ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.164 by root, Fri Dec 7 16:44:10 2007 UTC vs.
Revision 1.248 by root, Wed May 21 23:25:21 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 249
197#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
200#endif 253#endif
202#ifndef CLOCK_REALTIME 255#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 256# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 257# define EV_USE_REALTIME 0
205#endif 258#endif
206 259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
207#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 276# include <winsock.h>
209#endif 277#endif
210 278
211#if !EV_STAT_ENABLE 279#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
213#endif 284# endif
214 285int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 286# ifdef __cplusplus
216# include <sys/inotify.h> 287}
288# endif
217#endif 289#endif
218 290
219/**/ 291/**/
292
293/* undefined or zero: no verification done or available */
294/* 1 or higher: ev_loop_verify function available */
295/* 2 or higher: ev_loop_verify is called frequently */
296#define EV_VERIFY 1
297
298#if EV_VERIFY > 1
299# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
300#else
301# define EV_FREQUENT_CHECK do { } while (0)
302#endif
303
304/*
305 * This is used to avoid floating point rounding problems.
306 * It is added to ev_rt_now when scheduling periodics
307 * to ensure progress, time-wise, even when rounding
308 * errors are against us.
309 * This value is good at least till the year 4000.
310 * Better solutions welcome.
311 */
312#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 313
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 314#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 315#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 316/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 317
225#if __GNUC__ >= 3 318#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 319# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 320# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 321#else
236# define expect(expr,value) (expr) 322# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 323# define noinline
324# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
325# define inline
326# endif
240#endif 327#endif
241 328
242#define expect_false(expr) expect ((expr) != 0, 0) 329#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 330#define expect_true(expr) expect ((expr) != 0, 1)
331#define inline_size static inline
332
333#if EV_MINIMAL
334# define inline_speed static noinline
335#else
336# define inline_speed static inline
337#endif
244 338
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 339#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 340#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 341
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 342#define EMPTY /* required for microsofts broken pseudo-c compiler */
250 344
251typedef ev_watcher *W; 345typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 346typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 347typedef ev_watcher_time *WT;
254 348
349#define ev_active(w) ((W)(w))->active
350#define ev_at(w) ((WT)(w))->at
351
352#if EV_USE_MONOTONIC
353/* sig_atomic_t is used to avoid per-thread variables or locking but still */
354/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 355static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
356#endif
256 357
257#ifdef _WIN32 358#ifdef _WIN32
258# include "ev_win32.c" 359# include "ev_win32.c"
259#endif 360#endif
260 361
281 perror (msg); 382 perror (msg);
282 abort (); 383 abort ();
283 } 384 }
284} 385}
285 386
387static void *
388ev_realloc_emul (void *ptr, long size)
389{
390 /* some systems, notably openbsd and darwin, fail to properly
391 * implement realloc (x, 0) (as required by both ansi c-98 and
392 * the single unix specification, so work around them here.
393 */
394
395 if (size)
396 return realloc (ptr, size);
397
398 free (ptr);
399 return 0;
400}
401
286static void *(*alloc)(void *ptr, long size); 402static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 403
288void 404void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 405ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 406{
291 alloc = cb; 407 alloc = cb;
292} 408}
293 409
294inline_speed void * 410inline_speed void *
295ev_realloc (void *ptr, long size) 411ev_realloc (void *ptr, long size)
296{ 412{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 413 ptr = alloc (ptr, size);
298 414
299 if (!ptr && size) 415 if (!ptr && size)
300 { 416 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 417 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 418 abort ();
325 W w; 441 W w;
326 int events; 442 int events;
327} ANPENDING; 443} ANPENDING;
328 444
329#if EV_USE_INOTIFY 445#if EV_USE_INOTIFY
446/* hash table entry per inotify-id */
330typedef struct 447typedef struct
331{ 448{
332 WL head; 449 WL head;
333} ANFS; 450} ANFS;
451#endif
452
453/* Heap Entry */
454#if EV_HEAP_CACHE_AT
455 typedef struct {
456 ev_tstamp at;
457 WT w;
458 } ANHE;
459
460 #define ANHE_w(he) (he).w /* access watcher, read-write */
461 #define ANHE_at(he) (he).at /* access cached at, read-only */
462 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
463#else
464 typedef WT ANHE;
465
466 #define ANHE_w(he) (he)
467 #define ANHE_at(he) (he)->at
468 #define ANHE_at_cache(he)
334#endif 469#endif
335 470
336#if EV_MULTIPLICITY 471#if EV_MULTIPLICITY
337 472
338 struct ev_loop 473 struct ev_loop
396{ 531{
397 return ev_rt_now; 532 return ev_rt_now;
398} 533}
399#endif 534#endif
400 535
536void
537ev_sleep (ev_tstamp delay)
538{
539 if (delay > 0.)
540 {
541#if EV_USE_NANOSLEEP
542 struct timespec ts;
543
544 ts.tv_sec = (time_t)delay;
545 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
546
547 nanosleep (&ts, 0);
548#elif defined(_WIN32)
549 Sleep ((unsigned long)(delay * 1e3));
550#else
551 struct timeval tv;
552
553 tv.tv_sec = (time_t)delay;
554 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
555
556 select (0, 0, 0, 0, &tv);
557#endif
558 }
559}
560
561/*****************************************************************************/
562
563#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
564
401int inline_size 565int inline_size
402array_nextsize (int elem, int cur, int cnt) 566array_nextsize (int elem, int cur, int cnt)
403{ 567{
404 int ncur = cur + 1; 568 int ncur = cur + 1;
405 569
406 do 570 do
407 ncur <<= 1; 571 ncur <<= 1;
408 while (cnt > ncur); 572 while (cnt > ncur);
409 573
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 574 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 575 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 576 {
413 ncur *= elem; 577 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 578 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 579 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 580 ncur /= elem;
417 } 581 }
418 582
419 return ncur; 583 return ncur;
420} 584}
421 585
422inline_speed void * 586static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 587array_realloc (int elem, void *base, int *cur, int cnt)
424{ 588{
425 *cur = array_nextsize (elem, *cur, cnt); 589 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 590 return ev_realloc (base, elem * *cur);
427} 591}
452 616
453void noinline 617void noinline
454ev_feed_event (EV_P_ void *w, int revents) 618ev_feed_event (EV_P_ void *w, int revents)
455{ 619{
456 W w_ = (W)w; 620 W w_ = (W)w;
621 int pri = ABSPRI (w_);
457 622
458 if (expect_false (w_->pending)) 623 if (expect_false (w_->pending))
624 pendings [pri][w_->pending - 1].events |= revents;
625 else
459 { 626 {
627 w_->pending = ++pendingcnt [pri];
628 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
629 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 630 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 631 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 632}
469 633
470void inline_size 634void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 635queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 636{
473 int i; 637 int i;
474 638
475 for (i = 0; i < eventcnt; ++i) 639 for (i = 0; i < eventcnt; ++i)
507} 671}
508 672
509void 673void
510ev_feed_fd_event (EV_P_ int fd, int revents) 674ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 675{
676 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 677 fd_event (EV_A_ fd, revents);
513} 678}
514 679
515void inline_size 680void inline_size
516fd_reify (EV_P) 681fd_reify (EV_P)
517{ 682{
521 { 686 {
522 int fd = fdchanges [i]; 687 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 688 ANFD *anfd = anfds + fd;
524 ev_io *w; 689 ev_io *w;
525 690
526 int events = 0; 691 unsigned char events = 0;
527 692
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 693 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 694 events |= (unsigned char)w->events;
530 695
531#if EV_SELECT_IS_WINSOCKET 696#if EV_SELECT_IS_WINSOCKET
532 if (events) 697 if (events)
533 { 698 {
534 unsigned long argp; 699 unsigned long argp;
700 #ifdef EV_FD_TO_WIN32_HANDLE
701 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
702 #else
535 anfd->handle = _get_osfhandle (fd); 703 anfd->handle = _get_osfhandle (fd);
704 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 705 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
537 } 706 }
538#endif 707#endif
539 708
709 {
710 unsigned char o_events = anfd->events;
711 unsigned char o_reify = anfd->reify;
712
540 anfd->reify = 0; 713 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 714 anfd->events = events;
715
716 if (o_events != events || o_reify & EV_IOFDSET)
717 backend_modify (EV_A_ fd, o_events, events);
718 }
544 } 719 }
545 720
546 fdchangecnt = 0; 721 fdchangecnt = 0;
547} 722}
548 723
549void inline_size 724void inline_size
550fd_change (EV_P_ int fd) 725fd_change (EV_P_ int fd, int flags)
551{ 726{
552 if (expect_false (anfds [fd].reify)) 727 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 728 anfds [fd].reify |= flags;
556 729
730 if (expect_true (!reify))
731 {
557 ++fdchangecnt; 732 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 733 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 734 fdchanges [fdchangecnt - 1] = fd;
735 }
560} 736}
561 737
562void inline_speed 738void inline_speed
563fd_kill (EV_P_ int fd) 739fd_kill (EV_P_ int fd)
564{ 740{
615 791
616 for (fd = 0; fd < anfdmax; ++fd) 792 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 793 if (anfds [fd].events)
618 { 794 {
619 anfds [fd].events = 0; 795 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 796 fd_change (EV_A_ fd, EV_IOFDSET | 1);
621 } 797 }
622} 798}
623 799
624/*****************************************************************************/ 800/*****************************************************************************/
625 801
802/*
803 * the heap functions want a real array index. array index 0 uis guaranteed to not
804 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
805 * the branching factor of the d-tree.
806 */
807
808/*
809 * at the moment we allow libev the luxury of two heaps,
810 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
811 * which is more cache-efficient.
812 * the difference is about 5% with 50000+ watchers.
813 */
814#if EV_USE_4HEAP
815
816#define DHEAP 4
817#define HEAP0 (DHEAP - 1) /* index of first element in heap */
818#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
819#define UPHEAP_DONE(p,k) ((p) == (k))
820
821/* away from the root */
626void inline_speed 822void inline_speed
627upheap (WT *heap, int k) 823downheap (ANHE *heap, int N, int k)
628{ 824{
629 WT w = heap [k]; 825 ANHE he = heap [k];
826 ANHE *E = heap + N + HEAP0;
630 827
631 while (k && heap [k >> 1]->at > w->at) 828 for (;;)
632 {
633 heap [k] = heap [k >> 1];
634 ((W)heap [k])->active = k + 1;
635 k >>= 1;
636 } 829 {
830 ev_tstamp minat;
831 ANHE *minpos;
832 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
637 833
834 /* find minimum child */
835 if (expect_true (pos + DHEAP - 1 < E))
836 {
837 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
838 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
839 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
840 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
841 }
842 else if (pos < E)
843 {
844 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
845 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
846 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
847 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
848 }
849 else
850 break;
851
852 if (ANHE_at (he) <= minat)
853 break;
854
855 heap [k] = *minpos;
856 ev_active (ANHE_w (*minpos)) = k;
857
858 k = minpos - heap;
859 }
860
638 heap [k] = w; 861 heap [k] = he;
639 ((W)heap [k])->active = k + 1; 862 ev_active (ANHE_w (he)) = k;
640
641} 863}
642 864
865#else /* 4HEAP */
866
867#define HEAP0 1
868#define HPARENT(k) ((k) >> 1)
869#define UPHEAP_DONE(p,k) (!(p))
870
871/* away from the root */
643void inline_speed 872void inline_speed
644downheap (WT *heap, int N, int k) 873downheap (ANHE *heap, int N, int k)
645{ 874{
646 WT w = heap [k]; 875 ANHE he = heap [k];
647 876
648 while (k < (N >> 1)) 877 for (;;)
649 { 878 {
650 int j = k << 1; 879 int c = k << 1;
651 880
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 881 if (c > N + HEAP0 - 1)
653 ++j;
654
655 if (w->at <= heap [j]->at)
656 break; 882 break;
657 883
884 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
885 ? 1 : 0;
886
887 if (ANHE_at (he) <= ANHE_at (heap [c]))
888 break;
889
658 heap [k] = heap [j]; 890 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 891 ev_active (ANHE_w (heap [k])) = k;
892
660 k = j; 893 k = c;
661 } 894 }
662 895
663 heap [k] = w; 896 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 897 ev_active (ANHE_w (he)) = k;
898}
899#endif
900
901/* towards the root */
902void inline_speed
903upheap (ANHE *heap, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int p = HPARENT (k);
910
911 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
912 break;
913
914 heap [k] = heap [p];
915 ev_active (ANHE_w (heap [k])) = k;
916 k = p;
917 }
918
919 heap [k] = he;
920 ev_active (ANHE_w (he)) = k;
665} 921}
666 922
667void inline_size 923void inline_size
668adjustheap (WT *heap, int N, int k) 924adjustheap (ANHE *heap, int N, int k)
669{ 925{
926 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
670 upheap (heap, k); 927 upheap (heap, k);
928 else
671 downheap (heap, N, k); 929 downheap (heap, N, k);
672} 930}
931
932/* rebuild the heap: this function is used only once and executed rarely */
933void inline_size
934reheap (ANHE *heap, int N)
935{
936 int i;
937 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
938 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
939 for (i = 0; i < N; ++i)
940 upheap (heap, i + HEAP0);
941}
942
943#if EV_VERIFY
944static void
945checkheap (ANHE *heap, int N)
946{
947 int i;
948
949 for (i = HEAP0; i < N + HEAP0; ++i)
950 {
951 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
952 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
953 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
954 }
955}
956#endif
673 957
674/*****************************************************************************/ 958/*****************************************************************************/
675 959
676typedef struct 960typedef struct
677{ 961{
678 WL head; 962 WL head;
679 sig_atomic_t volatile gotsig; 963 EV_ATOMIC_T gotsig;
680} ANSIG; 964} ANSIG;
681 965
682static ANSIG *signals; 966static ANSIG *signals;
683static int signalmax; 967static int signalmax;
684 968
685static int sigpipe [2]; 969static EV_ATOMIC_T gotsig;
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 970
689void inline_size 971void inline_size
690signals_init (ANSIG *base, int count) 972signals_init (ANSIG *base, int count)
691{ 973{
692 while (count--) 974 while (count--)
696 978
697 ++base; 979 ++base;
698 } 980 }
699} 981}
700 982
701static void 983/*****************************************************************************/
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707 984
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size 985void inline_speed
753fd_intern (int fd) 986fd_intern (int fd)
754{ 987{
755#ifdef _WIN32 988#ifdef _WIN32
756 int arg = 1; 989 int arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 990 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 993 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 994#endif
762} 995}
763 996
764static void noinline 997static void noinline
765siginit (EV_P) 998evpipe_init (EV_P)
766{ 999{
1000 if (!ev_is_active (&pipeev))
1001 {
1002#if EV_USE_EVENTFD
1003 if ((evfd = eventfd (0, 0)) >= 0)
1004 {
1005 evpipe [0] = -1;
1006 fd_intern (evfd);
1007 ev_io_set (&pipeev, evfd, EV_READ);
1008 }
1009 else
1010#endif
1011 {
1012 while (pipe (evpipe))
1013 syserr ("(libev) error creating signal/async pipe");
1014
767 fd_intern (sigpipe [0]); 1015 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 1016 fd_intern (evpipe [1]);
1017 ev_io_set (&pipeev, evpipe [0], EV_READ);
1018 }
769 1019
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 1020 ev_io_start (EV_A_ &pipeev);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1021 ev_unref (EV_A); /* watcher should not keep loop alive */
1022 }
1023}
1024
1025void inline_size
1026evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1027{
1028 if (!*flag)
1029 {
1030 int old_errno = errno; /* save errno because write might clobber it */
1031
1032 *flag = 1;
1033
1034#if EV_USE_EVENTFD
1035 if (evfd >= 0)
1036 {
1037 uint64_t counter = 1;
1038 write (evfd, &counter, sizeof (uint64_t));
1039 }
1040 else
1041#endif
1042 write (evpipe [1], &old_errno, 1);
1043
1044 errno = old_errno;
1045 }
1046}
1047
1048static void
1049pipecb (EV_P_ ev_io *iow, int revents)
1050{
1051#if EV_USE_EVENTFD
1052 if (evfd >= 0)
1053 {
1054 uint64_t counter;
1055 read (evfd, &counter, sizeof (uint64_t));
1056 }
1057 else
1058#endif
1059 {
1060 char dummy;
1061 read (evpipe [0], &dummy, 1);
1062 }
1063
1064 if (gotsig && ev_is_default_loop (EV_A))
1065 {
1066 int signum;
1067 gotsig = 0;
1068
1069 for (signum = signalmax; signum--; )
1070 if (signals [signum].gotsig)
1071 ev_feed_signal_event (EV_A_ signum + 1);
1072 }
1073
1074#if EV_ASYNC_ENABLE
1075 if (gotasync)
1076 {
1077 int i;
1078 gotasync = 0;
1079
1080 for (i = asynccnt; i--; )
1081 if (asyncs [i]->sent)
1082 {
1083 asyncs [i]->sent = 0;
1084 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1085 }
1086 }
1087#endif
773} 1088}
774 1089
775/*****************************************************************************/ 1090/*****************************************************************************/
776 1091
1092static void
1093ev_sighandler (int signum)
1094{
1095#if EV_MULTIPLICITY
1096 struct ev_loop *loop = &default_loop_struct;
1097#endif
1098
1099#if _WIN32
1100 signal (signum, ev_sighandler);
1101#endif
1102
1103 signals [signum - 1].gotsig = 1;
1104 evpipe_write (EV_A_ &gotsig);
1105}
1106
1107void noinline
1108ev_feed_signal_event (EV_P_ int signum)
1109{
1110 WL w;
1111
1112#if EV_MULTIPLICITY
1113 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1114#endif
1115
1116 --signum;
1117
1118 if (signum < 0 || signum >= signalmax)
1119 return;
1120
1121 signals [signum].gotsig = 0;
1122
1123 for (w = signals [signum].head; w; w = w->next)
1124 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1125}
1126
1127/*****************************************************************************/
1128
777static ev_child *childs [EV_PID_HASHSIZE]; 1129static WL childs [EV_PID_HASHSIZE];
778 1130
779#ifndef _WIN32 1131#ifndef _WIN32
780 1132
781static ev_signal childev; 1133static ev_signal childev;
782 1134
1135#ifndef WIFCONTINUED
1136# define WIFCONTINUED(status) 0
1137#endif
1138
783void inline_speed 1139void inline_speed
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1140child_reap (EV_P_ int chain, int pid, int status)
785{ 1141{
786 ev_child *w; 1142 ev_child *w;
1143 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1144
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1145 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1146 {
789 if (w->pid == pid || !w->pid) 1147 if ((w->pid == pid || !w->pid)
1148 && (!traced || (w->flags & 1)))
790 { 1149 {
791 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1150 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1151 w->rpid = pid;
793 w->rstatus = status; 1152 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1153 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1154 }
1155 }
796} 1156}
797 1157
798#ifndef WCONTINUED 1158#ifndef WCONTINUED
799# define WCONTINUED 0 1159# define WCONTINUED 0
800#endif 1160#endif
809 if (!WCONTINUED 1169 if (!WCONTINUED
810 || errno != EINVAL 1170 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1171 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1172 return;
813 1173
814 /* make sure we are called again until all childs have been reaped */ 1174 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1175 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1176 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1177
818 child_reap (EV_A_ sw, pid, pid, status); 1178 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1179 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1180 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1181}
822 1182
823#endif 1183#endif
824 1184
825/*****************************************************************************/ 1185/*****************************************************************************/
897} 1257}
898 1258
899unsigned int 1259unsigned int
900ev_embeddable_backends (void) 1260ev_embeddable_backends (void)
901{ 1261{
902 return EVBACKEND_EPOLL 1262 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1263
904 | EVBACKEND_PORT; 1264 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1265 /* please fix it and tell me how to detect the fix */
1266 flags &= ~EVBACKEND_EPOLL;
1267
1268 return flags;
905} 1269}
906 1270
907unsigned int 1271unsigned int
908ev_backend (EV_P) 1272ev_backend (EV_P)
909{ 1273{
912 1276
913unsigned int 1277unsigned int
914ev_loop_count (EV_P) 1278ev_loop_count (EV_P)
915{ 1279{
916 return loop_count; 1280 return loop_count;
1281}
1282
1283void
1284ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1285{
1286 io_blocktime = interval;
1287}
1288
1289void
1290ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1291{
1292 timeout_blocktime = interval;
917} 1293}
918 1294
919static void noinline 1295static void noinline
920loop_init (EV_P_ unsigned int flags) 1296loop_init (EV_P_ unsigned int flags)
921{ 1297{
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1303 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1304 have_monotonic = 1;
929 } 1305 }
930#endif 1306#endif
931 1307
932 ev_rt_now = ev_time (); 1308 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1309 mn_now = get_clock ();
934 now_floor = mn_now; 1310 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1311 rtmn_diff = ev_rt_now - mn_now;
1312
1313 io_blocktime = 0.;
1314 timeout_blocktime = 0.;
1315 backend = 0;
1316 backend_fd = -1;
1317 gotasync = 0;
1318#if EV_USE_INOTIFY
1319 fs_fd = -2;
1320#endif
936 1321
937 /* pid check not overridable via env */ 1322 /* pid check not overridable via env */
938#ifndef _WIN32 1323#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1324 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1325 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1328 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1329 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1330 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1331 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1332
948 if (!(flags & 0x0000ffffUL)) 1333 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1334 flags |= ev_recommended_backends ();
950
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956 1335
957#if EV_USE_PORT 1336#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1337 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1338#endif
960#if EV_USE_KQUEUE 1339#if EV_USE_KQUEUE
968#endif 1347#endif
969#if EV_USE_SELECT 1348#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1349 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1350#endif
972 1351
973 ev_init (&sigev, sigcb); 1352 ev_init (&pipeev, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1353 ev_set_priority (&pipeev, EV_MAXPRI);
975 } 1354 }
976} 1355}
977 1356
978static void noinline 1357static void noinline
979loop_destroy (EV_P) 1358loop_destroy (EV_P)
980{ 1359{
981 int i; 1360 int i;
1361
1362 if (ev_is_active (&pipeev))
1363 {
1364 ev_ref (EV_A); /* signal watcher */
1365 ev_io_stop (EV_A_ &pipeev);
1366
1367#if EV_USE_EVENTFD
1368 if (evfd >= 0)
1369 close (evfd);
1370#endif
1371
1372 if (evpipe [0] >= 0)
1373 {
1374 close (evpipe [0]);
1375 close (evpipe [1]);
1376 }
1377 }
982 1378
983#if EV_USE_INOTIFY 1379#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1380 if (fs_fd >= 0)
985 close (fs_fd); 1381 close (fs_fd);
986#endif 1382#endif
1009 array_free (pending, [i]); 1405 array_free (pending, [i]);
1010#if EV_IDLE_ENABLE 1406#if EV_IDLE_ENABLE
1011 array_free (idle, [i]); 1407 array_free (idle, [i]);
1012#endif 1408#endif
1013 } 1409 }
1410
1411 ev_free (anfds); anfdmax = 0;
1014 1412
1015 /* have to use the microsoft-never-gets-it-right macro */ 1413 /* have to use the microsoft-never-gets-it-right macro */
1016 array_free (fdchange, EMPTY); 1414 array_free (fdchange, EMPTY);
1017 array_free (timer, EMPTY); 1415 array_free (timer, EMPTY);
1018#if EV_PERIODIC_ENABLE 1416#if EV_PERIODIC_ENABLE
1019 array_free (periodic, EMPTY); 1417 array_free (periodic, EMPTY);
1020#endif 1418#endif
1419#if EV_FORK_ENABLE
1420 array_free (fork, EMPTY);
1421#endif
1021 array_free (prepare, EMPTY); 1422 array_free (prepare, EMPTY);
1022 array_free (check, EMPTY); 1423 array_free (check, EMPTY);
1424#if EV_ASYNC_ENABLE
1425 array_free (async, EMPTY);
1426#endif
1023 1427
1024 backend = 0; 1428 backend = 0;
1025} 1429}
1026 1430
1431#if EV_USE_INOTIFY
1027void inline_size infy_fork (EV_P); 1432void inline_size infy_fork (EV_P);
1433#endif
1028 1434
1029void inline_size 1435void inline_size
1030loop_fork (EV_P) 1436loop_fork (EV_P)
1031{ 1437{
1032#if EV_USE_PORT 1438#if EV_USE_PORT
1040#endif 1446#endif
1041#if EV_USE_INOTIFY 1447#if EV_USE_INOTIFY
1042 infy_fork (EV_A); 1448 infy_fork (EV_A);
1043#endif 1449#endif
1044 1450
1045 if (ev_is_active (&sigev)) 1451 if (ev_is_active (&pipeev))
1046 { 1452 {
1047 /* default loop */ 1453 /* this "locks" the handlers against writing to the pipe */
1454 /* while we modify the fd vars */
1455 gotsig = 1;
1456#if EV_ASYNC_ENABLE
1457 gotasync = 1;
1458#endif
1048 1459
1049 ev_ref (EV_A); 1460 ev_ref (EV_A);
1050 ev_io_stop (EV_A_ &sigev); 1461 ev_io_stop (EV_A_ &pipeev);
1462
1463#if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466#endif
1467
1468 if (evpipe [0] >= 0)
1469 {
1051 close (sigpipe [0]); 1470 close (evpipe [0]);
1052 close (sigpipe [1]); 1471 close (evpipe [1]);
1472 }
1053 1473
1054 while (pipe (sigpipe))
1055 syserr ("(libev) error creating pipe");
1056
1057 siginit (EV_A); 1474 evpipe_init (EV_A);
1475 /* now iterate over everything, in case we missed something */
1476 pipecb (EV_A_ &pipeev, EV_READ);
1058 } 1477 }
1059 1478
1060 postfork = 0; 1479 postfork = 0;
1061} 1480}
1062 1481
1084} 1503}
1085 1504
1086void 1505void
1087ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1088{ 1507{
1089 postfork = 1; 1508 postfork = 1; /* must be in line with ev_default_fork */
1090} 1509}
1510
1511#if EV_VERIFY
1512static void
1513array_check (W **ws, int cnt)
1514{
1515 while (cnt--)
1516 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1517}
1518
1519static void
1520ev_loop_verify (EV_P)
1521{
1522 int i;
1523
1524 checkheap (timers, timercnt);
1525#if EV_PERIODIC_ENABLE
1526 checkheap (periodics, periodiccnt);
1527#endif
1528
1529#if EV_IDLE_ENABLE
1530 for (i = NUMPRI; i--; )
1531 array_check ((W **)idles [i], idlecnt [i]);
1532#endif
1533#if EV_FORK_ENABLE
1534 array_check ((W **)forks, forkcnt);
1535#endif
1536 array_check ((W **)prepares, preparecnt);
1537 array_check ((W **)checks, checkcnt);
1538#if EV_ASYNC_ENABLE
1539 array_check ((W **)asyncs, asynccnt);
1540#endif
1541}
1542#endif
1091 1543
1092#endif 1544#endif
1093 1545
1094#if EV_MULTIPLICITY 1546#if EV_MULTIPLICITY
1095struct ev_loop * 1547struct ev_loop *
1097#else 1549#else
1098int 1550int
1099ev_default_loop (unsigned int flags) 1551ev_default_loop (unsigned int flags)
1100#endif 1552#endif
1101{ 1553{
1102 if (sigpipe [0] == sigpipe [1])
1103 if (pipe (sigpipe))
1104 return 0;
1105
1106 if (!ev_default_loop_ptr) 1554 if (!ev_default_loop_ptr)
1107 { 1555 {
1108#if EV_MULTIPLICITY 1556#if EV_MULTIPLICITY
1109 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1557 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1110#else 1558#else
1113 1561
1114 loop_init (EV_A_ flags); 1562 loop_init (EV_A_ flags);
1115 1563
1116 if (ev_backend (EV_A)) 1564 if (ev_backend (EV_A))
1117 { 1565 {
1118 siginit (EV_A);
1119
1120#ifndef _WIN32 1566#ifndef _WIN32
1121 ev_signal_init (&childev, childcb, SIGCHLD); 1567 ev_signal_init (&childev, childcb, SIGCHLD);
1122 ev_set_priority (&childev, EV_MAXPRI); 1568 ev_set_priority (&childev, EV_MAXPRI);
1123 ev_signal_start (EV_A_ &childev); 1569 ev_signal_start (EV_A_ &childev);
1124 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1570 ev_unref (EV_A); /* child watcher should not keep loop alive */
1141#ifndef _WIN32 1587#ifndef _WIN32
1142 ev_ref (EV_A); /* child watcher */ 1588 ev_ref (EV_A); /* child watcher */
1143 ev_signal_stop (EV_A_ &childev); 1589 ev_signal_stop (EV_A_ &childev);
1144#endif 1590#endif
1145 1591
1146 ev_ref (EV_A); /* signal watcher */
1147 ev_io_stop (EV_A_ &sigev);
1148
1149 close (sigpipe [0]); sigpipe [0] = 0;
1150 close (sigpipe [1]); sigpipe [1] = 0;
1151
1152 loop_destroy (EV_A); 1592 loop_destroy (EV_A);
1153} 1593}
1154 1594
1155void 1595void
1156ev_default_fork (void) 1596ev_default_fork (void)
1158#if EV_MULTIPLICITY 1598#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr; 1599 struct ev_loop *loop = ev_default_loop_ptr;
1160#endif 1600#endif
1161 1601
1162 if (backend) 1602 if (backend)
1163 postfork = 1; 1603 postfork = 1; /* must be in line with ev_loop_fork */
1164} 1604}
1165 1605
1166/*****************************************************************************/ 1606/*****************************************************************************/
1607
1608void
1609ev_invoke (EV_P_ void *w, int revents)
1610{
1611 EV_CB_INVOKE ((W)w, revents);
1612}
1167 1613
1168void inline_speed 1614void inline_speed
1169call_pending (EV_P) 1615call_pending (EV_P)
1170{ 1616{
1171 int pri; 1617 int pri;
1618
1619 EV_FREQUENT_CHECK;
1172 1620
1173 for (pri = NUMPRI; pri--; ) 1621 for (pri = NUMPRI; pri--; )
1174 while (pendingcnt [pri]) 1622 while (pendingcnt [pri])
1175 { 1623 {
1176 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1624 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1181 1629
1182 p->w->pending = 0; 1630 p->w->pending = 0;
1183 EV_CB_INVOKE (p->w, p->events); 1631 EV_CB_INVOKE (p->w, p->events);
1184 } 1632 }
1185 } 1633 }
1186}
1187 1634
1188void inline_size 1635 EV_FREQUENT_CHECK;
1189timers_reify (EV_P)
1190{
1191 while (timercnt && ((WT)timers [0])->at <= mn_now)
1192 {
1193 ev_timer *w = timers [0];
1194
1195 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1196
1197 /* first reschedule or stop timer */
1198 if (w->repeat)
1199 {
1200 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1201
1202 ((WT)w)->at += w->repeat;
1203 if (((WT)w)->at < mn_now)
1204 ((WT)w)->at = mn_now;
1205
1206 downheap ((WT *)timers, timercnt, 0);
1207 }
1208 else
1209 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1210
1211 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1212 }
1213} 1636}
1214
1215#if EV_PERIODIC_ENABLE
1216void inline_size
1217periodics_reify (EV_P)
1218{
1219 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1220 {
1221 ev_periodic *w = periodics [0];
1222
1223 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1224
1225 /* first reschedule or stop timer */
1226 if (w->reschedule_cb)
1227 {
1228 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1229 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1230 downheap ((WT *)periodics, periodiccnt, 0);
1231 }
1232 else if (w->interval)
1233 {
1234 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1235 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1236 downheap ((WT *)periodics, periodiccnt, 0);
1237 }
1238 else
1239 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1240
1241 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1242 }
1243}
1244
1245static void noinline
1246periodics_reschedule (EV_P)
1247{
1248 int i;
1249
1250 /* adjust periodics after time jump */
1251 for (i = 0; i < periodiccnt; ++i)
1252 {
1253 ev_periodic *w = periodics [i];
1254
1255 if (w->reschedule_cb)
1256 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1257 else if (w->interval)
1258 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1259 }
1260
1261 /* now rebuild the heap */
1262 for (i = periodiccnt >> 1; i--; )
1263 downheap ((WT *)periodics, periodiccnt, i);
1264}
1265#endif
1266 1637
1267#if EV_IDLE_ENABLE 1638#if EV_IDLE_ENABLE
1268void inline_size 1639void inline_size
1269idle_reify (EV_P) 1640idle_reify (EV_P)
1270{ 1641{
1271 if (expect_false (!idleall)) 1642 if (expect_false (idleall))
1272 { 1643 {
1273 int pri; 1644 int pri;
1274 1645
1275 for (pri = NUMPRI; pri--; ) 1646 for (pri = NUMPRI; pri--; )
1276 { 1647 {
1285 } 1656 }
1286 } 1657 }
1287} 1658}
1288#endif 1659#endif
1289 1660
1290int inline_size 1661void inline_size
1291time_update_monotonic (EV_P) 1662timers_reify (EV_P)
1292{ 1663{
1664 EV_FREQUENT_CHECK;
1665
1666 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1667 {
1668 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1669
1670 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1671
1672 /* first reschedule or stop timer */
1673 if (w->repeat)
1674 {
1675 ev_at (w) += w->repeat;
1676 if (ev_at (w) < mn_now)
1677 ev_at (w) = mn_now;
1678
1679 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1680
1681 ANHE_at_cache (timers [HEAP0]);
1682 downheap (timers, timercnt, HEAP0);
1683 }
1684 else
1685 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1686
1687 EV_FREQUENT_CHECK;
1688 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1689 }
1690}
1691
1692#if EV_PERIODIC_ENABLE
1693void inline_size
1694periodics_reify (EV_P)
1695{
1696 EV_FREQUENT_CHECK;
1697 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1698 {
1699 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1700
1701 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1702
1703 /* first reschedule or stop timer */
1704 if (w->reschedule_cb)
1705 {
1706 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707
1708 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1709
1710 ANHE_at_cache (periodics [HEAP0]);
1711 downheap (periodics, periodiccnt, HEAP0);
1712 EV_FREQUENT_CHECK;
1713 }
1714 else if (w->interval)
1715 {
1716 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1717 /* if next trigger time is not sufficiently in the future, put it there */
1718 /* this might happen because of floating point inexactness */
1719 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1720 {
1721 ev_at (w) += w->interval;
1722
1723 /* if interval is unreasonably low we might still have a time in the past */
1724 /* so correct this. this will make the periodic very inexact, but the user */
1725 /* has effectively asked to get triggered more often than possible */
1726 if (ev_at (w) < ev_rt_now)
1727 ev_at (w) = ev_rt_now;
1728 }
1729
1730 ANHE_at_cache (periodics [HEAP0]);
1731 downheap (periodics, periodiccnt, HEAP0);
1732 }
1733 else
1734 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1735
1736 EV_FREQUENT_CHECK;
1737 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1738 }
1739}
1740
1741static void noinline
1742periodics_reschedule (EV_P)
1743{
1744 int i;
1745
1746 /* adjust periodics after time jump */
1747 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1748 {
1749 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1750
1751 if (w->reschedule_cb)
1752 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1753 else if (w->interval)
1754 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1755
1756 ANHE_at_cache (periodics [i]);
1757 }
1758
1759 reheap (periodics, periodiccnt);
1760}
1761#endif
1762
1763void inline_speed
1764time_update (EV_P_ ev_tstamp max_block)
1765{
1766 int i;
1767
1768#if EV_USE_MONOTONIC
1769 if (expect_true (have_monotonic))
1770 {
1771 ev_tstamp odiff = rtmn_diff;
1772
1293 mn_now = get_clock (); 1773 mn_now = get_clock ();
1294 1774
1775 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1776 /* interpolate in the meantime */
1295 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1777 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1296 { 1778 {
1297 ev_rt_now = rtmn_diff + mn_now; 1779 ev_rt_now = rtmn_diff + mn_now;
1298 return 0; 1780 return;
1299 } 1781 }
1300 else 1782
1301 {
1302 now_floor = mn_now; 1783 now_floor = mn_now;
1303 ev_rt_now = ev_time (); 1784 ev_rt_now = ev_time ();
1304 return 1;
1305 }
1306}
1307 1785
1308void inline_size 1786 /* loop a few times, before making important decisions.
1309time_update (EV_P) 1787 * on the choice of "4": one iteration isn't enough,
1310{ 1788 * in case we get preempted during the calls to
1311 int i; 1789 * ev_time and get_clock. a second call is almost guaranteed
1312 1790 * to succeed in that case, though. and looping a few more times
1313#if EV_USE_MONOTONIC 1791 * doesn't hurt either as we only do this on time-jumps or
1314 if (expect_true (have_monotonic)) 1792 * in the unlikely event of having been preempted here.
1315 { 1793 */
1316 if (time_update_monotonic (EV_A)) 1794 for (i = 4; --i; )
1317 { 1795 {
1318 ev_tstamp odiff = rtmn_diff;
1319
1320 /* loop a few times, before making important decisions.
1321 * on the choice of "4": one iteration isn't enough,
1322 * in case we get preempted during the calls to
1323 * ev_time and get_clock. a second call is almost guaranteed
1324 * to succeed in that case, though. and looping a few more times
1325 * doesn't hurt either as we only do this on time-jumps or
1326 * in the unlikely event of having been preempted here.
1327 */
1328 for (i = 4; --i; )
1329 {
1330 rtmn_diff = ev_rt_now - mn_now; 1796 rtmn_diff = ev_rt_now - mn_now;
1331 1797
1332 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1798 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1333 return; /* all is well */ 1799 return; /* all is well */
1334 1800
1335 ev_rt_now = ev_time (); 1801 ev_rt_now = ev_time ();
1336 mn_now = get_clock (); 1802 mn_now = get_clock ();
1337 now_floor = mn_now; 1803 now_floor = mn_now;
1338 } 1804 }
1339 1805
1340# if EV_PERIODIC_ENABLE 1806# if EV_PERIODIC_ENABLE
1341 periodics_reschedule (EV_A); 1807 periodics_reschedule (EV_A);
1342# endif 1808# endif
1343 /* no timer adjustment, as the monotonic clock doesn't jump */ 1809 /* no timer adjustment, as the monotonic clock doesn't jump */
1344 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1810 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1345 }
1346 } 1811 }
1347 else 1812 else
1348#endif 1813#endif
1349 { 1814 {
1350 ev_rt_now = ev_time (); 1815 ev_rt_now = ev_time ();
1351 1816
1352 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1817 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1353 { 1818 {
1354#if EV_PERIODIC_ENABLE 1819#if EV_PERIODIC_ENABLE
1355 periodics_reschedule (EV_A); 1820 periodics_reschedule (EV_A);
1356#endif 1821#endif
1357
1358 /* adjust timers. this is easy, as the offset is the same for all of them */ 1822 /* adjust timers. this is easy, as the offset is the same for all of them */
1359 for (i = 0; i < timercnt; ++i) 1823 for (i = 0; i < timercnt; ++i)
1824 {
1825 ANHE *he = timers + i + HEAP0;
1360 ((WT)timers [i])->at += ev_rt_now - mn_now; 1826 ANHE_w (*he)->at += ev_rt_now - mn_now;
1827 ANHE_at_cache (*he);
1828 }
1361 } 1829 }
1362 1830
1363 mn_now = ev_rt_now; 1831 mn_now = ev_rt_now;
1364 } 1832 }
1365} 1833}
1379static int loop_done; 1847static int loop_done;
1380 1848
1381void 1849void
1382ev_loop (EV_P_ int flags) 1850ev_loop (EV_P_ int flags)
1383{ 1851{
1384 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1852 loop_done = EVUNLOOP_CANCEL;
1385 ? EVUNLOOP_ONE
1386 : EVUNLOOP_CANCEL;
1387 1853
1388 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1854 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1389 1855
1390 do 1856 do
1391 { 1857 {
1406 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1872 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1407 call_pending (EV_A); 1873 call_pending (EV_A);
1408 } 1874 }
1409#endif 1875#endif
1410 1876
1411 /* queue check watchers (and execute them) */ 1877 /* queue prepare watchers (and execute them) */
1412 if (expect_false (preparecnt)) 1878 if (expect_false (preparecnt))
1413 { 1879 {
1414 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1880 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1415 call_pending (EV_A); 1881 call_pending (EV_A);
1416 } 1882 }
1425 /* update fd-related kernel structures */ 1891 /* update fd-related kernel structures */
1426 fd_reify (EV_A); 1892 fd_reify (EV_A);
1427 1893
1428 /* calculate blocking time */ 1894 /* calculate blocking time */
1429 { 1895 {
1430 ev_tstamp block; 1896 ev_tstamp waittime = 0.;
1897 ev_tstamp sleeptime = 0.;
1431 1898
1432 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1899 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1433 block = 0.; /* do not block at all */
1434 else
1435 { 1900 {
1436 /* update time to cancel out callback processing overhead */ 1901 /* update time to cancel out callback processing overhead */
1437#if EV_USE_MONOTONIC
1438 if (expect_true (have_monotonic))
1439 time_update_monotonic (EV_A); 1902 time_update (EV_A_ 1e100);
1440 else
1441#endif
1442 {
1443 ev_rt_now = ev_time ();
1444 mn_now = ev_rt_now;
1445 }
1446 1903
1447 block = MAX_BLOCKTIME; 1904 waittime = MAX_BLOCKTIME;
1448 1905
1449 if (timercnt) 1906 if (timercnt)
1450 { 1907 {
1451 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1908 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1452 if (block > to) block = to; 1909 if (waittime > to) waittime = to;
1453 } 1910 }
1454 1911
1455#if EV_PERIODIC_ENABLE 1912#if EV_PERIODIC_ENABLE
1456 if (periodiccnt) 1913 if (periodiccnt)
1457 { 1914 {
1458 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1915 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1459 if (block > to) block = to; 1916 if (waittime > to) waittime = to;
1460 } 1917 }
1461#endif 1918#endif
1462 1919
1463 if (expect_false (block < 0.)) block = 0.; 1920 if (expect_false (waittime < timeout_blocktime))
1921 waittime = timeout_blocktime;
1922
1923 sleeptime = waittime - backend_fudge;
1924
1925 if (expect_true (sleeptime > io_blocktime))
1926 sleeptime = io_blocktime;
1927
1928 if (sleeptime)
1929 {
1930 ev_sleep (sleeptime);
1931 waittime -= sleeptime;
1932 }
1464 } 1933 }
1465 1934
1466 ++loop_count; 1935 ++loop_count;
1467 backend_poll (EV_A_ block); 1936 backend_poll (EV_A_ waittime);
1937
1938 /* update ev_rt_now, do magic */
1939 time_update (EV_A_ waittime + sleeptime);
1468 } 1940 }
1469
1470 /* update ev_rt_now, do magic */
1471 time_update (EV_A);
1472 1941
1473 /* queue pending timers and reschedule them */ 1942 /* queue pending timers and reschedule them */
1474 timers_reify (EV_A); /* relative timers called last */ 1943 timers_reify (EV_A); /* relative timers called last */
1475#if EV_PERIODIC_ENABLE 1944#if EV_PERIODIC_ENABLE
1476 periodics_reify (EV_A); /* absolute timers called first */ 1945 periodics_reify (EV_A); /* absolute timers called first */
1484 /* queue check watchers, to be executed first */ 1953 /* queue check watchers, to be executed first */
1485 if (expect_false (checkcnt)) 1954 if (expect_false (checkcnt))
1486 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1955 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1487 1956
1488 call_pending (EV_A); 1957 call_pending (EV_A);
1489
1490 } 1958 }
1491 while (expect_true (activecnt && !loop_done)); 1959 while (expect_true (
1960 activecnt
1961 && !loop_done
1962 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1963 ));
1492 1964
1493 if (loop_done == EVUNLOOP_ONE) 1965 if (loop_done == EVUNLOOP_ONE)
1494 loop_done = EVUNLOOP_CANCEL; 1966 loop_done = EVUNLOOP_CANCEL;
1495} 1967}
1496 1968
1523 head = &(*head)->next; 1995 head = &(*head)->next;
1524 } 1996 }
1525} 1997}
1526 1998
1527void inline_speed 1999void inline_speed
1528ev_clear_pending (EV_P_ W w) 2000clear_pending (EV_P_ W w)
1529{ 2001{
1530 if (w->pending) 2002 if (w->pending)
1531 { 2003 {
1532 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2004 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1533 w->pending = 0; 2005 w->pending = 0;
1534 } 2006 }
2007}
2008
2009int
2010ev_clear_pending (EV_P_ void *w)
2011{
2012 W w_ = (W)w;
2013 int pending = w_->pending;
2014
2015 if (expect_true (pending))
2016 {
2017 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2018 w_->pending = 0;
2019 p->w = 0;
2020 return p->events;
2021 }
2022 else
2023 return 0;
1535} 2024}
1536 2025
1537void inline_size 2026void inline_size
1538pri_adjust (EV_P_ W w) 2027pri_adjust (EV_P_ W w)
1539{ 2028{
1558 w->active = 0; 2047 w->active = 0;
1559} 2048}
1560 2049
1561/*****************************************************************************/ 2050/*****************************************************************************/
1562 2051
1563void 2052void noinline
1564ev_io_start (EV_P_ ev_io *w) 2053ev_io_start (EV_P_ ev_io *w)
1565{ 2054{
1566 int fd = w->fd; 2055 int fd = w->fd;
1567 2056
1568 if (expect_false (ev_is_active (w))) 2057 if (expect_false (ev_is_active (w)))
1569 return; 2058 return;
1570 2059
1571 assert (("ev_io_start called with negative fd", fd >= 0)); 2060 assert (("ev_io_start called with negative fd", fd >= 0));
1572 2061
2062 EV_FREQUENT_CHECK;
2063
1573 ev_start (EV_A_ (W)w, 1); 2064 ev_start (EV_A_ (W)w, 1);
1574 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2065 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1575 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2066 wlist_add (&anfds[fd].head, (WL)w);
1576 2067
1577 fd_change (EV_A_ fd); 2068 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1578} 2069 w->events &= ~EV_IOFDSET;
1579 2070
1580void 2071 EV_FREQUENT_CHECK;
2072}
2073
2074void noinline
1581ev_io_stop (EV_P_ ev_io *w) 2075ev_io_stop (EV_P_ ev_io *w)
1582{ 2076{
1583 ev_clear_pending (EV_A_ (W)w); 2077 clear_pending (EV_A_ (W)w);
1584 if (expect_false (!ev_is_active (w))) 2078 if (expect_false (!ev_is_active (w)))
1585 return; 2079 return;
1586 2080
1587 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2081 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1588 2082
2083 EV_FREQUENT_CHECK;
2084
1589 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2085 wlist_del (&anfds[w->fd].head, (WL)w);
1590 ev_stop (EV_A_ (W)w); 2086 ev_stop (EV_A_ (W)w);
1591 2087
1592 fd_change (EV_A_ w->fd); 2088 fd_change (EV_A_ w->fd, 1);
1593}
1594 2089
1595void 2090 EV_FREQUENT_CHECK;
2091}
2092
2093void noinline
1596ev_timer_start (EV_P_ ev_timer *w) 2094ev_timer_start (EV_P_ ev_timer *w)
1597{ 2095{
1598 if (expect_false (ev_is_active (w))) 2096 if (expect_false (ev_is_active (w)))
1599 return; 2097 return;
1600 2098
1601 ((WT)w)->at += mn_now; 2099 ev_at (w) += mn_now;
1602 2100
1603 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2101 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1604 2102
2103 EV_FREQUENT_CHECK;
2104
2105 ++timercnt;
1605 ev_start (EV_A_ (W)w, ++timercnt); 2106 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1606 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2107 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1607 timers [timercnt - 1] = w; 2108 ANHE_w (timers [ev_active (w)]) = (WT)w;
1608 upheap ((WT *)timers, timercnt - 1); 2109 ANHE_at_cache (timers [ev_active (w)]);
2110 upheap (timers, ev_active (w));
1609 2111
2112 EV_FREQUENT_CHECK;
2113
1610 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2114 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1611} 2115}
1612 2116
1613void 2117void noinline
1614ev_timer_stop (EV_P_ ev_timer *w) 2118ev_timer_stop (EV_P_ ev_timer *w)
1615{ 2119{
1616 ev_clear_pending (EV_A_ (W)w); 2120 clear_pending (EV_A_ (W)w);
1617 if (expect_false (!ev_is_active (w))) 2121 if (expect_false (!ev_is_active (w)))
1618 return; 2122 return;
1619 2123
1620 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2124 EV_FREQUENT_CHECK;
1621 2125
1622 { 2126 {
1623 int active = ((W)w)->active; 2127 int active = ev_active (w);
1624 2128
2129 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2130
2131 --timercnt;
2132
1625 if (expect_true (--active < --timercnt)) 2133 if (expect_true (active < timercnt + HEAP0))
1626 { 2134 {
1627 timers [active] = timers [timercnt]; 2135 timers [active] = timers [timercnt + HEAP0];
1628 adjustheap ((WT *)timers, timercnt, active); 2136 adjustheap (timers, timercnt, active);
1629 } 2137 }
1630 } 2138 }
1631 2139
1632 ((WT)w)->at -= mn_now; 2140 EV_FREQUENT_CHECK;
2141
2142 ev_at (w) -= mn_now;
1633 2143
1634 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1635} 2145}
1636 2146
1637void 2147void noinline
1638ev_timer_again (EV_P_ ev_timer *w) 2148ev_timer_again (EV_P_ ev_timer *w)
1639{ 2149{
2150 EV_FREQUENT_CHECK;
2151
1640 if (ev_is_active (w)) 2152 if (ev_is_active (w))
1641 { 2153 {
1642 if (w->repeat) 2154 if (w->repeat)
1643 { 2155 {
1644 ((WT)w)->at = mn_now + w->repeat; 2156 ev_at (w) = mn_now + w->repeat;
2157 ANHE_at_cache (timers [ev_active (w)]);
1645 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2158 adjustheap (timers, timercnt, ev_active (w));
1646 } 2159 }
1647 else 2160 else
1648 ev_timer_stop (EV_A_ w); 2161 ev_timer_stop (EV_A_ w);
1649 } 2162 }
1650 else if (w->repeat) 2163 else if (w->repeat)
1651 { 2164 {
1652 w->at = w->repeat; 2165 ev_at (w) = w->repeat;
1653 ev_timer_start (EV_A_ w); 2166 ev_timer_start (EV_A_ w);
1654 } 2167 }
2168
2169 EV_FREQUENT_CHECK;
1655} 2170}
1656 2171
1657#if EV_PERIODIC_ENABLE 2172#if EV_PERIODIC_ENABLE
1658void 2173void noinline
1659ev_periodic_start (EV_P_ ev_periodic *w) 2174ev_periodic_start (EV_P_ ev_periodic *w)
1660{ 2175{
1661 if (expect_false (ev_is_active (w))) 2176 if (expect_false (ev_is_active (w)))
1662 return; 2177 return;
1663 2178
1664 if (w->reschedule_cb) 2179 if (w->reschedule_cb)
1665 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2180 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1666 else if (w->interval) 2181 else if (w->interval)
1667 { 2182 {
1668 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2183 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1669 /* this formula differs from the one in periodic_reify because we do not always round up */ 2184 /* this formula differs from the one in periodic_reify because we do not always round up */
1670 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1671 } 2186 }
2187 else
2188 ev_at (w) = w->offset;
1672 2189
2190 EV_FREQUENT_CHECK;
2191
2192 ++periodiccnt;
1673 ev_start (EV_A_ (W)w, ++periodiccnt); 2193 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1674 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2194 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1675 periodics [periodiccnt - 1] = w; 2195 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1676 upheap ((WT *)periodics, periodiccnt - 1); 2196 ANHE_at_cache (periodics [ev_active (w)]);
2197 upheap (periodics, ev_active (w));
1677 2198
2199 EV_FREQUENT_CHECK;
2200
1678 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2201 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1679} 2202}
1680 2203
1681void 2204void noinline
1682ev_periodic_stop (EV_P_ ev_periodic *w) 2205ev_periodic_stop (EV_P_ ev_periodic *w)
1683{ 2206{
1684 ev_clear_pending (EV_A_ (W)w); 2207 clear_pending (EV_A_ (W)w);
1685 if (expect_false (!ev_is_active (w))) 2208 if (expect_false (!ev_is_active (w)))
1686 return; 2209 return;
1687 2210
1688 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2211 EV_FREQUENT_CHECK;
1689 2212
1690 { 2213 {
1691 int active = ((W)w)->active; 2214 int active = ev_active (w);
1692 2215
2216 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2217
2218 --periodiccnt;
2219
1693 if (expect_true (--active < --periodiccnt)) 2220 if (expect_true (active < periodiccnt + HEAP0))
1694 { 2221 {
1695 periodics [active] = periodics [periodiccnt]; 2222 periodics [active] = periodics [periodiccnt + HEAP0];
1696 adjustheap ((WT *)periodics, periodiccnt, active); 2223 adjustheap (periodics, periodiccnt, active);
1697 } 2224 }
1698 } 2225 }
1699 2226
2227 EV_FREQUENT_CHECK;
2228
1700 ev_stop (EV_A_ (W)w); 2229 ev_stop (EV_A_ (W)w);
1701} 2230}
1702 2231
1703void 2232void noinline
1704ev_periodic_again (EV_P_ ev_periodic *w) 2233ev_periodic_again (EV_P_ ev_periodic *w)
1705{ 2234{
1706 /* TODO: use adjustheap and recalculation */ 2235 /* TODO: use adjustheap and recalculation */
1707 ev_periodic_stop (EV_A_ w); 2236 ev_periodic_stop (EV_A_ w);
1708 ev_periodic_start (EV_A_ w); 2237 ev_periodic_start (EV_A_ w);
1711 2240
1712#ifndef SA_RESTART 2241#ifndef SA_RESTART
1713# define SA_RESTART 0 2242# define SA_RESTART 0
1714#endif 2243#endif
1715 2244
1716void 2245void noinline
1717ev_signal_start (EV_P_ ev_signal *w) 2246ev_signal_start (EV_P_ ev_signal *w)
1718{ 2247{
1719#if EV_MULTIPLICITY 2248#if EV_MULTIPLICITY
1720 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2249 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1721#endif 2250#endif
1722 if (expect_false (ev_is_active (w))) 2251 if (expect_false (ev_is_active (w)))
1723 return; 2252 return;
1724 2253
1725 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2254 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1726 2255
2256 evpipe_init (EV_A);
2257
2258 EV_FREQUENT_CHECK;
2259
2260 {
2261#ifndef _WIN32
2262 sigset_t full, prev;
2263 sigfillset (&full);
2264 sigprocmask (SIG_SETMASK, &full, &prev);
2265#endif
2266
2267 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2268
2269#ifndef _WIN32
2270 sigprocmask (SIG_SETMASK, &prev, 0);
2271#endif
2272 }
2273
1727 ev_start (EV_A_ (W)w, 1); 2274 ev_start (EV_A_ (W)w, 1);
1728 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1729 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2275 wlist_add (&signals [w->signum - 1].head, (WL)w);
1730 2276
1731 if (!((WL)w)->next) 2277 if (!((WL)w)->next)
1732 { 2278 {
1733#if _WIN32 2279#if _WIN32
1734 signal (w->signum, sighandler); 2280 signal (w->signum, ev_sighandler);
1735#else 2281#else
1736 struct sigaction sa; 2282 struct sigaction sa;
1737 sa.sa_handler = sighandler; 2283 sa.sa_handler = ev_sighandler;
1738 sigfillset (&sa.sa_mask); 2284 sigfillset (&sa.sa_mask);
1739 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2285 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1740 sigaction (w->signum, &sa, 0); 2286 sigaction (w->signum, &sa, 0);
1741#endif 2287#endif
1742 } 2288 }
1743}
1744 2289
1745void 2290 EV_FREQUENT_CHECK;
2291}
2292
2293void noinline
1746ev_signal_stop (EV_P_ ev_signal *w) 2294ev_signal_stop (EV_P_ ev_signal *w)
1747{ 2295{
1748 ev_clear_pending (EV_A_ (W)w); 2296 clear_pending (EV_A_ (W)w);
1749 if (expect_false (!ev_is_active (w))) 2297 if (expect_false (!ev_is_active (w)))
1750 return; 2298 return;
1751 2299
2300 EV_FREQUENT_CHECK;
2301
1752 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2302 wlist_del (&signals [w->signum - 1].head, (WL)w);
1753 ev_stop (EV_A_ (W)w); 2303 ev_stop (EV_A_ (W)w);
1754 2304
1755 if (!signals [w->signum - 1].head) 2305 if (!signals [w->signum - 1].head)
1756 signal (w->signum, SIG_DFL); 2306 signal (w->signum, SIG_DFL);
2307
2308 EV_FREQUENT_CHECK;
1757} 2309}
1758 2310
1759void 2311void
1760ev_child_start (EV_P_ ev_child *w) 2312ev_child_start (EV_P_ ev_child *w)
1761{ 2313{
1763 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2315 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1764#endif 2316#endif
1765 if (expect_false (ev_is_active (w))) 2317 if (expect_false (ev_is_active (w)))
1766 return; 2318 return;
1767 2319
2320 EV_FREQUENT_CHECK;
2321
1768 ev_start (EV_A_ (W)w, 1); 2322 ev_start (EV_A_ (W)w, 1);
1769 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2323 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2324
2325 EV_FREQUENT_CHECK;
1770} 2326}
1771 2327
1772void 2328void
1773ev_child_stop (EV_P_ ev_child *w) 2329ev_child_stop (EV_P_ ev_child *w)
1774{ 2330{
1775 ev_clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
1776 if (expect_false (!ev_is_active (w))) 2332 if (expect_false (!ev_is_active (w)))
1777 return; 2333 return;
1778 2334
2335 EV_FREQUENT_CHECK;
2336
1779 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2337 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1780 ev_stop (EV_A_ (W)w); 2338 ev_stop (EV_A_ (W)w);
2339
2340 EV_FREQUENT_CHECK;
1781} 2341}
1782 2342
1783#if EV_STAT_ENABLE 2343#if EV_STAT_ENABLE
1784 2344
1785# ifdef _WIN32 2345# ifdef _WIN32
1803 if (w->wd < 0) 2363 if (w->wd < 0)
1804 { 2364 {
1805 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2365 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1806 2366
1807 /* monitor some parent directory for speedup hints */ 2367 /* monitor some parent directory for speedup hints */
2368 /* note that exceeding the hardcoded limit is not a correctness issue, */
2369 /* but an efficiency issue only */
1808 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2370 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1809 { 2371 {
1810 char path [4096]; 2372 char path [4096];
1811 strcpy (path, w->path); 2373 strcpy (path, w->path);
1812 2374
2011 else 2573 else
2012#endif 2574#endif
2013 ev_timer_start (EV_A_ &w->timer); 2575 ev_timer_start (EV_A_ &w->timer);
2014 2576
2015 ev_start (EV_A_ (W)w, 1); 2577 ev_start (EV_A_ (W)w, 1);
2578
2579 EV_FREQUENT_CHECK;
2016} 2580}
2017 2581
2018void 2582void
2019ev_stat_stop (EV_P_ ev_stat *w) 2583ev_stat_stop (EV_P_ ev_stat *w)
2020{ 2584{
2021 ev_clear_pending (EV_A_ (W)w); 2585 clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w))) 2586 if (expect_false (!ev_is_active (w)))
2023 return; 2587 return;
2024 2588
2589 EV_FREQUENT_CHECK;
2590
2025#if EV_USE_INOTIFY 2591#if EV_USE_INOTIFY
2026 infy_del (EV_A_ w); 2592 infy_del (EV_A_ w);
2027#endif 2593#endif
2028 ev_timer_stop (EV_A_ &w->timer); 2594 ev_timer_stop (EV_A_ &w->timer);
2029 2595
2030 ev_stop (EV_A_ (W)w); 2596 ev_stop (EV_A_ (W)w);
2597
2598 EV_FREQUENT_CHECK;
2031} 2599}
2032#endif 2600#endif
2033 2601
2034#if EV_IDLE_ENABLE 2602#if EV_IDLE_ENABLE
2035void 2603void
2037{ 2605{
2038 if (expect_false (ev_is_active (w))) 2606 if (expect_false (ev_is_active (w)))
2039 return; 2607 return;
2040 2608
2041 pri_adjust (EV_A_ (W)w); 2609 pri_adjust (EV_A_ (W)w);
2610
2611 EV_FREQUENT_CHECK;
2042 2612
2043 { 2613 {
2044 int active = ++idlecnt [ABSPRI (w)]; 2614 int active = ++idlecnt [ABSPRI (w)];
2045 2615
2046 ++idleall; 2616 ++idleall;
2047 ev_start (EV_A_ (W)w, active); 2617 ev_start (EV_A_ (W)w, active);
2048 2618
2049 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2619 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2050 idles [ABSPRI (w)][active - 1] = w; 2620 idles [ABSPRI (w)][active - 1] = w;
2051 } 2621 }
2622
2623 EV_FREQUENT_CHECK;
2052} 2624}
2053 2625
2054void 2626void
2055ev_idle_stop (EV_P_ ev_idle *w) 2627ev_idle_stop (EV_P_ ev_idle *w)
2056{ 2628{
2057 ev_clear_pending (EV_A_ (W)w); 2629 clear_pending (EV_A_ (W)w);
2058 if (expect_false (!ev_is_active (w))) 2630 if (expect_false (!ev_is_active (w)))
2059 return; 2631 return;
2060 2632
2633 EV_FREQUENT_CHECK;
2634
2061 { 2635 {
2062 int active = ((W)w)->active; 2636 int active = ev_active (w);
2063 2637
2064 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2638 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2065 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2639 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2066 2640
2067 ev_stop (EV_A_ (W)w); 2641 ev_stop (EV_A_ (W)w);
2068 --idleall; 2642 --idleall;
2069 } 2643 }
2644
2645 EV_FREQUENT_CHECK;
2070} 2646}
2071#endif 2647#endif
2072 2648
2073void 2649void
2074ev_prepare_start (EV_P_ ev_prepare *w) 2650ev_prepare_start (EV_P_ ev_prepare *w)
2075{ 2651{
2076 if (expect_false (ev_is_active (w))) 2652 if (expect_false (ev_is_active (w)))
2077 return; 2653 return;
2654
2655 EV_FREQUENT_CHECK;
2078 2656
2079 ev_start (EV_A_ (W)w, ++preparecnt); 2657 ev_start (EV_A_ (W)w, ++preparecnt);
2080 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2658 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2081 prepares [preparecnt - 1] = w; 2659 prepares [preparecnt - 1] = w;
2660
2661 EV_FREQUENT_CHECK;
2082} 2662}
2083 2663
2084void 2664void
2085ev_prepare_stop (EV_P_ ev_prepare *w) 2665ev_prepare_stop (EV_P_ ev_prepare *w)
2086{ 2666{
2087 ev_clear_pending (EV_A_ (W)w); 2667 clear_pending (EV_A_ (W)w);
2088 if (expect_false (!ev_is_active (w))) 2668 if (expect_false (!ev_is_active (w)))
2089 return; 2669 return;
2090 2670
2671 EV_FREQUENT_CHECK;
2672
2091 { 2673 {
2092 int active = ((W)w)->active; 2674 int active = ev_active (w);
2675
2093 prepares [active - 1] = prepares [--preparecnt]; 2676 prepares [active - 1] = prepares [--preparecnt];
2094 ((W)prepares [active - 1])->active = active; 2677 ev_active (prepares [active - 1]) = active;
2095 } 2678 }
2096 2679
2097 ev_stop (EV_A_ (W)w); 2680 ev_stop (EV_A_ (W)w);
2681
2682 EV_FREQUENT_CHECK;
2098} 2683}
2099 2684
2100void 2685void
2101ev_check_start (EV_P_ ev_check *w) 2686ev_check_start (EV_P_ ev_check *w)
2102{ 2687{
2103 if (expect_false (ev_is_active (w))) 2688 if (expect_false (ev_is_active (w)))
2104 return; 2689 return;
2690
2691 EV_FREQUENT_CHECK;
2105 2692
2106 ev_start (EV_A_ (W)w, ++checkcnt); 2693 ev_start (EV_A_ (W)w, ++checkcnt);
2107 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2694 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2108 checks [checkcnt - 1] = w; 2695 checks [checkcnt - 1] = w;
2696
2697 EV_FREQUENT_CHECK;
2109} 2698}
2110 2699
2111void 2700void
2112ev_check_stop (EV_P_ ev_check *w) 2701ev_check_stop (EV_P_ ev_check *w)
2113{ 2702{
2114 ev_clear_pending (EV_A_ (W)w); 2703 clear_pending (EV_A_ (W)w);
2115 if (expect_false (!ev_is_active (w))) 2704 if (expect_false (!ev_is_active (w)))
2116 return; 2705 return;
2117 2706
2707 EV_FREQUENT_CHECK;
2708
2118 { 2709 {
2119 int active = ((W)w)->active; 2710 int active = ev_active (w);
2711
2120 checks [active - 1] = checks [--checkcnt]; 2712 checks [active - 1] = checks [--checkcnt];
2121 ((W)checks [active - 1])->active = active; 2713 ev_active (checks [active - 1]) = active;
2122 } 2714 }
2123 2715
2124 ev_stop (EV_A_ (W)w); 2716 ev_stop (EV_A_ (W)w);
2717
2718 EV_FREQUENT_CHECK;
2125} 2719}
2126 2720
2127#if EV_EMBED_ENABLE 2721#if EV_EMBED_ENABLE
2128void noinline 2722void noinline
2129ev_embed_sweep (EV_P_ ev_embed *w) 2723ev_embed_sweep (EV_P_ ev_embed *w)
2130{ 2724{
2131 ev_loop (w->loop, EVLOOP_NONBLOCK); 2725 ev_loop (w->other, EVLOOP_NONBLOCK);
2132} 2726}
2133 2727
2134static void 2728static void
2135embed_cb (EV_P_ ev_io *io, int revents) 2729embed_io_cb (EV_P_ ev_io *io, int revents)
2136{ 2730{
2137 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2731 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2138 2732
2139 if (ev_cb (w)) 2733 if (ev_cb (w))
2140 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2734 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2141 else 2735 else
2142 ev_embed_sweep (loop, w); 2736 ev_loop (w->other, EVLOOP_NONBLOCK);
2143} 2737}
2738
2739static void
2740embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2741{
2742 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2743
2744 {
2745 struct ev_loop *loop = w->other;
2746
2747 while (fdchangecnt)
2748 {
2749 fd_reify (EV_A);
2750 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2751 }
2752 }
2753}
2754
2755#if 0
2756static void
2757embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2758{
2759 ev_idle_stop (EV_A_ idle);
2760}
2761#endif
2144 2762
2145void 2763void
2146ev_embed_start (EV_P_ ev_embed *w) 2764ev_embed_start (EV_P_ ev_embed *w)
2147{ 2765{
2148 if (expect_false (ev_is_active (w))) 2766 if (expect_false (ev_is_active (w)))
2149 return; 2767 return;
2150 2768
2151 { 2769 {
2152 struct ev_loop *loop = w->loop; 2770 struct ev_loop *loop = w->other;
2153 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2771 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2154 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2772 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2155 } 2773 }
2774
2775 EV_FREQUENT_CHECK;
2156 2776
2157 ev_set_priority (&w->io, ev_priority (w)); 2777 ev_set_priority (&w->io, ev_priority (w));
2158 ev_io_start (EV_A_ &w->io); 2778 ev_io_start (EV_A_ &w->io);
2159 2779
2780 ev_prepare_init (&w->prepare, embed_prepare_cb);
2781 ev_set_priority (&w->prepare, EV_MINPRI);
2782 ev_prepare_start (EV_A_ &w->prepare);
2783
2784 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2785
2160 ev_start (EV_A_ (W)w, 1); 2786 ev_start (EV_A_ (W)w, 1);
2787
2788 EV_FREQUENT_CHECK;
2161} 2789}
2162 2790
2163void 2791void
2164ev_embed_stop (EV_P_ ev_embed *w) 2792ev_embed_stop (EV_P_ ev_embed *w)
2165{ 2793{
2166 ev_clear_pending (EV_A_ (W)w); 2794 clear_pending (EV_A_ (W)w);
2167 if (expect_false (!ev_is_active (w))) 2795 if (expect_false (!ev_is_active (w)))
2168 return; 2796 return;
2169 2797
2798 EV_FREQUENT_CHECK;
2799
2170 ev_io_stop (EV_A_ &w->io); 2800 ev_io_stop (EV_A_ &w->io);
2801 ev_prepare_stop (EV_A_ &w->prepare);
2171 2802
2172 ev_stop (EV_A_ (W)w); 2803 ev_stop (EV_A_ (W)w);
2804
2805 EV_FREQUENT_CHECK;
2173} 2806}
2174#endif 2807#endif
2175 2808
2176#if EV_FORK_ENABLE 2809#if EV_FORK_ENABLE
2177void 2810void
2178ev_fork_start (EV_P_ ev_fork *w) 2811ev_fork_start (EV_P_ ev_fork *w)
2179{ 2812{
2180 if (expect_false (ev_is_active (w))) 2813 if (expect_false (ev_is_active (w)))
2181 return; 2814 return;
2815
2816 EV_FREQUENT_CHECK;
2182 2817
2183 ev_start (EV_A_ (W)w, ++forkcnt); 2818 ev_start (EV_A_ (W)w, ++forkcnt);
2184 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2819 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2185 forks [forkcnt - 1] = w; 2820 forks [forkcnt - 1] = w;
2821
2822 EV_FREQUENT_CHECK;
2186} 2823}
2187 2824
2188void 2825void
2189ev_fork_stop (EV_P_ ev_fork *w) 2826ev_fork_stop (EV_P_ ev_fork *w)
2190{ 2827{
2191 ev_clear_pending (EV_A_ (W)w); 2828 clear_pending (EV_A_ (W)w);
2192 if (expect_false (!ev_is_active (w))) 2829 if (expect_false (!ev_is_active (w)))
2193 return; 2830 return;
2194 2831
2832 EV_FREQUENT_CHECK;
2833
2195 { 2834 {
2196 int active = ((W)w)->active; 2835 int active = ev_active (w);
2836
2197 forks [active - 1] = forks [--forkcnt]; 2837 forks [active - 1] = forks [--forkcnt];
2198 ((W)forks [active - 1])->active = active; 2838 ev_active (forks [active - 1]) = active;
2199 } 2839 }
2200 2840
2201 ev_stop (EV_A_ (W)w); 2841 ev_stop (EV_A_ (W)w);
2842
2843 EV_FREQUENT_CHECK;
2844}
2845#endif
2846
2847#if EV_ASYNC_ENABLE
2848void
2849ev_async_start (EV_P_ ev_async *w)
2850{
2851 if (expect_false (ev_is_active (w)))
2852 return;
2853
2854 evpipe_init (EV_A);
2855
2856 EV_FREQUENT_CHECK;
2857
2858 ev_start (EV_A_ (W)w, ++asynccnt);
2859 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2860 asyncs [asynccnt - 1] = w;
2861
2862 EV_FREQUENT_CHECK;
2863}
2864
2865void
2866ev_async_stop (EV_P_ ev_async *w)
2867{
2868 clear_pending (EV_A_ (W)w);
2869 if (expect_false (!ev_is_active (w)))
2870 return;
2871
2872 EV_FREQUENT_CHECK;
2873
2874 {
2875 int active = ev_active (w);
2876
2877 asyncs [active - 1] = asyncs [--asynccnt];
2878 ev_active (asyncs [active - 1]) = active;
2879 }
2880
2881 ev_stop (EV_A_ (W)w);
2882
2883 EV_FREQUENT_CHECK;
2884}
2885
2886void
2887ev_async_send (EV_P_ ev_async *w)
2888{
2889 w->sent = 1;
2890 evpipe_write (EV_A_ &gotasync);
2202} 2891}
2203#endif 2892#endif
2204 2893
2205/*****************************************************************************/ 2894/*****************************************************************************/
2206 2895
2264 ev_timer_set (&once->to, timeout, 0.); 2953 ev_timer_set (&once->to, timeout, 0.);
2265 ev_timer_start (EV_A_ &once->to); 2954 ev_timer_start (EV_A_ &once->to);
2266 } 2955 }
2267} 2956}
2268 2957
2958#if EV_MULTIPLICITY
2959 #include "ev_wrap.h"
2960#endif
2961
2269#ifdef __cplusplus 2962#ifdef __cplusplus
2270} 2963}
2271#endif 2964#endif
2272 2965

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines