wanted)
2472 {
2473 int old_errno;
2474
2475 pipe_write_skipped = 0;
2476 ECB_MEMORY_FENCE_RELEASE;
2477
2478 old_errno = errno; /* save errno because write will clobber it */
2479
986#if EV_USE_EVENTFD 2480#if EV_USE_EVENTFD
987 if ((evfd = eventfd (0, 0)) >= 0) 2481 if (evpipe [0] < 0)
988 { 2482 {
989 evpipe [0] = -1; 2483 uint64_t counter = 1;
990 fd_intern (evfd); 2484 write (evpipe [1], &counter, sizeof (uint64_t));
991 ev_io_set (&pipeev, evfd, EV_READ);
992 } 2485 }
993 else 2486 else
994#endif 2487#endif
995 { 2488 {
996 while (pipe (evpipe)) 2489#ifdef _WIN32
997 syserr ("(libev) error creating signal/async pipe"); 2490 WSABUF buf;
998 2491 DWORD sent;
999 fd_intern (evpipe [0]); 2492 buf.buf = (char *)&buf;
1000 fd_intern (evpipe [1]); 2493 buf.len = 1;
1001 ev_io_set (&pipeev, evpipe [0], EV_READ); 2494 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2495#else
2496 write (evpipe [1], &(evpipe [1]), 1);
2497#endif
1002 } 2498 }
1003 2499
1004 ev_io_start (EV_A_ &pipeev); 2500 errno = old_errno;
1005 ev_unref (EV_A); /* watcher should not keep loop alive */
1006 }
1007}
1008
1009void inline_size
1010evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1011{
1012 if (!*flag)
1013 { 2501 }
1014 int old_errno = errno; /* save errno because write might clobber it */ 2502}
1015 2503
1016 *flag = 1; 2504/* called whenever the libev signal pipe */
2505/* got some events (signal, async) */
2506static void
2507pipecb (EV_P_ ev_io *iow, int revents)
2508{
2509 int i;
1017 2510
2511 if (revents & EV_READ)
2512 {
1018#if EV_USE_EVENTFD 2513#if EV_USE_EVENTFD
1019 if (evfd >= 0) 2514 if (evpipe [0] < 0)
1020 { 2515 {
1021 uint64_t counter = 1; 2516 uint64_t counter;
1022 write (evfd, &counter, sizeof (uint64_t)); 2517 read (evpipe [1], &counter, sizeof (uint64_t));
1023 } 2518 }
1024 else 2519 else
1025#endif 2520#endif
1026 write (evpipe [1], &old_errno, 1); 2521 {
1027
1028 errno = old_errno;
1029 }
1030}
1031
1032static void
1033pipecb (EV_P_ ev_io *iow, int revents)
1034{
1035#if EV_USE_EVENTFD
1036 if (evfd >= 0)
1037 {
1038 uint64_t counter;
1039 read (evfd, &counter, sizeof (uint64_t));
1040 }
1041 else
1042#endif
1043 {
1044 char dummy; 2522 char dummy[4];
2523#ifdef _WIN32
2524 WSABUF buf;
2525 DWORD recvd;
2526 DWORD flags = 0;
2527 buf.buf = dummy;
2528 buf.len = sizeof (dummy);
2529 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2530#else
1045 read (evpipe [0], &dummy, 1); 2531 read (evpipe [0], &dummy, sizeof (dummy));
2532#endif
2533 }
2534 }
2535
2536 pipe_write_skipped = 0;
2537
2538 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2539
2540#if EV_SIGNAL_ENABLE
2541 if (sig_pending)
1046 } 2542 {
2543 sig_pending = 0;
1047 2544
1048 if (gotsig && ev_is_default_loop (EV_A)) 2545 ECB_MEMORY_FENCE;
1049 {
1050 int signum;
1051 gotsig = 0;
1052 2546
1053 for (signum = signalmax; signum--; ) 2547 for (i = EV_NSIG - 1; i--; )
1054 if (signals [signum].gotsig) 2548 if (expect_false (signals [i].pending))
1055 ev_feed_signal_event (EV_A_ signum + 1); 2549 ev_feed_signal_event (EV_A_ i + 1);
1056 } 2550 }
2551#endif
1057 2552
1058#if EV_ASYNC_ENABLE 2553#if EV_ASYNC_ENABLE
1059 if (gotasync) 2554 if (async_pending)
1060 { 2555 {
1061 int i; 2556 async_pending = 0;
1062 gotasync = 0; 2557
2558 ECB_MEMORY_FENCE;
1063 2559
1064 for (i = asynccnt; i--; ) 2560 for (i = asynccnt; i--; )
1065 if (asyncs [i]->sent) 2561 if (asyncs [i]->sent)
1066 { 2562 {
1067 asyncs [i]->sent = 0; 2563 asyncs [i]->sent = 0;
2564 ECB_MEMORY_FENCE_RELEASE;
1068 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2565 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1069 } 2566 }
1070 } 2567 }
1071#endif 2568#endif
1072} 2569}
1073 2570
1074/*****************************************************************************/ 2571/*****************************************************************************/
1075 2572
2573void
2574ev_feed_signal (int signum) EV_NOEXCEPT
2575{
2576#if EV_MULTIPLICITY
2577 EV_P;
2578 ECB_MEMORY_FENCE_ACQUIRE;
2579 EV_A = signals [signum - 1].loop;
2580
2581 if (!EV_A)
2582 return;
2583#endif
2584
2585 signals [signum - 1].pending = 1;
2586 evpipe_write (EV_A_ &sig_pending);
2587}
2588
1076static void 2589static void
1077ev_sighandler (int signum) 2590ev_sighandler (int signum)
1078{ 2591{
2592#ifdef _WIN32
2593 signal (signum, ev_sighandler);
2594#endif
2595
2596 ev_feed_signal (signum);
2597}
2598
2599noinline
2600void
2601ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2602{
2603 WL w;
2604
2605 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2606 return;
2607
2608 --signum;
2609
1079#if EV_MULTIPLICITY 2610#if EV_MULTIPLICITY
1080 struct ev_loop *loop = &default_loop_struct; 2611 /* it is permissible to try to feed a signal to the wrong loop */
1081#endif 2612 /* or, likely more useful, feeding a signal nobody is waiting for */
1082 2613
1083#if _WIN32 2614 if (expect_false (signals [signum].loop != EV_A))
1084 signal (signum, ev_sighandler);
1085#endif
1086
1087 signals [signum - 1].gotsig = 1;
1088 evpipe_write (EV_A_ &gotsig);
1089}
1090
1091void noinline
1092ev_feed_signal_event (EV_P_ int signum)
1093{
1094 WL w;
1095
1096#if EV_MULTIPLICITY
1097 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1098#endif
1099
1100 --signum;
1101
1102 if (signum < 0 || signum >= signalmax)
1103 return; 2615 return;
2616#endif
1104 2617
1105 signals [signum].gotsig = 0; 2618 signals [signum].pending = 0;
2619 ECB_MEMORY_FENCE_RELEASE;
1106 2620
1107 for (w = signals [signum].head; w; w = w->next) 2621 for (w = signals [signum].head; w; w = w->next)
1108 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2622 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1109} 2623}
1110 2624
2625#if EV_USE_SIGNALFD
2626static void
2627sigfdcb (EV_P_ ev_io *iow, int revents)
2628{
2629 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2630
2631 for (;;)
2632 {
2633 ssize_t res = read (sigfd, si, sizeof (si));
2634
2635 /* not ISO-C, as res might be -1, but works with SuS */
2636 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2637 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2638
2639 if (res < (ssize_t)sizeof (si))
2640 break;
2641 }
2642}
2643#endif
2644
2645#endif
2646
1111/*****************************************************************************/ 2647/*****************************************************************************/
1112 2648
2649#if EV_CHILD_ENABLE
1113static WL childs [EV_PID_HASHSIZE]; 2650static WL childs [EV_PID_HASHSIZE];
1114
1115#ifndef _WIN32
1116 2651
1117static ev_signal childev; 2652static ev_signal childev;
1118 2653
1119#ifndef WIFCONTINUED 2654#ifndef WIFCONTINUED
1120# define WIFCONTINUED(status) 0 2655# define WIFCONTINUED(status) 0
1121#endif 2656#endif
1122 2657
1123void inline_speed 2658/* handle a single child status event */
2659inline_speed void
1124child_reap (EV_P_ int chain, int pid, int status) 2660child_reap (EV_P_ int chain, int pid, int status)
1125{ 2661{
1126 ev_child *w; 2662 ev_child *w;
1127 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2663 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1128 2664
1129 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2665 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1130 { 2666 {
1131 if ((w->pid == pid || !w->pid) 2667 if ((w->pid == pid || !w->pid)
1132 && (!traced || (w->flags & 1))) 2668 && (!traced || (w->flags & 1)))
1133 { 2669 {
1134 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2670 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1141 2677
1142#ifndef WCONTINUED 2678#ifndef WCONTINUED
1143# define WCONTINUED 0 2679# define WCONTINUED 0
1144#endif 2680#endif
1145 2681
2682/* called on sigchld etc., calls waitpid */
1146static void 2683static void
1147childcb (EV_P_ ev_signal *sw, int revents) 2684childcb (EV_P_ ev_signal *sw, int revents)
1148{ 2685{
1149 int pid, status; 2686 int pid, status;
1150 2687
1158 /* make sure we are called again until all children have been reaped */ 2695 /* make sure we are called again until all children have been reaped */
1159 /* we need to do it this way so that the callback gets called before we continue */ 2696 /* we need to do it this way so that the callback gets called before we continue */
1160 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2697 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1161 2698
1162 child_reap (EV_A_ pid, pid, status); 2699 child_reap (EV_A_ pid, pid, status);
1163 if (EV_PID_HASHSIZE > 1) 2700 if ((EV_PID_HASHSIZE) > 1)
1164 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2701 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1165} 2702}
1166 2703
1167#endif 2704#endif
1168 2705
1169/*****************************************************************************/ 2706/*****************************************************************************/
1170 2707
2708#if EV_USE_IOCP
2709# include "ev_iocp.c"
2710#endif
1171#if EV_USE_PORT 2711#if EV_USE_PORT
1172# include "ev_port.c" 2712# include "ev_port.c"
1173#endif 2713#endif
1174#if EV_USE_KQUEUE 2714#if EV_USE_KQUEUE
1175# include "ev_kqueue.c" 2715# include "ev_kqueue.c"
1176#endif 2716#endif
2717#if EV_USE_LINUXAIO
2718# include "ev_linuxaio.c"
2719#endif
1177#if EV_USE_EPOLL 2720#if EV_USE_EPOLL
1178# include "ev_epoll.c" 2721# include "ev_epoll.c"
1179#endif 2722#endif
1180#if EV_USE_POLL 2723#if EV_USE_POLL
1181# include "ev_poll.c" 2724# include "ev_poll.c"
1182#endif 2725#endif
1183#if EV_USE_SELECT 2726#if EV_USE_SELECT
1184# include "ev_select.c" 2727# include "ev_select.c"
1185#endif 2728#endif
1186 2729
1187int 2730ecb_cold int
1188ev_version_major (void) 2731ev_version_major (void) EV_NOEXCEPT
1189{ 2732{
1190 return EV_VERSION_MAJOR; 2733 return EV_VERSION_MAJOR;
1191} 2734}
1192 2735
1193int 2736ecb_cold int
1194ev_version_minor (void) 2737ev_version_minor (void) EV_NOEXCEPT
1195{ 2738{
1196 return EV_VERSION_MINOR; 2739 return EV_VERSION_MINOR;
1197} 2740}
1198 2741
1199/* return true if we are running with elevated privileges and should ignore env variables */ 2742/* return true if we are running with elevated privileges and should ignore env variables */
1200int inline_size 2743inline_size ecb_cold int
1201enable_secure (void) 2744enable_secure (void)
1202{ 2745{
1203#ifdef _WIN32 2746#ifdef _WIN32
1204 return 0; 2747 return 0;
1205#else 2748#else
1206 return getuid () != geteuid () 2749 return getuid () != geteuid ()
1207 || getgid () != getegid (); 2750 || getgid () != getegid ();
1208#endif 2751#endif
1209} 2752}
1210 2753
2754ecb_cold
1211unsigned int 2755unsigned int
1212ev_supported_backends (void) 2756ev_supported_backends (void) EV_NOEXCEPT
1213{ 2757{
1214 unsigned int flags = 0; 2758 unsigned int flags = 0;
1215 2759
1216 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2760 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1217 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2761 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
1218 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 2762 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2763 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
1219 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 2764 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1220 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2765 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
1221 2766
1222 return flags; 2767 return flags;
1223} 2768}
1224 2769
2770ecb_cold
1225unsigned int 2771unsigned int
1226ev_recommended_backends (void) 2772ev_recommended_backends (void) EV_NOEXCEPT
1227{ 2773{
1228 unsigned int flags = ev_supported_backends (); 2774 unsigned int flags = ev_supported_backends ();
1229 2775
1230#ifndef __NetBSD__ 2776#ifndef __NetBSD__
1231 /* kqueue is borked on everything but netbsd apparently */ 2777 /* kqueue is borked on everything but netbsd apparently */
1232 /* it usually doesn't work correctly on anything but sockets and pipes */ 2778 /* it usually doesn't work correctly on anything but sockets and pipes */
1233 flags &= ~EVBACKEND_KQUEUE; 2779 flags &= ~EVBACKEND_KQUEUE;
1234#endif 2780#endif
1235#ifdef __APPLE__ 2781#ifdef __APPLE__
1236 // flags &= ~EVBACKEND_KQUEUE; for documentation 2782 /* only select works correctly on that "unix-certified" platform */
1237 flags &= ~EVBACKEND_POLL; 2783 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2784 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2785#endif
2786#ifdef __FreeBSD__
2787 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1238#endif 2788#endif
1239 2789
1240 return flags; 2790 return flags;
1241} 2791}
1242 2792
2793ecb_cold
1243unsigned int 2794unsigned int
1244ev_embeddable_backends (void) 2795ev_embeddable_backends (void) EV_NOEXCEPT
1245{ 2796{
1246 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2797 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1247 2798
1248 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2799 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1249 /* please fix it and tell me how to detect the fix */ 2800 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1250 flags &= ~EVBACKEND_EPOLL; 2801 flags &= ~EVBACKEND_EPOLL;
1251 2802
1252 return flags; 2803 return flags;
1253} 2804}
1254 2805
1255unsigned int 2806unsigned int
1256ev_backend (EV_P) 2807ev_backend (EV_P) EV_NOEXCEPT
1257{ 2808{
1258 return backend; 2809 return backend;
1259} 2810}
1260 2811
2812#if EV_FEATURE_API
1261unsigned int 2813unsigned int
1262ev_loop_count (EV_P) 2814ev_iteration (EV_P) EV_NOEXCEPT
1263{ 2815{
1264 return loop_count; 2816 return loop_count;
1265} 2817}
1266 2818
2819unsigned int
2820ev_depth (EV_P) EV_NOEXCEPT
2821{
2822 return loop_depth;
2823}
2824
1267void 2825void
1268ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2826ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1269{ 2827{
1270 io_blocktime = interval; 2828 io_blocktime = interval;
1271} 2829}
1272 2830
1273void 2831void
1274ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2832ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1275{ 2833{
1276 timeout_blocktime = interval; 2834 timeout_blocktime = interval;
1277} 2835}
1278 2836
1279static void noinline 2837void
2838ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2839{
2840 userdata = data;
2841}
2842
2843void *
2844ev_userdata (EV_P) EV_NOEXCEPT
2845{
2846 return userdata;
2847}
2848
2849void
2850ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2851{
2852 invoke_cb = invoke_pending_cb;
2853}
2854
2855void
2856ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2857{
2858 release_cb = release;
2859 acquire_cb = acquire;
2860}
2861#endif
2862
2863/* initialise a loop structure, must be zero-initialised */
2864noinline ecb_cold
2865static void
1280loop_init (EV_P_ unsigned int flags) 2866loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
1281{ 2867{
1282 if (!backend) 2868 if (!backend)
1283 { 2869 {
2870 origflags = flags;
2871
2872#if EV_USE_REALTIME
2873 if (!have_realtime)
2874 {
2875 struct timespec ts;
2876
2877 if (!clock_gettime (CLOCK_REALTIME, &ts))
2878 have_realtime = 1;
2879 }
2880#endif
2881
1284#if EV_USE_MONOTONIC 2882#if EV_USE_MONOTONIC
2883 if (!have_monotonic)
1285 { 2884 {
1286 struct timespec ts; 2885 struct timespec ts;
2886
1287 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2887 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1288 have_monotonic = 1; 2888 have_monotonic = 1;
1289 } 2889 }
1290#endif
1291
1292 ev_rt_now = ev_time ();
1293 mn_now = get_clock ();
1294 now_floor = mn_now;
1295 rtmn_diff = ev_rt_now - mn_now;
1296
1297 io_blocktime = 0.;
1298 timeout_blocktime = 0.;
1299 backend = 0;
1300 backend_fd = -1;
1301 gotasync = 0;
1302#if EV_USE_INOTIFY
1303 fs_fd = -2;
1304#endif 2890#endif
1305 2891
1306 /* pid check not overridable via env */ 2892 /* pid check not overridable via env */
1307#ifndef _WIN32 2893#ifndef _WIN32
1308 if (flags & EVFLAG_FORKCHECK) 2894 if (flags & EVFLAG_FORKCHECK)
1312 if (!(flags & EVFLAG_NOENV) 2898 if (!(flags & EVFLAG_NOENV)
1313 && !enable_secure () 2899 && !enable_secure ()
1314 && getenv ("LIBEV_FLAGS")) 2900 && getenv ("LIBEV_FLAGS"))
1315 flags = atoi (getenv ("LIBEV_FLAGS")); 2901 flags = atoi (getenv ("LIBEV_FLAGS"));
1316 2902
1317 if (!(flags & 0x0000ffffU)) 2903 ev_rt_now = ev_time ();
2904 mn_now = get_clock ();
2905 now_floor = mn_now;
2906 rtmn_diff = ev_rt_now - mn_now;
2907#if EV_FEATURE_API
2908 invoke_cb = ev_invoke_pending;
2909#endif
2910
2911 io_blocktime = 0.;
2912 timeout_blocktime = 0.;
2913 backend = 0;
2914 backend_fd = -1;
2915 sig_pending = 0;
2916#if EV_ASYNC_ENABLE
2917 async_pending = 0;
2918#endif
2919 pipe_write_skipped = 0;
2920 pipe_write_wanted = 0;
2921 evpipe [0] = -1;
2922 evpipe [1] = -1;
2923#if EV_USE_INOTIFY
2924 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2925#endif
2926#if EV_USE_SIGNALFD
2927 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2928#endif
2929
2930 if (!(flags & EVBACKEND_MASK))
1318 flags |= ev_recommended_backends (); 2931 flags |= ev_recommended_backends ();
1319 2932
2933#if EV_USE_IOCP
2934 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2935#endif
1320#if EV_USE_PORT 2936#if EV_USE_PORT
1321 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2937 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1322#endif 2938#endif
1323#if EV_USE_KQUEUE 2939#if EV_USE_KQUEUE
1324 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2940 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
2941#endif
2942#if EV_USE_LINUXAIO
2943 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
1325#endif 2944#endif
1326#if EV_USE_EPOLL 2945#if EV_USE_EPOLL
1327 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 2946 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1328#endif 2947#endif
1329#if EV_USE_POLL 2948#if EV_USE_POLL
1330 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 2949 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1331#endif 2950#endif
1332#if EV_USE_SELECT 2951#if EV_USE_SELECT
1333 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2952 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
1334#endif 2953#endif
1335 2954
2955 ev_prepare_init (&pending_w, pendingcb);
2956
2957#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1336 ev_init (&pipeev, pipecb); 2958 ev_init (&pipe_w, pipecb);
1337 ev_set_priority (&pipeev, EV_MAXPRI); 2959 ev_set_priority (&pipe_w, EV_MAXPRI);
2960#endif
1338 } 2961 }
1339} 2962}
1340 2963
1341static void noinline 2964/* free up a loop structure */
2965ecb_cold
2966void
1342loop_destroy (EV_P) 2967ev_loop_destroy (EV_P)
1343{ 2968{
1344 int i; 2969 int i;
1345 2970
2971#if EV_MULTIPLICITY
2972 /* mimic free (0) */
2973 if (!EV_A)
2974 return;
2975#endif
2976
2977#if EV_CLEANUP_ENABLE
2978 /* queue cleanup watchers (and execute them) */
2979 if (expect_false (cleanupcnt))
2980 {
2981 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2982 EV_INVOKE_PENDING;
2983 }
2984#endif
2985
2986#if EV_CHILD_ENABLE
2987 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2988 {
2989 ev_ref (EV_A); /* child watcher */
2990 ev_signal_stop (EV_A_ &childev);
2991 }
2992#endif
2993
1346 if (ev_is_active (&pipeev)) 2994 if (ev_is_active (&pipe_w))
1347 { 2995 {
1348 ev_ref (EV_A); /* signal watcher */ 2996 /*ev_ref (EV_A);*/
1349 ev_io_stop (EV_A_ &pipeev); 2997 /*ev_io_stop (EV_A_ &pipe_w);*/
1350 2998
2999 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3000 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3001 }
3002
1351#if EV_USE_EVENTFD 3003#if EV_USE_SIGNALFD
1352 if (evfd >= 0) 3004 if (ev_is_active (&sigfd_w))
1353 close (evfd); 3005 close (sigfd);
1354#endif 3006#endif
1355
1356 if (evpipe [0] >= 0)
1357 {
1358 close (evpipe [0]);
1359 close (evpipe [1]);
1360 }
1361 }
1362 3007
1363#if EV_USE_INOTIFY 3008#if EV_USE_INOTIFY
1364 if (fs_fd >= 0) 3009 if (fs_fd >= 0)
1365 close (fs_fd); 3010 close (fs_fd);
1366#endif 3011#endif
1367 3012
1368 if (backend_fd >= 0) 3013 if (backend_fd >= 0)
1369 close (backend_fd); 3014 close (backend_fd);
1370 3015
3016#if EV_USE_IOCP
3017 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3018#endif
1371#if EV_USE_PORT 3019#if EV_USE_PORT
1372 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3020 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1373#endif 3021#endif
1374#if EV_USE_KQUEUE 3022#if EV_USE_KQUEUE
1375 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3023 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3024#endif
3025#if EV_USE_LINUXAIO
3026 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1376#endif 3027#endif
1377#if EV_USE_EPOLL 3028#if EV_USE_EPOLL
1378 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3029 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1379#endif 3030#endif
1380#if EV_USE_POLL 3031#if EV_USE_POLL
1381 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3032 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1382#endif 3033#endif
1383#if EV_USE_SELECT 3034#if EV_USE_SELECT
1384 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3035 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1385#endif 3036#endif
1386 3037
1387 for (i = NUMPRI; i--; ) 3038 for (i = NUMPRI; i--; )
1388 { 3039 {
1389 array_free (pending, [i]); 3040 array_free (pending, [i]);
1390#if EV_IDLE_ENABLE 3041#if EV_IDLE_ENABLE
1391 array_free (idle, [i]); 3042 array_free (idle, [i]);
1392#endif 3043#endif
1393 } 3044 }
1394 3045
1395 ev_free (anfds); anfdmax = 0; 3046 ev_free (anfds); anfds = 0; anfdmax = 0;
1396 3047
1397 /* have to use the microsoft-never-gets-it-right macro */ 3048 /* have to use the microsoft-never-gets-it-right macro */
3049 array_free (rfeed, EMPTY);
1398 array_free (fdchange, EMPTY); 3050 array_free (fdchange, EMPTY);
1399 array_free (timer, EMPTY); 3051 array_free (timer, EMPTY);
1400#if EV_PERIODIC_ENABLE 3052#if EV_PERIODIC_ENABLE
1401 array_free (periodic, EMPTY); 3053 array_free (periodic, EMPTY);
1402#endif 3054#endif
1403#if EV_FORK_ENABLE 3055#if EV_FORK_ENABLE
1404 array_free (fork, EMPTY); 3056 array_free (fork, EMPTY);
1405#endif 3057#endif
3058#if EV_CLEANUP_ENABLE
3059 array_free (cleanup, EMPTY);
3060#endif
1406 array_free (prepare, EMPTY); 3061 array_free (prepare, EMPTY);
1407 array_free (check, EMPTY); 3062 array_free (check, EMPTY);
1408#if EV_ASYNC_ENABLE 3063#if EV_ASYNC_ENABLE
1409 array_free (async, EMPTY); 3064 array_free (async, EMPTY);
1410#endif 3065#endif
1411 3066
1412 backend = 0; 3067 backend = 0;
3068
3069#if EV_MULTIPLICITY
3070 if (ev_is_default_loop (EV_A))
3071#endif
3072 ev_default_loop_ptr = 0;
3073#if EV_MULTIPLICITY
3074 else
3075 ev_free (EV_A);
3076#endif
1413} 3077}
1414 3078
1415#if EV_USE_INOTIFY 3079#if EV_USE_INOTIFY
1416void inline_size infy_fork (EV_P); 3080inline_size void infy_fork (EV_P);
1417#endif 3081#endif
1418 3082
1419void inline_size 3083inline_size void
1420loop_fork (EV_P) 3084loop_fork (EV_P)
1421{ 3085{
1422#if EV_USE_PORT 3086#if EV_USE_PORT
1423 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3087 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1424#endif 3088#endif
1425#if EV_USE_KQUEUE 3089#if EV_USE_KQUEUE
1426 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3090 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3091#endif
3092#if EV_USE_LINUXAIO
3093 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1427#endif 3094#endif
1428#if EV_USE_EPOLL 3095#if EV_USE_EPOLL
1429 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3096 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1430#endif 3097#endif
1431#if EV_USE_INOTIFY 3098#if EV_USE_INOTIFY
1432 infy_fork (EV_A); 3099 infy_fork (EV_A);
1433#endif 3100#endif
1434 3101
1435 if (ev_is_active (&pipeev)) 3102#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3103 if (ev_is_active (&pipe_w) && postfork != 2)
3104 {
3105 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3106
3107 ev_ref (EV_A);
3108 ev_io_stop (EV_A_ &pipe_w);
3109
3110 if (evpipe [0] >= 0)
3111 EV_WIN32_CLOSE_FD (evpipe [0]);
3112
3113 evpipe_init (EV_A);
3114 /* iterate over everything, in case we missed something before */
3115 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1436 { 3116 }
1437 /* this "locks" the handlers against writing to the pipe */ 3117#endif
1438 /* while we modify the fd vars */ 3118
1439 gotsig = 1; 3119 postfork = 0;
3120}
3121
3122#if EV_MULTIPLICITY
3123
3124ecb_cold
3125struct ev_loop *
3126ev_loop_new (unsigned int flags) EV_NOEXCEPT
3127{
3128 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3129
3130 memset (EV_A, 0, sizeof (struct ev_loop));
3131 loop_init (EV_A_ flags);
3132
3133 if (ev_backend (EV_A))
3134 return EV_A;
3135
3136 ev_free (EV_A);
3137 return 0;
3138}
3139
3140#endif /* multiplicity */
3141
3142#if EV_VERIFY
3143noinline ecb_cold
3144static void
3145verify_watcher (EV_P_ W w)
3146{
3147 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3148
3149 if (w->pending)
3150 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3151}
3152
3153noinline ecb_cold
3154static void
3155verify_heap (EV_P_ ANHE *heap, int N)
3156{
3157 int i;
3158
3159 for (i = HEAP0; i < N + HEAP0; ++i)
3160 {
3161 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3162 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3163 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3164
3165 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3166 }
3167}
3168
3169noinline ecb_cold
3170static void
3171array_verify (EV_P_ W *ws, int cnt)
3172{
3173 while (cnt--)
3174 {
3175 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3176 verify_watcher (EV_A_ ws [cnt]);
3177 }
3178}
3179#endif
3180
3181#if EV_FEATURE_API
3182void ecb_cold
3183ev_verify (EV_P) EV_NOEXCEPT
3184{
3185#if EV_VERIFY
3186 int i;
3187 WL w, w2;
3188
3189 assert (activecnt >= -1);
3190
3191 assert (fdchangemax >= fdchangecnt);
3192 for (i = 0; i < fdchangecnt; ++i)
3193 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3194
3195 assert (anfdmax >= 0);
3196 for (i = 0; i < anfdmax; ++i)
3197 {
3198 int j = 0;
3199
3200 for (w = w2 = anfds [i].head; w; w = w->next)
3201 {
3202 verify_watcher (EV_A_ (W)w);
3203
3204 if (j++ & 1)
3205 {
3206 assert (("libev: io watcher list contains a loop", w != w2));
3207 w2 = w2->next;
3208 }
3209
3210 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3211 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3212 }
3213 }
3214
3215 assert (timermax >= timercnt);
3216 verify_heap (EV_A_ timers, timercnt);
3217
3218#if EV_PERIODIC_ENABLE
3219 assert (periodicmax >= periodiccnt);
3220 verify_heap (EV_A_ periodics, periodiccnt);
3221#endif
3222
3223 for (i = NUMPRI; i--; )
3224 {
3225 assert (pendingmax [i] >= pendingcnt [i]);
3226#if EV_IDLE_ENABLE
3227 assert (idleall >= 0);
3228 assert (idlemax [i] >= idlecnt [i]);
3229 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3230#endif
3231 }
3232
3233#if EV_FORK_ENABLE
3234 assert (forkmax >= forkcnt);
3235 array_verify (EV_A_ (W *)forks, forkcnt);
3236#endif
3237
3238#if EV_CLEANUP_ENABLE
3239 assert (cleanupmax >= cleanupcnt);
3240 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3241#endif
3242
1440#if EV_ASYNC_ENABLE 3243#if EV_ASYNC_ENABLE
1441 gotasync = 1; 3244 assert (asyncmax >= asynccnt);
3245 array_verify (EV_A_ (W *)asyncs, asynccnt);
3246#endif
3247
3248#if EV_PREPARE_ENABLE
3249 assert (preparemax >= preparecnt);
3250 array_verify (EV_A_ (W *)prepares, preparecnt);
3251#endif
3252
3253#if EV_CHECK_ENABLE
3254 assert (checkmax >= checkcnt);
3255 array_verify (EV_A_ (W *)checks, checkcnt);
3256#endif
3257
3258# if 0
3259#if EV_CHILD_ENABLE
3260 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3261 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3262#endif
1442#endif 3263# endif
1443
1444 ev_ref (EV_A);
1445 ev_io_stop (EV_A_ &pipeev);
1446
1447#if EV_USE_EVENTFD
1448 if (evfd >= 0)
1449 close (evfd);
1450#endif 3264#endif
1451
1452 if (evpipe [0] >= 0)
1453 {
1454 close (evpipe [0]);
1455 close (evpipe [1]);
1456 }
1457
1458 evpipe_init (EV_A);
1459 /* now iterate over everything, in case we missed something */
1460 pipecb (EV_A_ &pipeev, EV_READ);
1461 }
1462
1463 postfork = 0;
1464} 3265}
3266#endif
1465 3267
1466#if EV_MULTIPLICITY 3268#if EV_MULTIPLICITY
3269ecb_cold
1467struct ev_loop * 3270struct ev_loop *
1468ev_loop_new (unsigned int flags) 3271#else
1469{ 3272int
1470 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1471
1472 memset (loop, 0, sizeof (struct ev_loop));
1473
1474 loop_init (EV_A_ flags);
1475
1476 if (ev_backend (EV_A))
1477 return loop;
1478
1479 return 0;
1480}
1481
1482void
1483ev_loop_destroy (EV_P)
1484{
1485 loop_destroy (EV_A);
1486 ev_free (loop);
1487}
1488
1489void
1490ev_loop_fork (EV_P)
1491{
1492 postfork = 1; /* must be in line with ev_default_fork */
1493}
1494#endif 3273#endif
1495 3274ev_default_loop (unsigned int flags) EV_NOEXCEPT
3275{
3276 if (!ev_default_loop_ptr)
3277 {
1496#if EV_MULTIPLICITY 3278#if EV_MULTIPLICITY
1497struct ev_loop *
1498ev_default_loop_init (unsigned int flags)
1499#else
1500int
1501ev_default_loop (unsigned int flags)
1502#endif
1503{
1504 if (!ev_default_loop_ptr)
1505 {
1506#if EV_MULTIPLICITY
1507 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3279 EV_P = ev_default_loop_ptr = &default_loop_struct;
1508#else 3280#else
1509 ev_default_loop_ptr = 1; 3281 ev_default_loop_ptr = 1;
1510#endif 3282#endif
1511 3283
1512 loop_init (EV_A_ flags); 3284 loop_init (EV_A_ flags);
1513 3285
1514 if (ev_backend (EV_A)) 3286 if (ev_backend (EV_A))
1515 { 3287 {
1516#ifndef _WIN32 3288#if EV_CHILD_ENABLE
1517 ev_signal_init (&childev, childcb, SIGCHLD); 3289 ev_signal_init (&childev, childcb, SIGCHLD);
1518 ev_set_priority (&childev, EV_MAXPRI); 3290 ev_set_priority (&childev, EV_MAXPRI);
1519 ev_signal_start (EV_A_ &childev); 3291 ev_signal_start (EV_A_ &childev);
1520 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3292 ev_unref (EV_A); /* child watcher should not keep loop alive */
1521#endif 3293#endif
1526 3298
1527 return ev_default_loop_ptr; 3299 return ev_default_loop_ptr;
1528} 3300}
1529 3301
1530void 3302void
1531ev_default_destroy (void) 3303ev_loop_fork (EV_P) EV_NOEXCEPT
1532{ 3304{
1533#if EV_MULTIPLICITY 3305 postfork = 1;
1534 struct ev_loop *loop = ev_default_loop_ptr;
1535#endif
1536
1537#ifndef _WIN32
1538 ev_ref (EV_A); /* child watcher */
1539 ev_signal_stop (EV_A_ &childev);
1540#endif
1541
1542 loop_destroy (EV_A);
1543}
1544
1545void
1546ev_default_fork (void)
1547{
1548#if EV_MULTIPLICITY
1549 struct ev_loop *loop = ev_default_loop_ptr;
1550#endif
1551
1552 if (backend)
1553 postfork = 1; /* must be in line with ev_loop_fork */
1554} 3306}
1555 3307
1556/*****************************************************************************/ 3308/*****************************************************************************/
1557 3309
1558void 3310void
1559ev_invoke (EV_P_ void *w, int revents) 3311ev_invoke (EV_P_ void *w, int revents)
1560{ 3312{
1561 EV_CB_INVOKE ((W)w, revents); 3313 EV_CB_INVOKE ((W)w, revents);
1562} 3314}
1563 3315
1564void inline_speed 3316unsigned int
1565call_pending (EV_P) 3317ev_pending_count (EV_P) EV_NOEXCEPT
1566{ 3318{
1567 int pri; 3319 int pri;
3320 unsigned int count = 0;
1568 3321
1569 for (pri = NUMPRI; pri--; ) 3322 for (pri = NUMPRI; pri--; )
3323 count += pendingcnt [pri];
3324
3325 return count;
3326}
3327
3328noinline
3329void
3330ev_invoke_pending (EV_P)
3331{
3332 pendingpri = NUMPRI;
3333
3334 do
3335 {
3336 --pendingpri;
3337
3338 /* pendingpri possibly gets modified in the inner loop */
1570 while (pendingcnt [pri]) 3339 while (pendingcnt [pendingpri])
1571 {
1572 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1573
1574 if (expect_true (p->w))
1575 { 3340 {
1576 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 3341 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1577 3342
1578 p->w->pending = 0; 3343 p->w->pending = 0;
1579 EV_CB_INVOKE (p->w, p->events); 3344 EV_CB_INVOKE (p->w, p->events);
3345 EV_FREQUENT_CHECK;
1580 } 3346 }
1581 } 3347 }
3348 while (pendingpri);
1582} 3349}
1583 3350
1584#if EV_IDLE_ENABLE 3351#if EV_IDLE_ENABLE
1585void inline_size 3352/* make idle watchers pending. this handles the "call-idle */
3353/* only when higher priorities are idle" logic */
3354inline_size void
1586idle_reify (EV_P) 3355idle_reify (EV_P)
1587{ 3356{
1588 if (expect_false (idleall)) 3357 if (expect_false (idleall))
1589 { 3358 {
1590 int pri; 3359 int pri;
1602 } 3371 }
1603 } 3372 }
1604} 3373}
1605#endif 3374#endif
1606 3375
1607void inline_size 3376/* make timers pending */
3377inline_size void
1608timers_reify (EV_P) 3378timers_reify (EV_P)
1609{ 3379{
3380 EV_FREQUENT_CHECK;
3381
1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3382 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1611 { 3383 {
1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3384 do
1613
1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1615
1616 /* first reschedule or stop timer */
1617 if (w->repeat)
1618 { 3385 {
3386 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3387
3388 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3389
3390 /* first reschedule or stop timer */
3391 if (w->repeat)
3392 {
1619 ev_at (w) += w->repeat; 3393 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now) 3394 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now; 3395 ev_at (w) = mn_now;
1622 3396
1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3397 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1624 3398
1625 ANHE_at_set (timers [HEAP0]); 3399 ANHE_at_cache (timers [HEAP0]);
1626 downheap (timers, timercnt, HEAP0); 3400 downheap (timers, timercnt, HEAP0);
3401 }
3402 else
3403 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3404
3405 EV_FREQUENT_CHECK;
3406 feed_reverse (EV_A_ (W)w);
1627 } 3407 }
1628 else 3408 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1630 3409
1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3410 feed_reverse_done (EV_A_ EV_TIMER);
1632 } 3411 }
1633} 3412}
1634 3413
1635#if EV_PERIODIC_ENABLE 3414#if EV_PERIODIC_ENABLE
1636void inline_size 3415
3416noinline
3417static void
3418periodic_recalc (EV_P_ ev_periodic *w)
3419{
3420 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3421 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3422
3423 /* the above almost always errs on the low side */
3424 while (at <= ev_rt_now)
3425 {
3426 ev_tstamp nat = at + w->interval;
3427
3428 /* when resolution fails us, we use ev_rt_now */
3429 if (expect_false (nat == at))
3430 {
3431 at = ev_rt_now;
3432 break;
3433 }
3434
3435 at = nat;
3436 }
3437
3438 ev_at (w) = at;
3439}
3440
3441/* make periodics pending */
3442inline_size void
1637periodics_reify (EV_P) 3443periodics_reify (EV_P)
1638{ 3444{
3445 EV_FREQUENT_CHECK;
3446
1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3447 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1640 { 3448 {
1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3449 do
1642
1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1644
1645 /* first reschedule or stop timer */
1646 if (w->reschedule_cb)
1647 { 3450 {
3451 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3452
3453 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3454
3455 /* first reschedule or stop timer */
3456 if (w->reschedule_cb)
3457 {
1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3458 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649 3459
1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3460 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651 3461
1652 ANHE_at_set (periodics [HEAP0]); 3462 ANHE_at_cache (periodics [HEAP0]);
1653 downheap (periodics, periodiccnt, HEAP0); 3463 downheap (periodics, periodiccnt, HEAP0);
3464 }
3465 else if (w->interval)
3466 {
3467 periodic_recalc (EV_A_ w);
3468 ANHE_at_cache (periodics [HEAP0]);
3469 downheap (periodics, periodiccnt, HEAP0);
3470 }
3471 else
3472 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3473
3474 EV_FREQUENT_CHECK;
3475 feed_reverse (EV_A_ (W)w);
1654 } 3476 }
1655 else if (w->interval) 3477 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1656 {
1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663 3478
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1672 downheap (periodics, periodiccnt, HEAP0);
1673 }
1674 else
1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1676
1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3479 feed_reverse_done (EV_A_ EV_PERIODIC);
1678 } 3480 }
1679} 3481}
1680 3482
1681static void noinline 3483/* simply recalculate all periodics */
3484/* TODO: maybe ensure that at least one event happens when jumping forward? */
3485noinline ecb_cold
3486static void
1682periodics_reschedule (EV_P) 3487periodics_reschedule (EV_P)
1683{ 3488{
1684 int i; 3489 int i;
1685 3490
1686 /* adjust periodics after time jump */ 3491 /* adjust periodics after time jump */
1689 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3494 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1690 3495
1691 if (w->reschedule_cb) 3496 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3497 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval) 3498 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3499 periodic_recalc (EV_A_ w);
1695 3500
1696 ANHE_at_set (periodics [i]); 3501 ANHE_at_cache (periodics [i]);
1697 } 3502 }
1698 3503
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 3504 reheap (periodics, periodiccnt);
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 3505}
3506#endif
3507
3508/* adjust all timers by a given offset */
3509noinline ecb_cold
3510static void
3511timers_reschedule (EV_P_ ev_tstamp adjust)
3512{
3513 int i;
3514
1701 for (i = 0; i < periodiccnt; ++i) 3515 for (i = 0; i < timercnt; ++i)
1702 upheap (periodics, i + HEAP0); 3516 {
3517 ANHE *he = timers + i + HEAP0;
3518 ANHE_w (*he)->at += adjust;
3519 ANHE_at_cache (*he);
3520 }
1703} 3521}
1704#endif
1705 3522
1706void inline_speed 3523/* fetch new monotonic and realtime times from the kernel */
3524/* also detect if there was a timejump, and act accordingly */
3525inline_speed void
1707time_update (EV_P_ ev_tstamp max_block) 3526time_update (EV_P_ ev_tstamp max_block)
1708{ 3527{
1709 int i;
1710
1711#if EV_USE_MONOTONIC 3528#if EV_USE_MONOTONIC
1712 if (expect_true (have_monotonic)) 3529 if (expect_true (have_monotonic))
1713 { 3530 {
3531 int i;
1714 ev_tstamp odiff = rtmn_diff; 3532 ev_tstamp odiff = rtmn_diff;
1715 3533
1716 mn_now = get_clock (); 3534 mn_now = get_clock ();
1717 3535
1718 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3536 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1734 * doesn't hurt either as we only do this on time-jumps or 3552 * doesn't hurt either as we only do this on time-jumps or
1735 * in the unlikely event of having been preempted here. 3553 * in the unlikely event of having been preempted here.
1736 */ 3554 */
1737 for (i = 4; --i; ) 3555 for (i = 4; --i; )
1738 { 3556 {
3557 ev_tstamp diff;
1739 rtmn_diff = ev_rt_now - mn_now; 3558 rtmn_diff = ev_rt_now - mn_now;
1740 3559
3560 diff = odiff - rtmn_diff;
3561
1741 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3562 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1742 return; /* all is well */ 3563 return; /* all is well */
1743 3564
1744 ev_rt_now = ev_time (); 3565 ev_rt_now = ev_time ();
1745 mn_now = get_clock (); 3566 mn_now = get_clock ();
1746 now_floor = mn_now; 3567 now_floor = mn_now;
1747 } 3568 }
1748 3569
3570 /* no timer adjustment, as the monotonic clock doesn't jump */
3571 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1749# if EV_PERIODIC_ENABLE 3572# if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A); 3573 periodics_reschedule (EV_A);
1751# endif 3574# endif
1752 /* no timer adjustment, as the monotonic clock doesn't jump */
1753 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1754 } 3575 }
1755 else 3576 else
1756#endif 3577#endif
1757 { 3578 {
1758 ev_rt_now = ev_time (); 3579 ev_rt_now = ev_time ();
1759 3580
1760 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3581 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1761 { 3582 {
3583 /* adjust timers. this is easy, as the offset is the same for all of them */
3584 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1762#if EV_PERIODIC_ENABLE 3585#if EV_PERIODIC_ENABLE
1763 periodics_reschedule (EV_A); 3586 periodics_reschedule (EV_A);
1764#endif 3587#endif
1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1766 for (i = 0; i < timercnt; ++i)
1767 {
1768 ANHE *he = timers + i + HEAP0;
1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1772 } 3588 }
1773 3589
1774 mn_now = ev_rt_now; 3590 mn_now = ev_rt_now;
1775 } 3591 }
1776} 3592}
1777 3593
1778void 3594int
1779ev_ref (EV_P)
1780{
1781 ++activecnt;
1782}
1783
1784void
1785ev_unref (EV_P)
1786{
1787 --activecnt;
1788}
1789
1790static int loop_done;
1791
1792void
1793ev_loop (EV_P_ int flags) 3595ev_run (EV_P_ int flags)
1794{ 3596{
3597#if EV_FEATURE_API
3598 ++loop_depth;
3599#endif
3600
3601 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3602
1795 loop_done = EVUNLOOP_CANCEL; 3603 loop_done = EVBREAK_CANCEL;
1796 3604
1797 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3605 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1798 3606
1799 do 3607 do
1800 { 3608 {
3609#if EV_VERIFY >= 2
3610 ev_verify (EV_A);
3611#endif
3612
1801#ifndef _WIN32 3613#ifndef _WIN32
1802 if (expect_false (curpid)) /* penalise the forking check even more */ 3614 if (expect_false (curpid)) /* penalise the forking check even more */
1803 if (expect_false (getpid () != curpid)) 3615 if (expect_false (getpid () != curpid))
1804 { 3616 {
1805 curpid = getpid (); 3617 curpid = getpid ();
1811 /* we might have forked, so queue fork handlers */ 3623 /* we might have forked, so queue fork handlers */
1812 if (expect_false (postfork)) 3624 if (expect_false (postfork))
1813 if (forkcnt) 3625 if (forkcnt)
1814 { 3626 {
1815 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3627 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1816 call_pending (EV_A); 3628 EV_INVOKE_PENDING;
1817 } 3629 }
1818#endif 3630#endif
1819 3631
3632#if EV_PREPARE_ENABLE
1820 /* queue prepare watchers (and execute them) */ 3633 /* queue prepare watchers (and execute them) */
1821 if (expect_false (preparecnt)) 3634 if (expect_false (preparecnt))
1822 { 3635 {
1823 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3636 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1824 call_pending (EV_A); 3637 EV_INVOKE_PENDING;
1825 } 3638 }
3639#endif
1826 3640
1827 if (expect_false (!activecnt)) 3641 if (expect_false (loop_done))
1828 break; 3642 break;
1829 3643
1830 /* we might have forked, so reify kernel state if necessary */ 3644 /* we might have forked, so reify kernel state if necessary */
1831 if (expect_false (postfork)) 3645 if (expect_false (postfork))
1832 loop_fork (EV_A); 3646 loop_fork (EV_A);
1837 /* calculate blocking time */ 3651 /* calculate blocking time */
1838 { 3652 {
1839 ev_tstamp waittime = 0.; 3653 ev_tstamp waittime = 0.;
1840 ev_tstamp sleeptime = 0.; 3654 ev_tstamp sleeptime = 0.;
1841 3655
3656 /* remember old timestamp for io_blocktime calculation */
3657 ev_tstamp prev_mn_now = mn_now;
3658
3659 /* update time to cancel out callback processing overhead */
3660 time_update (EV_A_ 1e100);
3661
3662 /* from now on, we want a pipe-wake-up */
3663 pipe_write_wanted = 1;
3664
3665 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3666
1842 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3667 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1843 { 3668 {
1844 /* update time to cancel out callback processing overhead */
1845 time_update (EV_A_ 1e100);
1846
1847 waittime = MAX_BLOCKTIME; 3669 waittime = MAX_BLOCKTIME;
1848 3670
1849 if (timercnt) 3671 if (timercnt)
1850 { 3672 {
1851 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3673 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1852 if (waittime > to) waittime = to; 3674 if (waittime > to) waittime = to;
1853 } 3675 }
1854 3676
1855#if EV_PERIODIC_ENABLE 3677#if EV_PERIODIC_ENABLE
1856 if (periodiccnt) 3678 if (periodiccnt)
1857 { 3679 {
1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3680 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1859 if (waittime > to) waittime = to; 3681 if (waittime > to) waittime = to;
1860 } 3682 }
1861#endif 3683#endif
1862 3684
3685 /* don't let timeouts decrease the waittime below timeout_blocktime */
1863 if (expect_false (waittime < timeout_blocktime)) 3686 if (expect_false (waittime < timeout_blocktime))
1864 waittime = timeout_blocktime; 3687 waittime = timeout_blocktime;
1865 3688
1866 sleeptime = waittime - backend_fudge; 3689 /* at this point, we NEED to wait, so we have to ensure */
3690 /* to pass a minimum nonzero value to the backend */
3691 if (expect_false (waittime < backend_mintime))
3692 waittime = backend_mintime;
1867 3693
3694 /* extra check because io_blocktime is commonly 0 */
1868 if (expect_true (sleeptime > io_blocktime)) 3695 if (expect_false (io_blocktime))
1869 sleeptime = io_blocktime;
1870
1871 if (sleeptime)
1872 { 3696 {
3697 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3698
3699 if (sleeptime > waittime - backend_mintime)
3700 sleeptime = waittime - backend_mintime;
3701
3702 if (expect_true (sleeptime > 0.))
3703 {
1873 ev_sleep (sleeptime); 3704 ev_sleep (sleeptime);
1874 waittime -= sleeptime; 3705 waittime -= sleeptime;
3706 }
1875 } 3707 }
1876 } 3708 }
1877 3709
3710#if EV_FEATURE_API
1878 ++loop_count; 3711 ++loop_count;
3712#endif
3713 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1879 backend_poll (EV_A_ waittime); 3714 backend_poll (EV_A_ waittime);
3715 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3716
3717 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3718
3719 ECB_MEMORY_FENCE_ACQUIRE;
3720 if (pipe_write_skipped)
3721 {
3722 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3723 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3724 }
3725
1880 3726
1881 /* update ev_rt_now, do magic */ 3727 /* update ev_rt_now, do magic */
1882 time_update (EV_A_ waittime + sleeptime); 3728 time_update (EV_A_ waittime + sleeptime);
1883 } 3729 }
1884 3730
1891#if EV_IDLE_ENABLE 3737#if EV_IDLE_ENABLE
1892 /* queue idle watchers unless other events are pending */ 3738 /* queue idle watchers unless other events are pending */
1893 idle_reify (EV_A); 3739 idle_reify (EV_A);
1894#endif 3740#endif
1895 3741
3742#if EV_CHECK_ENABLE
1896 /* queue check watchers, to be executed first */ 3743 /* queue check watchers, to be executed first */
1897 if (expect_false (checkcnt)) 3744 if (expect_false (checkcnt))
1898 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3745 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3746#endif
1899 3747
1900 call_pending (EV_A); 3748 EV_INVOKE_PENDING;
1901 } 3749 }
1902 while (expect_true ( 3750 while (expect_true (
1903 activecnt 3751 activecnt
1904 && !loop_done 3752 && !loop_done
1905 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3753 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1906 )); 3754 ));
1907 3755
1908 if (loop_done == EVUNLOOP_ONE) 3756 if (loop_done == EVBREAK_ONE)
1909 loop_done = EVUNLOOP_CANCEL; 3757 loop_done = EVBREAK_CANCEL;
1910}
1911 3758
3759#if EV_FEATURE_API
3760 --loop_depth;
3761#endif
3762
3763 return activecnt;
3764}
3765
1912void 3766void
1913ev_unloop (EV_P_ int how) 3767ev_break (EV_P_ int how) EV_NOEXCEPT
1914{ 3768{
1915 loop_done = how; 3769 loop_done = how;
1916} 3770}
1917 3771
3772void
3773ev_ref (EV_P) EV_NOEXCEPT
3774{
3775 ++activecnt;
3776}
3777
3778void
3779ev_unref (EV_P) EV_NOEXCEPT
3780{
3781 --activecnt;
3782}
3783
3784void
3785ev_now_update (EV_P) EV_NOEXCEPT
3786{
3787 time_update (EV_A_ 1e100);
3788}
3789
3790void
3791ev_suspend (EV_P) EV_NOEXCEPT
3792{
3793 ev_now_update (EV_A);
3794}
3795
3796void
3797ev_resume (EV_P) EV_NOEXCEPT
3798{
3799 ev_tstamp mn_prev = mn_now;
3800
3801 ev_now_update (EV_A);
3802 timers_reschedule (EV_A_ mn_now - mn_prev);
3803#if EV_PERIODIC_ENABLE
3804 /* TODO: really do this? */
3805 periodics_reschedule (EV_A);
3806#endif
3807}
3808
1918/*****************************************************************************/ 3809/*****************************************************************************/
3810/* singly-linked list management, used when the expected list length is short */
1919 3811
1920void inline_size 3812inline_size void
1921wlist_add (WL *head, WL elem) 3813wlist_add (WL *head, WL elem)
1922{ 3814{
1923 elem->next = *head; 3815 elem->next = *head;
1924 *head = elem; 3816 *head = elem;
1925} 3817}
1926 3818
1927void inline_size 3819inline_size void
1928wlist_del (WL *head, WL elem) 3820wlist_del (WL *head, WL elem)
1929{ 3821{
1930 while (*head) 3822 while (*head)
1931 { 3823 {
1932 if (*head == elem) 3824 if (expect_true (*head == elem))
1933 { 3825 {
1934 *head = elem->next; 3826 *head = elem->next;
1935 return; 3827 break;
1936 } 3828 }
1937 3829
1938 head = &(*head)->next; 3830 head = &(*head)->next;
1939 } 3831 }
1940} 3832}
1941 3833
1942void inline_speed 3834/* internal, faster, version of ev_clear_pending */
3835inline_speed void
1943clear_pending (EV_P_ W w) 3836clear_pending (EV_P_ W w)
1944{ 3837{
1945 if (w->pending) 3838 if (w->pending)
1946 { 3839 {
1947 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3840 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1948 w->pending = 0; 3841 w->pending = 0;
1949 } 3842 }
1950} 3843}
1951 3844
1952int 3845int
1953ev_clear_pending (EV_P_ void *w) 3846ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
1954{ 3847{
1955 W w_ = (W)w; 3848 W w_ = (W)w;
1956 int pending = w_->pending; 3849 int pending = w_->pending;
1957 3850
1958 if (expect_true (pending)) 3851 if (expect_true (pending))
1959 { 3852 {
1960 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3853 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3854 p->w = (W)&pending_w;
1961 w_->pending = 0; 3855 w_->pending = 0;
1962 p->w = 0;
1963 return p->events; 3856 return p->events;
1964 } 3857 }
1965 else 3858 else
1966 return 0; 3859 return 0;
1967} 3860}
1968 3861
1969void inline_size 3862inline_size void
1970pri_adjust (EV_P_ W w) 3863pri_adjust (EV_P_ W w)
1971{ 3864{
1972 int pri = w->priority; 3865 int pri = ev_priority (w);
1973 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3866 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1974 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3867 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1975 w->priority = pri; 3868 ev_set_priority (w, pri);
1976} 3869}
1977 3870
1978void inline_speed 3871inline_speed void
1979ev_start (EV_P_ W w, int active) 3872ev_start (EV_P_ W w, int active)
1980{ 3873{
1981 pri_adjust (EV_A_ w); 3874 pri_adjust (EV_A_ w);
1982 w->active = active; 3875 w->active = active;
1983 ev_ref (EV_A); 3876 ev_ref (EV_A);
1984} 3877}
1985 3878
1986void inline_size 3879inline_size void
1987ev_stop (EV_P_ W w) 3880ev_stop (EV_P_ W w)
1988{ 3881{
1989 ev_unref (EV_A); 3882 ev_unref (EV_A);
1990 w->active = 0; 3883 w->active = 0;
1991} 3884}
1992 3885
1993/*****************************************************************************/ 3886/*****************************************************************************/
1994 3887
1995void noinline 3888noinline
3889void
1996ev_io_start (EV_P_ ev_io *w) 3890ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
1997{ 3891{
1998 int fd = w->fd; 3892 int fd = w->fd;
1999 3893
2000 if (expect_false (ev_is_active (w))) 3894 if (expect_false (ev_is_active (w)))
2001 return; 3895 return;
2002 3896
2003 assert (("ev_io_start called with negative fd", fd >= 0)); 3897 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3898 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3899
3900 EV_FREQUENT_CHECK;
2004 3901
2005 ev_start (EV_A_ (W)w, 1); 3902 ev_start (EV_A_ (W)w, 1);
2006 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3903 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
2007 wlist_add (&anfds[fd].head, (WL)w); 3904 wlist_add (&anfds[fd].head, (WL)w);
2008 3905
3906 /* common bug, apparently */
3907 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3908
2009 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3909 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2010 w->events &= ~EV_IOFDSET; 3910 w->events &= ~EV__IOFDSET;
2011}
2012 3911
3912 EV_FREQUENT_CHECK;
3913}
3914
2013void noinline 3915noinline
3916void
2014ev_io_stop (EV_P_ ev_io *w) 3917ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
2015{ 3918{
2016 clear_pending (EV_A_ (W)w); 3919 clear_pending (EV_A_ (W)w);
2017 if (expect_false (!ev_is_active (w))) 3920 if (expect_false (!ev_is_active (w)))
2018 return; 3921 return;
2019 3922
2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3923 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3924
3925 EV_FREQUENT_CHECK;
2021 3926
2022 wlist_del (&anfds[w->fd].head, (WL)w); 3927 wlist_del (&anfds[w->fd].head, (WL)w);
2023 ev_stop (EV_A_ (W)w); 3928 ev_stop (EV_A_ (W)w);
2024 3929
2025 fd_change (EV_A_ w->fd, 1); 3930 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2026}
2027 3931
3932 EV_FREQUENT_CHECK;
3933}
3934
2028void noinline 3935noinline
3936void
2029ev_timer_start (EV_P_ ev_timer *w) 3937ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
2030{ 3938{
2031 if (expect_false (ev_is_active (w))) 3939 if (expect_false (ev_is_active (w)))
2032 return; 3940 return;
2033 3941
2034 ev_at (w) += mn_now; 3942 ev_at (w) += mn_now;
2035 3943
2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3944 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2037 3945
3946 EV_FREQUENT_CHECK;
3947
3948 ++timercnt;
2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 3949 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 3950 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
2040 ANHE_w (timers [ev_active (w)]) = (WT)w; 3951 ANHE_w (timers [ev_active (w)]) = (WT)w;
2041 ANHE_at_set (timers [ev_active (w)]); 3952 ANHE_at_cache (timers [ev_active (w)]);
2042 upheap (timers, ev_active (w)); 3953 upheap (timers, ev_active (w));
2043 3954
3955 EV_FREQUENT_CHECK;
3956
2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3957 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2045} 3958}
2046 3959
2047void noinline 3960noinline
3961void
2048ev_timer_stop (EV_P_ ev_timer *w) 3962ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
2049{ 3963{
2050 clear_pending (EV_A_ (W)w); 3964 clear_pending (EV_A_ (W)w);
2051 if (expect_false (!ev_is_active (w))) 3965 if (expect_false (!ev_is_active (w)))
2052 return; 3966 return;
2053 3967
3968 EV_FREQUENT_CHECK;
3969
2054 { 3970 {
2055 int active = ev_active (w); 3971 int active = ev_active (w);
2056 3972
2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3973 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2058 3974
3975 --timercnt;
3976
2059 if (expect_true (active < timercnt + HEAP0 - 1)) 3977 if (expect_true (active < timercnt + HEAP0))
2060 { 3978 {
2061 timers [active] = timers [timercnt + HEAP0 - 1]; 3979 timers [active] = timers [timercnt + HEAP0];
2062 adjustheap (timers, timercnt, active); 3980 adjustheap (timers, timercnt, active);
2063 } 3981 }
2064
2065 --timercnt;
2066 } 3982 }
2067 3983
2068 ev_at (w) -= mn_now; 3984 ev_at (w) -= mn_now;
2069 3985
2070 ev_stop (EV_A_ (W)w); 3986 ev_stop (EV_A_ (W)w);
2071}
2072 3987
3988 EV_FREQUENT_CHECK;
3989}
3990
2073void noinline 3991noinline
3992void
2074ev_timer_again (EV_P_ ev_timer *w) 3993ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
2075{ 3994{
3995 EV_FREQUENT_CHECK;
3996
3997 clear_pending (EV_A_ (W)w);
3998
2076 if (ev_is_active (w)) 3999 if (ev_is_active (w))
2077 { 4000 {
2078 if (w->repeat) 4001 if (w->repeat)
2079 { 4002 {
2080 ev_at (w) = mn_now + w->repeat; 4003 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]); 4004 ANHE_at_cache (timers [ev_active (w)]);
2082 adjustheap (timers, timercnt, ev_active (w)); 4005 adjustheap (timers, timercnt, ev_active (w));
2083 } 4006 }
2084 else 4007 else
2085 ev_timer_stop (EV_A_ w); 4008 ev_timer_stop (EV_A_ w);
2086 } 4009 }
2087 else if (w->repeat) 4010 else if (w->repeat)
2088 { 4011 {
2089 ev_at (w) = w->repeat; 4012 ev_at (w) = w->repeat;
2090 ev_timer_start (EV_A_ w); 4013 ev_timer_start (EV_A_ w);
2091 } 4014 }
4015
4016 EV_FREQUENT_CHECK;
4017}
4018
4019ev_tstamp
4020ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4021{
4022 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2092} 4023}
2093 4024
2094#if EV_PERIODIC_ENABLE 4025#if EV_PERIODIC_ENABLE
2095void noinline 4026noinline
4027void
2096ev_periodic_start (EV_P_ ev_periodic *w) 4028ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
2097{ 4029{
2098 if (expect_false (ev_is_active (w))) 4030 if (expect_false (ev_is_active (w)))
2099 return; 4031 return;
2100 4032
2101 if (w->reschedule_cb) 4033 if (w->reschedule_cb)
2102 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 4034 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2103 else if (w->interval) 4035 else if (w->interval)
2104 { 4036 {
2105 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4037 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2106 /* this formula differs from the one in periodic_reify because we do not always round up */ 4038 periodic_recalc (EV_A_ w);
2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2108 } 4039 }
2109 else 4040 else
2110 ev_at (w) = w->offset; 4041 ev_at (w) = w->offset;
2111 4042
4043 EV_FREQUENT_CHECK;
4044
4045 ++periodiccnt;
2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 4046 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 4047 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
2114 ANHE_w (periodics [ev_active (w)]) = (WT)w; 4048 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2115 ANHE_at_set (periodics [ev_active (w)]); 4049 ANHE_at_cache (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w)); 4050 upheap (periodics, ev_active (w));
2117 4051
4052 EV_FREQUENT_CHECK;
4053
2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 4054 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2119} 4055}
2120 4056
2121void noinline 4057noinline
4058void
2122ev_periodic_stop (EV_P_ ev_periodic *w) 4059ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
2123{ 4060{
2124 clear_pending (EV_A_ (W)w); 4061 clear_pending (EV_A_ (W)w);
2125 if (expect_false (!ev_is_active (w))) 4062 if (expect_false (!ev_is_active (w)))
2126 return; 4063 return;
2127 4064
4065 EV_FREQUENT_CHECK;
4066
2128 { 4067 {
2129 int active = ev_active (w); 4068 int active = ev_active (w);
2130 4069
2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 4070 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2132 4071
4072 --periodiccnt;
4073
2133 if (expect_true (active < periodiccnt + HEAP0 - 1)) 4074 if (expect_true (active < periodiccnt + HEAP0))
2134 { 4075 {
2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 4076 periodics [active] = periodics [periodiccnt + HEAP0];
2136 adjustheap (periodics, periodiccnt, active); 4077 adjustheap (periodics, periodiccnt, active);
2137 } 4078 }
2138
2139 --periodiccnt;
2140 } 4079 }
2141 4080
2142 ev_stop (EV_A_ (W)w); 4081 ev_stop (EV_A_ (W)w);
2143}
2144 4082
4083 EV_FREQUENT_CHECK;
4084}
4085
2145void noinline 4086noinline
4087void
2146ev_periodic_again (EV_P_ ev_periodic *w) 4088ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
2147{ 4089{
2148 /* TODO: use adjustheap and recalculation */ 4090 /* TODO: use adjustheap and recalculation */
2149 ev_periodic_stop (EV_A_ w); 4091 ev_periodic_stop (EV_A_ w);
2150 ev_periodic_start (EV_A_ w); 4092 ev_periodic_start (EV_A_ w);
2151} 4093}
2153 4095
2154#ifndef SA_RESTART 4096#ifndef SA_RESTART
2155# define SA_RESTART 0 4097# define SA_RESTART 0
2156#endif 4098#endif
2157 4099
4100#if EV_SIGNAL_ENABLE
4101
2158void noinline 4102noinline
4103void
2159ev_signal_start (EV_P_ ev_signal *w) 4104ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
2160{ 4105{
2161#if EV_MULTIPLICITY
2162 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2163#endif
2164 if (expect_false (ev_is_active (w))) 4106 if (expect_false (ev_is_active (w)))
2165 return; 4107 return;
2166 4108
2167 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4109 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2168 4110
2169 evpipe_init (EV_A); 4111#if EV_MULTIPLICITY
4112 assert (("libev: a signal must not be attached to two different loops",
4113 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2170 4114
4115 signals [w->signum - 1].loop = EV_A;
4116 ECB_MEMORY_FENCE_RELEASE;
4117#endif
4118
4119 EV_FREQUENT_CHECK;
4120
4121#if EV_USE_SIGNALFD
4122 if (sigfd == -2)
2171 { 4123 {
2172#ifndef _WIN32 4124 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2173 sigset_t full, prev; 4125 if (sigfd < 0 && errno == EINVAL)
2174 sigfillset (&full); 4126 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2175 sigprocmask (SIG_SETMASK, &full, &prev);
2176#endif
2177 4127
2178 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4128 if (sigfd >= 0)
4129 {
4130 fd_intern (sigfd); /* doing it twice will not hurt */
2179 4131
2180#ifndef _WIN32 4132 sigemptyset (&sigfd_set);
2181 sigprocmask (SIG_SETMASK, &prev, 0); 4133
2182#endif 4134 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4135 ev_set_priority (&sigfd_w, EV_MAXPRI);
4136 ev_io_start (EV_A_ &sigfd_w);
4137 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4138 }
2183 } 4139 }
4140
4141 if (sigfd >= 0)
4142 {
4143 /* TODO: check .head */
4144 sigaddset (&sigfd_set, w->signum);
4145 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4146
4147 signalfd (sigfd, &sigfd_set, 0);
4148 }
4149#endif
2184 4150
2185 ev_start (EV_A_ (W)w, 1); 4151 ev_start (EV_A_ (W)w, 1);
2186 wlist_add (&signals [w->signum - 1].head, (WL)w); 4152 wlist_add (&signals [w->signum - 1].head, (WL)w);
2187 4153
2188 if (!((WL)w)->next) 4154 if (!((WL)w)->next)
4155# if EV_USE_SIGNALFD
4156 if (sigfd < 0) /*TODO*/
4157# endif
2189 { 4158 {
2190#if _WIN32 4159# ifdef _WIN32
4160 evpipe_init (EV_A);
4161
2191 signal (w->signum, ev_sighandler); 4162 signal (w->signum, ev_sighandler);
2192#else 4163# else
2193 struct sigaction sa; 4164 struct sigaction sa;
4165
4166 evpipe_init (EV_A);
4167
2194 sa.sa_handler = ev_sighandler; 4168 sa.sa_handler = ev_sighandler;
2195 sigfillset (&sa.sa_mask); 4169 sigfillset (&sa.sa_mask);
2196 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4170 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2197 sigaction (w->signum, &sa, 0); 4171 sigaction (w->signum, &sa, 0);
4172
4173 if (origflags & EVFLAG_NOSIGMASK)
4174 {
4175 sigemptyset (&sa.sa_mask);
4176 sigaddset (&sa.sa_mask, w->signum);
4177 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4178 }
2198#endif 4179#endif
2199 } 4180 }
2200}
2201 4181
4182 EV_FREQUENT_CHECK;
4183}
4184
2202void noinline 4185noinline
4186void
2203ev_signal_stop (EV_P_ ev_signal *w) 4187ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
2204{ 4188{
2205 clear_pending (EV_A_ (W)w); 4189 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w))) 4190 if (expect_false (!ev_is_active (w)))
2207 return; 4191 return;
2208 4192
4193 EV_FREQUENT_CHECK;
4194
2209 wlist_del (&signals [w->signum - 1].head, (WL)w); 4195 wlist_del (&signals [w->signum - 1].head, (WL)w);
2210 ev_stop (EV_A_ (W)w); 4196 ev_stop (EV_A_ (W)w);
2211 4197
2212 if (!signals [w->signum - 1].head) 4198 if (!signals [w->signum - 1].head)
2213 signal (w->signum, SIG_DFL); 4199 {
2214}
2215
2216void
2217ev_child_start (EV_P_ ev_child *w)
2218{
2219#if EV_MULTIPLICITY 4200#if EV_MULTIPLICITY
4201 signals [w->signum - 1].loop = 0; /* unattach from signal */
4202#endif
4203#if EV_USE_SIGNALFD
4204 if (sigfd >= 0)
4205 {
4206 sigset_t ss;
4207
4208 sigemptyset (&ss);
4209 sigaddset (&ss, w->signum);
4210 sigdelset (&sigfd_set, w->signum);
4211
4212 signalfd (sigfd, &sigfd_set, 0);
4213 sigprocmask (SIG_UNBLOCK, &ss, 0);
4214 }
4215 else
4216#endif
4217 signal (w->signum, SIG_DFL);
4218 }
4219
4220 EV_FREQUENT_CHECK;
4221}
4222
4223#endif
4224
4225#if EV_CHILD_ENABLE
4226
4227void
4228ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4229{
4230#if EV_MULTIPLICITY
2220 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4231 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2221#endif 4232#endif
2222 if (expect_false (ev_is_active (w))) 4233 if (expect_false (ev_is_active (w)))
2223 return; 4234 return;
2224 4235
4236 EV_FREQUENT_CHECK;
4237
2225 ev_start (EV_A_ (W)w, 1); 4238 ev_start (EV_A_ (W)w, 1);
2226 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4239 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2227}
2228 4240
4241 EV_FREQUENT_CHECK;
4242}
4243
2229void 4244void
2230ev_child_stop (EV_P_ ev_child *w) 4245ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
2231{ 4246{
2232 clear_pending (EV_A_ (W)w); 4247 clear_pending (EV_A_ (W)w);
2233 if (expect_false (!ev_is_active (w))) 4248 if (expect_false (!ev_is_active (w)))
2234 return; 4249 return;
2235 4250
4251 EV_FREQUENT_CHECK;
4252
2236 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4253 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2237 ev_stop (EV_A_ (W)w); 4254 ev_stop (EV_A_ (W)w);
4255
4256 EV_FREQUENT_CHECK;
2238} 4257}
4258
4259#endif
2239 4260
2240#if EV_STAT_ENABLE 4261#if EV_STAT_ENABLE
2241 4262
2242# ifdef _WIN32 4263# ifdef _WIN32
2243# undef lstat 4264# undef lstat
2244# define lstat(a,b) _stati64 (a,b) 4265# define lstat(a,b) _stati64 (a,b)
2245# endif 4266# endif
2246 4267
2247#define DEF_STAT_INTERVAL 5.0074891 4268#define DEF_STAT_INTERVAL 5.0074891
4269#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2248#define MIN_STAT_INTERVAL 0.1074891 4270#define MIN_STAT_INTERVAL 0.1074891
2249 4271
2250static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4272noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2251 4273
2252#if EV_USE_INOTIFY 4274#if EV_USE_INOTIFY
2253# define EV_INOTIFY_BUFSIZE 8192
2254 4275
2255static void noinline 4276/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4277# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4278
4279noinline
4280static void
2256infy_add (EV_P_ ev_stat *w) 4281infy_add (EV_P_ ev_stat *w)
2257{ 4282{
2258 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4283 w->wd = inotify_add_watch (fs_fd, w->path,
4284 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4285 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4286 | IN_DONT_FOLLOW | IN_MASK_ADD);
2259 4287
2260 if (w->wd < 0) 4288 if (w->wd >= 0)
4289 {
4290 struct statfs sfs;
4291
4292 /* now local changes will be tracked by inotify, but remote changes won't */
4293 /* unless the filesystem is known to be local, we therefore still poll */
4294 /* also do poll on <2.6.25, but with normal frequency */
4295
4296 if (!fs_2625)
4297 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4298 else if (!statfs (w->path, &sfs)
4299 && (sfs.f_type == 0x1373 /* devfs */
4300 || sfs.f_type == 0x4006 /* fat */
4301 || sfs.f_type == 0x4d44 /* msdos */
4302 || sfs.f_type == 0xEF53 /* ext2/3 */
4303 || sfs.f_type == 0x72b6 /* jffs2 */
4304 || sfs.f_type == 0x858458f6 /* ramfs */
4305 || sfs.f_type == 0x5346544e /* ntfs */
4306 || sfs.f_type == 0x3153464a /* jfs */
4307 || sfs.f_type == 0x9123683e /* btrfs */
4308 || sfs.f_type == 0x52654973 /* reiser3 */
4309 || sfs.f_type == 0x01021994 /* tmpfs */
4310 || sfs.f_type == 0x58465342 /* xfs */))
4311 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4312 else
4313 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2261 { 4314 }
2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4315 else
4316 {
4317 /* can't use inotify, continue to stat */
4318 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2263 4319
2264 /* monitor some parent directory for speedup hints */ 4320 /* if path is not there, monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */ 4321 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2266 /* but an efficiency issue only */ 4322 /* but an efficiency issue only */
2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4323 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2268 { 4324 {
2269 char path [4096]; 4325 char path [4096];
2270 strcpy (path, w->path); 4326 strcpy (path, w->path);
2274 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4330 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2275 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4331 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2276 4332
2277 char *pend = strrchr (path, '/'); 4333 char *pend = strrchr (path, '/');
2278 4334
2279 if (!pend) 4335 if (!pend || pend == path)
2280 break; /* whoops, no '/', complain to your admin */ 4336 break;
2281 4337
2282 *pend = 0; 4338 *pend = 0;
2283 w->wd = inotify_add_watch (fs_fd, path, mask); 4339 w->wd = inotify_add_watch (fs_fd, path, mask);
2284 } 4340 }
2285 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4341 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2286 } 4342 }
2287 } 4343 }
2288 else
2289 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2290 4344
2291 if (w->wd >= 0) 4345 if (w->wd >= 0)
2292 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4346 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2293}
2294 4347
2295static void noinline 4348 /* now re-arm timer, if required */
4349 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4350 ev_timer_again (EV_A_ &w->timer);
4351 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4352}
4353
4354noinline
4355static void
2296infy_del (EV_P_ ev_stat *w) 4356infy_del (EV_P_ ev_stat *w)
2297{ 4357{
2298 int slot; 4358 int slot;
2299 int wd = w->wd; 4359 int wd = w->wd;
2300 4360
2301 if (wd < 0) 4361 if (wd < 0)
2302 return; 4362 return;
2303 4363
2304 w->wd = -2; 4364 w->wd = -2;
2305 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4365 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2306 wlist_del (&fs_hash [slot].head, (WL)w); 4366 wlist_del (&fs_hash [slot].head, (WL)w);
2307 4367
2308 /* remove this watcher, if others are watching it, they will rearm */ 4368 /* remove this watcher, if others are watching it, they will rearm */
2309 inotify_rm_watch (fs_fd, wd); 4369 inotify_rm_watch (fs_fd, wd);
2310} 4370}
2311 4371
2312static void noinline 4372noinline
4373static void
2313infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4374infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2314{ 4375{
2315 if (slot < 0) 4376 if (slot < 0)
2316 /* overflow, need to check for all hahs slots */ 4377 /* overflow, need to check for all hash slots */
2317 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4378 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2318 infy_wd (EV_A_ slot, wd, ev); 4379 infy_wd (EV_A_ slot, wd, ev);
2319 else 4380 else
2320 { 4381 {
2321 WL w_; 4382 WL w_;
2322 4383
2323 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4384 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2324 { 4385 {
2325 ev_stat *w = (ev_stat *)w_; 4386 ev_stat *w = (ev_stat *)w_;
2326 w_ = w_->next; /* lets us remove this watcher and all before it */ 4387 w_ = w_->next; /* lets us remove this watcher and all before it */
2327 4388
2328 if (w->wd == wd || wd == -1) 4389 if (w->wd == wd || wd == -1)
2329 { 4390 {
2330 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4391 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2331 { 4392 {
4393 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2332 w->wd = -1; 4394 w->wd = -1;
2333 infy_add (EV_A_ w); /* re-add, no matter what */ 4395 infy_add (EV_A_ w); /* re-add, no matter what */
2334 } 4396 }
2335 4397
2336 stat_timer_cb (EV_A_ &w->timer, 0); 4398 stat_timer_cb (EV_A_ &w->timer, 0);
2341 4403
2342static void 4404static void
2343infy_cb (EV_P_ ev_io *w, int revents) 4405infy_cb (EV_P_ ev_io *w, int revents)
2344{ 4406{
2345 char buf [EV_INOTIFY_BUFSIZE]; 4407 char buf [EV_INOTIFY_BUFSIZE];
2346 struct inotify_event *ev = (struct inotify_event *)buf;
2347 int ofs; 4408 int ofs;
2348 int len = read (fs_fd, buf, sizeof (buf)); 4409 int len = read (fs_fd, buf, sizeof (buf));
2349 4410
2350 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4411 for (ofs = 0; ofs < len; )
4412 {
4413 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2351 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4414 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4415 ofs += sizeof (struct inotify_event) + ev->len;
4416 }
2352} 4417}
2353 4418
2354void inline_size 4419inline_size ecb_cold
4420void
4421ev_check_2625 (EV_P)
4422{
4423 /* kernels < 2.6.25 are borked
4424 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4425 */
4426 if (ev_linux_version () < 0x020619)
4427 return;
4428
4429 fs_2625 = 1;
4430}
4431
4432inline_size int
4433infy_newfd (void)
4434{
4435#if defined IN_CLOEXEC && defined IN_NONBLOCK
4436 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4437 if (fd >= 0)
4438 return fd;
4439#endif
4440 return inotify_init ();
4441}
4442
4443inline_size void
2355infy_init (EV_P) 4444infy_init (EV_P)
2356{ 4445{
2357 if (fs_fd != -2) 4446 if (fs_fd != -2)
2358 return; 4447 return;
2359 4448
4449 fs_fd = -1;
4450
4451 ev_check_2625 (EV_A);
4452
2360 fs_fd = inotify_init (); 4453 fs_fd = infy_newfd ();
2361 4454
2362 if (fs_fd >= 0) 4455 if (fs_fd >= 0)
2363 { 4456 {
4457 fd_intern (fs_fd);
2364 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4458 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2365 ev_set_priority (&fs_w, EV_MAXPRI); 4459 ev_set_priority (&fs_w, EV_MAXPRI);
2366 ev_io_start (EV_A_ &fs_w); 4460 ev_io_start (EV_A_ &fs_w);
4461 ev_unref (EV_A);
2367 } 4462 }
2368} 4463}
2369 4464
2370void inline_size 4465inline_size void
2371infy_fork (EV_P) 4466infy_fork (EV_P)
2372{ 4467{
2373 int slot; 4468 int slot;
2374 4469
2375 if (fs_fd < 0) 4470 if (fs_fd < 0)
2376 return; 4471 return;
2377 4472
4473 ev_ref (EV_A);
4474 ev_io_stop (EV_A_ &fs_w);
2378 close (fs_fd); 4475 close (fs_fd);
2379 fs_fd = inotify_init (); 4476 fs_fd = infy_newfd ();
2380 4477
4478 if (fs_fd >= 0)
4479 {
4480 fd_intern (fs_fd);
4481 ev_io_set (&fs_w, fs_fd, EV_READ);
4482 ev_io_start (EV_A_ &fs_w);
4483 ev_unref (EV_A);
4484 }
4485
2381 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4486 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2382 { 4487 {
2383 WL w_ = fs_hash [slot].head; 4488 WL w_ = fs_hash [slot].head;
2384 fs_hash [slot].head = 0; 4489 fs_hash [slot].head = 0;
2385 4490
2386 while (w_) 4491 while (w_)
2391 w->wd = -1; 4496 w->wd = -1;
2392 4497
2393 if (fs_fd >= 0) 4498 if (fs_fd >= 0)
2394 infy_add (EV_A_ w); /* re-add, no matter what */ 4499 infy_add (EV_A_ w); /* re-add, no matter what */
2395 else 4500 else
4501 {
4502 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4503 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2396 ev_timer_start (EV_A_ &w->timer); 4504 ev_timer_again (EV_A_ &w->timer);
4505 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4506 }
2397 } 4507 }
2398
2399 } 4508 }
2400} 4509}
2401 4510
2402#endif 4511#endif
2403 4512
4513#ifdef _WIN32
4514# define EV_LSTAT(p,b) _stati64 (p, b)
4515#else
4516# define EV_LSTAT(p,b) lstat (p, b)
4517#endif
4518
2404void 4519void
2405ev_stat_stat (EV_P_ ev_stat *w) 4520ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2406{ 4521{
2407 if (lstat (w->path, &w->attr) < 0) 4522 if (lstat (w->path, &w->attr) < 0)
2408 w->attr.st_nlink = 0; 4523 w->attr.st_nlink = 0;
2409 else if (!w->attr.st_nlink) 4524 else if (!w->attr.st_nlink)
2410 w->attr.st_nlink = 1; 4525 w->attr.st_nlink = 1;
2411} 4526}
2412 4527
2413static void noinline 4528noinline
4529static void
2414stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4530stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2415{ 4531{
2416 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4532 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2417 4533
2418 /* we copy this here each the time so that */ 4534 ev_statdata prev = w->attr;
2419 /* prev has the old value when the callback gets invoked */
2420 w->prev = w->attr;
2421 ev_stat_stat (EV_A_ w); 4535 ev_stat_stat (EV_A_ w);
2422 4536
2423 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4537 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2424 if ( 4538 if (
2425 w->prev.st_dev != w->attr.st_dev 4539 prev.st_dev != w->attr.st_dev
2426 || w->prev.st_ino != w->attr.st_ino 4540 || prev.st_ino != w->attr.st_ino
2427 || w->prev.st_mode != w->attr.st_mode 4541 || prev.st_mode != w->attr.st_mode
2428 || w->prev.st_nlink != w->attr.st_nlink 4542 || prev.st_nlink != w->attr.st_nlink
2429 || w->prev.st_uid != w->attr.st_uid 4543 || prev.st_uid != w->attr.st_uid
2430 || w->prev.st_gid != w->attr.st_gid 4544 || prev.st_gid != w->attr.st_gid
2431 || w->prev.st_rdev != w->attr.st_rdev 4545 || prev.st_rdev != w->attr.st_rdev
2432 || w->prev.st_size != w->attr.st_size 4546 || prev.st_size != w->attr.st_size
2433 || w->prev.st_atime != w->attr.st_atime 4547 || prev.st_atime != w->attr.st_atime
2434 || w->prev.st_mtime != w->attr.st_mtime 4548 || prev.st_mtime != w->attr.st_mtime
2435 || w->prev.st_ctime != w->attr.st_ctime 4549 || prev.st_ctime != w->attr.st_ctime
2436 ) { 4550 ) {
4551 /* we only update w->prev on actual differences */
4552 /* in case we test more often than invoke the callback, */
4553 /* to ensure that prev is always different to attr */
4554 w->prev = prev;
4555
2437 #if EV_USE_INOTIFY 4556 #if EV_USE_INOTIFY
4557 if (fs_fd >= 0)
4558 {
2438 infy_del (EV_A_ w); 4559 infy_del (EV_A_ w);
2439 infy_add (EV_A_ w); 4560 infy_add (EV_A_ w);
2440 ev_stat_stat (EV_A_ w); /* avoid race... */ 4561 ev_stat_stat (EV_A_ w); /* avoid race... */
4562 }
2441 #endif 4563 #endif
2442 4564
2443 ev_feed_event (EV_A_ w, EV_STAT); 4565 ev_feed_event (EV_A_ w, EV_STAT);
2444 } 4566 }
2445} 4567}
2446 4568
2447void 4569void
2448ev_stat_start (EV_P_ ev_stat *w) 4570ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2449{ 4571{
2450 if (expect_false (ev_is_active (w))) 4572 if (expect_false (ev_is_active (w)))
2451 return; 4573 return;
2452 4574
2453 /* since we use memcmp, we need to clear any padding data etc. */
2454 memset (&w->prev, 0, sizeof (ev_statdata));
2455 memset (&w->attr, 0, sizeof (ev_statdata));
2456
2457 ev_stat_stat (EV_A_ w); 4575 ev_stat_stat (EV_A_ w);
2458 4576
4577 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2459 if (w->interval < MIN_STAT_INTERVAL) 4578 w->interval = MIN_STAT_INTERVAL;
2460 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2461 4579
2462 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4580 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2463 ev_set_priority (&w->timer, ev_priority (w)); 4581 ev_set_priority (&w->timer, ev_priority (w));
2464 4582
2465#if EV_USE_INOTIFY 4583#if EV_USE_INOTIFY
2466 infy_init (EV_A); 4584 infy_init (EV_A);
2467 4585
2468 if (fs_fd >= 0) 4586 if (fs_fd >= 0)
2469 infy_add (EV_A_ w); 4587 infy_add (EV_A_ w);
2470 else 4588 else
2471#endif 4589#endif
4590 {
2472 ev_timer_start (EV_A_ &w->timer); 4591 ev_timer_again (EV_A_ &w->timer);
4592 ev_unref (EV_A);
4593 }
2473 4594
2474 ev_start (EV_A_ (W)w, 1); 4595 ev_start (EV_A_ (W)w, 1);
2475}
2476 4596
4597 EV_FREQUENT_CHECK;
4598}
4599
2477void 4600void
2478ev_stat_stop (EV_P_ ev_stat *w) 4601ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2479{ 4602{
2480 clear_pending (EV_A_ (W)w); 4603 clear_pending (EV_A_ (W)w);
2481 if (expect_false (!ev_is_active (w))) 4604 if (expect_false (!ev_is_active (w)))
2482 return; 4605 return;
2483 4606
4607 EV_FREQUENT_CHECK;
4608
2484#if EV_USE_INOTIFY 4609#if EV_USE_INOTIFY
2485 infy_del (EV_A_ w); 4610 infy_del (EV_A_ w);
2486#endif 4611#endif
4612
4613 if (ev_is_active (&w->timer))
4614 {
4615 ev_ref (EV_A);
2487 ev_timer_stop (EV_A_ &w->timer); 4616 ev_timer_stop (EV_A_ &w->timer);
4617 }
2488 4618
2489 ev_stop (EV_A_ (W)w); 4619 ev_stop (EV_A_ (W)w);
4620
4621 EV_FREQUENT_CHECK;
2490} 4622}
2491#endif 4623#endif
2492 4624
2493#if EV_IDLE_ENABLE 4625#if EV_IDLE_ENABLE
2494void 4626void
2495ev_idle_start (EV_P_ ev_idle *w) 4627ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2496{ 4628{
2497 if (expect_false (ev_is_active (w))) 4629 if (expect_false (ev_is_active (w)))
2498 return; 4630 return;
2499 4631
2500 pri_adjust (EV_A_ (W)w); 4632 pri_adjust (EV_A_ (W)w);
2501 4633
4634 EV_FREQUENT_CHECK;
4635
2502 { 4636 {
2503 int active = ++idlecnt [ABSPRI (w)]; 4637 int active = ++idlecnt [ABSPRI (w)];
2504 4638
2505 ++idleall; 4639 ++idleall;
2506 ev_start (EV_A_ (W)w, active); 4640 ev_start (EV_A_ (W)w, active);
2507 4641
2508 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4642 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
2509 idles [ABSPRI (w)][active - 1] = w; 4643 idles [ABSPRI (w)][active - 1] = w;
2510 } 4644 }
2511}
2512 4645
4646 EV_FREQUENT_CHECK;
4647}
4648
2513void 4649void
2514ev_idle_stop (EV_P_ ev_idle *w) 4650ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2515{ 4651{
2516 clear_pending (EV_A_ (W)w); 4652 clear_pending (EV_A_ (W)w);
2517 if (expect_false (!ev_is_active (w))) 4653 if (expect_false (!ev_is_active (w)))
2518 return; 4654 return;
2519 4655
4656 EV_FREQUENT_CHECK;
4657
2520 { 4658 {
2521 int active = ev_active (w); 4659 int active = ev_active (w);
2522 4660
2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4661 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2524 ev_active (idles [ABSPRI (w)][active - 1]) = active; 4662 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2525 4663
2526 ev_stop (EV_A_ (W)w); 4664 ev_stop (EV_A_ (W)w);
2527 --idleall; 4665 --idleall;
2528 } 4666 }
2529}
2530#endif
2531 4667
4668 EV_FREQUENT_CHECK;
4669}
4670#endif
4671
4672#if EV_PREPARE_ENABLE
2532void 4673void
2533ev_prepare_start (EV_P_ ev_prepare *w) 4674ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2534{ 4675{
2535 if (expect_false (ev_is_active (w))) 4676 if (expect_false (ev_is_active (w)))
2536 return; 4677 return;
2537 4678
4679 EV_FREQUENT_CHECK;
4680
2538 ev_start (EV_A_ (W)w, ++preparecnt); 4681 ev_start (EV_A_ (W)w, ++preparecnt);
2539 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4682 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
2540 prepares [preparecnt - 1] = w; 4683 prepares [preparecnt - 1] = w;
2541}
2542 4684
4685 EV_FREQUENT_CHECK;
4686}
4687
2543void 4688void
2544ev_prepare_stop (EV_P_ ev_prepare *w) 4689ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2545{ 4690{
2546 clear_pending (EV_A_ (W)w); 4691 clear_pending (EV_A_ (W)w);
2547 if (expect_false (!ev_is_active (w))) 4692 if (expect_false (!ev_is_active (w)))
2548 return; 4693 return;
2549 4694
4695 EV_FREQUENT_CHECK;
4696
2550 { 4697 {
2551 int active = ev_active (w); 4698 int active = ev_active (w);
2552 4699
2553 prepares [active - 1] = prepares [--preparecnt]; 4700 prepares [active - 1] = prepares [--preparecnt];
2554 ev_active (prepares [active - 1]) = active; 4701 ev_active (prepares [active - 1]) = active;
2555 } 4702 }
2556 4703
2557 ev_stop (EV_A_ (W)w); 4704 ev_stop (EV_A_ (W)w);
2558}
2559 4705
4706 EV_FREQUENT_CHECK;
4707}
4708#endif
4709
4710#if EV_CHECK_ENABLE
2560void 4711void
2561ev_check_start (EV_P_ ev_check *w) 4712ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2562{ 4713{
2563 if (expect_false (ev_is_active (w))) 4714 if (expect_false (ev_is_active (w)))
2564 return; 4715 return;
2565 4716
4717 EV_FREQUENT_CHECK;
4718
2566 ev_start (EV_A_ (W)w, ++checkcnt); 4719 ev_start (EV_A_ (W)w, ++checkcnt);
2567 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4720 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2568 checks [checkcnt - 1] = w; 4721 checks [checkcnt - 1] = w;
2569}
2570 4722
4723 EV_FREQUENT_CHECK;
4724}
4725
2571void 4726void
2572ev_check_stop (EV_P_ ev_check *w) 4727ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2573{ 4728{
2574 clear_pending (EV_A_ (W)w); 4729 clear_pending (EV_A_ (W)w);
2575 if (expect_false (!ev_is_active (w))) 4730 if (expect_false (!ev_is_active (w)))
2576 return; 4731 return;
2577 4732
4733 EV_FREQUENT_CHECK;
4734
2578 { 4735 {
2579 int active = ev_active (w); 4736 int active = ev_active (w);
2580 4737
2581 checks [active - 1] = checks [--checkcnt]; 4738 checks [active - 1] = checks [--checkcnt];
2582 ev_active (checks [active - 1]) = active; 4739 ev_active (checks [active - 1]) = active;
2583 } 4740 }
2584 4741
2585 ev_stop (EV_A_ (W)w); 4742 ev_stop (EV_A_ (W)w);
4743
4744 EV_FREQUENT_CHECK;
2586} 4745}
4746#endif
2587 4747
2588#if EV_EMBED_ENABLE 4748#if EV_EMBED_ENABLE
2589void noinline 4749noinline
4750void
2590ev_embed_sweep (EV_P_ ev_embed *w) 4751ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2591{ 4752{
2592 ev_loop (w->other, EVLOOP_NONBLOCK); 4753 ev_run (w->other, EVRUN_NOWAIT);
2593} 4754}
2594 4755
2595static void 4756static void
2596embed_io_cb (EV_P_ ev_io *io, int revents) 4757embed_io_cb (EV_P_ ev_io *io, int revents)
2597{ 4758{
2598 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4759 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2599 4760
2600 if (ev_cb (w)) 4761 if (ev_cb (w))
2601 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4762 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2602 else 4763 else
2603 ev_loop (w->other, EVLOOP_NONBLOCK); 4764 ev_run (w->other, EVRUN_NOWAIT);
2604} 4765}
2605 4766
2606static void 4767static void
2607embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4768embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2608{ 4769{
2609 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4770 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2610 4771
2611 { 4772 {
2612 struct ev_loop *loop = w->other; 4773 EV_P = w->other;
2613 4774
2614 while (fdchangecnt) 4775 while (fdchangecnt)
2615 { 4776 {
2616 fd_reify (EV_A); 4777 fd_reify (EV_A);
2617 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4778 ev_run (EV_A_ EVRUN_NOWAIT);
2618 } 4779 }
2619 } 4780 }
4781}
4782
4783static void
4784embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4785{
4786 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4787
4788 ev_embed_stop (EV_A_ w);
4789
4790 {
4791 EV_P = w->other;
4792
4793 ev_loop_fork (EV_A);
4794 ev_run (EV_A_ EVRUN_NOWAIT);
4795 }
4796
4797 ev_embed_start (EV_A_ w);
2620} 4798}
2621 4799
2622#if 0 4800#if 0
2623static void 4801static void
2624embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4802embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2626 ev_idle_stop (EV_A_ idle); 4804 ev_idle_stop (EV_A_ idle);
2627} 4805}
2628#endif 4806#endif
2629 4807
2630void 4808void
2631ev_embed_start (EV_P_ ev_embed *w) 4809ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2632{ 4810{
2633 if (expect_false (ev_is_active (w))) 4811 if (expect_false (ev_is_active (w)))
2634 return; 4812 return;
2635 4813
2636 { 4814 {
2637 struct ev_loop *loop = w->other; 4815 EV_P = w->other;
2638 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4816 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2639 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4817 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2640 } 4818 }
4819
4820 EV_FREQUENT_CHECK;
2641 4821
2642 ev_set_priority (&w->io, ev_priority (w)); 4822 ev_set_priority (&w->io, ev_priority (w));
2643 ev_io_start (EV_A_ &w->io); 4823 ev_io_start (EV_A_ &w->io);
2644 4824
2645 ev_prepare_init (&w->prepare, embed_prepare_cb); 4825 ev_prepare_init (&w->prepare, embed_prepare_cb);
2646 ev_set_priority (&w->prepare, EV_MINPRI); 4826 ev_set_priority (&w->prepare, EV_MINPRI);
2647 ev_prepare_start (EV_A_ &w->prepare); 4827 ev_prepare_start (EV_A_ &w->prepare);
2648 4828
4829 ev_fork_init (&w->fork, embed_fork_cb);
4830 ev_fork_start (EV_A_ &w->fork);
4831
2649 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4832 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2650 4833
2651 ev_start (EV_A_ (W)w, 1); 4834 ev_start (EV_A_ (W)w, 1);
2652}
2653 4835
4836 EV_FREQUENT_CHECK;
4837}
4838
2654void 4839void
2655ev_embed_stop (EV_P_ ev_embed *w) 4840ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2656{ 4841{
2657 clear_pending (EV_A_ (W)w); 4842 clear_pending (EV_A_ (W)w);
2658 if (expect_false (!ev_is_active (w))) 4843 if (expect_false (!ev_is_active (w)))
2659 return; 4844 return;
2660 4845
4846 EV_FREQUENT_CHECK;
4847
2661 ev_io_stop (EV_A_ &w->io); 4848 ev_io_stop (EV_A_ &w->io);
2662 ev_prepare_stop (EV_A_ &w->prepare); 4849 ev_prepare_stop (EV_A_ &w->prepare);
4850 ev_fork_stop (EV_A_ &w->fork);
2663 4851
2664 ev_stop (EV_A_ (W)w); 4852 ev_stop (EV_A_ (W)w);
4853
4854 EV_FREQUENT_CHECK;
2665} 4855}
2666#endif 4856#endif
2667 4857
2668#if EV_FORK_ENABLE 4858#if EV_FORK_ENABLE
2669void 4859void
2670ev_fork_start (EV_P_ ev_fork *w) 4860ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2671{ 4861{
2672 if (expect_false (ev_is_active (w))) 4862 if (expect_false (ev_is_active (w)))
2673 return; 4863 return;
2674 4864
4865 EV_FREQUENT_CHECK;
4866
2675 ev_start (EV_A_ (W)w, ++forkcnt); 4867 ev_start (EV_A_ (W)w, ++forkcnt);
2676 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4868 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
2677 forks [forkcnt - 1] = w; 4869 forks [forkcnt - 1] = w;
2678}
2679 4870
4871 EV_FREQUENT_CHECK;
4872}
4873
2680void 4874void
2681ev_fork_stop (EV_P_ ev_fork *w) 4875ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2682{ 4876{
2683 clear_pending (EV_A_ (W)w); 4877 clear_pending (EV_A_ (W)w);
2684 if (expect_false (!ev_is_active (w))) 4878 if (expect_false (!ev_is_active (w)))
2685 return; 4879 return;
2686 4880
4881 EV_FREQUENT_CHECK;
4882
2687 { 4883 {
2688 int active = ev_active (w); 4884 int active = ev_active (w);
2689 4885
2690 forks [active - 1] = forks [--forkcnt]; 4886 forks [active - 1] = forks [--forkcnt];
2691 ev_active (forks [active - 1]) = active; 4887 ev_active (forks [active - 1]) = active;
2692 } 4888 }
2693 4889
2694 ev_stop (EV_A_ (W)w); 4890 ev_stop (EV_A_ (W)w);
2695}
2696#endif
2697 4891
4892 EV_FREQUENT_CHECK;
4893}
4894#endif
4895
2698#if EV_ASYNC_ENABLE 4896#if EV_CLEANUP_ENABLE
2699void 4897void
2700ev_async_start (EV_P_ ev_async *w) 4898ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
2701{ 4899{
2702 if (expect_false (ev_is_active (w))) 4900 if (expect_false (ev_is_active (w)))
2703 return; 4901 return;
2704 4902
2705 evpipe_init (EV_A); 4903 EV_FREQUENT_CHECK;
2706 4904
2707 ev_start (EV_A_ (W)w, ++asynccnt); 4905 ev_start (EV_A_ (W)w, ++cleanupcnt);
2708 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4906 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
2709 asyncs [asynccnt - 1] = w; 4907 cleanups [cleanupcnt - 1] = w;
2710}
2711 4908
4909 /* cleanup watchers should never keep a refcount on the loop */
4910 ev_unref (EV_A);
4911 EV_FREQUENT_CHECK;
4912}
4913
2712void 4914void
2713ev_async_stop (EV_P_ ev_async *w) 4915ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
2714{ 4916{
2715 clear_pending (EV_A_ (W)w); 4917 clear_pending (EV_A_ (W)w);
2716 if (expect_false (!ev_is_active (w))) 4918 if (expect_false (!ev_is_active (w)))
2717 return; 4919 return;
2718 4920
4921 EV_FREQUENT_CHECK;
4922 ev_ref (EV_A);
4923
4924 {
4925 int active = ev_active (w);
4926
4927 cleanups [active - 1] = cleanups [--cleanupcnt];
4928 ev_active (cleanups [active - 1]) = active;
4929 }
4930
4931 ev_stop (EV_A_ (W)w);
4932
4933 EV_FREQUENT_CHECK;
4934}
4935#endif
4936
4937#if EV_ASYNC_ENABLE
4938void
4939ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4940{
4941 if (expect_false (ev_is_active (w)))
4942 return;
4943
4944 w->sent = 0;
4945
4946 evpipe_init (EV_A);
4947
4948 EV_FREQUENT_CHECK;
4949
4950 ev_start (EV_A_ (W)w, ++asynccnt);
4951 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
4952 asyncs [asynccnt - 1] = w;
4953
4954 EV_FREQUENT_CHECK;
4955}
4956
4957void
4958ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4959{
4960 clear_pending (EV_A_ (W)w);
4961 if (expect_false (!ev_is_active (w)))
4962 return;
4963
4964 EV_FREQUENT_CHECK;
4965
2719 { 4966 {
2720 int active = ev_active (w); 4967 int active = ev_active (w);
2721 4968
2722 asyncs [active - 1] = asyncs [--asynccnt]; 4969 asyncs [active - 1] = asyncs [--asynccnt];
2723 ev_active (asyncs [active - 1]) = active; 4970 ev_active (asyncs [active - 1]) = active;
2724 } 4971 }
2725 4972
2726 ev_stop (EV_A_ (W)w); 4973 ev_stop (EV_A_ (W)w);
2727}
2728 4974
4975 EV_FREQUENT_CHECK;
4976}
4977
2729void 4978void
2730ev_async_send (EV_P_ ev_async *w) 4979ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
2731{ 4980{
2732 w->sent = 1; 4981 w->sent = 1;
2733 evpipe_write (EV_A_ &gotasync); 4982 evpipe_write (EV_A_ &async_pending);
2734} 4983}
2735#endif 4984#endif
2736 4985
2737/*****************************************************************************/ 4986/*****************************************************************************/
2738 4987
2748once_cb (EV_P_ struct ev_once *once, int revents) 4997once_cb (EV_P_ struct ev_once *once, int revents)
2749{ 4998{
2750 void (*cb)(int revents, void *arg) = once->cb; 4999 void (*cb)(int revents, void *arg) = once->cb;
2751 void *arg = once->arg; 5000 void *arg = once->arg;
2752 5001
2753 ev_io_stop (EV_A_ &once->io); 5002 ev_io_stop (EV_A_ &once->io);
2754 ev_timer_stop (EV_A_ &once->to); 5003 ev_timer_stop (EV_A_ &once->to);
2755 ev_free (once); 5004 ev_free (once);
2756 5005
2757 cb (revents, arg); 5006 cb (revents, arg);
2758} 5007}
2759 5008
2760static void 5009static void
2761once_cb_io (EV_P_ ev_io *w, int revents) 5010once_cb_io (EV_P_ ev_io *w, int revents)
2762{ 5011{
2763 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5012 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5013
5014 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2764} 5015}
2765 5016
2766static void 5017static void
2767once_cb_to (EV_P_ ev_timer *w, int revents) 5018once_cb_to (EV_P_ ev_timer *w, int revents)
2768{ 5019{
2769 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5020 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
2770}
2771 5021
5022 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5023}
5024
2772void 5025void
2773ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5026ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
2774{ 5027{
2775 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5028 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2776
2777 if (expect_false (!once))
2778 {
2779 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2780 return;
2781 }
2782 5029
2783 once->cb = cb; 5030 once->cb = cb;
2784 once->arg = arg; 5031 once->arg = arg;
2785 5032
2786 ev_init (&once->io, once_cb_io); 5033 ev_init (&once->io, once_cb_io);
2796 ev_timer_set (&once->to, timeout, 0.); 5043 ev_timer_set (&once->to, timeout, 0.);
2797 ev_timer_start (EV_A_ &once->to); 5044 ev_timer_start (EV_A_ &once->to);
2798 } 5045 }
2799} 5046}
2800 5047
5048/*****************************************************************************/
5049
5050#if EV_WALK_ENABLE
5051ecb_cold
5052void
5053ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5054{
5055 int i, j;
5056 ev_watcher_list *wl, *wn;
5057
5058 if (types & (EV_IO | EV_EMBED))
5059 for (i = 0; i < anfdmax; ++i)
5060 for (wl = anfds [i].head; wl; )
5061 {
5062 wn = wl->next;
5063
5064#if EV_EMBED_ENABLE
5065 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5066 {
5067 if (types & EV_EMBED)
5068 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5069 }
5070 else
5071#endif
5072#if EV_USE_INOTIFY
5073 if (ev_cb ((ev_io *)wl) == infy_cb)
5074 ;
5075 else
5076#endif
5077 if ((ev_io *)wl != &pipe_w)
5078 if (types & EV_IO)
5079 cb (EV_A_ EV_IO, wl);
5080
5081 wl = wn;
5082 }
5083
5084 if (types & (EV_TIMER | EV_STAT))
5085 for (i = timercnt + HEAP0; i-- > HEAP0; )
5086#if EV_STAT_ENABLE
5087 /*TODO: timer is not always active*/
5088 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5089 {
5090 if (types & EV_STAT)
5091 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5092 }
5093 else
5094#endif
5095 if (types & EV_TIMER)
5096 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5097
5098#if EV_PERIODIC_ENABLE
5099 if (types & EV_PERIODIC)
5100 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5101 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5102#endif
5103
5104#if EV_IDLE_ENABLE
5105 if (types & EV_IDLE)
5106 for (j = NUMPRI; j--; )
5107 for (i = idlecnt [j]; i--; )
5108 cb (EV_A_ EV_IDLE, idles [j][i]);
5109#endif
5110
5111#if EV_FORK_ENABLE
5112 if (types & EV_FORK)
5113 for (i = forkcnt; i--; )
5114 if (ev_cb (forks [i]) != embed_fork_cb)
5115 cb (EV_A_ EV_FORK, forks [i]);
5116#endif
5117
5118#if EV_ASYNC_ENABLE
5119 if (types & EV_ASYNC)
5120 for (i = asynccnt; i--; )
5121 cb (EV_A_ EV_ASYNC, asyncs [i]);
5122#endif
5123
5124#if EV_PREPARE_ENABLE
5125 if (types & EV_PREPARE)
5126 for (i = preparecnt; i--; )
5127# if EV_EMBED_ENABLE
5128 if (ev_cb (prepares [i]) != embed_prepare_cb)
5129# endif
5130 cb (EV_A_ EV_PREPARE, prepares [i]);
5131#endif
5132
5133#if EV_CHECK_ENABLE
5134 if (types & EV_CHECK)
5135 for (i = checkcnt; i--; )
5136 cb (EV_A_ EV_CHECK, checks [i]);
5137#endif
5138
5139#if EV_SIGNAL_ENABLE
5140 if (types & EV_SIGNAL)
5141 for (i = 0; i < EV_NSIG - 1; ++i)
5142 for (wl = signals [i].head; wl; )
5143 {
5144 wn = wl->next;
5145 cb (EV_A_ EV_SIGNAL, wl);
5146 wl = wn;
5147 }
5148#endif
5149
5150#if EV_CHILD_ENABLE
5151 if (types & EV_CHILD)
5152 for (i = (EV_PID_HASHSIZE); i--; )
5153 for (wl = childs [i]; wl; )
5154 {
5155 wn = wl->next;
5156 cb (EV_A_ EV_CHILD, wl);
5157 wl = wn;
5158 }
5159#endif
5160/* EV_STAT 0x00001000 /* stat data changed */
5161/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5162}
5163#endif
5164
2801#if EV_MULTIPLICITY 5165#if EV_MULTIPLICITY
2802 #include "ev_wrap.h" 5166 #include "ev_wrap.h"
2803#endif 5167#endif
2804 5168
2805#ifdef __cplusplus
2806}
2807#endif
2808

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines