ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.183 by root, Wed Dec 12 05:11:56 2007 UTC vs.
Revision 1.248 by root, Wed May 21 23:25:21 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 249
197#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
200#endif 253#endif
202#ifndef CLOCK_REALTIME 255#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 256# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 257# define EV_USE_REALTIME 0
205#endif 258#endif
206 259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
207#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 276# include <winsock.h>
209#endif 277#endif
210 278
211#if !EV_STAT_ENABLE 279#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
213#endif 284# endif
214 285int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 286# ifdef __cplusplus
216# include <sys/inotify.h> 287}
288# endif
217#endif 289#endif
218 290
219/**/ 291/**/
292
293/* undefined or zero: no verification done or available */
294/* 1 or higher: ev_loop_verify function available */
295/* 2 or higher: ev_loop_verify is called frequently */
296#define EV_VERIFY 1
297
298#if EV_VERIFY > 1
299# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
300#else
301# define EV_FREQUENT_CHECK do { } while (0)
302#endif
220 303
221/* 304/*
222 * This is used to avoid floating point rounding problems. 305 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 306 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 307 * to ensure progress, time-wise, even when rounding
230 313
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 314#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 315#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 316/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 317
235#if __GNUC__ >= 3 318#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 319# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 320# define noinline __attribute__ ((noinline))
238#else 321#else
239# define expect(expr,value) (expr) 322# define expect(expr,value) (expr)
240# define noinline 323# define noinline
241# if __STDC_VERSION__ < 199901L 324# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
242# define inline 325# define inline
243# endif 326# endif
244#endif 327#endif
245 328
246#define expect_false(expr) expect ((expr) != 0, 0) 329#define expect_false(expr) expect ((expr) != 0, 0)
261 344
262typedef ev_watcher *W; 345typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 346typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 347typedef ev_watcher_time *WT;
265 348
349#define ev_active(w) ((W)(w))->active
350#define ev_at(w) ((WT)(w))->at
351
352#if EV_USE_MONOTONIC
353/* sig_atomic_t is used to avoid per-thread variables or locking but still */
354/* giving it a reasonably high chance of working on typical architetcures */
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 355static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
356#endif
267 357
268#ifdef _WIN32 358#ifdef _WIN32
269# include "ev_win32.c" 359# include "ev_win32.c"
270#endif 360#endif
271 361
292 perror (msg); 382 perror (msg);
293 abort (); 383 abort ();
294 } 384 }
295} 385}
296 386
387static void *
388ev_realloc_emul (void *ptr, long size)
389{
390 /* some systems, notably openbsd and darwin, fail to properly
391 * implement realloc (x, 0) (as required by both ansi c-98 and
392 * the single unix specification, so work around them here.
393 */
394
395 if (size)
396 return realloc (ptr, size);
397
398 free (ptr);
399 return 0;
400}
401
297static void *(*alloc)(void *ptr, long size); 402static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 403
299void 404void
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 405ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 406{
302 alloc = cb; 407 alloc = cb;
303} 408}
304 409
305inline_speed void * 410inline_speed void *
306ev_realloc (void *ptr, long size) 411ev_realloc (void *ptr, long size)
307{ 412{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 413 ptr = alloc (ptr, size);
309 414
310 if (!ptr && size) 415 if (!ptr && size)
311 { 416 {
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 417 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
313 abort (); 418 abort ();
336 W w; 441 W w;
337 int events; 442 int events;
338} ANPENDING; 443} ANPENDING;
339 444
340#if EV_USE_INOTIFY 445#if EV_USE_INOTIFY
446/* hash table entry per inotify-id */
341typedef struct 447typedef struct
342{ 448{
343 WL head; 449 WL head;
344} ANFS; 450} ANFS;
451#endif
452
453/* Heap Entry */
454#if EV_HEAP_CACHE_AT
455 typedef struct {
456 ev_tstamp at;
457 WT w;
458 } ANHE;
459
460 #define ANHE_w(he) (he).w /* access watcher, read-write */
461 #define ANHE_at(he) (he).at /* access cached at, read-only */
462 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
463#else
464 typedef WT ANHE;
465
466 #define ANHE_w(he) (he)
467 #define ANHE_at(he) (he)->at
468 #define ANHE_at_cache(he)
345#endif 469#endif
346 470
347#if EV_MULTIPLICITY 471#if EV_MULTIPLICITY
348 472
349 struct ev_loop 473 struct ev_loop
407{ 531{
408 return ev_rt_now; 532 return ev_rt_now;
409} 533}
410#endif 534#endif
411 535
536void
537ev_sleep (ev_tstamp delay)
538{
539 if (delay > 0.)
540 {
541#if EV_USE_NANOSLEEP
542 struct timespec ts;
543
544 ts.tv_sec = (time_t)delay;
545 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
546
547 nanosleep (&ts, 0);
548#elif defined(_WIN32)
549 Sleep ((unsigned long)(delay * 1e3));
550#else
551 struct timeval tv;
552
553 tv.tv_sec = (time_t)delay;
554 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
555
556 select (0, 0, 0, 0, &tv);
557#endif
558 }
559}
560
561/*****************************************************************************/
562
563#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
564
412int inline_size 565int inline_size
413array_nextsize (int elem, int cur, int cnt) 566array_nextsize (int elem, int cur, int cnt)
414{ 567{
415 int ncur = cur + 1; 568 int ncur = cur + 1;
416 569
417 do 570 do
418 ncur <<= 1; 571 ncur <<= 1;
419 while (cnt > ncur); 572 while (cnt > ncur);
420 573
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 574 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096) 575 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
423 { 576 {
424 ncur *= elem; 577 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 578 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
426 ncur = ncur - sizeof (void *) * 4; 579 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem; 580 ncur /= elem;
428 } 581 }
429 582
430 return ncur; 583 return ncur;
533 { 686 {
534 int fd = fdchanges [i]; 687 int fd = fdchanges [i];
535 ANFD *anfd = anfds + fd; 688 ANFD *anfd = anfds + fd;
536 ev_io *w; 689 ev_io *w;
537 690
538 int events = 0; 691 unsigned char events = 0;
539 692
540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 693 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
541 events |= w->events; 694 events |= (unsigned char)w->events;
542 695
543#if EV_SELECT_IS_WINSOCKET 696#if EV_SELECT_IS_WINSOCKET
544 if (events) 697 if (events)
545 { 698 {
546 unsigned long argp; 699 unsigned long argp;
700 #ifdef EV_FD_TO_WIN32_HANDLE
701 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
702 #else
547 anfd->handle = _get_osfhandle (fd); 703 anfd->handle = _get_osfhandle (fd);
704 #endif
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 705 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
549 } 706 }
550#endif 707#endif
551 708
709 {
710 unsigned char o_events = anfd->events;
711 unsigned char o_reify = anfd->reify;
712
552 anfd->reify = 0; 713 anfd->reify = 0;
553
554 backend_modify (EV_A_ fd, anfd->events, events);
555 anfd->events = events; 714 anfd->events = events;
715
716 if (o_events != events || o_reify & EV_IOFDSET)
717 backend_modify (EV_A_ fd, o_events, events);
718 }
556 } 719 }
557 720
558 fdchangecnt = 0; 721 fdchangecnt = 0;
559} 722}
560 723
561void inline_size 724void inline_size
562fd_change (EV_P_ int fd, int flags) 725fd_change (EV_P_ int fd, int flags)
563{ 726{
564 unsigned char reify = anfds [fd].reify; 727 unsigned char reify = anfds [fd].reify;
565 anfds [fd].reify |= flags | 1; 728 anfds [fd].reify |= flags;
566 729
567 if (expect_true (!reify)) 730 if (expect_true (!reify))
568 { 731 {
569 ++fdchangecnt; 732 ++fdchangecnt;
570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 733 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
628 791
629 for (fd = 0; fd < anfdmax; ++fd) 792 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 793 if (anfds [fd].events)
631 { 794 {
632 anfds [fd].events = 0; 795 anfds [fd].events = 0;
633 fd_change (EV_A_ fd, EV_IOFDSET); 796 fd_change (EV_A_ fd, EV_IOFDSET | 1);
634 } 797 }
635} 798}
636 799
637/*****************************************************************************/ 800/*****************************************************************************/
638 801
802/*
803 * the heap functions want a real array index. array index 0 uis guaranteed to not
804 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
805 * the branching factor of the d-tree.
806 */
807
808/*
809 * at the moment we allow libev the luxury of two heaps,
810 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
811 * which is more cache-efficient.
812 * the difference is about 5% with 50000+ watchers.
813 */
814#if EV_USE_4HEAP
815
816#define DHEAP 4
817#define HEAP0 (DHEAP - 1) /* index of first element in heap */
818#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
819#define UPHEAP_DONE(p,k) ((p) == (k))
820
821/* away from the root */
639void inline_speed 822void inline_speed
640upheap (WT *heap, int k) 823downheap (ANHE *heap, int N, int k)
641{ 824{
642 WT w = heap [k]; 825 ANHE he = heap [k];
826 ANHE *E = heap + N + HEAP0;
643 827
644 while (k) 828 for (;;)
645 { 829 {
646 int p = (k - 1) >> 1; 830 ev_tstamp minat;
831 ANHE *minpos;
832 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
647 833
648 if (heap [p]->at <= w->at) 834 /* find minimum child */
835 if (expect_true (pos + DHEAP - 1 < E))
836 {
837 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
838 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
839 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
840 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
841 }
842 else if (pos < E)
843 {
844 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
845 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
846 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
847 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
848 }
849 else
649 break; 850 break;
650 851
852 if (ANHE_at (he) <= minat)
853 break;
854
855 heap [k] = *minpos;
856 ev_active (ANHE_w (*minpos)) = k;
857
858 k = minpos - heap;
859 }
860
861 heap [k] = he;
862 ev_active (ANHE_w (he)) = k;
863}
864
865#else /* 4HEAP */
866
867#define HEAP0 1
868#define HPARENT(k) ((k) >> 1)
869#define UPHEAP_DONE(p,k) (!(p))
870
871/* away from the root */
872void inline_speed
873downheap (ANHE *heap, int N, int k)
874{
875 ANHE he = heap [k];
876
877 for (;;)
878 {
879 int c = k << 1;
880
881 if (c > N + HEAP0 - 1)
882 break;
883
884 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
885 ? 1 : 0;
886
887 if (ANHE_at (he) <= ANHE_at (heap [c]))
888 break;
889
890 heap [k] = heap [c];
891 ev_active (ANHE_w (heap [k])) = k;
892
893 k = c;
894 }
895
896 heap [k] = he;
897 ev_active (ANHE_w (he)) = k;
898}
899#endif
900
901/* towards the root */
902void inline_speed
903upheap (ANHE *heap, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int p = HPARENT (k);
910
911 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
912 break;
913
651 heap [k] = heap [p]; 914 heap [k] = heap [p];
652 ((W)heap [k])->active = k + 1; 915 ev_active (ANHE_w (heap [k])) = k;
653 k = p; 916 k = p;
654 } 917 }
655 918
656 heap [k] = w; 919 heap [k] = he;
657 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (he)) = k;
658}
659
660void inline_speed
661downheap (WT *heap, int N, int k)
662{
663 WT w = heap [k];
664
665 for (;;)
666 {
667 int c = (k << 1) + 1;
668
669 if (c >= N)
670 break;
671
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
673 ? 1 : 0;
674
675 if (w->at <= heap [c]->at)
676 break;
677
678 heap [k] = heap [c];
679 ((W)heap [k])->active = k + 1;
680
681 k = c;
682 }
683
684 heap [k] = w;
685 ((W)heap [k])->active = k + 1;
686} 921}
687 922
688void inline_size 923void inline_size
689adjustheap (WT *heap, int N, int k) 924adjustheap (ANHE *heap, int N, int k)
690{ 925{
926 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
691 upheap (heap, k); 927 upheap (heap, k);
928 else
692 downheap (heap, N, k); 929 downheap (heap, N, k);
693} 930}
931
932/* rebuild the heap: this function is used only once and executed rarely */
933void inline_size
934reheap (ANHE *heap, int N)
935{
936 int i;
937 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
938 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
939 for (i = 0; i < N; ++i)
940 upheap (heap, i + HEAP0);
941}
942
943#if EV_VERIFY
944static void
945checkheap (ANHE *heap, int N)
946{
947 int i;
948
949 for (i = HEAP0; i < N + HEAP0; ++i)
950 {
951 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
952 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
953 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
954 }
955}
956#endif
694 957
695/*****************************************************************************/ 958/*****************************************************************************/
696 959
697typedef struct 960typedef struct
698{ 961{
699 WL head; 962 WL head;
700 sig_atomic_t volatile gotsig; 963 EV_ATOMIC_T gotsig;
701} ANSIG; 964} ANSIG;
702 965
703static ANSIG *signals; 966static ANSIG *signals;
704static int signalmax; 967static int signalmax;
705 968
706static int sigpipe [2]; 969static EV_ATOMIC_T gotsig;
707static sig_atomic_t volatile gotsig;
708static ev_io sigev;
709 970
710void inline_size 971void inline_size
711signals_init (ANSIG *base, int count) 972signals_init (ANSIG *base, int count)
712{ 973{
713 while (count--) 974 while (count--)
717 978
718 ++base; 979 ++base;
719 } 980 }
720} 981}
721 982
722static void 983/*****************************************************************************/
723sighandler (int signum)
724{
725#if _WIN32
726 signal (signum, sighandler);
727#endif
728
729 signals [signum - 1].gotsig = 1;
730
731 if (!gotsig)
732 {
733 int old_errno = errno;
734 gotsig = 1;
735 write (sigpipe [1], &signum, 1);
736 errno = old_errno;
737 }
738}
739
740void noinline
741ev_feed_signal_event (EV_P_ int signum)
742{
743 WL w;
744
745#if EV_MULTIPLICITY
746 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
747#endif
748
749 --signum;
750
751 if (signum < 0 || signum >= signalmax)
752 return;
753
754 signals [signum].gotsig = 0;
755
756 for (w = signals [signum].head; w; w = w->next)
757 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
758}
759
760static void
761sigcb (EV_P_ ev_io *iow, int revents)
762{
763 int signum;
764
765 read (sigpipe [0], &revents, 1);
766 gotsig = 0;
767
768 for (signum = signalmax; signum--; )
769 if (signals [signum].gotsig)
770 ev_feed_signal_event (EV_A_ signum + 1);
771}
772 984
773void inline_speed 985void inline_speed
774fd_intern (int fd) 986fd_intern (int fd)
775{ 987{
776#ifdef _WIN32 988#ifdef _WIN32
781 fcntl (fd, F_SETFL, O_NONBLOCK); 993 fcntl (fd, F_SETFL, O_NONBLOCK);
782#endif 994#endif
783} 995}
784 996
785static void noinline 997static void noinline
786siginit (EV_P) 998evpipe_init (EV_P)
787{ 999{
1000 if (!ev_is_active (&pipeev))
1001 {
1002#if EV_USE_EVENTFD
1003 if ((evfd = eventfd (0, 0)) >= 0)
1004 {
1005 evpipe [0] = -1;
1006 fd_intern (evfd);
1007 ev_io_set (&pipeev, evfd, EV_READ);
1008 }
1009 else
1010#endif
1011 {
1012 while (pipe (evpipe))
1013 syserr ("(libev) error creating signal/async pipe");
1014
788 fd_intern (sigpipe [0]); 1015 fd_intern (evpipe [0]);
789 fd_intern (sigpipe [1]); 1016 fd_intern (evpipe [1]);
1017 ev_io_set (&pipeev, evpipe [0], EV_READ);
1018 }
790 1019
791 ev_io_set (&sigev, sigpipe [0], EV_READ);
792 ev_io_start (EV_A_ &sigev); 1020 ev_io_start (EV_A_ &pipeev);
793 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1021 ev_unref (EV_A); /* watcher should not keep loop alive */
1022 }
1023}
1024
1025void inline_size
1026evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1027{
1028 if (!*flag)
1029 {
1030 int old_errno = errno; /* save errno because write might clobber it */
1031
1032 *flag = 1;
1033
1034#if EV_USE_EVENTFD
1035 if (evfd >= 0)
1036 {
1037 uint64_t counter = 1;
1038 write (evfd, &counter, sizeof (uint64_t));
1039 }
1040 else
1041#endif
1042 write (evpipe [1], &old_errno, 1);
1043
1044 errno = old_errno;
1045 }
1046}
1047
1048static void
1049pipecb (EV_P_ ev_io *iow, int revents)
1050{
1051#if EV_USE_EVENTFD
1052 if (evfd >= 0)
1053 {
1054 uint64_t counter;
1055 read (evfd, &counter, sizeof (uint64_t));
1056 }
1057 else
1058#endif
1059 {
1060 char dummy;
1061 read (evpipe [0], &dummy, 1);
1062 }
1063
1064 if (gotsig && ev_is_default_loop (EV_A))
1065 {
1066 int signum;
1067 gotsig = 0;
1068
1069 for (signum = signalmax; signum--; )
1070 if (signals [signum].gotsig)
1071 ev_feed_signal_event (EV_A_ signum + 1);
1072 }
1073
1074#if EV_ASYNC_ENABLE
1075 if (gotasync)
1076 {
1077 int i;
1078 gotasync = 0;
1079
1080 for (i = asynccnt; i--; )
1081 if (asyncs [i]->sent)
1082 {
1083 asyncs [i]->sent = 0;
1084 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1085 }
1086 }
1087#endif
794} 1088}
795 1089
796/*****************************************************************************/ 1090/*****************************************************************************/
797 1091
1092static void
1093ev_sighandler (int signum)
1094{
1095#if EV_MULTIPLICITY
1096 struct ev_loop *loop = &default_loop_struct;
1097#endif
1098
1099#if _WIN32
1100 signal (signum, ev_sighandler);
1101#endif
1102
1103 signals [signum - 1].gotsig = 1;
1104 evpipe_write (EV_A_ &gotsig);
1105}
1106
1107void noinline
1108ev_feed_signal_event (EV_P_ int signum)
1109{
1110 WL w;
1111
1112#if EV_MULTIPLICITY
1113 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1114#endif
1115
1116 --signum;
1117
1118 if (signum < 0 || signum >= signalmax)
1119 return;
1120
1121 signals [signum].gotsig = 0;
1122
1123 for (w = signals [signum].head; w; w = w->next)
1124 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1125}
1126
1127/*****************************************************************************/
1128
798static WL childs [EV_PID_HASHSIZE]; 1129static WL childs [EV_PID_HASHSIZE];
799 1130
800#ifndef _WIN32 1131#ifndef _WIN32
801 1132
802static ev_signal childev; 1133static ev_signal childev;
803 1134
1135#ifndef WIFCONTINUED
1136# define WIFCONTINUED(status) 0
1137#endif
1138
804void inline_speed 1139void inline_speed
805child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1140child_reap (EV_P_ int chain, int pid, int status)
806{ 1141{
807 ev_child *w; 1142 ev_child *w;
1143 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
808 1144
809 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1145 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1146 {
810 if (w->pid == pid || !w->pid) 1147 if ((w->pid == pid || !w->pid)
1148 && (!traced || (w->flags & 1)))
811 { 1149 {
812 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1150 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
813 w->rpid = pid; 1151 w->rpid = pid;
814 w->rstatus = status; 1152 w->rstatus = status;
815 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1153 ev_feed_event (EV_A_ (W)w, EV_CHILD);
816 } 1154 }
1155 }
817} 1156}
818 1157
819#ifndef WCONTINUED 1158#ifndef WCONTINUED
820# define WCONTINUED 0 1159# define WCONTINUED 0
821#endif 1160#endif
830 if (!WCONTINUED 1169 if (!WCONTINUED
831 || errno != EINVAL 1170 || errno != EINVAL
832 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1171 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
833 return; 1172 return;
834 1173
835 /* make sure we are called again until all childs have been reaped */ 1174 /* make sure we are called again until all children have been reaped */
836 /* we need to do it this way so that the callback gets called before we continue */ 1175 /* we need to do it this way so that the callback gets called before we continue */
837 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1176 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
838 1177
839 child_reap (EV_A_ sw, pid, pid, status); 1178 child_reap (EV_A_ pid, pid, status);
840 if (EV_PID_HASHSIZE > 1) 1179 if (EV_PID_HASHSIZE > 1)
841 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1180 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
842} 1181}
843 1182
844#endif 1183#endif
845 1184
846/*****************************************************************************/ 1185/*****************************************************************************/
918} 1257}
919 1258
920unsigned int 1259unsigned int
921ev_embeddable_backends (void) 1260ev_embeddable_backends (void)
922{ 1261{
923 return EVBACKEND_EPOLL 1262 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
924 | EVBACKEND_KQUEUE 1263
925 | EVBACKEND_PORT; 1264 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1265 /* please fix it and tell me how to detect the fix */
1266 flags &= ~EVBACKEND_EPOLL;
1267
1268 return flags;
926} 1269}
927 1270
928unsigned int 1271unsigned int
929ev_backend (EV_P) 1272ev_backend (EV_P)
930{ 1273{
933 1276
934unsigned int 1277unsigned int
935ev_loop_count (EV_P) 1278ev_loop_count (EV_P)
936{ 1279{
937 return loop_count; 1280 return loop_count;
1281}
1282
1283void
1284ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1285{
1286 io_blocktime = interval;
1287}
1288
1289void
1290ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1291{
1292 timeout_blocktime = interval;
938} 1293}
939 1294
940static void noinline 1295static void noinline
941loop_init (EV_P_ unsigned int flags) 1296loop_init (EV_P_ unsigned int flags)
942{ 1297{
948 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1303 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
949 have_monotonic = 1; 1304 have_monotonic = 1;
950 } 1305 }
951#endif 1306#endif
952 1307
953 ev_rt_now = ev_time (); 1308 ev_rt_now = ev_time ();
954 mn_now = get_clock (); 1309 mn_now = get_clock ();
955 now_floor = mn_now; 1310 now_floor = mn_now;
956 rtmn_diff = ev_rt_now - mn_now; 1311 rtmn_diff = ev_rt_now - mn_now;
1312
1313 io_blocktime = 0.;
1314 timeout_blocktime = 0.;
1315 backend = 0;
1316 backend_fd = -1;
1317 gotasync = 0;
1318#if EV_USE_INOTIFY
1319 fs_fd = -2;
1320#endif
957 1321
958 /* pid check not overridable via env */ 1322 /* pid check not overridable via env */
959#ifndef _WIN32 1323#ifndef _WIN32
960 if (flags & EVFLAG_FORKCHECK) 1324 if (flags & EVFLAG_FORKCHECK)
961 curpid = getpid (); 1325 curpid = getpid ();
964 if (!(flags & EVFLAG_NOENV) 1328 if (!(flags & EVFLAG_NOENV)
965 && !enable_secure () 1329 && !enable_secure ()
966 && getenv ("LIBEV_FLAGS")) 1330 && getenv ("LIBEV_FLAGS"))
967 flags = atoi (getenv ("LIBEV_FLAGS")); 1331 flags = atoi (getenv ("LIBEV_FLAGS"));
968 1332
969 if (!(flags & 0x0000ffffUL)) 1333 if (!(flags & 0x0000ffffU))
970 flags |= ev_recommended_backends (); 1334 flags |= ev_recommended_backends ();
971
972 backend = 0;
973 backend_fd = -1;
974#if EV_USE_INOTIFY
975 fs_fd = -2;
976#endif
977 1335
978#if EV_USE_PORT 1336#if EV_USE_PORT
979 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1337 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
980#endif 1338#endif
981#if EV_USE_KQUEUE 1339#if EV_USE_KQUEUE
989#endif 1347#endif
990#if EV_USE_SELECT 1348#if EV_USE_SELECT
991 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1349 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
992#endif 1350#endif
993 1351
994 ev_init (&sigev, sigcb); 1352 ev_init (&pipeev, pipecb);
995 ev_set_priority (&sigev, EV_MAXPRI); 1353 ev_set_priority (&pipeev, EV_MAXPRI);
996 } 1354 }
997} 1355}
998 1356
999static void noinline 1357static void noinline
1000loop_destroy (EV_P) 1358loop_destroy (EV_P)
1001{ 1359{
1002 int i; 1360 int i;
1361
1362 if (ev_is_active (&pipeev))
1363 {
1364 ev_ref (EV_A); /* signal watcher */
1365 ev_io_stop (EV_A_ &pipeev);
1366
1367#if EV_USE_EVENTFD
1368 if (evfd >= 0)
1369 close (evfd);
1370#endif
1371
1372 if (evpipe [0] >= 0)
1373 {
1374 close (evpipe [0]);
1375 close (evpipe [1]);
1376 }
1377 }
1003 1378
1004#if EV_USE_INOTIFY 1379#if EV_USE_INOTIFY
1005 if (fs_fd >= 0) 1380 if (fs_fd >= 0)
1006 close (fs_fd); 1381 close (fs_fd);
1007#endif 1382#endif
1030 array_free (pending, [i]); 1405 array_free (pending, [i]);
1031#if EV_IDLE_ENABLE 1406#if EV_IDLE_ENABLE
1032 array_free (idle, [i]); 1407 array_free (idle, [i]);
1033#endif 1408#endif
1034 } 1409 }
1410
1411 ev_free (anfds); anfdmax = 0;
1035 1412
1036 /* have to use the microsoft-never-gets-it-right macro */ 1413 /* have to use the microsoft-never-gets-it-right macro */
1037 array_free (fdchange, EMPTY); 1414 array_free (fdchange, EMPTY);
1038 array_free (timer, EMPTY); 1415 array_free (timer, EMPTY);
1039#if EV_PERIODIC_ENABLE 1416#if EV_PERIODIC_ENABLE
1040 array_free (periodic, EMPTY); 1417 array_free (periodic, EMPTY);
1041#endif 1418#endif
1419#if EV_FORK_ENABLE
1420 array_free (fork, EMPTY);
1421#endif
1042 array_free (prepare, EMPTY); 1422 array_free (prepare, EMPTY);
1043 array_free (check, EMPTY); 1423 array_free (check, EMPTY);
1424#if EV_ASYNC_ENABLE
1425 array_free (async, EMPTY);
1426#endif
1044 1427
1045 backend = 0; 1428 backend = 0;
1046} 1429}
1047 1430
1431#if EV_USE_INOTIFY
1048void inline_size infy_fork (EV_P); 1432void inline_size infy_fork (EV_P);
1433#endif
1049 1434
1050void inline_size 1435void inline_size
1051loop_fork (EV_P) 1436loop_fork (EV_P)
1052{ 1437{
1053#if EV_USE_PORT 1438#if EV_USE_PORT
1061#endif 1446#endif
1062#if EV_USE_INOTIFY 1447#if EV_USE_INOTIFY
1063 infy_fork (EV_A); 1448 infy_fork (EV_A);
1064#endif 1449#endif
1065 1450
1066 if (ev_is_active (&sigev)) 1451 if (ev_is_active (&pipeev))
1067 { 1452 {
1068 /* default loop */ 1453 /* this "locks" the handlers against writing to the pipe */
1454 /* while we modify the fd vars */
1455 gotsig = 1;
1456#if EV_ASYNC_ENABLE
1457 gotasync = 1;
1458#endif
1069 1459
1070 ev_ref (EV_A); 1460 ev_ref (EV_A);
1071 ev_io_stop (EV_A_ &sigev); 1461 ev_io_stop (EV_A_ &pipeev);
1462
1463#if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466#endif
1467
1468 if (evpipe [0] >= 0)
1469 {
1072 close (sigpipe [0]); 1470 close (evpipe [0]);
1073 close (sigpipe [1]); 1471 close (evpipe [1]);
1472 }
1074 1473
1075 while (pipe (sigpipe))
1076 syserr ("(libev) error creating pipe");
1077
1078 siginit (EV_A); 1474 evpipe_init (EV_A);
1475 /* now iterate over everything, in case we missed something */
1476 pipecb (EV_A_ &pipeev, EV_READ);
1079 } 1477 }
1080 1478
1081 postfork = 0; 1479 postfork = 0;
1082} 1480}
1083 1481
1105} 1503}
1106 1504
1107void 1505void
1108ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1109{ 1507{
1110 postfork = 1; 1508 postfork = 1; /* must be in line with ev_default_fork */
1111} 1509}
1510
1511#if EV_VERIFY
1512static void
1513array_check (W **ws, int cnt)
1514{
1515 while (cnt--)
1516 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1517}
1518
1519static void
1520ev_loop_verify (EV_P)
1521{
1522 int i;
1523
1524 checkheap (timers, timercnt);
1525#if EV_PERIODIC_ENABLE
1526 checkheap (periodics, periodiccnt);
1527#endif
1528
1529#if EV_IDLE_ENABLE
1530 for (i = NUMPRI; i--; )
1531 array_check ((W **)idles [i], idlecnt [i]);
1532#endif
1533#if EV_FORK_ENABLE
1534 array_check ((W **)forks, forkcnt);
1535#endif
1536 array_check ((W **)prepares, preparecnt);
1537 array_check ((W **)checks, checkcnt);
1538#if EV_ASYNC_ENABLE
1539 array_check ((W **)asyncs, asynccnt);
1540#endif
1541}
1542#endif
1112 1543
1113#endif 1544#endif
1114 1545
1115#if EV_MULTIPLICITY 1546#if EV_MULTIPLICITY
1116struct ev_loop * 1547struct ev_loop *
1118#else 1549#else
1119int 1550int
1120ev_default_loop (unsigned int flags) 1551ev_default_loop (unsigned int flags)
1121#endif 1552#endif
1122{ 1553{
1123 if (sigpipe [0] == sigpipe [1])
1124 if (pipe (sigpipe))
1125 return 0;
1126
1127 if (!ev_default_loop_ptr) 1554 if (!ev_default_loop_ptr)
1128 { 1555 {
1129#if EV_MULTIPLICITY 1556#if EV_MULTIPLICITY
1130 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1557 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1131#else 1558#else
1134 1561
1135 loop_init (EV_A_ flags); 1562 loop_init (EV_A_ flags);
1136 1563
1137 if (ev_backend (EV_A)) 1564 if (ev_backend (EV_A))
1138 { 1565 {
1139 siginit (EV_A);
1140
1141#ifndef _WIN32 1566#ifndef _WIN32
1142 ev_signal_init (&childev, childcb, SIGCHLD); 1567 ev_signal_init (&childev, childcb, SIGCHLD);
1143 ev_set_priority (&childev, EV_MAXPRI); 1568 ev_set_priority (&childev, EV_MAXPRI);
1144 ev_signal_start (EV_A_ &childev); 1569 ev_signal_start (EV_A_ &childev);
1145 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1570 ev_unref (EV_A); /* child watcher should not keep loop alive */
1162#ifndef _WIN32 1587#ifndef _WIN32
1163 ev_ref (EV_A); /* child watcher */ 1588 ev_ref (EV_A); /* child watcher */
1164 ev_signal_stop (EV_A_ &childev); 1589 ev_signal_stop (EV_A_ &childev);
1165#endif 1590#endif
1166 1591
1167 ev_ref (EV_A); /* signal watcher */
1168 ev_io_stop (EV_A_ &sigev);
1169
1170 close (sigpipe [0]); sigpipe [0] = 0;
1171 close (sigpipe [1]); sigpipe [1] = 0;
1172
1173 loop_destroy (EV_A); 1592 loop_destroy (EV_A);
1174} 1593}
1175 1594
1176void 1595void
1177ev_default_fork (void) 1596ev_default_fork (void)
1179#if EV_MULTIPLICITY 1598#if EV_MULTIPLICITY
1180 struct ev_loop *loop = ev_default_loop_ptr; 1599 struct ev_loop *loop = ev_default_loop_ptr;
1181#endif 1600#endif
1182 1601
1183 if (backend) 1602 if (backend)
1184 postfork = 1; 1603 postfork = 1; /* must be in line with ev_loop_fork */
1185} 1604}
1186 1605
1187/*****************************************************************************/ 1606/*****************************************************************************/
1188 1607
1189void 1608void
1194 1613
1195void inline_speed 1614void inline_speed
1196call_pending (EV_P) 1615call_pending (EV_P)
1197{ 1616{
1198 int pri; 1617 int pri;
1618
1619 EV_FREQUENT_CHECK;
1199 1620
1200 for (pri = NUMPRI; pri--; ) 1621 for (pri = NUMPRI; pri--; )
1201 while (pendingcnt [pri]) 1622 while (pendingcnt [pri])
1202 { 1623 {
1203 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1624 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1208 1629
1209 p->w->pending = 0; 1630 p->w->pending = 0;
1210 EV_CB_INVOKE (p->w, p->events); 1631 EV_CB_INVOKE (p->w, p->events);
1211 } 1632 }
1212 } 1633 }
1213}
1214 1634
1215void inline_size 1635 EV_FREQUENT_CHECK;
1216timers_reify (EV_P)
1217{
1218 while (timercnt && ((WT)timers [0])->at <= mn_now)
1219 {
1220 ev_timer *w = (ev_timer *)timers [0];
1221
1222 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1223
1224 /* first reschedule or stop timer */
1225 if (w->repeat)
1226 {
1227 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1228
1229 ((WT)w)->at += w->repeat;
1230 if (((WT)w)->at < mn_now)
1231 ((WT)w)->at = mn_now;
1232
1233 downheap (timers, timercnt, 0);
1234 }
1235 else
1236 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1237
1238 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1239 }
1240} 1636}
1241
1242#if EV_PERIODIC_ENABLE
1243void inline_size
1244periodics_reify (EV_P)
1245{
1246 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1247 {
1248 ev_periodic *w = (ev_periodic *)periodics [0];
1249
1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1251
1252 /* first reschedule or stop timer */
1253 if (w->reschedule_cb)
1254 {
1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1257 downheap (periodics, periodiccnt, 0);
1258 }
1259 else if (w->interval)
1260 {
1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1264 downheap (periodics, periodiccnt, 0);
1265 }
1266 else
1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1268
1269 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1270 }
1271}
1272
1273static void noinline
1274periodics_reschedule (EV_P)
1275{
1276 int i;
1277
1278 /* adjust periodics after time jump */
1279 for (i = 0; i < periodiccnt; ++i)
1280 {
1281 ev_periodic *w = (ev_periodic *)periodics [i];
1282
1283 if (w->reschedule_cb)
1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1285 else if (w->interval)
1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1287 }
1288
1289 /* now rebuild the heap */
1290 for (i = periodiccnt >> 1; i--; )
1291 downheap (periodics, periodiccnt, i);
1292}
1293#endif
1294 1637
1295#if EV_IDLE_ENABLE 1638#if EV_IDLE_ENABLE
1296void inline_size 1639void inline_size
1297idle_reify (EV_P) 1640idle_reify (EV_P)
1298{ 1641{
1310 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1653 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1311 break; 1654 break;
1312 } 1655 }
1313 } 1656 }
1314 } 1657 }
1658}
1659#endif
1660
1661void inline_size
1662timers_reify (EV_P)
1663{
1664 EV_FREQUENT_CHECK;
1665
1666 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1667 {
1668 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1669
1670 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1671
1672 /* first reschedule or stop timer */
1673 if (w->repeat)
1674 {
1675 ev_at (w) += w->repeat;
1676 if (ev_at (w) < mn_now)
1677 ev_at (w) = mn_now;
1678
1679 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1680
1681 ANHE_at_cache (timers [HEAP0]);
1682 downheap (timers, timercnt, HEAP0);
1683 }
1684 else
1685 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1686
1687 EV_FREQUENT_CHECK;
1688 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1689 }
1690}
1691
1692#if EV_PERIODIC_ENABLE
1693void inline_size
1694periodics_reify (EV_P)
1695{
1696 EV_FREQUENT_CHECK;
1697 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1698 {
1699 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1700
1701 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1702
1703 /* first reschedule or stop timer */
1704 if (w->reschedule_cb)
1705 {
1706 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707
1708 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1709
1710 ANHE_at_cache (periodics [HEAP0]);
1711 downheap (periodics, periodiccnt, HEAP0);
1712 EV_FREQUENT_CHECK;
1713 }
1714 else if (w->interval)
1715 {
1716 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1717 /* if next trigger time is not sufficiently in the future, put it there */
1718 /* this might happen because of floating point inexactness */
1719 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1720 {
1721 ev_at (w) += w->interval;
1722
1723 /* if interval is unreasonably low we might still have a time in the past */
1724 /* so correct this. this will make the periodic very inexact, but the user */
1725 /* has effectively asked to get triggered more often than possible */
1726 if (ev_at (w) < ev_rt_now)
1727 ev_at (w) = ev_rt_now;
1728 }
1729
1730 ANHE_at_cache (periodics [HEAP0]);
1731 downheap (periodics, periodiccnt, HEAP0);
1732 }
1733 else
1734 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1735
1736 EV_FREQUENT_CHECK;
1737 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1738 }
1739}
1740
1741static void noinline
1742periodics_reschedule (EV_P)
1743{
1744 int i;
1745
1746 /* adjust periodics after time jump */
1747 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1748 {
1749 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1750
1751 if (w->reschedule_cb)
1752 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1753 else if (w->interval)
1754 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1755
1756 ANHE_at_cache (periodics [i]);
1757 }
1758
1759 reheap (periodics, periodiccnt);
1315} 1760}
1316#endif 1761#endif
1317 1762
1318void inline_speed 1763void inline_speed
1319time_update (EV_P_ ev_tstamp max_block) 1764time_update (EV_P_ ev_tstamp max_block)
1348 */ 1793 */
1349 for (i = 4; --i; ) 1794 for (i = 4; --i; )
1350 { 1795 {
1351 rtmn_diff = ev_rt_now - mn_now; 1796 rtmn_diff = ev_rt_now - mn_now;
1352 1797
1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1798 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1354 return; /* all is well */ 1799 return; /* all is well */
1355 1800
1356 ev_rt_now = ev_time (); 1801 ev_rt_now = ev_time ();
1357 mn_now = get_clock (); 1802 mn_now = get_clock ();
1358 now_floor = mn_now; 1803 now_floor = mn_now;
1374#if EV_PERIODIC_ENABLE 1819#if EV_PERIODIC_ENABLE
1375 periodics_reschedule (EV_A); 1820 periodics_reschedule (EV_A);
1376#endif 1821#endif
1377 /* adjust timers. this is easy, as the offset is the same for all of them */ 1822 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i) 1823 for (i = 0; i < timercnt; ++i)
1824 {
1825 ANHE *he = timers + i + HEAP0;
1379 ((WT)timers [i])->at += ev_rt_now - mn_now; 1826 ANHE_w (*he)->at += ev_rt_now - mn_now;
1827 ANHE_at_cache (*he);
1828 }
1380 } 1829 }
1381 1830
1382 mn_now = ev_rt_now; 1831 mn_now = ev_rt_now;
1383 } 1832 }
1384} 1833}
1398static int loop_done; 1847static int loop_done;
1399 1848
1400void 1849void
1401ev_loop (EV_P_ int flags) 1850ev_loop (EV_P_ int flags)
1402{ 1851{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1852 loop_done = EVUNLOOP_CANCEL;
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1406 1853
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1854 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408 1855
1409 do 1856 do
1410 { 1857 {
1444 /* update fd-related kernel structures */ 1891 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 1892 fd_reify (EV_A);
1446 1893
1447 /* calculate blocking time */ 1894 /* calculate blocking time */
1448 { 1895 {
1449 ev_tstamp block; 1896 ev_tstamp waittime = 0.;
1897 ev_tstamp sleeptime = 0.;
1450 1898
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1899 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 1900 {
1455 /* update time to cancel out callback processing overhead */ 1901 /* update time to cancel out callback processing overhead */
1456 time_update (EV_A_ 1e100); 1902 time_update (EV_A_ 1e100);
1457 1903
1458 block = MAX_BLOCKTIME; 1904 waittime = MAX_BLOCKTIME;
1459 1905
1460 if (timercnt) 1906 if (timercnt)
1461 { 1907 {
1462 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1908 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1463 if (block > to) block = to; 1909 if (waittime > to) waittime = to;
1464 } 1910 }
1465 1911
1466#if EV_PERIODIC_ENABLE 1912#if EV_PERIODIC_ENABLE
1467 if (periodiccnt) 1913 if (periodiccnt)
1468 { 1914 {
1469 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1915 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1470 if (block > to) block = to; 1916 if (waittime > to) waittime = to;
1471 } 1917 }
1472#endif 1918#endif
1473 1919
1474 if (expect_false (block < 0.)) block = 0.; 1920 if (expect_false (waittime < timeout_blocktime))
1921 waittime = timeout_blocktime;
1922
1923 sleeptime = waittime - backend_fudge;
1924
1925 if (expect_true (sleeptime > io_blocktime))
1926 sleeptime = io_blocktime;
1927
1928 if (sleeptime)
1929 {
1930 ev_sleep (sleeptime);
1931 waittime -= sleeptime;
1932 }
1475 } 1933 }
1476 1934
1477 ++loop_count; 1935 ++loop_count;
1478 backend_poll (EV_A_ block); 1936 backend_poll (EV_A_ waittime);
1479 1937
1480 /* update ev_rt_now, do magic */ 1938 /* update ev_rt_now, do magic */
1481 time_update (EV_A_ block); 1939 time_update (EV_A_ waittime + sleeptime);
1482 } 1940 }
1483 1941
1484 /* queue pending timers and reschedule them */ 1942 /* queue pending timers and reschedule them */
1485 timers_reify (EV_A); /* relative timers called last */ 1943 timers_reify (EV_A); /* relative timers called last */
1486#if EV_PERIODIC_ENABLE 1944#if EV_PERIODIC_ENABLE
1495 /* queue check watchers, to be executed first */ 1953 /* queue check watchers, to be executed first */
1496 if (expect_false (checkcnt)) 1954 if (expect_false (checkcnt))
1497 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1955 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1498 1956
1499 call_pending (EV_A); 1957 call_pending (EV_A);
1500
1501 } 1958 }
1502 while (expect_true (activecnt && !loop_done)); 1959 while (expect_true (
1960 activecnt
1961 && !loop_done
1962 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1963 ));
1503 1964
1504 if (loop_done == EVUNLOOP_ONE) 1965 if (loop_done == EVUNLOOP_ONE)
1505 loop_done = EVUNLOOP_CANCEL; 1966 loop_done = EVUNLOOP_CANCEL;
1506} 1967}
1507 1968
1596 if (expect_false (ev_is_active (w))) 2057 if (expect_false (ev_is_active (w)))
1597 return; 2058 return;
1598 2059
1599 assert (("ev_io_start called with negative fd", fd >= 0)); 2060 assert (("ev_io_start called with negative fd", fd >= 0));
1600 2061
2062 EV_FREQUENT_CHECK;
2063
1601 ev_start (EV_A_ (W)w, 1); 2064 ev_start (EV_A_ (W)w, 1);
1602 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2065 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1603 wlist_add (&anfds[fd].head, (WL)w); 2066 wlist_add (&anfds[fd].head, (WL)w);
1604 2067
1605 fd_change (EV_A_ fd, w->events & EV_IOFDSET); 2068 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1606 w->events &= ~ EV_IOFDSET; 2069 w->events &= ~EV_IOFDSET;
2070
2071 EV_FREQUENT_CHECK;
1607} 2072}
1608 2073
1609void noinline 2074void noinline
1610ev_io_stop (EV_P_ ev_io *w) 2075ev_io_stop (EV_P_ ev_io *w)
1611{ 2076{
1612 clear_pending (EV_A_ (W)w); 2077 clear_pending (EV_A_ (W)w);
1613 if (expect_false (!ev_is_active (w))) 2078 if (expect_false (!ev_is_active (w)))
1614 return; 2079 return;
1615 2080
1616 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2081 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2082
2083 EV_FREQUENT_CHECK;
1617 2084
1618 wlist_del (&anfds[w->fd].head, (WL)w); 2085 wlist_del (&anfds[w->fd].head, (WL)w);
1619 ev_stop (EV_A_ (W)w); 2086 ev_stop (EV_A_ (W)w);
1620 2087
1621 fd_change (EV_A_ w->fd, 0); 2088 fd_change (EV_A_ w->fd, 1);
2089
2090 EV_FREQUENT_CHECK;
1622} 2091}
1623 2092
1624void noinline 2093void noinline
1625ev_timer_start (EV_P_ ev_timer *w) 2094ev_timer_start (EV_P_ ev_timer *w)
1626{ 2095{
1627 if (expect_false (ev_is_active (w))) 2096 if (expect_false (ev_is_active (w)))
1628 return; 2097 return;
1629 2098
1630 ((WT)w)->at += mn_now; 2099 ev_at (w) += mn_now;
1631 2100
1632 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2101 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1633 2102
2103 EV_FREQUENT_CHECK;
2104
2105 ++timercnt;
1634 ev_start (EV_A_ (W)w, ++timercnt); 2106 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1635 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2107 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1636 timers [timercnt - 1] = (WT)w; 2108 ANHE_w (timers [ev_active (w)]) = (WT)w;
1637 upheap (timers, timercnt - 1); 2109 ANHE_at_cache (timers [ev_active (w)]);
2110 upheap (timers, ev_active (w));
1638 2111
2112 EV_FREQUENT_CHECK;
2113
1639 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2114 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1640} 2115}
1641 2116
1642void noinline 2117void noinline
1643ev_timer_stop (EV_P_ ev_timer *w) 2118ev_timer_stop (EV_P_ ev_timer *w)
1644{ 2119{
1645 clear_pending (EV_A_ (W)w); 2120 clear_pending (EV_A_ (W)w);
1646 if (expect_false (!ev_is_active (w))) 2121 if (expect_false (!ev_is_active (w)))
1647 return; 2122 return;
1648 2123
1649 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2124 EV_FREQUENT_CHECK;
1650 2125
1651 { 2126 {
1652 int active = ((W)w)->active; 2127 int active = ev_active (w);
1653 2128
2129 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2130
2131 --timercnt;
2132
1654 if (expect_true (--active < --timercnt)) 2133 if (expect_true (active < timercnt + HEAP0))
1655 { 2134 {
1656 timers [active] = timers [timercnt]; 2135 timers [active] = timers [timercnt + HEAP0];
1657 adjustheap (timers, timercnt, active); 2136 adjustheap (timers, timercnt, active);
1658 } 2137 }
1659 } 2138 }
1660 2139
1661 ((WT)w)->at -= mn_now; 2140 EV_FREQUENT_CHECK;
2141
2142 ev_at (w) -= mn_now;
1662 2143
1663 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1664} 2145}
1665 2146
1666void noinline 2147void noinline
1667ev_timer_again (EV_P_ ev_timer *w) 2148ev_timer_again (EV_P_ ev_timer *w)
1668{ 2149{
2150 EV_FREQUENT_CHECK;
2151
1669 if (ev_is_active (w)) 2152 if (ev_is_active (w))
1670 { 2153 {
1671 if (w->repeat) 2154 if (w->repeat)
1672 { 2155 {
1673 ((WT)w)->at = mn_now + w->repeat; 2156 ev_at (w) = mn_now + w->repeat;
2157 ANHE_at_cache (timers [ev_active (w)]);
1674 adjustheap (timers, timercnt, ((W)w)->active - 1); 2158 adjustheap (timers, timercnt, ev_active (w));
1675 } 2159 }
1676 else 2160 else
1677 ev_timer_stop (EV_A_ w); 2161 ev_timer_stop (EV_A_ w);
1678 } 2162 }
1679 else if (w->repeat) 2163 else if (w->repeat)
1680 { 2164 {
1681 w->at = w->repeat; 2165 ev_at (w) = w->repeat;
1682 ev_timer_start (EV_A_ w); 2166 ev_timer_start (EV_A_ w);
1683 } 2167 }
2168
2169 EV_FREQUENT_CHECK;
1684} 2170}
1685 2171
1686#if EV_PERIODIC_ENABLE 2172#if EV_PERIODIC_ENABLE
1687void noinline 2173void noinline
1688ev_periodic_start (EV_P_ ev_periodic *w) 2174ev_periodic_start (EV_P_ ev_periodic *w)
1689{ 2175{
1690 if (expect_false (ev_is_active (w))) 2176 if (expect_false (ev_is_active (w)))
1691 return; 2177 return;
1692 2178
1693 if (w->reschedule_cb) 2179 if (w->reschedule_cb)
1694 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2180 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1695 else if (w->interval) 2181 else if (w->interval)
1696 { 2182 {
1697 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2183 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1698 /* this formula differs from the one in periodic_reify because we do not always round up */ 2184 /* this formula differs from the one in periodic_reify because we do not always round up */
1699 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1700 } 2186 }
1701 else 2187 else
1702 ((WT)w)->at = w->offset; 2188 ev_at (w) = w->offset;
1703 2189
2190 EV_FREQUENT_CHECK;
2191
2192 ++periodiccnt;
1704 ev_start (EV_A_ (W)w, ++periodiccnt); 2193 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1705 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2194 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1706 periodics [periodiccnt - 1] = (WT)w; 2195 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1707 upheap (periodics, periodiccnt - 1); 2196 ANHE_at_cache (periodics [ev_active (w)]);
2197 upheap (periodics, ev_active (w));
1708 2198
2199 EV_FREQUENT_CHECK;
2200
1709 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2201 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1710} 2202}
1711 2203
1712void noinline 2204void noinline
1713ev_periodic_stop (EV_P_ ev_periodic *w) 2205ev_periodic_stop (EV_P_ ev_periodic *w)
1714{ 2206{
1715 clear_pending (EV_A_ (W)w); 2207 clear_pending (EV_A_ (W)w);
1716 if (expect_false (!ev_is_active (w))) 2208 if (expect_false (!ev_is_active (w)))
1717 return; 2209 return;
1718 2210
1719 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2211 EV_FREQUENT_CHECK;
1720 2212
1721 { 2213 {
1722 int active = ((W)w)->active; 2214 int active = ev_active (w);
1723 2215
2216 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2217
2218 --periodiccnt;
2219
1724 if (expect_true (--active < --periodiccnt)) 2220 if (expect_true (active < periodiccnt + HEAP0))
1725 { 2221 {
1726 periodics [active] = periodics [periodiccnt]; 2222 periodics [active] = periodics [periodiccnt + HEAP0];
1727 adjustheap (periodics, periodiccnt, active); 2223 adjustheap (periodics, periodiccnt, active);
1728 } 2224 }
1729 } 2225 }
1730 2226
2227 EV_FREQUENT_CHECK;
2228
1731 ev_stop (EV_A_ (W)w); 2229 ev_stop (EV_A_ (W)w);
1732} 2230}
1733 2231
1734void noinline 2232void noinline
1735ev_periodic_again (EV_P_ ev_periodic *w) 2233ev_periodic_again (EV_P_ ev_periodic *w)
1752#endif 2250#endif
1753 if (expect_false (ev_is_active (w))) 2251 if (expect_false (ev_is_active (w)))
1754 return; 2252 return;
1755 2253
1756 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2254 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2255
2256 evpipe_init (EV_A);
2257
2258 EV_FREQUENT_CHECK;
1757 2259
1758 { 2260 {
1759#ifndef _WIN32 2261#ifndef _WIN32
1760 sigset_t full, prev; 2262 sigset_t full, prev;
1761 sigfillset (&full); 2263 sigfillset (&full);
1773 wlist_add (&signals [w->signum - 1].head, (WL)w); 2275 wlist_add (&signals [w->signum - 1].head, (WL)w);
1774 2276
1775 if (!((WL)w)->next) 2277 if (!((WL)w)->next)
1776 { 2278 {
1777#if _WIN32 2279#if _WIN32
1778 signal (w->signum, sighandler); 2280 signal (w->signum, ev_sighandler);
1779#else 2281#else
1780 struct sigaction sa; 2282 struct sigaction sa;
1781 sa.sa_handler = sighandler; 2283 sa.sa_handler = ev_sighandler;
1782 sigfillset (&sa.sa_mask); 2284 sigfillset (&sa.sa_mask);
1783 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2285 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1784 sigaction (w->signum, &sa, 0); 2286 sigaction (w->signum, &sa, 0);
1785#endif 2287#endif
1786 } 2288 }
2289
2290 EV_FREQUENT_CHECK;
1787} 2291}
1788 2292
1789void noinline 2293void noinline
1790ev_signal_stop (EV_P_ ev_signal *w) 2294ev_signal_stop (EV_P_ ev_signal *w)
1791{ 2295{
1792 clear_pending (EV_A_ (W)w); 2296 clear_pending (EV_A_ (W)w);
1793 if (expect_false (!ev_is_active (w))) 2297 if (expect_false (!ev_is_active (w)))
1794 return; 2298 return;
1795 2299
2300 EV_FREQUENT_CHECK;
2301
1796 wlist_del (&signals [w->signum - 1].head, (WL)w); 2302 wlist_del (&signals [w->signum - 1].head, (WL)w);
1797 ev_stop (EV_A_ (W)w); 2303 ev_stop (EV_A_ (W)w);
1798 2304
1799 if (!signals [w->signum - 1].head) 2305 if (!signals [w->signum - 1].head)
1800 signal (w->signum, SIG_DFL); 2306 signal (w->signum, SIG_DFL);
2307
2308 EV_FREQUENT_CHECK;
1801} 2309}
1802 2310
1803void 2311void
1804ev_child_start (EV_P_ ev_child *w) 2312ev_child_start (EV_P_ ev_child *w)
1805{ 2313{
1807 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2315 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1808#endif 2316#endif
1809 if (expect_false (ev_is_active (w))) 2317 if (expect_false (ev_is_active (w)))
1810 return; 2318 return;
1811 2319
2320 EV_FREQUENT_CHECK;
2321
1812 ev_start (EV_A_ (W)w, 1); 2322 ev_start (EV_A_ (W)w, 1);
1813 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2323 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2324
2325 EV_FREQUENT_CHECK;
1814} 2326}
1815 2327
1816void 2328void
1817ev_child_stop (EV_P_ ev_child *w) 2329ev_child_stop (EV_P_ ev_child *w)
1818{ 2330{
1819 clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
1820 if (expect_false (!ev_is_active (w))) 2332 if (expect_false (!ev_is_active (w)))
1821 return; 2333 return;
1822 2334
2335 EV_FREQUENT_CHECK;
2336
1823 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2337 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1824 ev_stop (EV_A_ (W)w); 2338 ev_stop (EV_A_ (W)w);
2339
2340 EV_FREQUENT_CHECK;
1825} 2341}
1826 2342
1827#if EV_STAT_ENABLE 2343#if EV_STAT_ENABLE
1828 2344
1829# ifdef _WIN32 2345# ifdef _WIN32
1847 if (w->wd < 0) 2363 if (w->wd < 0)
1848 { 2364 {
1849 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2365 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1850 2366
1851 /* monitor some parent directory for speedup hints */ 2367 /* monitor some parent directory for speedup hints */
2368 /* note that exceeding the hardcoded limit is not a correctness issue, */
2369 /* but an efficiency issue only */
1852 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2370 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1853 { 2371 {
1854 char path [4096]; 2372 char path [4096];
1855 strcpy (path, w->path); 2373 strcpy (path, w->path);
1856 2374
2055 else 2573 else
2056#endif 2574#endif
2057 ev_timer_start (EV_A_ &w->timer); 2575 ev_timer_start (EV_A_ &w->timer);
2058 2576
2059 ev_start (EV_A_ (W)w, 1); 2577 ev_start (EV_A_ (W)w, 1);
2578
2579 EV_FREQUENT_CHECK;
2060} 2580}
2061 2581
2062void 2582void
2063ev_stat_stop (EV_P_ ev_stat *w) 2583ev_stat_stop (EV_P_ ev_stat *w)
2064{ 2584{
2065 clear_pending (EV_A_ (W)w); 2585 clear_pending (EV_A_ (W)w);
2066 if (expect_false (!ev_is_active (w))) 2586 if (expect_false (!ev_is_active (w)))
2067 return; 2587 return;
2068 2588
2589 EV_FREQUENT_CHECK;
2590
2069#if EV_USE_INOTIFY 2591#if EV_USE_INOTIFY
2070 infy_del (EV_A_ w); 2592 infy_del (EV_A_ w);
2071#endif 2593#endif
2072 ev_timer_stop (EV_A_ &w->timer); 2594 ev_timer_stop (EV_A_ &w->timer);
2073 2595
2074 ev_stop (EV_A_ (W)w); 2596 ev_stop (EV_A_ (W)w);
2597
2598 EV_FREQUENT_CHECK;
2075} 2599}
2076#endif 2600#endif
2077 2601
2078#if EV_IDLE_ENABLE 2602#if EV_IDLE_ENABLE
2079void 2603void
2081{ 2605{
2082 if (expect_false (ev_is_active (w))) 2606 if (expect_false (ev_is_active (w)))
2083 return; 2607 return;
2084 2608
2085 pri_adjust (EV_A_ (W)w); 2609 pri_adjust (EV_A_ (W)w);
2610
2611 EV_FREQUENT_CHECK;
2086 2612
2087 { 2613 {
2088 int active = ++idlecnt [ABSPRI (w)]; 2614 int active = ++idlecnt [ABSPRI (w)];
2089 2615
2090 ++idleall; 2616 ++idleall;
2091 ev_start (EV_A_ (W)w, active); 2617 ev_start (EV_A_ (W)w, active);
2092 2618
2093 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2619 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2094 idles [ABSPRI (w)][active - 1] = w; 2620 idles [ABSPRI (w)][active - 1] = w;
2095 } 2621 }
2622
2623 EV_FREQUENT_CHECK;
2096} 2624}
2097 2625
2098void 2626void
2099ev_idle_stop (EV_P_ ev_idle *w) 2627ev_idle_stop (EV_P_ ev_idle *w)
2100{ 2628{
2101 clear_pending (EV_A_ (W)w); 2629 clear_pending (EV_A_ (W)w);
2102 if (expect_false (!ev_is_active (w))) 2630 if (expect_false (!ev_is_active (w)))
2103 return; 2631 return;
2104 2632
2633 EV_FREQUENT_CHECK;
2634
2105 { 2635 {
2106 int active = ((W)w)->active; 2636 int active = ev_active (w);
2107 2637
2108 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2638 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2109 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2639 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2110 2640
2111 ev_stop (EV_A_ (W)w); 2641 ev_stop (EV_A_ (W)w);
2112 --idleall; 2642 --idleall;
2113 } 2643 }
2644
2645 EV_FREQUENT_CHECK;
2114} 2646}
2115#endif 2647#endif
2116 2648
2117void 2649void
2118ev_prepare_start (EV_P_ ev_prepare *w) 2650ev_prepare_start (EV_P_ ev_prepare *w)
2119{ 2651{
2120 if (expect_false (ev_is_active (w))) 2652 if (expect_false (ev_is_active (w)))
2121 return; 2653 return;
2654
2655 EV_FREQUENT_CHECK;
2122 2656
2123 ev_start (EV_A_ (W)w, ++preparecnt); 2657 ev_start (EV_A_ (W)w, ++preparecnt);
2124 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2658 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2125 prepares [preparecnt - 1] = w; 2659 prepares [preparecnt - 1] = w;
2660
2661 EV_FREQUENT_CHECK;
2126} 2662}
2127 2663
2128void 2664void
2129ev_prepare_stop (EV_P_ ev_prepare *w) 2665ev_prepare_stop (EV_P_ ev_prepare *w)
2130{ 2666{
2131 clear_pending (EV_A_ (W)w); 2667 clear_pending (EV_A_ (W)w);
2132 if (expect_false (!ev_is_active (w))) 2668 if (expect_false (!ev_is_active (w)))
2133 return; 2669 return;
2134 2670
2671 EV_FREQUENT_CHECK;
2672
2135 { 2673 {
2136 int active = ((W)w)->active; 2674 int active = ev_active (w);
2675
2137 prepares [active - 1] = prepares [--preparecnt]; 2676 prepares [active - 1] = prepares [--preparecnt];
2138 ((W)prepares [active - 1])->active = active; 2677 ev_active (prepares [active - 1]) = active;
2139 } 2678 }
2140 2679
2141 ev_stop (EV_A_ (W)w); 2680 ev_stop (EV_A_ (W)w);
2681
2682 EV_FREQUENT_CHECK;
2142} 2683}
2143 2684
2144void 2685void
2145ev_check_start (EV_P_ ev_check *w) 2686ev_check_start (EV_P_ ev_check *w)
2146{ 2687{
2147 if (expect_false (ev_is_active (w))) 2688 if (expect_false (ev_is_active (w)))
2148 return; 2689 return;
2690
2691 EV_FREQUENT_CHECK;
2149 2692
2150 ev_start (EV_A_ (W)w, ++checkcnt); 2693 ev_start (EV_A_ (W)w, ++checkcnt);
2151 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2694 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2152 checks [checkcnt - 1] = w; 2695 checks [checkcnt - 1] = w;
2696
2697 EV_FREQUENT_CHECK;
2153} 2698}
2154 2699
2155void 2700void
2156ev_check_stop (EV_P_ ev_check *w) 2701ev_check_stop (EV_P_ ev_check *w)
2157{ 2702{
2158 clear_pending (EV_A_ (W)w); 2703 clear_pending (EV_A_ (W)w);
2159 if (expect_false (!ev_is_active (w))) 2704 if (expect_false (!ev_is_active (w)))
2160 return; 2705 return;
2161 2706
2707 EV_FREQUENT_CHECK;
2708
2162 { 2709 {
2163 int active = ((W)w)->active; 2710 int active = ev_active (w);
2711
2164 checks [active - 1] = checks [--checkcnt]; 2712 checks [active - 1] = checks [--checkcnt];
2165 ((W)checks [active - 1])->active = active; 2713 ev_active (checks [active - 1]) = active;
2166 } 2714 }
2167 2715
2168 ev_stop (EV_A_ (W)w); 2716 ev_stop (EV_A_ (W)w);
2717
2718 EV_FREQUENT_CHECK;
2169} 2719}
2170 2720
2171#if EV_EMBED_ENABLE 2721#if EV_EMBED_ENABLE
2172void noinline 2722void noinline
2173ev_embed_sweep (EV_P_ ev_embed *w) 2723ev_embed_sweep (EV_P_ ev_embed *w)
2174{ 2724{
2175 ev_loop (w->loop, EVLOOP_NONBLOCK); 2725 ev_loop (w->other, EVLOOP_NONBLOCK);
2176} 2726}
2177 2727
2178static void 2728static void
2179embed_cb (EV_P_ ev_io *io, int revents) 2729embed_io_cb (EV_P_ ev_io *io, int revents)
2180{ 2730{
2181 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2731 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2182 2732
2183 if (ev_cb (w)) 2733 if (ev_cb (w))
2184 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2734 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2185 else 2735 else
2186 ev_embed_sweep (loop, w); 2736 ev_loop (w->other, EVLOOP_NONBLOCK);
2187} 2737}
2738
2739static void
2740embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2741{
2742 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2743
2744 {
2745 struct ev_loop *loop = w->other;
2746
2747 while (fdchangecnt)
2748 {
2749 fd_reify (EV_A);
2750 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2751 }
2752 }
2753}
2754
2755#if 0
2756static void
2757embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2758{
2759 ev_idle_stop (EV_A_ idle);
2760}
2761#endif
2188 2762
2189void 2763void
2190ev_embed_start (EV_P_ ev_embed *w) 2764ev_embed_start (EV_P_ ev_embed *w)
2191{ 2765{
2192 if (expect_false (ev_is_active (w))) 2766 if (expect_false (ev_is_active (w)))
2193 return; 2767 return;
2194 2768
2195 { 2769 {
2196 struct ev_loop *loop = w->loop; 2770 struct ev_loop *loop = w->other;
2197 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2771 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2198 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2772 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2199 } 2773 }
2774
2775 EV_FREQUENT_CHECK;
2200 2776
2201 ev_set_priority (&w->io, ev_priority (w)); 2777 ev_set_priority (&w->io, ev_priority (w));
2202 ev_io_start (EV_A_ &w->io); 2778 ev_io_start (EV_A_ &w->io);
2203 2779
2780 ev_prepare_init (&w->prepare, embed_prepare_cb);
2781 ev_set_priority (&w->prepare, EV_MINPRI);
2782 ev_prepare_start (EV_A_ &w->prepare);
2783
2784 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2785
2204 ev_start (EV_A_ (W)w, 1); 2786 ev_start (EV_A_ (W)w, 1);
2787
2788 EV_FREQUENT_CHECK;
2205} 2789}
2206 2790
2207void 2791void
2208ev_embed_stop (EV_P_ ev_embed *w) 2792ev_embed_stop (EV_P_ ev_embed *w)
2209{ 2793{
2210 clear_pending (EV_A_ (W)w); 2794 clear_pending (EV_A_ (W)w);
2211 if (expect_false (!ev_is_active (w))) 2795 if (expect_false (!ev_is_active (w)))
2212 return; 2796 return;
2213 2797
2798 EV_FREQUENT_CHECK;
2799
2214 ev_io_stop (EV_A_ &w->io); 2800 ev_io_stop (EV_A_ &w->io);
2801 ev_prepare_stop (EV_A_ &w->prepare);
2215 2802
2216 ev_stop (EV_A_ (W)w); 2803 ev_stop (EV_A_ (W)w);
2804
2805 EV_FREQUENT_CHECK;
2217} 2806}
2218#endif 2807#endif
2219 2808
2220#if EV_FORK_ENABLE 2809#if EV_FORK_ENABLE
2221void 2810void
2222ev_fork_start (EV_P_ ev_fork *w) 2811ev_fork_start (EV_P_ ev_fork *w)
2223{ 2812{
2224 if (expect_false (ev_is_active (w))) 2813 if (expect_false (ev_is_active (w)))
2225 return; 2814 return;
2815
2816 EV_FREQUENT_CHECK;
2226 2817
2227 ev_start (EV_A_ (W)w, ++forkcnt); 2818 ev_start (EV_A_ (W)w, ++forkcnt);
2228 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2819 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2229 forks [forkcnt - 1] = w; 2820 forks [forkcnt - 1] = w;
2821
2822 EV_FREQUENT_CHECK;
2230} 2823}
2231 2824
2232void 2825void
2233ev_fork_stop (EV_P_ ev_fork *w) 2826ev_fork_stop (EV_P_ ev_fork *w)
2234{ 2827{
2235 clear_pending (EV_A_ (W)w); 2828 clear_pending (EV_A_ (W)w);
2236 if (expect_false (!ev_is_active (w))) 2829 if (expect_false (!ev_is_active (w)))
2237 return; 2830 return;
2238 2831
2832 EV_FREQUENT_CHECK;
2833
2239 { 2834 {
2240 int active = ((W)w)->active; 2835 int active = ev_active (w);
2836
2241 forks [active - 1] = forks [--forkcnt]; 2837 forks [active - 1] = forks [--forkcnt];
2242 ((W)forks [active - 1])->active = active; 2838 ev_active (forks [active - 1]) = active;
2243 } 2839 }
2244 2840
2245 ev_stop (EV_A_ (W)w); 2841 ev_stop (EV_A_ (W)w);
2842
2843 EV_FREQUENT_CHECK;
2844}
2845#endif
2846
2847#if EV_ASYNC_ENABLE
2848void
2849ev_async_start (EV_P_ ev_async *w)
2850{
2851 if (expect_false (ev_is_active (w)))
2852 return;
2853
2854 evpipe_init (EV_A);
2855
2856 EV_FREQUENT_CHECK;
2857
2858 ev_start (EV_A_ (W)w, ++asynccnt);
2859 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2860 asyncs [asynccnt - 1] = w;
2861
2862 EV_FREQUENT_CHECK;
2863}
2864
2865void
2866ev_async_stop (EV_P_ ev_async *w)
2867{
2868 clear_pending (EV_A_ (W)w);
2869 if (expect_false (!ev_is_active (w)))
2870 return;
2871
2872 EV_FREQUENT_CHECK;
2873
2874 {
2875 int active = ev_active (w);
2876
2877 asyncs [active - 1] = asyncs [--asynccnt];
2878 ev_active (asyncs [active - 1]) = active;
2879 }
2880
2881 ev_stop (EV_A_ (W)w);
2882
2883 EV_FREQUENT_CHECK;
2884}
2885
2886void
2887ev_async_send (EV_P_ ev_async *w)
2888{
2889 w->sent = 1;
2890 evpipe_write (EV_A_ &gotasync);
2246} 2891}
2247#endif 2892#endif
2248 2893
2249/*****************************************************************************/ 2894/*****************************************************************************/
2250 2895
2308 ev_timer_set (&once->to, timeout, 0.); 2953 ev_timer_set (&once->to, timeout, 0.);
2309 ev_timer_start (EV_A_ &once->to); 2954 ev_timer_start (EV_A_ &once->to);
2310 } 2955 }
2311} 2956}
2312 2957
2958#if EV_MULTIPLICITY
2959 #include "ev_wrap.h"
2960#endif
2961
2313#ifdef __cplusplus 2962#ifdef __cplusplus
2314} 2963}
2315#endif 2964#endif
2316 2965

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines