ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.144 by root, Tue Nov 27 08:11:52 2007 UTC vs.
Revision 1.248 by root, Wed May 21 23:25:21 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 111# else
95# define EV_USE_PORT 0 112# define EV_USE_PORT 0
96# endif 113# endif
97# endif 114# endif
98 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
99#endif 132#endif
100 133
101#include <math.h> 134#include <math.h>
102#include <stdlib.h> 135#include <stdlib.h>
103#include <fcntl.h> 136#include <fcntl.h>
109#include <errno.h> 142#include <errno.h>
110#include <sys/types.h> 143#include <sys/types.h>
111#include <time.h> 144#include <time.h>
112 145
113#include <signal.h> 146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
114 153
115#ifndef _WIN32 154#ifndef _WIN32
116# include <sys/time.h> 155# include <sys/time.h>
117# include <sys/wait.h> 156# include <sys/wait.h>
118# include <unistd.h> 157# include <unistd.h>
122# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
124# endif 163# endif
125#endif 164#endif
126 165
127/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
128 167
129#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
130# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
131#endif 170#endif
132 171
133#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
135#endif 178#endif
136 179
137#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
139#endif 182#endif
145# define EV_USE_POLL 1 188# define EV_USE_POLL 1
146# endif 189# endif
147#endif 190#endif
148 191
149#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
150# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
151#endif 198#endif
152 199
153#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
155#endif 202#endif
156 203
157#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 205# define EV_USE_PORT 0
159#endif 206#endif
160 207
161/**/ 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 249
163#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
166#endif 253#endif
168#ifndef CLOCK_REALTIME 255#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 256# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 257# define EV_USE_REALTIME 0
171#endif 258#endif
172 259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
173#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 276# include <winsock.h>
175#endif 277#endif
176 278
279#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
289#endif
290
177/**/ 291/**/
292
293/* undefined or zero: no verification done or available */
294/* 1 or higher: ev_loop_verify function available */
295/* 2 or higher: ev_loop_verify is called frequently */
296#define EV_VERIFY 1
297
298#if EV_VERIFY > 1
299# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
300#else
301# define EV_FREQUENT_CHECK do { } while (0)
302#endif
303
304/*
305 * This is used to avoid floating point rounding problems.
306 * It is added to ev_rt_now when scheduling periodics
307 * to ensure progress, time-wise, even when rounding
308 * errors are against us.
309 * This value is good at least till the year 4000.
310 * Better solutions welcome.
311 */
312#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 313
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 314#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 315#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 316/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 317
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 318#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 319# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline)) 320# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
200#else 321#else
201# define expect(expr,value) (expr) 322# define expect(expr,value) (expr)
202# define inline_speed static
203# define inline_minimal static
204# define noinline 323# define noinline
324# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
325# define inline
326# endif
205#endif 327#endif
206 328
207#define expect_false(expr) expect ((expr) != 0, 0) 329#define expect_false(expr) expect ((expr) != 0, 0)
208#define expect_true(expr) expect ((expr) != 0, 1) 330#define expect_true(expr) expect ((expr) != 0, 1)
331#define inline_size static inline
332
333#if EV_MINIMAL
334# define inline_speed static noinline
335#else
336# define inline_speed static inline
337#endif
209 338
210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 339#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
211#define ABSPRI(w) ((w)->priority - EV_MINPRI) 340#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
212 341
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 342#define EMPTY /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */ 343#define EMPTY2(a,b) /* used to suppress some warnings */
215 344
216typedef ev_watcher *W; 345typedef ev_watcher *W;
217typedef ev_watcher_list *WL; 346typedef ev_watcher_list *WL;
218typedef ev_watcher_time *WT; 347typedef ev_watcher_time *WT;
219 348
349#define ev_active(w) ((W)(w))->active
350#define ev_at(w) ((WT)(w))->at
351
352#if EV_USE_MONOTONIC
353/* sig_atomic_t is used to avoid per-thread variables or locking but still */
354/* giving it a reasonably high chance of working on typical architetcures */
220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 355static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
356#endif
221 357
222#ifdef _WIN32 358#ifdef _WIN32
223# include "ev_win32.c" 359# include "ev_win32.c"
224#endif 360#endif
225 361
246 perror (msg); 382 perror (msg);
247 abort (); 383 abort ();
248 } 384 }
249} 385}
250 386
387static void *
388ev_realloc_emul (void *ptr, long size)
389{
390 /* some systems, notably openbsd and darwin, fail to properly
391 * implement realloc (x, 0) (as required by both ansi c-98 and
392 * the single unix specification, so work around them here.
393 */
394
395 if (size)
396 return realloc (ptr, size);
397
398 free (ptr);
399 return 0;
400}
401
251static void *(*alloc)(void *ptr, long size); 402static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
252 403
253void 404void
254ev_set_allocator (void *(*cb)(void *ptr, long size)) 405ev_set_allocator (void *(*cb)(void *ptr, long size))
255{ 406{
256 alloc = cb; 407 alloc = cb;
257} 408}
258 409
259static void * 410inline_speed void *
260ev_realloc (void *ptr, long size) 411ev_realloc (void *ptr, long size)
261{ 412{
262 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 413 ptr = alloc (ptr, size);
263 414
264 if (!ptr && size) 415 if (!ptr && size)
265 { 416 {
266 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 417 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
267 abort (); 418 abort ();
288typedef struct 439typedef struct
289{ 440{
290 W w; 441 W w;
291 int events; 442 int events;
292} ANPENDING; 443} ANPENDING;
444
445#if EV_USE_INOTIFY
446/* hash table entry per inotify-id */
447typedef struct
448{
449 WL head;
450} ANFS;
451#endif
452
453/* Heap Entry */
454#if EV_HEAP_CACHE_AT
455 typedef struct {
456 ev_tstamp at;
457 WT w;
458 } ANHE;
459
460 #define ANHE_w(he) (he).w /* access watcher, read-write */
461 #define ANHE_at(he) (he).at /* access cached at, read-only */
462 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
463#else
464 typedef WT ANHE;
465
466 #define ANHE_w(he) (he)
467 #define ANHE_at(he) (he)->at
468 #define ANHE_at_cache(he)
469#endif
293 470
294#if EV_MULTIPLICITY 471#if EV_MULTIPLICITY
295 472
296 struct ev_loop 473 struct ev_loop
297 { 474 {
354{ 531{
355 return ev_rt_now; 532 return ev_rt_now;
356} 533}
357#endif 534#endif
358 535
359#define array_roundsize(type,n) (((n) | 4) & ~3) 536void
537ev_sleep (ev_tstamp delay)
538{
539 if (delay > 0.)
540 {
541#if EV_USE_NANOSLEEP
542 struct timespec ts;
543
544 ts.tv_sec = (time_t)delay;
545 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
546
547 nanosleep (&ts, 0);
548#elif defined(_WIN32)
549 Sleep ((unsigned long)(delay * 1e3));
550#else
551 struct timeval tv;
552
553 tv.tv_sec = (time_t)delay;
554 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
555
556 select (0, 0, 0, 0, &tv);
557#endif
558 }
559}
560
561/*****************************************************************************/
562
563#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
564
565int inline_size
566array_nextsize (int elem, int cur, int cnt)
567{
568 int ncur = cur + 1;
569
570 do
571 ncur <<= 1;
572 while (cnt > ncur);
573
574 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
575 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
576 {
577 ncur *= elem;
578 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
579 ncur = ncur - sizeof (void *) * 4;
580 ncur /= elem;
581 }
582
583 return ncur;
584}
585
586static noinline void *
587array_realloc (int elem, void *base, int *cur, int cnt)
588{
589 *cur = array_nextsize (elem, *cur, cnt);
590 return ev_realloc (base, elem * *cur);
591}
360 592
361#define array_needsize(type,base,cur,cnt,init) \ 593#define array_needsize(type,base,cur,cnt,init) \
362 if (expect_false ((cnt) > cur)) \ 594 if (expect_false ((cnt) > (cur))) \
363 { \ 595 { \
364 int newcnt = cur; \ 596 int ocur_ = (cur); \
365 do \ 597 (base) = (type *)array_realloc \
366 { \ 598 (sizeof (type), (base), &(cur), (cnt)); \
367 newcnt = array_roundsize (type, newcnt << 1); \ 599 init ((base) + (ocur_), (cur) - ocur_); \
368 } \
369 while ((cnt) > newcnt); \
370 \
371 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
372 init (base + cur, newcnt - cur); \
373 cur = newcnt; \
374 } 600 }
375 601
602#if 0
376#define array_slim(type,stem) \ 603#define array_slim(type,stem) \
377 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 604 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
378 { \ 605 { \
379 stem ## max = array_roundsize (stem ## cnt >> 1); \ 606 stem ## max = array_roundsize (stem ## cnt >> 1); \
380 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 607 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
381 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 608 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
382 } 609 }
610#endif
383 611
384#define array_free(stem, idx) \ 612#define array_free(stem, idx) \
385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 613 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
386 614
387/*****************************************************************************/ 615/*****************************************************************************/
388 616
389void noinline 617void noinline
390ev_feed_event (EV_P_ void *w, int revents) 618ev_feed_event (EV_P_ void *w, int revents)
391{ 619{
392 W w_ = (W)w; 620 W w_ = (W)w;
621 int pri = ABSPRI (w_);
393 622
394 if (expect_false (w_->pending)) 623 if (expect_false (w_->pending))
624 pendings [pri][w_->pending - 1].events |= revents;
625 else
395 { 626 {
627 w_->pending = ++pendingcnt [pri];
628 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
629 pendings [pri][w_->pending - 1].w = w_;
396 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 630 pendings [pri][w_->pending - 1].events = revents;
397 return;
398 } 631 }
399
400 w_->pending = ++pendingcnt [ABSPRI (w_)];
401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
404} 632}
405 633
406void inline_size 634void inline_speed
407queue_events (EV_P_ W *events, int eventcnt, int type) 635queue_events (EV_P_ W *events, int eventcnt, int type)
408{ 636{
409 int i; 637 int i;
410 638
411 for (i = 0; i < eventcnt; ++i) 639 for (i = 0; i < eventcnt; ++i)
443} 671}
444 672
445void 673void
446ev_feed_fd_event (EV_P_ int fd, int revents) 674ev_feed_fd_event (EV_P_ int fd, int revents)
447{ 675{
676 if (fd >= 0 && fd < anfdmax)
448 fd_event (EV_A_ fd, revents); 677 fd_event (EV_A_ fd, revents);
449} 678}
450 679
451void inline_size 680void inline_size
452fd_reify (EV_P) 681fd_reify (EV_P)
453{ 682{
457 { 686 {
458 int fd = fdchanges [i]; 687 int fd = fdchanges [i];
459 ANFD *anfd = anfds + fd; 688 ANFD *anfd = anfds + fd;
460 ev_io *w; 689 ev_io *w;
461 690
462 int events = 0; 691 unsigned char events = 0;
463 692
464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 693 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
465 events |= w->events; 694 events |= (unsigned char)w->events;
466 695
467#if EV_SELECT_IS_WINSOCKET 696#if EV_SELECT_IS_WINSOCKET
468 if (events) 697 if (events)
469 { 698 {
470 unsigned long argp; 699 unsigned long argp;
700 #ifdef EV_FD_TO_WIN32_HANDLE
701 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
702 #else
471 anfd->handle = _get_osfhandle (fd); 703 anfd->handle = _get_osfhandle (fd);
704 #endif
472 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 705 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
473 } 706 }
474#endif 707#endif
475 708
709 {
710 unsigned char o_events = anfd->events;
711 unsigned char o_reify = anfd->reify;
712
476 anfd->reify = 0; 713 anfd->reify = 0;
477
478 backend_modify (EV_A_ fd, anfd->events, events);
479 anfd->events = events; 714 anfd->events = events;
715
716 if (o_events != events || o_reify & EV_IOFDSET)
717 backend_modify (EV_A_ fd, o_events, events);
718 }
480 } 719 }
481 720
482 fdchangecnt = 0; 721 fdchangecnt = 0;
483} 722}
484 723
485void inline_size 724void inline_size
486fd_change (EV_P_ int fd) 725fd_change (EV_P_ int fd, int flags)
487{ 726{
488 if (expect_false (anfds [fd].reify)) 727 unsigned char reify = anfds [fd].reify;
489 return;
490
491 anfds [fd].reify = 1; 728 anfds [fd].reify |= flags;
492 729
730 if (expect_true (!reify))
731 {
493 ++fdchangecnt; 732 ++fdchangecnt;
494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 733 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
495 fdchanges [fdchangecnt - 1] = fd; 734 fdchanges [fdchangecnt - 1] = fd;
735 }
496} 736}
497 737
498void inline_speed 738void inline_speed
499fd_kill (EV_P_ int fd) 739fd_kill (EV_P_ int fd)
500{ 740{
547static void noinline 787static void noinline
548fd_rearm_all (EV_P) 788fd_rearm_all (EV_P)
549{ 789{
550 int fd; 790 int fd;
551 791
552 /* this should be highly optimised to not do anything but set a flag */
553 for (fd = 0; fd < anfdmax; ++fd) 792 for (fd = 0; fd < anfdmax; ++fd)
554 if (anfds [fd].events) 793 if (anfds [fd].events)
555 { 794 {
556 anfds [fd].events = 0; 795 anfds [fd].events = 0;
557 fd_change (EV_A_ fd); 796 fd_change (EV_A_ fd, EV_IOFDSET | 1);
558 } 797 }
559} 798}
560 799
561/*****************************************************************************/ 800/*****************************************************************************/
562 801
802/*
803 * the heap functions want a real array index. array index 0 uis guaranteed to not
804 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
805 * the branching factor of the d-tree.
806 */
807
808/*
809 * at the moment we allow libev the luxury of two heaps,
810 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
811 * which is more cache-efficient.
812 * the difference is about 5% with 50000+ watchers.
813 */
814#if EV_USE_4HEAP
815
816#define DHEAP 4
817#define HEAP0 (DHEAP - 1) /* index of first element in heap */
818#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
819#define UPHEAP_DONE(p,k) ((p) == (k))
820
821/* away from the root */
563void inline_speed 822void inline_speed
564upheap (WT *heap, int k) 823downheap (ANHE *heap, int N, int k)
565{ 824{
566 WT w = heap [k]; 825 ANHE he = heap [k];
826 ANHE *E = heap + N + HEAP0;
567 827
568 while (k && heap [k >> 1]->at > w->at) 828 for (;;)
569 {
570 heap [k] = heap [k >> 1];
571 ((W)heap [k])->active = k + 1;
572 k >>= 1;
573 } 829 {
830 ev_tstamp minat;
831 ANHE *minpos;
832 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
574 833
834 /* find minimum child */
835 if (expect_true (pos + DHEAP - 1 < E))
836 {
837 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
838 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
839 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
840 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
841 }
842 else if (pos < E)
843 {
844 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
845 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
846 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
847 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
848 }
849 else
850 break;
851
852 if (ANHE_at (he) <= minat)
853 break;
854
855 heap [k] = *minpos;
856 ev_active (ANHE_w (*minpos)) = k;
857
858 k = minpos - heap;
859 }
860
575 heap [k] = w; 861 heap [k] = he;
576 ((W)heap [k])->active = k + 1; 862 ev_active (ANHE_w (he)) = k;
577
578} 863}
579 864
865#else /* 4HEAP */
866
867#define HEAP0 1
868#define HPARENT(k) ((k) >> 1)
869#define UPHEAP_DONE(p,k) (!(p))
870
871/* away from the root */
580void inline_speed 872void inline_speed
581downheap (WT *heap, int N, int k) 873downheap (ANHE *heap, int N, int k)
582{ 874{
583 WT w = heap [k]; 875 ANHE he = heap [k];
584 876
585 while (k < (N >> 1)) 877 for (;;)
586 { 878 {
587 int j = k << 1; 879 int c = k << 1;
588 880
589 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 881 if (c > N + HEAP0 - 1)
590 ++j;
591
592 if (w->at <= heap [j]->at)
593 break; 882 break;
594 883
884 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
885 ? 1 : 0;
886
887 if (ANHE_at (he) <= ANHE_at (heap [c]))
888 break;
889
595 heap [k] = heap [j]; 890 heap [k] = heap [c];
596 ((W)heap [k])->active = k + 1; 891 ev_active (ANHE_w (heap [k])) = k;
892
597 k = j; 893 k = c;
598 } 894 }
599 895
600 heap [k] = w; 896 heap [k] = he;
601 ((W)heap [k])->active = k + 1; 897 ev_active (ANHE_w (he)) = k;
898}
899#endif
900
901/* towards the root */
902void inline_speed
903upheap (ANHE *heap, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int p = HPARENT (k);
910
911 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
912 break;
913
914 heap [k] = heap [p];
915 ev_active (ANHE_w (heap [k])) = k;
916 k = p;
917 }
918
919 heap [k] = he;
920 ev_active (ANHE_w (he)) = k;
602} 921}
603 922
604void inline_size 923void inline_size
605adjustheap (WT *heap, int N, int k) 924adjustheap (ANHE *heap, int N, int k)
606{ 925{
926 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
607 upheap (heap, k); 927 upheap (heap, k);
928 else
608 downheap (heap, N, k); 929 downheap (heap, N, k);
609} 930}
931
932/* rebuild the heap: this function is used only once and executed rarely */
933void inline_size
934reheap (ANHE *heap, int N)
935{
936 int i;
937 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
938 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
939 for (i = 0; i < N; ++i)
940 upheap (heap, i + HEAP0);
941}
942
943#if EV_VERIFY
944static void
945checkheap (ANHE *heap, int N)
946{
947 int i;
948
949 for (i = HEAP0; i < N + HEAP0; ++i)
950 {
951 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
952 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
953 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
954 }
955}
956#endif
610 957
611/*****************************************************************************/ 958/*****************************************************************************/
612 959
613typedef struct 960typedef struct
614{ 961{
615 WL head; 962 WL head;
616 sig_atomic_t volatile gotsig; 963 EV_ATOMIC_T gotsig;
617} ANSIG; 964} ANSIG;
618 965
619static ANSIG *signals; 966static ANSIG *signals;
620static int signalmax; 967static int signalmax;
621 968
622static int sigpipe [2]; 969static EV_ATOMIC_T gotsig;
623static sig_atomic_t volatile gotsig;
624static ev_io sigev;
625 970
626void inline_size 971void inline_size
627signals_init (ANSIG *base, int count) 972signals_init (ANSIG *base, int count)
628{ 973{
629 while (count--) 974 while (count--)
633 978
634 ++base; 979 ++base;
635 } 980 }
636} 981}
637 982
638static void 983/*****************************************************************************/
639sighandler (int signum)
640{
641#if _WIN32
642 signal (signum, sighandler);
643#endif
644 984
645 signals [signum - 1].gotsig = 1;
646
647 if (!gotsig)
648 {
649 int old_errno = errno;
650 gotsig = 1;
651 write (sigpipe [1], &signum, 1);
652 errno = old_errno;
653 }
654}
655
656void noinline
657ev_feed_signal_event (EV_P_ int signum)
658{
659 WL w;
660
661#if EV_MULTIPLICITY
662 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
663#endif
664
665 --signum;
666
667 if (signum < 0 || signum >= signalmax)
668 return;
669
670 signals [signum].gotsig = 0;
671
672 for (w = signals [signum].head; w; w = w->next)
673 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
674}
675
676static void
677sigcb (EV_P_ ev_io *iow, int revents)
678{
679 int signum;
680
681 read (sigpipe [0], &revents, 1);
682 gotsig = 0;
683
684 for (signum = signalmax; signum--; )
685 if (signals [signum].gotsig)
686 ev_feed_signal_event (EV_A_ signum + 1);
687}
688
689void inline_size 985void inline_speed
690fd_intern (int fd) 986fd_intern (int fd)
691{ 987{
692#ifdef _WIN32 988#ifdef _WIN32
693 int arg = 1; 989 int arg = 1;
694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 990 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
697 fcntl (fd, F_SETFL, O_NONBLOCK); 993 fcntl (fd, F_SETFL, O_NONBLOCK);
698#endif 994#endif
699} 995}
700 996
701static void noinline 997static void noinline
702siginit (EV_P) 998evpipe_init (EV_P)
703{ 999{
1000 if (!ev_is_active (&pipeev))
1001 {
1002#if EV_USE_EVENTFD
1003 if ((evfd = eventfd (0, 0)) >= 0)
1004 {
1005 evpipe [0] = -1;
1006 fd_intern (evfd);
1007 ev_io_set (&pipeev, evfd, EV_READ);
1008 }
1009 else
1010#endif
1011 {
1012 while (pipe (evpipe))
1013 syserr ("(libev) error creating signal/async pipe");
1014
704 fd_intern (sigpipe [0]); 1015 fd_intern (evpipe [0]);
705 fd_intern (sigpipe [1]); 1016 fd_intern (evpipe [1]);
1017 ev_io_set (&pipeev, evpipe [0], EV_READ);
1018 }
706 1019
707 ev_io_set (&sigev, sigpipe [0], EV_READ);
708 ev_io_start (EV_A_ &sigev); 1020 ev_io_start (EV_A_ &pipeev);
709 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1021 ev_unref (EV_A); /* watcher should not keep loop alive */
1022 }
1023}
1024
1025void inline_size
1026evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1027{
1028 if (!*flag)
1029 {
1030 int old_errno = errno; /* save errno because write might clobber it */
1031
1032 *flag = 1;
1033
1034#if EV_USE_EVENTFD
1035 if (evfd >= 0)
1036 {
1037 uint64_t counter = 1;
1038 write (evfd, &counter, sizeof (uint64_t));
1039 }
1040 else
1041#endif
1042 write (evpipe [1], &old_errno, 1);
1043
1044 errno = old_errno;
1045 }
1046}
1047
1048static void
1049pipecb (EV_P_ ev_io *iow, int revents)
1050{
1051#if EV_USE_EVENTFD
1052 if (evfd >= 0)
1053 {
1054 uint64_t counter;
1055 read (evfd, &counter, sizeof (uint64_t));
1056 }
1057 else
1058#endif
1059 {
1060 char dummy;
1061 read (evpipe [0], &dummy, 1);
1062 }
1063
1064 if (gotsig && ev_is_default_loop (EV_A))
1065 {
1066 int signum;
1067 gotsig = 0;
1068
1069 for (signum = signalmax; signum--; )
1070 if (signals [signum].gotsig)
1071 ev_feed_signal_event (EV_A_ signum + 1);
1072 }
1073
1074#if EV_ASYNC_ENABLE
1075 if (gotasync)
1076 {
1077 int i;
1078 gotasync = 0;
1079
1080 for (i = asynccnt; i--; )
1081 if (asyncs [i]->sent)
1082 {
1083 asyncs [i]->sent = 0;
1084 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1085 }
1086 }
1087#endif
710} 1088}
711 1089
712/*****************************************************************************/ 1090/*****************************************************************************/
713 1091
1092static void
1093ev_sighandler (int signum)
1094{
1095#if EV_MULTIPLICITY
1096 struct ev_loop *loop = &default_loop_struct;
1097#endif
1098
1099#if _WIN32
1100 signal (signum, ev_sighandler);
1101#endif
1102
1103 signals [signum - 1].gotsig = 1;
1104 evpipe_write (EV_A_ &gotsig);
1105}
1106
1107void noinline
1108ev_feed_signal_event (EV_P_ int signum)
1109{
1110 WL w;
1111
1112#if EV_MULTIPLICITY
1113 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1114#endif
1115
1116 --signum;
1117
1118 if (signum < 0 || signum >= signalmax)
1119 return;
1120
1121 signals [signum].gotsig = 0;
1122
1123 for (w = signals [signum].head; w; w = w->next)
1124 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1125}
1126
1127/*****************************************************************************/
1128
714static ev_child *childs [PID_HASHSIZE]; 1129static WL childs [EV_PID_HASHSIZE];
715 1130
716#ifndef _WIN32 1131#ifndef _WIN32
717 1132
718static ev_signal childev; 1133static ev_signal childev;
719 1134
1135#ifndef WIFCONTINUED
1136# define WIFCONTINUED(status) 0
1137#endif
1138
720void inline_speed 1139void inline_speed
721child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1140child_reap (EV_P_ int chain, int pid, int status)
722{ 1141{
723 ev_child *w; 1142 ev_child *w;
1143 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
724 1144
725 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1145 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1146 {
726 if (w->pid == pid || !w->pid) 1147 if ((w->pid == pid || !w->pid)
1148 && (!traced || (w->flags & 1)))
727 { 1149 {
728 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1150 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
729 w->rpid = pid; 1151 w->rpid = pid;
730 w->rstatus = status; 1152 w->rstatus = status;
731 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1153 ev_feed_event (EV_A_ (W)w, EV_CHILD);
732 } 1154 }
1155 }
733} 1156}
734 1157
735#ifndef WCONTINUED 1158#ifndef WCONTINUED
736# define WCONTINUED 0 1159# define WCONTINUED 0
737#endif 1160#endif
746 if (!WCONTINUED 1169 if (!WCONTINUED
747 || errno != EINVAL 1170 || errno != EINVAL
748 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1171 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
749 return; 1172 return;
750 1173
751 /* make sure we are called again until all childs have been reaped */ 1174 /* make sure we are called again until all children have been reaped */
752 /* we need to do it this way so that the callback gets called before we continue */ 1175 /* we need to do it this way so that the callback gets called before we continue */
753 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1176 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
754 1177
755 child_reap (EV_A_ sw, pid, pid, status); 1178 child_reap (EV_A_ pid, pid, status);
1179 if (EV_PID_HASHSIZE > 1)
756 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1180 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
757} 1181}
758 1182
759#endif 1183#endif
760 1184
761/*****************************************************************************/ 1185/*****************************************************************************/
833} 1257}
834 1258
835unsigned int 1259unsigned int
836ev_embeddable_backends (void) 1260ev_embeddable_backends (void)
837{ 1261{
838 return EVBACKEND_EPOLL 1262 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
839 | EVBACKEND_KQUEUE 1263
840 | EVBACKEND_PORT; 1264 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1265 /* please fix it and tell me how to detect the fix */
1266 flags &= ~EVBACKEND_EPOLL;
1267
1268 return flags;
841} 1269}
842 1270
843unsigned int 1271unsigned int
844ev_backend (EV_P) 1272ev_backend (EV_P)
845{ 1273{
846 return backend; 1274 return backend;
847} 1275}
848 1276
849static void 1277unsigned int
1278ev_loop_count (EV_P)
1279{
1280 return loop_count;
1281}
1282
1283void
1284ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1285{
1286 io_blocktime = interval;
1287}
1288
1289void
1290ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1291{
1292 timeout_blocktime = interval;
1293}
1294
1295static void noinline
850loop_init (EV_P_ unsigned int flags) 1296loop_init (EV_P_ unsigned int flags)
851{ 1297{
852 if (!backend) 1298 if (!backend)
853 { 1299 {
854#if EV_USE_MONOTONIC 1300#if EV_USE_MONOTONIC
857 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1303 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
858 have_monotonic = 1; 1304 have_monotonic = 1;
859 } 1305 }
860#endif 1306#endif
861 1307
862 ev_rt_now = ev_time (); 1308 ev_rt_now = ev_time ();
863 mn_now = get_clock (); 1309 mn_now = get_clock ();
864 now_floor = mn_now; 1310 now_floor = mn_now;
865 rtmn_diff = ev_rt_now - mn_now; 1311 rtmn_diff = ev_rt_now - mn_now;
1312
1313 io_blocktime = 0.;
1314 timeout_blocktime = 0.;
1315 backend = 0;
1316 backend_fd = -1;
1317 gotasync = 0;
1318#if EV_USE_INOTIFY
1319 fs_fd = -2;
1320#endif
1321
1322 /* pid check not overridable via env */
1323#ifndef _WIN32
1324 if (flags & EVFLAG_FORKCHECK)
1325 curpid = getpid ();
1326#endif
866 1327
867 if (!(flags & EVFLAG_NOENV) 1328 if (!(flags & EVFLAG_NOENV)
868 && !enable_secure () 1329 && !enable_secure ()
869 && getenv ("LIBEV_FLAGS")) 1330 && getenv ("LIBEV_FLAGS"))
870 flags = atoi (getenv ("LIBEV_FLAGS")); 1331 flags = atoi (getenv ("LIBEV_FLAGS"));
871 1332
872 if (!(flags & 0x0000ffffUL)) 1333 if (!(flags & 0x0000ffffU))
873 flags |= ev_recommended_backends (); 1334 flags |= ev_recommended_backends ();
874 1335
875 backend = 0;
876#if EV_USE_PORT 1336#if EV_USE_PORT
877 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1337 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
878#endif 1338#endif
879#if EV_USE_KQUEUE 1339#if EV_USE_KQUEUE
880 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
887#endif 1347#endif
888#if EV_USE_SELECT 1348#if EV_USE_SELECT
889 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1349 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
890#endif 1350#endif
891 1351
892 ev_init (&sigev, sigcb); 1352 ev_init (&pipeev, pipecb);
893 ev_set_priority (&sigev, EV_MAXPRI); 1353 ev_set_priority (&pipeev, EV_MAXPRI);
894 } 1354 }
895} 1355}
896 1356
897static void 1357static void noinline
898loop_destroy (EV_P) 1358loop_destroy (EV_P)
899{ 1359{
900 int i; 1360 int i;
1361
1362 if (ev_is_active (&pipeev))
1363 {
1364 ev_ref (EV_A); /* signal watcher */
1365 ev_io_stop (EV_A_ &pipeev);
1366
1367#if EV_USE_EVENTFD
1368 if (evfd >= 0)
1369 close (evfd);
1370#endif
1371
1372 if (evpipe [0] >= 0)
1373 {
1374 close (evpipe [0]);
1375 close (evpipe [1]);
1376 }
1377 }
1378
1379#if EV_USE_INOTIFY
1380 if (fs_fd >= 0)
1381 close (fs_fd);
1382#endif
1383
1384 if (backend_fd >= 0)
1385 close (backend_fd);
901 1386
902#if EV_USE_PORT 1387#if EV_USE_PORT
903 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1388 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
904#endif 1389#endif
905#if EV_USE_KQUEUE 1390#if EV_USE_KQUEUE
914#if EV_USE_SELECT 1399#if EV_USE_SELECT
915 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1400 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
916#endif 1401#endif
917 1402
918 for (i = NUMPRI; i--; ) 1403 for (i = NUMPRI; i--; )
1404 {
919 array_free (pending, [i]); 1405 array_free (pending, [i]);
1406#if EV_IDLE_ENABLE
1407 array_free (idle, [i]);
1408#endif
1409 }
1410
1411 ev_free (anfds); anfdmax = 0;
920 1412
921 /* have to use the microsoft-never-gets-it-right macro */ 1413 /* have to use the microsoft-never-gets-it-right macro */
922 array_free (fdchange, EMPTY0); 1414 array_free (fdchange, EMPTY);
923 array_free (timer, EMPTY0); 1415 array_free (timer, EMPTY);
924#if EV_PERIODIC_ENABLE 1416#if EV_PERIODIC_ENABLE
925 array_free (periodic, EMPTY0); 1417 array_free (periodic, EMPTY);
926#endif 1418#endif
1419#if EV_FORK_ENABLE
927 array_free (idle, EMPTY0); 1420 array_free (fork, EMPTY);
1421#endif
928 array_free (prepare, EMPTY0); 1422 array_free (prepare, EMPTY);
929 array_free (check, EMPTY0); 1423 array_free (check, EMPTY);
1424#if EV_ASYNC_ENABLE
1425 array_free (async, EMPTY);
1426#endif
930 1427
931 backend = 0; 1428 backend = 0;
932} 1429}
933 1430
934static void 1431#if EV_USE_INOTIFY
1432void inline_size infy_fork (EV_P);
1433#endif
1434
1435void inline_size
935loop_fork (EV_P) 1436loop_fork (EV_P)
936{ 1437{
937#if EV_USE_PORT 1438#if EV_USE_PORT
938 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1439 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
939#endif 1440#endif
941 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1442 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
942#endif 1443#endif
943#if EV_USE_EPOLL 1444#if EV_USE_EPOLL
944 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1445 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
945#endif 1446#endif
1447#if EV_USE_INOTIFY
1448 infy_fork (EV_A);
1449#endif
946 1450
947 if (ev_is_active (&sigev)) 1451 if (ev_is_active (&pipeev))
948 { 1452 {
949 /* default loop */ 1453 /* this "locks" the handlers against writing to the pipe */
1454 /* while we modify the fd vars */
1455 gotsig = 1;
1456#if EV_ASYNC_ENABLE
1457 gotasync = 1;
1458#endif
950 1459
951 ev_ref (EV_A); 1460 ev_ref (EV_A);
952 ev_io_stop (EV_A_ &sigev); 1461 ev_io_stop (EV_A_ &pipeev);
1462
1463#if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466#endif
1467
1468 if (evpipe [0] >= 0)
1469 {
953 close (sigpipe [0]); 1470 close (evpipe [0]);
954 close (sigpipe [1]); 1471 close (evpipe [1]);
1472 }
955 1473
956 while (pipe (sigpipe))
957 syserr ("(libev) error creating pipe");
958
959 siginit (EV_A); 1474 evpipe_init (EV_A);
1475 /* now iterate over everything, in case we missed something */
1476 pipecb (EV_A_ &pipeev, EV_READ);
960 } 1477 }
961 1478
962 postfork = 0; 1479 postfork = 0;
963} 1480}
964 1481
986} 1503}
987 1504
988void 1505void
989ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
990{ 1507{
991 postfork = 1; 1508 postfork = 1; /* must be in line with ev_default_fork */
992} 1509}
1510
1511#if EV_VERIFY
1512static void
1513array_check (W **ws, int cnt)
1514{
1515 while (cnt--)
1516 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1517}
1518
1519static void
1520ev_loop_verify (EV_P)
1521{
1522 int i;
1523
1524 checkheap (timers, timercnt);
1525#if EV_PERIODIC_ENABLE
1526 checkheap (periodics, periodiccnt);
1527#endif
1528
1529#if EV_IDLE_ENABLE
1530 for (i = NUMPRI; i--; )
1531 array_check ((W **)idles [i], idlecnt [i]);
1532#endif
1533#if EV_FORK_ENABLE
1534 array_check ((W **)forks, forkcnt);
1535#endif
1536 array_check ((W **)prepares, preparecnt);
1537 array_check ((W **)checks, checkcnt);
1538#if EV_ASYNC_ENABLE
1539 array_check ((W **)asyncs, asynccnt);
1540#endif
1541}
1542#endif
993 1543
994#endif 1544#endif
995 1545
996#if EV_MULTIPLICITY 1546#if EV_MULTIPLICITY
997struct ev_loop * 1547struct ev_loop *
999#else 1549#else
1000int 1550int
1001ev_default_loop (unsigned int flags) 1551ev_default_loop (unsigned int flags)
1002#endif 1552#endif
1003{ 1553{
1004 if (sigpipe [0] == sigpipe [1])
1005 if (pipe (sigpipe))
1006 return 0;
1007
1008 if (!ev_default_loop_ptr) 1554 if (!ev_default_loop_ptr)
1009 { 1555 {
1010#if EV_MULTIPLICITY 1556#if EV_MULTIPLICITY
1011 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1557 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1012#else 1558#else
1015 1561
1016 loop_init (EV_A_ flags); 1562 loop_init (EV_A_ flags);
1017 1563
1018 if (ev_backend (EV_A)) 1564 if (ev_backend (EV_A))
1019 { 1565 {
1020 siginit (EV_A);
1021
1022#ifndef _WIN32 1566#ifndef _WIN32
1023 ev_signal_init (&childev, childcb, SIGCHLD); 1567 ev_signal_init (&childev, childcb, SIGCHLD);
1024 ev_set_priority (&childev, EV_MAXPRI); 1568 ev_set_priority (&childev, EV_MAXPRI);
1025 ev_signal_start (EV_A_ &childev); 1569 ev_signal_start (EV_A_ &childev);
1026 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1570 ev_unref (EV_A); /* child watcher should not keep loop alive */
1043#ifndef _WIN32 1587#ifndef _WIN32
1044 ev_ref (EV_A); /* child watcher */ 1588 ev_ref (EV_A); /* child watcher */
1045 ev_signal_stop (EV_A_ &childev); 1589 ev_signal_stop (EV_A_ &childev);
1046#endif 1590#endif
1047 1591
1048 ev_ref (EV_A); /* signal watcher */
1049 ev_io_stop (EV_A_ &sigev);
1050
1051 close (sigpipe [0]); sigpipe [0] = 0;
1052 close (sigpipe [1]); sigpipe [1] = 0;
1053
1054 loop_destroy (EV_A); 1592 loop_destroy (EV_A);
1055} 1593}
1056 1594
1057void 1595void
1058ev_default_fork (void) 1596ev_default_fork (void)
1060#if EV_MULTIPLICITY 1598#if EV_MULTIPLICITY
1061 struct ev_loop *loop = ev_default_loop_ptr; 1599 struct ev_loop *loop = ev_default_loop_ptr;
1062#endif 1600#endif
1063 1601
1064 if (backend) 1602 if (backend)
1065 postfork = 1; 1603 postfork = 1; /* must be in line with ev_loop_fork */
1066} 1604}
1067 1605
1068/*****************************************************************************/ 1606/*****************************************************************************/
1069 1607
1070int inline_size 1608void
1071any_pending (EV_P) 1609ev_invoke (EV_P_ void *w, int revents)
1072{ 1610{
1073 int pri; 1611 EV_CB_INVOKE ((W)w, revents);
1074
1075 for (pri = NUMPRI; pri--; )
1076 if (pendingcnt [pri])
1077 return 1;
1078
1079 return 0;
1080} 1612}
1081 1613
1082void inline_speed 1614void inline_speed
1083call_pending (EV_P) 1615call_pending (EV_P)
1084{ 1616{
1085 int pri; 1617 int pri;
1618
1619 EV_FREQUENT_CHECK;
1086 1620
1087 for (pri = NUMPRI; pri--; ) 1621 for (pri = NUMPRI; pri--; )
1088 while (pendingcnt [pri]) 1622 while (pendingcnt [pri])
1089 { 1623 {
1090 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1624 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1091 1625
1092 if (expect_true (p->w)) 1626 if (expect_true (p->w))
1093 { 1627 {
1094 assert (("non-pending watcher on pending list", p->w->pending)); 1628 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1095 1629
1096 p->w->pending = 0; 1630 p->w->pending = 0;
1097 EV_CB_INVOKE (p->w, p->events); 1631 EV_CB_INVOKE (p->w, p->events);
1098 } 1632 }
1099 } 1633 }
1634
1635 EV_FREQUENT_CHECK;
1100} 1636}
1637
1638#if EV_IDLE_ENABLE
1639void inline_size
1640idle_reify (EV_P)
1641{
1642 if (expect_false (idleall))
1643 {
1644 int pri;
1645
1646 for (pri = NUMPRI; pri--; )
1647 {
1648 if (pendingcnt [pri])
1649 break;
1650
1651 if (idlecnt [pri])
1652 {
1653 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1654 break;
1655 }
1656 }
1657 }
1658}
1659#endif
1101 1660
1102void inline_size 1661void inline_size
1103timers_reify (EV_P) 1662timers_reify (EV_P)
1104{ 1663{
1664 EV_FREQUENT_CHECK;
1665
1105 while (timercnt && ((WT)timers [0])->at <= mn_now) 1666 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1106 { 1667 {
1107 ev_timer *w = timers [0]; 1668 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1108 1669
1109 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1670 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1110 1671
1111 /* first reschedule or stop timer */ 1672 /* first reschedule or stop timer */
1112 if (w->repeat) 1673 if (w->repeat)
1113 { 1674 {
1675 ev_at (w) += w->repeat;
1676 if (ev_at (w) < mn_now)
1677 ev_at (w) = mn_now;
1678
1114 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1679 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1115 1680
1116 ((WT)w)->at += w->repeat; 1681 ANHE_at_cache (timers [HEAP0]);
1117 if (((WT)w)->at < mn_now)
1118 ((WT)w)->at = mn_now;
1119
1120 downheap ((WT *)timers, timercnt, 0); 1682 downheap (timers, timercnt, HEAP0);
1121 } 1683 }
1122 else 1684 else
1123 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1685 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 1686
1687 EV_FREQUENT_CHECK;
1125 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1688 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1126 } 1689 }
1127} 1690}
1128 1691
1129#if EV_PERIODIC_ENABLE 1692#if EV_PERIODIC_ENABLE
1130void inline_size 1693void inline_size
1131periodics_reify (EV_P) 1694periodics_reify (EV_P)
1132{ 1695{
1696 EV_FREQUENT_CHECK;
1133 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1697 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1134 { 1698 {
1135 ev_periodic *w = periodics [0]; 1699 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1136 1700
1137 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1701 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1138 1702
1139 /* first reschedule or stop timer */ 1703 /* first reschedule or stop timer */
1140 if (w->reschedule_cb) 1704 if (w->reschedule_cb)
1141 { 1705 {
1142 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1706 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707
1143 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1708 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1709
1710 ANHE_at_cache (periodics [HEAP0]);
1144 downheap ((WT *)periodics, periodiccnt, 0); 1711 downheap (periodics, periodiccnt, HEAP0);
1712 EV_FREQUENT_CHECK;
1145 } 1713 }
1146 else if (w->interval) 1714 else if (w->interval)
1147 { 1715 {
1148 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1716 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1149 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1717 /* if next trigger time is not sufficiently in the future, put it there */
1718 /* this might happen because of floating point inexactness */
1719 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1720 {
1721 ev_at (w) += w->interval;
1722
1723 /* if interval is unreasonably low we might still have a time in the past */
1724 /* so correct this. this will make the periodic very inexact, but the user */
1725 /* has effectively asked to get triggered more often than possible */
1726 if (ev_at (w) < ev_rt_now)
1727 ev_at (w) = ev_rt_now;
1728 }
1729
1730 ANHE_at_cache (periodics [HEAP0]);
1150 downheap ((WT *)periodics, periodiccnt, 0); 1731 downheap (periodics, periodiccnt, HEAP0);
1151 } 1732 }
1152 else 1733 else
1153 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1734 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1154 1735
1736 EV_FREQUENT_CHECK;
1155 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1737 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1156 } 1738 }
1157} 1739}
1158 1740
1159static void noinline 1741static void noinline
1160periodics_reschedule (EV_P) 1742periodics_reschedule (EV_P)
1161{ 1743{
1162 int i; 1744 int i;
1163 1745
1164 /* adjust periodics after time jump */ 1746 /* adjust periodics after time jump */
1165 for (i = 0; i < periodiccnt; ++i) 1747 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1166 { 1748 {
1167 ev_periodic *w = periodics [i]; 1749 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1168 1750
1169 if (w->reschedule_cb) 1751 if (w->reschedule_cb)
1170 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1752 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1171 else if (w->interval) 1753 else if (w->interval)
1172 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1754 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1755
1756 ANHE_at_cache (periodics [i]);
1757 }
1758
1759 reheap (periodics, periodiccnt);
1760}
1761#endif
1762
1763void inline_speed
1764time_update (EV_P_ ev_tstamp max_block)
1765{
1766 int i;
1767
1768#if EV_USE_MONOTONIC
1769 if (expect_true (have_monotonic))
1173 } 1770 {
1771 ev_tstamp odiff = rtmn_diff;
1174 1772
1175 /* now rebuild the heap */
1176 for (i = periodiccnt >> 1; i--; )
1177 downheap ((WT *)periodics, periodiccnt, i);
1178}
1179#endif
1180
1181int inline_size
1182time_update_monotonic (EV_P)
1183{
1184 mn_now = get_clock (); 1773 mn_now = get_clock ();
1185 1774
1775 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1776 /* interpolate in the meantime */
1186 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1777 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1187 { 1778 {
1188 ev_rt_now = rtmn_diff + mn_now; 1779 ev_rt_now = rtmn_diff + mn_now;
1189 return 0; 1780 return;
1190 } 1781 }
1191 else 1782
1192 {
1193 now_floor = mn_now; 1783 now_floor = mn_now;
1194 ev_rt_now = ev_time (); 1784 ev_rt_now = ev_time ();
1195 return 1;
1196 }
1197}
1198 1785
1199void inline_size 1786 /* loop a few times, before making important decisions.
1200time_update (EV_P) 1787 * on the choice of "4": one iteration isn't enough,
1201{ 1788 * in case we get preempted during the calls to
1202 int i; 1789 * ev_time and get_clock. a second call is almost guaranteed
1203 1790 * to succeed in that case, though. and looping a few more times
1204#if EV_USE_MONOTONIC 1791 * doesn't hurt either as we only do this on time-jumps or
1205 if (expect_true (have_monotonic)) 1792 * in the unlikely event of having been preempted here.
1206 { 1793 */
1207 if (time_update_monotonic (EV_A)) 1794 for (i = 4; --i; )
1208 { 1795 {
1209 ev_tstamp odiff = rtmn_diff;
1210
1211 /* loop a few times, before making important decisions.
1212 * on the choice of "4": one iteration isn't enough,
1213 * in case we get preempted during the calls to
1214 * ev_time and get_clock. a second call is almost guarenteed
1215 * to succeed in that case, though. and looping a few more times
1216 * doesn't hurt either as we only do this on time-jumps or
1217 * in the unlikely event of getting preempted here.
1218 */
1219 for (i = 4; --i; )
1220 {
1221 rtmn_diff = ev_rt_now - mn_now; 1796 rtmn_diff = ev_rt_now - mn_now;
1222 1797
1223 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1798 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1224 return; /* all is well */ 1799 return; /* all is well */
1225 1800
1226 ev_rt_now = ev_time (); 1801 ev_rt_now = ev_time ();
1227 mn_now = get_clock (); 1802 mn_now = get_clock ();
1228 now_floor = mn_now; 1803 now_floor = mn_now;
1229 } 1804 }
1230 1805
1231# if EV_PERIODIC_ENABLE 1806# if EV_PERIODIC_ENABLE
1232 periodics_reschedule (EV_A); 1807 periodics_reschedule (EV_A);
1233# endif 1808# endif
1234 /* no timer adjustment, as the monotonic clock doesn't jump */ 1809 /* no timer adjustment, as the monotonic clock doesn't jump */
1235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1810 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1236 }
1237 } 1811 }
1238 else 1812 else
1239#endif 1813#endif
1240 { 1814 {
1241 ev_rt_now = ev_time (); 1815 ev_rt_now = ev_time ();
1242 1816
1243 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1817 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1244 { 1818 {
1245#if EV_PERIODIC_ENABLE 1819#if EV_PERIODIC_ENABLE
1246 periodics_reschedule (EV_A); 1820 periodics_reschedule (EV_A);
1247#endif 1821#endif
1248
1249 /* adjust timers. this is easy, as the offset is the same for all */ 1822 /* adjust timers. this is easy, as the offset is the same for all of them */
1250 for (i = 0; i < timercnt; ++i) 1823 for (i = 0; i < timercnt; ++i)
1824 {
1825 ANHE *he = timers + i + HEAP0;
1251 ((WT)timers [i])->at += ev_rt_now - mn_now; 1826 ANHE_w (*he)->at += ev_rt_now - mn_now;
1827 ANHE_at_cache (*he);
1828 }
1252 } 1829 }
1253 1830
1254 mn_now = ev_rt_now; 1831 mn_now = ev_rt_now;
1255 } 1832 }
1256} 1833}
1270static int loop_done; 1847static int loop_done;
1271 1848
1272void 1849void
1273ev_loop (EV_P_ int flags) 1850ev_loop (EV_P_ int flags)
1274{ 1851{
1275 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1852 loop_done = EVUNLOOP_CANCEL;
1276 ? EVUNLOOP_ONE
1277 : EVUNLOOP_CANCEL;
1278 1853
1279 while (activecnt) 1854 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1855
1856 do
1280 { 1857 {
1858#ifndef _WIN32
1859 if (expect_false (curpid)) /* penalise the forking check even more */
1860 if (expect_false (getpid () != curpid))
1861 {
1862 curpid = getpid ();
1863 postfork = 1;
1864 }
1865#endif
1866
1867#if EV_FORK_ENABLE
1868 /* we might have forked, so queue fork handlers */
1869 if (expect_false (postfork))
1870 if (forkcnt)
1871 {
1872 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1873 call_pending (EV_A);
1874 }
1875#endif
1876
1281 /* queue check watchers (and execute them) */ 1877 /* queue prepare watchers (and execute them) */
1282 if (expect_false (preparecnt)) 1878 if (expect_false (preparecnt))
1283 { 1879 {
1284 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1880 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1285 call_pending (EV_A); 1881 call_pending (EV_A);
1286 } 1882 }
1287 1883
1884 if (expect_false (!activecnt))
1885 break;
1886
1288 /* we might have forked, so reify kernel state if necessary */ 1887 /* we might have forked, so reify kernel state if necessary */
1289 if (expect_false (postfork)) 1888 if (expect_false (postfork))
1290 loop_fork (EV_A); 1889 loop_fork (EV_A);
1291 1890
1292 /* update fd-related kernel structures */ 1891 /* update fd-related kernel structures */
1293 fd_reify (EV_A); 1892 fd_reify (EV_A);
1294 1893
1295 /* calculate blocking time */ 1894 /* calculate blocking time */
1296 { 1895 {
1297 double block; 1896 ev_tstamp waittime = 0.;
1897 ev_tstamp sleeptime = 0.;
1298 1898
1299 if (flags & EVLOOP_NONBLOCK || idlecnt) 1899 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1300 block = 0.; /* do not block at all */
1301 else
1302 { 1900 {
1303 /* update time to cancel out callback processing overhead */ 1901 /* update time to cancel out callback processing overhead */
1304#if EV_USE_MONOTONIC
1305 if (expect_true (have_monotonic))
1306 time_update_monotonic (EV_A); 1902 time_update (EV_A_ 1e100);
1307 else
1308#endif
1309 {
1310 ev_rt_now = ev_time ();
1311 mn_now = ev_rt_now;
1312 }
1313 1903
1314 block = MAX_BLOCKTIME; 1904 waittime = MAX_BLOCKTIME;
1315 1905
1316 if (timercnt) 1906 if (timercnt)
1317 { 1907 {
1318 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1908 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1319 if (block > to) block = to; 1909 if (waittime > to) waittime = to;
1320 } 1910 }
1321 1911
1322#if EV_PERIODIC_ENABLE 1912#if EV_PERIODIC_ENABLE
1323 if (periodiccnt) 1913 if (periodiccnt)
1324 { 1914 {
1325 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1915 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1326 if (block > to) block = to; 1916 if (waittime > to) waittime = to;
1327 } 1917 }
1328#endif 1918#endif
1329 1919
1330 if (expect_false (block < 0.)) block = 0.; 1920 if (expect_false (waittime < timeout_blocktime))
1921 waittime = timeout_blocktime;
1922
1923 sleeptime = waittime - backend_fudge;
1924
1925 if (expect_true (sleeptime > io_blocktime))
1926 sleeptime = io_blocktime;
1927
1928 if (sleeptime)
1929 {
1930 ev_sleep (sleeptime);
1931 waittime -= sleeptime;
1932 }
1331 } 1933 }
1332 1934
1935 ++loop_count;
1333 backend_poll (EV_A_ block); 1936 backend_poll (EV_A_ waittime);
1937
1938 /* update ev_rt_now, do magic */
1939 time_update (EV_A_ waittime + sleeptime);
1334 } 1940 }
1335
1336 /* update ev_rt_now, do magic */
1337 time_update (EV_A);
1338 1941
1339 /* queue pending timers and reschedule them */ 1942 /* queue pending timers and reschedule them */
1340 timers_reify (EV_A); /* relative timers called last */ 1943 timers_reify (EV_A); /* relative timers called last */
1341#if EV_PERIODIC_ENABLE 1944#if EV_PERIODIC_ENABLE
1342 periodics_reify (EV_A); /* absolute timers called first */ 1945 periodics_reify (EV_A); /* absolute timers called first */
1343#endif 1946#endif
1344 1947
1948#if EV_IDLE_ENABLE
1345 /* queue idle watchers unless other events are pending */ 1949 /* queue idle watchers unless other events are pending */
1346 if (idlecnt && !any_pending (EV_A)) 1950 idle_reify (EV_A);
1347 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1951#endif
1348 1952
1349 /* queue check watchers, to be executed first */ 1953 /* queue check watchers, to be executed first */
1350 if (expect_false (checkcnt)) 1954 if (expect_false (checkcnt))
1351 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1955 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1352 1956
1353 call_pending (EV_A); 1957 call_pending (EV_A);
1354
1355 if (expect_false (loop_done))
1356 break;
1357 } 1958 }
1959 while (expect_true (
1960 activecnt
1961 && !loop_done
1962 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1963 ));
1358 1964
1359 if (loop_done == EVUNLOOP_ONE) 1965 if (loop_done == EVUNLOOP_ONE)
1360 loop_done = EVUNLOOP_CANCEL; 1966 loop_done = EVUNLOOP_CANCEL;
1361} 1967}
1362 1968
1389 head = &(*head)->next; 1995 head = &(*head)->next;
1390 } 1996 }
1391} 1997}
1392 1998
1393void inline_speed 1999void inline_speed
1394ev_clear_pending (EV_P_ W w) 2000clear_pending (EV_P_ W w)
1395{ 2001{
1396 if (w->pending) 2002 if (w->pending)
1397 { 2003 {
1398 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2004 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1399 w->pending = 0; 2005 w->pending = 0;
1400 } 2006 }
1401} 2007}
1402 2008
2009int
2010ev_clear_pending (EV_P_ void *w)
2011{
2012 W w_ = (W)w;
2013 int pending = w_->pending;
2014
2015 if (expect_true (pending))
2016 {
2017 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2018 w_->pending = 0;
2019 p->w = 0;
2020 return p->events;
2021 }
2022 else
2023 return 0;
2024}
2025
2026void inline_size
2027pri_adjust (EV_P_ W w)
2028{
2029 int pri = w->priority;
2030 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2031 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2032 w->priority = pri;
2033}
2034
1403void inline_speed 2035void inline_speed
1404ev_start (EV_P_ W w, int active) 2036ev_start (EV_P_ W w, int active)
1405{ 2037{
1406 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2038 pri_adjust (EV_A_ w);
1407 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1408
1409 w->active = active; 2039 w->active = active;
1410 ev_ref (EV_A); 2040 ev_ref (EV_A);
1411} 2041}
1412 2042
1413void inline_size 2043void inline_size
1417 w->active = 0; 2047 w->active = 0;
1418} 2048}
1419 2049
1420/*****************************************************************************/ 2050/*****************************************************************************/
1421 2051
1422void 2052void noinline
1423ev_io_start (EV_P_ ev_io *w) 2053ev_io_start (EV_P_ ev_io *w)
1424{ 2054{
1425 int fd = w->fd; 2055 int fd = w->fd;
1426 2056
1427 if (expect_false (ev_is_active (w))) 2057 if (expect_false (ev_is_active (w)))
1428 return; 2058 return;
1429 2059
1430 assert (("ev_io_start called with negative fd", fd >= 0)); 2060 assert (("ev_io_start called with negative fd", fd >= 0));
1431 2061
2062 EV_FREQUENT_CHECK;
2063
1432 ev_start (EV_A_ (W)w, 1); 2064 ev_start (EV_A_ (W)w, 1);
1433 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2065 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1434 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2066 wlist_add (&anfds[fd].head, (WL)w);
1435 2067
1436 fd_change (EV_A_ fd); 2068 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1437} 2069 w->events &= ~EV_IOFDSET;
1438 2070
1439void 2071 EV_FREQUENT_CHECK;
2072}
2073
2074void noinline
1440ev_io_stop (EV_P_ ev_io *w) 2075ev_io_stop (EV_P_ ev_io *w)
1441{ 2076{
1442 ev_clear_pending (EV_A_ (W)w); 2077 clear_pending (EV_A_ (W)w);
1443 if (expect_false (!ev_is_active (w))) 2078 if (expect_false (!ev_is_active (w)))
1444 return; 2079 return;
1445 2080
1446 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2081 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1447 2082
2083 EV_FREQUENT_CHECK;
2084
1448 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2085 wlist_del (&anfds[w->fd].head, (WL)w);
1449 ev_stop (EV_A_ (W)w); 2086 ev_stop (EV_A_ (W)w);
1450 2087
1451 fd_change (EV_A_ w->fd); 2088 fd_change (EV_A_ w->fd, 1);
1452}
1453 2089
1454void 2090 EV_FREQUENT_CHECK;
2091}
2092
2093void noinline
1455ev_timer_start (EV_P_ ev_timer *w) 2094ev_timer_start (EV_P_ ev_timer *w)
1456{ 2095{
1457 if (expect_false (ev_is_active (w))) 2096 if (expect_false (ev_is_active (w)))
1458 return; 2097 return;
1459 2098
1460 ((WT)w)->at += mn_now; 2099 ev_at (w) += mn_now;
1461 2100
1462 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2101 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1463 2102
2103 EV_FREQUENT_CHECK;
2104
2105 ++timercnt;
1464 ev_start (EV_A_ (W)w, ++timercnt); 2106 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1465 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2107 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1466 timers [timercnt - 1] = w; 2108 ANHE_w (timers [ev_active (w)]) = (WT)w;
1467 upheap ((WT *)timers, timercnt - 1); 2109 ANHE_at_cache (timers [ev_active (w)]);
2110 upheap (timers, ev_active (w));
1468 2111
2112 EV_FREQUENT_CHECK;
2113
1469 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2114 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1470} 2115}
1471 2116
1472void 2117void noinline
1473ev_timer_stop (EV_P_ ev_timer *w) 2118ev_timer_stop (EV_P_ ev_timer *w)
1474{ 2119{
1475 ev_clear_pending (EV_A_ (W)w); 2120 clear_pending (EV_A_ (W)w);
1476 if (expect_false (!ev_is_active (w))) 2121 if (expect_false (!ev_is_active (w)))
1477 return; 2122 return;
1478 2123
2124 EV_FREQUENT_CHECK;
2125
2126 {
2127 int active = ev_active (w);
2128
1479 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2129 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1480 2130
2131 --timercnt;
2132
1481 if (expect_true (((W)w)->active < timercnt--)) 2133 if (expect_true (active < timercnt + HEAP0))
1482 { 2134 {
1483 timers [((W)w)->active - 1] = timers [timercnt]; 2135 timers [active] = timers [timercnt + HEAP0];
1484 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2136 adjustheap (timers, timercnt, active);
1485 } 2137 }
2138 }
1486 2139
1487 ((WT)w)->at -= mn_now; 2140 EV_FREQUENT_CHECK;
2141
2142 ev_at (w) -= mn_now;
1488 2143
1489 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1490} 2145}
1491 2146
1492void 2147void noinline
1493ev_timer_again (EV_P_ ev_timer *w) 2148ev_timer_again (EV_P_ ev_timer *w)
1494{ 2149{
2150 EV_FREQUENT_CHECK;
2151
1495 if (ev_is_active (w)) 2152 if (ev_is_active (w))
1496 { 2153 {
1497 if (w->repeat) 2154 if (w->repeat)
1498 { 2155 {
1499 ((WT)w)->at = mn_now + w->repeat; 2156 ev_at (w) = mn_now + w->repeat;
2157 ANHE_at_cache (timers [ev_active (w)]);
1500 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2158 adjustheap (timers, timercnt, ev_active (w));
1501 } 2159 }
1502 else 2160 else
1503 ev_timer_stop (EV_A_ w); 2161 ev_timer_stop (EV_A_ w);
1504 } 2162 }
1505 else if (w->repeat) 2163 else if (w->repeat)
1506 { 2164 {
1507 w->at = w->repeat; 2165 ev_at (w) = w->repeat;
1508 ev_timer_start (EV_A_ w); 2166 ev_timer_start (EV_A_ w);
1509 } 2167 }
2168
2169 EV_FREQUENT_CHECK;
1510} 2170}
1511 2171
1512#if EV_PERIODIC_ENABLE 2172#if EV_PERIODIC_ENABLE
1513void 2173void noinline
1514ev_periodic_start (EV_P_ ev_periodic *w) 2174ev_periodic_start (EV_P_ ev_periodic *w)
1515{ 2175{
1516 if (expect_false (ev_is_active (w))) 2176 if (expect_false (ev_is_active (w)))
1517 return; 2177 return;
1518 2178
1519 if (w->reschedule_cb) 2179 if (w->reschedule_cb)
1520 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2180 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1521 else if (w->interval) 2181 else if (w->interval)
1522 { 2182 {
1523 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2183 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1524 /* this formula differs from the one in periodic_reify because we do not always round up */ 2184 /* this formula differs from the one in periodic_reify because we do not always round up */
1525 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1526 } 2186 }
2187 else
2188 ev_at (w) = w->offset;
1527 2189
2190 EV_FREQUENT_CHECK;
2191
2192 ++periodiccnt;
1528 ev_start (EV_A_ (W)w, ++periodiccnt); 2193 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1529 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2194 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1530 periodics [periodiccnt - 1] = w; 2195 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1531 upheap ((WT *)periodics, periodiccnt - 1); 2196 ANHE_at_cache (periodics [ev_active (w)]);
2197 upheap (periodics, ev_active (w));
1532 2198
2199 EV_FREQUENT_CHECK;
2200
1533 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2201 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1534} 2202}
1535 2203
1536void 2204void noinline
1537ev_periodic_stop (EV_P_ ev_periodic *w) 2205ev_periodic_stop (EV_P_ ev_periodic *w)
1538{ 2206{
1539 ev_clear_pending (EV_A_ (W)w); 2207 clear_pending (EV_A_ (W)w);
1540 if (expect_false (!ev_is_active (w))) 2208 if (expect_false (!ev_is_active (w)))
1541 return; 2209 return;
1542 2210
2211 EV_FREQUENT_CHECK;
2212
2213 {
2214 int active = ev_active (w);
2215
1543 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2216 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1544 2217
2218 --periodiccnt;
2219
1545 if (expect_true (((W)w)->active < periodiccnt--)) 2220 if (expect_true (active < periodiccnt + HEAP0))
1546 { 2221 {
1547 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2222 periodics [active] = periodics [periodiccnt + HEAP0];
1548 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2223 adjustheap (periodics, periodiccnt, active);
1549 } 2224 }
2225 }
2226
2227 EV_FREQUENT_CHECK;
1550 2228
1551 ev_stop (EV_A_ (W)w); 2229 ev_stop (EV_A_ (W)w);
1552} 2230}
1553 2231
1554void 2232void noinline
1555ev_periodic_again (EV_P_ ev_periodic *w) 2233ev_periodic_again (EV_P_ ev_periodic *w)
1556{ 2234{
1557 /* TODO: use adjustheap and recalculation */ 2235 /* TODO: use adjustheap and recalculation */
1558 ev_periodic_stop (EV_A_ w); 2236 ev_periodic_stop (EV_A_ w);
1559 ev_periodic_start (EV_A_ w); 2237 ev_periodic_start (EV_A_ w);
1562 2240
1563#ifndef SA_RESTART 2241#ifndef SA_RESTART
1564# define SA_RESTART 0 2242# define SA_RESTART 0
1565#endif 2243#endif
1566 2244
1567void 2245void noinline
1568ev_signal_start (EV_P_ ev_signal *w) 2246ev_signal_start (EV_P_ ev_signal *w)
1569{ 2247{
1570#if EV_MULTIPLICITY 2248#if EV_MULTIPLICITY
1571 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2249 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1572#endif 2250#endif
1573 if (expect_false (ev_is_active (w))) 2251 if (expect_false (ev_is_active (w)))
1574 return; 2252 return;
1575 2253
1576 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2254 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1577 2255
2256 evpipe_init (EV_A);
2257
2258 EV_FREQUENT_CHECK;
2259
2260 {
2261#ifndef _WIN32
2262 sigset_t full, prev;
2263 sigfillset (&full);
2264 sigprocmask (SIG_SETMASK, &full, &prev);
2265#endif
2266
2267 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2268
2269#ifndef _WIN32
2270 sigprocmask (SIG_SETMASK, &prev, 0);
2271#endif
2272 }
2273
1578 ev_start (EV_A_ (W)w, 1); 2274 ev_start (EV_A_ (W)w, 1);
1579 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1580 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2275 wlist_add (&signals [w->signum - 1].head, (WL)w);
1581 2276
1582 if (!((WL)w)->next) 2277 if (!((WL)w)->next)
1583 { 2278 {
1584#if _WIN32 2279#if _WIN32
1585 signal (w->signum, sighandler); 2280 signal (w->signum, ev_sighandler);
1586#else 2281#else
1587 struct sigaction sa; 2282 struct sigaction sa;
1588 sa.sa_handler = sighandler; 2283 sa.sa_handler = ev_sighandler;
1589 sigfillset (&sa.sa_mask); 2284 sigfillset (&sa.sa_mask);
1590 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2285 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1591 sigaction (w->signum, &sa, 0); 2286 sigaction (w->signum, &sa, 0);
1592#endif 2287#endif
1593 } 2288 }
1594}
1595 2289
1596void 2290 EV_FREQUENT_CHECK;
2291}
2292
2293void noinline
1597ev_signal_stop (EV_P_ ev_signal *w) 2294ev_signal_stop (EV_P_ ev_signal *w)
1598{ 2295{
1599 ev_clear_pending (EV_A_ (W)w); 2296 clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w))) 2297 if (expect_false (!ev_is_active (w)))
1601 return; 2298 return;
1602 2299
2300 EV_FREQUENT_CHECK;
2301
1603 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2302 wlist_del (&signals [w->signum - 1].head, (WL)w);
1604 ev_stop (EV_A_ (W)w); 2303 ev_stop (EV_A_ (W)w);
1605 2304
1606 if (!signals [w->signum - 1].head) 2305 if (!signals [w->signum - 1].head)
1607 signal (w->signum, SIG_DFL); 2306 signal (w->signum, SIG_DFL);
2307
2308 EV_FREQUENT_CHECK;
1608} 2309}
1609 2310
1610void 2311void
1611ev_child_start (EV_P_ ev_child *w) 2312ev_child_start (EV_P_ ev_child *w)
1612{ 2313{
1614 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2315 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1615#endif 2316#endif
1616 if (expect_false (ev_is_active (w))) 2317 if (expect_false (ev_is_active (w)))
1617 return; 2318 return;
1618 2319
2320 EV_FREQUENT_CHECK;
2321
1619 ev_start (EV_A_ (W)w, 1); 2322 ev_start (EV_A_ (W)w, 1);
1620 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2323 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2324
2325 EV_FREQUENT_CHECK;
1621} 2326}
1622 2327
1623void 2328void
1624ev_child_stop (EV_P_ ev_child *w) 2329ev_child_stop (EV_P_ ev_child *w)
1625{ 2330{
1626 ev_clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
1627 if (expect_false (!ev_is_active (w))) 2332 if (expect_false (!ev_is_active (w)))
1628 return; 2333 return;
1629 2334
2335 EV_FREQUENT_CHECK;
2336
1630 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2337 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1631 ev_stop (EV_A_ (W)w); 2338 ev_stop (EV_A_ (W)w);
2339
2340 EV_FREQUENT_CHECK;
1632} 2341}
1633 2342
1634#if EV_STAT_ENABLE 2343#if EV_STAT_ENABLE
1635 2344
1636# ifdef _WIN32 2345# ifdef _WIN32
2346# undef lstat
1637# define lstat(a,b) stat(a,b) 2347# define lstat(a,b) _stati64 (a,b)
1638# endif 2348# endif
1639 2349
1640#define DEF_STAT_INTERVAL 5.0074891 2350#define DEF_STAT_INTERVAL 5.0074891
1641#define MIN_STAT_INTERVAL 0.1074891 2351#define MIN_STAT_INTERVAL 0.1074891
2352
2353static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2354
2355#if EV_USE_INOTIFY
2356# define EV_INOTIFY_BUFSIZE 8192
2357
2358static void noinline
2359infy_add (EV_P_ ev_stat *w)
2360{
2361 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2362
2363 if (w->wd < 0)
2364 {
2365 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2366
2367 /* monitor some parent directory for speedup hints */
2368 /* note that exceeding the hardcoded limit is not a correctness issue, */
2369 /* but an efficiency issue only */
2370 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2371 {
2372 char path [4096];
2373 strcpy (path, w->path);
2374
2375 do
2376 {
2377 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2378 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2379
2380 char *pend = strrchr (path, '/');
2381
2382 if (!pend)
2383 break; /* whoops, no '/', complain to your admin */
2384
2385 *pend = 0;
2386 w->wd = inotify_add_watch (fs_fd, path, mask);
2387 }
2388 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2389 }
2390 }
2391 else
2392 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2393
2394 if (w->wd >= 0)
2395 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2396}
2397
2398static void noinline
2399infy_del (EV_P_ ev_stat *w)
2400{
2401 int slot;
2402 int wd = w->wd;
2403
2404 if (wd < 0)
2405 return;
2406
2407 w->wd = -2;
2408 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2409 wlist_del (&fs_hash [slot].head, (WL)w);
2410
2411 /* remove this watcher, if others are watching it, they will rearm */
2412 inotify_rm_watch (fs_fd, wd);
2413}
2414
2415static void noinline
2416infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2417{
2418 if (slot < 0)
2419 /* overflow, need to check for all hahs slots */
2420 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2421 infy_wd (EV_A_ slot, wd, ev);
2422 else
2423 {
2424 WL w_;
2425
2426 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2427 {
2428 ev_stat *w = (ev_stat *)w_;
2429 w_ = w_->next; /* lets us remove this watcher and all before it */
2430
2431 if (w->wd == wd || wd == -1)
2432 {
2433 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2434 {
2435 w->wd = -1;
2436 infy_add (EV_A_ w); /* re-add, no matter what */
2437 }
2438
2439 stat_timer_cb (EV_A_ &w->timer, 0);
2440 }
2441 }
2442 }
2443}
2444
2445static void
2446infy_cb (EV_P_ ev_io *w, int revents)
2447{
2448 char buf [EV_INOTIFY_BUFSIZE];
2449 struct inotify_event *ev = (struct inotify_event *)buf;
2450 int ofs;
2451 int len = read (fs_fd, buf, sizeof (buf));
2452
2453 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2454 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2455}
2456
2457void inline_size
2458infy_init (EV_P)
2459{
2460 if (fs_fd != -2)
2461 return;
2462
2463 fs_fd = inotify_init ();
2464
2465 if (fs_fd >= 0)
2466 {
2467 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2468 ev_set_priority (&fs_w, EV_MAXPRI);
2469 ev_io_start (EV_A_ &fs_w);
2470 }
2471}
2472
2473void inline_size
2474infy_fork (EV_P)
2475{
2476 int slot;
2477
2478 if (fs_fd < 0)
2479 return;
2480
2481 close (fs_fd);
2482 fs_fd = inotify_init ();
2483
2484 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2485 {
2486 WL w_ = fs_hash [slot].head;
2487 fs_hash [slot].head = 0;
2488
2489 while (w_)
2490 {
2491 ev_stat *w = (ev_stat *)w_;
2492 w_ = w_->next; /* lets us add this watcher */
2493
2494 w->wd = -1;
2495
2496 if (fs_fd >= 0)
2497 infy_add (EV_A_ w); /* re-add, no matter what */
2498 else
2499 ev_timer_start (EV_A_ &w->timer);
2500 }
2501
2502 }
2503}
2504
2505#endif
1642 2506
1643void 2507void
1644ev_stat_stat (EV_P_ ev_stat *w) 2508ev_stat_stat (EV_P_ ev_stat *w)
1645{ 2509{
1646 if (lstat (w->path, &w->attr) < 0) 2510 if (lstat (w->path, &w->attr) < 0)
1647 w->attr.st_nlink = 0; 2511 w->attr.st_nlink = 0;
1648 else if (!w->attr.st_nlink) 2512 else if (!w->attr.st_nlink)
1649 w->attr.st_nlink = 1; 2513 w->attr.st_nlink = 1;
1650} 2514}
1651 2515
1652static void 2516static void noinline
1653stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2517stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1654{ 2518{
1655 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2519 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1656 2520
1657 /* we copy this here each the time so that */ 2521 /* we copy this here each the time so that */
1658 /* prev has the old value when the callback gets invoked */ 2522 /* prev has the old value when the callback gets invoked */
1659 w->prev = w->attr; 2523 w->prev = w->attr;
1660 ev_stat_stat (EV_A_ w); 2524 ev_stat_stat (EV_A_ w);
1661 2525
1662 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2526 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2527 if (
2528 w->prev.st_dev != w->attr.st_dev
2529 || w->prev.st_ino != w->attr.st_ino
2530 || w->prev.st_mode != w->attr.st_mode
2531 || w->prev.st_nlink != w->attr.st_nlink
2532 || w->prev.st_uid != w->attr.st_uid
2533 || w->prev.st_gid != w->attr.st_gid
2534 || w->prev.st_rdev != w->attr.st_rdev
2535 || w->prev.st_size != w->attr.st_size
2536 || w->prev.st_atime != w->attr.st_atime
2537 || w->prev.st_mtime != w->attr.st_mtime
2538 || w->prev.st_ctime != w->attr.st_ctime
2539 ) {
2540 #if EV_USE_INOTIFY
2541 infy_del (EV_A_ w);
2542 infy_add (EV_A_ w);
2543 ev_stat_stat (EV_A_ w); /* avoid race... */
2544 #endif
2545
1663 ev_feed_event (EV_A_ w, EV_STAT); 2546 ev_feed_event (EV_A_ w, EV_STAT);
2547 }
1664} 2548}
1665 2549
1666void 2550void
1667ev_stat_start (EV_P_ ev_stat *w) 2551ev_stat_start (EV_P_ ev_stat *w)
1668{ 2552{
1678 if (w->interval < MIN_STAT_INTERVAL) 2562 if (w->interval < MIN_STAT_INTERVAL)
1679 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL; 2563 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1680 2564
1681 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2565 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1682 ev_set_priority (&w->timer, ev_priority (w)); 2566 ev_set_priority (&w->timer, ev_priority (w));
2567
2568#if EV_USE_INOTIFY
2569 infy_init (EV_A);
2570
2571 if (fs_fd >= 0)
2572 infy_add (EV_A_ w);
2573 else
2574#endif
1683 ev_timer_start (EV_A_ &w->timer); 2575 ev_timer_start (EV_A_ &w->timer);
1684 2576
1685 ev_start (EV_A_ (W)w, 1); 2577 ev_start (EV_A_ (W)w, 1);
2578
2579 EV_FREQUENT_CHECK;
1686} 2580}
1687 2581
1688void 2582void
1689ev_stat_stop (EV_P_ ev_stat *w) 2583ev_stat_stop (EV_P_ ev_stat *w)
1690{ 2584{
1691 ev_clear_pending (EV_A_ (W)w); 2585 clear_pending (EV_A_ (W)w);
1692 if (expect_false (!ev_is_active (w))) 2586 if (expect_false (!ev_is_active (w)))
1693 return; 2587 return;
1694 2588
2589 EV_FREQUENT_CHECK;
2590
2591#if EV_USE_INOTIFY
2592 infy_del (EV_A_ w);
2593#endif
1695 ev_timer_stop (EV_A_ &w->timer); 2594 ev_timer_stop (EV_A_ &w->timer);
1696 2595
1697 ev_stop (EV_A_ (W)w); 2596 ev_stop (EV_A_ (W)w);
1698}
1699#endif
1700 2597
2598 EV_FREQUENT_CHECK;
2599}
2600#endif
2601
2602#if EV_IDLE_ENABLE
1701void 2603void
1702ev_idle_start (EV_P_ ev_idle *w) 2604ev_idle_start (EV_P_ ev_idle *w)
1703{ 2605{
1704 if (expect_false (ev_is_active (w))) 2606 if (expect_false (ev_is_active (w)))
1705 return; 2607 return;
1706 2608
2609 pri_adjust (EV_A_ (W)w);
2610
2611 EV_FREQUENT_CHECK;
2612
2613 {
2614 int active = ++idlecnt [ABSPRI (w)];
2615
2616 ++idleall;
1707 ev_start (EV_A_ (W)w, ++idlecnt); 2617 ev_start (EV_A_ (W)w, active);
2618
1708 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2619 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1709 idles [idlecnt - 1] = w; 2620 idles [ABSPRI (w)][active - 1] = w;
2621 }
2622
2623 EV_FREQUENT_CHECK;
1710} 2624}
1711 2625
1712void 2626void
1713ev_idle_stop (EV_P_ ev_idle *w) 2627ev_idle_stop (EV_P_ ev_idle *w)
1714{ 2628{
1715 ev_clear_pending (EV_A_ (W)w); 2629 clear_pending (EV_A_ (W)w);
1716 if (expect_false (!ev_is_active (w))) 2630 if (expect_false (!ev_is_active (w)))
1717 return; 2631 return;
1718 2632
2633 EV_FREQUENT_CHECK;
2634
1719 { 2635 {
1720 int active = ((W)w)->active; 2636 int active = ev_active (w);
1721 idles [active - 1] = idles [--idlecnt]; 2637
1722 ((W)idles [active - 1])->active = active; 2638 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2639 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2640
2641 ev_stop (EV_A_ (W)w);
2642 --idleall;
1723 } 2643 }
1724 2644
1725 ev_stop (EV_A_ (W)w); 2645 EV_FREQUENT_CHECK;
1726} 2646}
2647#endif
1727 2648
1728void 2649void
1729ev_prepare_start (EV_P_ ev_prepare *w) 2650ev_prepare_start (EV_P_ ev_prepare *w)
1730{ 2651{
1731 if (expect_false (ev_is_active (w))) 2652 if (expect_false (ev_is_active (w)))
1732 return; 2653 return;
2654
2655 EV_FREQUENT_CHECK;
1733 2656
1734 ev_start (EV_A_ (W)w, ++preparecnt); 2657 ev_start (EV_A_ (W)w, ++preparecnt);
1735 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2658 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1736 prepares [preparecnt - 1] = w; 2659 prepares [preparecnt - 1] = w;
2660
2661 EV_FREQUENT_CHECK;
1737} 2662}
1738 2663
1739void 2664void
1740ev_prepare_stop (EV_P_ ev_prepare *w) 2665ev_prepare_stop (EV_P_ ev_prepare *w)
1741{ 2666{
1742 ev_clear_pending (EV_A_ (W)w); 2667 clear_pending (EV_A_ (W)w);
1743 if (expect_false (!ev_is_active (w))) 2668 if (expect_false (!ev_is_active (w)))
1744 return; 2669 return;
1745 2670
2671 EV_FREQUENT_CHECK;
2672
1746 { 2673 {
1747 int active = ((W)w)->active; 2674 int active = ev_active (w);
2675
1748 prepares [active - 1] = prepares [--preparecnt]; 2676 prepares [active - 1] = prepares [--preparecnt];
1749 ((W)prepares [active - 1])->active = active; 2677 ev_active (prepares [active - 1]) = active;
1750 } 2678 }
1751 2679
1752 ev_stop (EV_A_ (W)w); 2680 ev_stop (EV_A_ (W)w);
2681
2682 EV_FREQUENT_CHECK;
1753} 2683}
1754 2684
1755void 2685void
1756ev_check_start (EV_P_ ev_check *w) 2686ev_check_start (EV_P_ ev_check *w)
1757{ 2687{
1758 if (expect_false (ev_is_active (w))) 2688 if (expect_false (ev_is_active (w)))
1759 return; 2689 return;
2690
2691 EV_FREQUENT_CHECK;
1760 2692
1761 ev_start (EV_A_ (W)w, ++checkcnt); 2693 ev_start (EV_A_ (W)w, ++checkcnt);
1762 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2694 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1763 checks [checkcnt - 1] = w; 2695 checks [checkcnt - 1] = w;
2696
2697 EV_FREQUENT_CHECK;
1764} 2698}
1765 2699
1766void 2700void
1767ev_check_stop (EV_P_ ev_check *w) 2701ev_check_stop (EV_P_ ev_check *w)
1768{ 2702{
1769 ev_clear_pending (EV_A_ (W)w); 2703 clear_pending (EV_A_ (W)w);
1770 if (expect_false (!ev_is_active (w))) 2704 if (expect_false (!ev_is_active (w)))
1771 return; 2705 return;
1772 2706
2707 EV_FREQUENT_CHECK;
2708
1773 { 2709 {
1774 int active = ((W)w)->active; 2710 int active = ev_active (w);
2711
1775 checks [active - 1] = checks [--checkcnt]; 2712 checks [active - 1] = checks [--checkcnt];
1776 ((W)checks [active - 1])->active = active; 2713 ev_active (checks [active - 1]) = active;
1777 } 2714 }
1778 2715
1779 ev_stop (EV_A_ (W)w); 2716 ev_stop (EV_A_ (W)w);
2717
2718 EV_FREQUENT_CHECK;
1780} 2719}
1781 2720
1782#if EV_EMBED_ENABLE 2721#if EV_EMBED_ENABLE
1783void noinline 2722void noinline
1784ev_embed_sweep (EV_P_ ev_embed *w) 2723ev_embed_sweep (EV_P_ ev_embed *w)
1785{ 2724{
1786 ev_loop (w->loop, EVLOOP_NONBLOCK); 2725 ev_loop (w->other, EVLOOP_NONBLOCK);
1787} 2726}
1788 2727
1789static void 2728static void
1790embed_cb (EV_P_ ev_io *io, int revents) 2729embed_io_cb (EV_P_ ev_io *io, int revents)
1791{ 2730{
1792 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2731 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1793 2732
1794 if (ev_cb (w)) 2733 if (ev_cb (w))
1795 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2734 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1796 else 2735 else
1797 ev_embed_sweep (loop, w); 2736 ev_loop (w->other, EVLOOP_NONBLOCK);
1798} 2737}
2738
2739static void
2740embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2741{
2742 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2743
2744 {
2745 struct ev_loop *loop = w->other;
2746
2747 while (fdchangecnt)
2748 {
2749 fd_reify (EV_A);
2750 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2751 }
2752 }
2753}
2754
2755#if 0
2756static void
2757embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2758{
2759 ev_idle_stop (EV_A_ idle);
2760}
2761#endif
1799 2762
1800void 2763void
1801ev_embed_start (EV_P_ ev_embed *w) 2764ev_embed_start (EV_P_ ev_embed *w)
1802{ 2765{
1803 if (expect_false (ev_is_active (w))) 2766 if (expect_false (ev_is_active (w)))
1804 return; 2767 return;
1805 2768
1806 { 2769 {
1807 struct ev_loop *loop = w->loop; 2770 struct ev_loop *loop = w->other;
1808 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2771 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1809 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2772 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1810 } 2773 }
2774
2775 EV_FREQUENT_CHECK;
1811 2776
1812 ev_set_priority (&w->io, ev_priority (w)); 2777 ev_set_priority (&w->io, ev_priority (w));
1813 ev_io_start (EV_A_ &w->io); 2778 ev_io_start (EV_A_ &w->io);
1814 2779
2780 ev_prepare_init (&w->prepare, embed_prepare_cb);
2781 ev_set_priority (&w->prepare, EV_MINPRI);
2782 ev_prepare_start (EV_A_ &w->prepare);
2783
2784 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2785
1815 ev_start (EV_A_ (W)w, 1); 2786 ev_start (EV_A_ (W)w, 1);
2787
2788 EV_FREQUENT_CHECK;
1816} 2789}
1817 2790
1818void 2791void
1819ev_embed_stop (EV_P_ ev_embed *w) 2792ev_embed_stop (EV_P_ ev_embed *w)
1820{ 2793{
1821 ev_clear_pending (EV_A_ (W)w); 2794 clear_pending (EV_A_ (W)w);
1822 if (expect_false (!ev_is_active (w))) 2795 if (expect_false (!ev_is_active (w)))
1823 return; 2796 return;
1824 2797
2798 EV_FREQUENT_CHECK;
2799
1825 ev_io_stop (EV_A_ &w->io); 2800 ev_io_stop (EV_A_ &w->io);
2801 ev_prepare_stop (EV_A_ &w->prepare);
1826 2802
1827 ev_stop (EV_A_ (W)w); 2803 ev_stop (EV_A_ (W)w);
2804
2805 EV_FREQUENT_CHECK;
2806}
2807#endif
2808
2809#if EV_FORK_ENABLE
2810void
2811ev_fork_start (EV_P_ ev_fork *w)
2812{
2813 if (expect_false (ev_is_active (w)))
2814 return;
2815
2816 EV_FREQUENT_CHECK;
2817
2818 ev_start (EV_A_ (W)w, ++forkcnt);
2819 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2820 forks [forkcnt - 1] = w;
2821
2822 EV_FREQUENT_CHECK;
2823}
2824
2825void
2826ev_fork_stop (EV_P_ ev_fork *w)
2827{
2828 clear_pending (EV_A_ (W)w);
2829 if (expect_false (!ev_is_active (w)))
2830 return;
2831
2832 EV_FREQUENT_CHECK;
2833
2834 {
2835 int active = ev_active (w);
2836
2837 forks [active - 1] = forks [--forkcnt];
2838 ev_active (forks [active - 1]) = active;
2839 }
2840
2841 ev_stop (EV_A_ (W)w);
2842
2843 EV_FREQUENT_CHECK;
2844}
2845#endif
2846
2847#if EV_ASYNC_ENABLE
2848void
2849ev_async_start (EV_P_ ev_async *w)
2850{
2851 if (expect_false (ev_is_active (w)))
2852 return;
2853
2854 evpipe_init (EV_A);
2855
2856 EV_FREQUENT_CHECK;
2857
2858 ev_start (EV_A_ (W)w, ++asynccnt);
2859 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2860 asyncs [asynccnt - 1] = w;
2861
2862 EV_FREQUENT_CHECK;
2863}
2864
2865void
2866ev_async_stop (EV_P_ ev_async *w)
2867{
2868 clear_pending (EV_A_ (W)w);
2869 if (expect_false (!ev_is_active (w)))
2870 return;
2871
2872 EV_FREQUENT_CHECK;
2873
2874 {
2875 int active = ev_active (w);
2876
2877 asyncs [active - 1] = asyncs [--asynccnt];
2878 ev_active (asyncs [active - 1]) = active;
2879 }
2880
2881 ev_stop (EV_A_ (W)w);
2882
2883 EV_FREQUENT_CHECK;
2884}
2885
2886void
2887ev_async_send (EV_P_ ev_async *w)
2888{
2889 w->sent = 1;
2890 evpipe_write (EV_A_ &gotasync);
1828} 2891}
1829#endif 2892#endif
1830 2893
1831/*****************************************************************************/ 2894/*****************************************************************************/
1832 2895
1890 ev_timer_set (&once->to, timeout, 0.); 2953 ev_timer_set (&once->to, timeout, 0.);
1891 ev_timer_start (EV_A_ &once->to); 2954 ev_timer_start (EV_A_ &once->to);
1892 } 2955 }
1893} 2956}
1894 2957
2958#if EV_MULTIPLICITY
2959 #include "ev_wrap.h"
2960#endif
2961
1895#ifdef __cplusplus 2962#ifdef __cplusplus
1896} 2963}
1897#endif 2964#endif
1898 2965

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines