ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.126 by root, Sun Nov 18 01:25:23 2007 UTC vs.
Revision 1.248 by root, Wed May 21 23:25:21 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
50# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
52# endif 65# endif
53# endif 66# endif
54 67
55# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
56# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
57# else 71# else
58# define EV_USE_SELECT 0 72# define EV_USE_NANOSLEEP 0
73# endif
59# endif 74# endif
60 75
61# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
62# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
63# else 79# else
64# define EV_USE_POLL 0 80# define EV_USE_SELECT 0
81# endif
65# endif 82# endif
66 83
67# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
68# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
69# else 87# else
70# define EV_USE_EPOLL 0 88# define EV_USE_POLL 0
89# endif
71# endif 90# endif
72 91
73# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
74# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
75# else 95# else
76# define EV_USE_KQUEUE 0 96# define EV_USE_EPOLL 0
97# endif
77# endif 98# endif
78 99
79# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
80# define EV_USE_PORT 1 102# define EV_USE_KQUEUE 1
81# else 103# else
82# define EV_USE_PORT 0 104# define EV_USE_KQUEUE 0
105# endif
83# endif 106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
84 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
85#endif 132#endif
86 133
87#include <math.h> 134#include <math.h>
88#include <stdlib.h> 135#include <stdlib.h>
89#include <fcntl.h> 136#include <fcntl.h>
96#include <sys/types.h> 143#include <sys/types.h>
97#include <time.h> 144#include <time.h>
98 145
99#include <signal.h> 146#include <signal.h>
100 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
101#ifndef _WIN32 154#ifndef _WIN32
102# include <unistd.h>
103# include <sys/time.h> 155# include <sys/time.h>
104# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
105#else 158#else
106# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
107# include <windows.h> 160# include <windows.h>
108# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
109# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
110# endif 163# endif
111#endif 164#endif
112 165
113/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
114 167
115#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
117#endif 170#endif
118 171
119#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
120# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
121#endif 178#endif
122 179
123#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
124# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
125#endif 182#endif
131# define EV_USE_POLL 1 188# define EV_USE_POLL 1
132# endif 189# endif
133#endif 190#endif
134 191
135#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
136# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
137#endif 198#endif
138 199
139#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
141#endif 202#endif
142 203
143#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
144# define EV_USE_PORT 0 205# define EV_USE_PORT 0
145#endif 206#endif
146 207
147/**/ 208#ifndef EV_USE_INOTIFY
148 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
149/* darwin simply cannot be helped */ 210# define EV_USE_INOTIFY 1
150#ifdef __APPLE__ 211# else
151# undef EV_USE_POLL 212# define EV_USE_INOTIFY 0
152# undef EV_USE_KQUEUE
153#endif 213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
154 249
155#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
156# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
157# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
158#endif 253#endif
160#ifndef CLOCK_REALTIME 255#ifndef CLOCK_REALTIME
161# undef EV_USE_REALTIME 256# undef EV_USE_REALTIME
162# define EV_USE_REALTIME 0 257# define EV_USE_REALTIME 0
163#endif 258#endif
164 259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
165#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
166# include <winsock.h> 276# include <winsock.h>
167#endif 277#endif
168 278
279#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
289#endif
290
169/**/ 291/**/
292
293/* undefined or zero: no verification done or available */
294/* 1 or higher: ev_loop_verify function available */
295/* 2 or higher: ev_loop_verify is called frequently */
296#define EV_VERIFY 1
297
298#if EV_VERIFY > 1
299# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
300#else
301# define EV_FREQUENT_CHECK do { } while (0)
302#endif
303
304/*
305 * This is used to avoid floating point rounding problems.
306 * It is added to ev_rt_now when scheduling periodics
307 * to ensure progress, time-wise, even when rounding
308 * errors are against us.
309 * This value is good at least till the year 4000.
310 * Better solutions welcome.
311 */
312#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
170 313
171#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 314#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
172#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 315#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
173#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
174/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 316/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
175 317
176#ifdef EV_H
177# include EV_H
178#else
179# include "ev.h"
180#endif
181
182#if __GNUC__ >= 3 318#if __GNUC__ >= 4
183# define expect(expr,value) __builtin_expect ((expr),(value)) 319# define expect(expr,value) __builtin_expect ((expr),(value))
184# define inline static inline 320# define noinline __attribute__ ((noinline))
185#else 321#else
186# define expect(expr,value) (expr) 322# define expect(expr,value) (expr)
187# define inline static 323# define noinline
324# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
325# define inline
326# endif
188#endif 327#endif
189 328
190#define expect_false(expr) expect ((expr) != 0, 0) 329#define expect_false(expr) expect ((expr) != 0, 0)
191#define expect_true(expr) expect ((expr) != 0, 1) 330#define expect_true(expr) expect ((expr) != 0, 1)
331#define inline_size static inline
332
333#if EV_MINIMAL
334# define inline_speed static noinline
335#else
336# define inline_speed static inline
337#endif
192 338
193#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 339#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
194#define ABSPRI(w) ((w)->priority - EV_MINPRI) 340#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
195 341
196#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 342#define EMPTY /* required for microsofts broken pseudo-c compiler */
197#define EMPTY2(a,b) /* used to suppress some warnings */ 343#define EMPTY2(a,b) /* used to suppress some warnings */
198 344
199typedef struct ev_watcher *W; 345typedef ev_watcher *W;
200typedef struct ev_watcher_list *WL; 346typedef ev_watcher_list *WL;
201typedef struct ev_watcher_time *WT; 347typedef ev_watcher_time *WT;
202 348
349#define ev_active(w) ((W)(w))->active
350#define ev_at(w) ((WT)(w))->at
351
352#if EV_USE_MONOTONIC
353/* sig_atomic_t is used to avoid per-thread variables or locking but still */
354/* giving it a reasonably high chance of working on typical architetcures */
203static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 355static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
356#endif
204 357
205#ifdef _WIN32 358#ifdef _WIN32
206# include "ev_win32.c" 359# include "ev_win32.c"
207#endif 360#endif
208 361
209/*****************************************************************************/ 362/*****************************************************************************/
210 363
211static void (*syserr_cb)(const char *msg); 364static void (*syserr_cb)(const char *msg);
212 365
366void
213void ev_set_syserr_cb (void (*cb)(const char *msg)) 367ev_set_syserr_cb (void (*cb)(const char *msg))
214{ 368{
215 syserr_cb = cb; 369 syserr_cb = cb;
216} 370}
217 371
218static void 372static void noinline
219syserr (const char *msg) 373syserr (const char *msg)
220{ 374{
221 if (!msg) 375 if (!msg)
222 msg = "(libev) system error"; 376 msg = "(libev) system error";
223 377
228 perror (msg); 382 perror (msg);
229 abort (); 383 abort ();
230 } 384 }
231} 385}
232 386
387static void *
388ev_realloc_emul (void *ptr, long size)
389{
390 /* some systems, notably openbsd and darwin, fail to properly
391 * implement realloc (x, 0) (as required by both ansi c-98 and
392 * the single unix specification, so work around them here.
393 */
394
395 if (size)
396 return realloc (ptr, size);
397
398 free (ptr);
399 return 0;
400}
401
233static void *(*alloc)(void *ptr, long size); 402static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
234 403
404void
235void ev_set_allocator (void *(*cb)(void *ptr, long size)) 405ev_set_allocator (void *(*cb)(void *ptr, long size))
236{ 406{
237 alloc = cb; 407 alloc = cb;
238} 408}
239 409
240static void * 410inline_speed void *
241ev_realloc (void *ptr, long size) 411ev_realloc (void *ptr, long size)
242{ 412{
243 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 413 ptr = alloc (ptr, size);
244 414
245 if (!ptr && size) 415 if (!ptr && size)
246 { 416 {
247 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 417 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
248 abort (); 418 abort ();
269typedef struct 439typedef struct
270{ 440{
271 W w; 441 W w;
272 int events; 442 int events;
273} ANPENDING; 443} ANPENDING;
444
445#if EV_USE_INOTIFY
446/* hash table entry per inotify-id */
447typedef struct
448{
449 WL head;
450} ANFS;
451#endif
452
453/* Heap Entry */
454#if EV_HEAP_CACHE_AT
455 typedef struct {
456 ev_tstamp at;
457 WT w;
458 } ANHE;
459
460 #define ANHE_w(he) (he).w /* access watcher, read-write */
461 #define ANHE_at(he) (he).at /* access cached at, read-only */
462 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
463#else
464 typedef WT ANHE;
465
466 #define ANHE_w(he) (he)
467 #define ANHE_at(he) (he)->at
468 #define ANHE_at_cache(he)
469#endif
274 470
275#if EV_MULTIPLICITY 471#if EV_MULTIPLICITY
276 472
277 struct ev_loop 473 struct ev_loop
278 { 474 {
312 gettimeofday (&tv, 0); 508 gettimeofday (&tv, 0);
313 return tv.tv_sec + tv.tv_usec * 1e-6; 509 return tv.tv_sec + tv.tv_usec * 1e-6;
314#endif 510#endif
315} 511}
316 512
317inline ev_tstamp 513ev_tstamp inline_size
318get_clock (void) 514get_clock (void)
319{ 515{
320#if EV_USE_MONOTONIC 516#if EV_USE_MONOTONIC
321 if (expect_true (have_monotonic)) 517 if (expect_true (have_monotonic))
322 { 518 {
335{ 531{
336 return ev_rt_now; 532 return ev_rt_now;
337} 533}
338#endif 534#endif
339 535
340#define array_roundsize(type,n) (((n) | 4) & ~3) 536void
537ev_sleep (ev_tstamp delay)
538{
539 if (delay > 0.)
540 {
541#if EV_USE_NANOSLEEP
542 struct timespec ts;
543
544 ts.tv_sec = (time_t)delay;
545 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
546
547 nanosleep (&ts, 0);
548#elif defined(_WIN32)
549 Sleep ((unsigned long)(delay * 1e3));
550#else
551 struct timeval tv;
552
553 tv.tv_sec = (time_t)delay;
554 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
555
556 select (0, 0, 0, 0, &tv);
557#endif
558 }
559}
560
561/*****************************************************************************/
562
563#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
564
565int inline_size
566array_nextsize (int elem, int cur, int cnt)
567{
568 int ncur = cur + 1;
569
570 do
571 ncur <<= 1;
572 while (cnt > ncur);
573
574 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
575 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
576 {
577 ncur *= elem;
578 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
579 ncur = ncur - sizeof (void *) * 4;
580 ncur /= elem;
581 }
582
583 return ncur;
584}
585
586static noinline void *
587array_realloc (int elem, void *base, int *cur, int cnt)
588{
589 *cur = array_nextsize (elem, *cur, cnt);
590 return ev_realloc (base, elem * *cur);
591}
341 592
342#define array_needsize(type,base,cur,cnt,init) \ 593#define array_needsize(type,base,cur,cnt,init) \
343 if (expect_false ((cnt) > cur)) \ 594 if (expect_false ((cnt) > (cur))) \
344 { \ 595 { \
345 int newcnt = cur; \ 596 int ocur_ = (cur); \
346 do \ 597 (base) = (type *)array_realloc \
347 { \ 598 (sizeof (type), (base), &(cur), (cnt)); \
348 newcnt = array_roundsize (type, newcnt << 1); \ 599 init ((base) + (ocur_), (cur) - ocur_); \
349 } \
350 while ((cnt) > newcnt); \
351 \
352 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
353 init (base + cur, newcnt - cur); \
354 cur = newcnt; \
355 } 600 }
356 601
602#if 0
357#define array_slim(type,stem) \ 603#define array_slim(type,stem) \
358 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 604 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
359 { \ 605 { \
360 stem ## max = array_roundsize (stem ## cnt >> 1); \ 606 stem ## max = array_roundsize (stem ## cnt >> 1); \
361 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 607 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
362 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 608 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
363 } 609 }
610#endif
364 611
365#define array_free(stem, idx) \ 612#define array_free(stem, idx) \
366 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 613 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
367 614
368/*****************************************************************************/ 615/*****************************************************************************/
369 616
370static void 617void noinline
618ev_feed_event (EV_P_ void *w, int revents)
619{
620 W w_ = (W)w;
621 int pri = ABSPRI (w_);
622
623 if (expect_false (w_->pending))
624 pendings [pri][w_->pending - 1].events |= revents;
625 else
626 {
627 w_->pending = ++pendingcnt [pri];
628 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
629 pendings [pri][w_->pending - 1].w = w_;
630 pendings [pri][w_->pending - 1].events = revents;
631 }
632}
633
634void inline_speed
635queue_events (EV_P_ W *events, int eventcnt, int type)
636{
637 int i;
638
639 for (i = 0; i < eventcnt; ++i)
640 ev_feed_event (EV_A_ events [i], type);
641}
642
643/*****************************************************************************/
644
645void inline_size
371anfds_init (ANFD *base, int count) 646anfds_init (ANFD *base, int count)
372{ 647{
373 while (count--) 648 while (count--)
374 { 649 {
375 base->head = 0; 650 base->head = 0;
378 653
379 ++base; 654 ++base;
380 } 655 }
381} 656}
382 657
383void 658void inline_speed
384ev_feed_event (EV_P_ void *w, int revents)
385{
386 W w_ = (W)w;
387
388 if (expect_false (w_->pending))
389 {
390 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
391 return;
392 }
393
394 w_->pending = ++pendingcnt [ABSPRI (w_)];
395 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
396 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
397 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
398}
399
400static void
401queue_events (EV_P_ W *events, int eventcnt, int type)
402{
403 int i;
404
405 for (i = 0; i < eventcnt; ++i)
406 ev_feed_event (EV_A_ events [i], type);
407}
408
409inline void
410fd_event (EV_P_ int fd, int revents) 659fd_event (EV_P_ int fd, int revents)
411{ 660{
412 ANFD *anfd = anfds + fd; 661 ANFD *anfd = anfds + fd;
413 struct ev_io *w; 662 ev_io *w;
414 663
415 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 664 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
416 { 665 {
417 int ev = w->events & revents; 666 int ev = w->events & revents;
418 667
419 if (ev) 668 if (ev)
420 ev_feed_event (EV_A_ (W)w, ev); 669 ev_feed_event (EV_A_ (W)w, ev);
422} 671}
423 672
424void 673void
425ev_feed_fd_event (EV_P_ int fd, int revents) 674ev_feed_fd_event (EV_P_ int fd, int revents)
426{ 675{
676 if (fd >= 0 && fd < anfdmax)
427 fd_event (EV_A_ fd, revents); 677 fd_event (EV_A_ fd, revents);
428} 678}
429 679
430/*****************************************************************************/ 680void inline_size
431
432inline void
433fd_reify (EV_P) 681fd_reify (EV_P)
434{ 682{
435 int i; 683 int i;
436 684
437 for (i = 0; i < fdchangecnt; ++i) 685 for (i = 0; i < fdchangecnt; ++i)
438 { 686 {
439 int fd = fdchanges [i]; 687 int fd = fdchanges [i];
440 ANFD *anfd = anfds + fd; 688 ANFD *anfd = anfds + fd;
441 struct ev_io *w; 689 ev_io *w;
442 690
443 int events = 0; 691 unsigned char events = 0;
444 692
445 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 693 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
446 events |= w->events; 694 events |= (unsigned char)w->events;
447 695
448#if EV_SELECT_IS_WINSOCKET 696#if EV_SELECT_IS_WINSOCKET
449 if (events) 697 if (events)
450 { 698 {
451 unsigned long argp; 699 unsigned long argp;
700 #ifdef EV_FD_TO_WIN32_HANDLE
701 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
702 #else
452 anfd->handle = _get_osfhandle (fd); 703 anfd->handle = _get_osfhandle (fd);
704 #endif
453 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 705 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
454 } 706 }
455#endif 707#endif
456 708
709 {
710 unsigned char o_events = anfd->events;
711 unsigned char o_reify = anfd->reify;
712
457 anfd->reify = 0; 713 anfd->reify = 0;
458
459 method_modify (EV_A_ fd, anfd->events, events);
460 anfd->events = events; 714 anfd->events = events;
715
716 if (o_events != events || o_reify & EV_IOFDSET)
717 backend_modify (EV_A_ fd, o_events, events);
718 }
461 } 719 }
462 720
463 fdchangecnt = 0; 721 fdchangecnt = 0;
464} 722}
465 723
466static void 724void inline_size
467fd_change (EV_P_ int fd) 725fd_change (EV_P_ int fd, int flags)
468{ 726{
469 if (expect_false (anfds [fd].reify)) 727 unsigned char reify = anfds [fd].reify;
470 return;
471
472 anfds [fd].reify = 1; 728 anfds [fd].reify |= flags;
473 729
730 if (expect_true (!reify))
731 {
474 ++fdchangecnt; 732 ++fdchangecnt;
475 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 733 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
476 fdchanges [fdchangecnt - 1] = fd; 734 fdchanges [fdchangecnt - 1] = fd;
735 }
477} 736}
478 737
479static void 738void inline_speed
480fd_kill (EV_P_ int fd) 739fd_kill (EV_P_ int fd)
481{ 740{
482 struct ev_io *w; 741 ev_io *w;
483 742
484 while ((w = (struct ev_io *)anfds [fd].head)) 743 while ((w = (ev_io *)anfds [fd].head))
485 { 744 {
486 ev_io_stop (EV_A_ w); 745 ev_io_stop (EV_A_ w);
487 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 746 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
488 } 747 }
489} 748}
490 749
491inline int 750int inline_size
492fd_valid (int fd) 751fd_valid (int fd)
493{ 752{
494#ifdef _WIN32 753#ifdef _WIN32
495 return _get_osfhandle (fd) != -1; 754 return _get_osfhandle (fd) != -1;
496#else 755#else
497 return fcntl (fd, F_GETFD) != -1; 756 return fcntl (fd, F_GETFD) != -1;
498#endif 757#endif
499} 758}
500 759
501/* called on EBADF to verify fds */ 760/* called on EBADF to verify fds */
502static void 761static void noinline
503fd_ebadf (EV_P) 762fd_ebadf (EV_P)
504{ 763{
505 int fd; 764 int fd;
506 765
507 for (fd = 0; fd < anfdmax; ++fd) 766 for (fd = 0; fd < anfdmax; ++fd)
509 if (!fd_valid (fd) == -1 && errno == EBADF) 768 if (!fd_valid (fd) == -1 && errno == EBADF)
510 fd_kill (EV_A_ fd); 769 fd_kill (EV_A_ fd);
511} 770}
512 771
513/* called on ENOMEM in select/poll to kill some fds and retry */ 772/* called on ENOMEM in select/poll to kill some fds and retry */
514static void 773static void noinline
515fd_enomem (EV_P) 774fd_enomem (EV_P)
516{ 775{
517 int fd; 776 int fd;
518 777
519 for (fd = anfdmax; fd--; ) 778 for (fd = anfdmax; fd--; )
522 fd_kill (EV_A_ fd); 781 fd_kill (EV_A_ fd);
523 return; 782 return;
524 } 783 }
525} 784}
526 785
527/* usually called after fork if method needs to re-arm all fds from scratch */ 786/* usually called after fork if backend needs to re-arm all fds from scratch */
528static void 787static void noinline
529fd_rearm_all (EV_P) 788fd_rearm_all (EV_P)
530{ 789{
531 int fd; 790 int fd;
532 791
533 /* this should be highly optimised to not do anything but set a flag */
534 for (fd = 0; fd < anfdmax; ++fd) 792 for (fd = 0; fd < anfdmax; ++fd)
535 if (anfds [fd].events) 793 if (anfds [fd].events)
536 { 794 {
537 anfds [fd].events = 0; 795 anfds [fd].events = 0;
538 fd_change (EV_A_ fd); 796 fd_change (EV_A_ fd, EV_IOFDSET | 1);
539 } 797 }
540} 798}
541 799
542/*****************************************************************************/ 800/*****************************************************************************/
543 801
802/*
803 * the heap functions want a real array index. array index 0 uis guaranteed to not
804 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
805 * the branching factor of the d-tree.
806 */
807
808/*
809 * at the moment we allow libev the luxury of two heaps,
810 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
811 * which is more cache-efficient.
812 * the difference is about 5% with 50000+ watchers.
813 */
814#if EV_USE_4HEAP
815
816#define DHEAP 4
817#define HEAP0 (DHEAP - 1) /* index of first element in heap */
818#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
819#define UPHEAP_DONE(p,k) ((p) == (k))
820
821/* away from the root */
822void inline_speed
823downheap (ANHE *heap, int N, int k)
824{
825 ANHE he = heap [k];
826 ANHE *E = heap + N + HEAP0;
827
828 for (;;)
829 {
830 ev_tstamp minat;
831 ANHE *minpos;
832 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
833
834 /* find minimum child */
835 if (expect_true (pos + DHEAP - 1 < E))
836 {
837 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
838 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
839 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
840 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
841 }
842 else if (pos < E)
843 {
844 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
845 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
846 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
847 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
848 }
849 else
850 break;
851
852 if (ANHE_at (he) <= minat)
853 break;
854
855 heap [k] = *minpos;
856 ev_active (ANHE_w (*minpos)) = k;
857
858 k = minpos - heap;
859 }
860
861 heap [k] = he;
862 ev_active (ANHE_w (he)) = k;
863}
864
865#else /* 4HEAP */
866
867#define HEAP0 1
868#define HPARENT(k) ((k) >> 1)
869#define UPHEAP_DONE(p,k) (!(p))
870
871/* away from the root */
872void inline_speed
873downheap (ANHE *heap, int N, int k)
874{
875 ANHE he = heap [k];
876
877 for (;;)
878 {
879 int c = k << 1;
880
881 if (c > N + HEAP0 - 1)
882 break;
883
884 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
885 ? 1 : 0;
886
887 if (ANHE_at (he) <= ANHE_at (heap [c]))
888 break;
889
890 heap [k] = heap [c];
891 ev_active (ANHE_w (heap [k])) = k;
892
893 k = c;
894 }
895
896 heap [k] = he;
897 ev_active (ANHE_w (he)) = k;
898}
899#endif
900
901/* towards the root */
902void inline_speed
903upheap (ANHE *heap, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int p = HPARENT (k);
910
911 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
912 break;
913
914 heap [k] = heap [p];
915 ev_active (ANHE_w (heap [k])) = k;
916 k = p;
917 }
918
919 heap [k] = he;
920 ev_active (ANHE_w (he)) = k;
921}
922
923void inline_size
924adjustheap (ANHE *heap, int N, int k)
925{
926 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
927 upheap (heap, k);
928 else
929 downheap (heap, N, k);
930}
931
932/* rebuild the heap: this function is used only once and executed rarely */
933void inline_size
934reheap (ANHE *heap, int N)
935{
936 int i;
937 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
938 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
939 for (i = 0; i < N; ++i)
940 upheap (heap, i + HEAP0);
941}
942
943#if EV_VERIFY
544static void 944static void
545upheap (WT *heap, int k) 945checkheap (ANHE *heap, int N)
546{ 946{
547 WT w = heap [k]; 947 int i;
548 948
549 while (k && heap [k >> 1]->at > w->at) 949 for (i = HEAP0; i < N + HEAP0; ++i)
550 {
551 heap [k] = heap [k >> 1];
552 ((W)heap [k])->active = k + 1;
553 k >>= 1;
554 } 950 {
555 951 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
556 heap [k] = w; 952 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
557 ((W)heap [k])->active = k + 1; 953 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
558
559}
560
561static void
562downheap (WT *heap, int N, int k)
563{
564 WT w = heap [k];
565
566 while (k < (N >> 1))
567 { 954 }
568 int j = k << 1;
569
570 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
571 ++j;
572
573 if (w->at <= heap [j]->at)
574 break;
575
576 heap [k] = heap [j];
577 ((W)heap [k])->active = k + 1;
578 k = j;
579 }
580
581 heap [k] = w;
582 ((W)heap [k])->active = k + 1;
583} 955}
584 956#endif
585inline void
586adjustheap (WT *heap, int N, int k)
587{
588 upheap (heap, k);
589 downheap (heap, N, k);
590}
591 957
592/*****************************************************************************/ 958/*****************************************************************************/
593 959
594typedef struct 960typedef struct
595{ 961{
596 WL head; 962 WL head;
597 sig_atomic_t volatile gotsig; 963 EV_ATOMIC_T gotsig;
598} ANSIG; 964} ANSIG;
599 965
600static ANSIG *signals; 966static ANSIG *signals;
601static int signalmax; 967static int signalmax;
602 968
603static int sigpipe [2]; 969static EV_ATOMIC_T gotsig;
604static sig_atomic_t volatile gotsig;
605static struct ev_io sigev;
606 970
607static void 971void inline_size
608signals_init (ANSIG *base, int count) 972signals_init (ANSIG *base, int count)
609{ 973{
610 while (count--) 974 while (count--)
611 { 975 {
612 base->head = 0; 976 base->head = 0;
614 978
615 ++base; 979 ++base;
616 } 980 }
617} 981}
618 982
619static void 983/*****************************************************************************/
620sighandler (int signum)
621{
622#if _WIN32
623 signal (signum, sighandler);
624#endif
625 984
626 signals [signum - 1].gotsig = 1; 985void inline_speed
627
628 if (!gotsig)
629 {
630 int old_errno = errno;
631 gotsig = 1;
632 write (sigpipe [1], &signum, 1);
633 errno = old_errno;
634 }
635}
636
637void
638ev_feed_signal_event (EV_P_ int signum)
639{
640 WL w;
641
642#if EV_MULTIPLICITY
643 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
644#endif
645
646 --signum;
647
648 if (signum < 0 || signum >= signalmax)
649 return;
650
651 signals [signum].gotsig = 0;
652
653 for (w = signals [signum].head; w; w = w->next)
654 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
655}
656
657static void
658sigcb (EV_P_ struct ev_io *iow, int revents)
659{
660 int signum;
661
662 read (sigpipe [0], &revents, 1);
663 gotsig = 0;
664
665 for (signum = signalmax; signum--; )
666 if (signals [signum].gotsig)
667 ev_feed_signal_event (EV_A_ signum + 1);
668}
669
670static void
671fd_intern (int fd) 986fd_intern (int fd)
672{ 987{
673#ifdef _WIN32 988#ifdef _WIN32
674 int arg = 1; 989 int arg = 1;
675 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 990 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
677 fcntl (fd, F_SETFD, FD_CLOEXEC); 992 fcntl (fd, F_SETFD, FD_CLOEXEC);
678 fcntl (fd, F_SETFL, O_NONBLOCK); 993 fcntl (fd, F_SETFL, O_NONBLOCK);
679#endif 994#endif
680} 995}
681 996
997static void noinline
998evpipe_init (EV_P)
999{
1000 if (!ev_is_active (&pipeev))
1001 {
1002#if EV_USE_EVENTFD
1003 if ((evfd = eventfd (0, 0)) >= 0)
1004 {
1005 evpipe [0] = -1;
1006 fd_intern (evfd);
1007 ev_io_set (&pipeev, evfd, EV_READ);
1008 }
1009 else
1010#endif
1011 {
1012 while (pipe (evpipe))
1013 syserr ("(libev) error creating signal/async pipe");
1014
1015 fd_intern (evpipe [0]);
1016 fd_intern (evpipe [1]);
1017 ev_io_set (&pipeev, evpipe [0], EV_READ);
1018 }
1019
1020 ev_io_start (EV_A_ &pipeev);
1021 ev_unref (EV_A); /* watcher should not keep loop alive */
1022 }
1023}
1024
1025void inline_size
1026evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1027{
1028 if (!*flag)
1029 {
1030 int old_errno = errno; /* save errno because write might clobber it */
1031
1032 *flag = 1;
1033
1034#if EV_USE_EVENTFD
1035 if (evfd >= 0)
1036 {
1037 uint64_t counter = 1;
1038 write (evfd, &counter, sizeof (uint64_t));
1039 }
1040 else
1041#endif
1042 write (evpipe [1], &old_errno, 1);
1043
1044 errno = old_errno;
1045 }
1046}
1047
682static void 1048static void
683siginit (EV_P) 1049pipecb (EV_P_ ev_io *iow, int revents)
684{ 1050{
685 fd_intern (sigpipe [0]); 1051#if EV_USE_EVENTFD
686 fd_intern (sigpipe [1]); 1052 if (evfd >= 0)
1053 {
1054 uint64_t counter;
1055 read (evfd, &counter, sizeof (uint64_t));
1056 }
1057 else
1058#endif
1059 {
1060 char dummy;
1061 read (evpipe [0], &dummy, 1);
1062 }
687 1063
688 ev_io_set (&sigev, sigpipe [0], EV_READ); 1064 if (gotsig && ev_is_default_loop (EV_A))
689 ev_io_start (EV_A_ &sigev); 1065 {
690 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1066 int signum;
1067 gotsig = 0;
1068
1069 for (signum = signalmax; signum--; )
1070 if (signals [signum].gotsig)
1071 ev_feed_signal_event (EV_A_ signum + 1);
1072 }
1073
1074#if EV_ASYNC_ENABLE
1075 if (gotasync)
1076 {
1077 int i;
1078 gotasync = 0;
1079
1080 for (i = asynccnt; i--; )
1081 if (asyncs [i]->sent)
1082 {
1083 asyncs [i]->sent = 0;
1084 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1085 }
1086 }
1087#endif
691} 1088}
692 1089
693/*****************************************************************************/ 1090/*****************************************************************************/
694 1091
695static struct ev_child *childs [PID_HASHSIZE]; 1092static void
1093ev_sighandler (int signum)
1094{
1095#if EV_MULTIPLICITY
1096 struct ev_loop *loop = &default_loop_struct;
1097#endif
1098
1099#if _WIN32
1100 signal (signum, ev_sighandler);
1101#endif
1102
1103 signals [signum - 1].gotsig = 1;
1104 evpipe_write (EV_A_ &gotsig);
1105}
1106
1107void noinline
1108ev_feed_signal_event (EV_P_ int signum)
1109{
1110 WL w;
1111
1112#if EV_MULTIPLICITY
1113 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1114#endif
1115
1116 --signum;
1117
1118 if (signum < 0 || signum >= signalmax)
1119 return;
1120
1121 signals [signum].gotsig = 0;
1122
1123 for (w = signals [signum].head; w; w = w->next)
1124 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1125}
1126
1127/*****************************************************************************/
1128
1129static WL childs [EV_PID_HASHSIZE];
696 1130
697#ifndef _WIN32 1131#ifndef _WIN32
698 1132
699static struct ev_signal childev; 1133static ev_signal childev;
1134
1135#ifndef WIFCONTINUED
1136# define WIFCONTINUED(status) 0
1137#endif
1138
1139void inline_speed
1140child_reap (EV_P_ int chain, int pid, int status)
1141{
1142 ev_child *w;
1143 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1144
1145 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1146 {
1147 if ((w->pid == pid || !w->pid)
1148 && (!traced || (w->flags & 1)))
1149 {
1150 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1151 w->rpid = pid;
1152 w->rstatus = status;
1153 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1154 }
1155 }
1156}
700 1157
701#ifndef WCONTINUED 1158#ifndef WCONTINUED
702# define WCONTINUED 0 1159# define WCONTINUED 0
703#endif 1160#endif
704 1161
705static void 1162static void
706child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
707{
708 struct ev_child *w;
709
710 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
711 if (w->pid == pid || !w->pid)
712 {
713 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
714 w->rpid = pid;
715 w->rstatus = status;
716 ev_feed_event (EV_A_ (W)w, EV_CHILD);
717 }
718}
719
720static void
721childcb (EV_P_ struct ev_signal *sw, int revents) 1163childcb (EV_P_ ev_signal *sw, int revents)
722{ 1164{
723 int pid, status; 1165 int pid, status;
724 1166
1167 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
725 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1168 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
726 { 1169 if (!WCONTINUED
1170 || errno != EINVAL
1171 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1172 return;
1173
727 /* make sure we are called again until all childs have been reaped */ 1174 /* make sure we are called again until all children have been reaped */
1175 /* we need to do it this way so that the callback gets called before we continue */
728 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1176 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
729 1177
730 child_reap (EV_A_ sw, pid, pid, status); 1178 child_reap (EV_A_ pid, pid, status);
1179 if (EV_PID_HASHSIZE > 1)
731 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1180 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
732 }
733} 1181}
734 1182
735#endif 1183#endif
736 1184
737/*****************************************************************************/ 1185/*****************************************************************************/
763{ 1211{
764 return EV_VERSION_MINOR; 1212 return EV_VERSION_MINOR;
765} 1213}
766 1214
767/* return true if we are running with elevated privileges and should ignore env variables */ 1215/* return true if we are running with elevated privileges and should ignore env variables */
768static int 1216int inline_size
769enable_secure (void) 1217enable_secure (void)
770{ 1218{
771#ifdef _WIN32 1219#ifdef _WIN32
772 return 0; 1220 return 0;
773#else 1221#else
775 || getgid () != getegid (); 1223 || getgid () != getegid ();
776#endif 1224#endif
777} 1225}
778 1226
779unsigned int 1227unsigned int
780ev_method (EV_P) 1228ev_supported_backends (void)
781{ 1229{
782 return method; 1230 unsigned int flags = 0;
783}
784 1231
785static void 1232 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1233 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1234 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1235 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1236 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1237
1238 return flags;
1239}
1240
1241unsigned int
1242ev_recommended_backends (void)
1243{
1244 unsigned int flags = ev_supported_backends ();
1245
1246#ifndef __NetBSD__
1247 /* kqueue is borked on everything but netbsd apparently */
1248 /* it usually doesn't work correctly on anything but sockets and pipes */
1249 flags &= ~EVBACKEND_KQUEUE;
1250#endif
1251#ifdef __APPLE__
1252 // flags &= ~EVBACKEND_KQUEUE; for documentation
1253 flags &= ~EVBACKEND_POLL;
1254#endif
1255
1256 return flags;
1257}
1258
1259unsigned int
1260ev_embeddable_backends (void)
1261{
1262 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1263
1264 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1265 /* please fix it and tell me how to detect the fix */
1266 flags &= ~EVBACKEND_EPOLL;
1267
1268 return flags;
1269}
1270
1271unsigned int
1272ev_backend (EV_P)
1273{
1274 return backend;
1275}
1276
1277unsigned int
1278ev_loop_count (EV_P)
1279{
1280 return loop_count;
1281}
1282
1283void
1284ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1285{
1286 io_blocktime = interval;
1287}
1288
1289void
1290ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1291{
1292 timeout_blocktime = interval;
1293}
1294
1295static void noinline
786loop_init (EV_P_ unsigned int flags) 1296loop_init (EV_P_ unsigned int flags)
787{ 1297{
788 if (!method) 1298 if (!backend)
789 { 1299 {
790#if EV_USE_MONOTONIC 1300#if EV_USE_MONOTONIC
791 { 1301 {
792 struct timespec ts; 1302 struct timespec ts;
793 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1303 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
794 have_monotonic = 1; 1304 have_monotonic = 1;
795 } 1305 }
796#endif 1306#endif
797 1307
798 ev_rt_now = ev_time (); 1308 ev_rt_now = ev_time ();
799 mn_now = get_clock (); 1309 mn_now = get_clock ();
800 now_floor = mn_now; 1310 now_floor = mn_now;
801 rtmn_diff = ev_rt_now - mn_now; 1311 rtmn_diff = ev_rt_now - mn_now;
802 1312
803 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1313 io_blocktime = 0.;
1314 timeout_blocktime = 0.;
1315 backend = 0;
1316 backend_fd = -1;
1317 gotasync = 0;
1318#if EV_USE_INOTIFY
1319 fs_fd = -2;
1320#endif
1321
1322 /* pid check not overridable via env */
1323#ifndef _WIN32
1324 if (flags & EVFLAG_FORKCHECK)
1325 curpid = getpid ();
1326#endif
1327
1328 if (!(flags & EVFLAG_NOENV)
1329 && !enable_secure ()
1330 && getenv ("LIBEV_FLAGS"))
804 flags = atoi (getenv ("LIBEV_FLAGS")); 1331 flags = atoi (getenv ("LIBEV_FLAGS"));
805 1332
806 if (!(flags & 0x0000ffff)) 1333 if (!(flags & 0x0000ffffU))
807 flags |= 0x0000ffff; 1334 flags |= ev_recommended_backends ();
808 1335
809 method = 0;
810#if EV_USE_PORT 1336#if EV_USE_PORT
811 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1337 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
812#endif 1338#endif
813#if EV_USE_KQUEUE 1339#if EV_USE_KQUEUE
814 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
815#endif 1341#endif
816#if EV_USE_EPOLL 1342#if EV_USE_EPOLL
817 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1343 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
818#endif 1344#endif
819#if EV_USE_POLL 1345#if EV_USE_POLL
820 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1346 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
821#endif 1347#endif
822#if EV_USE_SELECT 1348#if EV_USE_SELECT
823 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1349 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
824#endif 1350#endif
825 1351
826 ev_init (&sigev, sigcb); 1352 ev_init (&pipeev, pipecb);
827 ev_set_priority (&sigev, EV_MAXPRI); 1353 ev_set_priority (&pipeev, EV_MAXPRI);
828 } 1354 }
829} 1355}
830 1356
831static void 1357static void noinline
832loop_destroy (EV_P) 1358loop_destroy (EV_P)
833{ 1359{
834 int i; 1360 int i;
835 1361
1362 if (ev_is_active (&pipeev))
1363 {
1364 ev_ref (EV_A); /* signal watcher */
1365 ev_io_stop (EV_A_ &pipeev);
1366
1367#if EV_USE_EVENTFD
1368 if (evfd >= 0)
1369 close (evfd);
1370#endif
1371
1372 if (evpipe [0] >= 0)
1373 {
1374 close (evpipe [0]);
1375 close (evpipe [1]);
1376 }
1377 }
1378
1379#if EV_USE_INOTIFY
1380 if (fs_fd >= 0)
1381 close (fs_fd);
1382#endif
1383
1384 if (backend_fd >= 0)
1385 close (backend_fd);
1386
836#if EV_USE_PORT 1387#if EV_USE_PORT
837 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1388 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
838#endif 1389#endif
839#if EV_USE_KQUEUE 1390#if EV_USE_KQUEUE
840 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1391 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
841#endif 1392#endif
842#if EV_USE_EPOLL 1393#if EV_USE_EPOLL
843 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1394 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
844#endif 1395#endif
845#if EV_USE_POLL 1396#if EV_USE_POLL
846 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1397 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
847#endif 1398#endif
848#if EV_USE_SELECT 1399#if EV_USE_SELECT
849 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1400 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
850#endif 1401#endif
851 1402
852 for (i = NUMPRI; i--; ) 1403 for (i = NUMPRI; i--; )
1404 {
853 array_free (pending, [i]); 1405 array_free (pending, [i]);
1406#if EV_IDLE_ENABLE
1407 array_free (idle, [i]);
1408#endif
1409 }
1410
1411 ev_free (anfds); anfdmax = 0;
854 1412
855 /* have to use the microsoft-never-gets-it-right macro */ 1413 /* have to use the microsoft-never-gets-it-right macro */
856 array_free (fdchange, EMPTY0); 1414 array_free (fdchange, EMPTY);
857 array_free (timer, EMPTY0); 1415 array_free (timer, EMPTY);
858#if EV_PERIODICS 1416#if EV_PERIODIC_ENABLE
859 array_free (periodic, EMPTY0); 1417 array_free (periodic, EMPTY);
860#endif 1418#endif
1419#if EV_FORK_ENABLE
861 array_free (idle, EMPTY0); 1420 array_free (fork, EMPTY);
1421#endif
862 array_free (prepare, EMPTY0); 1422 array_free (prepare, EMPTY);
863 array_free (check, EMPTY0); 1423 array_free (check, EMPTY);
1424#if EV_ASYNC_ENABLE
1425 array_free (async, EMPTY);
1426#endif
864 1427
865 method = 0; 1428 backend = 0;
866} 1429}
867 1430
868static void 1431#if EV_USE_INOTIFY
1432void inline_size infy_fork (EV_P);
1433#endif
1434
1435void inline_size
869loop_fork (EV_P) 1436loop_fork (EV_P)
870{ 1437{
871#if EV_USE_PORT 1438#if EV_USE_PORT
872 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1439 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
873#endif 1440#endif
874#if EV_USE_KQUEUE 1441#if EV_USE_KQUEUE
875 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1442 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
876#endif 1443#endif
877#if EV_USE_EPOLL 1444#if EV_USE_EPOLL
878 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1445 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
879#endif 1446#endif
1447#if EV_USE_INOTIFY
1448 infy_fork (EV_A);
1449#endif
880 1450
881 if (ev_is_active (&sigev)) 1451 if (ev_is_active (&pipeev))
882 { 1452 {
883 /* default loop */ 1453 /* this "locks" the handlers against writing to the pipe */
1454 /* while we modify the fd vars */
1455 gotsig = 1;
1456#if EV_ASYNC_ENABLE
1457 gotasync = 1;
1458#endif
884 1459
885 ev_ref (EV_A); 1460 ev_ref (EV_A);
886 ev_io_stop (EV_A_ &sigev); 1461 ev_io_stop (EV_A_ &pipeev);
1462
1463#if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466#endif
1467
1468 if (evpipe [0] >= 0)
1469 {
887 close (sigpipe [0]); 1470 close (evpipe [0]);
888 close (sigpipe [1]); 1471 close (evpipe [1]);
1472 }
889 1473
890 while (pipe (sigpipe))
891 syserr ("(libev) error creating pipe");
892
893 siginit (EV_A); 1474 evpipe_init (EV_A);
1475 /* now iterate over everything, in case we missed something */
1476 pipecb (EV_A_ &pipeev, EV_READ);
894 } 1477 }
895 1478
896 postfork = 0; 1479 postfork = 0;
897} 1480}
898 1481
904 1487
905 memset (loop, 0, sizeof (struct ev_loop)); 1488 memset (loop, 0, sizeof (struct ev_loop));
906 1489
907 loop_init (EV_A_ flags); 1490 loop_init (EV_A_ flags);
908 1491
909 if (ev_method (EV_A)) 1492 if (ev_backend (EV_A))
910 return loop; 1493 return loop;
911 1494
912 return 0; 1495 return 0;
913} 1496}
914 1497
920} 1503}
921 1504
922void 1505void
923ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
924{ 1507{
925 postfork = 1; 1508 postfork = 1; /* must be in line with ev_default_fork */
926} 1509}
1510
1511#if EV_VERIFY
1512static void
1513array_check (W **ws, int cnt)
1514{
1515 while (cnt--)
1516 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1517}
1518
1519static void
1520ev_loop_verify (EV_P)
1521{
1522 int i;
1523
1524 checkheap (timers, timercnt);
1525#if EV_PERIODIC_ENABLE
1526 checkheap (periodics, periodiccnt);
1527#endif
1528
1529#if EV_IDLE_ENABLE
1530 for (i = NUMPRI; i--; )
1531 array_check ((W **)idles [i], idlecnt [i]);
1532#endif
1533#if EV_FORK_ENABLE
1534 array_check ((W **)forks, forkcnt);
1535#endif
1536 array_check ((W **)prepares, preparecnt);
1537 array_check ((W **)checks, checkcnt);
1538#if EV_ASYNC_ENABLE
1539 array_check ((W **)asyncs, asynccnt);
1540#endif
1541}
1542#endif
927 1543
928#endif 1544#endif
929 1545
930#if EV_MULTIPLICITY 1546#if EV_MULTIPLICITY
931struct ev_loop * 1547struct ev_loop *
933#else 1549#else
934int 1550int
935ev_default_loop (unsigned int flags) 1551ev_default_loop (unsigned int flags)
936#endif 1552#endif
937{ 1553{
938 if (sigpipe [0] == sigpipe [1])
939 if (pipe (sigpipe))
940 return 0;
941
942 if (!ev_default_loop_ptr) 1554 if (!ev_default_loop_ptr)
943 { 1555 {
944#if EV_MULTIPLICITY 1556#if EV_MULTIPLICITY
945 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1557 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
946#else 1558#else
947 ev_default_loop_ptr = 1; 1559 ev_default_loop_ptr = 1;
948#endif 1560#endif
949 1561
950 loop_init (EV_A_ flags); 1562 loop_init (EV_A_ flags);
951 1563
952 if (ev_method (EV_A)) 1564 if (ev_backend (EV_A))
953 { 1565 {
954 siginit (EV_A);
955
956#ifndef _WIN32 1566#ifndef _WIN32
957 ev_signal_init (&childev, childcb, SIGCHLD); 1567 ev_signal_init (&childev, childcb, SIGCHLD);
958 ev_set_priority (&childev, EV_MAXPRI); 1568 ev_set_priority (&childev, EV_MAXPRI);
959 ev_signal_start (EV_A_ &childev); 1569 ev_signal_start (EV_A_ &childev);
960 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1570 ev_unref (EV_A); /* child watcher should not keep loop alive */
977#ifndef _WIN32 1587#ifndef _WIN32
978 ev_ref (EV_A); /* child watcher */ 1588 ev_ref (EV_A); /* child watcher */
979 ev_signal_stop (EV_A_ &childev); 1589 ev_signal_stop (EV_A_ &childev);
980#endif 1590#endif
981 1591
982 ev_ref (EV_A); /* signal watcher */
983 ev_io_stop (EV_A_ &sigev);
984
985 close (sigpipe [0]); sigpipe [0] = 0;
986 close (sigpipe [1]); sigpipe [1] = 0;
987
988 loop_destroy (EV_A); 1592 loop_destroy (EV_A);
989} 1593}
990 1594
991void 1595void
992ev_default_fork (void) 1596ev_default_fork (void)
993{ 1597{
994#if EV_MULTIPLICITY 1598#if EV_MULTIPLICITY
995 struct ev_loop *loop = ev_default_loop_ptr; 1599 struct ev_loop *loop = ev_default_loop_ptr;
996#endif 1600#endif
997 1601
998 if (method) 1602 if (backend)
999 postfork = 1; 1603 postfork = 1; /* must be in line with ev_loop_fork */
1000} 1604}
1001 1605
1002/*****************************************************************************/ 1606/*****************************************************************************/
1003 1607
1004static int 1608void
1609ev_invoke (EV_P_ void *w, int revents)
1610{
1611 EV_CB_INVOKE ((W)w, revents);
1612}
1613
1614void inline_speed
1005any_pending (EV_P) 1615call_pending (EV_P)
1006{ 1616{
1007 int pri; 1617 int pri;
1008 1618
1009 for (pri = NUMPRI; pri--; ) 1619 EV_FREQUENT_CHECK;
1010 if (pendingcnt [pri])
1011 return 1;
1012
1013 return 0;
1014}
1015
1016inline void
1017call_pending (EV_P)
1018{
1019 int pri;
1020 1620
1021 for (pri = NUMPRI; pri--; ) 1621 for (pri = NUMPRI; pri--; )
1022 while (pendingcnt [pri]) 1622 while (pendingcnt [pri])
1023 { 1623 {
1024 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1624 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1025 1625
1026 if (expect_true (p->w)) 1626 if (expect_true (p->w))
1027 { 1627 {
1628 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1629
1028 p->w->pending = 0; 1630 p->w->pending = 0;
1029 EV_CB_INVOKE (p->w, p->events); 1631 EV_CB_INVOKE (p->w, p->events);
1030 } 1632 }
1031 } 1633 }
1032}
1033 1634
1034inline void 1635 EV_FREQUENT_CHECK;
1636}
1637
1638#if EV_IDLE_ENABLE
1639void inline_size
1640idle_reify (EV_P)
1641{
1642 if (expect_false (idleall))
1643 {
1644 int pri;
1645
1646 for (pri = NUMPRI; pri--; )
1647 {
1648 if (pendingcnt [pri])
1649 break;
1650
1651 if (idlecnt [pri])
1652 {
1653 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1654 break;
1655 }
1656 }
1657 }
1658}
1659#endif
1660
1661void inline_size
1035timers_reify (EV_P) 1662timers_reify (EV_P)
1036{ 1663{
1664 EV_FREQUENT_CHECK;
1665
1037 while (timercnt && ((WT)timers [0])->at <= mn_now) 1666 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1038 { 1667 {
1039 struct ev_timer *w = timers [0]; 1668 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1040 1669
1041 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1670 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1042 1671
1043 /* first reschedule or stop timer */ 1672 /* first reschedule or stop timer */
1044 if (w->repeat) 1673 if (w->repeat)
1045 { 1674 {
1675 ev_at (w) += w->repeat;
1676 if (ev_at (w) < mn_now)
1677 ev_at (w) = mn_now;
1678
1046 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1679 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1047 1680
1048 ((WT)w)->at += w->repeat; 1681 ANHE_at_cache (timers [HEAP0]);
1049 if (((WT)w)->at < mn_now)
1050 ((WT)w)->at = mn_now;
1051
1052 downheap ((WT *)timers, timercnt, 0); 1682 downheap (timers, timercnt, HEAP0);
1053 } 1683 }
1054 else 1684 else
1055 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1685 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1056 1686
1687 EV_FREQUENT_CHECK;
1057 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1688 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1058 } 1689 }
1059} 1690}
1060 1691
1061#if EV_PERIODICS 1692#if EV_PERIODIC_ENABLE
1062inline void 1693void inline_size
1063periodics_reify (EV_P) 1694periodics_reify (EV_P)
1064{ 1695{
1696 EV_FREQUENT_CHECK;
1065 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1697 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1066 { 1698 {
1067 struct ev_periodic *w = periodics [0]; 1699 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1068 1700
1069 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1701 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1070 1702
1071 /* first reschedule or stop timer */ 1703 /* first reschedule or stop timer */
1072 if (w->reschedule_cb) 1704 if (w->reschedule_cb)
1073 { 1705 {
1074 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1706 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707
1075 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1708 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1709
1710 ANHE_at_cache (periodics [HEAP0]);
1076 downheap ((WT *)periodics, periodiccnt, 0); 1711 downheap (periodics, periodiccnt, HEAP0);
1712 EV_FREQUENT_CHECK;
1077 } 1713 }
1078 else if (w->interval) 1714 else if (w->interval)
1079 { 1715 {
1080 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1716 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1081 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1717 /* if next trigger time is not sufficiently in the future, put it there */
1718 /* this might happen because of floating point inexactness */
1719 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1720 {
1721 ev_at (w) += w->interval;
1722
1723 /* if interval is unreasonably low we might still have a time in the past */
1724 /* so correct this. this will make the periodic very inexact, but the user */
1725 /* has effectively asked to get triggered more often than possible */
1726 if (ev_at (w) < ev_rt_now)
1727 ev_at (w) = ev_rt_now;
1728 }
1729
1730 ANHE_at_cache (periodics [HEAP0]);
1082 downheap ((WT *)periodics, periodiccnt, 0); 1731 downheap (periodics, periodiccnt, HEAP0);
1083 } 1732 }
1084 else 1733 else
1085 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1734 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1086 1735
1736 EV_FREQUENT_CHECK;
1087 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1737 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1088 } 1738 }
1089} 1739}
1090 1740
1091static void 1741static void noinline
1092periodics_reschedule (EV_P) 1742periodics_reschedule (EV_P)
1093{ 1743{
1094 int i; 1744 int i;
1095 1745
1096 /* adjust periodics after time jump */ 1746 /* adjust periodics after time jump */
1097 for (i = 0; i < periodiccnt; ++i) 1747 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1098 { 1748 {
1099 struct ev_periodic *w = periodics [i]; 1749 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1100 1750
1101 if (w->reschedule_cb) 1751 if (w->reschedule_cb)
1102 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1752 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1103 else if (w->interval) 1753 else if (w->interval)
1104 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1754 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1755
1756 ANHE_at_cache (periodics [i]);
1757 }
1758
1759 reheap (periodics, periodiccnt);
1760}
1761#endif
1762
1763void inline_speed
1764time_update (EV_P_ ev_tstamp max_block)
1765{
1766 int i;
1767
1768#if EV_USE_MONOTONIC
1769 if (expect_true (have_monotonic))
1105 } 1770 {
1771 ev_tstamp odiff = rtmn_diff;
1106 1772
1107 /* now rebuild the heap */
1108 for (i = periodiccnt >> 1; i--; )
1109 downheap ((WT *)periodics, periodiccnt, i);
1110}
1111#endif
1112
1113inline int
1114time_update_monotonic (EV_P)
1115{
1116 mn_now = get_clock (); 1773 mn_now = get_clock ();
1117 1774
1775 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1776 /* interpolate in the meantime */
1118 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1777 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1119 { 1778 {
1120 ev_rt_now = rtmn_diff + mn_now; 1779 ev_rt_now = rtmn_diff + mn_now;
1121 return 0; 1780 return;
1122 } 1781 }
1123 else 1782
1124 {
1125 now_floor = mn_now; 1783 now_floor = mn_now;
1126 ev_rt_now = ev_time (); 1784 ev_rt_now = ev_time ();
1127 return 1;
1128 }
1129}
1130 1785
1131inline void 1786 /* loop a few times, before making important decisions.
1132time_update (EV_P) 1787 * on the choice of "4": one iteration isn't enough,
1133{ 1788 * in case we get preempted during the calls to
1134 int i; 1789 * ev_time and get_clock. a second call is almost guaranteed
1135 1790 * to succeed in that case, though. and looping a few more times
1136#if EV_USE_MONOTONIC 1791 * doesn't hurt either as we only do this on time-jumps or
1137 if (expect_true (have_monotonic)) 1792 * in the unlikely event of having been preempted here.
1138 { 1793 */
1139 if (time_update_monotonic (EV_A)) 1794 for (i = 4; --i; )
1140 { 1795 {
1141 ev_tstamp odiff = rtmn_diff; 1796 rtmn_diff = ev_rt_now - mn_now;
1142 1797
1143 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1798 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1799 return; /* all is well */
1800
1801 ev_rt_now = ev_time ();
1802 mn_now = get_clock ();
1803 now_floor = mn_now;
1804 }
1805
1806# if EV_PERIODIC_ENABLE
1807 periodics_reschedule (EV_A);
1808# endif
1809 /* no timer adjustment, as the monotonic clock doesn't jump */
1810 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1811 }
1812 else
1813#endif
1814 {
1815 ev_rt_now = ev_time ();
1816
1817 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1818 {
1819#if EV_PERIODIC_ENABLE
1820 periodics_reschedule (EV_A);
1821#endif
1822 /* adjust timers. this is easy, as the offset is the same for all of them */
1823 for (i = 0; i < timercnt; ++i)
1144 { 1824 {
1145 rtmn_diff = ev_rt_now - mn_now; 1825 ANHE *he = timers + i + HEAP0;
1146 1826 ANHE_w (*he)->at += ev_rt_now - mn_now;
1147 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1827 ANHE_at_cache (*he);
1148 return; /* all is well */
1149
1150 ev_rt_now = ev_time ();
1151 mn_now = get_clock ();
1152 now_floor = mn_now;
1153 } 1828 }
1154
1155# if EV_PERIODICS
1156 periodics_reschedule (EV_A);
1157# endif
1158 /* no timer adjustment, as the monotonic clock doesn't jump */
1159 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1160 } 1829 }
1161 }
1162 else
1163#endif
1164 {
1165 ev_rt_now = ev_time ();
1166
1167 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1168 {
1169#if EV_PERIODICS
1170 periodics_reschedule (EV_A);
1171#endif
1172
1173 /* adjust timers. this is easy, as the offset is the same for all */
1174 for (i = 0; i < timercnt; ++i)
1175 ((WT)timers [i])->at += ev_rt_now - mn_now;
1176 }
1177 1830
1178 mn_now = ev_rt_now; 1831 mn_now = ev_rt_now;
1179 } 1832 }
1180} 1833}
1181 1834
1194static int loop_done; 1847static int loop_done;
1195 1848
1196void 1849void
1197ev_loop (EV_P_ int flags) 1850ev_loop (EV_P_ int flags)
1198{ 1851{
1199 double block; 1852 loop_done = EVUNLOOP_CANCEL;
1200 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1201 1853
1202 while (activecnt) 1854 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1855
1856 do
1203 { 1857 {
1858#ifndef _WIN32
1859 if (expect_false (curpid)) /* penalise the forking check even more */
1860 if (expect_false (getpid () != curpid))
1861 {
1862 curpid = getpid ();
1863 postfork = 1;
1864 }
1865#endif
1866
1867#if EV_FORK_ENABLE
1868 /* we might have forked, so queue fork handlers */
1869 if (expect_false (postfork))
1870 if (forkcnt)
1871 {
1872 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1873 call_pending (EV_A);
1874 }
1875#endif
1876
1204 /* queue check watchers (and execute them) */ 1877 /* queue prepare watchers (and execute them) */
1205 if (expect_false (preparecnt)) 1878 if (expect_false (preparecnt))
1206 { 1879 {
1207 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1880 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1208 call_pending (EV_A); 1881 call_pending (EV_A);
1209 } 1882 }
1210 1883
1884 if (expect_false (!activecnt))
1885 break;
1886
1211 /* we might have forked, so reify kernel state if necessary */ 1887 /* we might have forked, so reify kernel state if necessary */
1212 if (expect_false (postfork)) 1888 if (expect_false (postfork))
1213 loop_fork (EV_A); 1889 loop_fork (EV_A);
1214 1890
1215 /* update fd-related kernel structures */ 1891 /* update fd-related kernel structures */
1216 fd_reify (EV_A); 1892 fd_reify (EV_A);
1217 1893
1218 /* calculate blocking time */ 1894 /* calculate blocking time */
1895 {
1896 ev_tstamp waittime = 0.;
1897 ev_tstamp sleeptime = 0.;
1219 1898
1220 /* we only need this for !monotonic clock or timers, but as we basically 1899 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1221 always have timers, we just calculate it always */
1222#if EV_USE_MONOTONIC
1223 if (expect_true (have_monotonic))
1224 time_update_monotonic (EV_A);
1225 else
1226#endif
1227 { 1900 {
1228 ev_rt_now = ev_time (); 1901 /* update time to cancel out callback processing overhead */
1229 mn_now = ev_rt_now; 1902 time_update (EV_A_ 1e100);
1230 }
1231 1903
1232 if (flags & EVLOOP_NONBLOCK || idlecnt)
1233 block = 0.;
1234 else
1235 {
1236 block = MAX_BLOCKTIME; 1904 waittime = MAX_BLOCKTIME;
1237 1905
1238 if (timercnt) 1906 if (timercnt)
1239 { 1907 {
1240 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1908 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1241 if (block > to) block = to; 1909 if (waittime > to) waittime = to;
1242 } 1910 }
1243 1911
1244#if EV_PERIODICS 1912#if EV_PERIODIC_ENABLE
1245 if (periodiccnt) 1913 if (periodiccnt)
1246 { 1914 {
1247 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1915 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1248 if (block > to) block = to; 1916 if (waittime > to) waittime = to;
1249 } 1917 }
1250#endif 1918#endif
1251 1919
1252 if (expect_false (block < 0.)) block = 0.; 1920 if (expect_false (waittime < timeout_blocktime))
1921 waittime = timeout_blocktime;
1922
1923 sleeptime = waittime - backend_fudge;
1924
1925 if (expect_true (sleeptime > io_blocktime))
1926 sleeptime = io_blocktime;
1927
1928 if (sleeptime)
1929 {
1930 ev_sleep (sleeptime);
1931 waittime -= sleeptime;
1932 }
1253 } 1933 }
1254 1934
1255 method_poll (EV_A_ block); 1935 ++loop_count;
1936 backend_poll (EV_A_ waittime);
1256 1937
1257 /* update ev_rt_now, do magic */ 1938 /* update ev_rt_now, do magic */
1258 time_update (EV_A); 1939 time_update (EV_A_ waittime + sleeptime);
1940 }
1259 1941
1260 /* queue pending timers and reschedule them */ 1942 /* queue pending timers and reschedule them */
1261 timers_reify (EV_A); /* relative timers called last */ 1943 timers_reify (EV_A); /* relative timers called last */
1262#if EV_PERIODICS 1944#if EV_PERIODIC_ENABLE
1263 periodics_reify (EV_A); /* absolute timers called first */ 1945 periodics_reify (EV_A); /* absolute timers called first */
1264#endif 1946#endif
1265 1947
1948#if EV_IDLE_ENABLE
1266 /* queue idle watchers unless io or timers are pending */ 1949 /* queue idle watchers unless other events are pending */
1267 if (idlecnt && !any_pending (EV_A)) 1950 idle_reify (EV_A);
1268 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1951#endif
1269 1952
1270 /* queue check watchers, to be executed first */ 1953 /* queue check watchers, to be executed first */
1271 if (expect_false (checkcnt)) 1954 if (expect_false (checkcnt))
1272 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1955 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1273 1956
1274 call_pending (EV_A); 1957 call_pending (EV_A);
1275
1276 if (expect_false (loop_done))
1277 break;
1278 } 1958 }
1959 while (expect_true (
1960 activecnt
1961 && !loop_done
1962 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1963 ));
1279 1964
1280 if (loop_done != 2) 1965 if (loop_done == EVUNLOOP_ONE)
1281 loop_done = 0; 1966 loop_done = EVUNLOOP_CANCEL;
1282} 1967}
1283 1968
1284void 1969void
1285ev_unloop (EV_P_ int how) 1970ev_unloop (EV_P_ int how)
1286{ 1971{
1287 loop_done = how; 1972 loop_done = how;
1288} 1973}
1289 1974
1290/*****************************************************************************/ 1975/*****************************************************************************/
1291 1976
1292inline void 1977void inline_size
1293wlist_add (WL *head, WL elem) 1978wlist_add (WL *head, WL elem)
1294{ 1979{
1295 elem->next = *head; 1980 elem->next = *head;
1296 *head = elem; 1981 *head = elem;
1297} 1982}
1298 1983
1299inline void 1984void inline_size
1300wlist_del (WL *head, WL elem) 1985wlist_del (WL *head, WL elem)
1301{ 1986{
1302 while (*head) 1987 while (*head)
1303 { 1988 {
1304 if (*head == elem) 1989 if (*head == elem)
1309 1994
1310 head = &(*head)->next; 1995 head = &(*head)->next;
1311 } 1996 }
1312} 1997}
1313 1998
1314inline void 1999void inline_speed
1315ev_clear_pending (EV_P_ W w) 2000clear_pending (EV_P_ W w)
1316{ 2001{
1317 if (w->pending) 2002 if (w->pending)
1318 { 2003 {
1319 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2004 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1320 w->pending = 0; 2005 w->pending = 0;
1321 } 2006 }
1322} 2007}
1323 2008
1324inline void 2009int
2010ev_clear_pending (EV_P_ void *w)
2011{
2012 W w_ = (W)w;
2013 int pending = w_->pending;
2014
2015 if (expect_true (pending))
2016 {
2017 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2018 w_->pending = 0;
2019 p->w = 0;
2020 return p->events;
2021 }
2022 else
2023 return 0;
2024}
2025
2026void inline_size
2027pri_adjust (EV_P_ W w)
2028{
2029 int pri = w->priority;
2030 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2031 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2032 w->priority = pri;
2033}
2034
2035void inline_speed
1325ev_start (EV_P_ W w, int active) 2036ev_start (EV_P_ W w, int active)
1326{ 2037{
1327 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2038 pri_adjust (EV_A_ w);
1328 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1329
1330 w->active = active; 2039 w->active = active;
1331 ev_ref (EV_A); 2040 ev_ref (EV_A);
1332} 2041}
1333 2042
1334inline void 2043void inline_size
1335ev_stop (EV_P_ W w) 2044ev_stop (EV_P_ W w)
1336{ 2045{
1337 ev_unref (EV_A); 2046 ev_unref (EV_A);
1338 w->active = 0; 2047 w->active = 0;
1339} 2048}
1340 2049
1341/*****************************************************************************/ 2050/*****************************************************************************/
1342 2051
1343void 2052void noinline
1344ev_io_start (EV_P_ struct ev_io *w) 2053ev_io_start (EV_P_ ev_io *w)
1345{ 2054{
1346 int fd = w->fd; 2055 int fd = w->fd;
1347 2056
1348 if (expect_false (ev_is_active (w))) 2057 if (expect_false (ev_is_active (w)))
1349 return; 2058 return;
1350 2059
1351 assert (("ev_io_start called with negative fd", fd >= 0)); 2060 assert (("ev_io_start called with negative fd", fd >= 0));
1352 2061
2062 EV_FREQUENT_CHECK;
2063
1353 ev_start (EV_A_ (W)w, 1); 2064 ev_start (EV_A_ (W)w, 1);
1354 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2065 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1355 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2066 wlist_add (&anfds[fd].head, (WL)w);
1356 2067
1357 fd_change (EV_A_ fd); 2068 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1358} 2069 w->events &= ~EV_IOFDSET;
1359 2070
1360void 2071 EV_FREQUENT_CHECK;
2072}
2073
2074void noinline
1361ev_io_stop (EV_P_ struct ev_io *w) 2075ev_io_stop (EV_P_ ev_io *w)
1362{ 2076{
1363 ev_clear_pending (EV_A_ (W)w); 2077 clear_pending (EV_A_ (W)w);
1364 if (expect_false (!ev_is_active (w))) 2078 if (expect_false (!ev_is_active (w)))
1365 return; 2079 return;
1366 2080
1367 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2081 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1368 2082
2083 EV_FREQUENT_CHECK;
2084
1369 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2085 wlist_del (&anfds[w->fd].head, (WL)w);
1370 ev_stop (EV_A_ (W)w); 2086 ev_stop (EV_A_ (W)w);
1371 2087
1372 fd_change (EV_A_ w->fd); 2088 fd_change (EV_A_ w->fd, 1);
1373}
1374 2089
1375void 2090 EV_FREQUENT_CHECK;
2091}
2092
2093void noinline
1376ev_timer_start (EV_P_ struct ev_timer *w) 2094ev_timer_start (EV_P_ ev_timer *w)
1377{ 2095{
1378 if (expect_false (ev_is_active (w))) 2096 if (expect_false (ev_is_active (w)))
1379 return; 2097 return;
1380 2098
1381 ((WT)w)->at += mn_now; 2099 ev_at (w) += mn_now;
1382 2100
1383 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2101 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1384 2102
2103 EV_FREQUENT_CHECK;
2104
2105 ++timercnt;
1385 ev_start (EV_A_ (W)w, ++timercnt); 2106 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1386 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2107 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1387 timers [timercnt - 1] = w; 2108 ANHE_w (timers [ev_active (w)]) = (WT)w;
1388 upheap ((WT *)timers, timercnt - 1); 2109 ANHE_at_cache (timers [ev_active (w)]);
2110 upheap (timers, ev_active (w));
1389 2111
2112 EV_FREQUENT_CHECK;
2113
1390 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2114 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1391} 2115}
1392 2116
1393void 2117void noinline
1394ev_timer_stop (EV_P_ struct ev_timer *w) 2118ev_timer_stop (EV_P_ ev_timer *w)
1395{ 2119{
1396 ev_clear_pending (EV_A_ (W)w); 2120 clear_pending (EV_A_ (W)w);
1397 if (expect_false (!ev_is_active (w))) 2121 if (expect_false (!ev_is_active (w)))
1398 return; 2122 return;
1399 2123
2124 EV_FREQUENT_CHECK;
2125
2126 {
2127 int active = ev_active (w);
2128
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2129 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1401 2130
2131 --timercnt;
2132
1402 if (expect_true (((W)w)->active < timercnt--)) 2133 if (expect_true (active < timercnt + HEAP0))
1403 { 2134 {
1404 timers [((W)w)->active - 1] = timers [timercnt]; 2135 timers [active] = timers [timercnt + HEAP0];
1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2136 adjustheap (timers, timercnt, active);
1406 } 2137 }
2138 }
1407 2139
1408 ((WT)w)->at -= mn_now; 2140 EV_FREQUENT_CHECK;
2141
2142 ev_at (w) -= mn_now;
1409 2143
1410 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1411} 2145}
1412 2146
1413void 2147void noinline
1414ev_timer_again (EV_P_ struct ev_timer *w) 2148ev_timer_again (EV_P_ ev_timer *w)
1415{ 2149{
2150 EV_FREQUENT_CHECK;
2151
1416 if (ev_is_active (w)) 2152 if (ev_is_active (w))
1417 { 2153 {
1418 if (w->repeat) 2154 if (w->repeat)
1419 { 2155 {
1420 ((WT)w)->at = mn_now + w->repeat; 2156 ev_at (w) = mn_now + w->repeat;
2157 ANHE_at_cache (timers [ev_active (w)]);
1421 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2158 adjustheap (timers, timercnt, ev_active (w));
1422 } 2159 }
1423 else 2160 else
1424 ev_timer_stop (EV_A_ w); 2161 ev_timer_stop (EV_A_ w);
1425 } 2162 }
1426 else if (w->repeat) 2163 else if (w->repeat)
1427 { 2164 {
1428 w->at = w->repeat; 2165 ev_at (w) = w->repeat;
1429 ev_timer_start (EV_A_ w); 2166 ev_timer_start (EV_A_ w);
1430 } 2167 }
1431}
1432 2168
2169 EV_FREQUENT_CHECK;
2170}
2171
1433#if EV_PERIODICS 2172#if EV_PERIODIC_ENABLE
1434void 2173void noinline
1435ev_periodic_start (EV_P_ struct ev_periodic *w) 2174ev_periodic_start (EV_P_ ev_periodic *w)
1436{ 2175{
1437 if (expect_false (ev_is_active (w))) 2176 if (expect_false (ev_is_active (w)))
1438 return; 2177 return;
1439 2178
1440 if (w->reschedule_cb) 2179 if (w->reschedule_cb)
1441 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2180 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1442 else if (w->interval) 2181 else if (w->interval)
1443 { 2182 {
1444 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2183 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1445 /* this formula differs from the one in periodic_reify because we do not always round up */ 2184 /* this formula differs from the one in periodic_reify because we do not always round up */
1446 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1447 } 2186 }
2187 else
2188 ev_at (w) = w->offset;
1448 2189
2190 EV_FREQUENT_CHECK;
2191
2192 ++periodiccnt;
1449 ev_start (EV_A_ (W)w, ++periodiccnt); 2193 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1450 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2194 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1451 periodics [periodiccnt - 1] = w; 2195 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1452 upheap ((WT *)periodics, periodiccnt - 1); 2196 ANHE_at_cache (periodics [ev_active (w)]);
2197 upheap (periodics, ev_active (w));
1453 2198
2199 EV_FREQUENT_CHECK;
2200
1454 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2201 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1455} 2202}
1456 2203
1457void 2204void noinline
1458ev_periodic_stop (EV_P_ struct ev_periodic *w) 2205ev_periodic_stop (EV_P_ ev_periodic *w)
1459{ 2206{
1460 ev_clear_pending (EV_A_ (W)w); 2207 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 2208 if (expect_false (!ev_is_active (w)))
1462 return; 2209 return;
1463 2210
2211 EV_FREQUENT_CHECK;
2212
2213 {
2214 int active = ev_active (w);
2215
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2216 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1465 2217
2218 --periodiccnt;
2219
1466 if (expect_true (((W)w)->active < periodiccnt--)) 2220 if (expect_true (active < periodiccnt + HEAP0))
1467 { 2221 {
1468 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2222 periodics [active] = periodics [periodiccnt + HEAP0];
1469 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2223 adjustheap (periodics, periodiccnt, active);
1470 } 2224 }
2225 }
2226
2227 EV_FREQUENT_CHECK;
1471 2228
1472 ev_stop (EV_A_ (W)w); 2229 ev_stop (EV_A_ (W)w);
1473} 2230}
1474 2231
1475void 2232void noinline
1476ev_periodic_again (EV_P_ struct ev_periodic *w) 2233ev_periodic_again (EV_P_ ev_periodic *w)
1477{ 2234{
1478 /* TODO: use adjustheap and recalculation */ 2235 /* TODO: use adjustheap and recalculation */
1479 ev_periodic_stop (EV_A_ w); 2236 ev_periodic_stop (EV_A_ w);
1480 ev_periodic_start (EV_A_ w); 2237 ev_periodic_start (EV_A_ w);
1481} 2238}
1482#endif 2239#endif
1483 2240
1484void 2241#ifndef SA_RESTART
1485ev_idle_start (EV_P_ struct ev_idle *w) 2242# define SA_RESTART 0
2243#endif
2244
2245void noinline
2246ev_signal_start (EV_P_ ev_signal *w)
1486{ 2247{
2248#if EV_MULTIPLICITY
2249 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2250#endif
1487 if (expect_false (ev_is_active (w))) 2251 if (expect_false (ev_is_active (w)))
1488 return; 2252 return;
1489 2253
1490 ev_start (EV_A_ (W)w, ++idlecnt);
1491 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1492 idles [idlecnt - 1] = w;
1493}
1494
1495void
1496ev_idle_stop (EV_P_ struct ev_idle *w)
1497{
1498 ev_clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w)))
1500 return;
1501
1502 idles [((W)w)->active - 1] = idles [--idlecnt];
1503 ev_stop (EV_A_ (W)w);
1504}
1505
1506void
1507ev_prepare_start (EV_P_ struct ev_prepare *w)
1508{
1509 if (expect_false (ev_is_active (w)))
1510 return;
1511
1512 ev_start (EV_A_ (W)w, ++preparecnt);
1513 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1514 prepares [preparecnt - 1] = w;
1515}
1516
1517void
1518ev_prepare_stop (EV_P_ struct ev_prepare *w)
1519{
1520 ev_clear_pending (EV_A_ (W)w);
1521 if (expect_false (!ev_is_active (w)))
1522 return;
1523
1524 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1525 ev_stop (EV_A_ (W)w);
1526}
1527
1528void
1529ev_check_start (EV_P_ struct ev_check *w)
1530{
1531 if (expect_false (ev_is_active (w)))
1532 return;
1533
1534 ev_start (EV_A_ (W)w, ++checkcnt);
1535 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1536 checks [checkcnt - 1] = w;
1537}
1538
1539void
1540ev_check_stop (EV_P_ struct ev_check *w)
1541{
1542 ev_clear_pending (EV_A_ (W)w);
1543 if (expect_false (!ev_is_active (w)))
1544 return;
1545
1546 checks [((W)w)->active - 1] = checks [--checkcnt];
1547 ev_stop (EV_A_ (W)w);
1548}
1549
1550#ifndef SA_RESTART
1551# define SA_RESTART 0
1552#endif
1553
1554void
1555ev_signal_start (EV_P_ struct ev_signal *w)
1556{
1557#if EV_MULTIPLICITY
1558 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1559#endif
1560 if (expect_false (ev_is_active (w)))
1561 return;
1562
1563 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2254 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1564 2255
2256 evpipe_init (EV_A);
2257
2258 EV_FREQUENT_CHECK;
2259
2260 {
2261#ifndef _WIN32
2262 sigset_t full, prev;
2263 sigfillset (&full);
2264 sigprocmask (SIG_SETMASK, &full, &prev);
2265#endif
2266
2267 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2268
2269#ifndef _WIN32
2270 sigprocmask (SIG_SETMASK, &prev, 0);
2271#endif
2272 }
2273
1565 ev_start (EV_A_ (W)w, 1); 2274 ev_start (EV_A_ (W)w, 1);
1566 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1567 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2275 wlist_add (&signals [w->signum - 1].head, (WL)w);
1568 2276
1569 if (!((WL)w)->next) 2277 if (!((WL)w)->next)
1570 { 2278 {
1571#if _WIN32 2279#if _WIN32
1572 signal (w->signum, sighandler); 2280 signal (w->signum, ev_sighandler);
1573#else 2281#else
1574 struct sigaction sa; 2282 struct sigaction sa;
1575 sa.sa_handler = sighandler; 2283 sa.sa_handler = ev_sighandler;
1576 sigfillset (&sa.sa_mask); 2284 sigfillset (&sa.sa_mask);
1577 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2285 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1578 sigaction (w->signum, &sa, 0); 2286 sigaction (w->signum, &sa, 0);
1579#endif 2287#endif
1580 } 2288 }
1581}
1582 2289
1583void 2290 EV_FREQUENT_CHECK;
2291}
2292
2293void noinline
1584ev_signal_stop (EV_P_ struct ev_signal *w) 2294ev_signal_stop (EV_P_ ev_signal *w)
1585{ 2295{
1586 ev_clear_pending (EV_A_ (W)w); 2296 clear_pending (EV_A_ (W)w);
1587 if (expect_false (!ev_is_active (w))) 2297 if (expect_false (!ev_is_active (w)))
1588 return; 2298 return;
1589 2299
2300 EV_FREQUENT_CHECK;
2301
1590 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2302 wlist_del (&signals [w->signum - 1].head, (WL)w);
1591 ev_stop (EV_A_ (W)w); 2303 ev_stop (EV_A_ (W)w);
1592 2304
1593 if (!signals [w->signum - 1].head) 2305 if (!signals [w->signum - 1].head)
1594 signal (w->signum, SIG_DFL); 2306 signal (w->signum, SIG_DFL);
1595}
1596 2307
2308 EV_FREQUENT_CHECK;
2309}
2310
1597void 2311void
1598ev_child_start (EV_P_ struct ev_child *w) 2312ev_child_start (EV_P_ ev_child *w)
1599{ 2313{
1600#if EV_MULTIPLICITY 2314#if EV_MULTIPLICITY
1601 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2315 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1602#endif 2316#endif
1603 if (expect_false (ev_is_active (w))) 2317 if (expect_false (ev_is_active (w)))
1604 return; 2318 return;
1605 2319
2320 EV_FREQUENT_CHECK;
2321
1606 ev_start (EV_A_ (W)w, 1); 2322 ev_start (EV_A_ (W)w, 1);
1607 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2323 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1608}
1609 2324
2325 EV_FREQUENT_CHECK;
2326}
2327
1610void 2328void
1611ev_child_stop (EV_P_ struct ev_child *w) 2329ev_child_stop (EV_P_ ev_child *w)
1612{ 2330{
1613 ev_clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
1614 if (expect_false (!ev_is_active (w))) 2332 if (expect_false (!ev_is_active (w)))
1615 return; 2333 return;
1616 2334
2335 EV_FREQUENT_CHECK;
2336
1617 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2337 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1618 ev_stop (EV_A_ (W)w); 2338 ev_stop (EV_A_ (W)w);
2339
2340 EV_FREQUENT_CHECK;
1619} 2341}
2342
2343#if EV_STAT_ENABLE
2344
2345# ifdef _WIN32
2346# undef lstat
2347# define lstat(a,b) _stati64 (a,b)
2348# endif
2349
2350#define DEF_STAT_INTERVAL 5.0074891
2351#define MIN_STAT_INTERVAL 0.1074891
2352
2353static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2354
2355#if EV_USE_INOTIFY
2356# define EV_INOTIFY_BUFSIZE 8192
2357
2358static void noinline
2359infy_add (EV_P_ ev_stat *w)
2360{
2361 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2362
2363 if (w->wd < 0)
2364 {
2365 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2366
2367 /* monitor some parent directory for speedup hints */
2368 /* note that exceeding the hardcoded limit is not a correctness issue, */
2369 /* but an efficiency issue only */
2370 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2371 {
2372 char path [4096];
2373 strcpy (path, w->path);
2374
2375 do
2376 {
2377 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2378 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2379
2380 char *pend = strrchr (path, '/');
2381
2382 if (!pend)
2383 break; /* whoops, no '/', complain to your admin */
2384
2385 *pend = 0;
2386 w->wd = inotify_add_watch (fs_fd, path, mask);
2387 }
2388 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2389 }
2390 }
2391 else
2392 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2393
2394 if (w->wd >= 0)
2395 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2396}
2397
2398static void noinline
2399infy_del (EV_P_ ev_stat *w)
2400{
2401 int slot;
2402 int wd = w->wd;
2403
2404 if (wd < 0)
2405 return;
2406
2407 w->wd = -2;
2408 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2409 wlist_del (&fs_hash [slot].head, (WL)w);
2410
2411 /* remove this watcher, if others are watching it, they will rearm */
2412 inotify_rm_watch (fs_fd, wd);
2413}
2414
2415static void noinline
2416infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2417{
2418 if (slot < 0)
2419 /* overflow, need to check for all hahs slots */
2420 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2421 infy_wd (EV_A_ slot, wd, ev);
2422 else
2423 {
2424 WL w_;
2425
2426 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2427 {
2428 ev_stat *w = (ev_stat *)w_;
2429 w_ = w_->next; /* lets us remove this watcher and all before it */
2430
2431 if (w->wd == wd || wd == -1)
2432 {
2433 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2434 {
2435 w->wd = -1;
2436 infy_add (EV_A_ w); /* re-add, no matter what */
2437 }
2438
2439 stat_timer_cb (EV_A_ &w->timer, 0);
2440 }
2441 }
2442 }
2443}
2444
2445static void
2446infy_cb (EV_P_ ev_io *w, int revents)
2447{
2448 char buf [EV_INOTIFY_BUFSIZE];
2449 struct inotify_event *ev = (struct inotify_event *)buf;
2450 int ofs;
2451 int len = read (fs_fd, buf, sizeof (buf));
2452
2453 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2454 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2455}
2456
2457void inline_size
2458infy_init (EV_P)
2459{
2460 if (fs_fd != -2)
2461 return;
2462
2463 fs_fd = inotify_init ();
2464
2465 if (fs_fd >= 0)
2466 {
2467 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2468 ev_set_priority (&fs_w, EV_MAXPRI);
2469 ev_io_start (EV_A_ &fs_w);
2470 }
2471}
2472
2473void inline_size
2474infy_fork (EV_P)
2475{
2476 int slot;
2477
2478 if (fs_fd < 0)
2479 return;
2480
2481 close (fs_fd);
2482 fs_fd = inotify_init ();
2483
2484 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2485 {
2486 WL w_ = fs_hash [slot].head;
2487 fs_hash [slot].head = 0;
2488
2489 while (w_)
2490 {
2491 ev_stat *w = (ev_stat *)w_;
2492 w_ = w_->next; /* lets us add this watcher */
2493
2494 w->wd = -1;
2495
2496 if (fs_fd >= 0)
2497 infy_add (EV_A_ w); /* re-add, no matter what */
2498 else
2499 ev_timer_start (EV_A_ &w->timer);
2500 }
2501
2502 }
2503}
2504
2505#endif
2506
2507void
2508ev_stat_stat (EV_P_ ev_stat *w)
2509{
2510 if (lstat (w->path, &w->attr) < 0)
2511 w->attr.st_nlink = 0;
2512 else if (!w->attr.st_nlink)
2513 w->attr.st_nlink = 1;
2514}
2515
2516static void noinline
2517stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2518{
2519 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2520
2521 /* we copy this here each the time so that */
2522 /* prev has the old value when the callback gets invoked */
2523 w->prev = w->attr;
2524 ev_stat_stat (EV_A_ w);
2525
2526 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2527 if (
2528 w->prev.st_dev != w->attr.st_dev
2529 || w->prev.st_ino != w->attr.st_ino
2530 || w->prev.st_mode != w->attr.st_mode
2531 || w->prev.st_nlink != w->attr.st_nlink
2532 || w->prev.st_uid != w->attr.st_uid
2533 || w->prev.st_gid != w->attr.st_gid
2534 || w->prev.st_rdev != w->attr.st_rdev
2535 || w->prev.st_size != w->attr.st_size
2536 || w->prev.st_atime != w->attr.st_atime
2537 || w->prev.st_mtime != w->attr.st_mtime
2538 || w->prev.st_ctime != w->attr.st_ctime
2539 ) {
2540 #if EV_USE_INOTIFY
2541 infy_del (EV_A_ w);
2542 infy_add (EV_A_ w);
2543 ev_stat_stat (EV_A_ w); /* avoid race... */
2544 #endif
2545
2546 ev_feed_event (EV_A_ w, EV_STAT);
2547 }
2548}
2549
2550void
2551ev_stat_start (EV_P_ ev_stat *w)
2552{
2553 if (expect_false (ev_is_active (w)))
2554 return;
2555
2556 /* since we use memcmp, we need to clear any padding data etc. */
2557 memset (&w->prev, 0, sizeof (ev_statdata));
2558 memset (&w->attr, 0, sizeof (ev_statdata));
2559
2560 ev_stat_stat (EV_A_ w);
2561
2562 if (w->interval < MIN_STAT_INTERVAL)
2563 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2564
2565 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2566 ev_set_priority (&w->timer, ev_priority (w));
2567
2568#if EV_USE_INOTIFY
2569 infy_init (EV_A);
2570
2571 if (fs_fd >= 0)
2572 infy_add (EV_A_ w);
2573 else
2574#endif
2575 ev_timer_start (EV_A_ &w->timer);
2576
2577 ev_start (EV_A_ (W)w, 1);
2578
2579 EV_FREQUENT_CHECK;
2580}
2581
2582void
2583ev_stat_stop (EV_P_ ev_stat *w)
2584{
2585 clear_pending (EV_A_ (W)w);
2586 if (expect_false (!ev_is_active (w)))
2587 return;
2588
2589 EV_FREQUENT_CHECK;
2590
2591#if EV_USE_INOTIFY
2592 infy_del (EV_A_ w);
2593#endif
2594 ev_timer_stop (EV_A_ &w->timer);
2595
2596 ev_stop (EV_A_ (W)w);
2597
2598 EV_FREQUENT_CHECK;
2599}
2600#endif
2601
2602#if EV_IDLE_ENABLE
2603void
2604ev_idle_start (EV_P_ ev_idle *w)
2605{
2606 if (expect_false (ev_is_active (w)))
2607 return;
2608
2609 pri_adjust (EV_A_ (W)w);
2610
2611 EV_FREQUENT_CHECK;
2612
2613 {
2614 int active = ++idlecnt [ABSPRI (w)];
2615
2616 ++idleall;
2617 ev_start (EV_A_ (W)w, active);
2618
2619 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2620 idles [ABSPRI (w)][active - 1] = w;
2621 }
2622
2623 EV_FREQUENT_CHECK;
2624}
2625
2626void
2627ev_idle_stop (EV_P_ ev_idle *w)
2628{
2629 clear_pending (EV_A_ (W)w);
2630 if (expect_false (!ev_is_active (w)))
2631 return;
2632
2633 EV_FREQUENT_CHECK;
2634
2635 {
2636 int active = ev_active (w);
2637
2638 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2639 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2640
2641 ev_stop (EV_A_ (W)w);
2642 --idleall;
2643 }
2644
2645 EV_FREQUENT_CHECK;
2646}
2647#endif
2648
2649void
2650ev_prepare_start (EV_P_ ev_prepare *w)
2651{
2652 if (expect_false (ev_is_active (w)))
2653 return;
2654
2655 EV_FREQUENT_CHECK;
2656
2657 ev_start (EV_A_ (W)w, ++preparecnt);
2658 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2659 prepares [preparecnt - 1] = w;
2660
2661 EV_FREQUENT_CHECK;
2662}
2663
2664void
2665ev_prepare_stop (EV_P_ ev_prepare *w)
2666{
2667 clear_pending (EV_A_ (W)w);
2668 if (expect_false (!ev_is_active (w)))
2669 return;
2670
2671 EV_FREQUENT_CHECK;
2672
2673 {
2674 int active = ev_active (w);
2675
2676 prepares [active - 1] = prepares [--preparecnt];
2677 ev_active (prepares [active - 1]) = active;
2678 }
2679
2680 ev_stop (EV_A_ (W)w);
2681
2682 EV_FREQUENT_CHECK;
2683}
2684
2685void
2686ev_check_start (EV_P_ ev_check *w)
2687{
2688 if (expect_false (ev_is_active (w)))
2689 return;
2690
2691 EV_FREQUENT_CHECK;
2692
2693 ev_start (EV_A_ (W)w, ++checkcnt);
2694 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2695 checks [checkcnt - 1] = w;
2696
2697 EV_FREQUENT_CHECK;
2698}
2699
2700void
2701ev_check_stop (EV_P_ ev_check *w)
2702{
2703 clear_pending (EV_A_ (W)w);
2704 if (expect_false (!ev_is_active (w)))
2705 return;
2706
2707 EV_FREQUENT_CHECK;
2708
2709 {
2710 int active = ev_active (w);
2711
2712 checks [active - 1] = checks [--checkcnt];
2713 ev_active (checks [active - 1]) = active;
2714 }
2715
2716 ev_stop (EV_A_ (W)w);
2717
2718 EV_FREQUENT_CHECK;
2719}
2720
2721#if EV_EMBED_ENABLE
2722void noinline
2723ev_embed_sweep (EV_P_ ev_embed *w)
2724{
2725 ev_loop (w->other, EVLOOP_NONBLOCK);
2726}
2727
2728static void
2729embed_io_cb (EV_P_ ev_io *io, int revents)
2730{
2731 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2732
2733 if (ev_cb (w))
2734 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2735 else
2736 ev_loop (w->other, EVLOOP_NONBLOCK);
2737}
2738
2739static void
2740embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2741{
2742 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2743
2744 {
2745 struct ev_loop *loop = w->other;
2746
2747 while (fdchangecnt)
2748 {
2749 fd_reify (EV_A);
2750 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2751 }
2752 }
2753}
2754
2755#if 0
2756static void
2757embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2758{
2759 ev_idle_stop (EV_A_ idle);
2760}
2761#endif
2762
2763void
2764ev_embed_start (EV_P_ ev_embed *w)
2765{
2766 if (expect_false (ev_is_active (w)))
2767 return;
2768
2769 {
2770 struct ev_loop *loop = w->other;
2771 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2772 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2773 }
2774
2775 EV_FREQUENT_CHECK;
2776
2777 ev_set_priority (&w->io, ev_priority (w));
2778 ev_io_start (EV_A_ &w->io);
2779
2780 ev_prepare_init (&w->prepare, embed_prepare_cb);
2781 ev_set_priority (&w->prepare, EV_MINPRI);
2782 ev_prepare_start (EV_A_ &w->prepare);
2783
2784 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2785
2786 ev_start (EV_A_ (W)w, 1);
2787
2788 EV_FREQUENT_CHECK;
2789}
2790
2791void
2792ev_embed_stop (EV_P_ ev_embed *w)
2793{
2794 clear_pending (EV_A_ (W)w);
2795 if (expect_false (!ev_is_active (w)))
2796 return;
2797
2798 EV_FREQUENT_CHECK;
2799
2800 ev_io_stop (EV_A_ &w->io);
2801 ev_prepare_stop (EV_A_ &w->prepare);
2802
2803 ev_stop (EV_A_ (W)w);
2804
2805 EV_FREQUENT_CHECK;
2806}
2807#endif
2808
2809#if EV_FORK_ENABLE
2810void
2811ev_fork_start (EV_P_ ev_fork *w)
2812{
2813 if (expect_false (ev_is_active (w)))
2814 return;
2815
2816 EV_FREQUENT_CHECK;
2817
2818 ev_start (EV_A_ (W)w, ++forkcnt);
2819 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2820 forks [forkcnt - 1] = w;
2821
2822 EV_FREQUENT_CHECK;
2823}
2824
2825void
2826ev_fork_stop (EV_P_ ev_fork *w)
2827{
2828 clear_pending (EV_A_ (W)w);
2829 if (expect_false (!ev_is_active (w)))
2830 return;
2831
2832 EV_FREQUENT_CHECK;
2833
2834 {
2835 int active = ev_active (w);
2836
2837 forks [active - 1] = forks [--forkcnt];
2838 ev_active (forks [active - 1]) = active;
2839 }
2840
2841 ev_stop (EV_A_ (W)w);
2842
2843 EV_FREQUENT_CHECK;
2844}
2845#endif
2846
2847#if EV_ASYNC_ENABLE
2848void
2849ev_async_start (EV_P_ ev_async *w)
2850{
2851 if (expect_false (ev_is_active (w)))
2852 return;
2853
2854 evpipe_init (EV_A);
2855
2856 EV_FREQUENT_CHECK;
2857
2858 ev_start (EV_A_ (W)w, ++asynccnt);
2859 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2860 asyncs [asynccnt - 1] = w;
2861
2862 EV_FREQUENT_CHECK;
2863}
2864
2865void
2866ev_async_stop (EV_P_ ev_async *w)
2867{
2868 clear_pending (EV_A_ (W)w);
2869 if (expect_false (!ev_is_active (w)))
2870 return;
2871
2872 EV_FREQUENT_CHECK;
2873
2874 {
2875 int active = ev_active (w);
2876
2877 asyncs [active - 1] = asyncs [--asynccnt];
2878 ev_active (asyncs [active - 1]) = active;
2879 }
2880
2881 ev_stop (EV_A_ (W)w);
2882
2883 EV_FREQUENT_CHECK;
2884}
2885
2886void
2887ev_async_send (EV_P_ ev_async *w)
2888{
2889 w->sent = 1;
2890 evpipe_write (EV_A_ &gotasync);
2891}
2892#endif
1620 2893
1621/*****************************************************************************/ 2894/*****************************************************************************/
1622 2895
1623struct ev_once 2896struct ev_once
1624{ 2897{
1625 struct ev_io io; 2898 ev_io io;
1626 struct ev_timer to; 2899 ev_timer to;
1627 void (*cb)(int revents, void *arg); 2900 void (*cb)(int revents, void *arg);
1628 void *arg; 2901 void *arg;
1629}; 2902};
1630 2903
1631static void 2904static void
1640 2913
1641 cb (revents, arg); 2914 cb (revents, arg);
1642} 2915}
1643 2916
1644static void 2917static void
1645once_cb_io (EV_P_ struct ev_io *w, int revents) 2918once_cb_io (EV_P_ ev_io *w, int revents)
1646{ 2919{
1647 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2920 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1648} 2921}
1649 2922
1650static void 2923static void
1651once_cb_to (EV_P_ struct ev_timer *w, int revents) 2924once_cb_to (EV_P_ ev_timer *w, int revents)
1652{ 2925{
1653 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2926 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1654} 2927}
1655 2928
1656void 2929void
1680 ev_timer_set (&once->to, timeout, 0.); 2953 ev_timer_set (&once->to, timeout, 0.);
1681 ev_timer_start (EV_A_ &once->to); 2954 ev_timer_start (EV_A_ &once->to);
1682 } 2955 }
1683} 2956}
1684 2957
2958#if EV_MULTIPLICITY
2959 #include "ev_wrap.h"
2960#endif
2961
1685#ifdef __cplusplus 2962#ifdef __cplusplus
1686} 2963}
1687#endif 2964#endif
1688 2965

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines